WO2010038505A1 - 燃焼器接続構造、燃焼器尾筒、燃焼器尾筒の設計方法、およびガスタービン - Google Patents

燃焼器接続構造、燃焼器尾筒、燃焼器尾筒の設計方法、およびガスタービン Download PDF

Info

Publication number
WO2010038505A1
WO2010038505A1 PCT/JP2009/058068 JP2009058068W WO2010038505A1 WO 2010038505 A1 WO2010038505 A1 WO 2010038505A1 JP 2009058068 W JP2009058068 W JP 2009058068W WO 2010038505 A1 WO2010038505 A1 WO 2010038505A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustor
turbine
transition piece
outlet
sectional area
Prior art date
Application number
PCT/JP2009/058068
Other languages
English (en)
French (fr)
Inventor
聡介 中村
智志 瀧口
宜彦 本山
泰希 木下
嘉和 松村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008256531A priority Critical patent/JP2010085052A/ja
Priority claimed from JP2008256532A external-priority patent/JP5173720B2/ja
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020107003607A priority patent/KR101132853B1/ko
Priority to US12/674,352 priority patent/US8448451B2/en
Priority to EP09807567.4A priority patent/EP2351967B1/en
Priority to CN2009801002016A priority patent/CN101784842B/zh
Publication of WO2010038505A1 publication Critical patent/WO2010038505A1/ja
Priority to US13/874,883 priority patent/US8955222B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00017Assembling combustion chamber liners or subparts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00018Manufacturing combustion chamber liners or subparts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49348Burner, torch or metallurgical lance making

