WO2010038281A1 - Zeolite separation membrane, process for producing the same, and binder - Google Patents

Zeolite separation membrane, process for producing the same, and binder Download PDF

Info

Publication number
WO2010038281A1
WO2010038281A1 PCT/JP2008/067797 JP2008067797W WO2010038281A1 WO 2010038281 A1 WO2010038281 A1 WO 2010038281A1 JP 2008067797 W JP2008067797 W JP 2008067797W WO 2010038281 A1 WO2010038281 A1 WO 2010038281A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous tube
separation membrane
bonding
ceramic
zeolite
Prior art date
Application number
PCT/JP2008/067797
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 和宏
高木 義信
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to EP08877140.7A priority Critical patent/EP2343115A4/en
Priority to CN200880131379.2A priority patent/CN102170962B/en
Priority to PCT/JP2008/067797 priority patent/WO2010038281A1/en
Priority to US12/998,221 priority patent/US9022226B2/en
Publication of WO2010038281A1 publication Critical patent/WO2010038281A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/061Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/041Gaskets or O-rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/042Adhesives or glues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/062Oxidic interlayers based on silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/88Joining of two substrates, where a substantial part of the joining material is present outside of the joint, leading to an outside joining of the joint

Abstract

A separation membrane characterized by comprising: a porous tube comprising alumina as the main component; a connection member disposed in a position for connection to the tube; a binder with which the connection member has been bonded to the tube and which is made of ceramic oxides comprising 17-48 wt.% SiO2, 2-8 wt.% Al2O3, 24-60 wt.% BaO, and 0.5-5 wt.% ZnO as essential ingredients and containing at least one of La2O3, CaO, and SrO; and a thin zeolite layer formed on the surface of the porous tube. Before the zeolite layer is formed, the connection member is bonded to the porous tube. Thus, the binder can have a melting temperature exceeding the limit of up to 600°C, which is the heat-resistance limit to zeolite. This widens the choice of ceramic oxide compositions, e.g., glass compositions, to be used in the binder (there are no limitations on glass softening temperature).

