WO2010041432A1 - Ship allocation plan creation device, method, and program - Google Patents

Ship allocation plan creation device, method, and program Download PDF

Info

Publication number
WO2010041432A1
WO2010041432A1 PCT/JP2009/005197 JP2009005197W WO2010041432A1 WO 2010041432 A1 WO2010041432 A1 WO 2010041432A1 JP 2009005197 W JP2009005197 W JP 2009005197W WO 2010041432 A1 WO2010041432 A1 WO 2010041432A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
amount
allocation plan
plan creation
loading
Prior art date
Application number
PCT/JP2009/005197
Other languages
French (fr)
Japanese (ja)
Inventor
小林敬和
屋地靖人
岡本哲也
佐野拓也
潮田泰宏
渡辺裕司
金澤典一
佐藤智宏
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42100394&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010041432(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010512026A priority Critical patent/JP4669583B2/en
Priority to CN2009801336055A priority patent/CN102137802B/en
Priority to BRPI0920709A priority patent/BRPI0920709A2/en
Publication of WO2010041432A1 publication Critical patent/WO2010041432A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for

Definitions

  • the present invention relates to a ship assignment plan creation apparatus, method, and program suitable for creating a ship assignment plan for transporting raw materials of a plurality of brands from a plurality of loading sites to a plurality of landing sites.
  • Patent Document 1 distributes by repeatedly assigning brands that are likely to run out of stock preferentially after reading raw material usage plans and annual operation plans of raw material carriers as known data.
  • An inference apparatus for material transportation allocation plan for creating a ship plan is disclosed.
  • Patent Document 2 the operation of each means of transportation is simulated based on the constraint conditions in the simulation unit, and the stock amount change for each material brand is calculated based on the simulation result in the raw material stock amount change calculation unit.
  • a physical distribution plan creation device that calculates and evaluates the result by an evaluation value calculation unit.
  • JP-A-8-272402 Japanese Patent Laid-Open No. 11-310313
  • Patent Document 1 in a ship allocation planning device, a brand to be processed is selected, a ship suitable for transporting the selected brand is selected, and a transportation schedule is determined.
  • a standard is disclosed such that an essential brand that requires a certain amount of stock is selected first.
  • a specific method for each selection is not disclosed.
  • Patent Documents 1 and 2 do not consider the minimization of transportation costs including the types of ships.
  • Patent Documents 1 and 2 do not consider the minimization of transportation costs including the employment form and fleet configuration of such ships. In other words, for example, it is better to ship with one continuous voyage ship and two spot ships with a maximum load capacity of 75000t, or with one continuous voyage ship and three spot ships with a maximum load capacity of 50000t. It is necessary in the actual work to allocate ships considering this. In this way, the shipping cost of a ship varies greatly depending on the maximum load capacity and the route of the ship to be hired.
  • Patent Documents 1 and 2 there is no ship allocation taking these into consideration.
  • a stock with similar properties a stock with a certain chemical property in common: a stock that can be used by replacing each other
  • it will be changed to a brand that can only be transported by a ship with a high freight rate. Is going.
  • no ship assignment is performed in consideration of brands having similar properties.
  • the present invention has been made in view of the situation as described above, and enables a ship allocation plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites quickly and with high accuracy.
  • the purpose is to enable the minimization of transportation costs, including the decision to hire or not to hire a ship that determines the type and composition of the fleet.
  • the objective is to enable further suppression of out-of-stocks and minimization of transportation costs compared to individual brands.
  • a ship assignment plan creation device is a ship assignment plan creation device for creating a ship assignment plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites.
  • a formula model setting means for setting a model; an optimization calculation means for performing an optimization calculation based on at least an objective function constructed with respect to the transportation cost
  • the ship allocation plan creation device of (1) when the raw materials are handled, a plurality of brands of the raw materials included in a range defined by chemical properties may be grouped.
  • the mathematical model setting unit may further set a mathematical model that represents a target amount restriction of the raw material.
  • the chartering contract type of the ship included in the ship list may include a continuous voyage ship, an irregular ship, and a spot ship.
  • the ship finance generation means extracts the continuous navigation ship having an undecided operation portion in the plan creation period based on the ship list and the ship operation status.
  • the ship fund generation means can be used in the plan creation period based on the ship list and the ship operation status, and there is an operation undetermined part.
  • the irregular ship may be extracted, and for the extracted irregular ship, all the combinations of the loading place and the landing place in the plan creation period that meet a predetermined condition may be created. .
  • the ship funding creation means includes a total sum of the take-up target amounts in the plan creation period, and a maximum of the extracted continuous sailing ship and the irregular ship.
  • the amount of the raw material to be transported by the spot ship may be calculated based on the total load capacity, and the spot ship candidates may be extracted based on the ship list.
  • the ship allocation plan creation device sets the mathematical model with a predetermined macro time accuracy within a preset optimization period, performs the optimization calculation, and performs the optimization calculation.
  • a macro optimization unit comprising the formula model setting means and the optimization calculation means for outputting a calculation result in a part of the plan determination period of the optimization period; and the plan determination obtained by the macro optimization unit Using the calculation result in a period, the mathematical model is set with micro time accuracy finer than the macro time accuracy in the plan finalization period, the optimization calculation is performed, and the result of the optimization calculation is calculated with the simulator And a micro-optimization unit including a mathematical expression model setting unit and an optimization calculation unit. (9)
  • the simulator reflects the change spilloverly when a change occurs in the operation time of one voyage of the continuous voyage ship.
  • the operation time of the subsequent voyage of the continuous voyage ship may be corrected, and the mathematical model setting means and the optimization calculation means may perform processing based on the correction.
  • the optimization calculation means for each loading place, collects and collects the pick-up amount of all the brands in a seasonal unit or a monthly unit. The amount of pick-up is calculated by summing up the amount of the pick-up target for all the brands in a seasonal unit or a month for each loading point; The optimization calculation may be performed based on an objective function that further aims to minimize the difference between the accumulation and the accumulation of the collection target amount.
  • the optimization calculation means sums up and accumulates the unloading amount of all the brands in a seasonal unit or a monthly unit for each landing site.
  • the unloading accumulation accumulation is calculated by calculating the standard unloading capacity accumulation for each landing site by summing up and accumulating the standard unloading capacity amount in a seasonal unit or a monthly unit; The optimization calculation may be performed based on an objective function for the purpose of minimizing the difference from the standard landing capacity of the landing site.
  • the ship allocation plan creation device described in (1) to (7) described above is for ship type, number of ships, loading place, landing place, loading brand, lifting brand, loading, and lifting quantity individually according to the user's intention.
  • the ship allocation plan creation device may further include an input unit that enables the loading place, loading brand, and loading amount to be fixed collectively according to the user's intention. Good.
  • the transportation cost may include a freight rate and a berthing fee.
  • the ship allocation plan creation method is a ship allocation plan creation method for creating a ship allocation plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites.
  • the present invention it is possible to create a ship allocation plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites quickly and with high accuracy.
  • the types of ship contracts continuous voyage ships, irregular ships, spot ships
  • the fleet composition shipment funding
  • the decision to hire / not hire each ship are optimized for minimizing transportation costs. Is possible.
  • by considering brands with similar properties it is possible to further optimize out-of-stock control and minimizing transportation costs compared to considering individual brands individually.
  • FIG. 1 is a diagram illustrating a schematic configuration of an entire system including a ship allocation plan creation device according to the present embodiment.
  • 100 is a ship allocation plan creation device, which transports multiple brands of raw materials (ore, coal, etc.) from a plurality of loading sites (mountains scattered around the world) to a plurality of landing sites (steelworks).
  • the purpose of this embodiment is to create a ship allocation plan that minimizes the transportation cost of all steelworks, not the leveling of transportation costs for each steelworks. Furthermore, it aims to create a ship allocation plan that minimizes costs including purchase costs in addition to transportation costs.
  • blending plan creation device 200 is a blending plan creation device that creates a blending plan for blending raw materials for each steel mill. As a result, the planned amount of use of the raw material transported to each steelworks is planned every day.
  • a blending plan creation technique in the blending plan creation apparatus 200 any technique may be used.
  • 300 is a database that stores data used by the devices 100 and 200 and data calculated by the devices 100 and 200.
  • Reference numeral 400 denotes a host computer called a process computer or the like, which refers to data stored in the database 300 or stores and updates data in the database 300.
  • the ship allocation plan creation device 100 uses the planned amount of raw materials used, the target amount to be taken, the ship list in which ships with different contract types are listed from the database 300, the operational status of the ships listed in the ship list, Data such as inventory status, raw material purchase costs, and transportation costs when using a ship listed in the ship list are taken in, and for example, a ship allocation plan for three months (September) is created.
  • January is a period obtained by dividing January into three.
  • the ship allocation plan includes continuous navigation ships, non-regular ships, landing sites for spot ships (shipping ports), loading brands, loadings, port order, berth berth, entry / exit timing, and hire Determine the number and type of spot ships (the size of the ship defined based on the maximum capacity of the ship), etc.
  • 101 is a simulator that simulates ship operation, loading and unloading facilities, yards, and the like.
  • the simulator 101 is a loading port (unloading port), a loading brand, a loading amount, a calling port for a continuous voyage ship, an irregular ship, and a spot ship determined by a macro optimization unit 102 and a micro optimization unit 103 described later.
  • This simulator is composed of an inventory transition simulator and a ship operation status transition simulator.
  • the inventory transition simulator calculates the inventory transition of raw materials at each steelworks. This inventory transition simulator calculates the inventory transition for each brand of raw material in detail, taking into account the planned use amount of the raw material for each steelworks and the unloading time for each brand of the ship's raw material. For example, if multiple brands are loaded on a ship and one brand is unloaded and then the second brand is unloaded, if the yard capacity is overflowing, the stock amount of raw materials on the yard will be reduced, and the yard capacity can be afforded. Taking into account whether it is necessary to unload after a certain amount of time, the transition of the inventory corresponding to the unloading time is accurately simulated.
  • the ship operation status transition simulator includes the arrival date and time (ETA: Estimated Time Of Arrival) of the loading port, the date and time of arrival at the loading port (ETB: Estimated Time Of Berthing), and the date and time of departure from the loading port (ETD: Estimated Time Of) Calculate the transition of ship operation status including Departure).
  • ETA Estimated Time Of Arrival
  • EB Estimated Time Of Berthing
  • ETD Estimated Time Of
  • the loading capacity is affected by the number of unloaders used for unloading. As an example, when unloading with one unloader, unloading can be performed with a capacity of 100% at 1500 t / h. In the case of two unloaders, unloading can be performed with a capacity of 70% at 1500 t / h ⁇ 2.
  • the above-mentioned ship operation status transition simulator incorporates changes in unloading capacity due to conditions such as the unloader radix into the simulation and accurately simulates it. This makes it possible to create a specific production / logistics plan that takes into account the fine constraints required for actual operations.
  • Reference numeral 102 is a macro optimization section, which assumes that the total amount of freight out of transportation costs will be based on the assumption that there will be no hindrance to the compounding plan (scheduled amount of raw materials used) at the steelworks and that the amount that can be shipped will be protected. For the purpose of making it the cheapest, for the purpose of making it the cheapest, there are landing sites (unloading ports) for continuous voyage vessels, irregular ships, spot vessels, loading brands, loading amount, order of port calls, and the number of spot vessels to be hired. And optimization to determine the ship type (the size of the ship defined based on the maximum load capacity of the ship).
  • the macro optimization unit 102 includes a ship funding source creation unit 102a that functions as a ship funding source creation unit according to the present invention, a formula model setting unit 102b that functions as a formula model setting unit according to the present invention, and an optimization calculation unit according to the present invention.
  • a functioning optimization calculation unit 102c is provided, and for example, 9 seasons are calculated with seasonal accuracy.
  • Reference numeral 103 denotes a micro-optimization unit which performs optimization so as to determine a docking berth and an entry / exit timing at which the total amount of the berthing fee is the lowest in the plan optimized by the macro-optimization unit 102.
  • An instruction for 101 is calculated.
  • the micro optimization unit 103 includes a formula model setting unit 103a that functions as a formula model setting unit according to the present invention, and an optimization calculation unit 103b that functions as an optimization calculation unit according to the present invention. Calculate to
  • Reference numeral 104 denotes a data fetching unit that functions as a data fetching unit in the present invention, which is listed in the ship list, a list of ships whose raw materials are scheduled to be used, a target quantity to be taken, and different types of contracts.
  • Reference numeral 105 denotes an output unit functioning as an output means in the present invention, which is a ship allocation plan created as a simulation result by the simulator 101, specifically, a landing site for a continuous voyage ship, an irregular ship, and a spot ship (loading). Unloading port), unloading brand, unloading order, arrival order, berthing berth, arrival / departure timing, number of spot ships to be hired and ship type (the size of the ship defined based on the maximum loading capacity of the ship) Display on screen or send data to external device.
  • FIG. 2 is a flowchart for explaining the steps of each process in the ship assignment plan creation method using the ship assignment plan creation apparatus 100.
  • a ship allocation plan is created with a plan creation period of 3 months (9 seasons) from the planning start date set by the user.
  • the data acquisition unit 104 of the ship allocation plan creation device 100 includes a ship list in which ships with different raw material usage schedules, take-up target quantities, and contract types are listed from the database 300, and ships that are listed in the ship list. Operational status, raw material inventory status, raw material purchase cost, transportation cost when using a ship listed in the ship list, ship berthing status at loading site, loading capacity status, facility repair / suspension schedule, lifting Capture data such as ship berthing status, unloading capacity status, facility repair / outage schedule, etc.
  • the planned usage amount of raw materials is information representing the planned usage amount for each steelworks (landing site) and for each brand of raw material in the plan creation period, calculated from the blending plan created by the blending plan creation device 200. is there.
  • the raw materials differ in quality, properties, etc. for each brand, so the amount to be used for each brand is determined and blended.
  • the collection target amount is information representing the collection target amount (planned collection amount) for each Yamamoto (loading place) and each brand. For example, each Yamamoto contracts with each brand to decide how much to take for each year, for example. Dividing it by the number of seasons gives the target amount for each season. It is required to allocate ships so as to approach this take-up target amount. However, in relation to the ship allocation plan, up and down fluctuations of about tens of thousands of tons from the take-off target amount are within the allowable range through negotiations with Yamamoto. In addition, depending on the contract, there may be a contract in which a predetermined brand is not picked up for a predetermined period. Specific information regarding such a contract may be included in the fetched data.
  • the ship list is information that lists ships with different types of contracts, specifically, continuous navigation ships, irregular ships, and spot ships here.
  • a continuous voyage vessel is a vessel that has a contract to continue voyage during the contract period. For this reason, it is required to allocate ships with the highest priority.
  • Irregular ships are ships that have a contract that sails only for the number of contracts in the contract period or that only sails for the contracted period. For this reason, it is required to ship as much as possible within the contracted voyage number or contracted voyage period. Spot ships are usually unsigned at the simulation stage.
  • Pmax representing the ship type of the spot ship is a ship that can pass through the Panama Canal (generally this ship type is called Panamax), Cape is a ship that can pass Cape Cape (generally this ship type is called Cape size), VL (Very Large ) Means a larger ship than these.
  • Panamax is a ship that is 900 feet long and 106 feet wide and has a maximum load capacity of 60,000 to 80,000 tons.
  • the normal cape size refers to ships with a maximum capacity or capacity of 150,000 to 170,000 tons.
  • the required number of ships and ship type decide.
  • the ship allocation plan is finalized to some extent, a procedure for negotiating with the actual shipping company and contracting a ship that matches the above-mentioned ship type is taken. For this reason, at the stage of making a ship allocation plan, the number of ships and the type of ship (the size of the ship defined based on the maximum load capacity) are first determined in an uncontracted state (before negotiation with the shipping company). It is required to decide.
  • the vessel operation status is information representing the actual operation status and the confirmed schedule of each vessel listed in the vessel list.
  • loading-lifting, loading-loading-lifting, loading-lifting-lifting, loading ports and lifting ports may be one port or multiple ports.
  • Such a series of ship operations is handled as one voyage, and a voyage number is given.
  • the voyage No. Unloading dock classification, unloading serial number, unloading port code, berth code, unloading port arrival date (ETA), unloading port arrival date (ETB), unloading port departure date (ETD), voyage Time is listed.
  • voyage No. of continuous cruise ship A 3 arrived off the port of loading (X1 port) at 20 o'clock on March 7, 2008, and arrived at the berth represented by code “1” of loading port (port X1) at 20 o'clock on March 12, 2008. After leaving the port (X1 port) at 20 o'clock on March 14, 2008, sailed for 46920 minutes and arrived at the offshore of port (B port) at 10 o'clock on April 16, 2008, at 13:00 on April 16, 2008 This is a voyage that berthed at the berth represented by the code “11” of the unloading port (Port B) and left the unloading port (Port B) at 14:00 on April 18, 2008.
  • the stock status of raw materials is determined by the blending plan created by the blending plan creation device 200. This is information representing the stock status by steelworks (land of unloading) and brand by date at the start of planning. Further, when the planning start date is in the past with respect to the date of execution of planning, the stock status of raw materials is information representing the actual stock status of each material brand input to the database by each steelworks.
  • the purchase cost is information indicating the purchase cost of raw materials by Yamamoto (loading place) and brand.
  • the transportation cost is information representing a freight when using a ship listed in the ship list and a stagnation fee for each loading port when using a ship listed in the ship list.
  • Fig. 5 shows an example of a freight list.
  • dredger code loading port, 1 port, 2 port, 3 port, freight (dollar / ton) are described.
  • the continuous cruise ship A has a freight of 16.00 when sailing from the loading port X1 to the unloading port A, and a freight when sailing from the loading port X1 to the unloading port A to the unloading port B is 16.24.
  • the freight rate is generally cheaper using a continuous cruise ship than using an irregular ship or a spot ship.
  • Fig. 6 shows an example of a list of berthing charges.
  • a dredger code for each ship listed in the ship list, a lift run (t / Day), and a desdemarate (dollar / day) are described.
  • Lifting rate is the standard capacity for unloading and represents the amount that can be handled in one day. Compared to the case where it is assumed that the cargo can be lifted with the lifting capacity, when the actual lifting time is shortened, the amount set in the desdemaration rate can be received from the shipping company. On the contrary, if it becomes late, the amount set for the death demarcation will be paid to the shipping company.
  • step S102 The ship finance generation unit 102a of the macro optimization unit 102 selects a ship based on the ship list (see FIG. 3) taken in step S101, and creates a necessary ship fund.
  • FIG. 7 is a flowchart for explaining a vessel selection process.
  • the ship fund generation unit 102a extracts a continuous sailing ship having an undetermined portion scheduled to be operated during the plan creation period based on the ship list (see FIG. 3) and the ship operation status (see FIG. 4) (step) S201). For example, assuming that the planning start date is March 1, 2008 and a ship allocation plan for three months is to be created, as shown in FIG. 4, the continuous cruise ship A is not yet determined after April 18, 2008. Therefore, the continuous cruise ship A is extracted.
  • FIG. 8 shows the voyage No. already confirmed. 3 (“A-3” in the figure), the pattern of loading port X2-Yangu port A (voyage No. 4) and loading port X1-Yangu port B (voyage No. 5) is being created.
  • FIG. 8 shows the voyage No. already confirmed. 3 (“A-3” in the figure), the pattern of loading port X2-Yangu port A (voyage No. 4) and loading port X1-Yangu port B (voyage No. 5) is being created.
  • each time is obtained using a standard voyage time (distance between ports and a standard knot of the ship A) and a standard loading time.
  • voyage no. The time of landing at Yacht A in No. 4 is [voyage no. 4 at the time of landing at the loading port X2] + [standard loading time] + ([distance between the port X2 and port A]) / [standard knot of the ship A]. Since there are a plurality of combinations of loading place and landing place in the plan creation period for the continuous cruise ship A, all of these patterns (or all the patterns that meet the above specific conditions) are created. The same operation will be performed for the other continuous cruise ships.
  • an irregular ship that can be used in the planning period and has an undetermined portion is extracted (step S203). For example, as shown in FIG. 3, since the scheduled allocation date of the irregular ship 5 is out of the plan creation period, the irregular ship 5 is not extracted. Then, as in the case of a continuous voyage ship, all patterns of combination of loading and unloading sites (or all patterns that meet specific conditions) are created for each extracted irregular ship in the plan creation period (step S204). .
  • spot ship candidates are extracted based on the ship list (see FIG. 3) and the ship operation status (see FIG. 4) (step S205). Specifically, first, the total take-off target amount in the plan creation period is calculated. Further, the sum of the maximum loading capacity of the continuous voyage ship and the irregular ship extracted in steps S201 and S202 is calculated. As a result, the transport amount to be supplemented by the spot ship can be calculated by subtracting the sum of the maximum loading capacity of the continuous voyage ship and the irregular ship included in the plan creation period from the total take-up target quantity (FIG. 9). See). Based on the transport amount to be supplemented by this spot ship, the maximum load capacity of each spot ship is referred to calculate how many spot ships are required, and the minimum number of each spot ship is obtained.
  • the transport amount to be supplemented by a spot ship is 250,000 ton
  • four Australia-PmaxSpots are candidates for the spot ship.
  • the minimum number of spot ships is obtained, such as CapeSpot.
  • the minimum number of spot ships obtained is the minimum number of ships when the take-up is supplemented only with the spot ship of the dredger code. As will be described later, more spot ships may be required than the minimum number of ships.
  • spot ship candidates are extracted based on the ship list (see FIG. 3) and the ship operation status (see FIG. 4).
  • the ship is extracted as a candidate for a spot ship, and further, the date set in advance for each charter code for which the contract classification of the ship list is not contracted.
  • FIG. 10 shows an example of a route list of spot ships with an interval for creating spot ship candidates for each charter code as 10 days.
  • the spot ship candidates are created by narrowing the interval for creating spot ship candidates so that the number of ships is larger than the calculated minimum number of ships. Then, as in the case of a continuous voyage ship, all the patterns of combination of loading place and landing place in the plan creation period (or all patterns that match the specific conditions) are created for each created spot ship candidate (step S206). ).
  • step S103 The mathematical model setting unit 102b of the macro optimization unit 102 sets a mathematical model constructed so as to represent the ship operation restriction, the supply / demand balance restriction of raw materials at the landing, and the take-up target quantity restriction created in step S102.
  • the mathematical model to be set is constructed (formulated) as a model according to mathematical programming such as LP (linear programming), MIP (mixed integer programming), QP (quadratic programming), and the like.
  • LP linear programming
  • MIP mixed integer programming
  • QP quadrattic programming
  • the setting of the mathematical model refers to the maximum number of subscripts in each array (for example, the number of ships) for the basic mathematical model that is constructed in an abstract format so that it can cope with changes in the number of ships, the number of ports, etc. ) And the coefficient values in the formula are specifically determined according to the actual plan.
  • This variable is an integer variable that takes one of the values 1 for selecting and 0 for not selecting.
  • the continuous cruise ship A shown in FIG. 4 (“A-4” in the figure), if there are two loading ports X1 and X2 where the ship can call, define the following two integer variables to correspond to each loading port .
  • ETA which is the third subscript of these integer variables, is the offshore time calculated in step S102.
  • variable will take the following values:
  • the corresponding ship stops at the corresponding loading port, the corresponding lifting port, the corresponding calling order (number indicating the number of the landing port, for example, loading port X1-lifting port A-lifting port B, B is called in order of calling 2), that is, after stopping at the corresponding port, whether to stop at the landing port, or not selecting, that is, after stopping at the loading port, Defines a variable that indicates whether or not to stop in the order of arrival. This variable is an integer variable that takes a value of 1 indicating that the port is calling and 0 indicating that the port is not calling. In the example dealt with here, an example in which a maximum of two landing ports can be visited is presented. However, the number of landing ports that can be visited and the number of loading ports that can be called may take on more values.
  • variable that indicates the amount that the relevant ship will load the relevant brand at the relevant loading port.
  • variable is defined that indicates the amount that the relevant ship unloads the relevant brand in the relevant loading port, relevant discharge port, and appropriate calling order.
  • a variable indicating the stock quantity at the relevant discharge port of the relevant brand on the relevant day is defined.
  • Constraint conditions indicating conditions such as “the load capacity of each ship does not exceed the maximum load capacity”, “the load capacity must be completely unloaded”, etc. are constructed in advance as a basic mathematical model.
  • a series of steps including optimization (steps S103 to S106) and simulation (S107) can be executed by repeating a plurality of loops.
  • the ship operation restrictions are set in the mathematical model based on the data captured in step S101.
  • the mathematical model is set by reflecting the result of the simulation performed by the simulator 101 in the previous loop.
  • Equation 2 The constraint that the entire loading capacity is unloaded is expressed by the following constraint equation (Equation 2).
  • a constraint condition that “the stock amount of each brand is always secured more than the safety stock amount” is constructed as a mathematical model.
  • the simulation results in the simulator 101 are reflected in the subsequent loops (steps S103 to S107) and thereafter, and the constructed mathematical model is set as shown in FIG.
  • Equation 3 the constraint equation representing the transition of the stock amount of each brand is expressed as (Equation 3) below. That is, a value obtained by subtracting the inventory amount on the previous day and the amount unloaded on the current day from the inventory amount on the current day is the scheduled use amount on the current day.
  • the take-off target amount constraint is set based on the data fetched in step S101, reflecting the simulation result in the simulator 101 after the next loop (steps S103 to S107).
  • the formula model is such that the take-up amount (loading amount) to be optimized is not far from the take-up target amount, and whether or not it can be picked up (as mentioned above, there may be circumstances where a predetermined brand is not picked up for a predetermined period). Has been built.
  • the upper and lower limit values are simply set for the pick-up target amount every season (or every month), It can be considered that the product amount does not exceed the upper and lower limit values.
  • the take-up crack may occur if accumulated for the year. Therefore, as shown in FIG. 12B, taking into account the collection target amount accumulation and the collection amount accumulation every season (or every month), the difference between the collection target amount accumulation and the collection amount accumulation is reduced (minimized, upper It is preferable to set a constraint such that the lower limit value is not exceeded.
  • variables of overflow amount and deficiency amount from the target collection amount every season are defined.
  • Equation 6 the constraint equation that represents the cumulative amount received for each issue is expressed as (Equation 6) below. That is, the accumulated amount of collection is the total amount of unloading of a ship (voyage) in which an ETA is entered during the period from the planning start date to the relevant season.
  • Equation 7 The constraint equation that expresses the relationship between the accumulation of the target amount for each brand, the overflow amount, and the shortage amount is expressed as (Equation 7) below. That is, if the overflow amount is generated from the take-up cumulative amount, the overflow amount is subtracted, and if the shortage has occurred, the shortage amount is added to match the take-up target cumulative amount.
  • the overflow amount and the shortage amount are added as items of the objective function, and are minimized.
  • This port-calling variable is 1 when a specific ship selects a combination of a specific loading port as a loading port, a corresponding unloading port 1 as a first unloading port, and a specific unloading port 2 as a second unloading port. Take 0 if you don't select.
  • the optimization calculation unit 102c of the macro optimization unit 102 performs the optimization calculation based on the objective function (evaluation function) set for the transportation cost, using the mathematical model set in step S103.
  • the problem is solved as an optimization problem by mathematical programming such as LP (Linear Programming), MIP (Mixed Integer Programming), and QP (Secondary Programming).
  • the following variables are determined using an objective function for the purpose of minimizing the total amount of freight in the transportation cost.
  • the hull type, the number of ships, the landing site (shipping port), the loading brand, and the amount of loading are selected to make the total amount of freight the cheapest.
  • the freight applied to the ship is the sum of the standard freight from the loading port to the landing port calling at the first port and the multi-port additional freight applied when calling to another port as described above. Then, it is the product of the total of the multi-port lift additional freight that occurs when an extra call is made from the first port to the second port, and the amount loaded.
  • the macro optimization is intended to reduce the difference between the take-up target amount accumulation and the take-up amount accumulation in consideration of the take-up target amount accumulation and the take-up amount accumulation. For this reason, an item for minimizing the total amount of overflow and deficiency from the seasonal collection target cumulative amount is added to the objective function. Therefore, (Expression 11) representing the objective function is changed to the following expression (Expression 12). Macro optimization optimizes problems related to dredgers as a whole.
  • the objective function is constructed for freight
  • the objective function may be used for the purpose of minimizing the total amount of freight and the total amount of raw material purchase costs.
  • the target amount of raw materials is set by contract, and there is no significant change in the purchase cost of raw materials, but among them, the total purchase cost of raw materials can be minimized.
  • the formula to be minimized is formulated as an objective function, and each formula to be satisfied is formulated as a constraint formula.
  • This constraint equation is expressed as a linear equation or an inequality.
  • the objective function is expressed by a linear expression.
  • a mathematical model and an objective function are constructed as models in which there are variables that should be integers. The problem formulated in this way is generally well known as a mixed integer programming problem, and this problem can be (analytical) optimized.
  • time accuracy is calculated as seasonal accuracy.
  • the optimization period is 9 in the first loop (steps S103 to S107), 8 in the next loop (steps S103 to S107), and so on in the last loop (steps S103 to S107). Then, the first January of the optimization period (9th to January) is set as the plan finalization period, and the calculation result in the plan finalization period is output to the micro optimization unit 103.
  • the mathematical model setting unit 103a of the micro-optimization unit 103 is a stagnation constraint and a raw material at a landing site among the constraints when operating a ship according to the ship allocation plan of the plan confirmation period obtained by the macro optimization unit 102.
  • a mathematical model representing the supply-demand balance constraint is set.
  • the mathematical model used is constructed using mathematical programming such as LP (Linear Programming), MIP (Mixed Integer Programming), and QP (Secondary Programming).
  • LP Linear Programming
  • MIP Mated Integer Programming
  • QP Secondary Programming
  • the port of call is determined by macro optimization.
  • a variable for selecting which berth of the corresponding landing port is to be defined is defined. This variable is an integer variable that takes a value of 1 if the corresponding berth is selected, and 0 if it is not selected.
  • a variable for the time (ETA) at which the ship will start offshore in order to arrive at the berth Since the time cannot be directly defined as a variable for formulation by MIP, it is defined as the elapsed time from the planning start date. That is, when the planning start date is 0:00 on January 1, and the ETA is 1:10 on January 1, it is defined as taking 70. Also, this variable is not an integer variable, but defined as a variable that takes a continuous value.
  • variable of the stock quantity at the corresponding discharge port of the corresponding brand for the corresponding part is defined.
  • Vessel stagnation restrictions are set based on the data fetched in step S101 in the first loop, and further reflecting the simulation results in the simulator 101 after the next loop (steps S103 to S107).
  • Vessel operating conditions EB> ETA, ETD> ETB + unloading time, etc.
  • berth conditions allowable LOA (full length), DRAFT (full depth), BEAM (full width), loading capacity, yard capacity, etc.)
  • Etc. are built into the mathematical model.
  • the supply and demand balance of raw materials at the landing site is set based on the data taken in step S101, and the simulation results in the simulator 101 are reflected after the next loop (steps S103 to S107).
  • it is constructed as a mathematical model that the stock amount of each brand is always secured at least the safe stock amount. That is, the value obtained by subtracting the inventory amount one minute before the amount unloaded at the time and the amount unloaded at the time becomes the scheduled use amount for the time 1 minute.
  • the optimization calculation unit 103b of the micro optimization unit 103 performs optimization calculation based on the objective function (evaluation function) constructed for the transportation cost, using the mathematical model set in step S105.
  • the problem is solved as an optimization problem by mathematical programming such as LP (Linear Programming), MIP (Mixed Integer Programming), and QP (Secondary Programming).
  • an objective function for the purpose of minimizing the total amount of the berthing fee is used, ⁇ (ship, berth) indicating whether or not the ship berths, and ETA (ship, berth) indicating the ETA time. ), ETB representing the ETB time (ship, berth), and ETD representing the ETD time (ship, berth).
  • the berthing charge on the ship is compared to the ETD-ETA and the contracted standard berth time. If the berth is longer than the standard berth time, that is, if ETD-ETA> the standard berth time, You pay the contracted costs, and in the opposite case, you receive the contracted costs as a death demarcation.
  • the formula to be minimized is formulated as an objective function, and each formula to be satisfied is formulated as a constraint formula.
  • This constraint equation is expressed by a linear equation or an inequality.
  • the objective function is expressed by a linear expression.
  • a mathematical model and an objective function are constructed as models in which there are variables that should be integers. The problem formulated in this way is generally well known as a mixed integer programming problem, and this problem can be (analytical) optimized.
  • the optimization period is 10 days (1st) and the time accuracy is calculated as minute accuracy.
  • Simulation (step S107) The simulator 101 executes a simulation based on the solution for the mathematical model obtained by the micro optimization unit 103, and finalizes the ship allocation plan for the plan finalization period (in the first season).
  • the time accuracy of the simulation is minute accuracy. In this simulation, it is possible to create a ship allocation plan that takes into account even the fine constraints actually required by incorporating constraints that could not be incorporated into the macro mathematical model and the micro mathematical model.
  • one example of constraints that are difficult to handle with macro / micro optimization is the number of unloaders used to unload a single ship. This radix varies depending on the position of the hatch where the brand to be unloaded is loaded, whether or not there is a ship handling at another berth at the same port.
  • the unloading capacity varies depending on the number of unloaders used for unloading. For example, a situation such as “when unloading with one unit is lifted with a capacity of 100% at 1500 t / h” and “when two units are unwound with a capacity of 70% with 1500 t / h ⁇ 2 units” can be exemplified.
  • the micro-optimization unit 103 adjusts the time by changing the timing of entering / leaving the ship, the time is corrected by reflecting it in a spillover manner.
  • time adjustment is made at a certain port, it will affect the subsequent voyage, so the time will be corrected by the simulator 101 and reflected in the processing by the macro optimization unit 102 thereafter. ing.
  • step S108 it is determined whether or not plans for the plan creation period (3 months (9 months)) have been finalized. If it has not been confirmed yet, the first day of the next season in which the plan is confirmed, for example, if the plan for N season is confirmed, the first day of N + 1 season is updated as the plan update date (step S109), and the process returns to step S103.
  • the inventory transition in the season (N season) when the plan is finalized and the operational status of the ship are updated to finalize the plan for the next season (N + 1 season). By repeating this, the plan for the plan creation period (3 months) is fixed (see FIG. 13).
  • Shipment plan output (step S110) The ship allocation plan created as described above is displayed on a screen (not shown) by the output unit 105 or transmitted to an external device.
  • the macro optimization unit 102 and the micro optimization unit 103 first set a mathematical model based on the initial conditions, perform optimization calculation, and calculate an instruction for the simulator 101.
  • the macro optimization unit 102 and the micro optimization unit 103 provide information on changes in the stock of raw materials in the final state of the plan finalization period and the ship operation status.
  • the macro optimization unit 102 and the micro optimization unit 103 set a mathematical model based on the given information, perform optimization calculation, and calculate an instruction for the simulator. In this way, by linking the simulator 101 and the optimization units 102 and 103, it is possible to create a ship allocation plan for the plan creation period (3 months (9th September)).
  • the simulator 101 (the inventory transition simulator, the inventory transition simulator, the calculation instruction based on the result of the optimization calculation performed by the macro optimization unit 102 and the micro optimization unit 103). (Ship operation status transition simulator).
  • the simulation is performed based on the result of the optimization calculation, it is possible to surely obtain a theoretical optimum solution. Thereby, it is not necessary to evaluate the simulation result and repeat the simulation many times as in the prior art, and the simulation result can be created quickly and with high accuracy.
  • the macro optimization unit 102 selects the ship type, the number of ships, the landing site (shipping port), the loading brand, the amount of loading, and the port order, while the micro optimization unit 103 uses the berth used. The calculation was divided to select the entry / exit timing.
  • each brand is handled as an individual one, but a plurality of brands with similar properties (brands having a certain chemical property in common: brands that can be used even if they are replaced with each other) are grouped. May be handled. In actual operation, if a brand with a property close to the brand that was originally intended for use is transported, the brand that was transported as an alternative may be used instead of the brand that was originally used. Therefore, the above handling can be performed. By grouping brands in this way and treating them as one, it is possible to reduce the number of variables and the amount of calculation.
  • the user may be able to individually fix the ship type, the number of ships, the landing site (shipping port), the loading brand, and the loading amount.
  • the ship type for example, it is possible to cope with a situation where a predetermined ship is used or a predetermined loading port is used in advance.
  • negotiations with Yamamoto will proceed and the amount will be finalized.
  • the brand name and volume (loading volume) cannot be changed due to contractual reasons.
  • the landing site there is often a room for changing the landing site, the brand name, and the lifting amount after judging the stock status. For this reason, if operation which can fix a loading place (loading port), a loading brand, and a loading amount collectively is enabled, it will become convenient for a user.
  • the collected amounts of all the brands are summed in seasonal units (or monthly units) for each loading place, and the accumulation up to that point is considered (collected amount accumulation).
  • the collection target amount of all brands is summed in seasonal units (or monthly units) for each loading place, and the accumulation up to that time is set as a target value (collection target amount accumulation). Then, an objective function is constructed for the purpose of minimizing the difference between the accumulated amount of collected items and the accumulated amount of collected items.
  • the amount of unloading of all brands is summed in seasonal units (or monthly units) for each landing site, and the accumulation up to that point is considered (unloading amount accumulation).
  • the standard unloading capacity for each landing site is summed in seasonal units (or monthly units), and the accumulation up to that time is set as a target value (cumulative standard unloading capacity accumulation). Then, the difference is defined as the remaining unloading amount, and an objective function for the purpose of minimizing the remaining unloading amount is constructed.
  • FIG. 16A shows a ship planning result planned by a skilled artisan by a conventional method.
  • a heavy vessel awaits a ship when the first ship is scheduled to berth at a particular berth at a particular port at a particular time. Occurs when anchored at the berth.
  • the first ship needs to stay at the offshore of the loading port until the second ship leaves the port, that is, until the ETD of the second ship.
  • the stock of raw materials on the yard will have a yard capacity. Occurs when it exceeds the limit and cannot be handled.
  • FIG. 16B shows a ship assignment planning result planned using the ship assignment plan creating apparatus and method according to the present embodiment.
  • FIG. 16B compared with FIG. 16A, most of the heavy ship waiting boat and the yard waiting boat are eliminated.
  • stable ship assignment planning is possible without depending directly on the skill of the planner.
  • the ship allocation plan creation apparatus of the present invention can be specifically configured by a computer system including a CPU, a ROM, a RAM, and the like, and is realized by the CPU executing a program. Moreover, the ship allocation plan creation apparatus of this invention may be comprised from one apparatus, or may be comprised from several apparatus.
  • the object of the present invention can also be achieved by supplying a storage medium storing software program codes for realizing the functions of the above-described embodiments to a system or apparatus.
  • the computer (or CPU or MPU) of the system or apparatus reads and executes the program code stored in the storage medium.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention.
  • a storage medium for supplying the program code for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
  • the present invention it is possible to create a ship allocation plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites quickly and with high accuracy.
  • transportation costs including the types of ship contracts (continuous voyage ships, irregular ships, spot ships), and the fleet structure (ship funding) with the decision to hire / not hire each ship.
  • ships including the types of ship contracts (continuous voyage ships, irregular ships, spot ships), and the fleet structure (ship funding) with the decision to hire / not hire each ship.
  • ships including the types of ship contracts (continuous voyage ships, irregular ships, spot ships), and the fleet structure (ship funding) with the decision to hire / not hire each ship.
  • ships including the types of ship contracts (continuous voyage ships, irregular ships, spot ships), and the fleet structure (ship funding) with the decision to hire