Definitions

  • the present invention relates to a combustor connection structure that optimizes the shape of a combustor outlet of a combustor connected to a turbine, a combustor tail that optimizes the shape of a combustor tail in a turbine combustor, and the design of the combustor tail
  • the present invention relates to a method, and a gas turbine to which the combustor connection structure and the combustor transition are applied.
  • the gas turbine is composed of a compressor, a combustor, and a turbine.
  • the compressor compresses the air taken in from the air intake to produce high-temperature and high-pressure compressed air.
  • the combustor generates high-temperature and high-pressure combustion gas by supplying fuel to the compressed air and burning it.
  • the turbine is configured by alternately arranging a plurality of turbine stationary blades and turbine blades in the exhaust passage in the casing, and the turbine blades are driven by the combustion gas supplied to the exhaust passage. For example, a rotor connected to a generator is rotationally driven.
  • the combustion gas that has driven the turbine is converted into static pressure by a diffuser downstream of the turbine and then released to the atmosphere.
  • the combustion gas of the combustor is supplied to the turbine from the first stage turbine stationary blade.
  • the combustion gas passage is formed in an annular shape in order to arrange the first stage turbine stationary blade along the circumference centered on the axis of the rotor.
  • a plurality of combustors are arranged along a circumference centering on the axis of the rotor in a mode of supplying combustion gas to the turbine.
  • the combustor is arranged such that its center line is parallel to the axis of the rotor, and the combustion gas is jetted straight toward the turbine.
  • the combustor center line is inclined with respect to the rotor axis (at least 30 degrees), and combustion gas is ejected obliquely from the radially outer side to the radially inner side.
  • combustion gas is ejected obliquely from the radially outer side to the radially inner side.
  • the combustor has a transition piece.
  • the tail pipe guides the combustion gas ejected from the fuel nozzle from the tail pipe inlet immediately after the fuel nozzle to the tail pipe outlet connected to the first stage turbine stationary blade of the turbine.
  • the transition piece has a circular cross-sectional shape at the transition piece inlet, and the transition of the first stage turbine stationary blade combustion gas passage in the combustor in order that the transition piece outlet supplies combustion gas to the first stage turbine stationary blade. It is formed in the arc-shaped cross-sectional shape divided
  • the tail tube needs to be throttled from the tail tube inlet to the tail tube outlet in order to stabilize the flow of combustion gas.
  • the radial dimension of the downstream opening of the first stage turbine stationary blade is determined aerodynamically, and the radial dimension of the upstream opening is increased, the cross-sectional area of the tail tube outlet is increased. It may be possible to do. However, simply increasing the upstream radial dimension of the first stage turbine stationary blade increases the cooling area of the stationary blade, which increases the amount of cooling air, resulting in a decrease in combined efficiency. There is a risk that.
  • the cooling air is extracted by a compressor of a gas turbine and sent into the turbine.
  • the compressor of the gas turbine is driven by a coaxial turbine, but the cooling air does not contribute to combustion, and therefore does not contribute much to the work of the turbine. Therefore, when the cooling air increases, the extra work of the turbine is consumed for driving the compressor, and as a result, the output of the gas turbine decreases.
  • the temperature of the cooling air is lower than the temperature of the combustion gas
  • the increase in the cooling air lowers the temperature of the exhaust gas of the gas turbine. As a result, the amount of steam generated by the exhaust gas of the gas turbine is also reduced. For this reason, the increase in cooling air reduces the combined efficiency.
  • the present invention has been made in view of the above, and an object thereof is to provide a combustor connection structure and a gas turbine capable of improving combined efficiency.
  • the combined efficiency improves if the amount of heat to be cooled can be reduced from the beginning. Therefore, it is desired to reduce the overall wall flow velocity of the transition piece in the combustor, to prevent local fluctuations in the flow velocity, to reduce the heat transfer rate, and to reduce the amount of exchange heat.
  • the present invention has been made in view of the above, and can optimize the shape of a combustor tail cylinder to improve combined efficiency, a combustor tail cylinder design method, and a gas turbine.
  • the purpose is to provide.
  • the cross-sectional area Dout of the tail tube outlet is 0.79 ⁇ Dout / Din ⁇ 0.
  • the radial dimension of the upstream opening of the stationary blade is matched with the radial dimension of the transition piece outlet. It is characterized by.
  • This combustor connection structure reduces the wall flow velocity of the combustion gas for the combustor of the combustor, so the amount of exchange heat at the exit portion of the transition can be reduced, and the combined efficiency can be improved.
  • the inflow speed on the upstream side of the first stage turbine stationary blade is lowered, so that the aerodynamic performance is improved and the combined efficiency can be improved.
  • the blade height at the upstream end of the first-stage turbine stationary blade increases for the turbine, the amount of cooling air in the blade portion increases.
  • the wall surface flow velocity of the combustion gas is also reduced in the stationary blade, the heat transfer rate is lowered, so that the amount of cooling air in the entire stationary blade is not increased.
  • the combined efficiency of the gas turbine as a whole is improved by offsetting the above-described improvement in aerodynamic performance in the turbine and determining the cross-sectional area of the tail tube outlet within the optimum throttle ratio range.
  • the inner shroud forming the radially inner side wall of the stationary blade is disposed in parallel to the axial center of the rotor, and the upstream end of the inner shroud is disposed radially inward of the tail tube outlet.
  • the outer shroud arranged opposite to the end and forming the radially outer wall of the stationary blade is disposed obliquely so that the upstream end thereof faces the radially outer end of the tail tube outlet.
  • This combustor connection structure has a configuration in which the center line of the combustor is arranged obliquely with respect to the axial center, so there is no increase or decrease in the flow rate of the combustion gas from the tail cylinder to the stationary blade, so the exchange heat can be reduced and the combined efficiency Can be improved.
  • the combustor is provided in a combustor whose center line is arranged at an angle with respect to the axis of the rotor of the gas turbine, and the combustion of the combustor
  • a combustor tail pipe that guides gas to a turbine is characterized in that the cross-sectional area is monotonously reduced from the tail pipe inlet into which the combustion gas flows into the tail cylinder outlet through which the combustion gas is sent out.
  • the change of the cross-sectional area from the transition piece inlet to the transition piece outlet is optimized, and the wall flow velocity from the transition piece inlet to the transition piece outlet reaches a peak at the transition piece outlet. It is controlled so as not to exceed the range, and changes monotonously and stably. For this reason, combined efficiency can be improved.
  • the cross-sectional area Dout of the transition piece outlet is set in a range of 0.79 ⁇ Dout / Din ⁇ 0.9 with respect to the sectional area Din of the transition piece inlet. It is characterized by that.
  • This combustor transition can optimize the throttle ratio from the transition to the transition and reduce the wall flow velocity of the combustion gas. .
  • the step of setting the angle of the center line of the combustor with respect to the axial center of the rotor of the gas turbine A step of setting a squeezing ratio from an inflowing tail tube inlet to a tail tube outlet for sending combustion gas, and then maintaining the cross-sectional area of the tail tube inlet from the radially inner end of the tail tube inlet
  • a straight line parallel to the center line extends to the downstream side, a straight line parallel to the axial center extends from the radially inner end of the tail tube outlet to the upstream side, and these straight lines are connected by a circular arc to form a radially inner outline.
  • a radially outer contour line is smoothly connected from the radially outer end on the downstream side of the cylindrical shape, in which the cross-sectional area of the tail tube inlet is maintained, to the radially outer end of the tail tube inlet. And then, from the downstream side of the cylinder to the tail tube outlet, Characterized in that it comprises a step of monotonically decreasing cross-sectional area in accordance with the inner contour line and said radially outer profile line.
  • This combustor tail cylinder design method can form a combustor tail cylinder in which the shape including the restriction and the deformation of the cross-sectional shape from the tail cylinder inlet to the tail cylinder outlet are optimized.
  • a gas turbine that obtains rotational power by supplying combustion gas to a compressed air compressed by a compressor by supplying fuel with a combustor and burning the compressed gas.
  • the cross-sectional area Dout of the transition piece outlet is set in a range of 0.79 ⁇ Dout / Din ⁇ 0.9 with respect to the cross-sectional area Din of the transition piece inlet of the combustor, and the transition piece outlet is connected.
  • the first stage turbine stationary blade of the turbine includes a combustor connection structure in which the radial dimension of the upstream opening of the stationary blade is matched with the radial dimension of the tail tube outlet.
  • the wall flow velocity of the combustion gas is reduced with respect to the transition piece of the combustor, so that the exchange heat amount at the exit part of the transition piece is reduced and the combined efficiency can be improved.
  • the inflow speed on the upstream side of the first stage turbine stationary blade is lowered, so that the aerodynamic performance is improved and the combined efficiency can be improved.
  • the blade height at the upstream end of the first-stage turbine stationary blade increases for the turbine, the amount of cooling air in the blade portion increases.
  • the wall surface flow velocity of the combustion gas is also reduced in the stationary blade, the heat transfer rate is lowered, so that the amount of cooling air in the entire stationary blade is not increased.
  • the combined efficiency of the gas turbine as a whole is improved by offsetting the above-described improvement in aerodynamic performance in the turbine and determining the cross-sectional area of the tail tube outlet within the optimum throttle ratio range. Further, in the configuration in which the center line of the combustor is arranged obliquely with respect to the axis, there is no increase or decrease in the flow velocity of the combustion gas from the tail cylinder to the stationary blade, so that the amount of exchange heat can be reduced and the combined efficiency can be improved.
  • the combustor connection structure may be configured such that an inner shroud forming a radially inner wall of the stationary blade is disposed in parallel with a rotor axial center, and an upstream end of the inner shroud is disposed on the tail cylinder.
  • An outer shroud that is disposed opposite the radially inner end of the outlet and that forms the radially outer wall of the stationary blade is disposed obliquely so that its upstream end faces the radially outer end of the tail tube outlet. It is characterized by that.
  • This gas turbine has a configuration in which the center line of the combustor is arranged obliquely with respect to the shaft center, so there is no increase or decrease in the flow velocity of the combustion gas from the tail cylinder to the stationary blade, so the exchange heat can be reduced and the combined efficiency is improved. Can be planned.
  • a gas turbine that obtains rotational power by supplying combustion gas to a compressed air compressed by a compressor by supplying fuel with a combustor and burning the compressed gas.
  • the combustion gas is delivered from the tail tube inlet into which the combustion gas flows in a manner that is provided in the combustor that is arranged with an angle with respect to the axis of the rotor and that guides the combustion gas to the turbine.
  • a combustor tail tube is provided that reaches the tail tube outlet and has a monotonously reduced cross-sectional area.
  • the change in the cross-sectional area from the tail tube inlet to the tail tube outlet of the combustor tail tube or the throttle ratio is optimized, and the wall velocity of the combustion gas from the tail tube inlet to the tail tube outlet is reduced. As a result, the amount of heat exchanged can be reduced and the combined efficiency can be improved.
  • the combustor transition piece has a cross-sectional area Dout of the transition piece outlet in a range of 0.79 ⁇ Dout / Din ⁇ 0.9 with respect to a sectional area Din of the transition piece inlet. It is characterized by being set to.
  • This gas turbine optimizes the throttle ratio from the transition of the combustor tail tube to the tail tube outlet and reduces the wall flow velocity of the combustion gas, reducing the amount of exchange heat at the tail tube outlet and reducing the combined efficiency. Can be improved.
  • the shape of the combustor outlet of the combustor connected to the turbine is optimized to reduce the wall flow velocity of the combustion gas, and the amount of exchange heat at the transition of the transition piece outlet is reduced, so that the combined efficiency can be improved. Further, according to the present invention, combined efficiency can be improved while optimizing the deformation of the cross-sectional shape from the transition piece inlet to the transition piece outlet of the combustor transition piece and the throttle.
  • FIG. 1 is a schematic configuration diagram of a gas turbine according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a combustor in the gas turbine.
  • FIG. 3 is a schematic view of the inner shape of the transition piece in the combustor.
  • FIG. 4 is a diagram showing the aperture ratio of the transition piece.
  • FIG. 5 is a graph showing the amount of heat exchanged by the combustor tail with respect to the blade height ratio Hin / Hout.
  • FIG. 6 is a graph showing the turbine efficiency increase rate with respect to the blade height ratio Hin / Hout.
  • FIG. 7 is a graph showing a cooling air increase rate of the first stage turbine stationary blade with respect to the blade height ratio Hin / Hout.
  • FIG. 1 is a schematic configuration diagram of a gas turbine according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a combustor in the gas turbine.
  • FIG. 3 is a schematic view of the inner shape of the transition
  • FIG. 8 is a diagram showing an increase rate of the combined efficiency with respect to the blade height ratio Hin / Hout.
  • FIG. 9 is a conceptual diagram showing a method for designing a combustor tail tube.
  • FIG. 10 is a conceptual diagram showing a method for designing a combustor transition.
  • FIG. 11 is a conceptual diagram showing a method for designing a combustor tail tube.
  • FIG. 12 is a diagram showing the flow velocity in the vicinity of the inner wall surface of the combustor transition.
  • FIG. 1 is a schematic configuration diagram of a gas turbine according to an embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram of a combustor in the gas turbine
  • FIG. 3 is a schematic diagram of an inner shape of a tail cylinder in the combustor
  • FIG. These are figures which show the aperture ratio of a transition piece.
  • the gas turbine includes a compressor 1, a combustor 2, and a turbine 3 as shown in FIG.
  • a rotor 4 is disposed through the center of the compressor 1, the combustor 2, and the turbine 3.
  • the compressor 1, the combustor 2, and the turbine 3 are arranged in parallel along the axis R of the rotor 4 in order from the upstream side to the downstream side of the flow of air or combustion gas.
  • the axial direction refers to a direction parallel to the axis R
  • the circumferential direction refers to a direction around the axis R
  • the radial direction refers to a direction orthogonal to the axis R.
  • the radially inner side is the side approaching the axis R
  • the radially outer side is the side away from the axis R.
  • Compressor 1 compresses air into compressed air.
  • the compressor 1 is provided with a compressor stationary blade 13 and a compressor moving blade 14 in an air passage inside a compressor casing 12 having an air intake port 11 for taking in air.
  • a plurality of compressor vanes 13 are attached to the compressor casing 12 side and arranged in parallel in the circumferential direction.