Description

ゼオライト分離膜、その製造方法および接合剤Zeolite separation membrane, method for producing the same, and bonding agent
 本発明は、液体または気体の混合物から所望の成分を分離するゼオライト分離膜に関し、より詳細には、トウモロコシ、サトウキビ等のバイオマス原料を利用して発酵生成させるエタノール製造プラントにおいて、エタノール精製工程で使用されるエタノール/水の膜分離装置や、含水有機溶剤から水を除去して高濃度の有機溶剤を回収する膜分離装置に用いられるゼオライト分離膜に関する。本発明はまた、同分離膜の製造方法およびこれに用いる接合剤にも関する。 The present invention relates to a zeolite separation membrane for separating a desired component from a liquid or gas mixture, and more specifically, used in an ethanol purification process in an ethanol production plant that uses a biomass raw material such as corn or sugar cane to produce fermentation. The present invention relates to a zeolite separation membrane used in an ethanol / water membrane separation device and a membrane separation device that removes water from a water-containing organic solvent to recover a high concentration organic solvent. The present invention also relates to a method for producing the separation membrane and a bonding agent used therefor.
 ゼオライト分離膜の一端部における管接合または封止方法として、下記の公知技術が知られている。 The following known techniques are known as a method for joining or sealing pipes at one end of a zeolite separation membrane.
 特許文献1には、ゼオライト膜付セラミック管の一端部と、これに接続すべき金属管の一端部との各外表面に亘って弾性または流動性を有する部材を具備する管端部接続構造が記載されている。 Patent Document 1 discloses a tube end connection structure including a member having elasticity or fluidity over each outer surface of one end of a ceramic tube with a zeolite membrane and one end of a metal tube to be connected thereto. Are listed.
 特許文献2には、高温で機密性および強度を有する無機分離膜の端部をシールする組成物として、SiO2:15~20wt%、Al2O3:3~5wt%、B2O3:15~25wt%、PbO:55~65wt%の組成を有し、軟化点400~600℃の無機分離膜シール用組成物が提案されている。 Patent Document 2 discloses SiO 2 : 15 to 20 wt%, Al 2 O 3 : 3 to 5 wt%, B 2 O 3 : A composition for sealing an inorganic separation membrane having a composition of 15 to 25 wt% and PbO: 55 to 65 wt% and a softening point of 400 to 600 ° C. has been proposed.
 特許文献3には、管状分離部材の端部を塞ぐのに、環状シール(Oリング/金属リング)を固定部材の螺合で挟圧する方式が示されている。 Patent Document 3 discloses a method in which an annular seal (O-ring / metal ring) is clamped by screwing a fixing member in order to close the end of the tubular separation member.
 特許文献4には、シリカを55~65mol%、ジルコニアを1~10mol%含有し、カルシア、バリア及びストロンチアの群から選択される少なくとも1種のアルカリ土類金属酸化物を含有し、酸化亜鉛を実質的に含有しない無アルカリガラスにより構成されたセラミック多孔体が提案されている。
特開2006-88079号公報 特開平10-180060号公報 特開2005-313156号公報 特開2006-263498号公報
Patent Document 4 contains 55 to 65 mol% of silica, 1 to 10 mol% of zirconia, contains at least one alkaline earth metal oxide selected from the group of calcia, barrier and strontia, and contains zinc oxide. A ceramic porous body composed of an alkali-free glass that is substantially not contained has been proposed.
JP 2006-88079 A Japanese Patent Laid-Open No. 10-180060 JP 2005-313156 A JP 2006-263498 A
 しかしながら、特許文献1の構造では、セラミック表面の形状粗さに対応するために塗布剤が被覆材の下地として使用されており、この塗布材成分が装置稼動時に溶出してゼオライト分離膜に悪影響を及ぼす恐れがある。さらに、このときの被覆材を施す密封作業には比較的長い作業時間と技術的な習得を要するという短所がある。 However, in the structure of Patent Document 1, a coating agent is used as a base of the coating material in order to cope with the shape roughness of the ceramic surface, and this coating material component elutes during operation of the apparatus and adversely affects the zeolite separation membrane. There is a risk. Further, the sealing work for applying the covering material at this time has a disadvantage that a relatively long working time and technical learning are required.
 特許文献2のシールに関しては、600℃以下でガラスを軟化して密封するため、酸化鉛を多量に含んだガラス組成が採用されており、このような酸化鉛がエタノールなどの製品側へ溶出することによって健康や環境へ被害が及ぶす懸念がある。さらに、接合部の構造に関して、ゼオライト分離膜を形成後に、ガラスシールを行っているため、接合部においてガラスと接合境界面の高い密着性が求められる。特に、分離膜とガス導管を接合する際には、分離膜の断面部とガス導管の外表面を接合しているため、分離膜の内径がガス導管の外径に比べて大きい場合は、ガラスシール部のみで物理的な強度を保つ必要があり、このように一定の強度を保つためにはシール部に相当厚いガラス層を必要とし、ガラス使用量は多大となる。 Regarding the seal of Patent Document 2, a glass composition containing a large amount of lead oxide is employed to soften and seal the glass at 600 ° C. or lower, and such lead oxide is eluted to the product side such as ethanol. There is a concern that damage to health and the environment may occur. Furthermore, since the glass seal is performed after the zeolite separation membrane is formed with respect to the structure of the joint, high adhesion between the glass and the joint interface is required at the joint. In particular, when the separation membrane and the gas conduit are joined, the cross-section of the separation membrane and the outer surface of the gas conduit are joined, so if the inner diameter of the separation membrane is larger than the outer diameter of the gas conduit, It is necessary to maintain the physical strength only by the seal portion, and in order to maintain a constant strength in this way, a considerably thick glass layer is required for the seal portion, and the amount of glass used becomes large.
 特許文献3の方式では、シール部材としてOリング(2箇所)を用いるために、ゼオライト分離膜端部における接合構造(ねじ込み部、Oリング挟圧部)が非常に複雑であり、この部位を製作する際に高度な加工精度が要求されることになり、コストアップを招くという問題がある。 In the method of Patent Document 3, since an O-ring (two locations) is used as a sealing member, the joining structure (screwed portion, O-ring clamping portion) at the end of the zeolite separation membrane is very complicated, and this part is manufactured. In doing so, a high degree of machining accuracy is required, and there is a problem that the cost increases.
