WO2010038565A1 - Magnetic random access memory and method for operating magnetic random access memory - Google Patents

Magnetic random access memory and method for operating magnetic random access memory Download PDF

Info

Publication number
WO2010038565A1
WO2010038565A1 PCT/JP2009/064839 JP2009064839W WO2010038565A1 WO 2010038565 A1 WO2010038565 A1 WO 2010038565A1 JP 2009064839 W JP2009064839 W JP 2009064839W WO 2010038565 A1 WO2010038565 A1 WO 2010038565A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit line
bit
bit lines
voltage
lines
Prior art date
Application number
PCT/JP2009/064839
Other languages
French (fr)
Japanese (ja)
Inventor
昇 崎村
直彦 杉林
竜介 根橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010531794A priority Critical patent/JP5354391B2/en
Publication of WO2010038565A1 publication Critical patent/WO2010038565A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods

Definitions

  • the present invention relates to a magnetic random access memory using a magnetoresistive element and an operation method of the magnetic random access memory.
  • Magnetic random access memory (hereinafter referred to as MRAM (Magnetic Random Access Memory)) is a non-volatile memory that can be read and written unlimitedly, and can operate at low voltage and high speed.
  • the memory cell of the MRAM includes a magnetoresistive element (example: MTJ (Magnetic Tunneling Junction) element) as an element for storing data.
  • MTJ Magnetic Tunneling Junction
  • the biaxial writing method has been used as a writing method for the memory cell.
  • a write current is supplied to each of two orthogonal wires (eg, word line and bit line), and a memory cell selected by a synthesized magnetic field generated by the current (hereinafter referred to as a selected cell).
  • the magnetoresistive element is reversed.
  • the memory cell has a 1T1MTJ cell configuration. That is, the memory cell is composed of one MTJ element (1MTJ) as a magnetoresistive element and one cell transistor (1T) for selecting a memory cell during a read operation.
  • the area of this memory cell may be able to realize a cell size comparable to DRAM (Dynamic Random Access Memory).
  • DRAM Dynamic Random Access Memory
  • this two-axis writing method there is a state (hereinafter referred to as a half-selected state) in which a magnetic field is applied also to non-selected memory cells (hereinafter referred to as non-selected cells). For this reason, there is a drawback that the operation margin for writing is narrow.
  • the write current is typically as large as about 5 mA, it is difficult to increase the cell occupation rate and increase the capacity.
  • Japanese Patent No. 3888463 discloses an MRAM.
  • 1A to 1C are circuit diagrams showing a configuration of a memory cell described in Japanese Patent No. 3888463.
  • this memory cell has a 2T1MTJ cell configuration. That is, this memory cell is composed of one MTJ element (1MTJ) as a magnetoresistive element and two cell transistors M1 and M2 (2T) for selecting a memory cell at the time of write operation and read operation. Yes.
  • the MRAM first sets the word line WL to the high level during the write operation. Thereby, the two cell transistors M1 and M2 are turned on.
  • the write bit line WBL is set to the high level, and the write bit line / WBL is set to the low level.
  • the write current Iw is conducted between the cell transistors M1 and M2.
  • this MRAM can conduct the read current Is only to the selected cell via the two cell transistors M1 and M2 during the read operation. Thereby, it is possible to improve the selectivity of the memory cell even during the read operation.
  • spin injection writing method As another technique. When the spin injection writing method is applied to a memory cell having a 1T1MTJ cell configuration, writing is performed by flowing a write current directly through the cell transistor to the MTJ element of the selected cell. Therefore, this method is also an excellent method for selecting memory cells during a write operation.
  • a problem common to these MRAM memory cells is that the write current that can be supplied is limited by the size of the cell transistor, that is, the gate width. Therefore, when the write current is large, the size of the memory cell (cell size) depends on the size of the cell transistor.
  • the cell size in order to realize the MRAM as a semiconductor memory, it is necessary to make the cell size as small as an SRAM (Static Random Access Memory) or a DRAM. Therefore, a reduction in write current is inevitable in the MRAM.
  • SRAM Static Random Access Memory
  • DRAM Dynamic RAM
  • a reduction in write current is inevitable in the MRAM.
  • the write current value For example, in order to realize a bit cost comparable to that of an SRAM, it is necessary to reduce the write current value to 500 ⁇ A or less. In order to realize a bit cost comparable to that of a DRAM, it is necessary to reduce the write current value to 200 ⁇ A or less. Advances in magnetic thin film technology for reducing the magnetization reversal current of MTJ elements
  • the technique is a technique of applying a voltage higher than the power supply voltage to the word line in the MRAM (hereinafter referred to as a word boost technique). According to the inventor's study, this technique can substantially increase the on-current of the cell transistor and drive a larger write current to the memory cell.
  • FIG. 2A to 2C are circuit diagrams showing an example in which word boost technology is applied to a memory cell having a 2T1MTJ cell configuration.
  • FIG. 2A in the standby state, all word lines WL and write bit lines WBL, / WBL are grounded (Gnd).
  • FIG. 2B in the write operation, a voltage Vdh (> Vdd) higher than the power supply voltage Vdd is applied to the word line WL.
  • the power supply voltage Vdd is applied to one write bit line WBL, and the other write bit line / WBL is grounded (Gnd). Thereby, the write current Iw is supplied. Further, as shown in FIG.
  • a voltage Vdh (> Vdd) is applied to the word line WL.
  • both write bit lines WBL and / WBL are grounded (Gnd), and the read bit line RBL is clamped to a voltage Vc (eg, about 0.3 V) lower than the power supply voltage Vdd.
  • Vc eg, about 0.3 V
  • this word boost technology can substantially increase the on-current of the cell transistor.
  • the gate width of the cell transistor can be reduced with respect to the design parameter called the current value of the write current.
  • FIG. 3 is a graph showing the effect of this word boost technique.
  • the vertical axis represents the area (cell size) of the memory cell, and the horizontal axis represents the current value of the write current.
  • this word boost technique makes it possible to reduce the gate width of the cell transistor, that is, to reduce the cell size of the cell transistor, for the same write current value. That is, it is possible to reduce the cell size of an MRAM cell of a type in which a write current is conducted to the memory cell via the cell transistor.
  • the write bit lines WBL, / WBL of the non-selected cells on the selected word line (hereinafter, selected word line) WL are grounded (Gnd). is there.
  • the gate-source voltage of Vdh is applied to all the cell transistors M1, M2 (including the cell transistors M1, M2 of the non-selected cells) on the selected word line WL. Therefore, an excessive electric field is applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cells. This may impair the reliability of the cell transistors M1 and M2, and may be a factor that limits the number of times of writing and reading.
  • an object of the present invention is to provide a magnetic random access memory and a method for operating the magnetic random access memory that can reduce the bit cost more efficiently while maintaining the number of times of writing and reading. It is to provide.
  • the magnetic random access memory of the present invention includes a memory array, a plurality of word lines, a plurality of first bit lines and a plurality of second bit lines, a word line driving circuit, and a bit line driving circuit.
  • a plurality of memory cells are arranged in a matrix.
  • the plurality of word lines extend in the first direction.
  • the plurality of first bit lines and the plurality of second bit lines extend in a second direction different from the first direction.
  • the word line driving circuit selects a selected word line from a plurality of word lines.
  • the bit line driving circuit selects a selected first bit line and a selected second bit line from the plurality of first bit lines and the plurality of second bit lines.
  • Each of the plurality of memory cells includes a first selection transistor and a magnetoresistive element.
  • the first selection transistor has a gate connected to a corresponding one of the plurality of word lines, and one source / drain connected to a corresponding one of the plurality of first bit lines.
  • the magnetoresistive element has one end connected to the other source / drain of the first selection transistor.
  • the word line driving circuit grounds the plurality of word lines.
  • the bit line driving circuit applies a first voltage to the plurality of first bit lines and the plurality of second bit lines.
  • the word line driving circuit applies a second voltage higher than the first voltage to the selected word line.
  • the bit line driving circuit controls the voltages of the selected first bit line and the selected second bit line so that a potential difference is generated between the selected first bit line and the selected second bit line.
  • the operating method of the magnetic random access memory relates to a magnetic random access memory having the following configuration. That is, the magnetic random access memory includes a memory array in which a plurality of memory cells are arranged in a matrix, a plurality of word lines extending in a first direction, and a second direction different from the first direction. A plurality of first bit lines and a plurality of second bit lines are provided. Each of the plurality of memory cells includes a first selection transistor having a gate connected to a corresponding one of the plurality of word lines and one source / drain connected to a corresponding one of the plurality of first bit lines; And a magnetoresistive element having one end connected to the other source / drain of the first select transistor.
  • the operating method of the magnetic random access memory includes a step of grounding the plurality of word lines and a step of applying a first voltage to the plurality of first bit lines and the plurality of second bit lines in the standby state. .
  • FIG. 1A is a circuit diagram showing a configuration of a memory cell described in Japanese Patent No. 3888463.
  • FIG. 1B is a circuit diagram showing a configuration of a memory cell described in Japanese Patent No. 3888463.
  • FIG. 1C is a circuit diagram showing a configuration of a memory cell described in Japanese Patent No. 3888463.
  • FIG. 2A is a circuit diagram showing an example in which the word boost technique is applied to a memory cell having a 2T1MTJ cell configuration.
  • FIG. 2B is a circuit diagram showing an example in which the word boost technique is applied to a memory cell having a 2T1MTJ cell configuration.
  • FIG. 2C is a circuit diagram showing an example in which word boost technology is applied to a memory cell having a 2T1MTJ cell configuration.
  • FIG. 3 is a graph showing the effect of the word boost technique.
  • FIG. 4A is a block diagram showing the configuration of the magnetic random access memory according to the first embodiment of the present invention.
  • FIG. 4B is a block diagram showing the configuration of the magnetic random access memory according to the first embodiment of the present invention.
  • FIG. 4C is a block diagram showing a configuration of the magnetic random access memory according to the first embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing an example of the configuration of the word line driving circuit according to the first embodiment of the present invention.
  • FIG. 6 is a timing chart showing input signals and output signals of the word line driving circuit according to the first embodiment of the present invention.
  • FIG. 7 is a circuit diagram showing an example of the configuration of the bit line driving circuit according to the first embodiment of the present invention.
  • FIG. 8 is a timing chart showing input signals and output signals of the bit line driving circuit according to the first embodiment of the present invention.
  • FIG. 9 is a timing chart showing input signals and output signals of the bit line driving circuit according to the first embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing another example of the configuration of the bit line driving circuit according to the first embodiment of the present invention.
  • FIG. 11A is a block diagram showing a configuration of a magnetic random access memory according to the second embodiment of the present invention.
  • FIG. 11B is a block diagram showing the configuration of the magnetic random access memory according to the second embodiment of the present invention.
  • FIG. 11C is a block diagram showing the configuration of the magnetic random access memory according to the second embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing an example of the configuration of the bit line driving circuit according to the second embodiment of the present invention.
  • the magnetic random access memory 1 includes a memory array 3, a plurality of word lines WL, a plurality of write bit lines WBL and a plurality of write bit lines / WBL, a plurality of read bit lines RBL, a word line drive circuit 5, And a bit line driving circuit 7.
  • the memory array 3 includes a plurality of memory cells C (C00, C01,..., C10, C11,%) Arranged in a matrix. However, in this drawing, for convenience of explanation, only the memo cells C in 2 rows and 2 columns are shown.
  • the plurality of word lines WL (WL0, WL1,...) Extend in parallel to each other in the X direction (first direction). Moreover, it arrange
  • Adjacent write bit line WBL (example: WBL0) and write bit line / WBL (example: / WBL0) form a pair.
  • the plurality of read bit lines RBL (RBL0, RBL1,...) Extend in parallel to each other in the Y direction. Moreover, it arrange
  • the word line driving circuit 5 selects a selected word line WL from a plurality of word lines WL. For example, the selected word line WL is set to a predetermined voltage level.
  • the word line driving circuit 5 has at least functions of a row decoder and a word driver.
  • the bit line driving circuit 7 selects the selected write bit line WBL and the selected write bit line / WBL from the plurality of write bit lines WBL and the plurality of write bit lines / WBL. For example, each of the selected write bit line WBL and the selected write bit line / WBL is set to a predetermined voltage level.
  • the selected read bit line RBL is selected from the plurality of read bit lines RBL. For example, the selected read bit line is set to a predetermined voltage level.
  • the bit line driving circuit 7 has at least functions as a column decoder and a write / read driver.
  • the memory cell C includes a first selection transistor M1, a second selection transistor M2, and a magnetoresistive element 11. That is, the memory cell C has a 2T1MTJ cell configuration.
  • the first selection transistor M1 has a gate connected to a corresponding one of the plurality of word lines WL, and one source / drain connected to a corresponding one of the plurality of write bit lines WBL.
  • the second select transistor M2 has a gate corresponding to one of the plurality of word lines WL, one source / drain corresponding to one of the plurality of write bit lines / WBL, and the other source / drain connected to the second one.
  • the other source / drain of one select transistor M1 is connected to each other.
  • the magnetoresistive element 11 is exemplified as an MTJ element, and one end is connected to the other source / drain of the first selection transistor M1, and the other end is connected to a corresponding one of the plurality of read bit lines RBL.
  • FIG. 4A shows a standby state of the magnetic random access memory.
  • the word line driving circuit 5 grounds the word line WL (Gnd).
  • the bit line drive circuit 7 precharges both the write bit lines WBL and / WBL and the read bit line RBL to the power supply voltage Vdd.
  • FIG. 4B shows the write operation of this magnetic random access memory.
  • the word line driving circuit 5 selects the word line WL0 as the selected word line WL
  • the bit line driving circuit 7 writes the write bit as the selected write bit lines WBL, / WBL and the selected read bit line RBL, respectively.
  • Lines WBL0 and / WBL0 and read bit line RBL0 are selected.
  • the memory cell C01 is a non-selected cell at the intersection of the selected row and the non-selected column
  • the memory cell C10 is a non-selected cell at the intersection of the non-selected row and the selected column
  • the memory cell C11 is non-selected. Each of the non-selected cells at the intersection with the selected column is shown.
  • the word line driving circuit 5 applies a boost voltage Vdh (> Vdd) higher than the power supply voltage Vdd to the selected word line WL0.
  • the bit line drive circuit 7 controls the voltages of the selected write bit line WBL0 and the selected write bit line / WBL so that a potential difference is generated between the selected write bit line WBL0 and the selected write bit line / WBL0.
  • the power supply voltage Vdd is applied to one of the selected write bit line WBL0 and the selected write bit line / WBL0, and the other is grounded (Gnd). Which of the selected write bit line WBL0 and the selected write bit line / WBL0 is grounded is determined according to the write data.
  • the selected write bit line / WBL0 is grounded.
  • the selected write bit line WBL0 is grounded. Since the voltage Vdh equal to or higher than the threshold voltage Vth is applied to the gate-source voltage of the cell transistors M1 and M2 of the selected cell C00, the cell transistors M1 and M2 are turned on. Accordingly, the write current Iw conducts the selected cell C00 from the selected write bit line WBL0 (or selected write bit line / WBL0) and flows to the selected write bit line / WBL0 (or selected write bit line WBL0).
  • the read bit line RBL0 be in a high impedance state (HiZ) so that the write current Iw does not leak through the magnetoresistive element 11.
  • a boost voltage Vdh higher than the power supply voltage Vdd is applied to the cell transistors M1 and M2, thereby substantially increasing the on-currents of the cell transistors M1 and M2 and driving a larger write current Iw to the selected cell C00. It becomes possible to do.
  • the bit line drive circuit 7 places the write bit lines WBL1 and / WBL in the non-selected columns in a state where the power supply voltage Vdd is applied.
  • Vdh> power supply voltage Vdd + threshold voltage Vth
  • the cell transistors M1 and M2 of the non-selected cell C01 are on.
  • the potential difference between the write bit line WBL1 and the write bit line / WBL1 is zero. Therefore, the write current Iw does not conduct the non-selected cell C01.
  • a voltage (boost voltage Vdh ⁇ power supply voltage Vdd) is applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cell C01. That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cell C01. Thereby, the reliability of the cell transistors M1 and M2 can be maintained.
  • the read bit line RBL1 be in a high impedance state in order to prevent a leakage current through the magnetoresistive element 11. It is more desirable to design the boost voltage Vdh ⁇ (power supply voltage Vdd + threshold voltage Vth). This is because the cell transistors M1 and M2 of the non-selected cell C01 can be turned off.
  • the word line driving circuit 5 brings the word line WL1 of the non-selected row to a grounded (Gnd) state. Accordingly, the cell transistors M1 and M2 of the non-selected cells C10 and C11 are in an off state. Therefore, the write current Iw is not conducted to the non-selected cells C10 and C11. Further, the gate oxide films of the cell transistors M1 and M2 of the non-selected cells C10 and C11 are grounded (Gnd). That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cells C10 and C11. Thereby, the reliability of the cell transistors M1 and M2 can be maintained.
  • FIG. 4C shows the read operation of this magnetic random access memory.
  • the word line drive circuit 5 selects the word line WL0
  • the bit line drive circuit 7 selects the write bit lines WBL0, / WBL0
  • the read bit line RBL0 Yes.
  • the selected cell C00 is selected.
  • the word line drive circuit 5 applies the boost voltage Vdh (> Vdd) to the selected word line WL0.
  • the bit line drive circuit 7 controls at least the voltage of the selected write bit line WBL so that a potential difference is generated between one end and the other end of the magnetoresistive element 11.
  • the clamp voltage Vc is applied to the selected read bit line RBL0, and both the selected write bit lines WBL0 and / WBL0 are grounded (Gnd).
  • the clamp voltage Vc is applied by a read circuit (not shown) in (or outside) the bit line drive circuit 7.
  • the cell transistors M1 and M2 of the selected cell C00 are turned on, and the read current (sense current) Is flows through the selected cell C00 with the clamp voltage Vc applied to the magnetoresistive element 11. That is, the read current Is is supplied from the magnetoresistive element 11 to the read circuit (not shown) through the cell transistors M1 and M2 and the selected write bit lines WBL0 and / WBL0.
  • the read circuit detects the read current Is from the selected cell C00, for example, as in the case of a general MRAM, and compares the magnitude of the read current with the reference current Iref flowing through the selected reference cell in the same manner. decide.
  • the MR ratio of the magnetoresistive element 11 (the ratio between the resistance value in the “0” state and the resistance value in the “1” state) has a characteristic that depends on the voltage across the magnetoresistive element 11, and typically When the voltage between both ends is 0.3V to 0.5V, the sense signal becomes the maximum value. Accordingly, the Vc is preferably designed to be in the range of 0.3V to 0.5V.
  • the bit line driving circuit 7 sets the read bit line RBL1 of the non-selected column to a high impedance state, and puts both the write bit lines WBL1 and / WBL1 into a state where the power supply voltage Vdd is applied.
  • Vdh> power supply voltage Vdd + threshold voltage Vth
  • the cell transistors M1 and M2 of the non-selected cell C01 are on.
  • the read bit line RBL1 and the read circuit (not shown) are electrically disconnected. Therefore, the read current Is does not flow through the non-selected cell C01.
  • boost voltage Vdh boost voltage Vdh ⁇ power supply voltage Vdd
  • boost voltage Vdh boost voltage Vdh + threshold voltage Vth
  • the gate-source voltages of the cell transistors M1 and M2 of the non-selected cell C01 are not more than Vth, so that they are in the off state. Accordingly, since the read current Is does not flow through the non-selected cell C01, the power supply voltage Vdd may be applied to the read bit line RBL1.
  • the word line driving circuit 5 brings the word line WL1 of the non-selected row to the ground (Gnd) state. Accordingly, the cell transistors M1 and M2 of the non-selected cells C10 and C11 are in an off state. Accordingly, the read current Is does not flow through the non-selected cells C10 and C11. Further, the gate oxide films of the cell transistors M1 and M2 of the non-selected cells C10 and C11 are grounded (Gnd). That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cells C10 and C11. Thereby, the reliability of the cell transistors M1 and M2 can be maintained.
  • FIG. 5 is a circuit diagram showing an example of the configuration of the word line driving circuit in FIGS. 4A to 4C.
  • the transistors M11 to M13 and M14j are core transistors whose power supply voltage is Vdd.
  • the transistor M14j is provided corresponding to the word line WLj.
  • the word driver 21j is provided corresponding to the word line WLj and includes transistors M15 to M18.
  • the transistors M15 to M18 are transistors whose power supply voltage is Vdh and whose gate oxide film is thicker than the core transistor.
  • FIG. 6 is a timing chart showing input signals and output signals of the word line driving circuit of FIG.
  • the signal RP is a low precharge signal, and its amplitude is the voltage Vdh.
  • Signals X01ej, X234, X567, and X89 are signals obtained by predecoding the input row address, and their amplitude is the voltage Vdd.
  • the X01ej signal is an AND logic of a signal obtained by decoding a low-order two-bit row address and an access enable signal.
  • Signal WLj indicates a voltage applied to word line WLj, and its amplitude is voltage Vdh.
  • the signal X01ej is at a low level (0 V), and the signal RP is also at a low level. Therefore, the transistor M14j is off and the transistor M18 is on. As a result, the terminal WLB is precharged to the voltage Vdh, so that a low level (0 V) is output to the word line WLj.
  • the transistor M17 is provided to hold the terminal WLB at a high level (voltage Vdh), and its W / L (W: gate width, L gate length) is much smaller than other transistors.
  • the signal RP becomes high level (voltage Vdh), and M18 is turned off. Subsequently, while the signals X234, X567, and X89 are at a high level (voltage Vdd), the signal X01ej is at a high level (voltage Vdd). Then, all of the transistors M11 to M14 are turned on, and the terminal WLB transitions to a low level. Accordingly, the transistor M17 is turned off, and the word line WLj is set to the high level (voltage Vdh). That is, the voltage Vdh is applied to the word line WLj.
  • the signal X01e becomes low level and the signal RP becomes low level.
  • the transistor M14 is turned off and the transistor M18 is turned on.
  • the terminal WLB changes to the high level (voltage Vdh), and the word line WLj becomes the low level.
  • FIG. 7 is a circuit diagram showing an example of the configuration of the bit line driving circuit in FIGS. 4A to 4C.
  • the column decoder 24k is provided corresponding to the write bit lines WBLk, / WBLk and the read bit line RBLk.
  • the selector 25k is provided corresponding to the write bit lines WBLk, / WBLk and the read bit line RBLk.
  • Transistors M20 and M21 are provided.
  • the write driver 26k is provided corresponding to the write bit lines WBLk, / WBLk and the read bit line RBLk. It has two AND circuits and two NOR circuits.
  • FIGS. 8 and FIG. 9 are timing charts showing input signals and output signals of the bit line driving circuit of FIG.
  • the signal Yi is a signal obtained by decoding the input column address.
  • Signal WE is a write enable signal.
  • the signal RE is a read enable signal.
  • the signal CP is a column precharge signal.
  • the signal Din is a data input signal.
  • the signal SAIN is an input terminal of the readout circuit and is clamped at Vc.
  • both the signal WE and the signal RE are at a low level (0 V). Accordingly, the terminals YR and YW are at a low level. As a result, the voltages of the write bit lines WBLk and / WBLk both become high level (voltage Vdd). Further, the signal CP is at a low level. Accordingly, the transistor M20 is turned off and the transistor M21 is turned on. As a result, the voltage of the read bit line RBLk also becomes high level (voltage Vdd).
  • FIG. 8 shows a timing chart during the write operation.
  • the signal WE and the signal CP become high level (voltage Vdd).
  • the terminal YW is at high level and the terminal YR is at low level. Accordingly, the transistor M21 is turned off and the transistor M20 is also kept off, so that the read bit line RBL is in a high impedance state (HiZ).
  • the write data is “1”, since the signal Din is at a high level, the write bit line WBL is at a high level (voltage Vdd), and the write bit line / WBL is at a low level (0 V).
  • the write bit line WBL is at the low level and the write bit line / WBL is at the high level. That is, a complementary voltage is applied to the write bit line WBL and the write bit line / WBL according to the write data, and the write current Iw can be supplied in different directions.
  • both the signal WE and the signal CP become low level, and the standby state, that is, the write bit lines WBL and / WBL and the read bit line RBL all become high level.
  • both the terminals YW and YR are at a low level, so that both the write bit lines WBL and / WBL are at a high level and the read bit line RBL is in a high impedance state.
  • FIG. 9 shows a timing chart during the read operation.
  • the signal RE and the signal CP become high level (voltage Vdd).
  • the terminal YW is at low level and the terminal YR is at high level. Accordingly, the transistor M21 is turned off and the transistor M20 is turned on, so that the read bit line RBL is clamped to Vc.
  • both the write bit lines WBL and / WBL become low level (0 V). Therefore, the read current Is flows through the magnetoresistive element 11 of the selected cell and is detected by the read circuit.
  • both the terminals YW and YR are at the low level, so that both the write bit lines WBL and / WBL are in the high level and the read bit line RBL is in the high impedance state.
  • the write bit lines WBL and / WBL of the non-selected column may be set to the high impedance state (HiZ) after high precharging to the voltage Vdd during the write operation and the read operation.
  • FIG. 10 is a circuit diagram showing another example of the configuration of the bit line driving circuit that realizes such an operation.
  • the bit line drive circuit 7 is different from FIG. 7 only in the write driver 26k.
  • the write driver 26k includes clocked inverters INV1, INV1b, an inverter, and transistors M22, M23, M22b, M23b.
  • the signal WE, the signal RE, and the signal CP are both at a low level. Accordingly, both the terminals YW and YR are at a low level.
  • the clocked inverters INV1 and INV1b are in a high impedance state because the terminal YW is at a low level.
  • the transistors M23 and M23b are on, and M22 and M22b are off. Accordingly, the write bit lines WBL and / WBL are precharged to a high level (voltage Vdd).
  • the transistor M20 is off and the transistor M21 is on. Accordingly, the read bit line RBL is also precharged to a high level (voltage Vdd).
  • the operation when the write command is input and the signal WE becomes high level will be described.
  • the signal Yi is at a high level, and thus the terminal YW is at a high level.
  • the clocked inverters INV1 and INV1b output a high level (voltage Vdd) to one of the write bit lines WBL and / WBL and a low level (0 V) to the other in accordance with the write data Din. Since the signal Yi is at a low level in the non-selected column, the terminal YW is at a low level. Therefore, the clocked inverters INV1 and INV1b are in a high impedance state.
  • the transistors M20, M22, and M22b are turned off.
  • the signal CP is at a high level, the transistors M21, M23, and M23b are also turned off. That is, the write bit lines WBL and / WBL in the non-selected column are in a high impedance state while maintaining the voltage Vdd.
  • the read bit line RBL in the write operation is in a high impedance state regardless of selection / non-selection.
  • the operation when a read command is input and the signal RE becomes high level will be described.
  • the signal Yi is at a high level, and thus the terminal YR is at a high level.
  • the transistor M20 is turned on, and the transistors M22 and M22b are also turned on.
  • the signal CP is at a high level
  • the transistor M21 is in an off state
  • the transistors M23 and M23b are also in an off state.
  • the terminal YW is at a low level, the clocked inverters INV1 and INV1b output high impedance.
  • the read bit line RBL is connected to the read circuit and clamped at the clamp voltage Vc, and the write bit lines WBL and / WBL are at the low level.
  • the signal Yi is at a low level, and the terminal YR is also at a low level.
  • the transistor M20 is turned off, and the read bit line RBL is disconnected from the read circuit and is in a high impedance state.
  • the transistors M22 and M22b are also turned off, and the write bit lines WBL and / WBL are in a high impedance state while maintaining the voltage Vdd.
  • the cell area can be reduced by the word boost effect while ensuring the reliability of the gate oxide films of the cell transistors M1 and M2. That is, by maintaining the bit line potential of the unselected column at Vdd, the number of memory cells in the state where an excessive voltage is applied to the gate oxide film can be reduced to only the selected memory cell. As a result, the number of reads and writes in the magnetic random access memory can be improved.
  • the bit line drive circuit 7 applies an intermediate value Vm between the ground voltage Gnd and the power supply voltage Vdd to the write bit lines WBL, / WBL of the selected column and applies (Vm + Vc) to the read bit line RBL. It is also possible to apply.
  • the configuration of the magnetic random access memory according to the second embodiment of the present invention will be described.
  • 11A to 11C are block diagrams showing the configuration of the magnetic random access memory according to the second embodiment of the present invention.
  • This embodiment is different from the first embodiment in that the memory cell C uses a spin injection writing method. Accordingly, the configuration of the memory cell C, the configuration of the bit line driving circuit 7, and the configuration of the bit line are different from those of the first embodiment.
  • the magnetic random access memory 1 includes a memory array 3, a plurality of word lines WL, a plurality of bit lines BL and a plurality of bit lines / BL, a word line driving circuit 5, and a bit line driving circuit 7. Yes.
  • the memory array 3 includes a plurality of memory cells C (C00, C01,..., C10, C11,%) Arranged in a matrix. However, in this drawing, for convenience of explanation, only the memo cells C in 2 rows and 2 columns are shown.
  • the plurality of word lines WL (WL0, WL1,...) Extend in parallel to each other in the X direction. Moreover, it arrange
  • the plurality of bit lines BL (BL0, BL1,...) And the plurality of bit lines / BL (/ BL0, / BL1,...) Extend in parallel to each other in the Y direction. Moreover, it arrange
  • the word line driving circuit 5 selects a selected word line WL from a plurality of word lines WL. For example, the selected word line WL is set to a predetermined voltage level.
  • the word line driving circuit 5 has at least functions of a row decoder and a word driver.
  • the bit line driving circuit 7 selects the selected bit line BL and the selected bit line / BL from the plurality of bit lines BL and the plurality of bit lines / BL. For example, each of the selected bit line BL and the selected bit line / BL is set to a predetermined voltage level.
  • the bit line driving circuit 7 has at least functions as a column decoder and a write / read driver.
  • the memory cell C includes a first selection transistor M1 and a magnetoresistive element 11. That is, the memory cell C has a 1T1MTJ cell configuration.
  • the first selection transistor M1 has a gate connected to a corresponding one of the plurality of word lines WL, and one source / drain connected to a corresponding one of the plurality of bit lines BL.
  • the magnetoresistive element 11 is exemplified as an MTJ element, and one end is connected to the other source / drain of the first selection transistor M1, and the other end is connected to a corresponding one of the plurality of bit lines / BL.
  • FIG. 11A shows a standby state of the magnetic random access memory.
  • the word line driving circuit 5 grounds the word line WL (Gnd).
  • the bit line drive circuit 7 precharges both the bit lines BL and / BL to the power supply voltage Vdd.
  • FIG. 11B and FIG. 11C show the write operation and read operation of this magnetic random access memory, respectively.
  • the word line driving circuit 5 selects the word line WL0 as the selected word line WL
  • the bit line driving circuit 7 selects the bit lines BL0, / BL as the selected bit lines BL and / BL, respectively.
  • BL0 is selected.
  • the memory cell C01 is a non-selected cell at the intersection of the selected row and the non-selected column
  • the memory cell C10 is a non-selected cell at the intersection of the non-selected row and the selected column
  • the memory cell C11 is non-selected. Each of the non-selected cells at the intersection of the selected column is shown.
  • the word line drive circuit 5 applies a boost voltage Vdh (> Vdd) higher than the power supply voltage Vdd to the selected word line WL0.
  • the bit line driving circuit 7 controls the voltages of the selected bit line BL0 and the selected bit line / BL so that a potential difference is generated between the selected bit line BL0 and the selected bit line / BL0.
  • the power supply voltage Vdd is applied to one of the selected bit line BL0 and the selected bit line / BL0, and the other is grounded (Gnd). Which of the selected bit line BL0 and the selected bit line / BL0 is grounded is determined according to the write data.
  • the write current Iw flows from the selected bit line BL0 (or selected bit line / BL0) to the selected bit line / BL0 (or selected bit line BL0) through the selected cell C00.
  • the bit line driving circuit 7 brings both the bit lines BL1 and / BL of the non-selected columns into a high impedance state or a state in which the power supply voltage Vdd is applied.
  • Vdh> power supply voltage Vdd + threshold voltage Vth
  • the cell transistor M1 of the non-selected cell C01 is in the ON state.
  • the potential difference between the bit line BL1 and the bit line / BL1 is zero. Therefore, the write current Iw does not conduct the non-selected cell C01.
  • boost voltage Vdh ⁇ power supply voltage Vdd is applied to the gate oxide film of the cell transistor M1 of the non-selected cell C01. That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide film of the cell transistor M1 of the non-selected cell C01. Thereby, the reliability of the cell transistor M1 can be maintained. It is more desirable to design the boost voltage Vdh ⁇ (power supply voltage Vdd + threshold voltage Vth). This is because the cell transistor M1 of the non-selected cell C01 can be turned off.
  • the word line driving circuit 5 brings the word line WL1 of the non-selected row to a grounded (Gnd) state. Accordingly, the cell transistors M1 of the non-selected cells C10 and C11 are in the off state. Therefore, the write current Iw is not conducted to the non-selected cells C10 and C11. Further, the gate oxide films of the cell transistors M1 of the non-selected cells C10 and C11 are grounded (Gnd). That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M2 of the non-selected cells C10 and C11. Thereby, the reliability of the cell transistor M1 can be maintained.
  • the word line drive circuit 5 applies the boost voltage Vdh (> Vdd) to the selected word line WL0.
  • the bit line driving circuit 7 controls at least the voltage of the selected bit line BL so that a potential difference is generated between one end and the other end of the magnetoresistive element 11.
  • the clamp voltage Vc is applied to one selected bit line BL0, and the other selected bit line / BL0 is grounded (Gnd).
  • the clamp voltage Vc is applied by a read circuit (not shown) in (or outside) the bit line drive circuit 7.
  • the cell transistor M1 of the selected cell C00 is turned on, and a read current (sense current) Is flows through the selected cell C00 with the clamp voltage Vc applied to the magnetoresistive element 11.
  • the bit line driving circuit 7 sets the bit line / BL1 in the non-selected column to a high impedance state and applies the power supply voltage Vdd to the bit line BL1.
  • Vdh> power supply voltage Vdd + threshold voltage Vth
  • the cell transistor M1 of the non-selected cell C01 is in the ON state.
  • the bit line BL1 and the read circuit are electrically disconnected. Therefore, the read current Is does not flow through the non-selected cell C01.
  • boost voltage Vdh-power supply voltage Vdd a voltage (boost voltage Vdh-power supply voltage Vdd) is applied to the gate oxide film of the cell transistor M1 of the non-selected cell C01. That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide film of the cell transistor M1 of the non-selected cell C01. Thereby, the reliability of the cell transistor M1 can be maintained.
  • boost voltage Vdh ⁇ (power supply voltage Vdd + threshold voltage Vth) Vdd may be applied to bit line / BL1. At this time, since the gate-source voltage of the cell transistor M1 of the non-selected cell C01 is equal to or lower than Vth, the cell transistor M1 is in an off state and the read current Is does not flow.
  • the word line driving circuit 5 brings the word line WL1 of the non-selected row to the ground (Gnd) state. Accordingly, the cell transistors M1 of the non-selected cells C10 and C11 are in the off state. Accordingly, the read current Is does not flow through the non-selected cells C10 and C11. Further, the gate oxide films of the cell transistors M1 of the non-selected cells C10 and C11 are grounded (Gnd). That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 of the non-selected cells C10 and C11. Thereby, the reliability of the cell transistor M1 can be maintained.
  • FIG. 5 An example of the row-related word line driving circuit 5 that realizes the above operation can be the same as that of FIG. 5 (and FIG. 6) exemplified above. Therefore, the description regarding the word line driving circuit 5 is omitted.
  • FIG. 12 is a circuit diagram showing an example of the configuration of the bit line driving circuit in FIGS. 11A to 11C.
  • the column decoder 24k is provided corresponding to the bit lines BLk and / BLk. It has two AND circuits.
  • the selector 25k is provided corresponding to the bit lines BLk and / BLk.
  • a transistor M20 is provided.
  • the write driver 26k is provided corresponding to the bit lines BLk and / BLk.
  • Clocked inverters INV1 and INVb, inverters, transistors M22, M23, and M23b are included.
  • the signal WE, the signal RE, and the signal CP are all at a low level (0 V). Accordingly, both the terminals YW and YR are at a low level. At this time, the clocked inverters INV1 and INV1b are in a high impedance state because the terminal YW is at a low level. Then, the transistors M20 and M22 are turned off, and the transistors M23 and M23b are turned on. Thereby, both the bit lines BL and / BL are precharged to a high level (voltage Vdd).
  • the operation when the write command is input and the signal WE becomes high level will be described.
  • the signal Yi is at a high level, and thus the terminal YW is at a high level.
  • the clocked inverters INV1 and INV1b output a high level (voltage Vdd) to one of the bit lines BL and / BL and a low level (0 V) to the other in accordance with the write data Din. Since the signal Yi is at a low level in the non-selected column, the terminal YW is at a low level. Therefore, the clocked inverters INV1 and INV1b are in a high impedance state.
  • the transistors M20 and M22 are also turned off.
  • the transistors M23 and M23b are in an off state. That is, the bit lines BL and / BL in the non-selected column are in a high impedance state while maintaining the power supply voltage Vdd.
  • the operation when a read command is input and the signal RE becomes high level will be described.
  • the signal Yi is at a high level, and thus the terminal YR is at a high level.
  • the transistor M20 is turned on, and the transistor M22 is also turned on.
  • the signal CP is at a high level
  • the transistors M23 and M23b are in an off state.
  • the terminal YW is at a low level, the clocked inverters INV1 and INV1b are in a high impedance state. That is, the bit line BL is connected to the read circuit and clamped to the clamp voltage Vc, and the bit line / BL becomes low level.
  • the signal Yi is at a low level, and the terminal YR is also at a low level. Accordingly, the transistor M20 is turned off, and the transistor M23 is also turned off. Therefore, the bit line BL is disconnected from the reading circuit, and the power supply voltage Vdd is maintained and the high impedance state is maintained. Since the transistors M22 and M23b are also in the off state, the bit line / BL is in a high impedance state while maintaining the power supply voltage Vdd.
  • the cell area can be reduced by the word boost effect while ensuring the reliability of the gate oxide film of the cell transistor M1. That is, by maintaining the bit line potential of the unselected column at the power supply voltage Vdd, the number of memory cells in the state where an excessive voltage is applied to the gate oxide film can be reduced to only the selected memory cell. As a result, the number of reads and writes in the magnetic random access memory can be improved.
  • bit line driving circuit 7 that applies an intermediate value Vm between the ground voltage and the power supply voltage to the bit line / BL of the selected column and applies (Vm + Vc) to the bit line BL during the read operation. It is.
  • the present invention it is possible to provide a magnetic random access memory and an operation method of the magnetic random access memory that can reduce the bit cost more efficiently while maintaining the number of times of reading and writing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

An MRAM comprises a memory array (3), word lines (WL), bit lines (WBL, /WBL), a word line unit (5) and a bit line unit (7).  The memory array (3) includes memory cells (C), each of which includes a transistor (M1) and a magnetoresistive element (11).  The word lines (WL) extend in an X-direction, while the bit lines (WBL, /WBL) extend in a Y-direction.  The word line unit (5) selects a word line (WL), while the bit line unit (7) selects bit lines (WBL, /WBL).  The transistor (M1) has its gate connected to a word line (WL), one of its terminals connected to a bit line (WBL) and the other of its terminals connected to the magnetoresistive element (11).  During a standby state, the word line unit (5) grounds the word line (WL), while the bit line unit (7) applies a first voltage to the bit lines (WBL, /WBL).  During a write operation, the word line unit (5) applies a second voltage to the selected word line (WL), while the bit line unit (7) causes a potential difference to occur between the selected bit lines (WBL, /WBL).

Description

磁気ランダムアクセスメモリ及び磁気ランダムアクセスメモリの動作方法Magnetic random access memory and method of operating magnetic random access memory
 本発明は、磁気抵抗素子を利用した磁気ランダムアクセスメモリ及び磁気ランダムアクセスメモリの動作方法に関する。 The present invention relates to a magnetic random access memory using a magnetoresistive element and an operation method of the magnetic random access memory.
 磁気ランダムアクセスメモリ(以下、MRAM(Magnetic Random Access Memory)という)は、読み書き回数が無制限、低電圧動作、高速動作が可能な不揮発性メモリである。そのMRAMのメモリセルは、データを記憶する素子として磁気抵抗素子(例示:MTJ(Magnetic Tunneling Junction)素子)を含んでいる。 Magnetic random access memory (hereinafter referred to as MRAM (Magnetic Random Access Memory)) is a non-volatile memory that can be read and written unlimitedly, and can operate at low voltage and high speed. The memory cell of the MRAM includes a magnetoresistive element (example: MTJ (Magnetic Tunneling Junction) element) as an element for storing data.
 そのメモリセルの書き込み方法として、二軸書き込み方式が用いられてきた。その二軸書き込み方式は、直交する2本の配線(例示:ワード線及びビット線)の各々に書き込み電流を流し、その電流が生成する合成磁場により、選択されたメモリセル(以下、選択セルという)の磁気抵抗素子の磁化を反転させる。この二軸書き込み方式の場合、そのメモリセルは1T1MTJセル構成である。すなわち、そのメモリセルは、磁気抵抗素子としての1つのMTJ素子(1MTJ)と、読出し動作時にメモリセルを選択するための1つのセルトランジスタ(1T)とから構成されている。このメモリセルの面積はDRAM(Dynamic Random Access Memory)並みのセルサイズを実現できる可能性がある。しかし、この二軸書き込み方式では、非選択のメモリセル(以下、非選択セルという)にも磁場が印加される状態(以下、半選択状態という)が存在する。そのため、書き込みの動作マージンが狭いという欠点を有していた。また、典型的に書き込み電流は5mA程度と大きいため、セル占有率を高めて大容量化することも困難であった。 The biaxial writing method has been used as a writing method for the memory cell. In the two-axis write method, a write current is supplied to each of two orthogonal wires (eg, word line and bit line), and a memory cell selected by a synthesized magnetic field generated by the current (hereinafter referred to as a selected cell). ) Of the magnetoresistive element is reversed. In the case of this biaxial writing method, the memory cell has a 1T1MTJ cell configuration. That is, the memory cell is composed of one MTJ element (1MTJ) as a magnetoresistive element and one cell transistor (1T) for selecting a memory cell during a read operation. The area of this memory cell may be able to realize a cell size comparable to DRAM (Dynamic Random Access Memory). However, in this two-axis writing method, there is a state (hereinafter referred to as a half-selected state) in which a magnetic field is applied also to non-selected memory cells (hereinafter referred to as non-selected cells). For this reason, there is a drawback that the operation margin for writing is narrow. In addition, since the write current is typically as large as about 5 mA, it is difficult to increase the cell occupation rate and increase the capacity.
 この問題を解決するために、いくつかの技術が提案されている。例えば、特許3888463号公報にMRAMが開示されている。図1A~図1Cは、特許3888463号公報に記載のメモリセルの構成を示す回路図である。図1Aに示されるように、このメモリセルは、2T1MTJセル構成である。すなわち、このメモリセルは、磁気抵抗素子としての1つのMTJ素子(1MTJ)と、書き込み動作時及び読出し動作時にメモリセルを選択するための2つのセルトランジスタM1、M2(2T)とから構成されている。図1Bに示されるように、このMRAMは、書き込み動作時に、まず、ワード線WLをハイレベルにする。それにより、2つのセルトランジスタM1、M2をオン状態にする。それと共に、ライトビット線WBLをハイレベルにし、ライトビット線/WBLをローレベルにする。それにより、両セルトランジスタM1、M2間に書き込み電流Iwを導通する。その結果、選択セルのMTJ素子のみに反転磁場を印加することが可能となる。それにより、書き込み動作時におけるメモリセルの選択性を改善することが可能である。なお、図1Cに示されるように、このMRAMは、読出し動作時にも、2つのセルトランジスタM1、M2を介して選択セルだけに読み出し電流Isを導通することが出来る。それにより、読出し動作時においてもメモリセルの選択性を改善することが可能である。 Several techniques have been proposed to solve this problem. For example, Japanese Patent No. 3888463 discloses an MRAM. 1A to 1C are circuit diagrams showing a configuration of a memory cell described in Japanese Patent No. 3888463. As shown in FIG. 1A, this memory cell has a 2T1MTJ cell configuration. That is, this memory cell is composed of one MTJ element (1MTJ) as a magnetoresistive element and two cell transistors M1 and M2 (2T) for selecting a memory cell at the time of write operation and read operation. Yes. As shown in FIG. 1B, the MRAM first sets the word line WL to the high level during the write operation. Thereby, the two cell transistors M1 and M2 are turned on. At the same time, the write bit line WBL is set to the high level, and the write bit line / WBL is set to the low level. Thereby, the write current Iw is conducted between the cell transistors M1 and M2. As a result, it is possible to apply a reversal magnetic field only to the MTJ element of the selected cell. Thereby, it is possible to improve the selectivity of the memory cell during the write operation. As shown in FIG. 1C, this MRAM can conduct the read current Is only to the selected cell via the two cell transistors M1 and M2 during the read operation. Thereby, it is possible to improve the selectivity of the memory cell even during the read operation.
 他の技術としては、スピン注入書き込み方式がある。スピン注入書き込み方式を1T1MTJセル構成のメモリセルに適用した場合、選択セルのMTJ素子に、セルトランジスタを介して直接書き込み電流を流して書き込みを行うことになる。従って、この方法も書き込み動作時におけるメモリセルの選択性に優れた方法である。 There is a spin injection writing method as another technique. When the spin injection writing method is applied to a memory cell having a 1T1MTJ cell configuration, writing is performed by flowing a write current directly through the cell transistor to the MTJ element of the selected cell. Therefore, this method is also an excellent method for selecting memory cells during a write operation.
 これらのMRAMのメモリセルに共通の課題は、供給可能な書き込み電流がセルトランジスタのサイズ、即ち、ゲート幅に制限されてしまうことである。そのため、書き込み電流が大きい場合、そのメモリセルのサイズ(セルサイズ)はセルトランジスタのサイズに依存することになる。ここで、MRAMを半導体メモリとして実現させるためには、そのセルサイズをSRAM(Static Random Access Memory)やDRAM並みに小さくする必要がある。従って、MRAMにおいて、書き込み電流の低減は避けられない。例えば、SRAM並みのビットコストを実現するには500μA以下に書き込み電流値を低減する必要がある。また、DRAM並みのビットコストを実現するには200μA以下に書き込み電流値を低減する必要がある。これらの書き込み電流値のレベルまでMTJ素子の磁化反転電流を低減するための磁性薄膜技術の進展が熱望される。 A problem common to these MRAM memory cells is that the write current that can be supplied is limited by the size of the cell transistor, that is, the gate width. Therefore, when the write current is large, the size of the memory cell (cell size) depends on the size of the cell transistor. Here, in order to realize the MRAM as a semiconductor memory, it is necessary to make the cell size as small as an SRAM (Static Random Access Memory) or a DRAM. Therefore, a reduction in write current is inevitable in the MRAM. For example, in order to realize a bit cost comparable to that of an SRAM, it is necessary to reduce the write current value to 500 μA or less. In order to realize a bit cost comparable to that of a DRAM, it is necessary to reduce the write current value to 200 μA or less. Advances in magnetic thin film technology for reducing the magnetization reversal current of MTJ elements to the level of these write current values are eagerly desired.
特許3888463号公報Japanese Patent No. 3888463
 MRAMのメモリセルのセルサイズを縮小するアプローチとして、書き込み電流を低減する方法とは別に、発明者は以下の技術を検討した。その技術は、MRAMにおいて電源電圧よりも高い電圧をワード線に印加するという技術(以下、ワードブースト技術という)である。発明者の検討によれば、この技術により、セルトランジスタのオン電流を実質的に上げ、より大きな書き込み電流をメモリセルに駆動することが可能となる。 As an approach for reducing the cell size of an MRAM memory cell, the inventor examined the following technique separately from the method of reducing the write current. The technique is a technique of applying a voltage higher than the power supply voltage to the word line in the MRAM (hereinafter referred to as a word boost technique). According to the inventor's study, this technique can substantially increase the on-current of the cell transistor and drive a larger write current to the memory cell.
 図2A~図2Cは、2T1MTJセル構成のメモリセルにワードブースト技術を適用した一例を示す回路図である。図2Aに示されるように、スタンバイ状態では、全てのワード線WLとライトビット線WBL、/WBLを接地する(Gnd)。また、図2Bに示されるように、書き込み動作では、ワード線WLに電源電圧Vddよりも高い電圧Vdh(>Vdd)を印加する。それと共に、一方のライトビット線WBLに電源電圧Vddを印加し、他方のライトビット線/WBLを接地(Gnd)する。それにより、書き込み電流Iwを供給する。また、図2Cに示されるように、読み出し動作では、ワード線WLに電圧Vdh(>Vdd)を印加する。それと共に、両方のライトビット線WBL、/WBLを接地(Gnd)し、リードビット線RBLを電源電圧Vddよりも低い電圧Vc(例示:0.3V程度)にクランプする。それにより、選択セルのMTJ素子を貫通するトンネル電流Isを検出する。 2A to 2C are circuit diagrams showing an example in which word boost technology is applied to a memory cell having a 2T1MTJ cell configuration. As shown in FIG. 2A, in the standby state, all word lines WL and write bit lines WBL, / WBL are grounded (Gnd). As shown in FIG. 2B, in the write operation, a voltage Vdh (> Vdd) higher than the power supply voltage Vdd is applied to the word line WL. At the same time, the power supply voltage Vdd is applied to one write bit line WBL, and the other write bit line / WBL is grounded (Gnd). Thereby, the write current Iw is supplied. Further, as shown in FIG. 2C, in the read operation, a voltage Vdh (> Vdd) is applied to the word line WL. At the same time, both write bit lines WBL and / WBL are grounded (Gnd), and the read bit line RBL is clamped to a voltage Vc (eg, about 0.3 V) lower than the power supply voltage Vdd. Thereby, the tunnel current Is penetrating the MTJ element of the selected cell is detected.
 発明者の検討によれば、このワードブースト技術により、セルトランジスタのオン電流を実質的に増加させることができる。それにより、書き込み電流の電流値という設計パラメータに対して、セルトランジスタのゲート幅を小さくすることができる。図3は、このワードブースト技術の効果を示すグラフである。縦軸はメモリセルの面積(セルサイズ)を示し、横軸は書き込み電流の電流値を示している。図に示されるように、このワードブースト技術により、同じ書き込み電流の電流値に対して、セルトランジスタのゲート幅を縮小する、すなわちセルトランジスタのセルサイズを縮小することが可能となる。すなわち、セルトランジスタを介してメモリセルに書き込み電流を導通するタイプのMRAMセルについて、そのセルサイズを縮小することが可能となる。 According to the inventor's investigation, this word boost technology can substantially increase the on-current of the cell transistor. Thereby, the gate width of the cell transistor can be reduced with respect to the design parameter called the current value of the write current. FIG. 3 is a graph showing the effect of this word boost technique. The vertical axis represents the area (cell size) of the memory cell, and the horizontal axis represents the current value of the write current. As shown in the figure, this word boost technique makes it possible to reduce the gate width of the cell transistor, that is, to reduce the cell size of the cell transistor, for the same write current value. That is, it is possible to reduce the cell size of an MRAM cell of a type in which a write current is conducted to the memory cell via the cell transistor.
 しかし、このワードブースト技術を用いる場合、書き込み動作、及び、読み出し動作において、以下の問題点があることが発明者の検討により明らかになった。すなわち、図2A~図2Cの例を参照にすれば、選択されたワード線(以下、選択ワード線)WL上の非選択セルのライトビット線WBL、/WBLは接地(Gnd)された状態である。ところが、選択ワード線WL上の全てのセルトランジスタM1、M2(非選択セルのセルトランジスタM1、M2も含む)にはVdhのゲート-ソース電圧が印加された状態である。従って、非選択セルのセルトランジスタM1、M2のゲート酸化膜に過剰な電界がかかっていることになる。これにより、セルトランジスタM1、M2の信頼性が損なわれる可能性があり、書き込み及び読み出しの回数を制限する一要因となり得る。 However, when this word boost technique is used, the inventors have made it clear that there are the following problems in the write operation and the read operation. 2A to 2C, the write bit lines WBL, / WBL of the non-selected cells on the selected word line (hereinafter, selected word line) WL are grounded (Gnd). is there. However, the gate-source voltage of Vdh is applied to all the cell transistors M1, M2 (including the cell transistors M1, M2 of the non-selected cells) on the selected word line WL. Therefore, an excessive electric field is applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cells. This may impair the reliability of the cell transistors M1 and M2, and may be a factor that limits the number of times of writing and reading.
 本発明の目的は、上記のような課題に鑑み、書き込み及び読み出しの回数を維持しつつ、より効率的にビットコストを低減することが可能な磁気ランダムアクセスメモリ及び磁気ランダムアクセスメモリの動作方法を提供することにある。 In view of the above problems, an object of the present invention is to provide a magnetic random access memory and a method for operating the magnetic random access memory that can reduce the bit cost more efficiently while maintaining the number of times of writing and reading. It is to provide.
 本発明の磁気ランダムアクセスメモリは、メモリアレイと、複数のワード線と、複数の第1ビット線及び複数の第2ビット線と、ワード線駆動回路と、ビット線駆動回路とを具備する。メモリアレイは、複数のメモリセルが行列状に配置されている。複数のワード線は、第1の方向に延在する。複数の第1ビット線及び複数の第2ビット線は、第1の方向と異なる第2の方向に延在する。ワード線駆動回路は、複数のワード線から選択ワード線を選択する。ビット線駆動回路は、複数の第1ビット線と複数の第2ビット線から選択第1ビット線及び選択第2ビット線を選択する。複数のメモリセルの各々は、第1選択トランジスタと、磁気抵抗素子とを備える。第1選択トランジスタは、ゲートを複数のワード線のうちの対応するものに、一方のソース/ドレインを複数の第1ビット線のうちの対応するものに接続されている。磁気抵抗素子は、第1選択トランジスタの他方のソース/ドレインに一端を接続されている。スタンバイ状態において、ワード線駆動回路は、複数のワード線を接地する。ビット線駆動回路は、複数の第1ビット線及び複数の第2ビット線に第1電圧を印加する。書き込み動作において、ワード線駆動回路は、選択ワード線に第1電圧よりも高い第2電圧を印加する。ビット線駆動回路は、選択第1ビット線と選択第2ビット線との間に電位差が生じるように、選択第1ビット線及び選択第2ビット線の電圧を制御する。 The magnetic random access memory of the present invention includes a memory array, a plurality of word lines, a plurality of first bit lines and a plurality of second bit lines, a word line driving circuit, and a bit line driving circuit. In the memory array, a plurality of memory cells are arranged in a matrix. The plurality of word lines extend in the first direction. The plurality of first bit lines and the plurality of second bit lines extend in a second direction different from the first direction. The word line driving circuit selects a selected word line from a plurality of word lines. The bit line driving circuit selects a selected first bit line and a selected second bit line from the plurality of first bit lines and the plurality of second bit lines. Each of the plurality of memory cells includes a first selection transistor and a magnetoresistive element. The first selection transistor has a gate connected to a corresponding one of the plurality of word lines, and one source / drain connected to a corresponding one of the plurality of first bit lines. The magnetoresistive element has one end connected to the other source / drain of the first selection transistor. In the standby state, the word line driving circuit grounds the plurality of word lines. The bit line driving circuit applies a first voltage to the plurality of first bit lines and the plurality of second bit lines. In the write operation, the word line driving circuit applies a second voltage higher than the first voltage to the selected word line. The bit line driving circuit controls the voltages of the selected first bit line and the selected second bit line so that a potential difference is generated between the selected first bit line and the selected second bit line.
 本発明の磁気ランダムアクセスメモリの動作方法は、以下の構成を備える磁気ランダムアクセスメモリに関する。すなわち、磁気ランダムアクセスメモリは、複数のメモリセルが行列に配置されたメモリアレイと、第1の方向に延在する複数のワード線と、第1の方向と異なる第2の方向に延在する複数の第1ビット線及び複数の第2ビット線とを備える。複数のメモリセルの各々は、ゲートを複数のワード線のうちの対応するものに、一方のソース/ドレインを複数の第1ビット線のうちの対応するものに接続された第1選択トランジスタと、第1選択トランジスタの他方のソース/ドレインに一端を接続された磁気抵抗素子とを含む。そして、磁気ランダムアクセスメモリの動作方法は、スタンバイ状態において、複数のワード線を接地するステップと、複数の第1ビット線及び複数の第2ビット線に第1電圧を印加するステップとを具備する。また、書き込み動作において、複数のワード線から選択された選択ワード線に第1電圧よりも高い第2電圧を印加するステップと、複数の第1ビット線から選択された選択第1ビット線及び複数の第2ビット線から選択された選択第2ビット線を除く複数の第1ビット線及び複数の第2ビット線に第1電圧を印加するステップと、選択第1ビット線と選択第2ビット線との間に電位差が生じるように、選択第1ビット線及び選択第2ビット線の電圧を制御するステップとを具備する。 The operating method of the magnetic random access memory according to the present invention relates to a magnetic random access memory having the following configuration. That is, the magnetic random access memory includes a memory array in which a plurality of memory cells are arranged in a matrix, a plurality of word lines extending in a first direction, and a second direction different from the first direction. A plurality of first bit lines and a plurality of second bit lines are provided. Each of the plurality of memory cells includes a first selection transistor having a gate connected to a corresponding one of the plurality of word lines and one source / drain connected to a corresponding one of the plurality of first bit lines; And a magnetoresistive element having one end connected to the other source / drain of the first select transistor. The operating method of the magnetic random access memory includes a step of grounding the plurality of word lines and a step of applying a first voltage to the plurality of first bit lines and the plurality of second bit lines in the standby state. . In the write operation, a step of applying a second voltage higher than the first voltage to a selected word line selected from the plurality of word lines, a selected first bit line selected from the plurality of first bit lines, and a plurality Applying a first voltage to a plurality of first bit lines and a plurality of second bit lines excluding a selected second bit line selected from the second bit lines, a selected first bit line and a selected second bit line And controlling the voltage of the selected first bit line and the selected second bit line so that a potential difference is generated between the first bit line and the selected second bit line.
 本発明により、書き込み及び読み出しの回数を維持しつつ、より効率的にビットコストを低減することが可能となる。 According to the present invention, it is possible to more efficiently reduce the bit cost while maintaining the number of times of writing and reading.
図1Aは特許3888463号公報に記載のメモリセルの構成を示す回路図である。FIG. 1A is a circuit diagram showing a configuration of a memory cell described in Japanese Patent No. 3888463. 図1Bは特許3888463号公報に記載のメモリセルの構成を示す回路図である。FIG. 1B is a circuit diagram showing a configuration of a memory cell described in Japanese Patent No. 3888463. 図1Cは特許3888463号公報に記載のメモリセルの構成を示す回路図である。FIG. 1C is a circuit diagram showing a configuration of a memory cell described in Japanese Patent No. 3888463. 図2Aは2T1MTJセル構成のメモリセルにワードブースト技術を適用した一例を示す回路図である。FIG. 2A is a circuit diagram showing an example in which the word boost technique is applied to a memory cell having a 2T1MTJ cell configuration. 図2Bは2T1MTJセル構成のメモリセルにワードブースト技術を適用した一例を示す回路図である。FIG. 2B is a circuit diagram showing an example in which the word boost technique is applied to a memory cell having a 2T1MTJ cell configuration. 図2Cは2T1MTJセル構成のメモリセルにワードブースト技術を適用した一例を示す回路図である。FIG. 2C is a circuit diagram showing an example in which word boost technology is applied to a memory cell having a 2T1MTJ cell configuration. 図3は、ワードブースト技術の効果を示すグラフである。FIG. 3 is a graph showing the effect of the word boost technique. 図4Aは本発明の第1の実施の形態に係る磁気ランダムアクセスメモリの構成を示すブロック図である。FIG. 4A is a block diagram showing the configuration of the magnetic random access memory according to the first embodiment of the present invention. 図4Bは本発明の第1の実施の形態に係る磁気ランダムアクセスメモリの構成を示すブロック図である。FIG. 4B is a block diagram showing the configuration of the magnetic random access memory according to the first embodiment of the present invention. 図4Cは本発明の第1の実施の形態に係る磁気ランダムアクセスメモリの構成を示すブロック図である。FIG. 4C is a block diagram showing a configuration of the magnetic random access memory according to the first embodiment of the present invention. 図5は本発明の第1の実施の形態に係るワード線駆動回路の構成の一例を示す回路図である。FIG. 5 is a circuit diagram showing an example of the configuration of the word line driving circuit according to the first embodiment of the present invention. 図6は本発明の第1の実施の形態に係るワード線駆動回路の入力信号及び出力信号を示すタイミングチャートである。FIG. 6 is a timing chart showing input signals and output signals of the word line driving circuit according to the first embodiment of the present invention. 図7は本発明の第1の実施の形態に係るビット線駆動回路の構成の一例を示す回路図である。FIG. 7 is a circuit diagram showing an example of the configuration of the bit line driving circuit according to the first embodiment of the present invention. 図8は本発明の第1の実施の形態に係るビット線駆動回路の入力信号及び出力信号を示すタイミングチャートである。FIG. 8 is a timing chart showing input signals and output signals of the bit line driving circuit according to the first embodiment of the present invention. 図9は本発明の第1の実施の形態に係るビット線駆動回路の入力信号及び出力信号を示すタイミングチャートである。FIG. 9 is a timing chart showing input signals and output signals of the bit line driving circuit according to the first embodiment of the present invention. 図10は本発明の第1の実施の形態に係るビット線駆動回路の構成の他の一例を示す回路図である。FIG. 10 is a circuit diagram showing another example of the configuration of the bit line driving circuit according to the first embodiment of the present invention. 図11Aは本発明の第2の実施の形態に係る磁気ランダムアクセスメモリの構成を示すブロック図である。FIG. 11A is a block diagram showing a configuration of a magnetic random access memory according to the second embodiment of the present invention. 図11Bは本発明の第2の実施の形態に係る磁気ランダムアクセスメモリの構成を示すブロック図である。FIG. 11B is a block diagram showing the configuration of the magnetic random access memory according to the second embodiment of the present invention. 図11Cは本発明の第2の実施の形態に係る磁気ランダムアクセスメモリの構成を示すブロック図である。FIG. 11C is a block diagram showing the configuration of the magnetic random access memory according to the second embodiment of the present invention. 図12は本発明の第2の実施の形態に係るビット線駆動回路の構成の一例を示す回路図である。FIG. 12 is a circuit diagram showing an example of the configuration of the bit line driving circuit according to the second embodiment of the present invention.
 以下、本発明の実施の形態に係る磁気ランダムアクセスメモリ及び磁気ランダムアクセスメモリの動作方法に関して、添付図面を参照して説明する。 Hereinafter, a magnetic random access memory and an operation method of the magnetic random access memory according to the embodiment of the present invention will be described with reference to the accompanying drawings.
 (第1の実施の形態)
 本発明の第1の実施の形態に係る磁気ランダムアクセスメモリの構成について説明する。図4A~図4Cは、本発明の第1の実施の形態に係る磁気ランダムアクセスメモリの構成を示すブロック図である。磁気ランダムアクセスメモリ1は、メモリアレイ3と、複数のワード線WLと、複数のライトビット線WBL及び複数のライトビット線/WBLと、複数のリードビット線RBLと、ワード線駆動回路5と、ビット線駆動回路7とを具備している。
(First embodiment)
A configuration of the magnetic random access memory according to the first embodiment of the present invention will be described. 4A to 4C are block diagrams showing the configuration of the magnetic random access memory according to the first embodiment of the present invention. The magnetic random access memory 1 includes a memory array 3, a plurality of word lines WL, a plurality of write bit lines WBL and a plurality of write bit lines / WBL, a plurality of read bit lines RBL, a word line drive circuit 5, And a bit line driving circuit 7.
 メモリアレイ3は、行列状に配置された複数のメモリセルC(C00、C01、…、C10、C11、…)を備えている。ただし、本図では、説明の便宜上、2行2列のメモセルCのみを図示している。複数のワード線WL(WL0、WL1、…)は、X方向(第1の方向)に、互いに平行に延在している。また、Y方向(第2の方向)に並んで配置されている。複数のライトビット線WBL(WBL0、WBL1、…)及び複数のライトビット線/WBL(/WBL0、/WBL1、…)は、Y方向に、互いに平行に延在している。また、X方向に並んで配置されている。隣接するライトビット線WBL(例示:WBL0)とライトビット線/WBL(例示:/WBL0)とは対を成している。複数のリードビット線RBL(RBL0、RBL1、…)は、Y方向に、互いに平行に延在している。また、X方向に並んで配置されている。 The memory array 3 includes a plurality of memory cells C (C00, C01,..., C10, C11,...) Arranged in a matrix. However, in this drawing, for convenience of explanation, only the memo cells C in 2 rows and 2 columns are shown. The plurality of word lines WL (WL0, WL1,...) Extend in parallel to each other in the X direction (first direction). Moreover, it arrange | positions along with the Y direction (2nd direction). The plurality of write bit lines WBL (WBL0, WBL1,...) And the plurality of write bit lines / WBL (/ WBL0, / WBL1,...) Extend in parallel to each other in the Y direction. Moreover, it arrange | positions along with the X direction. Adjacent write bit line WBL (example: WBL0) and write bit line / WBL (example: / WBL0) form a pair. The plurality of read bit lines RBL (RBL0, RBL1,...) Extend in parallel to each other in the Y direction. Moreover, it arrange | positions along with the X direction.
 ワード線駆動回路5は、複数のワード線WLから選択ワード線WLを選択する。例えば、選択ワード線WLを、所定の電圧レベルの状態にする。ワード線駆動回路5は、少なくともロウデコーダ及びワードドライバの機能を有する。ビット線駆動回路7は、複数のライトビット線WBLと複数のライトビット線/WBLから選択ライトビット線WBL及び選択ライトビット線/WBLを選択する。例えば、選択ライトビット線WBL及び選択ライトビット線/WBLを、それぞれ所定の電圧レベルの状態にする。また、複数のリードビット線RBLから選択リードビット線RBLを選択する。例えば、選択リードビット線を、所定の電圧レベルの状態にする。ビット線駆動回路7は、少なくともカラムデコーダ及びライト・リードドライバとしての機能を有する。 The word line driving circuit 5 selects a selected word line WL from a plurality of word lines WL. For example, the selected word line WL is set to a predetermined voltage level. The word line driving circuit 5 has at least functions of a row decoder and a word driver. The bit line driving circuit 7 selects the selected write bit line WBL and the selected write bit line / WBL from the plurality of write bit lines WBL and the plurality of write bit lines / WBL. For example, each of the selected write bit line WBL and the selected write bit line / WBL is set to a predetermined voltage level. Further, the selected read bit line RBL is selected from the plurality of read bit lines RBL. For example, the selected read bit line is set to a predetermined voltage level. The bit line driving circuit 7 has at least functions as a column decoder and a write / read driver.
 メモリセルCは、第1選択トランジスタM1と、第2選択トランジスタM2と、磁気抵抗素子11とを備えている。すなわち、このメモリセルCは、2T1MTJセル構成である。第1選択トランジスタM1は、ゲートを複数のワード線WLのうちの対応するものに、一方のソース/ドレインを複数のライトビット線WBLのうちの対応するものに、それぞれ接続されている。第2選択トランジスタM2は、ゲートを複数のワード線WLのうちの対応するものに、一方のソース/ドレインを複数のライトビット線/WBLのうちの対応するものに、他方のソース/ドレインを第1選択トランジスタM1の他方のソース/ドレインに、それぞれ接続されている。磁気抵抗素子11は、MTJ素子に例示され、一端を第1選択トランジスタM1の他方のソース/ドレインに、他端を複数のリードビット線RBLのうちの対応するものに、それぞれ接続されている。 The memory cell C includes a first selection transistor M1, a second selection transistor M2, and a magnetoresistive element 11. That is, the memory cell C has a 2T1MTJ cell configuration. The first selection transistor M1 has a gate connected to a corresponding one of the plurality of word lines WL, and one source / drain connected to a corresponding one of the plurality of write bit lines WBL. The second select transistor M2 has a gate corresponding to one of the plurality of word lines WL, one source / drain corresponding to one of the plurality of write bit lines / WBL, and the other source / drain connected to the second one. The other source / drain of one select transistor M1 is connected to each other. The magnetoresistive element 11 is exemplified as an MTJ element, and one end is connected to the other source / drain of the first selection transistor M1, and the other end is connected to a corresponding one of the plurality of read bit lines RBL.
 次に、本発明の第1の実施の形態に係る磁気ランダムアクセスメモリの動作方法について説明する。
 図4Aは、この磁気ランダムアクセスメモリのスタンバイ状態を示している。図4Aに示されるスタンバイ状態においては、ワード線駆動回路5は、ワード線WLを接地(Gnd)している。ビット線駆動回路7は、ライトビット線WBL、/WBL及びリードビット線RBLを共に電源電圧Vddにプリチャージしている。
Next, an operation method of the magnetic random access memory according to the first embodiment of the present invention will be described.
FIG. 4A shows a standby state of the magnetic random access memory. In the standby state shown in FIG. 4A, the word line driving circuit 5 grounds the word line WL (Gnd). The bit line drive circuit 7 precharges both the write bit lines WBL and / WBL and the read bit line RBL to the power supply voltage Vdd.
 図4Bは、この磁気ランダムアクセスメモリの書き込み動作を示している。図4Bでは、一例として、ワード線駆動回路5が選択ワード線WLとしてワード線WL0を選択し、ビット線駆動回路7が選択ライトビット線WBL、/WBL、及び選択リードビット線RBLとしてそれぞれライトビット線WBL0、/WBL0及びリードビット線RBL0を選択している。それにより、選択ワード線WLと選択ライトビット線WBL、/WBL及び選択リードビット線RBLとの交点に位置するメモリセルC00が選択された状態(選択セル=メモリセルC00)を示している。このとき、メモリセルC01は選択行と非選択列との交点にある非選択セル、メモリセルC10は非選択行と選択列との交点にある非選択セル、メモリセルC11は非選択行と非選択列との交点にある非選択セルをそれぞれ表している。 FIG. 4B shows the write operation of this magnetic random access memory. In FIG. 4B, as an example, the word line driving circuit 5 selects the word line WL0 as the selected word line WL, and the bit line driving circuit 7 writes the write bit as the selected write bit lines WBL, / WBL and the selected read bit line RBL, respectively. Lines WBL0 and / WBL0 and read bit line RBL0 are selected. Thereby, the memory cell C00 located at the intersection of the selected word line WL, the selected write bit lines WBL, / WBL and the selected read bit line RBL is selected (selected cell = memory cell C00). At this time, the memory cell C01 is a non-selected cell at the intersection of the selected row and the non-selected column, the memory cell C10 is a non-selected cell at the intersection of the non-selected row and the selected column, and the memory cell C11 is non-selected. Each of the non-selected cells at the intersection with the selected column is shown.
 まず、書き込み動作時における選択セルC00に着目する。ワード線駆動回路5は、選択ワード線WL0に電源電圧Vddよりも高いブースト電圧Vdh(>Vdd)を印加する。同時に、ビット線駆動回路7は、選択ライトビット線WBL0と選択ライトビット線/WBL0との間に電位差が生じるように、選択ライトビット線WBL0及び選択ライトビット線/WBLの電圧を制御する。例えば、選択ライトビット線WBL0及び選択ライトビット線/WBL0のうちのどちらか一方に電源電圧Vddを印加し、他方を接地(Gnd)する。選択ライトビット線WBL0及び選択ライトビット線/WBL0のうちのどちらを接地するかは書き込みデータに応じて決定される。例えば、書き込みデータが“1”の場合、選択ライトビット線/WBL0を接地する。一方、書き込みデータが“0”の場合、選択ライトビット線WBL0を接地する。選択セルC00のセルトランジスタM1、M2のゲート-ソース電圧にはその閾値電圧Vth以上の電圧Vdhが印加されるため、それらセルトランジスタM1、M2はオン状態となる。従って、書き込み電流Iwは、選択ライトビット線WBL0(又は選択ライトビット線/WBL0)から選択セルC00を導通して、選択ライトビット線/WBL0(又は選択ライトビット線WBL0)に流れる。この時、リードビット線RBL0は磁気抵抗素子11を介して書き込み電流Iwがリークしないように高インピーダンス状態(HiZ)にすることが望ましい。この書き込み動作では電源電圧Vddよりも高いブースト電圧VdhをセルトランジスタM1、M2に印加することで、セルトランジスタM1、M2のオン電流を実質的に上げ、より大きな書き込み電流Iwを選択セルC00に駆動することが可能となる。 First, attention is focused on the selected cell C00 during the write operation. The word line driving circuit 5 applies a boost voltage Vdh (> Vdd) higher than the power supply voltage Vdd to the selected word line WL0. At the same time, the bit line drive circuit 7 controls the voltages of the selected write bit line WBL0 and the selected write bit line / WBL so that a potential difference is generated between the selected write bit line WBL0 and the selected write bit line / WBL0. For example, the power supply voltage Vdd is applied to one of the selected write bit line WBL0 and the selected write bit line / WBL0, and the other is grounded (Gnd). Which of the selected write bit line WBL0 and the selected write bit line / WBL0 is grounded is determined according to the write data. For example, when the write data is “1”, the selected write bit line / WBL0 is grounded. On the other hand, when the write data is “0”, the selected write bit line WBL0 is grounded. Since the voltage Vdh equal to or higher than the threshold voltage Vth is applied to the gate-source voltage of the cell transistors M1 and M2 of the selected cell C00, the cell transistors M1 and M2 are turned on. Accordingly, the write current Iw conducts the selected cell C00 from the selected write bit line WBL0 (or selected write bit line / WBL0) and flows to the selected write bit line / WBL0 (or selected write bit line WBL0). At this time, it is desirable that the read bit line RBL0 be in a high impedance state (HiZ) so that the write current Iw does not leak through the magnetoresistive element 11. In this write operation, a boost voltage Vdh higher than the power supply voltage Vdd is applied to the cell transistors M1 and M2, thereby substantially increasing the on-currents of the cell transistors M1 and M2 and driving a larger write current Iw to the selected cell C00. It becomes possible to do.
 次に、書き込み動作時における非選択セルC01に着目する。ビット線駆動回路7は、非選択列のライトビット線WBL1、/WBLを共に電源電圧Vddを印加した状態にする。ここで、ブースト電圧Vdh>(電源電圧Vdd+閾値電圧Vth)の場合、非選択セルC01のセルトランジスタM1、M2はオン状態である。しかし、ライトビット線WBL1とライトビット線/WBL1との間の電位差はゼロである。従って、書き込み電流Iwは非選択セルC01を導通しない。また、非選択セルC01のセルトランジスタM1、M2のゲート酸化膜には電圧(ブースト電圧Vdh-電源電圧Vdd)が印加された状態である。即ち、過剰な電圧(ブースト電圧Vdh)が印加されていない。従って、非選択セルC01のセルトランジスタM1、M2のゲート酸化膜に過剰な電界がかかっていない。これにより、セルトランジスタM1、M2の信頼性を維持することが出来る。この時、磁気抵抗素子11を介するリーク電流を防ぐためリードビット線RBL1を高インピーダンス状態にすることが望ましい。また、ブースト電圧Vdh<(電源電圧Vdd+閾値電圧Vth)に設計することがより望ましい。非選択セルC01のセルトランジスタM1、M2をオフ状態にできるからである。 Next, attention is paid to the non-selected cell C01 during the write operation. The bit line drive circuit 7 places the write bit lines WBL1 and / WBL in the non-selected columns in a state where the power supply voltage Vdd is applied. Here, when the boost voltage Vdh> (power supply voltage Vdd + threshold voltage Vth), the cell transistors M1 and M2 of the non-selected cell C01 are on. However, the potential difference between the write bit line WBL1 and the write bit line / WBL1 is zero. Therefore, the write current Iw does not conduct the non-selected cell C01. In addition, a voltage (boost voltage Vdh−power supply voltage Vdd) is applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cell C01. That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cell C01. Thereby, the reliability of the cell transistors M1 and M2 can be maintained. At this time, it is desirable that the read bit line RBL1 be in a high impedance state in order to prevent a leakage current through the magnetoresistive element 11. It is more desirable to design the boost voltage Vdh <(power supply voltage Vdd + threshold voltage Vth). This is because the cell transistors M1 and M2 of the non-selected cell C01 can be turned off.
 更に、書き込み動作時における非選択セルC10、C11に着目する。ワード線駆動回路5は、非選択行のワード線WL1を接地(Gnd)した状態にする。従って、非選択セルC10、C11のセルトランジスタM1、M2はオフ状態である。従って、非選択セルC10、C11に書き込み電流Iwは導通しない。また、非選択セルC10、C11のセルトランジスタM1、M2のゲート酸化膜は接地(Gnd)された状態である。即ち、過剰な電圧(ブースト電圧Vdh)が印加されていない。従って、非選択セルC10、C11のセルトランジスタM1、M2のゲート酸化膜に過剰な電界がかかっていない。これにより、セルトランジスタM1、M2の信頼性を維持することが出来る。 Furthermore, attention is paid to the non-selected cells C10 and C11 during the write operation. The word line driving circuit 5 brings the word line WL1 of the non-selected row to a grounded (Gnd) state. Accordingly, the cell transistors M1 and M2 of the non-selected cells C10 and C11 are in an off state. Therefore, the write current Iw is not conducted to the non-selected cells C10 and C11. Further, the gate oxide films of the cell transistors M1 and M2 of the non-selected cells C10 and C11 are grounded (Gnd). That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cells C10 and C11. Thereby, the reliability of the cell transistors M1 and M2 can be maintained.
 図4Cは、この磁気ランダムアクセスメモリの読み出し動作を示している。図4Cでも、一例として、図4Bの場合と同様に、ワード線駆動回路5がワード線WL0を選択し、ビット線駆動回路7がライトビット線WBL0、/WBL0及びリードビット線RBL0を選択している。それにより、選択セルC00が選択された状態を示している。 FIG. 4C shows the read operation of this magnetic random access memory. 4C, as an example, as in FIG. 4B, the word line drive circuit 5 selects the word line WL0, the bit line drive circuit 7 selects the write bit lines WBL0, / WBL0, and the read bit line RBL0. Yes. As a result, the selected cell C00 is selected.
 まず、読み出し動作時における選択セルC00に着目する。書き込み動作時と同様に、ワード線駆動回路5は、選択ワード線WL0にブースト電圧Vdh(>Vdd)を印加する。同時に、ビット線駆動回路7は、磁気抵抗素子11の一端と他端との間に電位差が生じるように、少なくとも選択ライトビット線WBLの電圧を制御する。例えば、選択リードビット線RBL0にクランプ電圧Vcを印加し、選択ライトビット線WBL0、/WBL0の両方を接地(Gnd)する。クランプ電圧Vcは、ビット線駆動回路7内(又は外)の読み出し回路(図示されず)により印加される。この時、選択セルC00のセルトランジスタM1、M2がオン状態となり、磁気抵抗素子11にクランプ電圧Vcが印加された状態で、選択セルC00に読み出し電流(センス電流)Isが流れる。すなわち、読み出し電流Isは、磁気抵抗素子11からセルトランジスタM1、M2及び選択ライトビット線WBL0、/WBL0を介して、読み出し回路(図示されず)へ供給される。読み出し回路は、例えば一般的なMRAMの場合と同様に、選択セルC00からの読み出し電流Isを検出し、同様に選択された参照セルに流れる参照電流Irefとの大小を比較することで読み出しデータを決定する。磁気抵抗素子11のMR比(“0”状態の抵抗値と“1”状態の抵抗値の比率)は、磁気抵抗素子11の両端電圧に依存する特性を有しており、典型的にはその両端電圧が0.3V~0.5Vの時にセンス信号が最大値となる。従って、上記Vcは0.3V~0.5Vの範囲になるように設計されることが好ましい。 First, focus on the selected cell C00 during the read operation. Similarly to the write operation, the word line drive circuit 5 applies the boost voltage Vdh (> Vdd) to the selected word line WL0. At the same time, the bit line drive circuit 7 controls at least the voltage of the selected write bit line WBL so that a potential difference is generated between one end and the other end of the magnetoresistive element 11. For example, the clamp voltage Vc is applied to the selected read bit line RBL0, and both the selected write bit lines WBL0 and / WBL0 are grounded (Gnd). The clamp voltage Vc is applied by a read circuit (not shown) in (or outside) the bit line drive circuit 7. At this time, the cell transistors M1 and M2 of the selected cell C00 are turned on, and the read current (sense current) Is flows through the selected cell C00 with the clamp voltage Vc applied to the magnetoresistive element 11. That is, the read current Is is supplied from the magnetoresistive element 11 to the read circuit (not shown) through the cell transistors M1 and M2 and the selected write bit lines WBL0 and / WBL0. The read circuit detects the read current Is from the selected cell C00, for example, as in the case of a general MRAM, and compares the magnitude of the read current with the reference current Iref flowing through the selected reference cell in the same manner. decide. The MR ratio of the magnetoresistive element 11 (the ratio between the resistance value in the “0” state and the resistance value in the “1” state) has a characteristic that depends on the voltage across the magnetoresistive element 11, and typically When the voltage between both ends is 0.3V to 0.5V, the sense signal becomes the maximum value. Accordingly, the Vc is preferably designed to be in the range of 0.3V to 0.5V.
 次に、読み出し動作時における非選択セルC01に着目する。ビット線駆動回路7は、非選択列のリードビット線RBL1を高インピーダンス状態にし、ライトビット線WBL1、/WBL1を共に電源電圧Vddを印加した状態にする。ここで、ブースト電圧Vdh>(電源電圧Vdd+閾値電圧Vth)の場合、非選択セルC01のセルトランジスタM1、M2はオン状態である。しかし、リードビット線RBL1と読み出し回路(図示されず)とは電気的に切断される。従って、読み出し電流Isは、非選択セルC01を流れない。このとき、非選択セルC01のセルトランジスタM1、M2のゲート酸化膜には電圧(ブースト電圧Vdh-電源電圧Vdd)が印加された状態である。即ち、過剰な電圧(ブースト電圧Vdh)が印加されていない。従って、非選択セルC01のセルトランジスタM1、M2のゲート酸化膜に過剰な電界がかかっていない。これにより、セルトランジスタM1、M2の信頼性を維持することが出来る。また、ブースト電圧Vdh<(電源電圧Vdd+閾値電圧Vth)の場合、非選択セルC01のセルトランジスタM1、M2のゲート-ソース電圧はVth以下であるのでオフ状態である。従って、読み出し電流Isは非選択セルC01を流れないので、リードビット線RBL1に電源電圧Vddを印加した状態でも良い。 Next, attention is paid to the non-selected cell C01 during the read operation. The bit line driving circuit 7 sets the read bit line RBL1 of the non-selected column to a high impedance state, and puts both the write bit lines WBL1 and / WBL1 into a state where the power supply voltage Vdd is applied. Here, when the boost voltage Vdh> (power supply voltage Vdd + threshold voltage Vth), the cell transistors M1 and M2 of the non-selected cell C01 are on. However, the read bit line RBL1 and the read circuit (not shown) are electrically disconnected. Therefore, the read current Is does not flow through the non-selected cell C01. At this time, a voltage (boost voltage Vdh−power supply voltage Vdd) is applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cell C01. That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cell C01. Thereby, the reliability of the cell transistors M1 and M2 can be maintained. Further, when boost voltage Vdh <(power supply voltage Vdd + threshold voltage Vth), the gate-source voltages of the cell transistors M1 and M2 of the non-selected cell C01 are not more than Vth, so that they are in the off state. Accordingly, since the read current Is does not flow through the non-selected cell C01, the power supply voltage Vdd may be applied to the read bit line RBL1.
 更に、読み出し動作時における非選択セルC10、C11に着目する。ワード線駆動回路5は、非選択行のワード線WL1は接地(Gnd)した状態にする。従って、非選択セルC10、C11のセルトランジスタM1、M2はオフ状態である。従って、非選択セルC10、C11に読み出し電流Isは流れない。また、非選択セルC10、C11のセルトランジスタM1、M2のゲート酸化膜は接地(Gnd)された状態である。即ち、過剰な電圧(ブースト電圧Vdh)が印加されていない。従って、非選択セルC10、C11のセルトランジスタM1、M2のゲート酸化膜に過剰な電界がかかっていない。これにより、セルトランジスタM1、M2の信頼性を維持することが出来る。 Furthermore, attention is paid to the non-selected cells C10 and C11 during the read operation. The word line driving circuit 5 brings the word line WL1 of the non-selected row to the ground (Gnd) state. Accordingly, the cell transistors M1 and M2 of the non-selected cells C10 and C11 are in an off state. Accordingly, the read current Is does not flow through the non-selected cells C10 and C11. Further, the gate oxide films of the cell transistors M1 and M2 of the non-selected cells C10 and C11 are grounded (Gnd). That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 and M2 of the non-selected cells C10 and C11. Thereby, the reliability of the cell transistors M1 and M2 can be maintained.
 次に、上記動作を実現するワード線駆動回路5の一例について説明する。図5は、図4A~図4Cにおけるワード線駆動回路の構成の一例を示す回路図である。ワード線駆動回路5は、ワード線WLj(j=0、1、…)を選択するロウデコーダ22と、ワード線WLjにブースト電圧Vdhを供給するワードドライバ21j(j=0、1、…)とを有する。ロウデコーダ22は、トランジスタM11~M13、M14j(j=0、1、…)を備える。トランジスタM11~M13、M14jは、電源電圧がVddのコアトランジスタである。トランジスタM14jは、ワード線WLjに対応して設けられている。ワードドライバ21jは、ワード線WLjに対応して設けられ、トランジスタM15~M18を備える。トランジスタM15~M18は、電源電圧がVdhで、ゲート酸化膜がコアトランジスタよりも厚いトランジスタである。  Next, an example of the word line driving circuit 5 that realizes the above operation will be described. FIG. 5 is a circuit diagram showing an example of the configuration of the word line driving circuit in FIGS. 4A to 4C. The word line driving circuit 5 includes a row decoder 22 that selects a word line WLj (j = 0, 1,...), A word driver 21j (j = 0, 1,...) That supplies a boost voltage Vdh to the word line WLj. Have The row decoder 22 includes transistors M11 to M13 and M14j (j = 0, 1,...). The transistors M11 to M13 and M14j are core transistors whose power supply voltage is Vdd. The transistor M14j is provided corresponding to the word line WLj. The word driver 21j is provided corresponding to the word line WLj and includes transistors M15 to M18. The transistors M15 to M18 are transistors whose power supply voltage is Vdh and whose gate oxide film is thicker than the core transistor.
 続いて、図5及び図6を用いてワード線駆動回路5の動作について説明する。ただし、図6は、図5のワード線駆動回路の入力信号及び出力信号を示すタイミングチャートである。ここで、信号RPは、ロウ・プリチャージ信号であり、その振幅は電圧Vdhである。信号X01ej、X234、X567、X89は、入力されたロウアドレスをプリデコードした信号であり、それらの振幅は電圧Vddである。ここでX01ej信号は、下位2ビットのロウアドレスをデコードした信号とアクセス・イネーブル信号とのAND論理をとったものである。信号WLjは、ワード線WLjに印加される電圧を示し、その振幅は電圧Vdhである。 Subsequently, the operation of the word line driving circuit 5 will be described with reference to FIGS. However, FIG. 6 is a timing chart showing input signals and output signals of the word line driving circuit of FIG. Here, the signal RP is a low precharge signal, and its amplitude is the voltage Vdh. Signals X01ej, X234, X567, and X89 are signals obtained by predecoding the input row address, and their amplitude is the voltage Vdd. Here, the X01ej signal is an AND logic of a signal obtained by decoding a low-order two-bit row address and an access enable signal. Signal WLj indicates a voltage applied to word line WLj, and its amplitude is voltage Vdh.
 スタンバイ状態では、信号X01ejがローレベル(0V)、信号RPもローレベルである。従って、トランジスタM14jはオフ状態、トランジスタM18はオン状態である。それにより、端子WLBは電圧Vdhにハイプリチャージされるので、ワード線WLjにはローレベル(0V)が出力される。トランジスタM17は、端子WLBをハイレベル(電圧Vdh)に保持するために設けられており、そのW/L(W:ゲート幅、Lゲート長)は他のトランジスタよりもずっと小さい。 In the standby state, the signal X01ej is at a low level (0 V), and the signal RP is also at a low level. Therefore, the transistor M14j is off and the transistor M18 is on. As a result, the terminal WLB is precharged to the voltage Vdh, so that a low level (0 V) is output to the word line WLj. The transistor M17 is provided to hold the terminal WLB at a high level (voltage Vdh), and its W / L (W: gate width, L gate length) is much smaller than other transistors.
 書き込み命令、及び、読み出し命令が入力されると、信号RPがハイレベル(電圧Vdh)となってM18がオフ状態となる。続いて、信号X234、X567、X89がハイレベル(電圧Vdd)の状態で、信号X01ejがハイレベル(電圧Vdd)になる。そうすると、トランジスタM11~M14の全てがオン状態となり、端子WLBはローレベルに遷移する。それにより、トランジスタM17はオフ状態となり、ワード線WLjはハイレベル(電圧Vdh)となる。すなわち、ワード線WLjに電圧Vdhが印加される。その後、書き込み動作、及び、読み出し動作が終了すると、信号X01eがローレベル、信号RPがローレベルとなる。そうすると、トランジスタM14がオフ状態、トランジスタM18がオン状態となる。それにより、端子WLBはハイレベル(電圧Vdh)に遷移し、ワード線WLjはローレベルとなる。 When a write command and a read command are input, the signal RP becomes high level (voltage Vdh), and M18 is turned off. Subsequently, while the signals X234, X567, and X89 are at a high level (voltage Vdd), the signal X01ej is at a high level (voltage Vdd). Then, all of the transistors M11 to M14 are turned on, and the terminal WLB transitions to a low level. Accordingly, the transistor M17 is turned off, and the word line WLj is set to the high level (voltage Vdh). That is, the voltage Vdh is applied to the word line WLj. After that, when the writing operation and the reading operation are finished, the signal X01e becomes low level and the signal RP becomes low level. Then, the transistor M14 is turned off and the transistor M18 is turned on. As a result, the terminal WLB changes to the high level (voltage Vdh), and the word line WLj becomes the low level.
 次に、上記動作を実現するビット線駆動回路7の一例について説明する。図7は、図4A~図4Cにおけるビット線駆動回路の構成の一例を示す回路図である。ビット線駆動回路7は、ライトビット線WBLk(k=0、1、…)、/WBLk、リードビット線RBLk(k=0、1、…)を選択するカラムデコーダ24k(k=0、1、…)及びセレクタ25k(k=0、1、…)と、ライトビット線WBLk、/WBLkに所定の電圧を供給するライトドライバ26k(k=0、1、…)とを有する。カラムデコーダ24kは、ライトビット線WBLk、/WBLk、リードビット線RBLkに対応して設けられている。二つのAND回路を有する。セレクタ25kは、ライトビット線WBLk、/WBLk、リードビット線RBLkに対応して設けられている。トランジスタM20、M21を備える。ライトドライバ26kは、ライトビット線WBLk、/WBLk、リードビット線RBLkに対応して設けられている。二つのAND回路及び二つのNOR回路を有する。 Next, an example of the bit line driving circuit 7 that realizes the above operation will be described. FIG. 7 is a circuit diagram showing an example of the configuration of the bit line driving circuit in FIGS. 4A to 4C. The bit line driving circuit 7 includes a column decoder 24k (k = 0, 1,...) That selects the write bit lines WBLk (k = 0, 1,...), / WBLk, and the read bit lines RBLk (k = 0, 1,. And a selector 25k (k = 0, 1,...) And a write driver 26k (k = 0, 1,...) For supplying a predetermined voltage to the write bit lines WBLk, / WBLk. The column decoder 24k is provided corresponding to the write bit lines WBLk, / WBLk and the read bit line RBLk. It has two AND circuits. The selector 25k is provided corresponding to the write bit lines WBLk, / WBLk and the read bit line RBLk. Transistors M20 and M21 are provided. The write driver 26k is provided corresponding to the write bit lines WBLk, / WBLk and the read bit line RBLk. It has two AND circuits and two NOR circuits.
 続いて、図7及び図8を用いてビット線駆動回路7の動作について説明する。ただし、図8及び図9は、図7のビット線駆動回路の入力信号及び出力信号を示すタイミングチャートである。ここで、信号Yiは入力されたカラムアドレスをデコードした信号である。信号WEはライト・イネーブル信号である。信号REはリード・イネーブル信号である。信号CPはカラム・プリチャージ信号である。信号Dinはデータ入力信号である。信号SAINは読み出し回路の入力端子であり、Vcにクランプされている。 Subsequently, the operation of the bit line driving circuit 7 will be described with reference to FIGS. 8 and FIG. 9 are timing charts showing input signals and output signals of the bit line driving circuit of FIG. Here, the signal Yi is a signal obtained by decoding the input column address. Signal WE is a write enable signal. The signal RE is a read enable signal. The signal CP is a column precharge signal. The signal Din is a data input signal. The signal SAIN is an input terminal of the readout circuit and is clamped at Vc.
 スタンバイ状態では、信号WEと信号REは共にローレベル(0V)である。従って、端子YR、YWはローレベルである。それにより、ライトビット線WBLk、/WBLkの電圧はいずれもハイレベル(電圧Vdd)となる。また、信号CPはローレベルである。従って、トランジスタM20はオフ状態、トランジスタM21はオン状態となる。それにより、リードビット線RBLkの電圧もハイレベル(電圧Vdd)となる。 In the standby state, both the signal WE and the signal RE are at a low level (0 V). Accordingly, the terminals YR and YW are at a low level. As a result, the voltages of the write bit lines WBLk and / WBLk both become high level (voltage Vdd). Further, the signal CP is at a low level. Accordingly, the transistor M20 is turned off and the transistor M21 is turned on. As a result, the voltage of the read bit line RBLk also becomes high level (voltage Vdd).
 図8は、書き込み動作時におけるタイミングチャートを示している。書き込み命令が入力されると、信号WEと信号CPがハイレベル(電圧Vdd)になる。信号Yiがハイレベルで一のカラムが選択状態である時、端子YWはハイレベル、端子YRはローレベルとなる。よって、トランジスタM21はオフ状態となり、トランジスタM20もオフ状態のままであるので、リードビット線RBLは高インピーダンス状態(HiZ)となる。書き込みデータが“1”の場合、信号Dinがハイレベルであるので、ライトビット線WBLはハイレベル(電圧Vdd)、ライトビット線/WBLはローレベル(0V)となる。書き込みデータが“0”の場合、信号Dinがローレベルであるので、ライトビット線WBLがローレベル、ライトビット線/WBLがハイレベルとなる。即ち、書き込みデータに応じて、ライトビット線WBLとライトビット線/WBLとに相補の電圧が印加され、異なる方向に書き込み電流Iwを供給することが可能となる。書き込み動作が終了すると、信号WEと信号CPは共にローレベルとなってスタンバイ状態、即ち、ライトビット線WBL、/WBL、リードビット線RBLが全てハイレベルの状態になる。一方、Yiがローレベル(非選択状態)の時、端子YW、YR共にローレベルであるからライトビット線WBL、/WBLは共にハイレベル、リードビット線RBLは高インピーダンス状態になる。 FIG. 8 shows a timing chart during the write operation. When a write command is input, the signal WE and the signal CP become high level (voltage Vdd). When the signal Yi is at high level and one column is selected, the terminal YW is at high level and the terminal YR is at low level. Accordingly, the transistor M21 is turned off and the transistor M20 is also kept off, so that the read bit line RBL is in a high impedance state (HiZ). When the write data is “1”, since the signal Din is at a high level, the write bit line WBL is at a high level (voltage Vdd), and the write bit line / WBL is at a low level (0 V). When the write data is “0”, since the signal Din is at the low level, the write bit line WBL is at the low level and the write bit line / WBL is at the high level. That is, a complementary voltage is applied to the write bit line WBL and the write bit line / WBL according to the write data, and the write current Iw can be supplied in different directions. When the write operation is completed, both the signal WE and the signal CP become low level, and the standby state, that is, the write bit lines WBL and / WBL and the read bit line RBL all become high level. On the other hand, when Yi is at a low level (non-selected state), both the terminals YW and YR are at a low level, so that both the write bit lines WBL and / WBL are at a high level and the read bit line RBL is in a high impedance state.
 図9は、読み出し動作時におけるタイミングチャートを示している。読み出し命令が入力されると、信号REと信号CPがハイレベル(電圧Vdd)になる。信号Yiがハイレベルで一のカラムが選択状態である時、端子YWはローレベル、端子YRがハイレベルとなる。よって、トランジスタM21がオフ状態となり、トランジスタM20はオン状態となるので、リードビット線RBLはVcにクランプされる。同時にライトビット線WBL、/WBLは共にローレベル(0V)になる。従って、選択セルの磁気抵抗素子11に読み出し電流Isが流れ、読み出し回路により検出される。一方、信号Yiがローレベル(非選択状態)の時、端子YW、YR共にローレベルであるからライトビット線WBL、/WBLは共にハイレベル、リードビット線RBLは高インピーダンス状態になる。 FIG. 9 shows a timing chart during the read operation. When a read command is input, the signal RE and the signal CP become high level (voltage Vdd). When the signal Yi is at high level and one column is selected, the terminal YW is at low level and the terminal YR is at high level. Accordingly, the transistor M21 is turned off and the transistor M20 is turned on, so that the read bit line RBL is clamped to Vc. At the same time, both the write bit lines WBL and / WBL become low level (0 V). Therefore, the read current Is flows through the magnetoresistive element 11 of the selected cell and is detected by the read circuit. On the other hand, when the signal Yi is at the low level (non-selected state), both the terminals YW and YR are at the low level, so that both the write bit lines WBL and / WBL are in the high level and the read bit line RBL is in the high impedance state.
 なお、本実施の形態において、書き込み動作時及び読み出し動作時において、非選択カラムのライトビット線WBL、/WBLを電圧Vddにハイプリチャージした後で高インピーダンス状態(HiZ)にしても良い。図10は、そのような動作を実現するビット線駆動回路の構成の他の一例を示す回路図である。本ビット線駆動回路7は、図7と比較して、ライトドライバ26kだけが異なっている。ライトドライバ26kは、クロックトインバータINV1、INV1b、インバータ、トランジスタM22、M23、M22b、M23bを備える。 In this embodiment, the write bit lines WBL and / WBL of the non-selected column may be set to the high impedance state (HiZ) after high precharging to the voltage Vdd during the write operation and the read operation. FIG. 10 is a circuit diagram showing another example of the configuration of the bit line driving circuit that realizes such an operation. The bit line drive circuit 7 is different from FIG. 7 only in the write driver 26k. The write driver 26k includes clocked inverters INV1, INV1b, an inverter, and transistors M22, M23, M22b, M23b.
 スタンバイ状態では、信号WEと信号RE、信号CPは共にローレベルである。従って、端子YW、YRは共にローレベルとなる。この時、クロックトインバータINV1、INV1bは端子YWがローレベルであるから高インピーダンス状態である。そして、トランジスタM23、M23bはオン状態、M22、M22bはオフ状態である。従って、ライトビット線WBL、/WBLはハイレベル(電圧Vdd)にプリチャージされる。また、トランジスタM20はオフ状態、トランジスタM21はオン状態である。従って、リードビット線RBLもハイレベル(電圧Vdd)にプリチャージされる。  In the standby state, the signal WE, the signal RE, and the signal CP are both at a low level. Accordingly, both the terminals YW and YR are at a low level. At this time, the clocked inverters INV1 and INV1b are in a high impedance state because the terminal YW is at a low level. The transistors M23 and M23b are on, and M22 and M22b are off. Accordingly, the write bit lines WBL and / WBL are precharged to a high level (voltage Vdd). The transistor M20 is off and the transistor M21 is on. Accordingly, the read bit line RBL is also precharged to a high level (voltage Vdd).
 書き込み命令が入力され、信号WEがハイレベルになった場合の動作を説明する。選択カラムにおいては信号Yiがハイレベルとなり、よって、端子YWはハイレベルとなる。この時、クロックトインバータINV1、INV1bは書き込みデータDinに応じてライトビット線WBL、/WBLのいずれか一方にハイレベル(電圧Vdd)、他方にローレベル(0V)を出力する。非選択カラムにおいては信号Yiがローレベルであるから、端子YWはローレベルである。よって、クロックトインバータINV1、INV1bは高インピーダンス状態である。端子YRはローレベルであるからトランジスタM20、M22、M22bはオフ状態となる。一方、信号CPはハイレベルであるからトランジスタM21、M23、M23bもオフ状態となる。即ち、非選択カラムのライトビット線WBL、/WBLは電圧Vddを維持したまま高インピーダンス状態となる。また、書き込み動作時におけるリードビット線RBLは選択/非選択に関わらず高インピーダンス状態となる。  The operation when the write command is input and the signal WE becomes high level will be described. In the selected column, the signal Yi is at a high level, and thus the terminal YW is at a high level. At this time, the clocked inverters INV1 and INV1b output a high level (voltage Vdd) to one of the write bit lines WBL and / WBL and a low level (0 V) to the other in accordance with the write data Din. Since the signal Yi is at a low level in the non-selected column, the terminal YW is at a low level. Therefore, the clocked inverters INV1 and INV1b are in a high impedance state. Since the terminal YR is at a low level, the transistors M20, M22, and M22b are turned off. On the other hand, since the signal CP is at a high level, the transistors M21, M23, and M23b are also turned off. That is, the write bit lines WBL and / WBL in the non-selected column are in a high impedance state while maintaining the voltage Vdd. In addition, the read bit line RBL in the write operation is in a high impedance state regardless of selection / non-selection.
 次に、読み出し命令が入力され、信号REがハイレベルになった時の動作を説明する。選択カラムにおいては信号Yiがハイレベルとなり、よって、端子YRはハイレベルとなる。この時、トランジスタM20はオン状態、トランジスタM22、M22bもオン状態となる。また、信号CPはハイレベルであるから、トランジスタM21はオフ状態、トランジスタM23、M23bもオフ状態である。また、端子YWはローレベルであるからクロックトインバータINV1、INV1bは高インピーダンスを出力する。即ち、リードビット線RBLは読み出し回路と接続されてクランプ電圧Vcにクランプされ、且つ、ライトビット線WBL、/WBLはローレベルになる。非選択カラムにおいては信号Yiがローレベルであり、端子YRもローレベルである。よって、トランジスタM20はオフ状態になり、リードビット線RBLは読み出し回路と切断され、高インピーダンス状態となる。また、トランジスタM22、M22bもオフ状態となり、ライトビット線WBL、/WBLは電圧Vddを維持したまま高インピーダンス状態となる。  Next, the operation when a read command is input and the signal RE becomes high level will be described. In the selected column, the signal Yi is at a high level, and thus the terminal YR is at a high level. At this time, the transistor M20 is turned on, and the transistors M22 and M22b are also turned on. Further, since the signal CP is at a high level, the transistor M21 is in an off state, and the transistors M23 and M23b are also in an off state. Further, since the terminal YW is at a low level, the clocked inverters INV1 and INV1b output high impedance. That is, the read bit line RBL is connected to the read circuit and clamped at the clamp voltage Vc, and the write bit lines WBL and / WBL are at the low level. In the non-selected column, the signal Yi is at a low level, and the terminal YR is also at a low level. Accordingly, the transistor M20 is turned off, and the read bit line RBL is disconnected from the read circuit and is in a high impedance state. The transistors M22 and M22b are also turned off, and the write bit lines WBL and / WBL are in a high impedance state while maintaining the voltage Vdd.
 以上説明した第1の実施の形態によれば、セルトランジスタM1、M2のゲート酸化膜の信頼性を確保しつつ、ワードブースト効果によるセル面積の縮小化を図ることが出来る。つまり、非選択カラムのビット線電位をVddに維持することで、ゲート酸化膜に過剰電圧が印加された状態のメモリセルの個数を選択メモリセルのみに減らすことができる。その結果、磁気ランダムアクセスメモリにおける読み出し回数や書き込み回数を向上させることが出来る。 According to the first embodiment described above, the cell area can be reduced by the word boost effect while ensuring the reliability of the gate oxide films of the cell transistors M1 and M2. That is, by maintaining the bit line potential of the unselected column at Vdd, the number of memory cells in the state where an excessive voltage is applied to the gate oxide film can be reduced to only the selected memory cell. As a result, the number of reads and writes in the magnetic random access memory can be improved.
 本実施の形態は、本発明の技術思想の範囲内において適宜変更され得る。例えば、読み出し動作時において、選択カラムのライトビット線WBL、/WBLに接地電圧Gndと電源電圧Vddとの中間値Vmを印加し、リードビット線RBLに(Vm+Vc)を印加するビット線駆動回路7を適用することも可能である。 This embodiment can be appropriately changed within the scope of the technical idea of the present invention. For example, in a read operation, the bit line drive circuit 7 applies an intermediate value Vm between the ground voltage Gnd and the power supply voltage Vdd to the write bit lines WBL, / WBL of the selected column and applies (Vm + Vc) to the read bit line RBL. It is also possible to apply.
(第2の実施の形態) 
 本発明の第2の実施の形態に係る磁気ランダムアクセスメモリの構成について説明する。図11A~図11Cは、本発明の第2の実施の形態に係る磁気ランダムアクセスメモリの構成を示すブロック図である。本実施の形態は、メモリセルCがスピン注入書き込み方式を用いている点で、第1の実施の形態と異なる。それに伴い、メモリセルCの構成及びビット線駆動回路7の構成、及びビット線の構成が第1の実施の形態と異なっている。磁気ランダムアクセスメモリ1は、メモリアレイ3と、複数のワード線WLと、複数のビット線BL及び複数のビット線/BLと、ワード線駆動回路5と、ビット線駆動回路7とを具備している。
(Second Embodiment)
The configuration of the magnetic random access memory according to the second embodiment of the present invention will be described. 11A to 11C are block diagrams showing the configuration of the magnetic random access memory according to the second embodiment of the present invention. This embodiment is different from the first embodiment in that the memory cell C uses a spin injection writing method. Accordingly, the configuration of the memory cell C, the configuration of the bit line driving circuit 7, and the configuration of the bit line are different from those of the first embodiment. The magnetic random access memory 1 includes a memory array 3, a plurality of word lines WL, a plurality of bit lines BL and a plurality of bit lines / BL, a word line driving circuit 5, and a bit line driving circuit 7. Yes.
 メモリアレイ3は、行列状に配置された複数のメモリセルC(C00、C01、…、C10、C11、…)を備えている。ただし、本図では、説明の便宜上、2行2列のメモセルCのみを図示している。複数のワード線WL(WL0、WL1、…)は、X方向に、互いに平行に延在している。また、Y方向に並んで配置されている。複数のビット線BL(BL0、BL1、…)及び複数のビット線/BL(/BL0、/BL1、…)は、Y方向に、互いに平行に延在している。また、X方向に並んで配置されている。隣接するビット線BL(例示:BL0)とビット線/BL(例示:/BL0)とは対を成している。 The memory array 3 includes a plurality of memory cells C (C00, C01,..., C10, C11,...) Arranged in a matrix. However, in this drawing, for convenience of explanation, only the memo cells C in 2 rows and 2 columns are shown. The plurality of word lines WL (WL0, WL1,...) Extend in parallel to each other in the X direction. Moreover, it arrange | positions along with the Y direction. The plurality of bit lines BL (BL0, BL1,...) And the plurality of bit lines / BL (/ BL0, / BL1,...) Extend in parallel to each other in the Y direction. Moreover, it arrange | positions along with the X direction. Adjacent bit line BL (example: BL0) and bit line / BL (example: / BL0) form a pair.
 ワード線駆動回路5は、複数のワード線WLから選択ワード線WLを選択する。例えば、選択ワード線WLを、所定の電圧レベルの状態にする。ワード線駆動回路5は、少なくともロウデコーダ及びワードドライバの機能を有する。ビット線駆動回路7は、複数のビット線BLと複数のビット線/BLから選択ビット線BL及び選択ビット線/BLを選択する。例えば、選択ビット線BL及び選択ビット線/BLを、それぞれ所定の電圧レベルの状態にする。ビット線駆動回路7は、少なくともカラムデコーダ及びライト・リードドライバとしての機能を有する。 The word line driving circuit 5 selects a selected word line WL from a plurality of word lines WL. For example, the selected word line WL is set to a predetermined voltage level. The word line driving circuit 5 has at least functions of a row decoder and a word driver. The bit line driving circuit 7 selects the selected bit line BL and the selected bit line / BL from the plurality of bit lines BL and the plurality of bit lines / BL. For example, each of the selected bit line BL and the selected bit line / BL is set to a predetermined voltage level. The bit line driving circuit 7 has at least functions as a column decoder and a write / read driver.
 メモリセルCは、第1選択トランジスタM1と、磁気抵抗素子11とを備えている。すなわち、このメモリセルCは、1T1MTJセル構成である。第1選択トランジスタM1は、ゲートを複数のワード線WLのうちの対応するものに、一方のソース/ドレインを複数のビット線BLのうちの対応するものに、それぞれ接続されている。磁気抵抗素子11は、MTJ素子に例示され、一端を第1選択トランジスタM1の他方のソース/ドレインに、他端を複数のビット線/BLのうちの対応するものに、それぞれ接続されている。 The memory cell C includes a first selection transistor M1 and a magnetoresistive element 11. That is, the memory cell C has a 1T1MTJ cell configuration. The first selection transistor M1 has a gate connected to a corresponding one of the plurality of word lines WL, and one source / drain connected to a corresponding one of the plurality of bit lines BL. The magnetoresistive element 11 is exemplified as an MTJ element, and one end is connected to the other source / drain of the first selection transistor M1, and the other end is connected to a corresponding one of the plurality of bit lines / BL.
 次に、本発明の第2の実施の形態に係る磁気ランダムアクセスメモリの動作方法について説明する。
 図11Aは、この磁気ランダムアクセスメモリのスタンバイ状態を示している。図11Aに示されるスタンバイ状態においては、ワード線駆動回路5は、ワード線WLを接地(Gnd)している。ビット線駆動回路7は、ビット線BL、/BLを共に電源電圧Vddにプリチャージしている。
Next, an operation method of the magnetic random access memory according to the second embodiment of the present invention will be described.
FIG. 11A shows a standby state of the magnetic random access memory. In the standby state shown in FIG. 11A, the word line driving circuit 5 grounds the word line WL (Gnd). The bit line drive circuit 7 precharges both the bit lines BL and / BL to the power supply voltage Vdd.
 図11B及び図11Cは、この磁気ランダムアクセスメモリの書き込み動作及び読み出し動作をそれぞれ示している。図11B及び図11Cでは、いずれも一例として、ワード線駆動回路5が選択ワード線WLとしてワード線WL0を選択し、ビット線駆動回路7が選択ビット線BL、/BLとしてそれぞれビット線BL0、/BL0を選択している。それにより、選択ワード線WLと選択ビット線BL、/BLとの交点に位置するメモリセルC00が選択された状態(選択セル=メモリセルC00)を示している。このとき、メモリセルC01は選択行と非選択列との交点にある非選択セル、メモリセルC10は非選択行と選択列との交点にある非選択セル、メモリセルC11は非選択行と非選択列の交点にある非選択セルをそれぞれ表している。  FIG. 11B and FIG. 11C show the write operation and read operation of this magnetic random access memory, respectively. 11B and 11C, as an example, the word line driving circuit 5 selects the word line WL0 as the selected word line WL, and the bit line driving circuit 7 selects the bit lines BL0, / BL as the selected bit lines BL and / BL, respectively. BL0 is selected. Thereby, the memory cell C00 located at the intersection of the selected word line WL and the selected bit line BL, / BL is selected (selected cell = memory cell C00). At this time, the memory cell C01 is a non-selected cell at the intersection of the selected row and the non-selected column, the memory cell C10 is a non-selected cell at the intersection of the non-selected row and the selected column, and the memory cell C11 is non-selected. Each of the non-selected cells at the intersection of the selected column is shown.
 まず、書き込み動作時における選択セルC00に着目する。図11Bに示されるように、ワード線駆動回路5は、選択ワード線WL0に電源電圧Vddよりも高いブースト電圧Vdh(>Vdd)を印加する。同時に、ビット線駆動回路7は、選択ビット線BL0と選択ビット線/BL0との間に電位差が生じるように、選択ビット線BL0及び選択ビット線/BLの電圧を制御する。例えば、選択ビット線BL0及び選択ビット線/BL0のうちのどちらか一方に電源電圧Vddを印加し、他方を接地(Gnd)する。選択ビット線BL0及び選択ビット線/BL0のうちのどちらを接地するかは書き込みデータに応じて決定される。例えば、書き込みデータが“1”の場合、選択ビット線/BL0を接地する。一方、書き込みデータが“0”の場合、選択ビット線BL0を接地する。選択セルC00のセルトランジスタM1のゲート-ソース電圧には、その閾値電圧Vth以上の電圧Vdhが印加されるため、そのセルトランジスタM1はオン状態となる。従って、書き込み電流Iwは、選択ビット線BL0(又は選択ビット線/BL0)から選択セルC00を導通して選択ビット線/BL0(又は選択ビット線BL0)に流れる。この書き込み動作では電源電圧Vddよりも高いブースト電圧VdhをセルトランジスタM1に印加することで、セルトランジスタM1のオン電流を実質的に上げ、より大きな書き込み電流Iwを選択セルC00に駆動することが可能となる。 First, attention is focused on the selected cell C00 during the write operation. As shown in FIG. 11B, the word line drive circuit 5 applies a boost voltage Vdh (> Vdd) higher than the power supply voltage Vdd to the selected word line WL0. At the same time, the bit line driving circuit 7 controls the voltages of the selected bit line BL0 and the selected bit line / BL so that a potential difference is generated between the selected bit line BL0 and the selected bit line / BL0. For example, the power supply voltage Vdd is applied to one of the selected bit line BL0 and the selected bit line / BL0, and the other is grounded (Gnd). Which of the selected bit line BL0 and the selected bit line / BL0 is grounded is determined according to the write data. For example, when the write data is “1”, the selected bit line / BL0 is grounded. On the other hand, when the write data is “0”, the selected bit line BL0 is grounded. Since the voltage Vdh equal to or higher than the threshold voltage Vth is applied to the gate-source voltage of the cell transistor M1 of the selected cell C00, the cell transistor M1 is turned on. Accordingly, the write current Iw flows from the selected bit line BL0 (or selected bit line / BL0) to the selected bit line / BL0 (or selected bit line BL0) through the selected cell C00. In this write operation, by applying a boost voltage Vdh higher than the power supply voltage Vdd to the cell transistor M1, it is possible to substantially increase the on-current of the cell transistor M1 and drive a larger write current Iw to the selected cell C00. It becomes.
 次に、書き込み動作時における非選択セルC01に着目する。ビット線駆動回路7は、非選択列のビット線BL1、/BLを共に高インピーダンス状態、又は、電源電圧Vddを印加した状態にする。ここで、ブースト電圧Vdh>(電源電圧Vdd+閾値電圧Vth)の場合、非選択セルC01のセルトランジスタM1はオン状態である。しかし、ビット線BL1とビット線/BL1との間の電位差はゼロである。従って、書き込み電流Iwは非選択セルC01を導通しない。また、非選択セルC01のセルトランジスタM1のゲート酸化膜には(ブースト電圧Vdh-電源電圧Vdd)が印加された状態である。即ち、過剰な電圧(ブースト電圧Vdh)が印加されていない。従って、非選択セルC01のセルトランジスタM1のゲート酸化膜に過剰な電界がかかっていない。これにより、セルトランジスタM1の信頼性を維持することが出来る。また、ブースト電圧Vdh<(電源電圧Vdd+閾値電圧Vth)に設計することがより望ましい。非選択セルC01のセルトランジスタM1をオフ状態にできるからである。 Next, attention is paid to the non-selected cell C01 during the write operation. The bit line driving circuit 7 brings both the bit lines BL1 and / BL of the non-selected columns into a high impedance state or a state in which the power supply voltage Vdd is applied. Here, when the boost voltage Vdh> (power supply voltage Vdd + threshold voltage Vth), the cell transistor M1 of the non-selected cell C01 is in the ON state. However, the potential difference between the bit line BL1 and the bit line / BL1 is zero. Therefore, the write current Iw does not conduct the non-selected cell C01. Further, (boost voltage Vdh−power supply voltage Vdd) is applied to the gate oxide film of the cell transistor M1 of the non-selected cell C01. That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide film of the cell transistor M1 of the non-selected cell C01. Thereby, the reliability of the cell transistor M1 can be maintained. It is more desirable to design the boost voltage Vdh <(power supply voltage Vdd + threshold voltage Vth). This is because the cell transistor M1 of the non-selected cell C01 can be turned off.
 更に、書き込み動作時における非選択セルC10、C11に着目する。ワード線駆動回路5は、非選択行のワード線WL1を接地(Gnd)した状態にする。従って、非選択セルC10、C11のセルトランジスタM1はオフ状態である。従って、非選択セルC10、C11に書き込み電流Iwは導通しない。また、非選択セルC10、C11のセルトランジスタM1のゲート酸化膜は接地(Gnd)された状態である。即ち、過剰な電圧(ブースト電圧Vdh)が印加されていない。従って、非選択セルC10、C11のセルトランジスタM2のゲート酸化膜に過剰な電界がかかっていない。これにより、セルトランジスタM1の信頼性を維持することが出来る。 Furthermore, attention is paid to the non-selected cells C10 and C11 during the write operation. The word line driving circuit 5 brings the word line WL1 of the non-selected row to a grounded (Gnd) state. Accordingly, the cell transistors M1 of the non-selected cells C10 and C11 are in the off state. Therefore, the write current Iw is not conducted to the non-selected cells C10 and C11. Further, the gate oxide films of the cell transistors M1 of the non-selected cells C10 and C11 are grounded (Gnd). That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M2 of the non-selected cells C10 and C11. Thereby, the reliability of the cell transistor M1 can be maintained.
 次に、読み出し動作時における選択セルC00に着目する。図11Cに示されるように、書き込み動作時と同様に、ワード線駆動回路5は、選択ワード線WL0にブースト電圧Vdh(>Vdd)を印加する。同時に、ビット線駆動回路7は、磁気抵抗素子11の一端と他端との間に電位差が生じるように、少なくとも選択ビット線BLの電圧を制御する。例えば、一方の選択ビット線BL0にクランプ電圧Vcを印加し、他方の選択ビット線/BL0を接地(Gnd)する。クランプ電圧Vcは、ビット線駆動回路7内(又は外)の読み出し回路(図示されず)により印加される。この時、選択セルC00のセルトランジスタM1がオン状態となり、磁気抵抗素子11にほぼクランプ電圧Vcが印加された状態で、選択セルC00に読み出し電流(センス電流)Isが流れる。 Next, attention is focused on the selected cell C00 during the read operation. As shown in FIG. 11C, as in the write operation, the word line drive circuit 5 applies the boost voltage Vdh (> Vdd) to the selected word line WL0. At the same time, the bit line driving circuit 7 controls at least the voltage of the selected bit line BL so that a potential difference is generated between one end and the other end of the magnetoresistive element 11. For example, the clamp voltage Vc is applied to one selected bit line BL0, and the other selected bit line / BL0 is grounded (Gnd). The clamp voltage Vc is applied by a read circuit (not shown) in (or outside) the bit line drive circuit 7. At this time, the cell transistor M1 of the selected cell C00 is turned on, and a read current (sense current) Is flows through the selected cell C00 with the clamp voltage Vc applied to the magnetoresistive element 11.
 次に、読み出し動作時における非選択セルC01に着目する。ビット線駆動回路7は、非選択列のビット線/BL1を高インピーダンス状態、ビット線BL1に電源電圧Vddを印加した状態にする。ここで、ブースト電圧Vdh>(電源電圧Vdd+閾値電圧Vth)の場合、非選択セルC01のセルトランジスタM1はオン状態である。しかし、ビット線BL1と読み出し回路(図示されず)とは電気的に切断される。従って、読み出し電流Isは、非選択セルC01を流れない。このとき、非選択セルC01のセルトランジスタM1のゲート酸化膜には電圧(ブースト電圧Vdh-電源電圧Vdd)が印加された状態である。即ち、過剰な電圧(ブースト電圧Vdh)が印加されていない。従って、非選択セルC01のセルトランジスタM1のゲート酸化膜に過剰な電界がかかっていない。これにより、セルトランジスタM1の信頼性を維持することが出来る。また、ブースト電圧Vdh<(電源電圧Vdd+閾値電圧Vth)の場合、ビット線/BL1にVddを印加した状態でも良い。この時、非選択セルC01のセルトランジスタM1のゲート-ソース電圧はVth以下であるのでオフ状態であり、読み出し電流Isは流れない。 Next, attention is paid to the non-selected cell C01 during the read operation. The bit line driving circuit 7 sets the bit line / BL1 in the non-selected column to a high impedance state and applies the power supply voltage Vdd to the bit line BL1. Here, when the boost voltage Vdh> (power supply voltage Vdd + threshold voltage Vth), the cell transistor M1 of the non-selected cell C01 is in the ON state. However, the bit line BL1 and the read circuit (not shown) are electrically disconnected. Therefore, the read current Is does not flow through the non-selected cell C01. At this time, a voltage (boost voltage Vdh-power supply voltage Vdd) is applied to the gate oxide film of the cell transistor M1 of the non-selected cell C01. That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide film of the cell transistor M1 of the non-selected cell C01. Thereby, the reliability of the cell transistor M1 can be maintained. When boost voltage Vdh <(power supply voltage Vdd + threshold voltage Vth), Vdd may be applied to bit line / BL1. At this time, since the gate-source voltage of the cell transistor M1 of the non-selected cell C01 is equal to or lower than Vth, the cell transistor M1 is in an off state and the read current Is does not flow.
 更に、読み出し動作時における非選択セルC10、C11に着目する。ワード線駆動回路5は、非選択行のワード線WL1は接地(Gnd)した状態にする。従って、非選択セルC10、C11のセルトランジスタM1はオフ状態である。従って、非選択セルC10、C11に読み出し電流Isは流れない。また、非選択セルC10、C11のセルトランジスタM1のゲート酸化膜は接地(Gnd)された状態である。即ち、過剰な電圧(ブースト電圧Vdh)が印加されていない。従って、非選択セルC10、C11のセルトランジスタM1のゲート酸化膜に過剰な電界がかかっていない。これにより、セルトランジスタM1の信頼性を維持することが出来る。 Furthermore, attention is paid to the non-selected cells C10 and C11 during the read operation. The word line driving circuit 5 brings the word line WL1 of the non-selected row to the ground (Gnd) state. Accordingly, the cell transistors M1 of the non-selected cells C10 and C11 are in the off state. Accordingly, the read current Is does not flow through the non-selected cells C10 and C11. Further, the gate oxide films of the cell transistors M1 of the non-selected cells C10 and C11 are grounded (Gnd). That is, an excessive voltage (boost voltage Vdh) is not applied. Therefore, an excessive electric field is not applied to the gate oxide films of the cell transistors M1 of the non-selected cells C10 and C11. Thereby, the reliability of the cell transistor M1 can be maintained.
 上記動作を実現するロウ系のワード線駆動回路5の一例は先に例示した図5(及び図6)と同じものが使用できる。従って、ワード線駆動回路5に関する説明は省略する。 An example of the row-related word line driving circuit 5 that realizes the above operation can be the same as that of FIG. 5 (and FIG. 6) exemplified above. Therefore, the description regarding the word line driving circuit 5 is omitted.
 次に、上記動作を実現するビット線駆動回路7の一例について説明する。図12は、図11A~図11Cにおけるビット線駆動回路の構成の一例を示す回路図である。ビット線駆動回路7は、ビット線BLk(k=0、1、…)、/BLkを選択するカラムデコーダ24k(k=0、1、…)及びセレクタ25k(k=0、1、…)と、ビット線BLk、/BLkに所定の電圧を供給するライトドライバ26k(k=0、1、…)とを有する。カラムデコーダ24kは、ビット線BLk、/BLkに対応して設けられている。二つのAND回路を有する。セレクタ25kは、ビット線BLk、/BLkに対応して設けられている。トランジスタM20を備える。ライトドライバ26kは、ビット線BLk、/BLkに対応して設けられている。クロックトインバータINV1、INVb、インバータ、トランジスタM22、M23,M23bを有する。 Next, an example of the bit line driving circuit 7 that realizes the above operation will be described. FIG. 12 is a circuit diagram showing an example of the configuration of the bit line driving circuit in FIGS. 11A to 11C. The bit line drive circuit 7 includes a column decoder 24k (k = 0, 1,...) And a selector 25k (k = 0, 1,...) For selecting the bit lines BLk (k = 0, 1,...), / BLk. , And a write driver 26k (k = 0, 1,...) For supplying a predetermined voltage to the bit lines BLk, / BLk. The column decoder 24k is provided corresponding to the bit lines BLk and / BLk. It has two AND circuits. The selector 25k is provided corresponding to the bit lines BLk and / BLk. A transistor M20 is provided. The write driver 26k is provided corresponding to the bit lines BLk and / BLk. Clocked inverters INV1 and INVb, inverters, transistors M22, M23, and M23b are included.
 続いて、図12を用いてビット線駆動回路7の動作について説明する。
 スタンバイ状態において、信号WE、信号RE、信号CPは共にローレベル(0V)である。従って、端子YW、YRは共にローレベルとなる。この時、クロックトインバータINV1、INV1bは端子YWがローレベルであるから高インピーダンス状態である。そして、トランジスタM20、M22はオフ状態、トランジスタM23、M23bはオン状態となる。それにより、ビット線BL、/BLは共にハイレベル(電圧Vdd)にプリチャージされる。
Next, the operation of the bit line driving circuit 7 will be described with reference to FIG.
In the standby state, the signal WE, the signal RE, and the signal CP are all at a low level (0 V). Accordingly, both the terminals YW and YR are at a low level. At this time, the clocked inverters INV1 and INV1b are in a high impedance state because the terminal YW is at a low level. Then, the transistors M20 and M22 are turned off, and the transistors M23 and M23b are turned on. Thereby, both the bit lines BL and / BL are precharged to a high level (voltage Vdd).
 次に、書き込み命令が入力され、信号WEがハイレベルになった時の動作を説明する。選択カラムにおいては信号Yiがハイレベルとなり、よって、端子YWはハイレベルとなる。この時、クロックトインバータINV1、INV1bは書き込みデータDinに応じてビット線BL、/BLのいずれか一方にハイレベル(電圧Vdd)、他方にローレベル(0V)を出力する。非選択カラムにおいては信号Yiがローレベルであるから、端子YWはローレベルである。よって、クロックトインバータINV1、INV1bは高インピーダンス状態である。端子YRはローレベルであるからトランジスタM20、M22もオフ状態となる。一方、信号CPはハイレベルであるからトランジスタM23、M23bはオフ状態である。即ち、非選択カラムのビット線BL、/BLは電源電圧Vddの電圧を維持したまま高インピーダンス状態となる。 Next, the operation when the write command is input and the signal WE becomes high level will be described. In the selected column, the signal Yi is at a high level, and thus the terminal YW is at a high level. At this time, the clocked inverters INV1 and INV1b output a high level (voltage Vdd) to one of the bit lines BL and / BL and a low level (0 V) to the other in accordance with the write data Din. Since the signal Yi is at a low level in the non-selected column, the terminal YW is at a low level. Therefore, the clocked inverters INV1 and INV1b are in a high impedance state. Since the terminal YR is at a low level, the transistors M20 and M22 are also turned off. On the other hand, since the signal CP is at a high level, the transistors M23 and M23b are in an off state. That is, the bit lines BL and / BL in the non-selected column are in a high impedance state while maintaining the power supply voltage Vdd.
 次に、読み出し命令が入力され、信号REはハイレベルになった時の動作を説明する。選択カラムにおいては信号Yiがハイレベルとなり、よって、端子YRはハイレベルとなる。この時、トランジスタM20はオン状態、トランジスタM22もオン状態となる。また、信号CPはハイレベルであるから、トランジスタM23、M23bはオフ状態である。また、端子YWはローレベルであるからクロックトインバータINV1、INV1bは高インピーダンス状態である。即ち、ビット線BLは読み出し回路と接続されてクランプ電圧Vcにクランプされ、且つ、ビット線/BLはローレベルになる。非選択カラムにおいては信号Yiがローレベルであり、端子YRもローレベルとなる。よって、トランジスタM20はオフ状態となり、さらにトランジスタM23もオフ状態であるからビット線BLは読み出し回路と切断され、電源電圧Vddを維持したまま高インピーダンス状態となる。また、トランジスタM22とM23bもオフ状態であるから、ビット線/BLは電源電圧Vddの電圧を維持したまま高インピーダンス状態となる。 Next, the operation when a read command is input and the signal RE becomes high level will be described. In the selected column, the signal Yi is at a high level, and thus the terminal YR is at a high level. At this time, the transistor M20 is turned on, and the transistor M22 is also turned on. Further, since the signal CP is at a high level, the transistors M23 and M23b are in an off state. Further, since the terminal YW is at a low level, the clocked inverters INV1 and INV1b are in a high impedance state. That is, the bit line BL is connected to the read circuit and clamped to the clamp voltage Vc, and the bit line / BL becomes low level. In the non-selected column, the signal Yi is at a low level, and the terminal YR is also at a low level. Accordingly, the transistor M20 is turned off, and the transistor M23 is also turned off. Therefore, the bit line BL is disconnected from the reading circuit, and the power supply voltage Vdd is maintained and the high impedance state is maintained. Since the transistors M22 and M23b are also in the off state, the bit line / BL is in a high impedance state while maintaining the power supply voltage Vdd.
 以上説明した第2の実施の形態によれば、セルトランジスタM1のゲート酸化膜の信頼性を確保しつつ、ワードブースト効果によるセル面積の縮小化を図ることが出来る。つまり、非選択カラムのビット線電位を電源電圧Vddに維持することで、ゲート酸化膜に過剰電圧が印加された状態のメモリセルの個数を選択メモリセルのみに減らすことができる。その結果、磁気ランダムアクセスメモリにおける読み出し回数や書き込み回数を向上させることが出来る。 According to the second embodiment described above, the cell area can be reduced by the word boost effect while ensuring the reliability of the gate oxide film of the cell transistor M1. That is, by maintaining the bit line potential of the unselected column at the power supply voltage Vdd, the number of memory cells in the state where an excessive voltage is applied to the gate oxide film can be reduced to only the selected memory cell. As a result, the number of reads and writes in the magnetic random access memory can be improved.
 本実施形態は、本発明の技術思想の範囲内において適宜変更され得る。例えば、読み出し動作時において、選択カラムのビット線/BLに接地電圧と電源電圧との中間値Vmを印加し、ビット線BLに(Vm+Vc)を印加するビット線駆動回路7を適用することも可能である。 This embodiment can be changed as appropriate within the scope of the technical idea of the present invention. For example, it is possible to apply the bit line driving circuit 7 that applies an intermediate value Vm between the ground voltage and the power supply voltage to the bit line / BL of the selected column and applies (Vm + Vc) to the bit line BL during the read operation. It is.
 本発明によれば、読み書き回数を維持しつつ、より効率的にビットコストを低減可能な磁気ランダムアクセスメモリ及び磁気ランダムアクセスメモリの動作方法を提供できる。 According to the present invention, it is possible to provide a magnetic random access memory and an operation method of the magnetic random access memory that can reduce the bit cost more efficiently while maintaining the number of times of reading and writing.
 上記各実施の形態における各技術は、互いに技術的に矛盾が生じない限り、相互に適用することが可能である。 The technologies in the above embodiments can be applied to each other as long as no technical contradiction arises.
 以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2008年9月30日に出願された特許出願番号2008-255463号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。 This application is based on Japanese Patent Application No. 2008-255463 filed on Sep. 30, 2008, claiming the benefit of priority from that application, the disclosure of that application should be cited Is incorporated here as it is.

Claims (9)

  1.  複数のメモリセルが行列状に配置されたメモリアレイと、
     第1の方向に延在する複数のワード線と、
     前記第1の方向と異なる第2の方向に延在する複数の第1ビット線及び複数の第2ビット線と、
     前記複数のワード線から選択ワード線を選択するワード線駆動回路と、
     前記複数の第1ビット線と前記複数の第2ビット線から選択第1ビット線及び選択第2ビット線を選択するビット線駆動回路と
     を具備し、
     前記複数のメモリセルの各々は、
      ゲートを前記複数のワード線のうちの対応するものに、一方のソース/ドレインを前記複数の第1ビット線のうちの対応するものに接続された第1選択トランジスタと、
      前記第1選択トランジスタの他方のソース/ドレインに一端を接続された磁気抵抗素子とを備え、
     スタンバイ状態において、
      前記ワード線駆動回路は、前記複数のワード線を接地し、
      前記ビット線駆動回路は、前記複数の第1ビット線及び前記複数の第2ビット線に第1電圧を印加し、
     書き込み動作において、
      前記ワード線駆動回路は、前記選択ワード線に前記第1電圧よりも高い第2電圧を印加し、
      前記ビット線駆動回路は、前記選択第1ビット線と前記選択第2ビット線との間に電位差が生じるように、前記選択第1ビット線及び前記選択第2ビット線の電圧を制御する
     磁気ランダムアクセスメモリ。 
    A memory array in which a plurality of memory cells are arranged in a matrix;
    A plurality of word lines extending in a first direction;
    A plurality of first bit lines and a plurality of second bit lines extending in a second direction different from the first direction;
    A word line driving circuit for selecting a selected word line from the plurality of word lines;
    A bit line driving circuit for selecting a selected first bit line and a selected second bit line from the plurality of first bit lines and the plurality of second bit lines;
    Each of the plurality of memory cells includes
    A first select transistor having a gate connected to a corresponding one of the plurality of word lines and one source / drain connected to a corresponding one of the plurality of first bit lines;
    A magnetoresistive element having one end connected to the other source / drain of the first selection transistor,
    In standby state
    The word line driving circuit grounds the plurality of word lines;
    The bit line driving circuit applies a first voltage to the plurality of first bit lines and the plurality of second bit lines;
    In the write operation,
    The word line driving circuit applies a second voltage higher than the first voltage to the selected word line;
    The bit line driving circuit controls voltages of the selected first bit line and the selected second bit line so that a potential difference is generated between the selected first bit line and the selected second bit line. Access memory.
  2.  請求の範囲1に記載の磁気ランダムアクセスメモリにおいて、
     前記第2の方向に延在する複数の第3ビット線を更に具備し、
     前記ビット線駆動回路は、更に、前記複数の第3ビット線から選択第3ビット線を選択し、
     前記複数のメモリセルの各々は、
     ゲートを前記複数のワード線のうちの対応するものに、一方のソース/ドレインを前記複数の第2ビット線のうちの対応するものに接続された第2選択トランジスタを更に備え、
     前記磁気抵抗素子は、更に、前記第2選択トランジスタの他方のソース/ドレインに前記一端を接続され、他端を前記複数の第3ビット線のうちの対応するものに接続されている
     磁気ランダムアクセスメモリ。
    The magnetic random access memory according to claim 1,
    A plurality of third bit lines extending in the second direction;
    The bit line driving circuit further selects a selected third bit line from the plurality of third bit lines;
    Each of the plurality of memory cells includes
    A second select transistor having a gate connected to a corresponding one of the plurality of word lines and one source / drain connected to a corresponding one of the plurality of second bit lines;
    The magnetoresistive element further has one end connected to the other source / drain of the second selection transistor and the other end connected to a corresponding one of the plurality of third bit lines. memory.
  3.  請求の範囲1に記載の磁気ランダムアクセスメモリにおいて、
     前記複数のメモリセルの各々は、
      前記磁気抵抗素子が、前記複数の第2ビット線のうちの対応するものに他端を接続されている
     磁気ランダムアクセスメモリ。
    The magnetic random access memory according to claim 1,
    Each of the plurality of memory cells includes
    The magnetic random access memory, wherein the magnetoresistive element is connected at the other end to a corresponding one of the plurality of second bit lines.
  4.  請求の範囲1乃至3いずれか一項に記載の磁気ランダムアクセスメモリにおいて、 
     前記書き込み動作、及び、読み出し動作において、
      前記ビット線駆動回路は、前記選択第1ビット線及び前記選択第2ビット線を除く前記複数の第1ビット線及び前記複数の第2ビット線に前記第1電圧を印加する
     磁気ランダムアクセスメモリ。
    The magnetic random access memory according to any one of claims 1 to 3,
    In the write operation and the read operation,
    The bit line drive circuit applies the first voltage to the plurality of first bit lines and the plurality of second bit lines excluding the selected first bit line and the selected second bit line. Magnetic random access memory.
  5.  請求の範囲1乃至3いずれか一項に記載に記載の磁気ランダムアクセスメモリにおいて、 
     前記書き込み動作、及び、読み出し動作において、
     前記ビット線駆動回路は、前記選択第1ビット線及び前記選択第2ビット線を除く前記複数の第1ビット線及び前記複数の第2ビット線を高インピーダンス状態にする
     磁気ランダムアクセスメモリ。
    The magnetic random access memory according to any one of claims 1 to 3,
    In the write operation and the read operation,
    The bit line driving circuit sets the plurality of first bit lines and the plurality of second bit lines excluding the selected first bit line and the selected second bit line to a high impedance state. Magnetic random access memory.
  6.  請求の範囲2に記載の磁気ランダムアクセスメモリにおいて、
     読み出し動作において、
     前記ワード線駆動回路は、前記選択ワード線に前記第1電圧よりも高い第3電圧を印加し、
     前記ビット線駆動回路は、前記選択第3ビット線と、前記選択第1ビット線及び前記選択第2ビット線との間に電位差が生じるように、前記選択第3ビット線、前記選択第1ビット線及び前記選択第2ビット線の電圧を制御する
     磁気ランダムアクセスメモリ。
    The magnetic random access memory according to claim 2,
    In read operation,
    The word line driving circuit applies a third voltage higher than the first voltage to the selected word line;
    The bit line driving circuit includes the selected third bit line and the selected first bit so that a potential difference is generated between the selected third bit line and the selected first bit line and the selected second bit line. Magnetic random access memory for controlling the voltage of the line and the selected second bit line.
  7.  請求の範囲3に記載の磁気ランダムアクセスメモリにおいて、 
     読み出し動作において、
     前記ワード線駆動回路は、前記選択ワード線に前記第1電圧よりも高い第3電圧を印加し、
     前記ビット線駆動回路は、前記選択第1ビット線と前記選択第2ビット線との間に電位差が生じるように、前記選択第1ビット線及び前記選択第2ビット線の電圧を制御する
     磁気ランダムアクセスメモリ。
    The magnetic random access memory according to claim 3,
    In read operation,
    The word line driving circuit applies a third voltage higher than the first voltage to the selected word line;
    The bit line driving circuit controls voltages of the selected first bit line and the selected second bit line so that a potential difference is generated between the selected first bit line and the selected second bit line. Access memory.
  8.  磁気ランダムアクセスメモリの動作方法であって、
     ここで、前記磁気ランダムアクセスメモリは、
      複数のメモリセルが行列に配置されたメモリアレイと、
      第1の方向に延在する複数のワード線と、
      前記第1の方向と異なる第2の方向に延在する複数の第1ビット線及び複数の第2ビット線と
      を備え、
      前記複数のメモリセルの各々は、
       ゲートを前記複数のワード線のうちの対応するものに、一方のソース/ドレインを前記複数の第1ビット線のうちの対応するものに接続された第1選択トランジスタと、
       前記第1選択トランジスタの他方のソース/ドレインに一端を接続された磁気抵抗素子とを含み、
     前記磁気ランダムアクセスメモリの動作方法は、
     スタンバイ状態において、
      前記複数のワード線を接地するステップと、
      前記複数の第1ビット線及び前記複数の第2ビット線に第1電圧を印加するステップとを具備し、
     書き込み動作において、
      前記複数のワード線から選択された選択ワード線に前記第1電圧よりも高い第2電圧を印加するステップと、
      前記複数の第1ビット線から選択された選択第1ビット線及び前記複数の第2ビット線から選択された選択第2ビット線を除く前記複数の第1ビット線及び前記複数の第2ビット線に前記第1電圧を印加するステップと、
      前記選択第1ビット線と前記選択第2ビット線との間に電位差が生じるように、前記選択第1ビット線及び前記選択第2ビット線の電圧を制御するステップと
     を具備する
     磁気ランダムアクセスメモリの動作方法。 
    A method of operating a magnetic random access memory, comprising:
    Here, the magnetic random access memory is
    A memory array in which a plurality of memory cells are arranged in a matrix;
    A plurality of word lines extending in a first direction;
    A plurality of first bit lines and a plurality of second bit lines extending in a second direction different from the first direction;
    Each of the plurality of memory cells includes
    A first select transistor having a gate connected to a corresponding one of the plurality of word lines and one source / drain connected to a corresponding one of the plurality of first bit lines;
    A magnetoresistive element having one end connected to the other source / drain of the first selection transistor,
    The operation method of the magnetic random access memory is as follows:
    In standby state
    Grounding the plurality of word lines;
    Applying a first voltage to the plurality of first bit lines and the plurality of second bit lines,
    In the write operation,
    Applying a second voltage higher than the first voltage to a selected word line selected from the plurality of word lines;
    The plurality of first bit lines and the plurality of second bit lines excluding the selected first bit line selected from the plurality of first bit lines and the selected second bit line selected from the plurality of second bit lines. Applying the first voltage to:
    Controlling the voltages of the selected first bit line and the selected second bit line so that a potential difference is generated between the selected first bit line and the selected second bit line. How it works.
  9.  請求の範囲8に記載の磁気ランダムアクセスメモリの動作方法において、
     読み出し動作において、
      前記選択ワード線に前記第1電圧よりも高い第3電圧を印加するステップと、
      前記選択第1ビット線及び前記選択第2ビット線を除く前記複数の第1ビット線及び前記複数の第2ビット線に前記第1電圧を印加するステップと、
      前記磁気抵抗素子の前記一端と他端との間に電位差が生じるように、少なくとも前記選択第1ビット線の電圧を制御するステップと
     を具備する
     磁気ランダムアクセスメモリの動作方法。
    The operation method of the magnetic random access memory according to claim 8,
    In read operation,
    Applying a third voltage higher than the first voltage to the selected word line;
    Applying the first voltage to the plurality of first bit lines and the plurality of second bit lines excluding the selected first bit line and the selected second bit line;
    A method of operating a magnetic random access memory, comprising: controlling at least a voltage of the selected first bit line so that a potential difference is generated between the one end and the other end of the magnetoresistive element.
PCT/JP2009/064839 2008-09-30 2009-08-26 Magnetic random access memory and method for operating magnetic random access memory WO2010038565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010531794A JP5354391B2 (en) 2008-09-30 2009-08-26 Magnetic random access memory and method of operating magnetic random access memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-255463 2008-09-30
JP2008255463 2008-09-30

Publications (1)

Publication Number Publication Date
WO2010038565A1 true WO2010038565A1 (en) 2010-04-08

Family

ID=42073338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064839 WO2010038565A1 (en) 2008-09-30 2009-08-26 Magnetic random access memory and method for operating magnetic random access memory

Country Status (2)

Country Link
JP (1) JP5354391B2 (en)
WO (1) WO2010038565A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005758A1 (en) 2010-06-29 2012-01-12 Magic Technologies, Inc. Shared bit line smt mram array with shunting transistors between the bit lines
CN112002357A (en) * 2020-08-13 2020-11-27 长江存储科技有限责任公司 Method for operating a semiconductor device and semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102360213B1 (en) 2017-09-06 2022-02-08 삼성전자주식회사 Resistive Memory Device reducing chip size and Operating Method thereof
JP2022139245A (en) 2021-03-11 2022-09-26 キオクシア株式会社 Storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170377A (en) * 2000-09-22 2002-06-14 Mitsubishi Electric Corp Thin film magnetic storage device
JP3888463B2 (en) * 2002-11-27 2007-03-07 日本電気株式会社 Memory cell and magnetic random access memory
WO2008018266A1 (en) * 2006-08-07 2008-02-14 Nec Corporation Mram having variable word line drive potential
JP2008097666A (en) * 2006-10-06 2008-04-24 Renesas Technology Corp Driver circuit and semiconductor memory incorporating it
JP2008123641A (en) * 2006-11-15 2008-05-29 Renesas Technology Corp Nonvolatile semiconductor memory

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234133A (en) * 2006-03-01 2007-09-13 Matsushita Electric Ind Co Ltd Semiconductor memory device and semiconductor integrated circuit system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170377A (en) * 2000-09-22 2002-06-14 Mitsubishi Electric Corp Thin film magnetic storage device
JP3888463B2 (en) * 2002-11-27 2007-03-07 日本電気株式会社 Memory cell and magnetic random access memory
WO2008018266A1 (en) * 2006-08-07 2008-02-14 Nec Corporation Mram having variable word line drive potential
JP2008097666A (en) * 2006-10-06 2008-04-24 Renesas Technology Corp Driver circuit and semiconductor memory incorporating it
JP2008123641A (en) * 2006-11-15 2008-05-29 Renesas Technology Corp Nonvolatile semiconductor memory

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005758A1 (en) 2010-06-29 2012-01-12 Magic Technologies, Inc. Shared bit line smt mram array with shunting transistors between the bit lines
EP2589048A4 (en) * 2010-06-29 2017-12-20 Headway Technologies, Inc. Shared bit line smt mram array with shunting transistors between the bit lines
CN112002357A (en) * 2020-08-13 2020-11-27 长江存储科技有限责任公司 Method for operating a semiconductor device and semiconductor device
CN112002357B (en) * 2020-08-13 2023-09-26 长江存储科技有限责任公司 Method for operating semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JP5354391B2 (en) 2013-11-27
JPWO2010038565A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TWI433147B (en) Semiconductor device
KR101855295B1 (en) Data read circuit, Nonvolatile memory device having the same and Method for reading data of nonvolatile memory device
JP5103472B2 (en) Method and system for providing a magnetic memory structure utilizing spin transfer
KR101312366B1 (en) Write Driver Circuit for Magnetic Random Access Memory Apparatus and Magnetic Random Access Memory Apparatus
US8315090B2 (en) Pseudo page mode memory architecture and method
CN101887745B (en) Semiconductor memory device
KR101068573B1 (en) Semiconductor memory device
US6999340B2 (en) Semiconductor memory device including reference memory cell and control method
KR20120069380A (en) Magnetic random access memory apparatus, program and verify method of reference cell therefor
JP5091969B2 (en) Semiconductor memory device
US8077508B1 (en) Dynamic multistate memory write driver
CN1329919C (en) Thin film magnetic memory with high precision data read
JP5354391B2 (en) Magnetic random access memory and method of operating magnetic random access memory
JP2002367364A (en) Magnetic memory device
KR102378537B1 (en) Word line driver for screening gidl, semiconductor memory apparatus and test method using the same
KR101057724B1 (en) Semiconductor memory device and driving method thereof
JP2011204287A (en) Storage device
JP2012203939A (en) Semiconductor storage device
JP5315940B2 (en) Magnetic random access memory
JP5331998B2 (en) Nonvolatile semiconductor memory device
JP5076175B2 (en) Nonvolatile semiconductor memory device
CN112542189B (en) Magnetic memory, programming control method thereof, reading method thereof and magnetic memory device
JP2003297071A (en) Memory device
TW201711040A (en) Semiconductor memory device
JP2023044395A (en) Storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531794

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817602

Country of ref document: EP

Kind code of ref document: A1