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Quality & Reliability (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A ship allocation plan creation device creates a ship allocation plan for transporting raw materials of a plurality of brands from a plurality of loading ports to a plurality of discharging ports.  The ship allocation plan creation device comprises: a data acquisition means; a ship resource creation means; a mathematical model setting means for setting a mathematical model for expressing at least the operation restriction of a ship included in a ship resource and the supply and demand balance restrictions of the raw materials at the discharging ports; an optimization calculation means for, using the set mathematical model, performing an optimization calculation according to an objective function constructed for at least transport cost; a simulator operating according to the optimization calculation result and including a stock transition simulator for simulating the transition of a stock state and a ship operation state transition simulator for simulating the transition of a ship operation state; and an output means.

Description

配船計画作成装置、方法及びプログラムShip allocation plan creation device, method and program
 本発明は、複数銘柄の原材料を複数の積地から複数の揚地に輸送する配船計画を作成するのに好適な配船計画作成装置、方法及びプログラムに関する。 本願は、2008年10月6日に、日本に出願された特願2008-260170号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a ship assignment plan creation apparatus, method, and program suitable for creating a ship assignment plan for transporting raw materials of a plurality of brands from a plurality of loading sites to a plurality of landing sites. This application claims priority based on Japanese Patent Application No. 2008-260170 filed in Japan on October 6, 2008, the contents of which are incorporated herein by reference.
 鉄鋼を始めとする多くの産業においては、原材料の輸送計画を最適に立案することが求められる。鉄鋼であれば、複数銘柄の原材料(鉱石や石炭等)を世界中に点在する山元から複数の製鉄所に船舶(船財源)で輸送している。この場合に、契約した引取目標量を守り、輸送された各原材料が日々製鉄所で使用される際に在庫切れを起こさないように配船計画を作成する必要がある。そして、配船計画を作成するに際しては、コスト(費用)が重要な指標として判断され、輸送費用(船を雇う費用であるフレートと、船が港で契約期間以上に停泊した場合に支払う滞船料)、購入費用のミニマム化(最小化)が求められる。 In many industries, including steel, it is required to make an optimal transportation plan for raw materials. In the case of steel, multiple brands of raw materials (ores, coals, etc.) are transported by ship (ship funding source) from mountain bases scattered around the world to multiple steelworks. In this case, it is necessary to create a ship allocation plan so as to keep the contracted target quantity of collection and to prevent out of stock when each transported raw material is used every day at the steelworks. When preparing a ship allocation plan, cost (cost) is judged as an important indicator, and transportation costs (freight, which is the cost of hiring a ship, and stagnation that is paid if the ship is anchored at the port for longer than the contract period) ) And purchase costs must be minimized (minimized).
 この種の技術として、特許文献1には、原材料使用計画及び原料運搬船の年間稼動計画を既知データとして読み込んだ後に、在庫切れを起こしそうな銘柄を優先的に船に割り当てることを繰り返すことで配船計画を作成する原料輸送配船計画用推論装置が開示されている。 As this type of technology, Patent Document 1 distributes by repeatedly assigning brands that are likely to run out of stock preferentially after reading raw material usage plans and annual operation plans of raw material carriers as known data. An inference apparatus for material transportation allocation plan for creating a ship plan is disclosed.
 また、特許文献2には、シミュレート部で制約条件に基づいて各輸送手段の運行をシミュレートし、原料在庫量推移算出部で上記シミュレート結果に基づいて原料銘柄毎の在庫量の推移を算出して、その結果を評価値算出部で評価するようにした物流計画作成装置が開示されている。 Further, in Patent Document 2, the operation of each means of transportation is simulated based on the constraint conditions in the simulation unit, and the stock amount change for each material brand is calculated based on the simulation result in the raw material stock amount change calculation unit. There is disclosed a physical distribution plan creation device that calculates and evaluates the result by an evaluation value calculation unit.
特開平8-272402号公報JP-A-8-272402 特開平11-310313号公報Japanese Patent Laid-Open No. 11-310313
 特許文献1では、配船計画装置において、処理対象の銘柄を選定し、選定された銘柄を輸送するのに適した船舶を選定し、輸送スケジュールを決定する。そして、例えば処理対象の銘柄の選定の際に、一定量以上の在庫を必要とする必須銘柄が先に選ばれるようにする等の基準は開示されている。しかしながら、各選定の具体的な手法については開示されていない。処理対象の銘柄、船舶、輸送スケジュールの組み合わせは多岐にわたり、満足できる結果が得られるまでには、これら各要素を変えながら計算を行わなければならず、配船計画を作成するために多くの時間がかかってしまう。 In Patent Document 1, in a ship allocation planning device, a brand to be processed is selected, a ship suitable for transporting the selected brand is selected, and a transportation schedule is determined. For example, when selecting a brand to be processed, a standard is disclosed such that an essential brand that requires a certain amount of stock is selected first. However, a specific method for each selection is not disclosed. There are a wide variety of combinations of brands, ships, and transportation schedules to be processed, and it is necessary to perform calculations while changing each of these factors until a satisfactory result is obtained. It will take.
 また、必須銘柄が先に選ばれる配船を行っているため、所定の期間内において全銘柄を見た場合に、在庫切れの回数、或いは在庫切れの量を最小に抑えることができないという問題があった。つまり、短期的な銘柄の在庫切れ予防を優先しているために、長期的な需給バランスが考慮されていない問題があった。このため、短期的に見た場合は在庫が保持されるが、在庫がなくなった時点では搬送すべき船舶がなくなる等の状況を回避することができない等の問題があった。 In addition, because ships are selected with essential brands first, there is a problem that the number of out-of-stocks or the quantity of out-of-stocks cannot be minimized when all brands are viewed within a given period. there were. In other words, there is a problem that the balance between long-term supply and demand is not taken into consideration because priority is given to the prevention of short-term stocks out of stock. For this reason, the inventory is maintained when viewed in the short term, but there is a problem that it is not possible to avoid the situation where there is no ship to be transported when the inventory is exhausted.
 また、特許文献2では、シミュレート部や原料在庫推移算出部の規模が大きくなりがちである。また、制約条件が多くなったりするほど、適切な評価を得るために再計算を繰り返さなければならず、満足できる結果が得られるまでに多くの時間がかかってしまう。 In Patent Document 2, the scale of the simulation unit and the raw material inventory transition calculation unit tends to be large. In addition, as the number of constraints increases, recalculation must be repeated in order to obtain an appropriate evaluation, and a longer time is required until a satisfactory result is obtained.
 また、現実の輸送に際しては、異なる種類の契約に基づいて船舶が運用され、船舶はこれらの契約種に従って例えば連続航海船、不定期船、スポット船と呼ばれる。ところが、特許文献1、2ではそういった船舶の種類までも含めた輸送費用のミニマム化が考慮されていない。 In actual transportation, ships are operated based on different types of contracts, and ships are called, for example, continuous voyages, irregular ships, and spot ships according to these contract types. However, Patent Documents 1 and 2 do not consider the minimization of transportation costs including the types of ships.
 船舶の契約では連続航海船及び不定期船は必ず配船をする必要がある。一方、スポット船は、引取目標量、在庫状況に応じて適切に雇う船の大きさ、船数を決定する必要がある。ところが、特許文献1、2ではそういった船の雇用形態、船団構成までを含めた輸送費用のミニマム化が考慮されていない。つまり、例えば1つの連続航海船と最大積載量75000tの2つのスポット船で配船するのが良いのか、或いは1つの連続航海船と最大積載量50000tの3つのスポット船で配船するのが良いのかを考慮した配船が実際の業務では必要となる。このように、雇う船の最大積載量、航路によって船の輸送費用は大きく変わってくる。特許文献1、2では、これらを考慮した配船が行われていない。
 加えて、実操業においては、使用予定銘柄の在庫状況が厳しい場合には、性状の近い銘柄(一定の化学性質を共通して備える銘柄:互いに置き換えても使用可能な銘柄)を代替として使用することで、在庫切れの抑止が行われている。また、この代替使用を積極的に行うことで、フレートが高い船でしか輸送できない銘柄に変わり、性状の近い銘柄でフレートのより安い船で手配できる銘柄を輸送することで、輸送費用の削減を行っている。ところが、特許文献1、2ではこれら性状の近い銘柄を考慮した配船が行われていない。
In the contract of a ship, it is necessary to dispatch a continuous voyage ship and an irregular ship. On the other hand, for spot ships, it is necessary to determine the size of the ship to be hired and the number of ships appropriately according to the take-up target amount and inventory status. However, Patent Documents 1 and 2 do not consider the minimization of transportation costs including the employment form and fleet configuration of such ships. In other words, for example, it is better to ship with one continuous voyage ship and two spot ships with a maximum load capacity of 75000t, or with one continuous voyage ship and three spot ships with a maximum load capacity of 50000t. It is necessary in the actual work to allocate ships considering this. In this way, the shipping cost of a ship varies greatly depending on the maximum load capacity and the route of the ship to be hired. In Patent Documents 1 and 2, there is no ship allocation taking these into consideration.
In addition, in actual operation, if the stock status of the stock to be used is severe, a stock with similar properties (a stock with a certain chemical property in common: a stock that can be used by replacing each other) is used as an alternative. As a result, out of stock is being suppressed. In addition, by actively using this alternative, it will be changed to a brand that can only be transported by a ship with a high freight rate. Is going. However, in Patent Documents 1 and 2, no ship assignment is performed in consideration of brands having similar properties.
 本発明は以上のような状況に鑑みてなされたものであり、複数銘柄の原材料を複数の積地から複数の揚地に輸送する配船計画を迅速かつ高精度に作成できるようにし、しかも船舶の種類、船団の構成を決める船舶を雇う、雇わないといった判断までも含めて輸送費用のミニマム化を可能にすることを目的とする。
 更に、性状の近い銘柄を考慮することで、銘柄毎に個別に考慮するのに比べて更なる在庫切れの抑制と輸送費用のミニマム化を可能にすることを目的とする。
The present invention has been made in view of the situation as described above, and enables a ship allocation plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites quickly and with high accuracy. The purpose is to enable the minimization of transportation costs, including the decision to hire or not to hire a ship that determines the type and composition of the fleet.
Furthermore, by considering brands with similar properties, the objective is to enable further suppression of out-of-stocks and minimization of transportation costs compared to individual brands.
(1) 本発明の第1の態様に係る配船計画作成装置は、複数銘柄の原材料を複数の積地から複数の揚地に輸送する配船計画を作成するための配船計画作成装置であって、前記原材料の使用予定量、前記原材料の引取目標量、前記原材料の在庫状況、前記原材料の購入費用、複数の種別の傭船契約に基づいて運用される複数の船舶がリストアップされた船舶リスト、夫々の前記船舶の船舶運航状況、及び、夫々の前記船舶を利用する場合の輸送費用、を含むデータを取り込むデータ取り込み手段と;前記船舶運航状況に基づいて前記船舶リストから必要な前記船舶を選択し、船舶財源を作成する船舶財源作成手段と;前記船舶財源に含まれる前記船舶の運航制約、及び、前記揚地での前記原材料の需給バランス制約を少なくとも表わす数式モデルを設定する数式モデル設定手段と;設定された前記数式モデルを用いて、少なくとも前記輸送費用に関して構築された目的関数に基づいて最適化計算を行う最適化計算手段と;前記最適化計算の結果に基づいて動作し、前記在庫状況の推移をシミュレートする在庫推移シミュレータ及び、前記船舶運航状況の推移をシミュレートする船舶運航状況推移シミュレータを含む、シミュレータと;前記シミュレータによるシミュレーション結果である配船計画を出力する出力手段と;を備える。
(2) 上記(1)の配船計画作成装置において、前記原材料が取り扱われる際に、化学的性状が規定した範囲に含まれる複数の前記原材料の銘柄がグループ化されてもよい。
(3) 上記(1)の配船計画作成装置は、前記数式モデル設定手段は、前記原材料の引取目標量制約を表わす数式モデルを更に設定してもよい。
(4) 上記(1)の配船計画作成装置において、前記船舶リストに含まれる前記船舶の前記傭船契約の種別は、連続航海船、不定期船、スポット船を含んでもよい。
(5) 上記(4)の配船計画作成装置において、前記船舶財源作成手段は、前記船舶リスト及び前記船舶運航状況に基づいて、計画作成期間において運航未定部分がある前記連続航海船を抽出し、抽出された各前記連続航海船について、前記計画作成期間における前記積地と前記揚地の組み合わせのパターンのうち、所定の条件に合致するものを全て作成してもよい。
(6) 上記(5)の配船計画作成装置は、前記船舶財源作成手段は、前記船舶リスト及び前記船舶運航状況に基づいて、前記計画作成期間において利用可能であり、かつ運航未定部分がある前記不定期船を抽出し、抽出された前記不定期船について、前記計画作成期間における前記積地と前記揚地の組み合わせのパターンのうち、所定の条件に合致するものを全て作成してもよい。
(7) 上記(6)の配船計画作成装置において、前記船舶財源作成手段は、前記計画作成期間における前記引取目標量の総合計と、抽出された前記連続航海船及び前記不定期船の最大積載量の合計とに基づいて、前記スポット船で運搬されるべき前記原材料の量を算出し、前記船舶リストに基づいて、前記スポット船の候補を抽出してもよい。
(8) 上記(1)~(7)の配船計画作成装置は、予め設定された最適化期間内で所定のマクロ時間精度で前記数式モデルを設定し、前記最適化計算を行い、前記最適化期間のうちの一部の計画確定期間での演算結果を出力する、前記数式モデル設定手段及び前記最適化計算手段を具備するマクロ最適化部と;前記マクロ最適化部で求めた前記計画確定期間での前記演算結果を用いて、前記計画確定期間で前記マクロ時間精度よりも細かなミクロ時間精度で前記数式モデルを設定し、前記最適化計算を行い、前記最適化計算の結果を前記シミュレータに引き渡す、数式モデル設定手段及び最適化計算手段を具備するミクロ最適化部と;を更に備えてもよい。
(9) 上記(1)~(7)の配船計画作成装置において、前記シミュレータは、前記連続航海船の一つの航海の運航時刻に変更が起こった場合、前記変更を波及的に反映させて、前記連続航海船の以降の航海の運航時刻を修正し、前記修正に基づいて前記数式モデル設定手段及び前記最適化計算手段での処理を行ってもよい。
(10) 上記(1)~(7)の配船計画作成装置において、前記最適化計算手段は:前記積地毎に、全前記銘柄の引取量を旬単位或いは月単位に集計して累積することで、引取量累積を算出し;前記積地毎に、全前記銘柄の前記引取目標量を旬単位或いは月単位に集計して累積することで、引取目標量累積を算出し;前記引取量累積と前記引取目標量累積との差のミニマム化を更なる目的とした目的関数に基づいて前記最適化計算を行ってもよい。
(11) 上記(1)~(7)の配船計画作成装置において、前記最適化計算手段は:前記揚地毎に、全前記銘柄の荷揚量を旬単位或いは月単位に集計して累積することで荷揚量累積を算出し;前記揚地毎に、標準荷揚能力量を旬単位或いは月単位に集計して累積することで揚地標準荷揚能力量累積を算出し;前記荷揚量累積と前記揚地標準荷揚能力量累積との差のミニマム化を目的とした目的関数に基づいて前記最適化計算を行ってもよい。
(12) 上記(1)~(7)の配船計画作成装置は、船型、船数、積地、揚地、積銘柄、揚銘柄、積量、及び揚量を、ユーザの意図に従って個別に固定可能にする、入力部を更に有してもよい。
(13) 上記(1)~(7)の配船計画作成装置は、前記積地、積銘柄、積量を、ユーザの意図に従って一括して固定可能にする、入力部を更に有してもよい。
(14) 上記(1)~(7)の配船計画作成装置において、前記輸送費用には、フレート及び滞船料が含まれてもよい。
(15) 本発明の第2の態様に係る配船計画作成方法は、複数銘柄の原材料を複数の積地から複数の揚地に輸送する配船計画を作成するための配船計画作成方法であって:データ取り込み手段により、前記原材料の使用予定量、前記原材料の引取目標量、前記原材料の在庫状況、前記原材料の購入費用、複数の種別の傭船契約に基づいて運用される複数の船舶がリストアップされた船舶リスト、夫々の前記船舶の船舶運航状況、及び、夫々の前記船舶を利用する場合の輸送費用、を含むデータを取り込む工程と;船舶財源作成手段により、前記船舶運航状況に基づいて前記船舶リストから前記船舶を選択し、船舶財源を作成する工程と;数式モデル設定手段により、前記船舶財源に含まれる前記船舶の運航制約、及び、前記揚地での前記原材料の需給バランス制約を少なくとも表わす数式モデルを設定する工程と;最適化計算手段により、設定された前記数式モデルを用いて、少なくとも前記輸送費用に関して構築された目的関数に基づいて最適化計算を行う工程と;シミュレータにより、前記最適化計算の結果に基づいて、前記在庫状況及び前記船舶運航状況をシミュレートする工程と;出力手段により、前記シミュレータによるシミュレーション結果である配船計画を出力する工程と;を有する。
(16) 本発明の第3の態様に係る、配船計画を作成するための処理をコンピュータに実行させるためのプログラムは、前記コンピュータを上記(1)に記載の配船計画作成装置として機能させるためのプログラムである。
(1) A ship assignment plan creation device according to a first aspect of the present invention is a ship assignment plan creation device for creating a ship assignment plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites. Ships on which a plurality of vessels to be operated based on a plurality of types of chartering contracts are listed, the scheduled usage amount of the raw materials, the target amount of the raw materials, the stock status of the raw materials, the purchase cost of the raw materials Data fetching means for fetching data including a list, a ship operation status of each ship, and a transportation cost when using each ship; the ship required from the ship list based on the ship operation situation; And a formula model representing at least a ship funding creation means for creating a ship fund; and a ship operation constraint included in the ship fund and a demand-supply balance constraint of the raw material at the landing site A formula model setting means for setting a model; an optimization calculation means for performing an optimization calculation based on at least an objective function constructed with respect to the transportation cost by using the set formula model; and a result of the optimization calculation A simulator including an inventory transition simulator for simulating the transition of the inventory status and a ship navigation status transition simulator for simulating the transition of the vessel operation status; Output means for outputting a plan.
(2) In the ship allocation plan creation device of (1) above, when the raw materials are handled, a plurality of brands of the raw materials included in a range defined by chemical properties may be grouped.
(3) In the ship allocation plan creation apparatus according to (1), the mathematical model setting unit may further set a mathematical model that represents a target amount restriction of the raw material.
(4) In the ship allocation plan creation device of (1), the chartering contract type of the ship included in the ship list may include a continuous voyage ship, an irregular ship, and a spot ship.
(5) In the ship allocation plan creation device according to (4) above, the ship finance generation means extracts the continuous navigation ship having an undecided operation portion in the plan creation period based on the ship list and the ship operation status. For each of the extracted continuous voyage vessels, all of the combination patterns of the loading place and the landing place in the plan creation period may be created.
(6) In the ship allocation plan creation device according to (5), the ship fund generation means can be used in the plan creation period based on the ship list and the ship operation status, and there is an operation undetermined part. The irregular ship may be extracted, and for the extracted irregular ship, all the combinations of the loading place and the landing place in the plan creation period that meet a predetermined condition may be created. .
(7) In the ship allocation plan creation device according to (6), the ship funding creation means includes a total sum of the take-up target amounts in the plan creation period, and a maximum of the extracted continuous sailing ship and the irregular ship. The amount of the raw material to be transported by the spot ship may be calculated based on the total load capacity, and the spot ship candidates may be extracted based on the ship list.
(8) The ship allocation plan creation device according to the above (1) to (7) sets the mathematical model with a predetermined macro time accuracy within a preset optimization period, performs the optimization calculation, and performs the optimization calculation. A macro optimization unit comprising the formula model setting means and the optimization calculation means for outputting a calculation result in a part of the plan determination period of the optimization period; and the plan determination obtained by the macro optimization unit Using the calculation result in a period, the mathematical model is set with micro time accuracy finer than the macro time accuracy in the plan finalization period, the optimization calculation is performed, and the result of the optimization calculation is calculated with the simulator And a micro-optimization unit including a mathematical expression model setting unit and an optimization calculation unit.
(9) In the ship planning plan creation device according to (1) to (7), the simulator reflects the change spilloverly when a change occurs in the operation time of one voyage of the continuous voyage ship. The operation time of the subsequent voyage of the continuous voyage ship may be corrected, and the mathematical model setting means and the optimization calculation means may perform processing based on the correction.
(10) In the ship allocation plan creation device according to the above (1) to (7), the optimization calculation means: for each loading place, collects and collects the pick-up amount of all the brands in a seasonal unit or a monthly unit. The amount of pick-up is calculated by summing up the amount of the pick-up target for all the brands in a seasonal unit or a month for each loading point; The optimization calculation may be performed based on an objective function that further aims to minimize the difference between the accumulation and the accumulation of the collection target amount.
(11) In the ship planning plan creation device according to the above (1) to (7), the optimization calculation means: sums up and accumulates the unloading amount of all the brands in a seasonal unit or a monthly unit for each landing site. The unloading accumulation accumulation is calculated by calculating the standard unloading capacity accumulation for each landing site by summing up and accumulating the standard unloading capacity amount in a seasonal unit or a monthly unit; The optimization calculation may be performed based on an objective function for the purpose of minimizing the difference from the standard landing capacity of the landing site.
(12) The ship allocation plan creation device described in (1) to (7) described above is for ship type, number of ships, loading place, landing place, loading brand, lifting brand, loading, and lifting quantity individually according to the user's intention. You may further have an input part which enables fixation.
(13) The ship allocation plan creation device according to (1) to (7) may further include an input unit that enables the loading place, loading brand, and loading amount to be fixed collectively according to the user's intention. Good.
(14) In the ship allocation plan creation device described in (1) to (7) above, the transportation cost may include a freight rate and a berthing fee.
(15) The ship allocation plan creation method according to the second aspect of the present invention is a ship allocation plan creation method for creating a ship allocation plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites. There: a plurality of ships operated based on the planned use amount of the raw material, the target amount of the raw material, the stock status of the raw material, the purchase cost of the raw material, and a plurality of types of dredger contracts Fetching data including a listed ship list, a ship operation status of each ship, and a transportation cost when using each ship; based on the ship operation status by a ship fund generation means; Selecting the ship from the ship list and creating a ship fund; and, by mathematical model setting means, operation restrictions of the ship included in the ship fund and the raw material at the landing A step of setting a mathematical model that represents at least a supply-demand balance constraint of a fee; and an optimization calculation means that uses the set mathematical model to perform an optimization calculation based on at least an objective function constructed with respect to the transportation cost A step of simulating the inventory status and the vessel operation status based on a result of the optimization calculation by a simulator; and a step of outputting a ship allocation plan as a simulation result by the simulator by an output means; Having
(16) According to the third aspect of the present invention, a program for causing a computer to execute a process for creating a ship assignment plan causes the computer to function as the ship assignment plan creation device described in (1) above. It is a program for.
 本発明によれば、複数銘柄の原材料を複数の積地から複数の揚地に輸送する配船計画を迅速かつ高精度に作成することができる。しかも船舶契約の種類(連続航海船、不定期船、スポット船)、各船舶を雇う/雇わないの判断を伴う船団の構成(船財源)までも含めて輸送費用のミニマム化のための最適化が可能になる。
更に、性状の近い銘柄を考慮することで、銘柄毎に個別に考慮するのに比べて更なる在庫切れの抑制と輸送費用のミニマム化のための最適化が可能になる。
According to the present invention, it is possible to create a ship allocation plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites quickly and with high accuracy. In addition, the types of ship contracts (continuous voyage ships, irregular ships, spot ships), and the fleet composition (ship funding) with the decision to hire / not hire each ship are optimized for minimizing transportation costs. Is possible.