 特許文献4では、多数の細孔が形成されたセラミック多孔体を流体中に混在する縣濁物質、細菌、粉塵等を除去するために用いるセラミック多孔体が想定されており、酸(クエン酸溶液)またはアルカリ(次亜塩素酸ソーダ水溶液)への耐食性を考慮した酸化亜鉛を含まないガラス組成を提案しているが、被分離対象が比較的大きく、このためのガラス評価も発泡圧を基準としていることから、厳密なガラスの溶出は論じられていないと考えられる。セラミック多孔質管に結晶成長させて形成するゼオライト層によって、分離対象を分子サイズ(オングストローム)で選別するゼオライト分離膜では、ゼオライト層を形成する水熱反応(加熱・高アルカリ雰囲気)で溶出したわずかなガラス成分がゼオライト結晶形成に影響を及ぼして、膜性能(分離性能)を低下させる。これを防ぐためには、ガラス成分が溶出してもゼオライト形成時に影響の少ないガラス組成そのものを見出すことが必要とされる。 In Patent Document 4, a ceramic porous body used for removing suspended substances, bacteria, dust, etc. mixed in a fluid with a ceramic porous body having a large number of pores is assumed, and an acid (citric acid solution) is assumed. ) Or a glass composition that does not contain zinc oxide in consideration of corrosion resistance to alkali (sodium hypochlorite aqueous solution), but the separation target is relatively large, and the glass evaluation for this is based on the foam pressure Therefore, strict glass elution is not discussed. Zeolite separation membranes that are separated by molecular size (angstrom) by a zeolite layer formed by crystal growth on a ceramic porous tube are slightly eluted by the hydrothermal reaction (heating and high alkali atmosphere) that forms the zeolite layer. Glass components affect zeolite crystal formation and reduce membrane performance (separation performance). In order to prevent this, it is necessary to find out the glass composition itself which has little influence on the formation of zeolite even if the glass component is eluted.
 本発明は、先行技術が孕む上記諸問題を解消したゼオライト分離膜、同分離膜の製造方法およびこれに用いる接合剤を提供することを課題とする。 An object of the present invention is to provide a zeolite separation membrane, a method for producing the separation membrane, and a bonding agent used therefor, which have solved the above-mentioned problems associated with the prior art.
 本発明によるゼオライト分離膜は、主成分としてアルミナで構成される多孔質管と、同管との接合位置に配された接合部材とが、必須成分としてSiO2:17~48wt%、Al2O3:2~8wt%、BaO:24~60wt%、ZnO:0.5~5wt%を含み、かつLa2O3、CaOおよびSrOのうち少なくとも1つを含むセラミックの酸化物からなる接合剤によって固着され、多孔質管の表面にゼオライト層が形成されてなることを特徴とする。 In the zeolite separation membrane according to the present invention, a porous tube composed of alumina as a main component and a joining member disposed at a joining position with the tube are composed of SiO 2 : 17 to 48 wt%, Al 2 O as an essential component. 3 : fixed by a bonding agent made of ceramic oxide containing 2 to 8 wt%, BaO: 24 to 60 wt%, ZnO: 0.5 to 5 wt%, and containing at least one of La 2 O 3 , CaO and SrO The zeolite tube is formed on the surface of the porous tube.
 本発明によるゼオライト分離膜において、接合部材は、例えば、セラミック多孔質管の少なくとも一端を封止する封止栓であるか、または、セラミック多孔質管の少なくとも一端に接合される管である。 In the zeolite separation membrane according to the present invention, the joining member is, for example, a sealing plug that seals at least one end of the ceramic porous tube, or a tube joined to at least one end of the ceramic porous tube.
 本発明によるゼオライト分離膜において、接合部材の端部とセラミック多孔質管の端部が、例えば図6に示すように、凹部と凸部の嵌合により接合されていることが好ましい。 In the zeolite separation membrane according to the present invention, it is preferable that the end portion of the joining member and the end portion of the ceramic porous tube are joined by fitting the concave portion and the convex portion as shown in FIG.
 本発明によるゼオライト分離膜において、接合部材の熱膨張係数は、セラミック多孔質管のそれとほぼ同じ4~9 x 10-6 (/K)であることが好ましい。接合部材の熱膨張係数がセラミック多孔質管のそれと異なると、接合部外表面を覆うコーティングを形成するための焼成時にコーティングにひび割れや剥がれが生じる。 In the zeolite separation membrane according to the present invention, the thermal expansion coefficient of the joining member is preferably 4 to 9 × 10 −6 (/ K) which is almost the same as that of the ceramic porous tube. If the thermal expansion coefficient of the joining member is different from that of the ceramic porous tube, the coating is cracked or peeled during firing to form a coating covering the outer surface of the joint.
 本発明によるゼオライト分離膜において、接合部材としては、主成分としてアルミナ50wt%以上を含有し、ガラス質の割合が0.1~40wt%であり、結晶粒径が1μm以上であるものが好ましい。これによって、接合部材が、分離膜となるアルミナの多孔質管とほぼ同じ熱膨張係数を有することができ、ゼオライト層を形成する際の高アルカリ雰囲気においてセラミックの酸化物の漏出を防ぐことができることから、接合部材と分離膜の接合面での熱によるひび割れ発生を防ぎ、ゼオライト分離膜としての物理的な強度を確保することが可能となる。 In the zeolite separation membrane according to the present invention, the joining member preferably contains 50 wt% or more of alumina as a main component, has a vitreous ratio of 0.1 to 40 wt%, and has a crystal grain size of 1 μm or more. As a result, the joining member can have almost the same thermal expansion coefficient as that of the porous alumina tube used as the separation membrane, and leakage of ceramic oxide can be prevented in a highly alkaline atmosphere when forming the zeolite layer. Therefore, it is possible to prevent cracking due to heat at the joint surface between the joining member and the separation membrane, and to ensure physical strength as a zeolite separation membrane.
 図1はこのような接合部材からなる封止栓の粒子を示す顕微鏡写真であり、図2は粒子径の測定例を示すものである。物質の分離そのものはゼオライト層を有した分離膜において行われるため、被分離物質が接合部材を介して透過することは避けなければならない。接合部材を焼結後に構成する粒子径(結晶粒子径)が少なくとも1μm以上の微細な構造を構築することによって、被分離物質が接合部材を通過するのを防ぐことができる。 FIG. 1 is a photomicrograph showing particles of a sealing plug made of such a joining member, and FIG. 2 shows an example of measurement of particle diameter. Since the separation of the substance itself is performed in a separation membrane having a zeolite layer, it is necessary to avoid that the substance to be separated permeates through the joining member. By constructing a fine structure having a particle diameter (crystal particle diameter) of at least 1 μm or more after the bonding member is sintered, it is possible to prevent the substance to be separated from passing through the bonding member.
 本発明によるゼオライト分離膜の製造方法は、主成分としてアルミナで構成される多孔質管と、同管に接合すべき接合部材とを接合位置に配し、必須成分としてSiO2:17~48wt%、Al2O3:2~8wt%、BaO:24~60wt%、ZnO:0.5~5wt%を含み、かつLa2O3、CaOおよびSrOのうち少なくとも1つを含むセラミックの酸化物からなる接合剤を多孔質管と接合部材の間に介在させ、接合剤を焼成することによって多孔質管と接合部材を固着し、その後多孔質管の表面にゼオライト層を形成することを特徴とする。 In the method for producing a zeolite separation membrane according to the present invention, a porous tube composed of alumina as a main component and a bonding member to be bonded to the tube are arranged at a bonding position, and SiO 2 : 17 to 48 wt% as an essential component. Al 2 O 3 : 2 to 8 wt%, BaO: 24 to 60 wt%, ZnO: 0.5 to 5 wt%, and a junction made of a ceramic oxide containing at least one of La 2 O 3 , CaO and SrO An agent is interposed between the porous tube and the bonding member, and the bonding agent is baked to fix the porous tube and the bonding member, and then a zeolite layer is formed on the surface of the porous tube.
 本発明によるゼオライト分離膜の製造方法において、接合剤を、セラミックの酸化物粉末の成型品の形態でまたは同酸化物粉末を含むスラリーの形態で、多孔質管と接合部材の間に介在させ、接合剤を焼成することによって多孔質管と接合部材を固着することが好ましい。 In the method for producing a zeolite separation membrane according to the present invention, the bonding agent is interposed between the porous tube and the bonding member in the form of a molded product of ceramic oxide powder or in the form of a slurry containing the oxide powder, It is preferable to fix the porous tube and the bonding member by baking the bonding agent.
 上記セラミックの酸化物粉末の成型品は、バインダを含むか、または、バインダを含み成型後に焼成によってバインダを除去したものであることが好ましい。セラミックの酸化物粉末の成型品はセラミック酸化物粉末どうしをバインダによって結びつけることによって形が崩れることがないようにしたものであるが、これを本発明による分離膜へ供する際には、一旦バインダによって成型したものを、加熱によってバインダを焼失させるとともに、ガラスを融解させ、このガラス融解によって形を保持するようにしたものを利用することができる。さらに、セラミック多孔質管と接合部材を固着させる際に加熱処理を行うことから、一旦バインダによって成型したものを、この接合固着を行う加熱処理でバインダを焼失させることによって加熱処理工程を減じることが可能となる。 The molded article of the ceramic oxide powder preferably contains a binder, or contains a binder and the binder is removed by firing after molding. The ceramic oxide powder molded product is such that the shape of the ceramic oxide powder is not lost by linking the ceramic oxide powder together with a binder. The molded product can be used by burning out the binder by heating, melting the glass, and maintaining the shape by melting the glass. Furthermore, since the heat treatment is performed when the ceramic porous tube and the bonding member are fixed, the heat treatment process can be reduced by burning the binder once formed by the binder by the heat treatment for bonding and fixing. It becomes possible.
 本発明によるゼオライト分離膜の製造方法において、セラミック多孔質管の表面にゼオライト層を水熱合成
によって形成することが好ましい。
In the method for producing a zeolite separation membrane according to the present invention, it is preferable to form a zeolite layer on the surface of the ceramic porous tube by hydrothermal synthesis.
 上記水熱合成の前に、ゼオライト粒子を懸濁させた懸濁液にセラミック多孔質管を浸漬し乾燥させることによって、ゼオライト粒子を多孔質管の表面に付着させることが好ましい。本発明による分離膜の製造方法では、多孔質管に接合部材を固着させた後、多孔質管の表面にゼオライト層を形成する。ゼオライト層を形成する出発物質であるゼオライト粒子を縣濁させた液に多孔質管と接合部材の接合面を浸漬することによって、万一、接合境界に微細な隙間が発生した場合でも、この微細な隙間にゼオライト粒子の縣濁液が浸入し、乾燥によってゼオライト粒子を付着させることにより、この後の水熱反応によって結晶成長したゼオライト層がこの隙間を埋めることとなり、接合面における気密性を高くすることできる。 Prior to the hydrothermal synthesis, it is preferable to attach the zeolite particles to the surface of the porous tube by immersing and drying the ceramic porous tube in a suspension in which the zeolite particles are suspended. In the method for producing a separation membrane according to the present invention, after a bonding member is fixed to the porous tube, a zeolite layer is formed on the surface of the porous tube. Even if a minute gap is generated at the joining boundary by immersing the joining surface of the porous tube and the joining member in a suspension of the zeolite particles that are the starting material for forming the zeolite layer, When a suspension of zeolite particles intrudes into the gaps and adheres the zeolite particles by drying, the zeolite layer that has crystal growth by the subsequent hydrothermal reaction fills the gaps, increasing the airtightness at the joint surface. Can do.
 本発明による接合剤は、主成分としてアルミナで構成される多孔質管と接合部材とを接合させるための接合剤であって、必須成分としてSiO2:17~48wt%、Al2O3:2~8wt%、BaO:24~60wt%、ZnO:0.5~5wt%を含み、かつLa2O3、CaOおよびSrOのうち少なくとも1つを含むセラミックの酸化物からなることを特徴とする。 The bonding agent according to the present invention is a bonding agent for bonding a porous tube composed of alumina as a main component to a bonding member, and includes SiO 2 : 17 to 48 wt%, Al 2 O 3 : 2 as essential components. It is characterized by comprising a ceramic oxide containing ˜8 wt%, BaO: 24-60 wt%, ZnO: 0.5-5 wt%, and containing at least one of La 2 O 3 , CaO and SrO.
 本発明による接合剤は、さらにイットリアによって安定化させたジルコニアを0.1~20wt%含むものであってよい。 The bonding agent according to the present invention may further contain 0.1 to 20 wt% of zirconia stabilized by yttria.
 セラミックの酸化物の代表例はガラスである。セラミックの酸化物粉末の成型品は、リング、例えばガラスリングであってよい。 A typical example of ceramic oxide is glass. The molded article of ceramic oxide powder may be a ring, for example a glass ring.
 本発明によるゼオライト分離膜の製造方法では、ゼオライト層を形成する前の段階で多孔質管に接合部材を固着させる。これによって、接合剤の溶融温度は、ゼオライトの耐熱限界である600℃以下という制限を超えることができ、接合剤に使用するセラミック酸化物の組成例えばガラス組成の選択の幅が広くなる(ガラス軟化温度の制限がなくなる)。 In the method for producing a zeolite separation membrane according to the present invention, the joining member is fixed to the porous tube at a stage before forming the zeolite layer. As a result, the melting temperature of the bonding agent can exceed the limit of 600 ° C. or less, which is the heat resistance limit of zeolite, and the range of selection of the ceramic oxide composition used in the bonding agent, for example, the glass composition is widened (glass softening). There is no temperature limit).
 多孔質管に接合部材を固着させた後、多孔質管の表面にゼオライト層を形成するので、万一、接合境界に微細な隙間が発生した場合でも、ゼオライト層がこの隙間を埋めることになり、密着性の信頼性を高くできる。 Since the zeolite layer is formed on the surface of the porous tube after fixing the joining member to the porous tube, even if a minute gap occurs at the joining boundary, the zeolite layer will fill this gap. , The reliability of adhesion can be increased.
 また、接合部材の端部とセラミック多孔質管の端部が嵌合されている構造では、物理的な強度は接合剤だけでなく、嵌合によってももたらせるため、接合剤の使用量を節減することができる。 In addition, in the structure where the end of the joining member and the end of the ceramic porous tube are fitted, the physical strength can be brought about not only by the joining agent but also by the fitting. You can save.