  • a plurality of compressor blades 14 are attached to the rotor 4 side and arranged in parallel in the circumferential direction.
  • a plurality of the compressor vanes 13 and the compressor rotor blades 14 are alternately provided in the axial direction.
  • the combustor 2 generates high-temperature and high-pressure combustion gas by supplying fuel to the compressed air compressed by the compressor 1.
  • the combustor 2 covers an inner cylinder 21 that mixes and burns compressed air and fuel, a tail cylinder 22 that guides combustion gas from the inner cylinder 21 to the turbine 3, an outer periphery of the inner cylinder 21, and a compression from the compressor 1. And an outer cylinder 23 that guides air to the inner cylinder 21.
  • a plurality of (for example, 16) combustors 2 are arranged in the circumferential direction with respect to the combustor casing 24.
  • the combustor 2 is inclined in the radial direction from the radially outer side by tilting the center line S of the combustor 2 with respect to the axial center R of the rotor 4 (at least 30 degrees) due to the structural restriction of the interior of the gas turbine. It arrange
  • the combustor 2 is provided with fuel nozzles 251 and 252 for mainly supplying fuel.
  • the fuel nozzle 251 is a pilot nozzle provided at the center of the inner cylinder 21.
  • the fuel nozzle 252 is a main nozzle provided adjacent to a plurality (for example, eight) in the circumferential direction around the pilot nozzle 251 in the inner cylinder 21.
  • a burner cylinder 252 b that covers the main nozzle 252 is provided around the main nozzle 252.
  • an air flow of high-temperature and high-pressure compressed air flows into the outer cylinder 23, and this compressed air flows into the inner cylinder 21.
  • the compressed air is mixed with the fuel injected from the main nozzle 252, and flows into the tail cylinder 22 as a swirling flow of premixed air in the burner cylinder 252b.
  • the compressed air is mixed with the fuel injected from the pilot nozzle 251, ignited by an ignition device (not shown), burned, and then burned into the tail cylinder 22 as combustion gas.
  • flame holding for stabilizing the combustion of the premixed gas from the burner cylinder 252b of each main nozzle 252 is performed by the diffusion flame by the fuel injected from the pilot nozzle 251.
  • the turbine 3 generates rotational power by the combustion gas burned in the combustor 2.
  • the turbine 3 is provided with a turbine stationary blade 32 and a turbine rotor blade 33 in an exhaust passage inside a turbine casing 31 into which combustion gas is fed.
  • a plurality of turbine vanes 32 are attached to the turbine casing 31 side and arranged in parallel in the circumferential direction.
  • a plurality of turbine rotor blades 33 are fixed to the outer periphery of a disk-shaped disk centered on the axis R of the rotor 4 and are arranged in parallel in the circumferential direction.
  • a plurality of these turbine stationary blades 32 and turbine rotor blades 33 are provided alternately in the axial direction.
  • an exhaust chamber 34 having a diffuser portion 34 a continuous with the turbine 3 is provided on the downstream side of the turbine casing 31.
  • the rotor 4 is provided such that an end on the compressor 1 side is supported by a bearing 41 and an end on the exhaust chamber 34 side is supported by a bearing 42 so as to be rotatable about an axis R.
  • a drive shaft of a generator (not shown) is connected to the end of the rotor 4 on the exhaust chamber 34 side.
  • the air taken in from the air intake port 11 of the compressor 1 passes through the plurality of compressor stationary blades 13 and the compressor rotor blades 14 and is compressed, so that the compressed air has a high temperature and a high pressure. It becomes.
  • By supplying fuel from the combustor 2 to the compressed air high-temperature and high-pressure combustion gas is generated.
  • the combustion gas passes through the turbine stationary blade 32 and the turbine rotor blade 33 of the turbine 3, so that the rotor 4 is rotationally driven, and the generator connected to the rotor 4 is given rotational power to generate power.
  • the combustion gas after rotationally driving the rotor 4 is converted into a static pressure by the diffuser portion 34a in the exhaust chamber 34 and then released to the atmosphere.
  • the tail cylinder 22 of the combustor 2 is formed in a cylindrical shape, and the tail cylinder inlet 221, which is one opening, is connected to the inner cylinder 21, and the other A transition piece outlet 222 that is an opening is connected to a first stage turbine stationary blade 321 that is an inlet of an exhaust passage in the turbine 3.
  • the inner cylinder 21 to which the transition piece inlet 221 is connected is formed in a cylindrical shape. For this reason, the transition piece inlet 221 is formed in a circular cross-sectional shape (see FIG. 3).
  • the first-stage turbine stationary blade 321 to which the transition piece outlet 222 is connected includes a blade portion 322 and an inner shroud 351 and an outer shroud 352 that support the blade portion 322 so as to sandwich the blade portion 322 in the radial direction.
  • the inner shroud 351 forms a radially inner wall of the first stage turbine stationary blade 321
  • the outer shroud 352 forms a radially outer wall of the first stage turbine stationary blade 321.
  • a combustion gas passage is formed in an annular shape in accordance with the circumferential arrangement of the first stage turbine stationary blade 321. Further, as described above, a plurality of the combustors 2 are arranged side by side in the circumferential direction.
  • the transition piece outlet 222 has an arc-shaped cross-sectional shape obtained by dividing an annular shape corresponding to the first stage turbine stationary blade 321 by the number of the combustors 2, in other words, a substantially quadrilateral shape obtained by cutting an arc portion from a sector shape. It is formed in a cross-sectional shape (see FIG. 3). That is, the cross-sectional shape of the transition piece 22 extends from the transition piece inlet 221 to the transition piece outlet 222 and is deformed.
  • the first stage turbine stationary blade 321 to which the tail tube outlet 222 is connected has an annular circumference determined by the aerodynamic shape of the turbine 3.
  • the cross-sectional shape of the transition piece outlet 222 has an arc-shaped dimension obtained by dividing an annular shape corresponding to the first stage turbine stationary blade 321 by the number of combustors 2.
  • the downstream radial dimension between the inner shroud 351 and the outer shroud 352 is determined by the aerodynamic shape of the turbine 3.
  • the radial dimension (downstream blade height) Hout of the downstream opening of the first stage turbine stationary blade 321 is a dimension determined aerodynamically, and the radial dimension (upstream blade height) of the upstream opening. Hin is adjusted to be the same as the radial dimension (c) of the tail tube outlet 222.
  • the inner shroud 351 is disposed parallel to the rotor shaft center R (including manufacturing errors), and the upstream end thereof is disposed to face the radially inner end of the tail tube outlet 222. Yes.
  • the outer shroud 352 has an upstream end facing the radially outer end of the tail tube outlet 222, and an upstream opening radial dimension (upstream blade height) Hin is a downstream opening radial dimension (downstream blade). Height) is larger than Hout, and is arranged obliquely so that the upstream opening gradually widens from the downstream opening.
  • the transition piece 22 of the combustor 2 is formed so that the cross-sectional area decreases from the transition piece inlet 221 to the transition piece outlet 222 in order to stabilize the flow of combustion gas. More preferably, the drawing ratio Dout / Din of the cross-sectional area Dout of the transition piece outlet 222 to the cross-sectional area Din of the transition piece inlet 221 is 0.9. That is, when the cross-sectional area (diameter (d)) of the transition piece inlet 221 is determined, the cross-sectional area (radial dimension (c)) of the transition piece outlet 222 is determined by the drawing ratio. As shown by a solid line in FIG.
  • the range of the diameter (d) of the transition piece inlet 221 is set, and the radial dimension (c) at the cross-sectional area Dout of the transition piece outlet 222 having a drawing ratio of 0.9.
  • a preferable throttle ratio based on the minimum value X 1.18 of Hin / Hout of the first stage turbine stationary blade 321 is 0.79 ⁇ Dout / A range of Din ⁇ 0.9 is obtained.
  • the radial dimension (c) of the transition piece outlet 222 has a restriction ratio with respect to the diameter (d) of the transition piece inlet 221, 0.79 ⁇ Dout / Din ⁇ Optimized as a range of 0.9. For this reason, since the wall surface flow velocity of combustion gas is reduced, the amount of exchange heat at the tail tube outlet 222 portion can be reduced, and the combined efficiency can be improved.
  • the inflow speed on the upstream side of the first stage turbine stationary blade 321 decreases, the aerodynamic performance is improved and the combined efficiency can be improved.
  • the blade height on the upstream side of the first stage turbine stationary blade 321 (the radial dimension Hin on the upstream side of the first stage turbine stationary blade 321) of the turbine 3 is increased, the first stage turbine stationary blade is increased.
  • the cooling area of the wing portion 322 of 321 is increased, the cooling air is increased and the combined efficiency is deteriorated.
  • the wall flow velocity of the combustion gas is reduced also in the first stage turbine stationary blade 321, the heat transfer rate is lowered, so that the amount of cooling air in the entire first stage turbine stationary blade 321 is small.
  • the improvement in aerodynamic performance in the turbine 3 offsets the above-described deterioration in efficiency, and the cross-sectional area of the tail tube outlet 222 is determined within the optimum drawing ratio range, so that the combined efficiency of the gas turbine as a whole is improved. Will improve.
  • the inner shroud 351 is disposed in parallel with the axis R of the rotor 4 and the upstream end thereof is the tail tube outlet 222.
  • the outer shroud 352 is disposed obliquely so that the upstream end thereof faces the radially outer end of the tail tube outlet 222.
  • FIG. 6 is a diagram showing the relationship between the ratio of the radial dimension Hin of the upstream opening of the first stage turbine vane 321 and the radial dimension Hout of the downstream opening (blade height ratio Hin / Hout) and the turbine efficiency. is there. As shown in FIG. 6, it is understood that the turbine efficiency is improved as the ratio of Hin / Hout is increased.
  • FIG. 7 is a diagram showing the relationship between the blade height ratio Hin / Hout and the rate of increase in the cooling air amount of the first stage turbine stationary blade 321.
  • the thin broken line indicates the amount of cooling air in the wing
  • the thick broken line indicates the amount of cooling air in the shroud
  • the thick solid line indicates the total amount of cooling air.
  • FIG. 8 is a diagram showing the relationship between the blade height ratio Hin / Hout and the increase in combined efficiency.
  • the thin broken line indicates the sensitivity of the turbine efficiency
  • the thick broken line indicates the sensitivity of the cooling air amount of the turbine stationary blade
  • the thin dashed line indicates the sensitivity of the exchange heat amount of the combustor tail cylinder.
  • the increase in the blade height ratio is a factor that deteriorates the combined efficiency of the cooling air.
  • the turbine efficiency is improved and the exchange heat amount of the combustor tail cylinder is reduced, It turns out that combined efficiency improves.
  • FIG. 9 to 11 are conceptual diagrams showing a design method of the transition piece
  • FIG. 12 is a view showing the flow velocity in the vicinity of the inner wall surface of the transition piece. 9 to 12, the inner shape of the tail cylinder 22 is shown.
  • the angle of the center line S of the combustor 2 is set with respect to the axis R of the rotor 4 in the gas turbine.
  • the angle of the center line S with respect to the axis R is set to 30 degrees.
  • the axis R shown in FIG. 9 indicates a reference line parallel to the axis R.
  • the diameter of the transition piece inlet 221 of the combustor 2 is set in advance from the predetermined range described above. As a result, the radially inner end A and the radially outer end B of the tail tube inlet 221 are determined.
  • the cross-sectional area Dout of the transition piece outlet 222 is set within the range of 0.79 ⁇ Dout / Din ⁇ 0.9.
  • Dout / Din 0.9 is set as a more preferable aperture ratio.
  • the radially inner end C of the transition piece outlet 222 is in a position parallel to the axial center R with respect to the radially inner side wall (inner shroud 351) of the first stage turbine stationary blade 321. Therefore, the outer end D in the radial direction of the transition piece outlet 222 is determined. Further, in order to maximize the residence time of the combustion gas in the tail cylinder 22, that is, the internal volume of the tail cylinder 22, the cylindrical shape from the tail cylinder inlet 221 is secured to the maximum, and the length of the throttle portion is made as short as possible. . Therefore, as shown in FIG.
  • the first virtual straight line 223 parallel to the center line S extends from the radial inner end A of the transition piece inlet 221 to the downstream side, and the shaft extends from the radial inner end C of the transition piece outlet 222.
  • a second virtual straight line 224 parallel to the center R is extended upstream.
  • the radial dimension (Hout) of the downstream opening of the first-stage turbine vane 321 is determined aerodynamically, and the radial dimension (Hin) of the upstream opening is the tail cylinder outlet 222.
  • the radial outer wall (outer shroud 352) of the first stage turbine vane 321 is arranged obliquely toward the radial outer end D of the tail tube outlet 222 so as to match the radial dimension (c).
  • the first virtual straight line 223 and the second virtual straight line 224 are connected. Specifically, the first virtual straight line 223 and the second virtual straight line 224 are in contact with each other so that the cylindrical shape from the tail tube inlet 221 is secured to the maximum and the radially inner edge of the tail tube 22 does not swell inward.
  • An arc R1 having a radius as large as possible is provided.
  • the radially inner end A of the transition piece inlet 221 and the radially inner end C of the transition piece outlet 222 are connected by the first imaginary straight line 223, the second imaginary straight line 224, and the arc R1, and the radially inner side of the transition piece 22
  • the outline is determined. Further, a radially inner end E and a radially outer end F on the downstream side of the cylindrical shape of the tail tube 22 are determined.
  • the cylindrical radially outer end F and the radially outer end D of the tail tube outlet 222 are connected.
  • a straight line from the radially outer end B to the radially outer end F of the tail tube inlet 221 and an oblique radial outer wall (outer shroud) of the first stage turbine stationary blade 321 leading to the radially outer end D. 352) are smoothly connected by two arcs, or two arcs and a straight line. That is, at the radially outer end F, an arc R2 having a straight line extending from the radially outer end B to the radially outer end F as a tangent line is provided from the radially outer end F to the point G.
  • a straight line 225 connected to the arc R2 is extended from the point G to the downstream side.
  • a straight line 226 of the oblique radial outer wall (outer shroud 352) of the first stage turbine stationary blade 321 is extended from the radial outer end D to the downstream side.
  • an arc R3 connecting the point H of the straight line 225 and the point J of the straight line 226 is provided.
  • the transition piece 22 is divided into four parts in the axial direction, these are respectively pressed, and later joined by welding to form the transition piece 22.
  • the transition piece 22 of the combustor 2 when the flow velocity in the vicinity of the inner wall surface in the radially outer outline and the radially inner outline is viewed, the transition piece 22 (solid line) of the present embodiment.
  • the flow velocity from the transition piece inlet 221 to the transition piece outlet 222 becomes maximum at the transition piece outlet 222, and before that, the flow velocity is suppressed so as not to exceed this maximum value, and is monotonically corresponding to the aperture ratio. It turns out that it is increasing stably.
  • the change in the cross-sectional area from the transition piece inlet 221 to the transition piece outlet 222 is optimized, so that the wall velocity of the combustion gas is reduced.
  • the amount of heat exchanged at the tail tube outlet 222 can be reduced, and the combined efficiency can be improved.
  • an optimum shape of the tail tube 22 that can improve the combined efficiency can be obtained.
  • the combustor connection structure, the combustor tail, the combustor tail design method, and the gas turbine according to the present invention are suitable for improving combined efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