Furthermore, by considering brands with similar properties, it is possible to further optimize out-of-stock control and minimizing transportation costs compared to considering individual brands individually.
本実施形態に係る配船計画作成装置を含む全体システムの概略構成を示す図である。It is a figure which shows schematic structure of the whole system containing the ship allocation plan preparation apparatus which concerns on this embodiment. 本実施形態に係る配船計画作成装置による配船計画作成処理を説明するためのフローチャートである。It is a flowchart for demonstrating the ship assignment plan preparation process by the ship assignment plan preparation apparatus which concerns on this embodiment. 取り込みデータのうちの船舶リストを説明するための図である。It is a figure for demonstrating the ship list | wrist among capture data. 取り込みデータのうちの船舶運航状況を説明するための図である。It is a figure for demonstrating the ship operation condition of acquisition data. 取り込みデータのうちのフレートリストを説明するための図である。It is a figure for demonstrating the freight list of capture data. 取り込みデータのうちの滞船料のリストを説明するための図である。It is a figure for demonstrating the list of the berthing charges among capture data. 船舶の選択処理を説明するためのフローチャートである。It is a flowchart for demonstrating the selection process of a ship. 抽出した連続航海船について計画作成期間における積地と揚地の組み合わせのパターンを作成している様子を示す図である。It is a figure which shows a mode that the pattern of the combination of a loading place and a landing place in the plan preparation period is created about the extracted continuous voyage ship. スポット船で補うべき運搬量を説明するための図である。It is a figure for demonstrating the conveyance amount which should be supplemented with a spot ship. スポット船の航路リストを説明するための図である。It is a figure for demonstrating the route list of a spot ship. 時刻と在庫量との関係を示す図である。It is a figure which shows the relationship between time and stock quantity. 引取量と引取目標量とが大きく離れないという制約を説明するための図である。It is a figure for demonstrating the restriction | limiting that a taking over amount and a taking over target amount do not leave | separate greatly. 引取量と引取目標量とが大きく離れないという制約を説明するための図である。It is a figure for demonstrating the restriction | limiting that a taking over amount and a taking over target amount do not leave | separate greatly. マクロ最適化とミクロ最適化との関係を模式的に示した図である。It is the figure which showed typically the relationship between macro optimization and micro optimization. 積地における負荷の平準化を目的とする目的関数について説明するための図である。It is a figure for demonstrating the objective function aiming at the leveling of the load in a loading area. 揚地における負荷の平準化を目的とする目的関数について説明するための図である。It is a figure for demonstrating the objective function aiming at the leveling of the load in a landing. 熟練した当業者が、従来の方法で計画した配船立案結果である。It is the result of the ship allocation plan planned by a skilled person skilled in the art by a conventional method. 本実施形態に係る配船計画作成装置、及び方法を用いて計画された配船立案結果である。It is the ship allocation plan result planned using the ship allocation plan preparation apparatus and method which concern on this embodiment.
 以下、添付図面を参照して、本発明の好適な実施形態について説明する。本実施形態では、複数の製鉄所に、世界中に点在する山元から鉱石や石炭等の原材料を輸送する例を説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the present embodiment, an example will be described in which raw materials such as ore and coal are transported to a plurality of steelworks from mountains scattered all over the world.
(第1の実施形態)
 図1は、本実施形態に係る配船計画作成装置を含む全体システムの概略構成を示す図である。図1において、100は配船計画作成装置であり、複数銘柄の原材料(鉱石や石炭等)を複数の積地(世界中に点在する山元)から複数の揚地(製鉄所)に輸送する配船計画を作成する。本実施形態では、製鉄所毎の輸送費用平準化ではなく、全製鉄所合計での輸送費用をミニマム化する配船計画を作成することを目的としている。更には、輸送費用に加えて、購入費用を含めたコストをミニマム化する配船計画を作成することを目的としている。
(First embodiment)
FIG. 1 is a diagram illustrating a schematic configuration of an entire system including a ship allocation plan creation device according to the present embodiment. In FIG. 1, 100 is a ship allocation plan creation device, which transports multiple brands of raw materials (ore, coal, etc.) from a plurality of loading sites (mountains scattered around the world) to a plurality of landing sites (steelworks). Create a ship assignment plan. The purpose of this embodiment is to create a ship allocation plan that minimizes the transportation cost of all steelworks, not the leveling of transportation costs for each steelworks. Furthermore, it aims to create a ship allocation plan that minimizes costs including purchase costs in addition to transportation costs.
 200は配合計画作成装置であり、製鉄所毎に原材料を配合する配合計画を作成する。これにより、各製鉄所に輸送された原材料を日々どれだけ使用するかの使用予定量が計画される。配合計画作成装置200での配合計画作成手法としては、どのような手法のものを用いてもかまわない。 200 is a blending plan creation device that creates a blending plan for blending raw materials for each steel mill. As a result, the planned amount of use of the raw material transported to each steelworks is planned every day. As a blending plan creation technique in the blending plan creation apparatus 200, any technique may be used.
 300はデータベースであり、各装置100、200で使用するデータや各装置100、200で算出したデータを格納する。 300 is a database that stores data used by the devices 100 and 200 and data calculated by the devices 100 and 200.
 400はプロセスコンピュータ等と称される上位コンピュータであり、データベース300に格納されたデータを参照したり、データベース300にデータを格納、更新したりする。 Reference numeral 400 denotes a host computer called a process computer or the like, which refers to data stored in the database 300 or stores and updates data in the database 300.
 配船計画作成装置100は、データベース300から原材料の使用予定量、引取目標量、契約の種別の異なる船舶がリストアップされた船舶リスト、船舶リストにリストアップされている船舶の運航状況、原材料の在庫状況、原材料の購入費用、船舶リストにリストアップされている船舶を利用する場合の輸送費用等のデータを取り込んで、例えば3ヶ月(9旬)分の配船計画を作成する。ここで、1旬は1月を3分割した期間である。配船計画として、具体的には、連続航海船、不定期船、スポット船に対する積揚地(積揚港)、積揚銘柄、積揚量、寄港順、着岸バース、入出港タイミング、及び雇うべきスポット船の船数と船型(船の最大積載量を基に定義される船舶の大きさ)等を決定する。 The ship allocation plan creation device 100 uses the planned amount of raw materials used, the target amount to be taken, the ship list in which ships with different contract types are listed from the database 300, the operational status of the ships listed in the ship list, Data such as inventory status, raw material purchase costs, and transportation costs when using a ship listed in the ship list are taken in, and for example, a ship allocation plan for three months (September) is created. Here, January is a period obtained by dividing January into three. Specifically, the ship allocation plan includes continuous navigation ships, non-regular ships, landing sites for spot ships (shipping ports), loading brands, loadings, port order, berth berth, entry / exit timing, and hire Determine the number and type of spot ships (the size of the ship defined based on the maximum capacity of the ship), etc.
 配船計画作成装置100において、101は船舶の運航、積地、揚地での設備、ヤード等を模擬したシミュレータである。シミュレータ101は、後述するマクロ最適化部102、ミクロ最適化部103により決定された連続航海船、不定期船、スポット船に対する積揚地(積揚港)、積揚銘柄、積揚量、寄港順、着岸バース、入出港タイミング、及び雇うべきスポット船の船数と船型(船の最大積載量を基に定義される船舶の大きさ)の情報を受け、この情報に基づいて詳細なシミュレーションを実行する。本シミュレータは、在庫推移シミュレータ及び船舶運航状況推移シミュレータにより構成される。 In the ship allocation plan creation apparatus 100, 101 is a simulator that simulates ship operation, loading and unloading facilities, yards, and the like. The simulator 101 is a loading port (unloading port), a loading brand, a loading amount, a calling port for a continuous voyage ship, an irregular ship, and a spot ship determined by a macro optimization unit 102 and a micro optimization unit 103 described later. Receives information on the order, berth berth, entry / exit timing, number of spot ships to be hired and ship type (the size of the ship defined based on the maximum load capacity of the ship), and performs detailed simulation based on this information Execute. This simulator is composed of an inventory transition simulator and a ship operation status transition simulator.
 在庫推移シミュレータは、各製鉄所における原材料の在庫推移を計算する。この在庫推移シミュレータでは、各製鉄所の原材料の使用予定量、船舶の原材料の銘柄毎の荷揚げ時刻を考慮し、詳細に原材料の銘柄毎の在庫推移を計算する。例えば、船舶に複数銘柄が積載され、1銘柄を荷揚げした後、2銘柄目を荷揚げする時点で、ヤード能力が溢れていた場合、ヤード上の原材料の在庫量が減り、ヤード能力に余裕が出来るまで時間を空けて荷揚げをする必要があるかの判断等が考慮されて、荷揚げ時刻に対応した在庫の推移が正確にシミュレートされる。 The inventory transition simulator calculates the inventory transition of raw materials at each steelworks. This inventory transition simulator calculates the inventory transition for each brand of raw material in detail, taking into account the planned use amount of the raw material for each steelworks and the unloading time for each brand of the ship's raw material. For example, if multiple brands are loaded on a ship and one brand is unloaded and then the second brand is unloaded, if the yard capacity is overflowing, the stock amount of raw materials on the yard will be reduced, and the yard capacity can be afforded. Taking into account whether it is necessary to unload after a certain amount of time, the transition of the inventory corresponding to the unloading time is accurately simulated.
 船舶運航状況推移シミュレータは、積揚港の沖着日時(ETA:Estimated Time Of Arrival)、積揚港着岸の日時(ETB:Estimated Time Of Berthing)、積揚港出港の日時(ETD:Estimated Time Of Departure)を含む、船舶の運航状況の推移を計算する。この船舶運航状況推移シミュレータでは、荷積能力、荷揚能力の他に、他岸壁に船舶が存在するかどうか(存在する場合には着岸できない)等、他船舶との干渉等も考慮し、詳細に船舶の運航状況をシミュレートする。例えば、船舶の荷揚げに使用するアンローダの基数については、荷揚げする銘柄が積載されているハッチの位置の他、同一揚港の別バースで荷役している船舶があるか、ないか等を考慮する。この荷揚げに使用するアンローダの基数により荷揚能力が影響される。一例として、1基のアンローダで荷揚げする場合は、1500t/hで100%能力で荷揚げを行える。また、2基のアンローダの場合は、1500t/h×2基で70%能力で荷揚げを行える。上記船舶運航状況推移シミュレータは、これらアンローダ基数等の条件による荷揚能力の変化を、シミュレーションに取込み、正確にシミュレートする。これによって、実操業に求められる細かな制約まで考慮した、具体的な生産・物流計画の立案を可能とする。 The ship operation status transition simulator includes the arrival date and time (ETA: Estimated Time Of Arrival) of the loading port, the date and time of arrival at the loading port (ETB: Estimated Time Of Berthing), and the date and time of departure from the loading port (ETD: Estimated Time Of) Calculate the transition of ship operation status including Departure). In addition to loading capacity and unloading capacity, this ship operation status transition simulator takes into account interference with other ships, such as whether or not there is a ship on the other quay (if it exists) Simulate ship operation. For example, regarding the number of unloaders used to unload vessels, in addition to the position of the hatch where the brand to be unloaded is loaded, whether or not there is a vessel handling at another berth of the same unloading port is considered. . The loading capacity is affected by the number of unloaders used for unloading. As an example, when unloading with one unloader, unloading can be performed with a capacity of 100% at 1500 t / h. In the case of two unloaders, unloading can be performed with a capacity of 70% at 1500 t / h × 2. The above-mentioned ship operation status transition simulator incorporates changes in unloading capacity due to conditions such as the unloader radix into the simulation and accurately simulates it. This makes it possible to create a specific production / logistics plan that takes into account the fine constraints required for actual operations.
 102はマクロ最適化部であり、製鉄所の配合計画(原材料の使用予定量)に支障をきたさないこと、及び、積み出し可能量を守ることを前提に、輸送費用のうちのフレートの合計金額を最も安価にすることを一つの目的として、連続航海船、不定期船、スポット船に対する積揚地(積揚港)、積揚銘柄、積揚量、寄港順、及び雇うべきスポット船の船数と船型(船の最大積載量を基に定義される船舶の大きさ)を決定するように最適化を行う。マクロ最適化部102は、本発明でいう船舶財源作成手段として機能する船舶財源作成部102a、本発明でいう数式モデル設定手段として機能する数式モデル設定部102b、本発明でいう最適化計算手段として機能する最適化計算部102cを備え、例えば9旬分を旬精度に演算する。 Reference numeral 102 is a macro optimization section, which assumes that the total amount of freight out of transportation costs will be based on the assumption that there will be no hindrance to the compounding plan (scheduled amount of raw materials used) at the steelworks and that the amount that can be shipped will be protected. For the purpose of making it the cheapest, for the purpose of making it the cheapest, there are landing sites (unloading ports) for continuous voyage vessels, irregular ships, spot vessels, loading brands, loading amount, order of port calls, and the number of spot vessels to be hired. And optimization to determine the ship type (the size of the ship defined based on the maximum load capacity of the ship). The macro optimization unit 102 includes a ship funding source creation unit 102a that functions as a ship funding source creation unit according to the present invention, a formula model setting unit 102b that functions as a formula model setting unit according to the present invention, and an optimization calculation unit according to the present invention. A functioning optimization calculation unit 102c is provided, and for example, 9 seasons are calculated with seasonal accuracy.
 103はミクロ最適化部であり、マクロ最適化部102により最適化された計画において滞船料の合計金額を最も安価にする着岸バース、入出港タイミングを決定するように最適化を行って、シミュレータ101に対する指示を算出する。ミクロ最適化部103は、本発明でいう数式モデル設定手段として機能する数式モデル設定部103a、本発明でいう最適化計算手段として機能する最適化計算部103bを備え、例えば1旬分を分精度に演算する。 Reference numeral 103 denotes a micro-optimization unit which performs optimization so as to determine a docking berth and an entry / exit timing at which the total amount of the berthing fee is the lowest in the plan optimized by the macro-optimization unit 102. An instruction for 101 is calculated. The micro optimization unit 103 includes a formula model setting unit 103a that functions as a formula model setting unit according to the present invention, and an optimization calculation unit 103b that functions as an optimization calculation unit according to the present invention. Calculate to
 104は本発明でいうデータ取り込み手段として機能するデータ取り込み部であり、データベース300から原材料の使用予定量、引取目標量、契約の種別の異なる船舶がリストアップされた船舶リスト、船舶リストにリストアップされている船舶の運航状況、原材料の在庫状況、原材料の購入費用、船舶リストにリストアップされている船舶を利用する場合の輸送費用、積地での船舶停泊状況、荷積能力状況、設備修理・休止予定、揚地での船舶停泊状況、荷揚能力状況、設備修理・休止予定等のデータを取り込む。 Reference numeral 104 denotes a data fetching unit that functions as a data fetching unit in the present invention, which is listed in the ship list, a list of ships whose raw materials are scheduled to be used, a target quantity to be taken, and different types of contracts. Ship operation status, raw material inventory status, raw material purchase cost, transportation cost when using a ship listed in the ship list, ship berth status at loading area, loading capacity status, facility repair -Capture data such as planned outage, ship berthing status at landing site, unloading capacity status, facility repair / outage schedule.
 105は本発明でいう出力手段として機能する出力部であり、シミュレータ101によるシミュレーション結果として作成された配船計画、具体的には、連続航海船、不定期船、スポット船に対する積揚地(積揚港)、積揚銘柄、積揚量、寄港順、着岸バース、入出港タイミング、及び雇うべきスポット船の船数と船型(船の最大積載量を基に定義される船舶の大きさ)を画面表示したり、外部機器にデータ送信したりする。 Reference numeral 105 denotes an output unit functioning as an output means in the present invention, which is a ship allocation plan created as a simulation result by the simulator 101, specifically, a landing site for a continuous voyage ship, an irregular ship, and a spot ship (loading). Unloading port), unloading brand, unloading order, arrival order, berthing berth, arrival / departure timing, number of spot ships to be hired and ship type (the size of the ship defined based on the maximum loading capacity of the ship) Display on screen or send data to external device.
 以下、本実施形態に係る配船計画作成装置100による配船計画作成処理の詳細を説明する。図2は、配船計画作成装置100を用いた配船計画作成方法における各処理のステップを説明するためのフローチャートである。本実施形態では、ユーザが設定した立案開始日から3ヶ月(9旬)を計画作成期間として配船計画を作成する。 Hereinafter, the details of the ship assignment plan creation processing by the ship assignment plan creation apparatus 100 according to the present embodiment will be described. FIG. 2 is a flowchart for explaining the steps of each process in the ship assignment plan creation method using the ship assignment plan creation apparatus 100. In the present embodiment, a ship allocation plan is created with a plan creation period of 3 months (9 seasons) from the planning start date set by the user.
(1)データの取り込み(ステップS101)
 配船計画作成装置100のデータ取り込み部104は、データベース300から原材料の使用予定量、引取目標量、契約の種別の異なる船舶がリストアップされた船舶リスト、船舶リストにリストアップされている船舶の運航状況、原材料の在庫状況、原材料の購入費用、船舶リストにリストアップされている船舶を利用する場合の輸送費用、積地での船舶停泊状況、荷積能力状況、設備修理・休止予定、揚地での船舶停泊状況、荷揚能力状況、設備修理・休止予定等のデータを取り込む。
(1) Data acquisition (step S101)
The data acquisition unit 104 of the ship allocation plan creation device 100 includes a ship list in which ships with different raw material usage schedules, take-up target quantities, and contract types are listed from the database 300, and ships that are listed in the ship list. Operational status, raw material inventory status, raw material purchase cost, transportation cost when using a ship listed in the ship list, ship berthing status at loading site, loading capacity status, facility repair / suspension schedule, lifting Capture data such as ship berthing status, unloading capacity status, facility repair / outage schedule, etc.
 ここで、原材料の使用予定量は、配合計画作成装置200で作成された配合計画から算出される、計画作成期間における製鉄所(揚地)別、原材料の銘柄別の使用予定量を表わす情報である。原材料はその銘柄毎に、品質・性状等に違いがあるため、それぞれ銘柄毎に使用予定量を決め、配合される。 Here, the planned usage amount of raw materials is information representing the planned usage amount for each steelworks (landing site) and for each brand of raw material in the plan creation period, calculated from the blending plan created by the blending plan creation device 200. is there. The raw materials differ in quality, properties, etc. for each brand, so the amount to be used for each brand is determined and blended.
 引取目標量は、山元(積地)別、銘柄別の引取目標量(引取予定量)を表わす情報である。各山元とは銘柄毎に例えば年間どれだけの量を引き取るかについて契約しており、それを旬数で割れば旬毎の引取目標量が得られる。この引取目標量に近づけるように、配船することが求められる。ただし、配船計画との関係で、引取目標量からの数万トン程度の上下へのぶれは、山元との交渉により、許容範囲内となる。また、契約によっては、所定の銘柄については所定の期間は引取しないといった契約も考えられる。このような契約に関する具体的な情報を取り込みデータに含めるようにしてもよい。 The collection target amount is information representing the collection target amount (planned collection amount) for each Yamamoto (loading place) and each brand. For example, each Yamamoto contracts with each brand to decide how much to take for each year, for example. Dividing it by the number of seasons gives the target amount for each season. It is required to allocate ships so as to approach this take-up target amount. However, in relation to the ship allocation plan, up and down fluctuations of about tens of thousands of tons from the take-off target amount are within the allowable range through negotiations with Yamamoto. In addition, depending on the contract, there may be a contract in which a predetermined brand is not picked up for a predetermined period. Specific information regarding such a contract may be included in the fetched data.
 船舶リストは、図3に示すように、契約の種別の異なる船舶、ここでは具体的に連続航海船、不定期船、スポット船をリストアップした情報である。連続航海船は、契約期間において連続航海する契約を行っている船舶である。このため、最優先で配船することが求められる。不定期船は、契約期間において契約した数のみ航海する、又は契約した航海期間のみ航海する契約を行っている船舶である。このため、契約した航海数又は契約した航海期間内でできる限り配船することが求められる。スポット船は、シミュレーションの段階では通常は未契約である。連続航海船及び不定期船を配船しても、必要な引取量を満たせない、或いは揚地の在庫を充足できない場合に、スポット的な契約形態で船舶の航海を依頼することができる。連続航海船については、傭船コード(船一隻一隻を特定するコード)、契約区分、契約期間(開始日及び終了日)、最大積載量、船名が記載される。不定期船については、傭船コード、契約区分、契約期間(開始日及び終了日)、契約の内容(契約した航海数又は契約した航海期間)、最大積載量、船名が記載される。これら連続航海船及び不定期船は船舶を個別にリストアップしているが、スポット船については、船舶の航行できる地域名と、船型(船の最大積載量を基に定義される船舶の大きさ)でリストアップし、傭船コード(地域名と大きさが記述される)、契約区分、最大積載量が記載される。 As shown in FIG. 3, the ship list is information that lists ships with different types of contracts, specifically, continuous navigation ships, irregular ships, and spot ships here. A continuous voyage vessel is a vessel that has a contract to continue voyage during the contract period. For this reason, it is required to allocate ships with the highest priority. Irregular ships are ships that have a contract that sails only for the number of contracts in the contract period or that only sails for the contracted period. For this reason, it is required to ship as much as possible within the contracted voyage number or contracted voyage period. Spot ships are usually unsigned at the simulation stage. Even if a continuous voyage ship and a non-regular ship are assigned, if the necessary take-up amount cannot be satisfied or the inventory of the landing site cannot be satisfied, the ship can be requested to sail in a spotted contract form. For continuous voyages, charter code (code that identifies each ship), contract classification, contract period (start date and end date), maximum load capacity, and ship name are described. For irregular ships, charter code, contract category, contract period (start date and end date), contract details (contracted voyage or contracted voyage period), maximum loading capacity, and ship name are described. These continuous cruise ships and non-regular ships are listed individually, but for spot ships, the name of the region where the ship can navigate and the type of ship (the size of the ship defined based on the maximum load capacity of the ship). ), And chartering code (area name and size is described), contract classification, and maximum load capacity are described.
 なお、スポット船の船型を表わすPmaxはパナマ運河を通過できる船舶(一般にこの船型はパナマックスと呼ばれる)、Capeはケープ岬を通過できる船舶(一般にこの船型はケープサイズと呼ばれる)、VL(Very Large)はこれらより大きい大型船であることを意味する。ここで、通常パナマックスとは、長さ900フィート以内、幅106フィート以内の船で、最大積載可能量が6万~8万トンクラスの船を指す。また通常ケープサイズとは、最大積載か能力が15万~17万トンクラスの船を指す。スポット船については、配船計画を立てる段階で、この航行できる地域と船舶の大きさを基に、必要な船数、船型(船の最大積載量を基に定義される船舶の大きさ)を決定する。配船計画がある程度確定される段階になって、実際の船会社と交渉して、上記船型にマッチする船を契約する手続きが取られる。このため、配船計画を立てる段階では、まず未契約の状態(船会社と交渉する前の段階)で、必要な船数、船型(最大積載量を基に定義される船舶の大きさ)を決定することが求められる。 Pmax representing the ship type of the spot ship is a ship that can pass through the Panama Canal (generally this ship type is called Panamax), Cape is a ship that can pass Cape Cape (generally this ship type is called Cape size), VL (Very Large ) Means a larger ship than these. Here, the normal Panamax is a ship that is 900 feet long and 106 feet wide and has a maximum load capacity of 60,000 to 80,000 tons. The normal cape size refers to ships with a maximum capacity or capacity of 150,000 to 170,000 tons. For spot ships, at the stage of making a ship assignment plan, based on this navigable area and the size of the ship, the required number of ships and ship type (the ship size defined based on the maximum load capacity of the ship) decide. At a stage where the ship allocation plan is finalized to some extent, a procedure for negotiating with the actual shipping company and contracting a ship that matches the above-mentioned ship type is taken. For this reason, at the stage of making a ship allocation plan, the number of ships and the type of ship (the size of the ship defined based on the maximum load capacity) are first determined in an uncontracted state (before negotiation with the shipping company). It is required to decide.
 船舶運航状況は、図4に示すように、船舶リストにリストアップされている各船舶の運航状況の実績及び確定している予定を表わす情報である。積-揚、積-積-揚、積-揚-揚のように、積港及び揚港は1港の場合も、複数港の場合もある。このような一連の船舶の運行を一つの航海として取り扱い、航海Noが付される。船舶リストにリストアップされている各船舶について、航海No.積揚ドック区分、積揚連番、積揚港コード、バースコード、積揚港沖着の日時(ETA)、積揚港着岸の日時(ETB)、積揚港出港の日時(ETD)、航海時間が記載される。 As shown in FIG. 4, the vessel operation status is information representing the actual operation status and the confirmed schedule of each vessel listed in the vessel list. As with loading-lifting, loading-loading-lifting, loading-lifting-lifting, loading ports and lifting ports may be one port or multiple ports. Such a series of ship operations is handled as one voyage, and a voyage number is given. For each ship listed in the ship list, the voyage No. Unloading dock classification, unloading serial number, unloading port code, berth code, unloading port arrival date (ETA), unloading port arrival date (ETB), unloading port departure date (ETD), voyage Time is listed.
 例えば連続航海船Aの航海No.3とは、2008年3月7日20時に積港(X1港)沖に着き、2008年3月12日20時に積港(X1港)のコード「1」で表わされるバースに着岸し、2008年3月14日20時に積港(X1港)を出港した後、46920分航海して、2008年4月16日10時に揚港(B港)沖に着き、2008年4月16日13時に揚港(B港)のコード「11」で表わされるバースに着岸し、2008年4月18日14時に揚港(B港)を出港する航海である。また、この船は契約区分が連続航海であるため、連続航海船Aは、積-揚-積-揚…と連続的に航海をしている。つまり連続航海船Aの航海No.2の最後の揚港(D港)を2008年2月22日9時に出港した後、航海No.3の最初の積港(X1港)に向かい、20820時間航海して、2008年3月7日20時にX1港の沖に着いている。 For example, voyage No. of continuous cruise ship A 3 arrived off the port of loading (X1 port) at 20 o'clock on March 7, 2008, and arrived at the berth represented by code “1” of loading port (port X1) at 20 o'clock on March 12, 2008. After leaving the port (X1 port) at 20 o'clock on March 14, 2008, sailed for 46920 minutes and arrived at the offshore of port (B port) at 10 o'clock on April 16, 2008, at 13:00 on April 16, 2008 This is a voyage that berthed at the berth represented by the code “11” of the unloading port (Port B) and left the unloading port (Port B) at 14:00 on April 18, 2008. In addition, since this ship has a continuous voyage, the continuous voyage ship A sails continuously in the order of loading-lifting-loading-lifting. In other words, voyage No. After leaving the last port of No. 2 (Port D) at 9:00 on February 22, 2008, Heading to the first port of No. 3 (X1 port), sailing for 20820 hours and arriving off the port of X1 at 20:00 on March 7, 2008.
 立案開始日(配船計画を立案する対象期間の始めの日)が、立案を実行する日に対して将来である場合は、原材料の在庫状況は、配合計画作成装置200で作成された配合計画から算出される、立案開始日における製鉄所(揚地)別、銘柄別の在庫状況を表わす情報である。また、立案開始日が、立案を実行する日に対して過去の場合は、原材料の在庫状況は、各製鉄所がデータベースにインプットした原材料の銘柄別の実績在庫状況を表わす情報である。 When the planning start date (the first day of the target period for formulating a ship allocation plan) is in the future with respect to the date of planning, the stock status of raw materials is determined by the blending plan created by the blending plan creation device 200. This is information representing the stock status by steelworks (land of unloading) and brand by date at the start of planning. Further, when the planning start date is in the past with respect to the date of execution of planning, the stock status of raw materials is information representing the actual stock status of each material brand input to the database by each steelworks.
 購入費用は、山元(積地)別、銘柄別の原材料の購入費用を表わす情報である。 The purchase cost is information indicating the purchase cost of raw materials by Yamamoto (loading place) and brand.
 輸送費用は、船舶リストにリストアップされている船舶を利用する場合のフレート、及び、船舶リストにリストアップされている船舶を利用する場合の積揚港別の滞船料を表わす情報である。 The transportation cost is information representing a freight when using a ship listed in the ship list and a stagnation fee for each loading port when using a ship listed in the ship list.
 図5には、フレートのリストの例を示す。同図に示すように、船舶リストにリストアップされている各船舶について、傭船コード、積港、1揚港、2揚港、3揚港、フレート(ドル/ton)が記載されている。例えば連続航海船Aは、積港X1から揚港Aまで航海した場合のフレートが16.00であり、積港X1から揚港A-揚港Bまで航海した場合のフレートが16.24である。なお、フレートのリストからもわかるように、一般的には、連続航海船を利用した方が不定期船やスポット船を利用するよりもフレートが安い。 Fig. 5 shows an example of a freight list. As shown in the figure, for each ship listed in the ship list, dredger code, loading port, 1 port, 2 port, 3 port, freight (dollar / ton) are described. For example, the continuous cruise ship A has a freight of 16.00 when sailing from the loading port X1 to the unloading port A, and a freight when sailing from the loading port X1 to the unloading port A to the unloading port B is 16.24. . As can be seen from the freight list, the freight rate is generally cheaper using a continuous cruise ship than using an irregular ship or a spot ship.
 図6には、滞船料のリストの例を示す。同図に示すように、船舶リストにリストアップされている各船舶について、傭船コード、揚ラン(t/Day)、デスデマレート(ドル/日)が記載されている。揚ラン(Discharging Rate)とは、契約上の基準となる荷揚能力であり、1日で荷役が出来る量を表す。その荷揚能力で荷を揚げると仮定した場合と比較して、実際の揚げ時間が早くなった場合は、デスデマレートで設定された金額を船会社から受け取ることができる。逆に遅くなればデスデマレートに設定された金額を船会社に支払うこととなる。例えば、連続航海船Aが10000tの荷揚げをした際に、ETAから11時間後にETDした場合を考える。揚ランは20000(t/Day)であるため、このレートどおりの荷揚げを行えば荷揚げに12時間かかる見込みになる。これに対し、実際には11時間で荷揚げしたため、デスデマレート16250(ドル/日)で規定された金額の1時間分=16250/24ドルを船会社より受け取る。逆に、ETAから13時間後にETDした場合は、デスデマレート16250(ドル/日)で規定された金額の1時間分=16250/24ドルを船会社に支払うこととなる。 Fig. 6 shows an example of a list of berthing charges. As shown in the figure, for each ship listed in the ship list, a dredger code, a lift run (t / Day), and a desdemarate (dollar / day) are described. Lifting rate is the standard capacity for unloading and represents the amount that can be handled in one day. Compared to the case where it is assumed that the cargo can be lifted with the lifting capacity, when the actual lifting time is shortened, the amount set in the desdemaration rate can be received from the shipping company. On the contrary, if it becomes late, the amount set for the death demarcation will be paid to the shipping company. For example, let us consider a case where ETD 11 hours after ETA when a continuous cruise ship A unloads 10,000 tons. Since the lifting run is 20000 (t / Day), if it is unloaded at this rate, it will take 12 hours to unload. On the other hand, since it was actually unloaded in 11 hours, the amount of 1 hour = 16250/24 dollars of the amount stipulated by the death demarrate 16250 ($ / day) is received from the shipping company. On the other hand, when ETD is made 13 hours after ETA, one hour equal to 16250/24 dollars of the amount stipulated by desdemaration rate 16250 ($ / day) will be paid to the shipping company.
(2)船舶財源の作成(ステップS102)
 マクロ最適化部102の船舶財源作成部102aは、ステップS101で取り込んだ船舶リスト(図3を参照)に基づいて船舶を選択し、必要な船舶財源を作成する。
(2) Creation of ship financial resources (step S102)
The ship finance generation unit 102a of the macro optimization unit 102 selects a ship based on the ship list (see FIG. 3) taken in step S101, and creates a necessary ship fund.
 図7は、船舶の選択処理を説明するためのフローチャートである。船舶財源作成部102aは、まず、船舶リスト(図3を参照)及び船舶運航状況(図4を参照)に基づいて、計画作成期間において運航予定の未定部分がある連続航海船を抽出する(ステップS201)。例えば立案開始日を2008年3月1日として3ヶ月分の配船計画を作成するとしたならば、図4に示すように、連続航海船Aは2008年4月18日以降が未定となっているので、連続航海船Aは抽出される。 FIG. 7 is a flowchart for explaining a vessel selection process. First, the ship fund generation unit 102a extracts a continuous sailing ship having an undetermined portion scheduled to be operated during the plan creation period based on the ship list (see FIG. 3) and the ship operation status (see FIG. 4) (step) S201). For example, assuming that the planning start date is March 1, 2008 and a ship allocation plan for three months is to be created, as shown in FIG. 4, the continuous cruise ship A is not yet determined after April 18, 2008. Therefore, the continuous cruise ship A is extracted.
 そして、抽出した連続航海船Aについて計画作成期間における積地と揚地の組み合わせのパターンを全て作成する(ステップS202)。このとき、積地と揚地との距離等に基づいて特定の条件を設け、この条件を満たすパターンを全て作成しても良い。この場合、例えば明らかに不適な運行距離を持つパターン等を予め排除でき、シミュレーションの効率を上げられる。図8は、既に確定している航海No.3(図中「A-3」)に続けて、積港X2-揚港A(航海No.4)、積港X1-揚港B(航海No.5)のパターンを作成している様子を示す図である。パターンの作成に際して、各時刻は、標準的な航海時間(港間距離及び該船舶Aの標準ノット)や標準的な積揚時間を使用して求めるようにしている。例えば、航海No.4における揚港Aの沖着時刻は、[航海No.4における積港X2の沖着時刻]+[標準積時間]+([港X2と港A間の距離])/[船舶Aの標準ノット]で求めることができる。連続航海船Aについて計画作成期間における積地と揚地の組み合わせは複数あるので、それら全て(あるいは上記の特定条件に合致するパターンを全て)のパターンを作成する。他の連続航海船についても同様の作業を行う。 Then, all patterns of combinations of loading and unloading points in the plan creation period are created for the extracted continuous cruise ship A (step S202). At this time, a specific condition may be provided based on the distance between the loading site and the landing site, and all patterns that satisfy this condition may be created. In this case, for example, a pattern having a clearly inappropriate driving distance can be excluded in advance, and the efficiency of the simulation can be increased. FIG. 8 shows the voyage No. already confirmed. 3 (“A-3” in the figure), the pattern of loading port X2-Yangu port A (voyage No. 4) and loading port X1-Yangu port B (voyage No. 5) is being created. FIG. In creating the pattern, each time is obtained using a standard voyage time (distance between ports and a standard knot of the ship A) and a standard loading time. For example, voyage no. The time of landing at Yacht A in No. 4 is [voyage no. 4 at the time of landing at the loading port X2] + [standard loading time] + ([distance between the port X2 and port A]) / [standard knot of the ship A]. Since there are a plurality of combinations of loading place and landing place in the plan creation period for the continuous cruise ship A, all of these patterns (or all the patterns that meet the above specific conditions) are created. The same operation will be performed for the other continuous cruise ships.
 次に、船舶リスト(図3を参照)及び船舶運航状況(図4を参照)に基づいて、計画作成期間において利用可能で未定部分がある不定期船を抽出する(ステップS203)。例えば、図3に示すように、不定期船5の配船予定年月は計画作成期間から外れているので、不定期船5は抽出されない。そして、連続航海船の場合と同様に、抽出した各不定期船について計画作成期間における積地と揚地の組み合わせのパターンを全て(あるいは特定条件に合致するパターンを全て)作成する(ステップS204)。 Next, based on the ship list (refer to FIG. 3) and the ship operation status (refer to FIG. 4), an irregular ship that can be used in the planning period and has an undetermined portion is extracted (step S203). For example, as shown in FIG. 3, since the scheduled allocation date of the irregular ship 5 is out of the plan creation period, the irregular ship 5 is not extracted. Then, as in the case of a continuous voyage ship, all patterns of combination of loading and unloading sites (or all patterns that meet specific conditions) are created for each extracted irregular ship in the plan creation period (step S204). .
 次に、船舶リスト(図3を参照)及び船舶運航状況(図4を参照)に基づいて、スポット船の候補を抽出する(ステップS205)。具体的には、まず計画作成期間における総引取目標量を計算する。また、ステップS201、S202で抽出した連続航海船及び不定期船の最大積載量の合計を計算する。これにより、スポット船で補うべき運搬量を、総引取目標量から、計画作成期間に含まれる連続航海船及び不定期船の最大積載量の合計を減算することで算出することができる(図9を参照)。このスポット船で補うべき運搬量に基づいて、各スポット船の最大積載量を参照し、何隻のスポット船が必要となるかを計算し、各スポット船の最少船数を求める。例えばスポット船で補うべき運搬量が250000tonである場合、豪州-PmaxSpotであれば250000÷75000=3.33で4隻必要となり、4隻の豪州-PmaxSpotをスポット船の候補とする。同様に、2隻の豪州-CapeSpot、1隻の豪州-VLSpot、4隻のカナダ-PmaxSpot、2隻のカナダ-CapeSpot、1隻のカナダ-VLSpot、1隻の豪州-PmaxSpot及び1隻の豪州-CapeSpot、等のようにスポット船の最少船数が求まる。ここで、求めたスポット船の最少船数が当該傭船コードのスポット船のみで引取を補った場合の最少船数となる。後述するように、この最少船数より多くのスポット船が必要になる場合がある。 Next, spot ship candidates are extracted based on the ship list (see FIG. 3) and the ship operation status (see FIG. 4) (step S205). Specifically, first, the total take-off target amount in the plan creation period is calculated. Further, the sum of the maximum loading capacity of the continuous voyage ship and the irregular ship extracted in steps S201 and S202 is calculated. As a result, the transport amount to be supplemented by the spot ship can be calculated by subtracting the sum of the maximum loading capacity of the continuous voyage ship and the irregular ship included in the plan creation period from the total take-up target quantity (FIG. 9). See). Based on the transport amount to be supplemented by this spot ship, the maximum load capacity of each spot ship is referred to calculate how many spot ships are required, and the minimum number of each spot ship is obtained. For example, if the transport amount to be supplemented by a spot ship is 250,000 ton, if Australia-PmaxSpot, 450,000 are required as 250,000 ÷ 75000 = 3.33, and four Australia-PmaxSpots are candidates for the spot ship. Similarly, 2 Australia-CapeSpot, 1 Australia-VLSpot, 4 Canada-PmaxSpot, 2 Canada-CapeSpot, 1 Canada-VLSpot, 1 Australia-PmaxSpot and 1 Australia- The minimum number of spot ships is obtained, such as CapeSpot. Here, the minimum number of spot ships obtained is the minimum number of ships when the take-up is supplemented only with the spot ship of the dredger code. As will be described later, more spot ships may be required than the minimum number of ships.
 次に、船舶リスト(図3を参照)及び船舶運航状況(図4を参照)に基づいて、スポット船の候補を抽出する。ここでは、船舶運航状況で確定された予定がある場合には、当該船舶をスポット船の候補として抽出し、更に船舶リストの契約区分が未契約の傭船コードのそれぞれに対して、予め設定した日にち毎に、計画作成期間分のスポット船の候補を作成する。図10に、各傭船コードに対するスポット船の候補を作成する間隔を10日としたスポット船の航路リストの例を示す。 Next, spot ship candidates are extracted based on the ship list (see FIG. 3) and the ship operation status (see FIG. 4). Here, if there is a schedule determined by the ship operation status, the ship is extracted as a candidate for a spot ship, and further, the date set in advance for each charter code for which the contract classification of the ship list is not contracted. Each time a candidate for a spot ship is created for the plan creation period. FIG. 10 shows an example of a route list of spot ships with an interval for creating spot ship candidates for each charter code as 10 days.
 ここで、上記等間隔で作成した船数と、上記計算した最少船数とを比較して、上記等間隔で作成した船数の方が少ない場合には、全てのスポット船の候補を雇ったとしても、引取目標量を満足する引取量を実現することが難しい場合がある。このため、上記計算した最少船数より船数が多くなるように、スポット船の候補を作成する間隔を狭めて、スポット船の候補を作成する。そして、連続航海船の場合と同様に、作成した各スポット船の候補について計画作成期間における積地と揚地の組み合わせのパターンを全て(あるいは特定条件に合致するパターンを全て)作成する(ステップS206)。ここで、後述するマクロ最適化において、上記スポット船の各候補について雇う、雇わないが判断され、必要となる船型、船数分のスポット船が決定される。例えば、豪州-PmaxSpot-航海No.3が、候補として作成された後、マクロ最適化において、雇わないと計画されることもある。 Here, if the number of ships created at the same interval is smaller than the number of ships prepared at the same interval, and if the number of ships created at the same interval is smaller, all spot ship candidates were hired. Even so, it may be difficult to realize a take-up amount that satisfies the take-up target amount. Therefore, the spot ship candidates are created by narrowing the interval for creating spot ship candidates so that the number of ships is larger than the calculated minimum number of ships. Then, as in the case of a continuous voyage ship, all the patterns of combination of loading place and landing place in the plan creation period (or all patterns that match the specific conditions) are created for each created spot ship candidate (step S206). ). Here, in macro optimization to be described later, it is determined whether to hire or not to hire each of the spot ship candidates, and the necessary ship types and the number of ship spots are determined. For example, Australia-PmaxSpot-voyage No. After 3 is created as a candidate, it may be planned not to hire in macro optimization.
(3)マクロ数式モデルの設定(ステップS103)
 マクロ最適化部102の数式モデル設定部102bは、ステップS102で作成した船舶の運航制約、揚地での原材料の需給バランス制約、引取目標量制約を表わすよう構築された数式モデルを設定する。設定を受ける数式モデルは、例えばLP(線形計画法)、MIP(混合整数計画法)、QP(2次計画法)等の数理計画法に則ったモデルとして構築(定式化)されている。ここでは、例としてMIPの定式化に基づいた数式モデルを示す。
 ここで数式モデルの設定とは、船舶数や港数などの変化に対応できるように抽象的な形式で構築されている基礎数式モデルに対して、各配列の添え字の最大数(例えば船舶数を表す)や、式中の係数の値などを、実際の計画に沿って具体的に定めることを言う。
(3) Setting of a macro mathematical model (step S103)
The mathematical model setting unit 102b of the macro optimization unit 102 sets a mathematical model constructed so as to represent the ship operation restriction, the supply / demand balance restriction of raw materials at the landing, and the take-up target quantity restriction created in step S102. The mathematical model to be set is constructed (formulated) as a model according to mathematical programming such as LP (linear programming), MIP (mixed integer programming), QP (quadratic programming), and the like. Here, as an example, a mathematical model based on the MIP formulation is shown.
Here, the setting of the mathematical model refers to the maximum number of subscripts in each array (for example, the number of ships) for the basic mathematical model that is constructed in an abstract format so that it can cope with changes in the number of ships, the number of ports, etc. ) And the coefficient values in the formula are specifically determined according to the actual plan.
 まず、該当船が、該当積港を選択するか、選択しないかを示す変数を定義する。つまり、後述する最適化によって得られるこの変数の値に基づいて、当該積港を選択するか、選択しないかが判断される。この変数は、選択する場合を示す1、選択しない場合を示す0、のいずれかの値を取る整数変数とする。 First, define a variable that indicates whether the ship selects or does not select the corresponding port. That is, based on the value of this variable obtained by optimization described later, it is determined whether or not to select the loading port. This variable is an integer variable that takes one of the values 1 for selecting and 0 for not selecting.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、図8に示す連続航海船Aが候補となる船として挙げられ、この船の航海No.4(図中「A-4」)において、当該船舶の寄航可能な積港がX1、X2の2つある場合には、各積港に対応するように以下の2つの整数変数を定義する。ここで、これらの整数変数の第3の添え字であるETAは、ステップS102で計算された沖着時刻である。 For example, the continuous cruise ship A shown in FIG. 4 (“A-4” in the figure), if there are two loading ports X1 and X2 where the ship can call, define the following two integer variables to correspond to each loading port . Here, ETA, which is the third subscript of these integer variables, is the offshore time calculated in step S102.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 もし、最適化の結果としてX1に寄航することが選択された場合は、変数は以下の値を取ることとなる。 If it is chosen to stop at X1 as a result of optimization, the variable will take the following values:
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、該当船が、該当積港、該当揚港、該当寄航順(揚港の何番目に寄ったかを表わす数字、例えば積港X1-揚港A-揚港Bと寄った場合、揚港Bは寄航順2とする)を選択する、つまり該当積港に寄った後、当該揚港に、当該寄航順に寄るのか、或いは選択しない、つまり当該積港に寄った後、当該揚港に、当該寄航順に寄らないか、を示す変数を定義する。この変数は寄港する場合を示す1、寄港しない場合を示す0のいずれかの値を取る整数変数とする。ここで扱う例では、最大2揚港まで寄航できる例を提示するが、寄航できる揚港数、寄航できる積港数は、それ以上の値を取っても構わない。 In addition, if the corresponding ship stops at the corresponding loading port, the corresponding lifting port, the corresponding calling order (number indicating the number of the landing port, for example, loading port X1-lifting port A-lifting port B, B is called in order of calling 2), that is, after stopping at the corresponding port, whether to stop at the landing port, or not selecting, that is, after stopping at the loading port, Defines a variable that indicates whether or not to stop in the order of arrival. This variable is an integer variable that takes a value of 1 indicating that the port is calling and 0 indicating that the port is not calling. In the example dealt with here, an example in which a maximum of two landing ports can be visited is presented. However, the number of landing ports that can be visited and the number of loading ports that can be called may take on more values.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 また、該当船が、該当積港で、該当銘柄を荷積する量を示す変数を定義する。 Also, define a variable that indicates the amount that the relevant ship will load the relevant brand at the relevant loading port.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、該当船が、該当積港、該当揚港、該当寄航順で、該当銘柄を荷揚げする量を示す変数を定義する。 In addition, a variable is defined that indicates the amount that the relevant ship unloads the relevant brand in the relevant loading port, relevant discharge port, and appropriate calling order.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 更に、該当日、該当銘柄の、該当揚港での在庫量を示す変数を定義する。 Furthermore, a variable indicating the stock quantity at the relevant discharge port of the relevant brand on the relevant day is defined.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 「各船舶の積載量が最大積載量を超えないこと」、「積載量は全部荷揚げすること」、等の条件を示す制約式は、基礎となる数式モデルとして予め構築しておく。後述するように、最適化(ステップS103~S106)及びシミュレーション(S107)を含む一連の工程は、複数ループ反復して実行できる。初回ループの最適化では、ステップS101で取り込んだデータに基づいて船舶の運航制約を数式モデルに設定する。第2ループ以降の最適化では、シミュレータ101が前回のループで行ったシミュレーションの結果を反映させて数式モデルを設定する。 Constraint conditions indicating conditions such as “the load capacity of each ship does not exceed the maximum load capacity”, “the load capacity must be completely unloaded”, etc. are constructed in advance as a basic mathematical model. As will be described later, a series of steps including optimization (steps S103 to S106) and simulation (S107) can be executed by repeating a plurality of loops. In the optimization of the initial loop, the ship operation restrictions are set in the mathematical model based on the data captured in step S101. In optimization after the second loop, the mathematical model is set by reflecting the result of the simulation performed by the simulator 101 in the previous loop.
 各船舶の積載量が最大積載量を超えないという制約は、下記の制約式(式1)と表わされる。 The constraint that the load capacity of each ship does not exceed the maximum load capacity is expressed by the following constraint expression (Formula 1).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 積載量は全部荷揚げするという制約は、下記の制約式(式2)と表わされる。
Figure JPOXMLDOC01-appb-M000009
The constraint that the entire loading capacity is unloaded is expressed by the following constraint equation (Equation 2).
Figure JPOXMLDOC01-appb-M000009
 また、揚地での原材料の需給バランス制約としては、「各銘柄の在庫量が常に安全在庫量以上確保されている」という制約条件を、数式モデルとして構築する。初回ループではステップS101で取り込んだデータに基づいて、さらに次ループ(ステップS103~S107)以降はシミュレータ101でのシミュレーション結果を反映させて、図11に示すように、構築した数式モデルを設定する。 Also, as a constraint on the supply and demand balance of raw materials at the landing site, a constraint condition that “the stock amount of each brand is always secured more than the safety stock amount” is constructed as a mathematical model. In the initial loop, based on the data fetched in step S101, the simulation results in the simulator 101 are reflected in the subsequent loops (steps S103 to S107) and thereafter, and the constructed mathematical model is set as shown in FIG.
 まず、各銘柄の在庫量の推移を表わす制約式は下記の(式3)と表わされる。つまり、当日の在庫量から前日の在庫量と当日に荷揚する量を引いた値は、当日の使用予定量となる。 First, the constraint equation representing the transition of the stock amount of each brand is expressed as (Equation 3) below. That is, a value obtained by subtracting the inventory amount on the previous day and the amount unloaded on the current day from the inventory amount on the current day is the scheduled use amount on the current day.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 各銘柄の在庫量が常に安全在庫以上確保されているという制約は、下記の制約式(式4)と表わされる。 The constraint that the stock quantity of each brand is always secured above the safety stock is expressed by the following constraint equation (Formula 4).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、揚港で荷揚げされた原材料は、ヤードに積上げられるが、この荷揚げされる原材料の在庫量は、ヤード能力の上限以下になっていないと着岸できない。但し、ヤードに積上げられた原材料は、日にちが経過すれば、つまり船舶を待たせれば荷揚げすることができる。しかし、荷揚げがヤード能力を超えすぎていると滞船時間が膨大となる。そこで、例えばヤード能力の1%程度の超過までの荷揚げを許すとする。この制約は、下記の制約式(式5)と表わされる。 In addition, the raw materials unloaded at the unloading port are piled up in the yard, but the stock of the unloaded raw materials cannot be docked unless the yard capacity is below the upper limit. However, the raw material stacked in the yard can be unloaded if the date has passed, that is, if the ship is kept waiting. However, if unloading exceeds the yard capacity, the berthing time will be enormous. Thus, for example, it is assumed that unloading is permitted up to an excess of about 1% of the yard capacity. This constraint is expressed by the following constraint equation (Equation 5).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、引取目標量制約は、ステップS101で取り込んだデータに基づいて、さらに次ループ(ステップS103~S107)以降はシミュレータ101でのシミュレーション結果を反映させて、設定する。最適化する引取量(荷積量)が引取目標量からかけ離れないこと、引取の可否(前述したように所定の銘柄については所定の期間は引取しないといった事情もありうる)、等が数式モデルに構築されている。ここで、引取量が引取目標量からかけ離れないという制約を考える場合に、例えば図12Aに示すように、単に旬毎(或いは月毎)に引取目標量に対して上下限値を設定し、荷積量がその上下限値を超えないことを制約とすることが考えられる。しかしながら、その場合、例えば荷積量が下限値を満たしているが引取目標量を下回る状況が続いたような場合、年間で蓄積すると、引取割れが発生してしまうこともありうる。そこで、図12Bに示すように、旬毎(或いは月毎)にそれまで引取目標量累積及び引取量累積を考え、引取目標量累積と引取量累積との差を小さくする(最小とする、上下限値を越えないようにする等)制約を設定するのが好適である。上記制約式を定式化するために、旬毎の引取目標累積量からの溢れ量、不足量の変数を定義する。 Also, the take-off target amount constraint is set based on the data fetched in step S101, reflecting the simulation result in the simulator 101 after the next loop (steps S103 to S107). The formula model is such that the take-up amount (loading amount) to be optimized is not far from the take-up target amount, and whether or not it can be picked up (as mentioned above, there may be circumstances where a predetermined brand is not picked up for a predetermined period). Has been built. Here, when considering the restriction that the pick-up amount is not far from the pick-up target amount, for example, as shown in FIG. 12A, the upper and lower limit values are simply set for the pick-up target amount every season (or every month), It can be considered that the product amount does not exceed the upper and lower limit values. However, in that case, for example, when the load amount satisfies the lower limit value but continues to be lower than the take-up target amount, the take-up crack may occur if accumulated for the year. Therefore, as shown in FIG. 12B, taking into account the collection target amount accumulation and the collection amount accumulation every season (or every month), the difference between the collection target amount accumulation and the collection amount accumulation is reduced (minimized, upper It is preferable to set a constraint such that the lower limit value is not exceeded. In order to formulate the above constraint equation, variables of overflow amount and deficiency amount from the target collection amount every season are defined.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 また、各旬の引取量累積の変数を定義する。 Also, define a variable for the accumulated amount of each season.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 まず、各銘柄の引取量累積を表わす制約式は下記の(式6)と表される。つまり、引取量累積は、立案開始日から該当旬までの期間にETAが入っている船舶(航海)の荷揚量の合計となる。 First, the constraint equation that represents the cumulative amount received for each issue is expressed as (Equation 6) below. That is, the accumulated amount of collection is the total amount of unloading of a ship (voyage) in which an ETA is entered during the period from the planning start date to the relevant season.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 各銘柄の引取目標量累積と溢れ量、不足量との関係を表わす制約式は下記の(式7)と表される。つまり、引取累積量から溢れが生じている場合は溢れ量を引き、不足が生じている場合は不足量を足すと、引取目標累積量と一致する。ここで、引取累積量と引取目標累積量は近い量を取る程良い計画であるといえる。つまり、この溢れ量、及び不足量は少ない程良い。上記理由のため、後述するようにこの溢れ量、及び不足量は、目的関数の項目として追加され、ミニマム化される。 ∙ The constraint equation that expresses the relationship between the accumulation of the target amount for each brand, the overflow amount, and the shortage amount is expressed as (Equation 7) below. That is, if the overflow amount is generated from the take-up cumulative amount, the overflow amount is subtracted, and if the shortage has occurred, the shortage amount is added to match the take-up target cumulative amount. Here, it can be said that the closer the take-up cumulative amount and the take-up target cumulative amount are, the better the plan. That is, the smaller the overflow amount and the insufficient amount, the better. For the above reason, as described later, the overflow amount and the shortage amount are added as items of the objective function, and are minimized.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、目的関数としてフレートの合計金額のミニマム化を定式化するために、寄港順を示す整数変数を導入する。この寄港順変数は、特定の船が、積港として特定の積港、第一揚港として当該揚港1、第二揚港として特定の揚港2の組み合わせを選択する場合は1、この組み合わせを選択しない場合は0を取る。 Here, in order to formulate the minimum of the total amount of freight as an objective function, an integer variable indicating the order of port calls is introduced. This port-calling variable is 1 when a specific ship selects a combination of a specific loading port as a loading port, a corresponding unloading port 1 as a first unloading port, and a specific unloading port 2 as a second unloading port. Take 0 if you don't select.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 この論理関係を混合整数計画法の定式として記述する方法が、一般的に良く知られており、以下のように定式化することができる。 The method of describing this logical relationship as a mixed integer programming formula is generally well known and can be formulated as follows.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
(4)マクロ数式モデル及び目的関数に基づいて最適化(ステップS104)
 マクロ最適化部102の最適化計算部102cは、ステップS103で設定した数式モデルを用いて、輸送費用に関して設定された目的関数(評価関数)に基づいて最適化計算を行う。最適化計算に際しては、例えばLP(線形計画法)、MIP(混合整数計画法)、QP(2次計画法)等の数理計画法により最適化問題として問題を解く。
(4) Optimization based on the macro mathematical model and the objective function (step S104)
The optimization calculation unit 102c of the macro optimization unit 102 performs the optimization calculation based on the objective function (evaluation function) set for the transportation cost, using the mathematical model set in step S103. In the optimization calculation, the problem is solved as an optimization problem by mathematical programming such as LP (Linear Programming), MIP (Mixed Integer Programming), and QP (Secondary Programming).
 ここでの最適化計算では、輸送費用のうちフレートの合計金額のミニマム化を目的とした目的関数を用い、下記の変数を決定する。これにより、フレートの合計金額を最も安価にする船型、船数、積揚地(積揚港)、積揚銘柄、積揚量が選定される。 In the optimization calculation here, the following variables are determined using an objective function for the purpose of minimizing the total amount of freight in the transportation cost. As a result, the hull type, the number of ships, the landing site (shipping port), the loading brand, and the amount of loading are selected to make the total amount of freight the cheapest.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 ここで、船舶に掛かるフレートは、積港から第一港目に寄航する揚港までの基準フレートと、上記に更に他の港に寄航した際に掛かる多港揚追加フレートの合計、ここでは、第一揚港から第二揚港に余分に寄航した際に発生する多港揚追加フレートの合計と、積載した量との積となる。 Here, the freight applied to the ship is the sum of the standard freight from the loading port to the landing port calling at the first port and the multi-port additional freight applied when calling to another port as described above. Then, it is the product of the total of the multi-port lift additional freight that occurs when an extra call is made from the first port to the second port, and the amount loaded.
 例えば、図5より連続航海船A-航海No.1がX1港から第一揚港Aに75000tの荷を運んだ際には、基準フレート16.00となり、雇船費用は16.00×75000=1,200,000となる。また、第二揚港としてAに寄った後、Bによると多港揚追加フレートは(16.24-16.00)=0.24となり、この際の雇船費用は(16.00+0.24)×75000=1,218,000となる。 For example, from FIG. When 1 carries 75,000 tons of cargo from X1 port to the first landing port A, the standard freight is 16.00, and the hiring cost is 16.00 × 75000 = 1,200,000. In addition, after stopping at A as the second port, according to B, the multi-port lift additional freight was (16.24-16.00) = 0.24, and the hiring cost at this time was (16.00 + 0.24). ) × 75000 = 1,218,000.
 以上より、マクロ最適化で用いる目的関数(以下マクロ目的関数と呼ぶ)を式で表わすと、下記の式(式11)を得る。 From the above, when the objective function used in macro optimization (hereinafter referred to as the macro objective function) is expressed by an expression, the following expression (Expression 11) is obtained.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 ここで、マクロ最適化では、引取目標量累積及び引取量累積を考え、引取目標量累積と引取量累積との差を小さくすることも目的としている。このため、旬毎の引取目標累積量からの溢れ量、不足量の合計量をミニマム化する項目を目的関数に追加する。このため、目的関数を表わす(式11)を下記の式(式12)に変更する。
 マクロ最適化では、全体として傭船に関する問題を最適化する。
Here, the macro optimization is intended to reduce the difference between the take-up target amount accumulation and the take-up amount accumulation in consideration of the take-up target amount accumulation and the take-up amount accumulation. For this reason, an item for minimizing the total amount of overflow and deficiency from the seasonal collection target cumulative amount is added to the objective function. Therefore, (Expression 11) representing the objective function is changed to the following expression (Expression 12).
Macro optimization optimizes problems related to dredgers as a whole.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 なお、フレートに関して目的関数を構築することを説明したが、フレートの合計金額及び原材料の購入費用の合計金額のミニマム化を目的とした目的関数としてもよい。既述したように原材料の引取目標量は契約により定められており、原材料の購入費用に大幅な変動はないが、その中でも原材料の購入費用の合計金額のミニマム化が可能になる。 Although it has been explained that the objective function is constructed for freight, the objective function may be used for the purpose of minimizing the total amount of freight and the total amount of raw material purchase costs. As described above, the target amount of raw materials is set by contract, and there is no significant change in the purchase cost of raw materials, but among them, the total purchase cost of raw materials can be minimized.
 上記の項目(3)、(4)で説明した如く、ミニマム化すべき式が目的関数、満足すべき各式が制約式として定式化されている。この制約式は線形等式、或いは不等式で表現されている。目的関数は1次式で表される。変数の中に整数となるべき変数が存在するモデルとして数式モデル、目的関数が構築されている。このように定式化された問題は、混合整数計画問題として一般に良く知られており、本問題は(解析的に)最適化することが可能である。 As explained in the above items (3) and (4), the formula to be minimized is formulated as an objective function, and each formula to be satisfied is formulated as a constraint formula. This constraint equation is expressed as a linear equation or an inequality. The objective function is expressed by a linear expression. A mathematical model and an objective function are constructed as models in which there are variables that should be integers. The problem formulated in this way is generally well known as a mixed integer programming problem, and this problem can be (analytical) optimized.
 マクロ最適化に際しては、時間精度を旬精度として演算する。最適化期間は、最初のループ(ステップS103~S107)では9旬、次ループ(ステップS103~S107)では8旬、・・・、最後のループ(ステップS103~S107)では1旬とする。そして、最適化期間(9旬~1旬)のうちの最初の1旬を計画確定期間とし、その計画確定期間での演算結果をミクロ最適化部103に出力する。 * In macro optimization, time accuracy is calculated as seasonal accuracy. The optimization period is 9 in the first loop (steps S103 to S107), 8 in the next loop (steps S103 to S107), and so on in the last loop (steps S103 to S107). Then, the first January of the optimization period (9th to January) is set as the plan finalization period, and the calculation result in the plan finalization period is output to the micro optimization unit 103.
(5)ミクロ数式モデルの設定(ステップS105)
 ミクロ最適化部103の数式モデル設定部103aは、マクロ最適化部102で求めた計画確定期間の配船計画に従って船舶を運航する際の制約のうち、滞船制約、及び、揚地での原材料の需給バランス制約を表わす数式モデルを設定する。用いられる数式モデルは、例えばLP(線形計画法)、MIP(混合整数計画法)、QP(2次計画法)等の数理計画法を用いて構築する。ここでは、例としてMIPの定式化に基づいた数式モデルを示す。
(5) Setting of a micro mathematical model (step S105)
The mathematical model setting unit 103a of the micro-optimization unit 103 is a stagnation constraint and a raw material at a landing site among the constraints when operating a ship according to the ship allocation plan of the plan confirmation period obtained by the macro optimization unit 102. A mathematical model representing the supply-demand balance constraint is set. The mathematical model used is constructed using mathematical programming such as LP (Linear Programming), MIP (Mixed Integer Programming), and QP (Secondary Programming). Here, as an example, a mathematical model based on the MIP formulation is shown.
 マクロ最適化により、寄航する揚港が決定されている。ここで、揚港には船が着岸するための複数のバース(岸壁)が存在するため、該当揚港のいずれのバースに着岸するかを選択する変数を定義する。この変数は該当バースを選択する場合は1、選択しない場合は0の値を取る整数変数とする。 揚 The port of call is determined by macro optimization. Here, since there are a plurality of berths (quay walls) for ships to berth at the landing port, a variable for selecting which berth of the corresponding landing port is to be defined is defined. This variable is an integer variable that takes a value of 1 if the corresponding berth is selected, and 0 if it is not selected.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 また、該当船が該当バースに着岸するために沖待を開始する時刻(ETA)の変数を定義する。時刻はMIPで定式化するための変数として直接定義できないため、立案開始日からの経過分として定義する。つまり、立案開始日が1月1日0時0分の場合で、ETAが1月1日1時10分の場合は、70という値を取るとして定義する。また、この変数は整数変数ではなく、連続値を取る変数として定義する。 Also, define a variable for the time (ETA) at which the ship will start offshore in order to arrive at the berth. Since the time cannot be directly defined as a variable for formulation by MIP, it is defined as the elapsed time from the planning start date. That is, when the planning start date is 0:00 on January 1, and the ETA is 1:10 on January 1, it is defined as taking 70. Also, this variable is not an integer variable, but defined as a variable that takes a continuous value.
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 同様にETBの変数を定義する。 Similarly, define ETB variables.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 同様にETDの変数を定義する。 Similarly define ETD variables.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 更に、該当分、該当銘柄の、該当揚港での在庫量の変数を定義する。 Furthermore, the variable of the stock quantity at the corresponding discharge port of the corresponding brand for the corresponding part is defined.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 船舶の滞船制約は、初回ループではステップS101で取り込んだデータに基づいて、さらに次ループ(ステップS103~S107)以降はシミュレータ101でのシミュレーション結果を反映させて設定する。揚港での船舶運行条件(ETB>ETA、ETD>ETB+荷揚時間等)、バースの条件(許容されるLOA(全長)、DRAFT(全深)、BEAM(全幅)、積揚能力、ヤード能力等)、等が数式モデルに構築されている。 Vessel stagnation restrictions are set based on the data fetched in step S101 in the first loop, and further reflecting the simulation results in the simulator 101 after the next loop (steps S103 to S107). Vessel operating conditions (ETB> ETA, ETD> ETB + unloading time, etc.), berth conditions (allowable LOA (full length), DRAFT (full depth), BEAM (full width), loading capacity, yard capacity, etc.) ), Etc. are built into the mathematical model.
 マクロ最適化で揚港が決定された船舶は、当該揚港の何れかのバースに着岸する必要がある。この制約は、下記の制約式(式13)と表される。つまり当該船に対して、着岸可能なバースの内で、必ず一つのバースが選択(変数の値が1)される必要がある。 船舶 Vessels that have been determined to be unloaded by macro optimization need to berth at one of the berths at that port. This constraint is expressed as the following constraint equation (Equation 13). In other words, one berth must be selected (variable value is 1) among the berths that can be docked for the ship.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 ETBはETA以降となる必要がある。この制約は、下記の制約式(式14)と表される。 ETB needs to be after ETA. This constraint is expressed as the following constraint equation (Equation 14).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 ETDはETB+荷揚時間以降となる必要がある。ここで、マクロ最適化により該当バースでの荷揚量は決定されているため、当該バースでの荷揚時間は、当該バースでの標準的な荷揚能力を用いると、荷揚時間=荷揚量/荷揚能力となる。以上より、上記制約は、下記の制約式(式15)と表される。 ETD needs to be after ETB + unloading time. Here, since the amount of unloading at the berth is determined by macro optimization, the unloading time at the berth can be expressed as unloading time = unloading amount / unloading capacity using the standard unloading capacity at the berth. Become. From the above, the above constraint is expressed as the following constraint equation (Formula 15).
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 また、揚地での原材料の需給バランス制約は、ステップS101で取り込んだデータに基づいて、さらに次ループ(ステップS103~S107)以降はシミュレータ101でのシミュレーション結果を反映させて設定する。図11に示すように、各銘柄の在庫量が常に安全在庫量以上確保されていることが数式モデルとして構築されている。つまり、該当時刻の在庫量から1分前の在庫量と当該時刻に荷揚する量を引いた値は、当該時刻1分間の使用予定量となる。 Further, the supply and demand balance of raw materials at the landing site is set based on the data taken in step S101, and the simulation results in the simulator 101 are reflected after the next loop (steps S103 to S107). As shown in FIG. 11, it is constructed as a mathematical model that the stock amount of each brand is always secured at least the safe stock amount. That is, the value obtained by subtracting the inventory amount one minute before the amount unloaded at the time and the amount unloaded at the time becomes the scheduled use amount for the time 1 minute.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 また、揚港で荷揚げされた原材料は、ヤードに積上げられるが、この荷揚げされた原材料の在庫量は、ヤード能力の上限以下になっていないと着岸できない。つまりETB時点での在庫量はヤード能力上限以下となる必要がある。この制約は、下記の制約式(式17)と表される。 In addition, the raw materials unloaded at the unloading port are piled up in the yard, but the stock of the unloaded raw materials cannot be docked unless the yard capacity is below the upper limit. In other words, the inventory amount at the time of ETB needs to be below the upper limit of yard capacity. This constraint is expressed as the following constraint equation (Equation 17).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
(6)ミクロ数式モデル及び目的関数に基づいて最適化(ステップS106)
 ミクロ最適化部103の最適化計算部103bは、ステップS105で設定した数式モデルを用いて、輸送費用に関して構築された目的関数(評価関数)に基づいて最適化計算を行う。最適化計算に際しては、例えばLP(線形計画法)、MIP(混合整数計画法)、QP(2次計画法)等の数理計画法により最適化問題として問題を解く。
(6) Optimization based on the micro mathematical model and the objective function (step S106)
The optimization calculation unit 103b of the micro optimization unit 103 performs optimization calculation based on the objective function (evaluation function) constructed for the transportation cost, using the mathematical model set in step S105. In the optimization calculation, the problem is solved as an optimization problem by mathematical programming such as LP (Linear Programming), MIP (Mixed Integer Programming), and QP (Secondary Programming).
 ここでの最適化計算では、滞船料の合計金額のミニマム化を目的とした目的関数を用い、船舶が着岸する/しないを表わすδ(船舶、バース)、ETA時刻を表わすETA(船舶、バース)、ETB時刻を表わすETB(船舶、バース)、ETD時刻を表わすETD(船舶、バース)といった変数を決定する。これにより、輸送費用を最も安価にするバース、入出港タイミングが選定される。 In the optimization calculation here, an objective function for the purpose of minimizing the total amount of the berthing fee is used, δ (ship, berth) indicating whether or not the ship berths, and ETA (ship, berth) indicating the ETA time. ), ETB representing the ETB time (ship, berth), and ETD representing the ETD time (ship, berth). As a result, the berth and entry / exit timing for the lowest transportation cost is selected.
 ここで、船舶に掛かる滞船料は、ETD-ETAと契約上の基準停泊時間とを比較し、基準停泊時間より停泊が長い、つまり、ETD-ETA>基準停泊時間の場合には、デスデマレートとして契約された費用を支払い、逆の場合には、デスデマレートとして契約された費用を受取ることとなる。基準停泊時間は、契約上設定された荷揚能力である揚ランを用いて揚量/揚ランで計算される。例えば、連続航海船A-航海No.1が揚港で10000tの荷揚げを行い、ETAからETDまで11時間掛かった場合は、基準停泊時間=10000/20000=0.5日、12時時間より1時間早いため、デスデマレートで設定された16250/24の金額を船会社より受取ることとなる。以上より、ミクロ最適化で用いる目的関数(以下ミクロ目的関数と呼ぶ)を式で表わすと、下記の式(式18)を得る。 Here, the berthing charge on the ship is compared to the ETD-ETA and the contracted standard berth time. If the berth is longer than the standard berth time, that is, if ETD-ETA> the standard berth time, You pay the contracted costs, and in the opposite case, you receive the contracted costs as a death demarcation. The standard berthing time is calculated in the lift / lift run using the lift run, which is the capacity set in the contract. For example, continuous cruise ship A-voyage No. When 1 unloads 10,000 tons at the port and it takes 11 hours from ETA to ETD, the standard berth time = 10000/20000 = 0.5 days, which is 1 hour earlier than 12:00 hours. / 24 amount will be received from the shipping company. From the above, when the objective function used in the micro optimization (hereinafter referred to as the micro objective function) is expressed by an equation, the following equation (Equation 18) is obtained.
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 上記式では定数部分が含まれているが、ミニマム化において定数部分は影響を与えないため、下記の式(式19)が目的関数となる。 Although the constant part is included in the above formula, the constant part does not affect the minimum, so the following formula (Formula 19) is the objective function.
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
 上記の項目(5)、(6)で説明した如く、ミニマム化すべき式が目的関数、満足すべき各式が制約式として定式化されている。この制約式は、線形等式、或いは不等式で表現されている。目的関数は1次式で表される。変数の中に整数となるべき変数が存在するモデルとして数式モデル、目的関数が構築されている。この様に定式化された問題は、混合整数計画問題として一般に良く知られており、本問題は(解析的に)最適化することが可能である。 As explained in the above items (5) and (6), the formula to be minimized is formulated as an objective function, and each formula to be satisfied is formulated as a constraint formula. This constraint equation is expressed by a linear equation or an inequality. The objective function is expressed by a linear expression. A mathematical model and an objective function are constructed as models in which there are variables that should be integers. The problem formulated in this way is generally well known as a mixed integer programming problem, and this problem can be (analytical) optimized.
 ミクロ最適化に際しては、最適化期間を10日(1旬)とし、時間精度を分精度として演算する。 In the micro optimization, the optimization period is 10 days (1st) and the time accuracy is calculated as minute accuracy.
(7)シミュレーション(ステップS107)
 シミュレータ101は、ミクロ最適化部103で求めた数式モデルに対する解に基づいてシミュレーションを実行して、計画確定期間(1旬)の配船計画を確定する。シミュレーションの時間精度は分精度とする。このシミュレーションでは、マクロ数式モデル、ミクロ数式モデルには組み込むことができなかった制約等も組み込むことで、実際に求められる細かな制約までも考慮した配船計画を作成することが可能となる。
(7) Simulation (step S107)
The simulator 101 executes a simulation based on the solution for the mathematical model obtained by the micro optimization unit 103, and finalizes the ship allocation plan for the plan finalization period (in the first season). The time accuracy of the simulation is minute accuracy. In this simulation, it is possible to create a ship allocation plan that takes into account even the fine constraints actually required by incorporating constraints that could not be incorporated into the macro mathematical model and the micro mathematical model.
 例えば、マクロ・ミクロ最適化で取扱うことが難しい制約の一例として1隻の船舶の荷揚げに使用するアンローダの基数がある。この基数は、荷揚げする銘柄が積載されているハッチの位置、同一揚港の別バースで荷役している船舶があるか、ないか等により変わって来る。この荷揚げに使用するアンローダの基数により荷揚能力は変わって来る。例えば、「1基で荷揚げする場合は、1500t/hで100%能力で揚げられる」「2基の場合は、1500t/h×2基で70%能力で揚げられる」等の状況が例示できる。マクロ・ミクロ最適化ではこれらのアンローダ基数まで考慮されていないため、最適化で計算された時間を、シミュレータによりアンローダ基数まで考慮して、最適化の時間のずれ等をシミュレーションに取込み、正確にシミュレートすることで、実操業に求められる細かな制約まで考慮した生産・物流計画の立案が可能となる。 For example, one example of constraints that are difficult to handle with macro / micro optimization is the number of unloaders used to unload a single ship. This radix varies depending on the position of the hatch where the brand to be unloaded is loaded, whether or not there is a ship handling at another berth at the same port. The unloading capacity varies depending on the number of unloaders used for unloading. For example, a situation such as “when unloading with one unit is lifted with a capacity of 100% at 1500 t / h” and “when two units are unwound with a capacity of 70% with 1500 t / h × 2 units” can be exemplified. In macro / micro optimization, these unloader radixes are not taken into consideration, so the time calculated by optimization is taken into consideration by the simulator up to the unloader radix, and the time lag of the optimization is taken into the simulation and accurately simulated. This makes it possible to create production and logistics plans that take into account the fine constraints required for actual operations.
 シミュレータ101では、ミクロ最適化部103で船舶の入出港タイミングの入れ替え等による時間調整があった場合、それを波及的に反映させて時刻修正する。特に連続航海船では、ある港で時間調整があった場合その後の航海にも波及的に影響するので、シミュレータ101で時刻修正を行い、その後のマクロ最適化部102での処理に反映させるようにしている。 In the simulator 101, if the micro-optimization unit 103 adjusts the time by changing the timing of entering / leaving the ship, the time is corrected by reflecting it in a spillover manner. In particular, in the case of a continuous voyage ship, if time adjustment is made at a certain port, it will affect the subsequent voyage, so the time will be corrected by the simulator 101 and reflected in the processing by the macro optimization unit 102 thereafter. ing.
(8)立案開始日の更新(ステップS109)
 ステップS108において計画作成期間(3ヶ月(9旬))分の計画が確定したかどうかを判定する。まだ確定していない場合、計画が確定した旬の次旬の初日、例えばN旬の計画が確定したならばN+1旬の初日を立案更新日として更新し(ステップS109)、ステップS103に戻る。ステップS103から始まる次ループでは、計画が確定した旬(N旬)における在庫推移や船舶の運航状況を更新して、次旬(N+1旬)の計画を確定させる。これを繰り返すことにより、計画作成期間(3ヶ月)分の計画が確定することになる(図13を参照)。
(8) Planning start date update (step S109)
In step S108, it is determined whether or not plans for the plan creation period (3 months (9 months)) have been finalized. If it has not been confirmed yet, the first day of the next season in which the plan is confirmed, for example, if the plan for N season is confirmed, the first day of N + 1 season is updated as the plan update date (step S109), and the process returns to step S103. In the next loop starting from step S103, the inventory transition in the season (N season) when the plan is finalized and the operational status of the ship are updated to finalize the plan for the next season (N + 1 season). By repeating this, the plan for the plan creation period (3 months) is fixed (see FIG. 13).
(9)配船計画の出力(ステップS110)
 以上のようにして作成した配船計画は、出力部105により、不図示のモニタに画面表示されたり、外部機器にデータ送信されたりする。
(9) Shipment plan output (step S110)
The ship allocation plan created as described above is displayed on a screen (not shown) by the output unit 105 or transmitted to an external device.
 以上述べたように、マクロ最適化部102及びミクロ最適化部103では、まず初期条件に基づいて数式モデルを設定し、最適化計算を行い、シミュレータ101に対する指示を算出する。シミュレータ101は、計画確定期間(1旬)についてシミュレーションを終了すると、計画確定期間の最終状態での原材料の在庫推移、船舶の運航状況の推移の情報をマクロ最適化部102及びミクロ最適化部103に与える。マクロ最適化部102及びミクロ最適化部103は、その与えられた情報に基づいて数式モデルを設定し、最適化計算を行い、シミュレータに対する指示を算出する。このようにシミュレータ101と最適化部102、103を連動させることにより、計画作成期間(3ヶ月(9旬))の配船計画を作成することができる。 As described above, the macro optimization unit 102 and the micro optimization unit 103 first set a mathematical model based on the initial conditions, perform optimization calculation, and calculate an instruction for the simulator 101. When the simulator 101 completes the simulation for the plan finalization period (in the first season), the macro optimization unit 102 and the micro optimization unit 103 provide information on changes in the stock of raw materials in the final state of the plan finalization period and the ship operation status. To give. The macro optimization unit 102 and the micro optimization unit 103 set a mathematical model based on the given information, perform optimization calculation, and calculate an instruction for the simulator. In this way, by linking the simulator 101 and the optimization units 102 and 103, it is possible to create a ship allocation plan for the plan creation period (3 months (9th September)).
 本実施形態に係る配船計画作成装置(方法)によれば、マクロ最適化部102及びミクロ最適化部103により行われた最適化計算の結果に基づいた計算指示をシミュレータ101(在庫推移シミュレータ、船舶運航状況推移シミュレータ)に出力する。このように、最適化計算の結果に基づいてシミュレーションが行われるので、理論的な最適解を確実に得ることが可能となる。これにより、従来のようにシミュレーション結果を評価してシミュレーションを何回も繰り返して実行する必要がなく、シミュレーション結果を迅速かつ高精度に作成することができる。 According to the ship allocation plan creation apparatus (method) according to the present embodiment, the simulator 101 (the inventory transition simulator, the inventory transition simulator, the calculation instruction based on the result of the optimization calculation performed by the macro optimization unit 102 and the micro optimization unit 103). (Ship operation status transition simulator). As described above, since the simulation is performed based on the result of the optimization calculation, it is possible to surely obtain a theoretical optimum solution. Thereby, it is not necessary to evaluate the simulation result and repeat the simulation many times as in the prior art, and the simulation result can be created quickly and with high accuracy.
 また、シミュレータ101の規模が非常に大きい場合や制約条件が非常に多くて複雑な場合でも、シミュレータ101に記載された制約のうち、配船計画の作成に影響が大きい重要な部分のみを数式モデルに取り込むようにすることで、数式モデル設定部102b、103aの規模を適切な範囲にして、実用的な時間内で最適化計算を行うようにすることができる。シミュレータ101には、考慮すべき制約を全て記載することができるので、1回のシミュレーションを実行して作成された配船計画は現実に実行可能となることが保証される。 Even if the scale of the simulator 101 is very large or the constraint conditions are very large and complicated, only the important part of the constraints described in the simulator 101 that has a large influence on the creation of the ship allocation plan is expressed by the mathematical model. In this case, it is possible to perform the optimization calculation within a practical time by setting the scales of the mathematical model setting units 102b and 103a to an appropriate range. Since all the restrictions to be considered can be described in the simulator 101, it is guaranteed that a ship allocation plan created by executing one simulation can be actually executed.
 また、配船計画を作成する場合、ブラジル等の遠方より輸送される銘柄は、2ヶ月或いは3ヶ月に一度しか入荷されないといったこともあるため、長期間を考慮して配船計画を立てる必要がある。一方で、中国等頻繁に輸送される銘柄では数日で搬送される銘柄も存在する。更にバースの管理は、滞船料が発生することもあり、分単位で行われるため、分精度の計画が要求される。これらの要求に対して、マクロ最適化部102で船型、船数、積揚地(積揚港)、積揚銘柄、積揚量、寄港順を選定し、一方ミクロ最適化部103で使用バース、入出港タイミングを選定するように演算の分担を行った。このため、演算負荷を抑えるとともに、高精度で求解可能となる。すなわち、マクロ最適化とミクロ最適化を連動させ、繰り返し実行することで、長期間(3ヶ月)で特定する必要がある使用可能な船、積揚地、銘柄、量を長期間で考慮すると同時に、細かな時間精度が要求される使用バース、入出港タイミングは、細かな時間精度で最適化することを可能とした。   In addition, when preparing a ship allocation plan, brands transported from a distant place such as Brazil may be received only once every two or three months. is there. On the other hand, there are brands that are transported in a few days among brands that are frequently transported, such as China. Furthermore, management of berths is subject to berthing charges and is performed on a minute-by-minute basis, so a plan with minute accuracy is required. In response to these requirements, the macro optimization unit 102 selects the ship type, the number of ships, the landing site (shipping port), the loading brand, the amount of loading, and the port order, while the micro optimization unit 103 uses the berth used. The calculation was divided to select the entry / exit timing. For this reason, the calculation load can be suppressed and the solution can be obtained with high accuracy. In other words, by coordinating macro optimization and micro optimization and repeatedly executing them, we can consider usable ships, landing sites, brands, and quantities that need to be specified over a long period (three months) at the same time. The use berth and the entry / exit timing that require fine time accuracy can be optimized with fine time accuracy. *
 以上説明した実施形態では、各銘柄を個別のものとして取り扱っているが、性状が近い複数の銘柄(一定の化学性質を共通して備える銘柄:互いに置き換えても使用可能な銘柄)をグループ化して取り扱ってもよい。実操業においては、当初使用を予定していた銘柄に性状の近い銘柄が輸送されて来た場合は、当初使用にしていた銘柄ではなく、代替として輸送されて来た銘柄を使用することが行われているため、上記取り扱いを行うことが可能である。このように銘柄をグループ化し、一つのものとして取り扱うことにより、変数を少なくして計算量を減らすことができる。また、グループ化することで、フレートが高い船でしか輸送できない銘柄に変わり、同一グループの銘柄でフレートのより安い船で手配できる銘柄を輸送することが可能となり、輸送費用を抑制できる。
 この場合には、マクロ最適化において(式4)で表されていた各銘柄の在庫量が常に安全在庫以上確保されているという制約は、下記の制約式(式20)に変更される。
Figure JPOXMLDOC01-appb-M000034
・・・・(式20)
 また、ミクロ最適化においても、安全在庫の制約式は、同一グループの銘柄(グループ銘柄)の合計の在庫が安全在庫を満たす様に変更される。この場合には、各グループ銘柄の在庫量が常に安全在庫以上確保されているという制約は、下記の制約式(式21)と表される。
Figure JPOXMLDOC01-appb-M000035
・・・・(式21)
In the embodiment described above, each brand is handled as an individual one, but a plurality of brands with similar properties (brands having a certain chemical property in common: brands that can be used even if they are replaced with each other) are grouped. May be handled. In actual operation, if a brand with a property close to the brand that was originally intended for use is transported, the brand that was transported as an alternative may be used instead of the brand that was originally used. Therefore, the above handling can be performed. By grouping brands in this way and treating them as one, it is possible to reduce the number of variables and the amount of calculation. In addition, by grouping, it becomes possible to transport brands that can be transported only by ships having a high freight rate, and brands that can be arranged by cheaper freight ships of the same group, thereby reducing transportation costs.
In this case, the constraint that the stock amount of each brand represented by (Equation 4) in macro optimization is always secured to the safety stock or more is changed to the following constraint equation (Equation 20).
Figure JPOXMLDOC01-appb-M000034
... (Formula 20)
Also in the micro optimization, the safety stock constraint equation is changed so that the total stock of brands in the same group (group brands) satisfies the safety stock. In this case, the constraint that the stock amount of each group brand is always secured at or above the safety stock is expressed by the following constraint equation (Formula 21).
Figure JPOXMLDOC01-appb-M000035
.... (Formula 21)
 また、配船計画作成の際に、船型、船数、積揚地(積揚港)、積揚銘柄、積揚量をユーザが個別に固定できるようにしてもよい。この場合、例えば所定の船舶を使用する、所定の積港を利用する等が予め決まっているような事情に対応できる。特に、引取目標量として設定した量に基づいて配船計画を立案した後で、山元との交渉が進み、引取量が確定されるが、この際には、引取量、積地(積港)、積銘柄、積量(荷積量)は、契約の都合上変更することが許されない。しかし、揚地に関しては、在庫状況を判断して、揚地、揚銘柄、揚量を変更する余地が残される場合が多い。このため、積地(積港)、積銘柄、積量を一括して固定化できるような操作を可能にすれば、ユーザにとって利便性が高くなる。 In addition, when preparing a ship allocation plan, the user may be able to individually fix the ship type, the number of ships, the landing site (shipping port), the loading brand, and the loading amount. In this case, for example, it is possible to cope with a situation where a predetermined ship is used or a predetermined loading port is used in advance. In particular, after drafting a ship allocation plan based on the amount set as the target amount for collection, negotiations with Yamamoto will proceed and the amount will be finalized. The brand name and volume (loading volume) cannot be changed due to contractual reasons. However, with regard to the landing site, there is often a room for changing the landing site, the brand name, and the lifting amount after judging the stock status. For this reason, if operation which can fix a loading place (loading port), a loading brand, and a loading amount collectively is enabled, it will become convenient for a user.
(第2の実施形態)
 上述した実施形態では、マクロ最適化部102の最適化計算部102cで輸送費用等に関して構築された目的関数(評価関数)に基づいて最適化計算を行う例を説明したが、他の目的関数を加えてもよい。
(Second Embodiment)
In the above-described embodiment, the example in which the optimization calculation is performed based on the objective function (evaluation function) constructed with respect to the transportation cost or the like by the optimization calculation unit 102c of the macro optimization unit 102 has been described. May be added.
 例えば積地における負荷を平準化するために、同一の積地に入出港する船舶が同時期に集中したり、逆に船舶が入出港しない期間が続いたりすることを避ける、すなわち同一の積地では計画作成期間中にできるだけ均等に配船することが求められる。 For example, in order to level the load at the loading area, avoid the concentration of ships entering and leaving the same loading area at the same time, or conversely, the period when the ships do not enter or leave the port, that is, the same loading area. Therefore, it is required to allocate ships as evenly as possible during the planning period.
 そこで、図14に示すように、積地毎に全銘柄の引取量を旬単位(或いは月単位)に集計し、それまでの累積を考える(引取量累積)。また、積地毎に全銘柄の引取目標量を旬単位(或いは月単位)に集計し、それまでの累積を目標値として設定する(引取目標量累積)。そして、引取量累積と引取目標量累積の差のミニマム化を目的とした目的関数を構築する。 Therefore, as shown in FIG. 14, the collected amounts of all the brands are summed in seasonal units (or monthly units) for each loading place, and the accumulation up to that point is considered (collected amount accumulation). In addition, the collection target amount of all brands is summed in seasonal units (or monthly units) for each loading place, and the accumulation up to that time is set as a target value (collection target amount accumulation). Then, an objective function is constructed for the purpose of minimizing the difference between the accumulated amount of collected items and the accumulated amount of collected items.
 これにより、各旬(或いは各月)で積地の引取量が均等に近づき、換言すれば、均等配船が可能になる。 This will allow the volume of loading at the season to approach each other evenly (or each month), in other words, evenly distribute ships.
 同様に、揚地における負荷を平準化するために、同一の揚地に入出港する船舶が同時期に集中したり、逆に船舶が入出港しない期間が続いたりすることを避ける、すなわち同一の揚地では計画作成期間中にできるだけ均等に配船することが求められる。 Similarly, in order to level the load at the landing site, it is avoided that the vessels entering and leaving the same landing site are concentrated at the same time, or conversely, the period when the vessels do not enter and leave the port continues. At the landing site, it is required to distribute ships as evenly as possible during the planning period.
 そこで、図15に示すように、揚地毎に全銘柄の荷揚量を旬単位(或いは月単位)に集計し、それまでの累積を考える(荷揚量累積)。また、揚地毎に標準荷揚能力量を旬単位(或いは月単位)に集計し、それまでの累積を目標値として設定する(揚地標準荷揚能力量累積)。そして、その差を残荷揚量と定義し、この残荷揚量のミニマム化を目的とした目的関数を構築する。 Therefore, as shown in FIG. 15, the amount of unloading of all brands is summed in seasonal units (or monthly units) for each landing site, and the accumulation up to that point is considered (unloading amount accumulation). In addition, the standard unloading capacity for each landing site is summed in seasonal units (or monthly units), and the accumulation up to that time is set as a target value (cumulative standard unloading capacity accumulation). Then, the difference is defined as the remaining unloading amount, and an objective function for the purpose of minimizing the remaining unloading amount is constructed.
 これにより、各旬(或いは各月)で揚地の荷揚量が均等に近づき、換言すれば、均等配船が可能になる。即ち、マクロ最適化においても、滞船を抑制することが可能となる。 This will allow the unloading capacity of the landing site to approach evenly in each season (or each month), in other words, evenly ship. That is, even in macro optimization, it becomes possible to suppress a stagnation.
 図16Aは、熟練した当業者が、従来の方法で計画した配船立案結果である。この図中で、重船待ち滞船は、第1の船が、特定の時刻に、特定の揚港の、特定のバースに着岸する予定である時、当該時刻において、第2の船が既に当該バースに停泊している場合に生ずる。重船待ち滞船が生ずると、上記第2の船が出港するまで、つまり上記第2の船のETDまでの間、第1の船は当該積港沖に滞船する必要がある。
 また、ヤード待ち滞船は、第1の船が、特定の時刻に、特定の揚港の特定のバースに着岸する予定である時、当該時刻において、ヤード上の原材料の在庫量がヤード能力を越えており、荷役できない場合に生ずる。ヤード待ち滞船が生ずると、上記第1の船は、ヤード能力に空きが出来るまで当該積港沖に滞船する必要がある。
 配船立案上では、特定の船がETAにおいて当該積港沖に到着し、ETDにおいて当該積港を出港するまでに、以下のような状況が生じうる。
 (1)到着、滞船なし、荷役、出港
 (2)到着、重船待ち滞船、荷役、出港
 (3)到着、ヤード待ち滞船、荷役、出港
 (4)到着、重船待ち滞船及びヤード待ち滞船、荷役、出港
 図16Aによると、従来の方法で計画された配船立案結果では、重船待ち滞船や、ヤード待ち滞船が一定の割合で生じている。このような滞船を解消するためには、熟練した技術を持つ計画者による計画修正作業の繰り返しが必要となる。また、原理的にどこまで滞船を解消することが可能か、正確に見積もることは、熟練した計画者にとっても非常に難しい。
 一方、図16Bは、本実施形態に係る配船計画作成装置、及び方法を用いて計画した配船立案結果である。図16Bでは、図16Aと比較して、重船待ち滞船、及び、ヤード待ち滞船の大部分が解消されている。この結果として、滞船に関する超過費用の削減効果が得られるほか、計画作成者の技能に直接依存せずに、安定した配船計画が可能となる。
FIG. 16A shows a ship planning result planned by a skilled artisan by a conventional method. In this figure, a heavy vessel awaits a ship when the first ship is scheduled to berth at a particular berth at a particular port at a particular time. Occurs when anchored at the berth. When a heavy ship is awaited, the first ship needs to stay at the offshore of the loading port until the second ship leaves the port, that is, until the ETD of the second ship.
In addition, when the first ship is scheduled to berth at a specific berth at a specific unloading port at a specific time, the stock of raw materials on the yard will have a yard capacity. Occurs when it exceeds the limit and cannot be handled. When a yard waiting ship occurs, the first ship needs to stay in the offshore port until the yard capacity is available.
In ship assignment planning, the following situation may occur before a specific ship arrives off the port at the ETA and leaves the port at the ETD.
(1) Arrival, no stagnation, cargo handling, departure from port (2) Arrival, heavy vessel lagging ship, cargo handling, departure from port (3) Arrival, yard lagging vessel, cargo handling, departure from port (4) Arrival, heavy vessel lagging ship and According to FIG. 16A, according to the result of the ship allocation plan planned by the conventional method, a heavy ship awaiting ship and a yard waiting ship are generated at a certain rate. In order to eliminate such a stagnation, it is necessary to repeat the plan correction work by a planner having skill. In addition, it is very difficult for a skilled planner to accurately estimate how much a berthing can be solved in principle.
On the other hand, FIG. 16B shows a ship assignment planning result planned using the ship assignment plan creating apparatus and method according to the present embodiment. In FIG. 16B, compared with FIG. 16A, most of the heavy ship waiting boat and the yard waiting boat are eliminated. As a result, in addition to the effect of reducing excess costs related to stagnation, stable ship assignment planning is possible without depending directly on the skill of the planner.
 本発明の配船計画作成装置は、具体的にはCPU、ROM、RAM等を備えたコンピュータシステムにより構成することができ、CPUがプログラムを実行することによって実現される。また、本発明の配船計画作成装置は、一つの装置から構成されても、複数の機器から構成されてもよい。 The ship allocation plan creation apparatus of the present invention can be specifically configured by a computer system including a CPU, a ROM, a RAM, and the like, and is realized by the CPU executing a program. Moreover, the ship allocation plan creation apparatus of this invention may be comprised from one apparatus, or may be comprised from several apparatus.
 また、本発明の目的は、上述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給することによっても達成される。この場合、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行する。この場合、記憶媒体から読み出されたプログラムコード自体が上述した実施形態の機能を実現することになり、プログラムコード自体及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROM等を用いることができる。 The object of the present invention can also be achieved by supplying a storage medium storing software program codes for realizing the functions of the above-described embodiments to a system or apparatus. In this case, the computer (or CPU or MPU) of the system or apparatus reads and executes the program code stored in the storage medium. In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code itself and the storage medium storing the program code constitute the present invention. As a storage medium for supplying the program code, for example, a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, a ROM, or the like can be used.
 本発明によれば、複数銘柄の原材料を複数の積地から複数の揚地に輸送する配船計画を迅速かつ高精度に作成することができる。しかも船舶契約の種類(連続航海船、不定期船、スポット船)、各船舶を雇う/雇わないの判断を伴う船団の構成(船財源)までも含めて、輸送費用のミニマム化のための最適化が可能になる。
 更に、性状の近い銘柄を考慮することで、銘柄毎に個別に考慮するのに比べて更なる在庫切れの抑制と輸送費用のミニマム化のための最適化が可能になる。
According to the present invention, it is possible to create a ship allocation plan for transporting a plurality of brands of raw materials from a plurality of loading sites to a plurality of landing sites quickly and with high accuracy. In addition, it is optimal for minimizing transportation costs, including the types of ship contracts (continuous voyage ships, irregular ships, spot ships), and the fleet structure (ship funding) with the decision to hire / not hire each ship. Can be realized.
Furthermore, by considering brands with similar properties, it is possible to further optimize out-of-stock control and minimizing transportation costs compared to considering individual brands individually.
 100:配船計画作成装置
 101:シミュレータ
 102:マクロ最適化部
 102a:船舶財源作成部
 102b:数式モデル設定部
 102c:最適化計算部
 103:ミクロ最適化部
 103a:数式モデル設定部
 103b:最適化計算部
 104:データ取り込み部
 105:出力部
 200:配合計画作成装置
 300:データベース
 400:上位コンピュータ
DESCRIPTION OF SYMBOLS 100: Ship allocation plan preparation apparatus 101: Simulator 102: Macro optimization part 102a: Ship financial resource preparation part 102b: Formula model setting part 102c: Optimization calculation part 103: Micro optimization part 103a: Formula model setting part 103b: Optimization Calculation unit 104: Data acquisition unit 105: Output unit 200: Formulation plan creation device 300: Database 400: Host computer

Claims (16)

  1.  複数銘柄の原材料を複数の積地から複数の揚地に輸送する配船計画を作成するための配船計画作成装置であって、
     前記原材料の使用予定量、前記原材料の引取目標量、前記原材料の在庫状況、前記原材料の購入費用、複数の種別の傭船契約に基づいて運用される複数の船舶がリストアップされた船舶リスト、夫々の前記船舶の船舶運航状況、及び、夫々の前記船舶を利用する場合の輸送費用、を含むデータを取り込むデータ取り込み手段と;
     前記船舶運航状況に基づいて前記船舶リストから必要な前記船舶を選択し、船舶財源を作成する船舶財源作成手段と;
     前記船舶財源に含まれる前記船舶の運航制約、及び、前記揚地での前記原材料の需給バランス制約を少なくとも表わす数式モデルを設定する数式モデル設定手段と;
     設定された前記数式モデルを用いて、少なくとも前記輸送費用に関して構築された目的関数に基づいて最適化計算を行う最適化計算手段と;
     前記最適化計算の結果に基づいて動作し、前記在庫状況の推移をシミュレートする在庫推移シミュレータ及び、前記船舶運航状況の推移をシミュレートする船舶運航状況推移シミュレータを含む、シミュレータと;
     前記シミュレータによるシミュレーション結果である配船計画を出力する出力手段と;
     を備えることを特徴とする配船計画作成装置。
    A ship allocation plan creation device for creating a ship allocation plan for transporting raw materials of multiple brands from a plurality of loading sites to a plurality of landing sites,
    A planned use amount of the raw material, a take-up target amount of the raw material, an inventory status of the raw material, a purchase cost of the raw material, a ship list listing a plurality of ships operated based on a plurality of types of chartering contracts, respectively Data fetching means for fetching data including the ship operating status of the ship and the transportation cost when using each ship;
    Ship financial resource creation means for selecting a necessary ship from the ship list based on the ship operational status and creating a ship financial resource;
    A mathematical model setting means for setting a mathematical model that represents at least the operational restrictions of the ship included in the financial resources of the ship and the supply and demand balance restrictions of the raw materials at the landing site;
    An optimization calculation means for performing optimization calculation based on at least an objective function constructed with respect to the transportation cost, using the set mathematical model;
    A simulator including an inventory transition simulator that operates based on a result of the optimization calculation and that simulates the transition of the inventory status; and a ship operation status transition simulator that simulates the transition of the vessel operation status;
    Output means for outputting a ship assignment plan which is a simulation result by the simulator;
    A ship allocation plan creation device characterized by comprising:
  2.  前記原材料が取り扱われる際に、化学的性状が規定した範囲に含まれる複数の前記原材料の銘柄がグループ化されることを特徴とする請求項1に記載の配船計画作成装置。 The ship allocation plan creation device according to claim 1, wherein when the raw materials are handled, a plurality of brands of the raw materials included in a range defined by chemical properties are grouped.
  3.  前記数式モデル設定手段は、前記原材料の引取目標量制約を表わす数式モデルを更に設定することを特徴とする請求項1に記載の配船計画作成装置。 2. The ship allocation plan creating apparatus according to claim 1, wherein the mathematical model setting means further sets a mathematical model that represents a target amount restriction of the raw material.
  4.  前記船舶リストに含まれる前記船舶の前記傭船契約の種別は、連続航海船、不定期船、スポット船を含むことを特徴とする請求項1に記載の配船計画作成装置。 The ship allocation plan creation device according to claim 1, wherein the chartering contract type of the ship included in the ship list includes a continuous voyage ship, an irregular ship, and a spot ship.
  5.  前記船舶財源作成手段は、前記船舶リスト及び前記船舶運航状況に基づいて、計画作成期間において運航未定部分がある前記連続航海船を抽出し、抽出された各前記連続航海船について、前記計画作成期間における前記積地と前記揚地の組み合わせのパターンのうち、所定の条件に合致するものを全て作成することを特徴とする請求項4に記載の配船計画作成装置。 The ship funding creation means extracts the continuous voyage ship that has an undetermined portion of operation in a plan creation period based on the ship list and the ship operation status, and for each extracted continuous voyage ship, the plan creation period 5. The ship allocation plan creation device according to claim 4, wherein all the patterns that match a predetermined condition are created among the combination patterns of the loading place and the landing place.
  6.  前記船舶財源作成手段は、前記船舶リスト及び前記船舶運航状況に基づいて、前記計画作成期間において利用可能であり、かつ運航未定部分がある前記不定期船を抽出し、抽出された前記不定期船について、前記計画作成期間における前記積地と前記揚地の組み合わせのパターンのうち、所定の条件に合致するものを全て作成することを特徴とする請求項5に記載の配船計画作成装置。 The ship financial source creation means extracts the irregular ship that can be used in the plan creation period and has an undecided part of operation based on the ship list and the ship operation status, and the extracted irregular ship The ship allocation plan creation device according to claim 5, wherein all of the combinations of the loading place and the landing place in the plan creation period that meet a predetermined condition are created.
  7.  前記船舶財源作成手段は、前記計画作成期間における前記引取目標量の総合計と、抽出された前記連続航海船及び前記不定期船の最大積載量の合計とに基づいて、前記スポット船で運搬されるべき前記原材料の量を算出し、前記船舶リストに基づいて、前記スポット船の候補を抽出することを特徴とする請求項6に記載の配船計画作成装置。 The ship fund generation means is transported by the spot ship on the basis of the total sum of the take-up target quantities in the plan preparation period and the total of the maximum loading capacity of the extracted continuous cruise ship and the irregular ship. The ship allocation plan creation device according to claim 6, wherein an amount of the raw material to be calculated is calculated, and the spot ship candidates are extracted based on the ship list.
  8.  予め設定された最適化期間内で所定のマクロ時間精度で前記数式モデルを設定し、前記最適化計算を行い、前記最適化期間のうちの一部の計画確定期間での演算結果を出力する、前記数式モデル設定手段及び前記最適化計算手段を具備するマクロ最適化部と;
     前記マクロ最適化部で求めた前記計画確定期間での前記演算結果を用いて、前記計画確定期間で前記マクロ時間精度よりも細かなミクロ時間精度で前記数式モデルを設定し、前記最適化計算を行い、前記最適化計算の結果を前記シミュレータに引き渡す、数式モデル設定手段及び最適化計算手段を具備するミクロ最適化部と;を更に備えることを特徴とする請求項1乃至7のいずれか1項に記載の配船計画作成装置。
    Setting the mathematical model with a predetermined macro time accuracy within a preset optimization period, performing the optimization calculation, and outputting a calculation result in a part of the plan confirmation period of the optimization period, A macro optimization unit comprising the mathematical model setting means and the optimization calculation means;
    Using the calculation result in the plan decision period obtained by the macro optimization unit, setting the mathematical model with micro time accuracy finer than the macro time accuracy in the plan decision period, and performing the optimization calculation 8. A micro-optimization unit comprising a mathematical model setting unit and an optimization calculation unit that performs and delivers the result of the optimization calculation to the simulator. 8. Ship allocation plan creation device described in 1.
  9.  前記シミュレータは、前記連続航海船の一つの航海の運航時刻に変更が起こった場合、前記変更を波及的に反映させて、前記連続航海船の以降の航海の運航時刻を修正し、前記修正に基づいて前記数式モデル設定手段及び前記最適化計算手段での処理を行なうことを特徴とする請求項1乃至7のいずれか1項に記載の配船計画作成装置。 When a change occurs in the operation time of one voyage of the continuous voyage ship, the simulator corrects the operation time of subsequent voyages of the continuous voyage ship by reflecting the change spilloverly. 8. The ship allocation plan creation device according to claim 1, wherein processing by the mathematical model setting unit and the optimization calculation unit is performed based on the processing.
  10.  前記最適化計算手段は:
      前記積地毎に、全前記銘柄の引取量を旬単位或いは月単位に集計して累積することで、引取量累積を算出し;
      前記積地毎に、全前記銘柄の前記引取目標量を旬単位或いは月単位に集計して累積することで、引取目標量累積を算出し;
      前記引取量累積と前記引取目標量累積との差のミニマム化を更なる目的とした目的関数に基づいて前記最適化計算を行う;
     ことを特徴とする請求項1乃至7のいずれか1項に記載の配船計画作成装置。
    The optimization calculation means is:
    For each of the loading points, the accumulated amount of the brand is calculated by summing up the accumulated amounts of all the brands in a seasonal unit or a monthly unit, thereby calculating the accumulated amount of the collected items;
    For each loading place, the collection target amount accumulation is calculated by totaling and accumulating the collection target amount of all the brands in a seasonal unit or a monthly unit;
    Performing the optimization calculation on the basis of an objective function for further minimizing the difference between the collected amount of picked up and the accumulated amount of picked up target;
    The ship allocation plan creation device according to any one of claims 1 to 7.
  11.  前記最適化計算手段は:
      前記揚地毎に、全前記銘柄の荷揚量を旬単位或いは月単位に集計して累積することで荷揚量累積を算出し;
      前記揚地毎に、標準荷揚能力量を旬単位或いは月単位に集計して累積することで揚地標準荷揚能力量累積を算出し;
      前記荷揚量累積と前記揚地標準荷揚能力量累積との差のミニマム化を目的とした目的関数に基づいて前記最適化計算を行う;
     ことを特徴とする請求項1乃至7のいずれか1項に記載の配船計画作成装置。
    The optimization calculation means is:
    For each said landing, calculate the accumulated amount of unloading by totaling and accumulating the amount of unloading of all the brands in seasonal units or monthly units;
    For each landing site, the standard unloading capacity amount is calculated by summing up and accumulating the standard unloading capacity amount in seasonal units or monthly units;
    Performing the optimization calculation based on an objective function for minimizing the difference between the unloading accumulation and the standard landing capacity unloading;
    The ship allocation plan creation device according to any one of claims 1 to 7.
  12.  船型、船数、積地、揚地、積銘柄、揚銘柄、積量、及び揚量を、ユーザの意図に従って個別に固定可能にする、入力部を更に有することを特徴とする請求項1乃至7のいずれか1項に記載の配船計画作成装置。 2. The apparatus according to claim 1, further comprising an input unit that makes it possible to individually fix a ship type, a number of ships, a loading place, a landing place, a loading brand, a lifting brand, a loading quantity, and a lifting quantity according to a user's intention. 8. The ship allocation plan creation device according to any one of items 7.
  13.  前記積地、積銘柄、積量を、ユーザの意図に従って一括して固定可能にする、入力部を更に有することを特徴とする請求項1乃至7のいずれか1項に記載の配船計画作成装置。 The ship allocation plan creation according to any one of claims 1 to 7, further comprising an input unit that makes it possible to fix the loading place, the brand name, and the loading amount collectively according to a user's intention. apparatus.
  14.  前記輸送費用には、フレート及び滞船料が含まれることを特徴とする請求項1乃至7のいずれか1項に記載の配船計画作成装置。 8. The ship allocation plan creation device according to any one of claims 1 to 7, wherein the transportation cost includes a freight rate and a berthing fee.
  15.  複数銘柄の原材料を複数の積地から複数の揚地に輸送する配船計画を作成するための配船計画作成方法であって、
     データ取り込み手段により、前記原材料の使用予定量、前記原材料の引取目標量、前記原材料の在庫状況、前記原材料の購入費用、複数の種別の傭船契約に基づいて運用される複数の船舶がリストアップされた船舶リスト、夫々の前記船舶の船舶運航状況、及び、夫々の前記船舶を利用する場合の輸送費用、を含むデータを取り込む工程と;
     船舶財源作成手段により、前記船舶運航状況に基づいて前記船舶リストから前記船舶を選択し、船舶財源を作成する工程と;
     数式モデル設定手段により、前記船舶財源に含まれる前記船舶の運航制約、及び、前記揚地での前記原材料の需給バランス制約を少なくとも表わす数式モデルを設定する工程と;
     最適化計算手段により、設定された前記数式モデルを用いて、少なくとも前記輸送費用に関して構築された目的関数に基づいて最適化計算を行う工程と;
     シミュレータにより、前記最適化計算の結果に基づいて、前記在庫状況及び前記船舶運航状況をシミュレートする工程と;
     出力手段により、前記シミュレータによるシミュレーション結果である配船計画を出力する工程と;
     を有することを特徴とする配船計画作成方法。
    A ship allocation plan creation method for creating a ship allocation plan for transporting raw materials of multiple brands from a plurality of loading sites to a plurality of landing sites,
    The data fetching means lists the planned usage amount of the raw material, the target collection amount of the raw material, the stock status of the raw material, the purchase cost of the raw material, and a plurality of vessels operated based on a plurality of types of chartering contracts. Fetching data including a ship list, a ship operation status of each ship, and a transportation cost when using each ship;
    A step of selecting a ship from the ship list based on the ship operation status and generating a ship financial resource by a ship financial resource creating means;
    Setting a mathematical model representing at least the operational restrictions of the ship included in the ship's financial resources and the supply and demand balance restrictions of the raw materials at the landing site by means of mathematical model setting means;
    A step of performing an optimization calculation based on an objective function constructed at least with respect to the transportation cost using the set mathematical model by an optimization calculation means;
    Simulating the inventory status and the vessel operation status based on the result of the optimization calculation by a simulator;
    Outputting a ship allocation plan as a simulation result by the simulator by an output means;
    A ship allocation plan creation method characterized by comprising:
  16.  配船計画を作成するための処理をコンピュータに実行させるためのプログラムであって、前記コンピュータを請求項1に記載の配船計画作成装置として機能させるためのプログラム。 A program for causing a computer to execute a process for creating a ship allocation plan, the program causing the computer to function as the ship allocation plan creation device according to claim 1.
PCT/JP2009/005197 2008-10-06 2009-10-06 Ship allocation plan creation device, method, and program WO2010041432A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010512026A JP4669583B2 (en) 2008-10-06 2009-10-06 Ship allocation plan creation device, method and program
CN2009801336055A CN102137802B (en) 2008-10-06 2009-10-06 Ship allocation plan creation device and method
BRPI0920709A BRPI0920709A2 (en) 2008-10-06 2009-10-06 ship allocation plan creation device, its method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008260170 2008-10-06
JP2008-260170 2008-10-06

Publications (1)

Publication Number Publication Date
WO2010041432A1 true WO2010041432A1 (en) 2010-04-15

Family

ID=42100394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005197 WO2010041432A1 (en) 2008-10-06 2009-10-06 Ship allocation plan creation device, method, and program

Country Status (5)

Country Link
JP (1) JP4669583B2 (en)
KR (1) KR20110050476A (en)
CN (1) CN102137802B (en)
BR (1) BRPI0920709A2 (en)
WO (1) WO2010041432A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017172A (en) * 2010-07-07 2012-01-26 Nippon Steel Corp Device, method and program for preparing vessel allocation plan
JP2012086948A (en) * 2010-10-20 2012-05-10 Jfe Steel Corp Transportation plan preparation method and transportation plan preparation device
JP2012148896A (en) * 2010-12-28 2012-08-09 Jfe Steel Corp System and program for preparaing delivery plan
CN103310310A (en) * 2013-06-25 2013-09-18 浙江大学 Multi-type steel batch rolling dynamic production planning system
JP2017187854A (en) * 2016-04-01 2017-10-12 Jfeスチール株式会社 Ship assignment plan creation method, iron mill operation method, and ship assignment plan creation device
CN108491997A (en) * 2018-02-09 2018-09-04 中国科学院空间应用工程与技术中心 A kind of method and system for planning of complex task
JP2019197538A (en) * 2018-05-08 2019-11-14 Jfeスチール株式会社 Ship assignment plan creation method, operation method by the method, and ship assignment plan creation device
CN112053008A (en) * 2020-09-21 2020-12-08 长江三峡通航管理局 Cascade ship lock navigation scheduling operation method based on time sequence composite operation model
CN112446094A (en) * 2020-11-25 2021-03-05 江南造船(集团)有限责任公司 Automatic grouping method and system for manufacturing ship pipe fitting families
CN113128938A (en) * 2021-05-19 2021-07-16 广州赛特智能科技有限公司 Robot moving path planning method
CN113408045A (en) * 2021-04-21 2021-09-17 广东工业大学 Ship construction plan optimization method, system, storage medium and computer equipment
CN116109054A (en) * 2022-11-08 2023-05-12 长江三峡通航管理局 Ship passing classification and sorting method based on positioning driving

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0906765B1 (en) * 2008-01-18 2019-12-03 Nippon Steel & Sumitomo Metal Corp apparatus and method for creating composition plan
CN103854516B (en) * 2012-11-29 2016-06-08 大连君方科技有限公司 Boats and ships voyage plan management system
US20160267399A1 (en) * 2013-06-18 2016-09-15 Nippon Yusen Kabushiki Kaisha Analysis device, analysis method, program, and recording medium
JP6586945B2 (en) * 2016-12-28 2019-10-09 Jfeスチール株式会社 Ship allocation plan creation method, ship allocation plan creation device
JP7402389B2 (en) * 2019-06-06 2023-12-21 株式会社Algo Artis Material operation planning device and material operation planning program
JP7235174B2 (en) 2020-07-31 2023-03-08 Jfeスチール株式会社 Ship allocation plan creation method, operation method by the method, and ship allocation plan creation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859129A (en) * 1981-09-30 1983-04-08 Kawasaki Steel Corp Piling method of vetting pile
JPH08272402A (en) * 1995-03-29 1996-10-18 Kawasaki Steel Corp Inference device for raw material transportation plan assignment of ships
JP2000057220A (en) * 1998-08-11 2000-02-25 Shoichiro Kusumi Production transportation plan and transportation optimization plan formation system using linear programming
JP2006027833A (en) * 2004-07-16 2006-02-02 Hitachi Ltd Transportation control system for plant equipment
JP2008105825A (en) * 2006-10-27 2008-05-08 Jfe Steel Kk Raw material transport ship allocation planning system and raw material ship allocation planning method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661609A (en) * 2004-02-26 2005-08-31 何浩然 Method of united optimized managing contracts and repertories in plane of steel production
CN101276439A (en) * 2007-03-30 2008-10-01 上海宝信软件股份有限公司 Bulk material resource centralized overall planning balance optimizing emulation method and system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859129A (en) * 1981-09-30 1983-04-08 Kawasaki Steel Corp Piling method of vetting pile
JPH08272402A (en) * 1995-03-29 1996-10-18 Kawasaki Steel Corp Inference device for raw material transportation plan assignment of ships
JP2000057220A (en) * 1998-08-11 2000-02-25 Shoichiro Kusumi Production transportation plan and transportation optimization plan formation system using linear programming
JP2006027833A (en) * 2004-07-16 2006-02-02 Hitachi Ltd Transportation control system for plant equipment
JP2008105825A (en) * 2006-10-27 2008-05-08 Jfe Steel Kk Raw material transport ship allocation planning system and raw material ship allocation planning method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017172A (en) * 2010-07-07 2012-01-26 Nippon Steel Corp Device, method and program for preparing vessel allocation plan
JP2012086948A (en) * 2010-10-20 2012-05-10 Jfe Steel Corp Transportation plan preparation method and transportation plan preparation device
JP2012148896A (en) * 2010-12-28 2012-08-09 Jfe Steel Corp System and program for preparaing delivery plan
CN103310310A (en) * 2013-06-25 2013-09-18 浙江大学 Multi-type steel batch rolling dynamic production planning system
CN103310310B (en) * 2013-06-25 2016-06-29 浙江大学 A kind of multi items iron and steel batch rolling schedule with dynamic system
JP2017187854A (en) * 2016-04-01 2017-10-12 Jfeスチール株式会社 Ship assignment plan creation method, iron mill operation method, and ship assignment plan creation device
CN108491997A (en) * 2018-02-09 2018-09-04 中国科学院空间应用工程与技术中心 A kind of method and system for planning of complex task
JP2019197538A (en) * 2018-05-08 2019-11-14 Jfeスチール株式会社 Ship assignment plan creation method, operation method by the method, and ship assignment plan creation device
CN112053008A (en) * 2020-09-21 2020-12-08 长江三峡通航管理局 Cascade ship lock navigation scheduling operation method based on time sequence composite operation model
CN112446094A (en) * 2020-11-25 2021-03-05 江南造船(集团)有限责任公司 Automatic grouping method and system for manufacturing ship pipe fitting families
CN112446094B (en) * 2020-11-25 2023-06-16 江南造船(集团)有限责任公司 Automatic grouping method and system for manufacturing ship pipe fitting family
CN113408045A (en) * 2021-04-21 2021-09-17 广东工业大学 Ship construction plan optimization method, system, storage medium and computer equipment
CN113128938A (en) * 2021-05-19 2021-07-16 广州赛特智能科技有限公司 Robot moving path planning method
CN113128938B (en) * 2021-05-19 2022-05-17 广州赛特智能科技有限公司 Robot moving path planning method
CN116109054A (en) * 2022-11-08 2023-05-12 长江三峡通航管理局 Ship passing classification and sorting method based on positioning driving
CN116109054B (en) * 2022-11-08 2024-04-26 长江三峡通航管理局 Ship passing classification and sorting method based on positioning driving

Also Published As

Publication number Publication date
CN102137802A (en) 2011-07-27
KR20110050476A (en) 2011-05-13
BRPI0920709A2 (en) 2018-05-22
JPWO2010041432A1 (en) 2012-03-08
CN102137802B (en) 2013-10-23
JP4669583B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4669583B2 (en) Ship allocation plan creation device, method and program
JP4669582B2 (en) Formulation and dispatch plan creation system, method and program
Wang et al. Liner ship fleet deployment with container transshipment operations
JP6586945B2 (en) Ship allocation plan creation method, ship allocation plan creation device
JP6904373B2 (en) Ship allocation plan creation method, operation method by that method, and ship allocation plan creation device
JP5569199B2 (en) Ship allocation plan creation device, method and program
WO2009091051A1 (en) Composition plan making-out device, method, program and recording medium
JP5272534B2 (en) Ship operation plan creation method and apparatus
JP5011954B2 (en) Raw material transport allocation plan system and raw material transport allocation plan planning method
dos Santos et al. Multi‐objective optimization of the maritime cargo routing and scheduling problem
JPH08272402A (en) Inference device for raw material transportation plan assignment of ships
JP6468235B2 (en) Ship allocation plan creation method, steelworks operation method, and ship allocation plan creation device
Soltani et al. Robust maritime disruption management with a combination of speedup, skip, and port swap strategies
JP4478194B2 (en) Compounding plan creation device, method and program
WO2022024679A1 (en) Ship allocation plan formulation method, and operation method and ship allocation plan formulation device that are based on said ship allocation plan formulation method
JP2024049243A (en) Ship allocation plan creation method, operation method, and ship allocation plan creation device
Ursavas Crane allocation with stability considerations
JP4498878B2 (en) Raw material ship allocation planning apparatus, raw material ship allocation planning method, and program
Wong et al. Three-echelon slot allocation for yield and utilisation management in ship liner operations
JP5825128B2 (en) Shipment planning device, shipment planning method, and computer program
JP2008123359A (en) Device and method for production/distribution plan preparation to continuous or related processes, device and method for production/distribution control, computer program, and computer readable record medium
Bingul et al. Cut-Off Optimization in Liner Shipping: A Case Study
Hannah How mining companies can utilize shipping derivatives to hedge against freight risk
SONG Liner ship fleet planning with uncertain container shipment demand
Seong et al. An integrated modeling approach for raw material management in a steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133605.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010512026

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09818972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117004471

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09818972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0920709

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110404