 本発明による接合剤は、必須成分としてSiO2:17~48wt%、Al2O3:2~8wt%、BaO:24~60wt%、ZnO:0.5~5wt%を含み、かつLa2O3、CaOおよびSrOのうち少なくとも1つを含むセラミックの酸化物からなるので、水熱合成によるゼオライト層の形成工程において、該接合剤で接合部材を固着した多孔質管を高アルカリ溶液中に浸漬する際に接合剤の成分が同液に溶け出すことがなく、接合剤は得られたゼオライト層へ何ら影響を及ぼさない。 The bonding agent according to the present invention contains SiO 2 : 17 to 48 wt%, Al 2 O 3 : 2 to 8 wt%, BaO: 24 to 60 wt%, ZnO: 0.5 to 5 wt% as essential components, and La 2 O 3 , Since it is made of a ceramic oxide containing at least one of CaO and SrO, in the step of forming a zeolite layer by hydrothermal synthesis, when immersing the porous tube in which the bonding member is fixed with the bonding agent in a highly alkaline solution In addition, the components of the bonding agent do not dissolve in the same solution, and the bonding agent has no influence on the obtained zeolite layer.
 本発明では、接合作業に際して健康及び環境に配慮して鉛を含まない接合剤を使用する。分離膜運転中に漏出してゼオライト層へ悪影響を及ぼす恐れのある成分を含む接合剤や、取付作業が煩雑な被覆材を用いることなく、セラミック表面の粗さに十分対応した気密性を保持できる。 In the present invention, a bonding agent containing no lead is used in consideration of health and the environment during the bonding work. Airtightness sufficiently corresponding to the roughness of the ceramic surface can be maintained without using a bonding agent containing components that may leak during the operation of the separation membrane and adversely affect the zeolite layer, or a coating material with complicated mounting work. .
 上記組成の接合剤および接合部材の使用により、ゼオライト分離膜と接合部材との接合部を簡易な構造とすることができ、コストダウンのみならずセラミックの特徴である機械的な強度および高い気密性を保持することができる。 By using the bonding agent and the bonding member having the above composition, the bonded portion between the zeolite separation membrane and the bonding member can have a simple structure, not only cost reduction but also mechanical strength and high airtightness that are the characteristics of ceramics. Can be held.
 つぎに、本発明を具体的に説明するために、本発明の実施例をいくつか挙げる。 Next, in order to specifically explain the present invention, several examples of the present invention will be given.
実施例1
1)セラミック多孔質管と接合部材の固着
(a)図3において、セラミック多孔質管(1)(アルミナ99%、外径16mmφ、内径12mmφ)を封止するために、同管(1)の一端部と封止栓(3)(緻密質アルミナ)との間に、ガラス粉末を圧縮成型したガラスリング(2)を介在させた(図3a参照)。ここで使用したガラス粉末の組成は、表2中のBに示すものである。次いで、これを900℃で1時間焼成することにより、管(1)の一端部を封止した構造を得た。
Example 1
1) Adhesion of ceramic porous tube and joining member
(a) In FIG. 3, in order to seal the ceramic porous tube (1) (alumina 99%, outer diameter 16 mmφ, inner diameter 12 mmφ), one end of the tube (1) and the sealing plug (3) (dense A glass ring (2) obtained by compression-molding glass powder was interposed (see FIG. 3a). The composition of the glass powder used here is shown in B in Table 2. Next, this was fired at 900 ° C. for 1 hour to obtain a structure in which one end of the tube (1) was sealed.
(b)その後、セラミック多孔質管(1)の一端部と封止栓(3)との接合部の強度及び気密性を向上させるために、接合部をガラス粉末(組成:表2中のB)のスラリー(ガラス粉末:50wt%、溶媒:エタノール)に浸漬し乾燥した(図3b参照)。次いで、これを900℃で1時間焼成することにより、接合部外表面をガラスコーティング(4)で覆った構造を製作した。 (b) Thereafter, in order to improve the strength and hermeticity of the joint between one end of the ceramic porous tube (1) and the sealing plug (3), the joint is made of glass powder (composition: B in Table 2). ) Slurry (glass powder: 50 wt%, solvent: ethanol) and dried (see FIG. 3 b). Next, this was baked at 900 ° C. for 1 hour, thereby producing a structure in which the outer surface of the joint was covered with the glass coating (4).
2)ゼオライト分離膜の合成
 図4において、上記のように一端部に封止栓をガラスにて固着させたセラミック多孔質管を、A型ゼオライト結晶粒子(東ソー社製ゼオラム)の懸濁液(0.10wt%)に浸漬した。ゼオライト結晶粒子を担持したセラミック多孔質管端部を2時間室温で放置した後、37℃で1晩乾燥した。次に、これらのゼオライト担持端部を反応ゲル液(組成Na2O:SiO2:Al2O3:H2O = 88:100:4:3960)に浸漬した状態で、100℃で4時間水熱合成を行った。この水熱合成によりセラミック多孔質管の外表面にゼオライト膜が形成された。
2) Synthesis of Zeolite Separation Membrane In FIG. 4, a ceramic porous tube having a sealing stopper fixed to one end with glass as described above is used as a suspension of A-type zeolite crystal particles (Zeolam manufactured by Tosoh Corporation) (0.10 wt%). The end of the ceramic porous tube carrying the zeolite crystal particles was left at room temperature for 2 hours and then dried at 37 ° C. overnight. Next, these zeolite-supported ends were immersed in a reaction gel solution (composition Na 2 O: SiO 2 : Al 2 O 3 : H 2 O = 88: 100: 4: 3960) at 100 ° C. for 4 hours. Hydrothermal synthesis was performed. By this hydrothermal synthesis, a zeolite membrane was formed on the outer surface of the ceramic porous tube.
 合成後のゼオライト膜付セラミック多孔質管を純水で洗浄した後、室温で1昼夜乾燥させた。 The synthesized ceramic porous tube with zeolite membrane was washed with pure water and then dried at room temperature for one day and night.
 この様にして図3(a)(b)に対応する図4(a)(b)に示すゼオライト分離膜を製造した。図中、(1)はセラミック多孔質管、(3)は封止栓、(4)はガラスコーティング、(5)は溶融ガラス層、(6)はゼオライト層である。 Thus, the zeolite separation membrane shown in FIGS. 4 (a) and 4 (b) corresponding to FIGS. 3 (a) and 3 (b) was produced. In the figure, (1) is a ceramic porous tube, (3) is a sealing plug, (4) is a glass coating, (5) is a molten glass layer, and (6) is a zeolite layer.
 上記ゼオライト分離膜について、下記の条件でエタノール/水の浸透気化試験(PV試験)を行った。この試験装置を図5に示す。図中、(11)はスターラで、その上に恒温槽(12)が載せられ、銅槽(12)の水中にゼオライト分離膜(13)が配置されている。(14)は真空計、(15)は液体窒素によるトラップ、(16)は真空トラップ、(17)は真空ポンプである。 The above zeolite separation membrane was subjected to an ethanol / water pervaporation test (PV test) under the following conditions. This test apparatus is shown in FIG. In the figure, (11) is a stirrer, on which a constant temperature bath (12) is placed, and a zeolite separation membrane (13) is placed in the water of the copper bath (12). (14) is a vacuum gauge, (15) is a trap by liquid nitrogen, (16) is a vacuum trap, and (17) is a vacuum pump.
  PV試験条件:膜有効面積 10.1cm2
        エタノール/水 = 90wt% / 10wt%
        反応温度 = 75℃

 下記の式に従って分離係数を求めた。
PV test conditions: Effective membrane area 10.1cm 2
Ethanol / water = 90wt% / 10wt%
Reaction temperature = 75 ℃

The separation factor was determined according to the following formula.
   分離係数 = (CWater / CEtOH )透過側 / (CWater / CEtOH )供給側
       CWater : 水の濃度
       CEtOH : エタノール濃度

 得られた試験結果は下記の通りである。
Separation factor = (C Water / C EtOH ) permeation side / (C Water / C EtOH ) supply side
C Water : Water concentration C EtOH : Ethanol concentration

The test results obtained are as follows.
  図4(a)のゼオライト分離膜:分離係数9986
  図4(b)のゼオライト分離膜:分離係数1381
 この結果から、図4(a)のゼオライト分離膜および図4(b)のゼオライト分離膜はいずれも、接合部のシールが極めて高い気密性を有するとともに、同シールはゼオライト分離膜に対して影響をほとんど及ぼさないことがわかる。
Fig. 4 (a) Zeolite separation membrane: Separation factor 9986
Fig. 4 (b) zeolite separation membrane: separation factor 1381
From this result, both the zeolite separation membrane of FIG. 4 (a) and the zeolite separation membrane of FIG. 4 (b) have a very high airtightness at the joint, and the seal has an influence on the zeolite separation membrane. It can be seen that it hardly affects.
実施例2
 下記の方法でガラス粉末への安定化ジルコニア添加の効果を調べた。
Example 2
The effect of adding stabilized zirconia to glass powder was investigated by the following method.
  実施例1の「1」セラミック多孔質管と接合材の固着」において、接合剤用のガラス粉末およびコーティング用のガラス粉末として、ガラス(組成:表2中のB)に、イットリウムによって安定化されたジルコニア(第一稀元素化学工業社製HYS-8)を所定量添加したものを用い、それ以外は実施例1と同様の操作を行い、ゼオライト分離膜を作製した。同膜について実施例1と同様の方法でエタノール/水の浸透気化試験(分離係数)を行った。 In “1” Adhesion of ceramic porous tube and bonding material ”in Example 1, glass (composition: B in Table 2) was stabilized by yttrium as glass powder for bonding agent and glass powder for coating. Zeolite separation membrane was prepared in the same manner as in Example 1 except that a predetermined amount of zirconia (HYS-8 manufactured by Daiichi Rare Element Chemical Co., Ltd.) was added. An ethanol / water pervaporation test (separation factor) was performed on the membrane in the same manner as in Example 1.
 この試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
The test results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 この結果より、ガラスへの安定化ジルコニア添加量が20wt%以下では、ジルコニウムを添加しない場合に比べてゼオライト分離膜の性能(分離係数)が高くなることがわかる。 From this result, it can be seen that when the amount of stabilized zirconia added to the glass is 20 wt% or less, the performance (separation coefficient) of the zeolite separation membrane is higher than when no zirconium is added.
実施例3
 下記の方法でガラス粉末組成が膜性能へ及ぼす影響を調べた。
Example 3
The effect of glass powder composition on film performance was investigated by the following method.
 実施例1の「1)セラミック多孔質管と接合材の固着」において、接合剤用のガラス粉末およびコーティング用のガラス粉末の組成を、表2に示すように変え、それ以外は実施例1と同様の操作を行い、ゼオライト分離膜を作製した。同膜について実施例1と同様の方法でエタノール/水の浸透気化試験(分離係数)を行った。この試験結果を表3に示す。 In “1) Adhesion of ceramic porous tube and bonding material” in Example 1, the composition of the glass powder for bonding agent and the glass powder for coating was changed as shown in Table 2, and other than that in Example 1 The same operation was performed to produce a zeolite separation membrane. An ethanol / water pervaporation test (separation factor) was performed on the membrane in the same manner as in Example 1. The test results are shown in Table 3.
 この結果より、組成A~Dにおいて、接合部のガラスシールが極めて高い気密性を有するとともに、ゼオライト分離膜に対して影響をほとんど及ぼさない構造を有することがわかる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
From this result, it can be seen that in the compositions A to D, the glass seal at the joint has a very high airtightness and a structure that hardly affects the zeolite separation membrane.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
実施例4
 下記の方法で接合部材の組成及び熱膨張係数がコーテイング状況(密着性・気密性)に及ぼす影響を調べた。
Example 4
The effects of the composition and thermal expansion coefficient of the joining member on the coating situation (adhesion and airtightness) were investigated by the following methods.
 まず、組成及び熱膨張係数の異なる管状の接合部材A~Gを用意した。図6において、これらの接合部材(21)の一端部をアルミナ多孔質管(1)(アルミナ99.6%、外径φ12mm)の内径(φ12mm)の一端部の内部に挿入できるように、前者を切削加工し、その端部に段部(21a)を介して外径が他の部分より小さい小径部(21b)を形成した。接合部材(21)の一端部をアルミナ多孔質管(1)の一端部内に挿入した後、接合部材(21)の段部(21a)とアルミナ多孔質管(1)の端面の間にガラスリング(2)を介在させた。 First, tubular joining members A to G having different compositions and thermal expansion coefficients were prepared. In FIG. 6, the former is cut so that one end of these joining members (21) can be inserted into one end of the inner diameter (φ12mm) of the alumina porous tube (1) (alumina 99.6%, outer diameter φ12mm). The small diameter part (21b) whose outer diameter is smaller than another part was formed in the edge part via the step part (21a). After inserting one end of the joining member (21) into one end of the alumina porous tube (1), a glass ring is formed between the step (21a) of the joining member (21) and the end surface of the alumina porous tube (1). (2) intervened.
 その後、実施例1の「1)セラミック多孔質管と接合部材の固着」工程と同様に接合部外表面をガラスコーティング(4)で覆った。すなわち、100℃で1晩乾燥後、昇温速度10℃/minで1000℃まで加熱し、この温度で1時間保持した。その後、降温速度1℃/minで室温まで放冷した。こうして、図6に示す構造を得た。その後、実施例1の「2)ゼオライト分離膜の合成」工程と同様に水熱合成によりセラミック多孔質管の外表面にゼオライト膜を形成した。この段階で、接合部コーティング状況を目視観察した。その結果を表5に示す。 Thereafter, the outer surface of the joint portion was covered with the glass coating (4) in the same manner as in “1) Fixing of the ceramic porous tube and the joint member” in Example 1. That is, after drying at 100 ° C. overnight, the sample was heated to 1000 ° C. at a temperature increase rate of 10 ° C./min and held at this temperature for 1 hour. Thereafter, it was allowed to cool to room temperature at a temperature lowering rate of 1 ° C./min. In this way, the structure shown in FIG. 6 was obtained. Thereafter, a zeolite membrane was formed on the outer surface of the ceramic porous tube by hydrothermal synthesis in the same manner as in “2) Synthesis of zeolite separation membrane” in Example 1. At this stage, the joint coating state was visually observed. The results are shown in Table 5.
 この結果により、接合部材の熱膨張係数がセラミック多孔質管のそれと異なると、接合部外表面を覆うコーティングを形成するための焼成時にコーティングにひび割れや剥がれが認められた。このことから、接合部材の熱膨張係数は、セラミック多孔質管のそれとほぼ同じ4~9 x 10-6 (/K)であり、主成分としてアルミナ50wt%以上を含有し、ガラス質の割合が0.1~40wt%であることを要する。 As a result, when the thermal expansion coefficient of the joining member was different from that of the ceramic porous tube, cracking and peeling were recognized in the coating during firing to form a coating covering the outer surface of the joint. From this, the thermal expansion coefficient of the joining member is 4-9 x 10 -6 (/ K), which is almost the same as that of the ceramic porous tube, contains 50 wt% or more of alumina as the main component, and the ratio of vitreous is It needs to be 0.1-40wt%.
 同膜について実施例1と同様の方法でエタノール/水の浸透気化試験(分離係数)を行った。この試験結果を表6に示す。この表より、接合部材A~Dで高い分離性能が得られており、ゼオライト層形成に対する接合部材の組成の影響がほとんどないことがわかる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
An ethanol / water pervaporation test (separation factor) was performed on the membrane in the same manner as in Example 1. The test results are shown in Table 6. From this table, it can be seen that high separation performance is obtained with the joining members A to D, and that the composition of the joining member has little influence on the formation of the zeolite layer.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
実施例5
 セラミック多孔質管の端部構造と接合部材の端部構造の変形例を図7(a)(b)(c)(d)に示す。図中、(1)はセラミック多孔質管、(2)は接合剤、(3)は封止栓、(4)はガラスコーティング、(18)は封止キャップ、(21)は接合部材である。
Example 5
7 (a) (b) (c) (d) show modified examples of the end structure of the ceramic porous tube and the end structure of the joining member. In the figure, (1) is a ceramic porous tube, (2) is a bonding agent, (3) is a sealing plug, (4) is a glass coating, (18) is a sealing cap, and (21) is a bonding member. .
 実施例1の「2)ゼオライト分離膜の合成」工程と同様に水熱合成によりセラミック多孔質管の外表面にゼオライト膜を形成した。 A zeolite membrane was formed on the outer surface of the ceramic porous tube by hydrothermal synthesis in the same manner as in the step “2) Synthesis of zeolite separation membrane” in Example 1.
図1は接合部材からなる封止栓の粒子を示す顕微鏡写真である。FIG. 1 is a photomicrograph showing particles of a sealing plug made of a joining member. 図2は封止栓の粒子径の測定を示す模式図である。FIG. 2 is a schematic diagram showing the measurement of the particle diameter of the sealing plug. 図3(a)(b)はセラミック多孔質管と接合部材の固着構造を示す概略図である。FIGS. 3A and 3B are schematic views showing a fixing structure of the ceramic porous tube and the joining member. 図4(a)(b)はゼオライト分離膜の合成を示す概略図である。4 (a) and 4 (b) are schematic views showing the synthesis of the zeolite separation membrane. 図5はエタノール/水の浸透気化試験(PV試験)の装置を示す概略図である。FIG. 5 is a schematic view showing an apparatus for an ethanol / water pervaporation test (PV test). 図6はセラミック多孔質管と接合部材の固着構造を示す概略図である。FIG. 6 is a schematic view showing a fixing structure of the ceramic porous tube and the joining member. 図7(a)(b)(c)(d)はセラミック多孔質管の端部構造と接合部材の端部構造の変形例を示す概略図である。7 (a), (b), (c), and (d) are schematic views showing modifications of the end structure of the ceramic porous tube and the end structure of the joining member.
符号の説明Explanation of symbols
 (1) セラミック多孔質管
 (2) ガラスリング
 (3) 封止栓
 (4) ガラスコーティング
 (5) 溶融ガラス層
 (6) ゼオライト層
 (18) 封止キャップ
 (21) 接合部材
(1) Ceramic porous tube (2) Glass ring (3) Seal plug (4) Glass coating (5) Molten glass layer (6) Zeolite layer (18) Sealing cap (21) Joining member

Claims (11)