 燃焼器(2)の尾筒入口(221)の断面積(Din)に対し、尾筒出口(222)の断面積(Dout)を、0.79≦Dout/Din≦0.9の範囲に設定し、かつ尾筒出口(222)が接続されるタービン(3)の第1段タービン静翼(321)において、上流側開口の径方向寸法(Hin)を尾筒出口(222)の径方向寸法(ハ)に合わせた燃焼器接続構造とする。また、ガスタービンのロータ(4)の軸心(R)に対して中心線(S)が角度を有して配置された燃焼器(2)に設けられ、燃焼ガスをタービン(3)に導く燃焼器尾筒(22)において、燃焼ガスが流入する尾筒入口(221)から燃焼ガスを送出する尾筒出口(222)に至り断面積を単調に減少させる。

Description

燃焼器接続構造、燃焼器尾筒、燃焼器尾筒の設計方法、およびガスタービン
 本発明は、タービンに繋がる燃焼器の尾筒出口の形状を最適化した燃焼器接続構造、タービン燃焼器における燃焼器尾筒の形状を最適化する燃焼器尾筒、前記燃焼器尾筒の設計方法、および前記燃焼器接続構造や前記燃焼器尾筒を適用したガスタービンに関する。
 ガスタービンは、圧縮機と燃焼器とタービンとにより構成されている。圧縮機は、空気取入口から取り込まれた空気を圧縮させることで高温・高圧の圧縮空気とする。燃焼器は、圧縮空気に対して燃料を供給して燃焼させることで高温・高圧の燃焼ガスとする。タービンは、ケーシング内の排気通路に複数のタービン静翼およびタービン動翼が交互に配設されて構成されており、この排気通路に供給された燃焼ガスによりタービン動翼が駆動されることで、例えば、発電機に連結されたロータを回転駆動する。そして、タービンを駆動した燃焼ガスは、タービン下流のディフューザにより静圧に変換されてから大気に放出される。
 近年では、ガスタービンの高温化と共に、出力および効率を向上するため、ガスタービンの下流に蒸気発生装置および蒸気タービンを組み合わせたコンバインドサイクルが知られている。このコンバインドサイクルでは、蒸気タービンから排出された蒸気を用いてガスタービンの燃焼器の冷却を行うものがある。
 このようなコンバインドサイクルにおいてコンバインド効率(熱効率)の向上を図るには、タービンに繋がる燃焼器の尾筒出口での冷却の交換熱量を削減することが好ましい。すなわち、燃焼器を冷却するための熱量は、熱交換を行った蒸気によって回収されるが、冷却される熱量を始めから削減できればコンバインド効率は向上する。そこで、尾筒出口の断面積を大きくして燃焼ガスの流速を遅くすれば熱伝達率も下がるので、熱交換量を削減できる。ところが、尾筒出口が繋がり燃焼ガスを受け入れるタービンの第1段タービン静翼において、前記静翼下流側(出口側)の径方向寸法が空力的に決められているので、尾筒出口の断面積を大きくするのには問題がある。
 ここで、例えば、特許文献1に示すガスタービンにおいては、前記静翼の上流側開口の径方向寸法を下流側開口よりも大きくしたものがある。
 また、上述したガスタービンにおいて、タービンは、第1段タービン静翼から燃焼器の燃焼ガスが供給される。燃焼ガス通路は、第1段タービン静翼をロータの軸心を中心とした円周に沿って配置するために円環状に形成されている。一方、燃焼器は、燃焼ガスをタービンに供給する態様でロータの軸心を中心とした円周に沿って複数配置されている。この燃焼器は、自身の中心線がロータの軸心に平行となるように配置されて、燃焼ガスをタービンに向けて真っ直ぐ噴出することが理想的である。しかし、ガスタービンの車室内部の構造の制約から、燃焼器の中心線をロータの軸心に対して傾けて(少なくとも30度)、径方向外側から径方向内側に斜めに燃焼ガスを噴出するように配置されている。この燃焼器では、圧縮空気を取り込み、この圧縮空気に燃料ノズルから燃料を供給し燃焼させて高温高圧の燃焼ガスを生成する。
 例えば、特許文献2に示すように、燃焼器は、尾筒を有している。尾筒は、燃料ノズル直後の尾筒入口からタービンの第1段タービン静翼に繋がる尾筒出口へ、燃料ノズルから噴出された燃焼ガスを導くものである。また、尾筒は、尾筒入口が円形断面形状に形成され、尾筒出口が第1段タービン静翼に燃焼ガスを供給するために第1段タービン静翼燃焼ガス通路の円環状を燃焼器の数で分割した弧形断面形状に形成されている。すなわち、尾筒は、尾筒入口から尾筒出口に至り断面形状が変形している。さらに、尾筒は、燃焼ガスの流れを安定させるため、尾筒入口から尾筒出口に至り絞りが必要である。
特開2002-327602号公報 特開2006-242559号公報
 上記特許文献1の構成を適用し、第1段タービン静翼の下流側開口の径方向寸法を空力的に決め、上流側開口の径方向寸法を大きくすれば、尾筒出口の断面積を大きくすることが可能であるかもしれない。しかしながら、第1段タービン静翼の上流側径方向寸法を単純に拡大するだけでは、前記静翼の冷却面積が増加することから、冷却空気量が増加するため、結果的にコンバインド効率が低下してしまうおそれがある。
 ここで、冷却空気の増加がコンバインド効率を低下させる理由について説明する。一般的に、冷却空気は、ガスタービンの圧縮機で圧縮されたものを抽気してタービン内部に送るものである。一方、ガスタービンの圧縮機は、同軸上のタービンによって駆動されるが、冷却空気は燃焼には寄与しないことから、タービンの仕事にも余り貢献しない。従って、冷却空気が増加すると、それだけタービンの仕事が余分に圧縮機の駆動に消費され、結果的にガスタービンの出力が低下する。また、冷却空気の温度は燃焼ガスの温度よりも低いため、冷却空気の増加は、ガスタービンの排気ガスの温度をより下げることになる。この結果、ガスタービンの排気ガスによって発生される蒸気量も減少する。このため、冷却空気の増加はコンバインド効率を低下させることになる。
 本発明は、上記に鑑みてなされたものであって、コンバインド効率を向上することのできる燃焼器接続構造およびガスタービンを提供することを目的とする。
 また、上述したように、コンバインドサイクルにおいては、冷却される熱量を始めから削減できればコンバインド効率は向上する。そこで、燃焼器における尾筒の全体的な壁面流速を低減し、かつ局所的な流速の増減を防ぎ、熱伝達率を下げて交換熱量を削減させることが望まれている。
 本発明は、上記に鑑みてなされたものであって、燃焼器尾筒の形状を最適化して、コンバインド効率を向上することのできる燃焼器尾筒、燃焼器尾筒の設計方法、およびガスタービンを提供することを目的とする。
 上記の目的を達成するために、本発明の燃焼器接続構造では、燃焼器の尾筒入口の断面積Dinに対し、尾筒出口の断面積Doutを、0.79≦Dout/Din≦0.9の範囲に設定し、かつ前記尾筒出口が接続されるタービンの第1段タービン静翼において、前記静翼の上流側開口の径方向寸法を前記尾筒出口の径方向寸法に合わせたことを特徴とする。
 この燃焼器接続構造は、燃焼器の尾筒について、燃焼ガスの壁面流速が低減されるので、尾筒出口部分の交換熱量が削減され、コンバインド効率を向上できる。しかも、タービンについては、第1段タービン静翼の上流側での流入速度が落ちるので、空力性能が改善され、コンバインド効率を向上できる。一方、タービンについて、第1段タービン静翼の上流側端での翼高さが増加することから、翼部の冷却空気量が増加する。しかし、静翼においても燃焼ガスの壁面流速が低減されることから、熱伝達率が低下するため、静翼全体の冷却空気量の増加は少ない。さらに、前述のタービンでの空力性能の改善により相殺され、かつ最適な絞り比の範囲で尾筒出口の断面積が定められていることで、ガスタービン全体としてコンバインド効率が向上する。
 また、本発明の燃焼器接続構造では、前記静翼の径方向内側壁をなす内側シュラウドをロータの軸心と平行に配置し、前記内側シュラウドの上流側端を前記尾筒出口の径方向内側端に対向して配置し、かつ前記静翼の径方向外側壁をなす外側シュラウドを、その上流側端が前記尾筒出口の径方向外側端と対向するように斜めに配置したことを特徴とする。
 この燃焼器接続構造は、燃焼器の中心線を軸心に対して斜めに配置した構成において、尾筒から静翼への燃焼ガスの流速の増減がないため、交換熱量を低減でき、コンバインド効率の向上を図れる。
 上記の目的を達成するために、本発明の燃焼器尾筒では、ガスタービンのロータの軸心に対して中心線が角度を有して配置された燃焼器に設けられ、前記燃焼器の燃焼ガスをタービンに導く燃焼器尾筒において、燃焼ガスが流入する尾筒入口から燃焼ガスを送出する尾筒出口に至り断面積が単調に減少されてなることを特徴とする。
 この燃焼器尾筒は、尾筒入口から尾筒出口に至る断面積の変化が最適化され、尾筒入口から尾筒出口に至る壁面流速が、尾筒出口でピークとなり、それ以前ではこのピークを越えないように抑えられつつ単調に安定して変化する。このため、コンバインド効率を向上できる。
 また、本発明の燃焼器尾筒では、前記尾筒入口の断面積Dinに対して前記尾筒出口の断面積Doutが、0.79≦Dout/Din≦0.9の範囲に設定されていることを特徴とする。
 この燃焼器尾筒は、尾筒入口から尾筒出口に至る絞り比が最適化され、燃焼ガスの壁面流速が低減されるので、尾筒出口部分の交換熱量を削減でき、コンバインド効率を向上できる。
 上記の目的を達成するために、本発明の燃焼器尾筒の設計方法では、ガスタービンのロータの軸心に対し、燃焼器の中心線の角度を設定する工程と、次に、燃焼ガスが流入する尾筒入口から燃焼ガスを送出する尾筒出口に至る絞り比を設定する工程と、次に、前記尾筒入口の断面積を維持する態様で前記尾筒入口の径方向内側端から前記中心線と平行な直線を下流側に延ばすと共に、前記尾筒出口の径方向内側端から前記軸心と平行な直線を上流側に延ばし、これら各直線を円弧で繋いで径方向内側外形線をなす工程と、次に、前記尾筒入口の断面積が維持された筒状の下流側での径方向外側端から前記尾筒入口の径方向外側端に至り滑らかに繋いで径方向外側外形線をなす工程と、次に、筒状の下流側から前記尾筒出口に至り、前記径方向内側外形線および前記径方向外側外形線に従い断面積を単調に減少させる工程とを含むことを特徴とする。
 この燃焼器尾筒の設計方法は、尾筒入口から尾筒出口に至る断面形状の変形、および絞りを含む形状が最適化された燃焼器尾筒を形成できる。
 上記の目的を達成するために、本発明のガスタービンでは、圧縮機で圧縮した圧縮空気に燃焼器で燃料を供給して燃焼させた燃焼ガスをタービンに供給することで回転動力を得るガスタービンにおいて、燃焼器の尾筒入口の断面積Dinに対し、尾筒出口の断面積Doutを、0.79≦Dout/Din≦0.9の範囲に設定し、かつ前記尾筒出口が接続されるタービンの第1段タービン静翼において、前記静翼の上流側開口の径方向寸法を前記尾筒出口の径方向寸法に合わせた燃焼器接続構造を備えたことを特徴とする。
 このガスタービンでは、燃焼器の尾筒について、燃焼ガスの壁面流速が低減されるので、尾筒出口部分の交換熱量が削減され、コンバインド効率を向上できる。しかも、タービンについては、第1段タービン静翼の上流側での流入速度が落ちるので、空力性能が改善され、コンバインド効率を向上できる。一方、タービンについて、第1段タービン静翼の上流側端での翼高さが増加することから、翼部の冷却空気量が増加する。しかし、静翼においても燃焼ガスの壁面流速が低減されることから、熱伝達率が低下するため、静翼全体の冷却空気量の増加は少ない。さらに、前述のタービンでの空力性能の改善により相殺され、かつ最適な絞り比の範囲で尾筒出口の断面積が定められていることで、ガスタービン全体としてコンバインド効率が向上する。また、燃焼器の中心線を軸心に対して斜めに配置した構成において、尾筒から静翼への燃焼ガスの流速の増減がないため、交換熱量を低減でき、コンバインド効率の向上を図れる。
 また、本発明のガスタービンでは、前記燃焼器接続構造は、前記静翼の径方向内側壁をなす内側シュラウドをロータの軸心と平行に配置し、前記内側シュラウドの上流側端を前記尾筒出口の径方向内側端に対向して配置し、かつ前記静翼の径方向外側壁をなす外側シュラウドを、その上流側端が前記尾筒出口の径方向外側端と対向するように斜めに配置したことを特徴とする。
 このガスタービンは、燃焼器の中心線を軸心に対して斜めに配置した構成において、尾筒から静翼への燃焼ガスの流速の増減がないため、交換熱量を低減でき、コンバインド効率の向上を図れる。
 上記の目的を達成するために、本発明のガスタービンでは、圧縮機で圧縮した圧縮空気に燃焼器で燃料を供給して燃焼させた燃焼ガスをタービンに供給することで回転動力を得るガスタービンにおいて、ロータの軸心に対して中心線が角度を有して配置された前記燃焼器に設けられ、燃焼ガスをタービンに導く態様で、燃焼ガスが流入する尾筒入口から燃焼ガスを送出する尾筒出口に至り断面積が単調に減少されてなる燃焼器尾筒を備えたことを特徴とする。
 このガスタービンは、燃焼器尾筒の尾筒入口から尾筒出口に至る断面積の変化、または絞り比が最適化され、尾筒入口から尾筒出口に至る燃焼ガスの壁面流速が低減されるので、交換熱量を削減でき、コンバインド効率を向上できる。
 また、本発明のガスタービンでは、前記燃焼器尾筒は、前記尾筒入口の断面積Dinに対して前記尾筒出口の断面積Doutが、0.79≦Dout/Din≦0.9の範囲に設定されていることを特徴とする。
 このガスタービンは、燃焼器尾筒の尾筒入口から尾筒出口に至る絞り比が最適化され、燃焼ガスの壁面流速が低減されるので、尾筒出口部分の交換熱量を削減でき、コンバインド効率を向上できる。
 本発明によれば、タービンに繋がる燃焼器の尾筒出口の形状を最適化して燃焼ガスの壁面流速を低減し、尾筒出口部分の交換熱量を削減したので、コンバインド効率を向上できる。また、本発明によれば、燃焼器尾筒の尾筒入口から尾筒出口に至る断面形状の変形、および絞りを最適化しつつコンバインド効率を向上できる。
図1は、本発明の実施例に係るガスタービンの概略構成図である。 図2は、ガスタービンにおける燃焼器の概略構成図である。 図3は、燃焼器における尾筒の内形の概略図である。 図4は、尾筒の絞り比を示す図である。 図5は、翼高さ比Hin/Houtに対する燃焼器尾筒の交換熱量を示す図である。 図6は、翼高さ比Hin/Houtに対するタービン効率増加率を示す図である。 図7は、翼高さ比Hin/Houtに対する第1段タービン静翼の冷却空気増加率を示す図である。 図8は、翼高さ比Hin/Houtに対するコンバインド効率の増加率を示す図である。 図9は、燃焼器尾筒の設計方法を示す概念図である。 図10は、燃焼器尾筒の設計方法を示す概念図である。 図11は、燃焼器尾筒の設計方法を示す概念図である。 図12は、燃焼器尾筒の内壁面近傍の流速を示す図である。
 図1は、本発明の実施例に係るガスタービンの概略構成図、図2は、ガスタービンにおける燃焼器の概略構成図、図3は、燃焼器における尾筒の内形の概略図、図4は、尾筒の絞り比を示す図である。
 ガスタービンは、図1に示すように、圧縮機1と燃焼器2とタービン3とにより構成されている。また、圧縮機1、燃焼器2およびタービン3の中心部には、ロータ4が貫通して配置されている。圧縮機1、燃焼器2およびタービン3は、ロータ4の軸心Rに沿い、空気または燃焼ガスの流れの上流側から下流側に向かって順に並設されている。なお、以下の説明において、軸方向とは軸心Rに平行な方向をいい、周方向とは軸心Rを中心とした周り方向をいい、径方向とは軸心Rに直交する方向をいう。また、径方向内側とは軸心Rに対して接近する側であり、径方向外側とは軸心Rに対して離隔する側である。
 圧縮機1は、空気を圧縮して圧縮空気とするものである。圧縮機1は、空気を取り込む空気取入口11を有した圧縮機ケーシング12の内部の空気通路に、圧縮機静翼13および圧縮機動翼14が設けられている。圧縮機静翼13は、圧縮機ケーシング12側に取り付けられて周方向に複数並設されている。また、圧縮機動翼14は、ロータ4側に取り付けられて周方向に複数並設されている。これら圧縮機静翼13と圧縮機動翼14とは、軸方向で交互に複数設けられている。
 燃焼器2は、圧縮機1で圧縮された圧縮空気に対して燃料を供給することで、高温・高圧の燃焼ガスを生成するものである。燃焼器2は、圧縮空気と燃料を混合して燃焼させる内筒21と、内筒21から燃焼ガスをタービン3に導く尾筒22と、内筒21の外周を覆い、圧縮機1からの圧縮空気を内筒21に導く外筒23とを有している。この燃焼器2は、燃焼器ケーシング24に対し周方向に複数(例えば16個)並設されている。また、燃焼器2は、ガスタービンの車室内部の構造の制約から、燃焼器2の中心線Sをロータ4の軸心Rに対して傾けて(少なくとも30度)、径方向外側から径方向内側に斜めに燃焼ガスを噴出するように配置されている。
 また、燃焼器2には、図2に示すように、主に燃料を供給する燃料ノズル251,252が設けられている。燃料ノズル251は、内筒21の中央に1本設けられたパイロットノズルである。また、燃料ノズル252は、内筒21内でパイロットノズル251の周囲で周方向に複数(例えば8個)隣接して設けられたメインノズルである。このメインノズル252の周囲には、メインノズル252を覆うバーナー筒252bが設けられている。
 この燃焼器2では、図2に示すように、高温・高圧の圧縮空気の空気流が外筒23の内部に流れ込み、この圧縮空気が内筒21の内部に流れ込む。内筒21内では、圧縮空気がメインノズル252から噴射された燃料と混合され、バーナー筒252bにて予混合気の旋回流となって尾筒22内に流れ込む。また、圧縮空気は、パイロットノズル251から噴射された燃料と混合され、図示しない点火装置により点火されて燃焼し、燃焼ガスとなって尾筒22内に噴出する。このとき、パイロットノズル251から噴射した燃料による拡散火炎により、各メインノズル252のバーナー筒252bからの予混合気の燃焼を安定させるための保炎を行う。
 タービン3は、燃焼器2で燃焼された燃焼ガスにより回転動力を生じるものである。タービン3は、燃焼ガスが送り込まれるタービンケーシング31の内部の排気通路にタービン静翼32およびタービン動翼33が設けられている。タービン静翼32は、タービンケーシング31側に取り付けられて周方向に複数並設されている。また、タービン動翼33は、ロータ4の軸心Rを中心とした円盤状のディスクの外周に固定されて周方向に複数並設されている。これらタービン静翼32とタービン動翼33とは、軸方向で交互に複数設けられている。また、タービンケーシング31の下流側には、タービン3に連続するディフューザ部34aを内部に有した排気室34が設けられている。
 ロータ4は、圧縮機1側の端部が軸受部41により支持され、排気室34側の端部が軸受部42により支持されて、軸心Rを中心として回転自在に設けられている。そして、ロータ4の排気室34側の端部には、発電機(図示せず)の駆動軸が連結されている。
 このようなガスタービンは、圧縮機1の空気取入口11から取り込まれた空気が、複数の圧縮機静翼13と圧縮機動翼14とを通過して圧縮されることで高温・高圧の圧縮空気となる。この圧縮空気に対し、燃焼器2から燃料が供給されることで高温・高圧の燃焼ガスが生成される。そして、この燃焼ガスがタービン3のタービン静翼32とタービン動翼33とを通過することでロータ4が回転駆動され、このロータ4に連結された発電機に回転動力を付与することで発電を行う。そして、ロータ4を回転駆動した後の燃焼ガスは、排気室34内のディフューザ部34aで静圧に変換されてから大気に放出される。
 上述したガスタービンにおいて、図2および図3に示すように、燃焼器2の尾筒22は、筒状に形成され、一方の開口である尾筒入口221が内筒21に接続され、他方の開口である尾筒出口222がタービン3における排気通路の入口である第1段タービン静翼321に接続されている。尾筒入口221が接続される内筒21は、円筒形状に形成されている。このため、尾筒入口221は円形断面形状に形成されている(図3参照)。また、尾筒出口222が接続される第1段タービン静翼321は、翼部322と、該翼部322を径方向で挟むように支持する内側シュラウド351および外側シュラウド352とから構成されている。内側シュラウド351は、第1段タービン静翼321の径方向内側壁をなし、外側シュラウド352は、第1段タービン静翼321の径方向外側壁をなす。そして、第1段タービン静翼321の周方向の配置に従って燃焼ガスの通路が円環状に形成されている。また、上述したように燃焼器2は、周方向に複数並設されている。このため、尾筒出口222は、第1段タービン静翼321に対応する円環状を燃焼器2の数で分割した弧形断面形状であって、言い換えると扇形から円弧部を切り取った略四辺形断面形状に形成されている(図3参照)。すなわち、尾筒22は、尾筒入口221から尾筒出口222に至り断面形状が変形している。この尾筒出口222が接続される第1段タービン静翼321は、その円環状の円周がタービン3の空力的形状によりに決められている。このため、尾筒出口222の断面形状は、第1段タービン静翼321に対応する円環状を燃焼器2の数で分割した弧形の寸法が決められている。
 ここで、第1段タービン静翼321は、内側シュラウド351と外側シュラウド352との間の下流側径方向寸法がタービン3の空力的形状によって決められている。本実施例では、第1段タービン静翼321の下流側開口の径方向寸法(下流側翼高さ)Houtを空力的に決められた寸法とし、上流側開口の径方向寸法(上流側翼高さ)Hinを尾筒出口222の径方向寸法(ハ)と同じくなるように合わせてある。具体的には、内側シュラウド351は、ロータの軸心Rと平行(製造上の誤差を含む)に配置され、その上流側端が尾筒出口222の径方向内側端と対向して配置されている。また、外側シュラウド352は、上流側端が尾筒出口222の径方向外側端と対向し、かつ上流側開口の径方向寸法(上流側翼高さ)Hinが下流側開口の径方向寸法(下流側翼高さ)Houtよりも大きく、下流側開口から上流側開口が漸次広がるように斜めに配置されている。
 また、燃焼器2の尾筒22は、燃焼ガスの流れを安定させるため、尾筒入口221から尾筒出口222に至り断面積が減少するように絞りが形成されている。より好ましくは、尾筒入口221の断面積Dinに対する尾筒出口222の断面積Doutの絞り比Dout/Din=0.9である。すなわち、尾筒入口221の断面積(直径(ニ))が決められると、絞り比により尾筒出口222の断面積(径方向寸法(ハ))が決まる。なお、図4に実線で示すように、尾筒入口221の直径(ニ)の範囲を設定し、絞り比が0.9となる尾筒出口222の断面積Doutでの径方向寸法(ハ)に対し、第1段タービン静翼321の上流側開口の径方向寸法Hinと下流側開口の径方向寸法Houtとの比を翼高さ比Hin/Houtとし、この最小値をX=1.18とする。そして、図4に破線で示すように、第1段タービン静翼321のHin/Houtの最小値X=1.18において、尾筒入口221の直径(ニ)が最大寸法とした場合の絞り比は、0.79となる。そこで、尾筒入口221の直径(ニ)の範囲内で、第1段タービン静翼321のHin/Houtの最小値X=1.18を基準とした好ましい絞り比として、0.79≦Dout/Din≦0.9の範囲が得られる。
 かかる燃焼器接続構造およびガスタービンでは、燃焼器2について、尾筒出口222の径方向寸法(ハ)が、尾筒入口221の直径(ニ)に対する絞り比を、0.79≦Dout/Din≦0.9の範囲として最適化されている。このため、燃焼ガスの壁面流速が低減されるので、尾筒出口222部分の交換熱量を削減でき、コンバインド効率を向上できる。
 さらに、タービン3については、第1段タービン静翼321の上流側での流入速度が落ちるので、空力性能が改善され、コンバインド効率を向上できる。一方、タービン3について、第1段タービン静翼321の上流側での翼高さ(第1段タービン静翼321の上流側の径方向寸法Hin)が増加するので、前記第1段タービン静翼321の翼部322の冷却面積が増加することから冷却空気が増加してコンバインド効率は悪化する要因となる。しかし、前記第1段タービン静翼321においても燃焼ガスの壁面流速が低減されることから、熱伝達率が低下するため、前記第1段タービン静翼321全体の冷却空気量の増加は少ない。さらに、タービン3での空力性能の改善により、前述の効率悪化分は相殺され、かつ最適な絞り比の範囲で尾筒出口222の断面積が定められていることで、ガスタービン全体としてコンバインド効率が向上する。
 さらに、かかる燃焼器接続構造およびガスタービンでは、タービン3の第1段タービン静翼321について、内側シュラウド351をロータ4の軸心Rと平行に配置してその上流側端部を尾筒出口222の径方向内側端と対向して配置し、かつ外側シュラウド352を上流側端部が尾筒出口222の径方向外側端と対向するように斜めに配置してある。このため、図2に示すように燃焼器2の中心線Sを軸心Rに対して斜めに配置した構成において、尾筒22から第1段タービン静翼321への燃焼ガスの流速の増減がないため、交換熱量を低減でき、コンバインド効率の向上を図れる。
 これらを、図5~図8を用いて説明する。図6は、第1段タービン静翼321の上流側開口の径方向寸法Hinと下流側開口の径方向寸法Houtの比(翼高さ比Hin/Hout)とタービン効率との関係を示す図である。図6に示すように、Hin/Houtの比が大きくなるほど、タービン効率が向上することがわかる。
 次に、図7は、翼高さ比Hin/Houtと第1段タービン静翼321の冷却空気量の増加率との関係を示す図である。この図の中で、細い破線は翼部の冷却空気量、太い破線はシュラウド部の冷却空気量、太い実線はこれらの合計の冷却空気量を示している。図7に示すように、Hin/Houtの比が大きくなるほど、翼部については冷却面積が増加することから冷却空気量は増加するが、燃焼ガスの壁面流速の低下により、熱伝達率が低下するため、シュラウドについては冷却空気量が減少することから、合計の冷却空気量の増加は少ないことがわかる。
 次に、図5は、翼高さ比Hin/Houtに対する燃焼器尾筒の交換熱量の比率を示す図である。図5に示すように、外側シュラウドを斜めに配置していない場合、つまりHin/Hout=1を基準とした場合に対し、Hin/Houtの比が大きくなるほど、交換熱量が低減されることがわかる。
 次に、図8は、翼高さ比Hin/Houtとコンバインド効率増加分との関係を示す図である。この図の中で、細い破線はタービン効率の感度、太い破線はタービン静翼の冷却空気量の感度、細い一点鎖線は、燃焼器尾筒の交換熱量の感度を示す。図8に示すとおり、翼高さ比の増加が冷却空気量はコンバインド効率を悪化させる要因となっているが、タービン効率が向上し、燃焼器尾筒の交換熱量が低減されることから、全体的にはコンバインド効率は向上することがわかる。
 図9~図11は、尾筒の設計方法を示す概念図、図12は、尾筒の内壁面近傍での流速を示す図である。なお、図9~図12では、尾筒22の内形を示している。
 尾筒22の設計方法では、図9に示すように、先ず、ガスタービンにおけるロータ4の軸心Rに対し、燃焼器2の中心線Sの角度を設定する。ここでは、軸心Rに対して中心線Sの角度を30度に設定する。なお、図9に示す軸心Rは、軸心Rに平行な基準線を示している。また、燃焼器2の尾筒入口221の直径は、上述した所定範囲内から予め設定されている。これにより、尾筒入口221の径方向内側端Aおよび径方向外側端Bが決まる。
 次に、尾筒入口221の断面積Dinに対し、尾筒出口222の断面積Doutを、上述の0.79≦Dout/Din≦0.9の範囲内から設定する。ここでは、より好ましい絞り比としてDout/Din=0.9とする。尾筒出口222は、上述したように第1段タービン静翼321に対応する円環状を燃焼器2の数で分割した弧形の寸法が決まっているから、断面積Doutが決まれば径方向寸法も決まる。また、尾筒出口222の径方向内側端Cは、第1段タービン静翼321の径方向内側壁(内側シュラウド351)に対し、軸心Rに平行な位置にある。このため、尾筒出口222は、その径方向外側端Dが決められる。さらに、尾筒22での燃焼ガスの滞留時間、すなわち尾筒22の内部体積を最大とするため、尾筒入口221からの円筒形状を最大限に確保し、絞り部分の長さを極力短くする。そこで、図9に示すように、尾筒入口221の径方向内側端Aから中心線Sと平行な第1仮想直線223を下流側に延ばすとともに、尾筒出口222の径方向内側端Cから軸心Rと平行な第2仮想直線224を上流側に延ばす。そして、上述したように、第1段タービン静翼321の下流側開口の径方向寸法(Hout)を空力的に決められた寸法とし、上流側開口の径方向寸法(Hin)を尾筒出口222の径方向寸法(ハ)に合わせるように、第1段タービン静翼321の径方向外側壁(外側シュラウド352)を尾筒出口222の径方向外側端Dに向けて斜めに配置する。
 次に、図10に示すように、第1仮想直線223と第2仮想直線224とを繋ぐ。具体的には、尾筒入口221からの円筒形状を最大限に確保し、かつ尾筒22の径方向内側縁が内側に膨らまないように、第1仮想直線223および第2仮想直線224に接する極力半径の大きい円弧R1を設ける。これにより、尾筒入口221の径方向内側端Aと尾筒出口222の径方向内側端Cとが第1仮想直線223、第2仮想直線224および円弧R1で繋がり、尾筒22の径方向内側外形線が決まる。さらに、尾筒22の円筒形状の下流側での径方向内側端Eおよび径方向外側端Fが決まる。
 次に、図11に示すように、円筒形状の径方向外側端Fと尾筒出口222の径方向外側端Dとを繋ぐ。具体的には、尾筒入口221の径方向外側端Bから径方向外側端Fに至る直線と、径方向外側端Dに至る第1段タービン静翼321の斜めの径方向外側壁(外側シュラウド352)とを、2つの円弧、もしくは2つの円弧および直線により滑らかに繋ぐ。すなわち、径方向外側端Fにおいて、その内側に径方向外側端Bから径方向外側端Fに至る直線を接線とする円弧R2を、径方向外側端Fから点Gに至り設ける。そして、この円弧R2に繋がる直線225を点Gから下流側に延ばす。さらに、第1段タービン静翼321の斜めの径方向外側壁(外側シュラウド352)の直線226を径方向外側端Dから下流側に延ばす。さらにまた、直線225の点Hと直線226の点Jとを繋ぐ円弧R3を設ける。これにより、円筒形状の径方向外側端Fと尾筒出口222の径方向外側端Dとが滑らかに繋がり、尾筒22の径方向外側外形線が決まる。
 最後に、尾筒入口221から径方向内側端Eおよび径方向外側端Fに至り円筒形状とし、この円筒形状を尾筒出口222の径方向内側端Cおよび径方向外側端Dに至り、径方向内側外形線および径方向外側外形線に基づいて断面積を単調に減少させる。
 なお、上記尾筒22の製造にあっては、例えば軸方向に4分割し、これらをそれぞれプレス加工し、後に溶接で接合して尾筒22が形成される。
 かかる燃焼器2の尾筒22では、図12に示すように、径方向外側外形線および径方向内側外形線での内壁面近傍での流速を見た場合、本実施例の尾筒22(実線で示す)では、尾筒入口221から尾筒出口222に至る流速が、尾筒出口222で最大となり、それ以前ではこの最大値を越えないように、抑えられつつ絞り比に対応して単調に安定して増加していることが分かる。これに対し、断面積が単調に減少していない比較例(破線で示す)では、尾筒入口221から尾筒出口222に至る流速が速く、しかも不安定な変化をあらわしており、尾筒出口222以前で最大となっている。
 このように、本実施例の燃焼器尾筒およびガスタービンでは、尾筒入口221から尾筒出口222に至る断面積の変化が最適化されたことで、燃焼ガスの壁面流速を低減されるので、尾筒出口222部分の交換熱量を削減でき、コンバインド効率を向上できる。また、燃焼器尾筒の設計方法では、コンバインド効率を向上できる最適な尾筒22の形状が得られる。
 以上のように、本発明に係る燃焼器接続構造、燃焼器尾筒、燃焼器尾筒の設計方法、およびガスタービンは、コンバインド効率を向上することに適している。
 1 圧縮機
 2 燃焼器
 21 内筒
 22 尾筒
 221 尾筒入口
 222 尾筒出口
 23 外筒
 24 燃焼器ケーシング
 251 パイロットノズル
 252 メインノズル
 252b バーナー筒
 3 タービン
 31 タービンケーシング
 32 タービン静翼
 321 第1段タービン静翼
 322 翼部
 33 タービン動翼
 351 内側シュラウド
 352 外側シュラウド
 4 ロータ
 Din 尾筒入口の断面積
 Dout 尾筒出口の断面積
 Dout/Din 絞り比
 Hin 第1段タービン静翼の上流側開口の径方向寸法(上流側翼高さ)
 Hout 第1段タービン静翼の下流側開口の径方向寸法(下流側翼高さ)
 Hin/Hout 径方向寸法比(翼高さ比)
 R ロータの軸心
 S 燃焼器の中心線

Claims (9)

  1.  燃焼器の尾筒入口の断面積Dinに対し、尾筒出口の断面積Doutを、0.79≦Dout/Din≦0.9の範囲に設定し、かつ前記尾筒出口が接続されるタービンの第1段タービン静翼において、前記静翼の上流側開口の径方向寸法を前記尾筒出口の径方向寸法に合わせたことを特徴とする燃焼器接続構造。
  2.  前記静翼の径方向内側壁をなす内側シュラウドをロータの軸心と平行に配置し、前記内側シュラウドの上流側端を前記尾筒出口の径方向内側端に対向して配置し、かつ前記静翼の径方向外側壁をなす外側シュラウドを、その上流側端が前記尾筒出口の径方向外側端と対向するように斜めに配置したことを特徴とする請求項1に記載の燃焼器接続構造。
  3.  ガスタービンのロータの軸心に対して中心線が角度を有して配置された燃焼器に設けられ、前記燃焼器の燃焼ガスをタービンに導く燃焼器尾筒において、
     燃焼ガスが流入する尾筒入口から燃焼ガスを送出する尾筒出口に至り断面積が単調に減少されてなることを特徴とする燃焼器尾筒。
  4.  前記尾筒入口の断面積Dinに対して前記尾筒出口の断面積Doutが、0.79≦Dout/Din≦0.9の範囲に設定されていることを特徴とする請求項3に記載の燃焼器尾筒。
  5.  ガスタービンのロータの軸心に対し、燃焼器の中心線の角度を設定する工程と、
     次に、燃焼ガスが流入する尾筒入口から燃焼ガスを送出する尾筒出口に至る絞り比を設定する工程と、
     次に、前記尾筒入口の断面積を維持する態様で前記尾筒入口の径方向内側端から前記中心線と平行な直線を下流側に延ばすと共に、前記尾筒出口の径方向内側端から前記軸心と平行な直線を上流側に延ばし、これら各直線を円弧で繋いで径方向内側外形線をなす工程と、
     次に、前記尾筒入口の断面積が維持された筒状の下流側での径方向外側端から前記尾筒入口の径方向外側端に至り滑らかに繋いで径方向外側外形線をなす工程と、
     次に、筒状の下流側から前記尾筒出口に至り、前記径方向内側外形線および前記径方向外側外形線に従い断面積を単調に減少させる工程と
     を含むことを特徴とする燃焼器尾筒の設計方法。
  6.  圧縮機で圧縮した圧縮空気に燃焼器で燃料を供給して燃焼させた燃焼ガスをタービンに供給することで回転動力を得るガスタービンにおいて、
     燃焼器の尾筒入口の断面積Dinに対し、尾筒出口の断面積Doutを、0.79≦Dout/Din≦0.9の範囲に設定し、かつ前記尾筒出口が接続されるタービンの第1段タービン静翼において、前記静翼の上流側開口の径方向寸法を前記尾筒出口の径方向寸法に合わせた燃焼器接続構造を備えたことを特徴とするガスタービン。
  7.  前記燃焼器接続構造は、前記静翼の径方向内側壁をなす内側シュラウドをロータの軸心と平行に配置し、前記内側シュラウドの上流側端を前記尾筒出口の径方向内側端に対向して配置し、かつ前記静翼の径方向外側壁をなす外側シュラウドを、その上流側端が前記尾筒出口の径方向外側端と対向するように斜めに配置したことを特徴とする請求項6に記載のガスタービン。
  8.  圧縮機で圧縮した圧縮空気に燃焼器で燃料を供給して燃焼させた燃焼ガスをタービンに供給することで回転動力を得るガスタービンにおいて、
     ロータの軸心に対して中心線が角度を有して配置された前記燃焼器に設けられ、燃焼ガスをタービンに導く態様で、燃焼ガスが流入する尾筒入口から燃焼ガスを送出する尾筒出口に至り断面積が単調に減少されてなる燃焼器尾筒を備えたことを特徴とするガスタービン。
  9.  前記燃焼器尾筒は、前記尾筒入口の断面積Dinに対して前記尾筒出口の断面積Doutが、0.79≦Dout/Din≦0.9の範囲に設定されていることを特徴とする請求項8に記載のガスタービン。
PCT/JP2009/058068 2008-10-01 2009-04-23 燃焼器接続構造、燃焼器尾筒、燃焼器尾筒の設計方法、およびガスタービン WO2010038505A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008256531A JP2010085052A (ja) 2008-10-01 2008-10-01 燃焼器尾筒およびその設計方法ならびにガスタービン
KR1020107003607A KR101132853B1 (ko) 2008-10-01 2009-04-23 연소기 접속 구조체, 연소기 미통, 연소기 미통의 설계 방법, 및 가스 터빈
US12/674,352 US8448451B2 (en) 2008-10-01 2009-04-23 Height ratios for a transition piece of a combustor
EP09807567.4A EP2351967B1 (en) 2008-10-01 2009-04-23 Connecting structure for combustor
CN2009801002016A CN101784842B (zh) 2008-10-01 2009-04-23 燃烧器连接结构、燃烧器尾筒、燃烧器尾筒的设计方法和燃气轮机
US13/874,883 US8955222B2 (en) 2008-10-01 2013-05-01 Combustor connection structure, combustor transition piece, designing method of combustor transition piece and gas turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-256532 2008-10-01
JP2008256532A JP5173720B2 (ja) 2008-10-01 2008-10-01 燃焼器接続構造およびガスタービン
JP2008-256531 2008-10-01
JP2008256531A JP2010085052A (ja) 2008-10-01 2008-10-01 燃焼器尾筒およびその設計方法ならびにガスタービン

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/674,352 A-371-Of-International US8448451B2 (en) 2008-10-01 2009-04-23 Height ratios for a transition piece of a combustor
US13/874,883 Division US8955222B2 (en) 2008-10-01 2013-05-01 Combustor connection structure, combustor transition piece, designing method of combustor transition piece and gas turbine

Publications (1)

Publication Number Publication Date
WO2010038505A1 true WO2010038505A1 (ja) 2010-04-08

Family

ID=42073281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058068 WO2010038505A1 (ja) 2008-10-01 2009-04-23 燃焼器接続構造、燃焼器尾筒、燃焼器尾筒の設計方法、およびガスタービン

Country Status (6)

Country Link
US (2) US8448451B2 (ja)
EP (2) EP2955446B1 (ja)
JP (1) JP2010085052A (ja)
KR (1) KR101132853B1 (ja)
CN (1) CN101784842B (ja)
WO (1) WO2010038505A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130269821A1 (en) * 2012-04-13 2013-10-17 General Electric Company Systems And Apparatuses For Hot Gas Flow In A Transition Piece

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291063B2 (en) * 2012-02-29 2016-03-22 Siemens Energy, Inc. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine
US9127553B2 (en) * 2012-04-13 2015-09-08 General Electric Company Method, systems, and apparatuses for transition piece contouring
US20130272863A1 (en) * 2012-04-13 2013-10-17 General Electric Company Transition Piece Cross Sectional Area Convergence Reduction And Selection
US9316155B2 (en) * 2013-03-18 2016-04-19 General Electric Company System for providing fuel to a combustor
US9593853B2 (en) * 2014-02-20 2017-03-14 Siemens Energy, Inc. Gas flow path for a gas turbine engine
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
WO2016027834A1 (ja) * 2014-08-19 2016-02-25 三菱日立パワーシステムズ株式会社 ガスタービン
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
JP6223954B2 (ja) * 2014-12-02 2017-11-01 三菱日立パワーシステムズ株式会社 燃焼器及びガスタービン
US20160281992A1 (en) * 2015-03-24 2016-09-29 General Electric Company Injection boss for a unibody combustor
JP6483510B2 (ja) * 2015-04-14 2019-03-13 三菱日立パワーシステムズ株式会社 ガスタービンの製造方法
KR101842745B1 (ko) 2015-07-14 2018-03-27 두산중공업 주식회사 가스터빈의 트랜지션피스와 터빈의 결합장치
KR101842746B1 (ko) 2015-07-14 2018-03-27 두산중공업 주식회사 가스터빈의 트랜지션피스와 터빈의 연결장치
US20180258778A1 (en) * 2015-08-28 2018-09-13 Siemens Aktiengesellschaft Non-axially symmetric transition ducts for combustors
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US10502426B2 (en) * 2017-05-12 2019-12-10 General Electric Company Dual fuel injectors and methods of use in gas turbine combustor
JP6345331B1 (ja) 2017-11-20 2018-06-20 三菱日立パワーシステムズ株式会社 ガスタービンの燃焼筒及び燃焼器並びにガスタービン
CN108119915A (zh) * 2017-12-14 2018-06-05 天津成立航空技术有限公司 一种航空发动机火焰筒的预混室及其设计方法
CN111174231B (zh) * 2018-11-12 2022-03-25 中国联合重型燃气轮机技术有限公司 微混合喷嘴及其设计方法
US11933223B2 (en) * 2019-04-18 2024-03-19 Rtx Corporation Integrated additive fuel injectors for attritable engines
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143422A (ja) * 1986-12-05 1988-06-15 Hitachi Ltd ガスタ−ビン燃焼器
JPH09196378A (ja) * 1996-01-12 1997-07-29 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器の尾筒
JP2006242559A (ja) * 2005-03-02 2006-09-14 General Electric Co <Ge> 一体形缶型燃焼器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2326680C3 (de) * 1973-05-25 1980-09-25 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen Flammrohr mit Vormischkammer für Brennkammern von Gasturbinentriebwerken
US4041984A (en) * 1976-07-01 1977-08-16 General Motors Corporation Jet-driven helmholtz fluid oscillator
GB2087066B (en) * 1980-11-06 1984-09-19 Westinghouse Electric Corp Transition duct for combustion turbine
JPS62185363A (ja) 1986-02-10 1987-08-13 Hitachi Ltd 半導体装置
JPH0752014B2 (ja) * 1986-03-20 1995-06-05 株式会社日立製作所 ガスタ−ビン燃焼器
US4821522A (en) * 1987-07-02 1989-04-18 United Technologies Corporation Sealing and cooling arrangement for combustor vane interface
US5335502A (en) * 1992-09-09 1994-08-09 General Electric Company Arched combustor
US5974781A (en) * 1995-12-26 1999-11-02 General Electric Company Hybrid can-annular combustor for axial staging in low NOx combustors
FR2758384B1 (fr) * 1997-01-16 1999-02-12 Snecma Controle des debits de refroidissement pour des chambres de combustion a haute temperature
CN1232129C (zh) 1998-09-25 2005-12-14 索马网络公司 电讯操作方法
JP3846169B2 (ja) * 2000-09-14 2006-11-15 株式会社日立製作所 ガスタービンの補修方法
US6572330B2 (en) 2001-03-29 2003-06-03 General Electric Company Methods and apparatus for preferential placement of turbine nozzles and shrouds based on inlet conditions
EP1284392A1 (de) * 2001-08-14 2003-02-19 Siemens Aktiengesellschaft Brennkammeranordnung
EP1288441A1 (de) 2001-09-03 2003-03-05 Siemens Aktiengesellschaft Übergangsabschnitt einer Gasturbinenbrennkammer
US6840048B2 (en) 2002-09-26 2005-01-11 General Electric Company Dynamically uncoupled can combustor
US7093441B2 (en) * 2003-10-09 2006-08-22 United Technologies Corporation Gas turbine annular combustor having a first converging volume and a second converging volume, converging less gradually than the first converging volume
US7610179B2 (en) * 2004-09-24 2009-10-27 United Technologies Corporation Coupled parametric design of flow control and duct shape
JP2006105084A (ja) 2004-10-08 2006-04-20 Mitsubishi Heavy Ind Ltd ガスタービン動翼
US8015818B2 (en) * 2005-02-22 2011-09-13 Siemens Energy, Inc. Cooled transition duct for a gas turbine engine
US7954325B2 (en) * 2005-12-06 2011-06-07 United Technologies Corporation Gas turbine combustor
US7810334B2 (en) * 2006-10-13 2010-10-12 Siemens Energy, Inc. Transition duct for gas turbine engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143422A (ja) * 1986-12-05 1988-06-15 Hitachi Ltd ガスタ−ビン燃焼器
JPH09196378A (ja) * 1996-01-12 1997-07-29 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器の尾筒
JP2006242559A (ja) * 2005-03-02 2006-09-14 General Electric Co <Ge> 一体形缶型燃焼器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2351967A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130269821A1 (en) * 2012-04-13 2013-10-17 General Electric Company Systems And Apparatuses For Hot Gas Flow In A Transition Piece

Also Published As

Publication number Publication date
CN101784842B (zh) 2012-09-26
US8448451B2 (en) 2013-05-28
KR20100074108A (ko) 2010-07-01
US20140130511A1 (en) 2014-05-15
JP2010085052A (ja) 2010-04-15
EP2351967A1 (en) 2011-08-03
US8955222B2 (en) 2015-02-17
KR101132853B1 (ko) 2012-04-03
EP2351967A4 (en) 2015-08-26
US20110265491A1 (en) 2011-11-03
EP2955446B1 (en) 2018-01-17
CN101784842A (zh) 2010-07-21
EP2351967B1 (en) 2016-12-28
EP2955446A1 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2010038505A1 (ja) 燃焼器接続構造、燃焼器尾筒、燃焼器尾筒の設計方法、およびガスタービン
JP4920228B2 (ja) ガスタービンエンジンを組み立てるための方法及び装置
EP1950382A1 (en) Spoke with flow guiding element
JP2016539276A (ja) 遠心圧縮機の湾曲した拡散流路部
KR20140127291A (ko) 배기가스 확산기와 지지 핀들을 구비한 가스터빈
JPWO2016031017A1 (ja) 膨張タービン及びターボチャージャ
EP3832144B1 (en) Diffuser pipe with radially-outward exit
JP2009197650A (ja) ガスタービン
US20180051570A1 (en) Gas turbine blade
JP4220947B2 (ja) 燃焼器尾筒とタービン入口との連通構造
US20190093484A1 (en) Gas turbine blade
JP5272097B2 (ja) 燃焼器尾筒の設計方法
KR102161765B1 (ko) 터빈용 에어포일, 이를 포함하는 터빈
JP5173720B2 (ja) 燃焼器接続構造およびガスタービン
US20220127964A1 (en) Cooling structure for trailing edge of turbine blade
KR101891449B1 (ko) 가스 터빈
US20200024991A1 (en) Gas turbine
EP4212777B1 (en) Combustor nozzle
US12044172B2 (en) Air guide for a gas turbine engine
US20240271533A1 (en) Radial turbine impeller
JP5111604B2 (ja) ガスタービン装置並びにその制御方法
KR102282668B1 (ko) 라이너 냉각장치, 연소기 및 이를 포함하는 가스터빈
KR20120100676A (ko) 가스터빈
US20190085769A1 (en) Turbine vane, turbine, and gas turbine including the same
JP2015514920A (ja) 耐久性があるタービンベーン

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100201.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107003607

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12674352

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009807567

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009807567

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE