WO2010040969A1 - Système d’alimentation en eau - Google Patents

Système d’alimentation en eau Download PDF

Info

Publication number
WO2010040969A1
WO2010040969A1 PCT/GB2008/003442 GB2008003442W WO2010040969A1 WO 2010040969 A1 WO2010040969 A1 WO 2010040969A1 GB 2008003442 W GB2008003442 W GB 2008003442W WO 2010040969 A1 WO2010040969 A1 WO 2010040969A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pressure
inlet
cistern
supply
Prior art date
Application number
PCT/GB2008/003442
Other languages
English (en)
Inventor
Dennis Stuthridge
Original Assignee
Dennis Stuthridge
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dennis Stuthridge filed Critical Dennis Stuthridge
Priority to PCT/GB2008/003442 priority Critical patent/WO2010040969A1/fr
Publication of WO2010040969A1 publication Critical patent/WO2010040969A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • E03B1/04Methods or layout of installations for water supply for domestic or like local supply
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • E03B1/04Methods or layout of installations for water supply for domestic or like local supply
    • E03B1/041Greywater supply systems
    • E03B1/042Details thereof, e.g. valves or pumps
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • E03B1/04Methods or layout of installations for water supply for domestic or like local supply
    • E03B1/041Greywater supply systems
    • E03B2001/045Greywater supply systems using household water
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B1/00Methods or layout of installations for water supply
    • E03B1/04Methods or layout of installations for water supply for domestic or like local supply
    • E03B1/041Greywater supply systems
    • E03B2001/047Greywater supply systems using rainwater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/108Rainwater harvesting

Definitions

  • the present invention relates to a system for supplying water, in particular to a system for supplying water from a plurality of water sources at different pressures to a device sensitive to the pressure of supply.
  • the present invention is especially concerned with the supply of water at a high or mains pressure and water from a low pressure source, such as recycled rainwater, to the cistern of a toilet or the like.
  • valve assembly is provided in the cistern to control the level of the water in the cistern and allow the cistern to refill to the appropriate level after each flush of the toilet.
  • the most commonly used form of valve system for toilet cisterns employs a float that is allows to rise and fall with the level of water in the cistern. The float is connected to a valve in the water supply line and operates to open and close the valve as the water level in the cistern rises and falls.
  • a very common arrangement is to have the float in the form of a hollow sphere attached to one end of an actuating arm, the other end of which is pivoted at the valve to control the opening and closing of the valve as the float rises and falls.
  • These valve assemblies are commonly known as 'ball valves'.
  • a first source of water supply is to feed water to the toilet cistern directly from the main water supply to the house or dwelling.
  • the mains water supply to a house or dwelling will typically be at a relatively high pressure, of the order of about 30 psi (about 2 bar) or higher.
  • the valve assembly installed in the cistern will be arranged to operate with a high water feed pressure.
  • a second source of water supply is from a tank, typically situated above the toilet cistern, for example in the roof space or the like. While the tank is fed with water from a mains supply at mains pressure, the tank itself will feed water to the facilities in the house or dwelling at a much reduced pressure.
  • the pressure of water supplied to a given installation will depend upon the height difference between the installation and the tank, that is the 'head' of water.
  • a typical supply pressure in such a case is of the order of about 5 to 10 psi (about 0.3 to 0.7 bar).
  • the valve assembly installed in the cistern of the toilet will be adapted to operate with a low pressure water feed.
  • Rainwater collecting systems are known and generally comprise a means of gathering rainwater, such as guttering to collect rainwater from roofs, and a tank for storing rainwater. To be used, the rainwater must be stored in a tank at a sufficient height to provide water to the required location under gravity. Alternatively, the rainwater may be stored in a tank at or near ground level and provided upon demand by a pump. In either case, the pressure of supply of rainwater will be relatively low.
  • the system of GB 2409231 comprises a tank, into which two water supplies are fed.
  • the tank is operated to hold a volume of water and retain an airspace above the water.
  • the system operates by keeping the pressure within the tank high.
  • the tank is pressurised by the higher of the pressures from the two water sources. The effect is to prevent water from the lower pressure supply from entering the tank.
  • the system thus supplies water from the higher pressure supply.
  • a secondary source of water such as rainwater, and mains pressure water it is necessary to employ a pump to provide the secondary source of water at a pressure above mains pressure.
  • There is no means in the system reducing the pressure of the water supply and the water is provided by the system at the highest of the two supply pressures. This would not be suitable for use in a toilet cistern adapted to use low pressure water.
  • a system for supplying water to an installation that is sensitive to water pressure comprising: a first inlet for receiving water at a low pressure; a second inlet for receiving water at a pressure higher than suitable for feeding to the installation; a first means for controlling the pressure of the water from the second inlet and for reducing the pressure of the water to a pressure suitable for feeding to the installation; an outlet for water to be supplied to the installation from either the first or the second inlet; and means for switching the flow of water to the outlet between the first and second inlet.
  • the system is suitable for supplying an installation, such as the cistern of a domestic toilet, that requires water to be supplied at a low pressure.
  • low pressure is a reference to water at a pressure of from about 2 psi (about 0.1 bar) to about 15 psi (about 1.0 bar).
  • the mains water supply to properties is at a high pressure.
  • high pressure is a reference to water at a pressure of from about 15 psi (about 1.0 bar) to about 45 psi (about 3 bar) or higher.
  • the installation to be supplied with water is most preferably a toilet cistern, in particular a domestic toilet cistern
  • the system of the present invention is used to supply water to an installation and allow the user to select from a high pressure supply, such as the mains water supply, or a low pressure supply, such as a supply of collected rainwater, as will be described hereinafter, which is at a low pressure, without the need to change or modify the valve assembly in the installation.
  • the system is arranged such that the valve assembly of the installation is compatible with the low pressure water provided to the first inlet of the system. This water may be supplied directly to the installation. Water from the second inlet is at a pressure higher than compatible with the installation. The pressure of this incoming water is reduced by a suitable means before being fed to the installation via the outlet of the system.
  • the means for controlling the pressure of water may be any suitable means for reducing liquid pressure.
  • Suitable means include a restriction, such as an orifice plate or the like, having a high pressure drop for liquid flowing through it. In use, water is caused to flow through the means and reduce in pressure.
  • a most suitable means is a valve, which allows the reduction in water pressure to be adjusted and/or controlled, to meet the demands of the installation being fed.
  • Suitable means, in particular suitable valves are well known in the art and commercially available.
  • the system further comprises means for switching between the low pressure water supply and the high pressure water supply.
  • Suitable means are known in the art and are commercially available.
  • a single valve may be employed, having a first position in which water from the low pressure inlet is allowed to pass to the outlet, and a second position in which water from the high pressure inlet, at a reduced pressure, is allowed to pass to the outlet.
  • the means may comprise a valve on each of the low pressure inlet side and the high pressure inlet side, whereby when the supply of water needs to be switched, the appropriate one of the said valves is closed and the other of the said valves is opened.
  • means may be provided to prevent both valves being open at the same time, in order to prevent water flowing in the reverse direction through one or other of the inlets.
  • the system may comprise a one-way valve or a vacuum breaker to prevent backflow along the high pressure inlet line. Suitable means are well known in the art and commercially available.
  • the present invention provides a toilet system comprising a cistern having a valve assembly adapted to receive low pressure water and a system as hereinbefore described.
  • a still further aspect of the present invention provides a collected rainwater toilet system, comprising: a toilet cistern having a valve assembly adapted for receiving a low pressure supply of water; a vessel for holding collected rainwater; means for supplying rainwater from the vessel to the toilet cistern; means for supplying high pressure water for use in the toilet cistern; a system for selectively supplying water to the toilet cistern from one of the vessel or the means for supplying high pressure water, the system comprising: a first inlet for receiving water from the vessel; a second inlet for receiving water from the means for supplying high pressure water; a first means for controlling the pressure of the water from the second inlet and for reducing the pressure of the water to a pressure suitable for feeding to the cistern; an outlet for water to be supplied to the cistern from either the first or the second inlet;
  • the vessel for holding collected rainwater may be any suitable vessel, for example a tank or the like.
  • the vessel is preferably located at a level above that of the toilet cistern, such that rainwater may be fed to the cistern under gravity.
  • the system may comprise a pump for delivering rainwater from the vessel.
  • Rainwater may be collected for holding in the vessel by any suitable means, such as conventional guttering to gather rainwater from a roof or the like.
  • the high pressure supply of water is preferably a mains supply of water, such as is available in a domestic building or the like.
  • the system for selectively supplying water from the vessel or from the high pressure supply is as hereinbefore described.
  • Figure 1 is a schematic representation of a collected rainwater system for supplying water to a domestic toilet cistern;
  • Figure 2 is a representation of a system for supplying water to the toilet cistern of Figure 1 according to a first embodiment of the present invention.
  • Figure 3 is a representation of a system for supplying water to the toilet cistern of Figure 1 according to a second embodiment of the present invention.
  • a rainwater collection system for supplying water to a domestic toilet cistern in a domestic dwelling, generally indicated as 2.
  • the system 2 comprises means for gathering rainwater, in the form of guttering 4 of conventional design to collect rainwater from the roof 6 of the building.
  • Rainwater collected in the guttering 4 is fed to a collecting tank 8 via a downpipe 10.
  • a rainwater holding tank 12 is located in the roof space of the building. Rainwater is fed from the collecting tank 8 to the holding tank 12 by a pump 14 along line 16.
  • a toilet system 20 of conventional design is positioned on the lower floor of the dwelling below the holding tank 12.
  • the toilet system 20 comprises a cistern 24 for holding water to be flushed into the toilet in conventional manner.
  • the cistern 24 comprises a low pressure valve assembly 26 of conventional design for controlling the refilling of the cistern and the level of water in the cistern 24.
  • a water supply system 30 controls the supply of water to the cistern, the details of which will be described hereinafter.
  • the water supply system 30 receives water from two sources. First, water is fed under gravity from the holding tank 12 to the low pressure inlet of the water supply system 30 along line 32.
  • the valve assembly 26 in the cistern is adapted to receive water at the pressure supplied by the gravity feed from the holding tank 12. Second, water is supplied to the high pressure inlet of the water supply system 30 from a conventional mains water supply 40.
  • the mains supply 40 provides water at mains pressure, significantly above the pressure acceptable for the valve assembly 26 in the cistern
  • the system comprises an inlet 102 for high pressure water, an inlet 104 for low pressure water and an outlet 106 for water to be supplied.
  • the high pressure side of the system comprises a non-return or one-way valve 108 of conventional design, in order to prevent the backflow of water into the high pressure supply, possibly resulting in the contamination of the mains water supply.
  • An isolation valve 110 is provided in the high pressure line, to enable the high pressure supply to be isolated if needed.
  • a pressure control valve 112 is provided downstream of the isolation valve and is used to reduce the pressure of water in the high pressure line to pressure acceptable for feeding to the valve assembly in the cistern of the toilet. Again, this valve may be of conventional design.
  • the pressure control valve 112 is connected to one inlet of a three-way valve 114.
  • the low pressure side of the system comprises an isolation valve 116 for isolating the low pressure supply, if required. Water from the low pressure side is fed to the second inlet of the three-way valve 114.
  • the low pressure side may be provided with a non-return or one-way valve as included on the high pressure side, again to prevent the backflow of water into the low pressure system.
  • the high pressure inlet 102 is connected to the mains water supply, while the low pressure inlet is connected to the supply of rainwater from the holding tank 12.
  • the valve 114 is positioned to allow water to flow from the low pressure inlet 104 to the outlet 106. Should it be required to switch water supply to high pressure water, for example when the holding tank 12 is empty, the valve 114 is adjusted to close the supply of low pressure water and allow high pressure water from the high pressure inlet 102 to flow to the outlet 106.
  • the pressure control valve 112 is set to reduce the pressure of the high pressure water to the required level. Once the pressure control valve 112 has been set, it is generally sufficient simply to operate the valve 114 to switch from one supply to another.
  • the operation of the valve 114 may be automated, for example by having a level detector in the holding tank 12 operable to move the position of the valve 114 when the level of rainwater in the holding tank falls below a preset minimum level.
  • the system comprises inlets 202 and 204 for high and low pressure water and an outlet 206 for water to be supplied to the cistern of the toilet.
  • a non-return or one-way valve 208 is provided as described hereinbefore.
  • a flow control valve 210 is provided to control the flow of high pressure water.
  • a pressure control valve 212 downstream of the flow control valve is used to set the pressure of the water leaving the high pressure side of the system.
  • a flow control valve 214 is provided to control the flow of low pressure water.
  • the low pressure side may be provided with a non-return or one-way valve as included on the high pressure side, to prevent the backflow of water into the low pressure system.
  • the system of Figure 3 is connected as described above with respect to the system of Figure 2.
  • the selection of water from the high pressure supply or the low pressure supply is made by the appropriate operation of the flow control valves 208 and 214.
  • both valves 208 and 214 are closed, before the relevant valve is opened to provide the selected supply of water.
  • Means may be provided to prevent both valves 208 and 214 from being open at the same time, which means are generally indicated by the dotted line 220.
  • both flow control valves 210 and 214 may be automated, as described hereinbefore.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Sanitary Device For Flush Toilet (AREA)

Abstract

Cette invention concerne un système conçu pour alimenter en eau une installation sensible à la pression de l’eau. Ledit système comprend : un premier orifice d’admission (104) pour recevoir de l’eau à une faible pression ; un second orifice d’admission (102) pour recevoir de l’eau à une pression supérieure à celle qui est adaptée à l’alimentation de l’installation ; des moyens (112) aptes à réguler la pression de l’eau provenant du second orifice d’admission (102) et à réduire la pression de l’eau pour l’amener à une pression convenant à l’alimentation de l’installation ; un orifice de sortie (106) pour fournir de l’eau à l’installation depuis l’un ou l’autre des orifices d’admission, premier ou second (104, 102) ; et des moyens (114) de commutation entre le premier et le second orifice d’admission (104, 102) afin de choisir le flux d’eau qui sera orienté vers l’orifice de sortie (106). Le système est particulièrement adapté à alimenter en eau de pluie récupérée un réservoir de chasse d’eau (24), spécialement dans une habitation (2).
PCT/GB2008/003442 2008-10-10 2008-10-10 Système d’alimentation en eau WO2010040969A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/GB2008/003442 WO2010040969A1 (fr) 2008-10-10 2008-10-10 Système d’alimentation en eau

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/GB2008/003442 WO2010040969A1 (fr) 2008-10-10 2008-10-10 Système d’alimentation en eau

Publications (1)

Publication Number Publication Date
WO2010040969A1 true WO2010040969A1 (fr) 2010-04-15

Family

ID=40823288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/003442 WO2010040969A1 (fr) 2008-10-10 2008-10-10 Système d’alimentation en eau

Country Status (1)

Country Link
WO (1) WO2010040969A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049083A1 (fr) * 2014-09-23 2016-03-31 Seven Hour Drive, LLC Dispositif de source d'eaux grises auxiliaire pour cuisines commerciales
US9596973B2 (en) 2013-03-21 2017-03-21 Seven Hour Drive, LLC Auxiliary gray water source device for commercial kitchens
US10105033B2 (en) 2013-03-21 2018-10-23 Seven Hour Drive, LLC Auxiliary gray water source device for commercial kitchens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339859A (en) * 1993-12-16 1994-08-23 Bowman Gerald E Water conservation system
DE29702637U1 (de) * 1997-02-15 1997-04-17 Klein Schanzlin & Becker Ag Regenwassernutzungseinrichtung
US6355160B1 (en) * 2000-07-21 2002-03-12 Cecil A. Wiseman Gray-water recycling system
US20040168992A1 (en) * 2003-02-27 2004-09-02 Ori Ben-Amotz Device, system and method for gray water recycling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339859A (en) * 1993-12-16 1994-08-23 Bowman Gerald E Water conservation system
DE29702637U1 (de) * 1997-02-15 1997-04-17 Klein Schanzlin & Becker Ag Regenwassernutzungseinrichtung
US6355160B1 (en) * 2000-07-21 2002-03-12 Cecil A. Wiseman Gray-water recycling system
US20040168992A1 (en) * 2003-02-27 2004-09-02 Ori Ben-Amotz Device, system and method for gray water recycling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9596973B2 (en) 2013-03-21 2017-03-21 Seven Hour Drive, LLC Auxiliary gray water source device for commercial kitchens
US10105033B2 (en) 2013-03-21 2018-10-23 Seven Hour Drive, LLC Auxiliary gray water source device for commercial kitchens
US10702124B2 (en) 2013-03-21 2020-07-07 Seven Hour Drive, LLC Auxiliary gray water source device for commercial kitchens
US11330960B2 (en) 2013-03-21 2022-05-17 Seven Hour Drive, LLC Auxiliary gray water source device for commercial kitchens
WO2016049083A1 (fr) * 2014-09-23 2016-03-31 Seven Hour Drive, LLC Dispositif de source d'eaux grises auxiliaire pour cuisines commerciales

Similar Documents

Publication Publication Date Title
US8806669B2 (en) Toilet flush valve with reducing cross section valve seat
WO2010040969A1 (fr) Système d’alimentation en eau
US20070204393A1 (en) Automatic Flushing Device With Magnetic Valve
US5896593A (en) Piston flush valve
GB2448342A (en) Water supply system
GB2463955A (en) Apparatus for collection and storage of rainwater
AU2010257258B2 (en) A method and pump unit for a pressure sewerage system
US6675398B1 (en) Diverter for use with tank valves to direct flow to tank or rim
US20090260144A1 (en) Water saving device for a toilet
WO2017138529A1 (fr) Système de toilettes
CN101784730A (zh) 双冲洗阀回注
GB2505744A (en) Toilet cistern for capturing condensate from air conditioning units
AU2006202589B2 (en) Supplementary water supply system
EP3143214A1 (fr) Système de distribution d'eau à actionnement hydraulique
RU2461684C1 (ru) Устройство автоматического смыва для унитаза
EP1967658A2 (fr) Système d'alimentation d'eau
JP3416089B2 (ja) 雨水利用槽
US5259074A (en) Flush valve control apparatus
EP2468968B1 (fr) Dispositif de chasse pour une toilette
GB2325253A (en) W.C.Cistern operable on mains water and/or waste water supply
AU2008243272A1 (en) Apparatus for Switching Between Mains Water and Stored Water Supplies
GB2458672A (en) Water saving assembly and cistern assembly for a toilet
JP3148389U (ja) 非常用貯水装置
KR200248833Y1 (ko) 소화수와 생활용수 공급장치
US20100058522A1 (en) Toilet water saver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08806578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08806578

Country of ref document: EP

Kind code of ref document: A1