  1. 主成分としてアルミナで構成される多孔質管と、同管との接合位置に配された接合部材とが、必須成分としてSiO2:17~48wt%、Al2O3:2~8wt%、BaO:24~60wt%、ZnO:0.5~5wt%を含み、かつLa2O3、CaOおよびSrOのうち少なくとも1つを含むセラミックの酸化物からなる接合剤によって固着され、多孔質管の表面にゼオライト薄層が形成されてなることを特徴とする分離膜。 A porous tube composed of alumina as a main component and a joining member arranged at the joining position with the tube are, as essential components, SiO 2 : 17 to 48 wt%, Al 2 O 3 : 2 to 8 wt%, BaO : 24 to 60 wt%, ZnO: 0.5 to 5 wt%, and fixed on the surface of the porous tube by a bonding agent made of a ceramic oxide containing at least one of La 2 O 3 , CaO and SrO. A separation membrane comprising a thin layer.
  2. 接合部材が、セラミック多孔質管の少なくとも一端を封止する封止栓であるか、または、セラミック多孔質管の少なくとも一端に接合される管であることを特徴とする請求項1記載の分離膜。 The separation membrane according to claim 1, wherein the joining member is a sealing plug for sealing at least one end of the ceramic porous tube, or a tube joined to at least one end of the ceramic porous tube. .
  3. 接合部材の端部とセラミック多孔質管の端部が嵌合されていることを特徴とする請求項1記載の分離膜。 2. The separation membrane according to claim 1, wherein an end of the joining member and an end of the ceramic porous tube are fitted.
  4. 接合部材の熱膨張係数が4~9 x 10-6 (/K)であることを特徴とする請求項1記載の分離膜。 2. The separation membrane according to claim 1, wherein the joining member has a thermal expansion coefficient of 4 to 9 × 10 −6 (/ K).
  5. 接合部材が、主成分としてアルミナ50wt%以上を含有し、セラミックの酸化物の割合が0.1~40wt%であり、結晶粒径が1μm以上であることを請求項1記載の分離膜。 2. The separation membrane according to claim 1, wherein the joining member contains 50 wt% or more of alumina as a main component, the ratio of ceramic oxide is 0.1 to 40 wt%, and the crystal grain size is 1 μm or more.
  6. 主成分としてアルミナで構成される多孔質管と、同管に接合すべき接合部材とを接合位置に配し、必須成分としてSiO2:17~48wt%、Al2O3:2~8wt%、BaO:24~60wt%、ZnO:0.5~5wt%を含み、かつLa2O3、CaOおよびSrOのうち少なくとも1つを含むセラミックの酸化物からなる接合剤を多孔質管と接合部材の間に介在させ、接合剤を焼成することによって多孔質管と接合部材を固着し、その後多孔質管の表面にゼオライト層を形成することを特徴とする分離膜の製造方法。 A porous tube composed of alumina as a main component and a bonding member to be bonded to the tube are arranged at the bonding position. As essential components, SiO 2 : 17 to 48 wt%, Al 2 O 3 : 2 to 8 wt%, BaO: 24 to 60 wt%, ZnO: 0.5 to 5 wt%, and a bonding agent comprising a ceramic oxide containing at least one of La 2 O 3 , CaO and SrO is interposed between the porous tube and the bonding member A method for producing a separation membrane, comprising interposing and bonding a porous tube and a bonding member by firing a bonding agent, and then forming a zeolite layer on the surface of the porous tube.
  7. 接合剤を、セラミックの酸化物粉末の成型品の形態でまたは同酸化物粉末を含むスラリーの形態で、多孔質管と接合部材の間に介在させ、接合剤を焼成することによって多孔質管と接合部材を固着することを特徴とする請求項6記載の分離膜の製造方法。 The bonding agent is interposed between the porous tube and the bonding member in the form of a ceramic oxide powder molded product or in the form of a slurry containing the oxide powder, and the bonding agent is fired to form the porous tube. The method for producing a separation membrane according to claim 6, wherein the joining member is fixed.
  8. セラミックの酸化物粉末の成型品がバインダを含むか、または成型品がバインダを含み成型後に焼成によってバインダを除去したものであることを特徴とする請求項7記載の分離膜の製造方法。 8. The method for producing a separation membrane according to claim 7, wherein the molded product of ceramic oxide powder contains a binder, or the molded product contains a binder and the binder is removed by firing after molding.
  9. セラミック多孔質管の表面にゼオライト層を水熱合成によって形成するに際して、水熱合成の前に、ゼオライト粒子を懸濁させた懸濁液にセラミック多孔質管を浸漬し乾燥させることによって、ゼオライト粒子を多孔質管の表面に付着させることを特徴とする請求項8記載の分離膜の製造方法。 When the zeolite layer is formed on the surface of the ceramic porous tube by hydrothermal synthesis, before the hydrothermal synthesis, the ceramic porous tube is dipped in a suspension in which the zeolite particles are suspended, and dried. The method for producing a separation membrane according to claim 8, wherein the is attached to the surface of the porous tube.
  10. 主成分としてアルミナで構成される多孔質管と接合部材とを接合させるための接合剤であって、必須成分としてSiO2:17~48wt%、Al2O3:2~8wt%、BaO:24~60wt%、ZnO:0.5~5wt%を含み、かつLa2O3、CaOおよびSrOのうち少なくとも1つを含むセラミックの酸化物からなることを特徴とする接合剤。 It is a bonding agent for bonding a porous tube composed of alumina as a main component and a bonding member. As essential components, SiO 2 : 17 to 48 wt%, Al 2 O 3 : 2 to 8 wt%, BaO: 24 A bonding agent comprising: 60 wt%, ZnO: 0.5 to 5 wt%, and comprising a ceramic oxide containing at least one of La 2 O 3 , CaO and SrO.
  11. 接合剤がさらにイットリアによって安定化させたジルコニアを0.1~20wt%含むことを特徴とする請求項10記載の接合剤。 The bonding agent according to claim 10, further comprising 0.1 to 20 wt% of zirconia stabilized by yttria.
PCT/JP2008/067797 2008-10-01 2008-10-01 Zeolite separation membrane, process for producing the same, and binder WO2010038281A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08877140.7A EP2343115A4 (en) 2008-10-01 2008-10-01 Zeolite separation membrane, process for producing the same, and binder
CN200880131379.2A CN102170962B (en) 2008-10-01 2008-10-01 Zeolitic separation membrane, its manufacture method and binding agent
PCT/JP2008/067797 WO2010038281A1 (en) 2008-10-01 2008-10-01 Zeolite separation membrane, process for producing the same, and binder
US12/998,221 US9022226B2 (en) 2008-10-01 2008-10-01 Zeolite separation membrane, method for producing the same, and bonding agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/067797 WO2010038281A1 (en) 2008-10-01 2008-10-01 Zeolite separation membrane, process for producing the same, and binder

Publications (1)

Publication Number Publication Date
WO2010038281A1 true WO2010038281A1 (en) 2010-04-08

Family

ID=42073074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/067797 WO2010038281A1 (en) 2008-10-01 2008-10-01 Zeolite separation membrane, process for producing the same, and binder

Country Status (4)

Country Link
US (1) US9022226B2 (en)
EP (1) EP2343115A4 (en)
CN (1) CN102170962B (en)
WO (1) WO2010038281A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008476A1 (en) * 2010-07-14 2012-01-19 日本碍子株式会社 Ceramic filter
CN106116663A (en) * 2016-07-05 2016-11-16 山东理工大学 Filter-type activated carbon lead zinc is prepared porous and is catchmented the method for sponge brick
CN106116664A (en) * 2016-07-05 2016-11-16 山东理工大学 Absorbent-type Maifanitum sand Rhizoma Zingiberis Recens soil potter's clay microballon is prepared porous and is catchmented the method for sponge brick
CN106146014A (en) * 2016-07-05 2016-11-23 山东理工大学 Filter-type activated carbon Iron-ore Slag is prepared porous and is catchmented the method for sponge brick

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT15049U1 (en) * 2015-12-21 2016-11-15 Plansee Se Membrane arrangement with bonding layer
CN109423349A (en) * 2017-08-30 2019-03-05 常州市绿意管道有限公司 A kind of composite coal binder
CN108176102B (en) * 2018-01-12 2020-09-11 新乡平原航空液压设备有限公司 Filter element and filter device using same
AU2019313973A1 (en) * 2018-08-02 2021-02-25 Japan Technological Research Association Of Artificial Photosynthetic Chemical Process Bonded body, separation membrane module equipped with same, and method for producing alcohol
TW202202461A (en) * 2020-05-26 2022-01-16 美商賀利氏科納米北美有限責任公司 Plasma resistant ceramic body formed from multiple pieces

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586715B2 (en) * 1979-03-15 1983-02-05 ゼネラル エレクトリツク コンパニ− Sealing compositions comprising aluminum oxide, calcium oxide, barium oxide, and strontium oxide and products thereof
JPH08134434A (en) * 1994-11-07 1996-05-28 Mitsubishi Heavy Ind Ltd Sealant for high temperature and its production
JPH10180060A (en) 1996-12-25 1998-07-07 Noritake Co Ltd Composition for sealing inorganic separating membrane
JP2005058950A (en) * 2003-08-18 2005-03-10 Noritake Co Ltd Supporting structure of porous cylindrical body and bonding method for supporting member
JP2005313156A (en) 2004-03-31 2005-11-10 New Energy & Industrial Technology Development Organization Vacuum maintaining device and vacuum maintaining method
JP2006088079A (en) 2004-09-27 2006-04-06 Bussan Nanotech Research Institute Inc Pipe end part joining body
JP2006263498A (en) 2005-03-22 2006-10-05 Ngk Insulators Ltd Ceramic filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586715A (en) 1981-07-02 1983-01-14 Mitsubishi Electric Corp Tension controller for material to be rolled
US6402156B1 (en) 1999-04-16 2002-06-11 Eltron Research, Inc. Glass-ceramic seals for ceramic membrane chemical reactor application
DE10122327A1 (en) 2001-05-08 2002-11-28 Forschungszentrum Juelich Gmbh Glass solder used as a joining material for high temperature fuel cells comprises a barium oxide-calcium oxide-silicon dioxide mixture with an addition of aluminum oxide
US7255729B2 (en) * 2003-05-30 2007-08-14 Noritake Co., Limited Porous cylindrical-body module, structure for supporting porous cylindrical bodies, and method for fastening a supporting member
JP4852930B2 (en) 2005-08-12 2012-01-11 三菱化学株式会社 Pipe end connector and zeolite separation membrane element
JP5135671B2 (en) 2005-09-28 2013-02-06 三菱化学株式会社 Method for producing zeolite separation membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586715B2 (en) * 1979-03-15 1983-02-05 ゼネラル エレクトリツク コンパニ− Sealing compositions comprising aluminum oxide, calcium oxide, barium oxide, and strontium oxide and products thereof
JPH08134434A (en) * 1994-11-07 1996-05-28 Mitsubishi Heavy Ind Ltd Sealant for high temperature and its production
JPH10180060A (en) 1996-12-25 1998-07-07 Noritake Co Ltd Composition for sealing inorganic separating membrane
JP2005058950A (en) * 2003-08-18 2005-03-10 Noritake Co Ltd Supporting structure of porous cylindrical body and bonding method for supporting member
JP2005313156A (en) 2004-03-31 2005-11-10 New Energy & Industrial Technology Development Organization Vacuum maintaining device and vacuum maintaining method
JP2006088079A (en) 2004-09-27 2006-04-06 Bussan Nanotech Research Institute Inc Pipe end part joining body
JP2006263498A (en) 2005-03-22 2006-10-05 Ngk Insulators Ltd Ceramic filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008476A1 (en) * 2010-07-14 2012-01-19 日本碍子株式会社 Ceramic filter
JP5810083B2 (en) * 2010-07-14 2015-11-11 日本碍子株式会社 Ceramic filter
US9802143B2 (en) 2010-07-14 2017-10-31 Ngk Insulators, Ltd. Ceramic filter
CN106116663A (en) * 2016-07-05 2016-11-16 山东理工大学 Filter-type activated carbon lead zinc is prepared porous and is catchmented the method for sponge brick
CN106116664A (en) * 2016-07-05 2016-11-16 山东理工大学 Absorbent-type Maifanitum sand Rhizoma Zingiberis Recens soil potter's clay microballon is prepared porous and is catchmented the method for sponge brick
CN106146014A (en) * 2016-07-05 2016-11-23 山东理工大学 Filter-type activated carbon Iron-ore Slag is prepared porous and is catchmented the method for sponge brick

Also Published As

Publication number Publication date
US20110174722A1 (en) 2011-07-21
CN102170962B (en) 2016-01-06
US9022226B2 (en) 2015-05-05
EP2343115A4 (en) 2013-04-17
CN102170962A (en) 2011-08-31
EP2343115A1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4990076B2 (en) Zeolite separation membrane, method for producing the same, and bonding agent
WO2010038281A1 (en) Zeolite separation membrane, process for producing the same, and binder
JP5787928B2 (en) Barium and strontium-free vitreous or glass-ceramic bonding materials and their use
JP4523045B2 (en) Oxygen separation membrane element, sealing method and sealing material for the element
EP2731919B1 (en) Chemically durable porous glass with enhanced alkaline resistance
JP2016052959A (en) Glass coating alumina structure, separation membrane element, and glass bonding agent
JP2014096277A (en) Seal material for solid oxide type fuel battery use
US7989373B2 (en) Hermetic sealing material
EP1322566B1 (en) Process for preparing barium lanthanum silicate glass-ceramics
JP5068788B2 (en) One-end-sealed zeolite membrane substrate tube
WO2017098854A1 (en) Sealer, sealer coating solution, corrosion resistant film, high temperature member, and method for manufacturing high temperature member
JP3064113B2 (en) Method for joining ZrO2 ceramics
WO2016053750A1 (en) Methods of forming a glass composition
JP7403997B2 (en) A conjugate and a separation membrane module having the same
JP7403986B2 (en) A conjugate and a separation membrane module having the same
CN1059186C (en) High-temp. sealing binding method for porcelain
WO2017043423A1 (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2007050322A (en) Solvent-resistant sealing structure of zeolite membrane
JP2017190263A (en) Sealer, sealer coating liquid, anticorrosive coat, high temperature member and method for producing the same
WO2018159195A1 (en) Sealer, sealer application liquid, corrosion-resistant film, high-temperature member, and methods for producing same
JP2017052670A (en) Sealing agent, sealing agent coating solution, corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2007106644A (en) Ceramic member and its manufacturing method
JP2017052671A (en) Corrosion-resistant coating film, high-temperature member, and method for producing high-temperature member
JP2017105666A (en) Sealer, sealer coating solution, corrosion resistant film, high temperature member, and method for manufacturing high temperature member
JP2017106066A (en) Sealant, sealant coating liquid, corrosion resistant film, high temperature member, and production method of high temperature member

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880131379.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08877140

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008877140

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12998221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP