JPH08134434A - Sealant for high temperature and its production - Google Patents

Sealant for high temperature and its production

Info

Publication number
JPH08134434A
JPH08134434A JP6272652A JP27265294A JPH08134434A JP H08134434 A JPH08134434 A JP H08134434A JP 6272652 A JP6272652 A JP 6272652A JP 27265294 A JP27265294 A JP 27265294A JP H08134434 A JPH08134434 A JP H08134434A
Authority
JP
Japan
Prior art keywords
powder
thermal expansion
glass
coefficient
magnesia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6272652A
Other languages
Japanese (ja)
Inventor
Kazutaka Mori
一剛 森
Hitoshi Miyamoto
均 宮本
Fusayuki Nanjo
房幸 南條
Tsuneaki Matsudaira
恒昭 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6272652A priority Critical patent/JPH08134434A/en
Publication of JPH08134434A publication Critical patent/JPH08134434A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Sealing Material Composition (AREA)

Abstract

PURPOSE: To obtain a process for producing a sealant for high temp. with controllable thermal expansion and softening behavior by mixing a glass powder with a magnesia powder and further with an oxide ceramic powder in a specified ratio. CONSTITUTION: A glass powder is mixed with a magnesia powder. The resulting mixture is further mixed with an oxide ceramic powder. The coefficient of thermal expansion and softening behavior of the resulting sealant is controlled by mixing glass, i.e., the base material, with magnesia particles, which has a high coefficient of thermal expansion, and oxide ceramic particles for controlling the coefficient of thermal expansion and softening behavior. Moreover, another powder having a different coefficient of thermal expansion may be mixed to compensate the difference in the coefficients of thermal expansion between the sealant and an adherend. Any powder which does not fuse with glass can be used. Bonding to a ceramic is enabled by changing the coefficient of thermal expansion. Bonding is carried out e.g. by heating a pasty composite powder or a sintered item.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は高温用シール材料とそ
の製造方法に関し、固体酸化物燃料電池(SOFC)あ
るいは固体酸化物水蒸気電解装置(SOE)等のシール
や接着に使用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature sealing material and a method for producing the same, which is used for sealing and adhering a solid oxide fuel cell (SOFC) or a solid oxide steam electrolyzer (SOE). .

【0002】[0002]

【従来の技術】高温用のシール材料としては、水ガラス
にシリカ,アルミナ,ジルコニア等のセラミックス粒子
を分散させた高温用接着剤あるいはガラス粉末を軟化さ
せることによる高温用シール材料更には金のように酸化
しにくい金属をシートを被接着物の間に挟み、融点まで
温度を上げて金属を溶かし、接着する方法等が知られて
いる。
2. Description of the Related Art As a sealing material for high temperature, an adhesive for high temperature in which ceramic particles of silica, alumina, zirconia, etc. are dispersed in water glass or a sealing material for high temperature by softening glass powder, and further gold There is known a method in which a sheet that is hard to oxidize is sandwiched between objects to be adhered, the temperature is raised to the melting point to melt the metal, and the metal is adhered.

【0003】[0003]

【発明が解決しようとする課題】高温用のシール材料
は、被接着物を接着すると同時にガスの透過性が低いこ
とが必要である。また、高温で使用することを考えた場
合には、温度の上げ,下げにおいて、被接着物の一致化
等の特性が要求される。
The sealing material for high temperature is required to have a low gas permeability while adhering an object to be adhered. Further, when considering use at high temperature, characteristics such as matching of adherends are required when raising and lowering the temperature.

【0004】例えば、SOFCへの高温用シールを考え
た発電膜であるイットリア安定化ジルコニア(YSZ)
とインターコネクターであるランタンクロマイトを接着
すると同時に、燃料である水素又は酸化剤である空気の
シールをする必要がある。
For example, yttria-stabilized zirconia (YSZ), which is a power generation film considering high-temperature sealing to SOFC, is used.
It is necessary to bond lanthanum chromite, which is an interconnector, with air, which is hydrogen, which is a fuel, or air, which is an oxidant, at the same time.

【0005】YSZ及びランタンクロマイトは、熱膨脹
率の値が10.0×10-6-1(室温から1000℃ま
での平均値)とほぼ一致させている。接着シール用材料
としては、温度差により構造体を破壊させないという観
点から、熱膨脹率が一致する必要がある。
The coefficient of thermal expansion of YSZ and lanthanum chromite is substantially equal to 10.0 × 10 -6 ° C. -1 (average value from room temperature to 1000 ° C.). The material for the adhesive seal needs to have the same coefficient of thermal expansion from the viewpoint that the structure is not destroyed by the temperature difference.

【0006】また、SOFCを考えた場合には、作動温
度は約1000℃であり、また電極の耐熱温度が130
0℃程度であるため、融着のための施工温度は1300
℃程度以下であること、及び1000℃では硬化してい
ることが必要である。
In consideration of SOFC, the operating temperature is about 1000 ° C., and the heat resistant temperature of the electrode is 130 ° C.
Since the temperature is around 0 ° C, the construction temperature for fusion is 1300
It is necessary that the temperature is not higher than about 0 ° C and that it is cured at 1000 ° C.

【0007】しかしながら、従来のシール用材料では、
このような条件を満足させることは困難であった。つま
り、水ガラスにシリカ,アルミナ,ジルコニア等のセラ
ミックス粒子を分散させたシール材料は多孔質であり、
完全なガスシール性を得ることは困難であった。ガラス
を使用する場合には、軟化点が1000℃より高いガラ
スを得ることは困難であると当時に、熱膨脹率が10.
0×10-6-1と高い値を得ることも困難である。
However, in the conventional sealing material,
It was difficult to satisfy such conditions. In other words, the sealing material obtained by dispersing ceramic particles such as silica, alumina, zirconia in water glass is porous,
It was difficult to obtain perfect gas sealing properties. When glass is used, it is difficult to obtain glass having a softening point higher than 1000 ° C., and at that time, the coefficient of thermal expansion was 10.
It is difficult to obtain a high value of 0 × 10 -6 ° C -1 .

【0008】また、金のように酸化しにくい金属のシー
トを被接着物の間に挟み、融点まで温度を上げて金属を
溶融し、接着する方法では、金属の融点を利用するた
め、作業温度範囲が狭い,あるいは使用温度範囲が狭
い,あるいは熱膨脹率が大きく異なるなどの問題点があ
る。
In the method of sandwiching a sheet of metal such as gold, which is not easily oxidized, between the adherends and raising the temperature to the melting point to melt and bond the metal, the melting point of the metal is used. There are problems that the range is narrow, the operating temperature range is narrow, or the coefficient of thermal expansion is significantly different.

【0009】この発明はこうした事情を考慮してなされ
たもので、ガラス粉とマグネシア粉を所定の比率で混合
すること等の手段を採用することにより、熱膨脹及び軟
化挙動を制御可能な高温用シール材料及びその製造方法
を提供することを目的とする。
The present invention has been made in consideration of such circumstances, and by adopting means such as mixing glass powder and magnesia powder in a predetermined ratio, it is possible to control the thermal expansion and softening behavior of the high temperature seal. It is an object to provide a material and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】本発明者らは上記した問
題点を解決するため、鋭意検討をしたところ、次のよう
な結論に到達した。つまり、シール材料のベースには熱
膨脹率は低く,軟化温度も比較的低いがガスシール性の
高いガラス材料を使用する。次に、熱膨脹率を大きくす
る手段として、熱膨脹率が13.8×10-6-1と大き
なマグネシア(MgO)を使用する。更に、シール材料
の軟化挙動を制御するため、目的とする熱膨脹率を有す
る酸化物セラミックス粉を添加する。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and have reached the following conclusions. That is, a glass material having a low coefficient of thermal expansion and a relatively low softening temperature but a high gas sealing property is used as the base of the sealing material. Next, as means for increasing the coefficient of thermal expansion, magnesia (MgO) having a large coefficient of thermal expansion of 13.8 × 10 −6 ° C. −1 is used. Further, in order to control the softening behavior of the seal material, oxide ceramic powder having a desired coefficient of thermal expansion is added.

【0011】このように、3種の粉末を混合することに
より、熱膨脹を制御することが可能であると同時に、施
工時の軟化挙動をも制御可能な高温用シール材料の開発
に至った。
As described above, by mixing three kinds of powders, it has been possible to develop a high-temperature sealing material capable of controlling thermal expansion and also controlling softening behavior during construction.

【0012】(1) 本願第1の発明は、ガラス粉とマグネ
シア粉を所定の比率で混合することを特徴とする高温用
シール材料の製造方法である。 (2) 本願第2の発明は、前記(1) 項記載の製造方法で製
造したことを特徴とする高温用シール材料である。
(1) The first invention of the present application is a method for producing a high-temperature sealing material, characterized in that glass powder and magnesia powder are mixed in a predetermined ratio. (2) A second invention of the present application is a high-temperature sealing material, characterized by being manufactured by the manufacturing method described in the above item (1).

【0013】(3) 本願第3の発明は、ガラス粉とマグネ
シア粉を所定の比率で混した混合粉を製造した後、該混
合粉に対し酸化物セラミックス粉を混合することを特徴
とする高温用シール材料の製造方法である。 (4) 本願第4の発明は、前記(3) 項記載の製造方法で製
造したことを特徴とする高温用シール材料である。
(3) The third invention of the present application is characterized in that after producing a mixed powder in which glass powder and magnesia powder are mixed in a predetermined ratio, the oxide ceramic powder is mixed with the mixed powder. It is a method of manufacturing a sealing material for automobiles. (4) A fourth invention of the present application is a high-temperature sealing material manufactured by the manufacturing method described in the above item (3).

【0014】[0014]

【作用】ベースとなるガラスに対し、高熱膨脹率である
マグネシア粒子、更にシール材料の軟化挙動を制御する
ため酸化物セラミックス粒子を混合することにより、熱
膨脹率及び軟化挙動を制御することができる。
The thermal expansion coefficient and the softening behavior can be controlled by mixing magnesia particles having a high coefficient of thermal expansion and oxide ceramic particles for controlling the softening behavior of the sealing material with the glass as the base.

【0015】ベースとするガラスは目標とする被接着物
と熱膨脹率が合致していることが好ましいが、現実的に
は困難であると予測される。これを補う目的で熱膨脹率
の異なる粉末を混合し、各種特性を制御する。このよう
に配合する粉末は、目的に合致しかつガラスに溶融しな
いものであれば何を使用してもよい。
It is preferable that the base glass has a coefficient of thermal expansion that matches that of the target adherend, but it is predicted to be difficult in reality. To compensate for this, powders having different coefficients of thermal expansion are mixed to control various characteristics. Any powder may be used as long as it is suitable for the purpose and does not melt in glass.

【0016】[0016]

【実施例】以下、この発明の一実施例を図を参照して説
明する。 (実施例1)ベースガラスとして市販ガラスA(組成:
SiO2 52.9%、Al23 5.9 %、MgO5.9 %、C
aO11.8%、BaO11.8%、SrO11.7%)を平均粒径
3μmに粉砕したものを使用した。前記ガラスAの熱膨
脹係数は8.5×10-6-1,軟化点は845℃であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. (Example 1) Commercially available glass A (composition:
SiO 2 52.9%, Al 2 O 3 5.9%, MgO 5.9%, C
aO 11.8%, BaO 11.8%, SrO 11.7%) was crushed to an average particle size of 3 μm. The coefficient of thermal expansion of the glass A is 8.5 × 10 -6 ° C -1 , and the softening point is 845 ° C.

【0017】マグネシア(MgO)を前記ガラスAに混
合し、マグネシア−ガラス複合粉を試作した。この試作
粉を約3mm角×15mm長さの角柱にプレス成形した後、
1100℃で2時間熱処理して焼結体を試作した。この
焼結体を熱膨脹計を用いて熱膨脹係数を測定した。結果
を図1に示す。
Magnesia (MgO) was mixed with the glass A to prepare a magnesia-glass composite powder. After press-molding this prototype powder into a prism of about 3 mm square × 15 mm length,
A heat treatment was performed at 1100 ° C. for 2 hours to manufacture a sintered body as a prototype. The coefficient of thermal expansion of this sintered body was measured using a thermal expansion meter. The results are shown in Fig. 1.

【0018】図1はマグネシア添加量と焼結体の熱膨脹
係数の関係を示す特性図であり、横軸はマグネシア量,
縦軸は熱膨張係数を示す。図1より、マグネシアの添加
量の増加に従って熱膨脹係数が上昇していることが分か
る。
FIG. 1 is a characteristic diagram showing the relationship between the amount of magnesia added and the coefficient of thermal expansion of the sintered body, the horizontal axis being the amount of magnesia,
The vertical axis represents the coefficient of thermal expansion. From FIG. 1, it can be seen that the coefficient of thermal expansion rises as the amount of magnesia added increases.

【0019】次に、混合粉体について示差熱分析装置を
用いてガラス軟化点の測定を実施した。結果を図2に示
す。図2において、横軸はマグネシア量,縦軸はガラス
軟化点を示す。図2より、マグネシアの添加量の増加に
従ってガラス軟化点についても上昇させることが可能で
あることが判明した。
Next, the glass softening point of the mixed powder was measured by using a differential thermal analyzer. The results are shown in Figure 2. In FIG. 2, the horizontal axis represents the magnesia amount and the vertical axis represents the glass softening point. From FIG. 2, it was found that the glass softening point can be increased as the amount of magnesia added is increased.

【0020】このように、上記実施例1によれば、ベー
スとなるガラスの物性のうち、熱膨脹係数及びガラス軟
化点を制御することが可能であることが判明した。 (実施例2)ベースガラスとして、実施例1における市
販ガラスA(組成:SiO2 52.9%、Al23 5.9
%、MgO20%、CaO11.8%、BaO11.8%、SrO
11.7%)に対しマグネシアを20%添加した、いわゆる
マグネシア20%添加のガラスを平均粒径3μmに粉砕し
たものを使用した。マグネシア20%添加のガラスの熱膨
脹係数は10×10-6-1であり、SOFCの発電膜で
あるYSZの熱膨脹係数とほぼ一致していることから選
定した。
As described above, according to the above Example 1, it was found that it is possible to control the thermal expansion coefficient and the glass softening point among the physical properties of the base glass. (Example 2) As a base glass, the commercially available glass A (composition: SiO 2 52.9%, Al 2 O 3 5.9) in Example 1 was used.
%, MgO 20%, CaO 11.8%, BaO 11.8%, SrO
11.7%), 20% magnesia was added, so-called 20% magnesia glass was crushed to an average particle size of 3 μm. The glass with 20% magnesia added had a coefficient of thermal expansion of 10 × 10 −6 ° C. −1 , which was selected because it is almost the same as the coefficient of thermal expansion of YSZ, which is a power generation film for SOFC.

【0021】このガラス粉末に市販のYSZ粉末を所定
量混合し、マグネシア−ガラスA−YSZ複合粉を試作
した。この試作粉を約3mm角×15mm長さの角柱にプレ
ス成形した後、1100℃で2時間熱処理して焼結体を
試作した。この焼結体を熱膨脹計を用いて熱膨脹係数を
測定した。結果を図3に示す。
A predetermined amount of commercially available YSZ powder was mixed with this glass powder to produce a magnesia-glass A-YSZ composite powder. This prototype powder was press-molded into a prism having a length of about 3 mm × 15 mm and then heat-treated at 1100 ° C. for 2 hours to manufacture a sintered body. The coefficient of thermal expansion of this sintered body was measured using a thermal expansion meter. The results are shown in Fig. 3.

【0022】図3はYSZ添加量と焼結体の熱膨脹係数
の関係を示す特性図であり、横軸はYSZ量,縦軸は熱
膨張係数を示す。YSZの場合、もとのマグネシア−ガ
ラスの熱膨脹係数とYSZの熱膨脹係数が一致している
ため、YSZの添加量を増加させても、熱膨脹係数に変
化は認められなかった。
FIG. 3 is a characteristic diagram showing the relationship between the amount of YSZ added and the thermal expansion coefficient of the sintered body. The horizontal axis represents the YSZ amount and the vertical axis represents the thermal expansion coefficient. In the case of YSZ, the coefficient of thermal expansion of the original magnesia-glass and the coefficient of thermal expansion of YSZ are the same, so no change was observed in the coefficient of thermal expansion even if the amount of YSZ added was increased.

【0023】次に、混合粉体について示差熱分析装置を
用いてガラス軟化点の測定を実施した。結果を図4に示
す。図4において、横軸はYSZ量,縦軸はガラス軟化
点を示す。図4より、マグネシアの添加量の増加に従っ
てガラス軟化点の上昇が可能であることが判明した。Y
SZの量が70%以上となると、YSZの骨格のため軟
化が阻止される。
Next, the glass softening point of the mixed powder was measured by using a differential thermal analyzer. FIG. 4 shows the results. In FIG. 4, the horizontal axis represents the YSZ amount and the vertical axis represents the glass softening point. From FIG. 4, it was found that the glass softening point can be increased as the amount of magnesia added increases. Y
When the amount of SZ is 70% or more, softening is prevented due to the skeleton of YSZ.

【0024】このように、上記実施例2によれば、ベー
スとなるガラスの熱膨脹係数と添加する粉体の熱膨脹係
数が一致する場合、粉体を添加しても熱膨脹係数は変わ
らず、ガラス軟化点のみ上昇することが判明した。ガラ
ス軟化点を上昇させることにより、より高温でシール材
料として使用できる。
As described above, according to the second embodiment, when the coefficient of thermal expansion of the base glass and the coefficient of thermal expansion of the powder to be added match, the coefficient of thermal expansion does not change even if the powder is added, and the glass softens. It turned out that only points increased. By increasing the glass softening point, it can be used as a sealing material at higher temperatures.

【0025】以上のように本発明に従えば、ガラスを特
定することなくかなり広い範囲で熱膨脹の制御及び軟化
挙動の制御が可能である。なお、ガラスは市販ガラスA
に限らず、他の組成のガラスでもよい。
As described above, according to the present invention, it is possible to control the thermal expansion and the softening behavior in a considerably wide range without specifying the glass. The glass is a commercially available glass A.
However, the glass of other composition may be used.

【0026】また、熱膨脹を変えることにより、アルミ
ナ,ムライト,スピネル等他のセラミックスの接合も可
能である。なお、YSZ,アルミナ,ムライト,スピネ
ル等を総称して酸化物セラミックスという。接合の方法
としては、前記複合粉をペースト状にして、接合物の間
に充填し加熱する方法と、複合粉の焼結体を接合物の間
に設置し加熱する方法がある。
Also, by changing the thermal expansion, it is possible to join other ceramics such as alumina, mullite, and spinel. Note that YSZ, alumina, mullite, spinel and the like are collectively referred to as oxide ceramics. As a method of joining, there are a method of forming the composite powder into a paste, filling the space between the joined products and heating, and a method of installing a sintered body of the composite powder between the joined products and heating.

【0027】[0027]

【発明の効果】以上詳述したようにこの発明によれば、
ガラス粉とマグネシア粉を所定の比率で混合すること等
の手段を採用することにより、熱膨脹及び軟化挙動を制
御可能な高温用シール材料及びその製造方法を提供でき
る。
As described above in detail, according to the present invention,
By adopting means such as mixing glass powder and magnesia powder in a predetermined ratio, it is possible to provide a high-temperature sealing material capable of controlling thermal expansion and softening behavior and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1に係るマグネシア添加量と
焼結体の熱膨脹係数の関係を示す特性図。
FIG. 1 is a characteristic diagram showing a relationship between a magnesia addition amount and a thermal expansion coefficient of a sintered body according to Example 1 of the present invention.

【図2】実施例1に係る混合粉体について示差熱分析装
置を用いてガラス軟化点の測定を実施した結果を示し、
マグネシアとガラス軟化点の関係を示す特性図。
2 shows the results of measuring the glass softening point of the mixed powder according to Example 1 using a differential thermal analyzer,
The characteristic view which shows the relationship between magnesia and a glass softening point.

【図3】この発明の実施例2に係るマグネシア添加量と
焼結体の熱膨脹係数の関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a magnesia addition amount and a thermal expansion coefficient of a sintered body according to Example 2 of the present invention.

【図4】実施例2に係る混合粉体について示差熱分析装
置を用いてガラス軟化点の測定を実施した結果を示し、
マグネシアとガラス軟化点の関係を示す特性図。
FIG. 4 shows the results of measuring the glass softening point of the mixed powder according to Example 2 using a differential thermal analyzer,
The characteristic view which shows the relationship between magnesia and a glass softening point.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松平 恒昭 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsuneaki Matsudaira 1-1-1 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries Ltd. Kobe Shipyard

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス粉とマグネシア粉を所定の比率で
混合することを特徴とする高温用シール材料の製造方
法。
1. A method for producing a high-temperature sealing material, which comprises mixing glass powder and magnesia powder in a predetermined ratio.
【請求項2】 請求項1記載の製造方法で製造したこと
を特徴とする高温用シール材料。
2. A high temperature sealing material manufactured by the manufacturing method according to claim 1.
【請求項3】 ガラス粉とマグネシア粉を所定の比率で
混した混合粉を製造した後、該混合粉に対し酸化物セラ
ミックス粉を混合することを特徴とする高温用シール材
料の製造方法。
3. A method for producing a high-temperature sealing material, which comprises producing a mixed powder in which glass powder and magnesia powder are mixed at a predetermined ratio, and then mixing oxide ceramic powder with the mixed powder.
【請求項4】 請求項3記載の製造方法で製造したこと
を特徴とする高温用シール材料。
4. A high temperature sealing material manufactured by the manufacturing method according to claim 3.
JP6272652A 1994-11-07 1994-11-07 Sealant for high temperature and its production Pending JPH08134434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6272652A JPH08134434A (en) 1994-11-07 1994-11-07 Sealant for high temperature and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6272652A JPH08134434A (en) 1994-11-07 1994-11-07 Sealant for high temperature and its production

Publications (1)

Publication Number Publication Date
JPH08134434A true JPH08134434A (en) 1996-05-28

Family

ID=17516912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6272652A Pending JPH08134434A (en) 1994-11-07 1994-11-07 Sealant for high temperature and its production

Country Status (1)

Country Link
JP (1) JPH08134434A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235862A (en) * 1998-12-15 2000-08-29 Haldor Topsoe As Sealing material for use at high temperature
JP2007149430A (en) * 2005-11-25 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> Seal material for solid oxide fuel cell, and its manufacturing method
WO2010038281A1 (en) * 2008-10-01 2010-04-08 日立造船株式会社 Zeolite separation membrane, process for producing the same, and binder
US7964523B2 (en) 2008-06-19 2011-06-21 Nihon Yamamura Glass Co., Ltd. Composition for sealing glass
JP2015105210A (en) * 2013-11-29 2015-06-08 株式会社ノリタケカンパニーリミテド Bonding agent
JP2015105209A (en) * 2013-11-29 2015-06-08 株式会社ノリタケカンパニーリミテド Bonding agent
CN114538779A (en) * 2022-02-10 2022-05-27 浙江氢邦科技有限公司 Preparation method of SOFC (solid oxide Fuel cell) packaging glass powder, SOFC packaging glass powder and SOFC packaging glass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235862A (en) * 1998-12-15 2000-08-29 Haldor Topsoe As Sealing material for use at high temperature
JP2007149430A (en) * 2005-11-25 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> Seal material for solid oxide fuel cell, and its manufacturing method
US7964523B2 (en) 2008-06-19 2011-06-21 Nihon Yamamura Glass Co., Ltd. Composition for sealing glass
WO2010038281A1 (en) * 2008-10-01 2010-04-08 日立造船株式会社 Zeolite separation membrane, process for producing the same, and binder
US9022226B2 (en) 2008-10-01 2015-05-05 Hitachi Zosen Corporation Zeolite separation membrane, method for producing the same, and bonding agent
JP2015105210A (en) * 2013-11-29 2015-06-08 株式会社ノリタケカンパニーリミテド Bonding agent
JP2015105209A (en) * 2013-11-29 2015-06-08 株式会社ノリタケカンパニーリミテド Bonding agent
CN114538779A (en) * 2022-02-10 2022-05-27 浙江氢邦科技有限公司 Preparation method of SOFC (solid oxide Fuel cell) packaging glass powder, SOFC packaging glass powder and SOFC packaging glass

Similar Documents

Publication Publication Date Title
EP2519990B1 (en) Thin, fine grained and fully dense glass-ceramic seal for sofc stack
JP4523045B2 (en) Oxygen separation membrane element, sealing method and sealing material for the element
JPH08134434A (en) Sealant for high temperature and its production
JP5469959B2 (en) Oxygen ion conduction module, sealing material for the module, and use thereof
JPH11154525A (en) Solid electrolyte fuel cell and its manufacture
KR102651661B1 (en) crystalline glass composition
JP4305898B2 (en) Electrochemical equipment
JP3434127B2 (en) Fuel cell sealing material and method of manufacturing the same
JP3169694B2 (en) Sealing material for solid oxide fuel cell and sealing method
JP2008034179A (en) Jointing material, jointing member, jointing method, and solid electrolyte fuel cell
JPH09129251A (en) Flat plate stacked solid electrolyte fuel cell and manufacture thereof
JP3150807B2 (en) Bonding material for solid oxide fuel cell stack and method for producing the same
JPH04342439A (en) Sealing material for solid electrolytic type fuel cell and method for sealing
JP3185360B2 (en) Joint structure between yttrium stabilized zirconia
JP5280963B2 (en) Joining material for solid oxide fuel cell and method for producing the same
JP5313717B2 (en) Oxygen ion conduction module and bonding material
JPH07307159A (en) Solid electrolyte fuel cell and manufacture thereof
JP3052860B2 (en) Manufacturing method of electrochemical element
JP5180929B2 (en) Oxygen separation membrane module, manufacturing method thereof, and sealing material for oxygen separation membrane module
JP3070432B2 (en) Solid oxide fuel cell
JPH10316430A (en) Filling material for high temperature and production thereof
JP3510608B2 (en) Seal material
JPH05182678A (en) Solid electrolyte fuel cell
WO2017169308A1 (en) Crystalline glass composition
JPH04342440A (en) Sealing material for solid electrolytic type fuel cell and method for sealing

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330