WO2010036765A1 - Organoselenium materials and their uses in organic light emitting devices - Google Patents

Organoselenium materials and their uses in organic light emitting devices Download PDF

Info

Publication number
WO2010036765A1
WO2010036765A1 PCT/US2009/058162 US2009058162W WO2010036765A1 WO 2010036765 A1 WO2010036765 A1 WO 2010036765A1 US 2009058162 W US2009058162 W US 2009058162W WO 2010036765 A1 WO2010036765 A1 WO 2010036765A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
organic light
emitting device
organoselenium
Prior art date
Application number
PCT/US2009/058162
Other languages
French (fr)
Inventor
Chuanjun Xia
Raymond Kwong
Bin Ma
Chun Lin
Original Assignee
Universal Display Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Display Corporation filed Critical Universal Display Corporation
Priority to EP09792929.3A priority Critical patent/EP2329540B1/en
Priority to CN200980136720.8A priority patent/CN102160206B/en
Priority to KR1020117005445A priority patent/KR101678235B1/en
Priority to EP17150393.1A priority patent/EP3185333B1/en
Priority to JP2011529209A priority patent/JP5676454B2/en
Priority to KR1020167017199A priority patent/KR101804084B1/en
Publication of WO2010036765A1 publication Critical patent/WO2010036765A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D345/00Heterocyclic compounds containing rings having selenium or tellurium atoms as the only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D421/00Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D421/14Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Abstract

The present invention provides organoselenium compounds comprising dibenzoselenophene, benzo[b]selenophene or benzo[c]selenophene and their uses in organic light emitting devices.

Description

ORGANOSELENIUM MATERIALS AND THEIR USES IN ORGANIC LIGHT
EMITTING DEVICES
RELATED APPLICATION
[0001] This application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/100,229, filed September 25, 2008; which is incorporated herein by reference in its entirety..
[0002] The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.
FIELD OF THE INVENTION
[0003] The present invention relates to organoselenium materials comprising dibenzoselenophene, benzo[&]selenophene or benzo[c]selenophene and their uses in organic light emitting devices.
BACKGROUND [0004] Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices, hi addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.
[0005] OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.
[0006J One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.
[0007J One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy)3, which has the structure of Formula I:
Figure imgf000004_0001
[0008] In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.
[0009] As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.
JOOlOJ As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between. [0011] As used herein, "solution processible" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.
[0012] A ligand may be referred to as "photoactive" when it is believed that the Hgand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.
[0013J As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy level.
10014] As used herein, and as would be generally understood by one skilled in the art. a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions.
[0015] More details on OLEDs, and the definitions described above, can be found in US Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.
SUMMARY OF THE INVENTION [0016] The present invention provides an organic light emitting device, comprising an organic layer positioned between an anode layer and a cathode layer. The organic layer comprises an organoselenium material selected from the group consisting of a compound comprising a dibenzoselenophene, a compound comprising a benzo[6]selenophene, and a compound comprising benzo[c]selenophene. Organoselenium compounds that can be used in the organic light emitting device of the invention are disclosed herein below. The invention also provides such organoselenium compounds.
In one embodiment, the organoselenium material is a host material, and the organic layer further comprises a dopant material. The dopant material can be a phosphorescent or fluorescent dopant material. In a preferred embodiment, the dopant material is a phosphorescent dopant material, such as any of the phosphorescent dopant material disclosed in Table 1 below.
In one embodiment, the organic light emitting device of the invention further comprises one or more organic layers selected from the group consisting of a hole injecting layer, an electron injecting layer, a hole transporting layer, an electron transporting layer, a hole blocking layer, an exciton blocking layer, and an electron blocking layer.
hi one embodiment, the hole transporting layer or the electron transporting layer comprises an organoselenium material.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] FIG. 1 shows an organic light emitting device.
[0018] FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.
DETAILED DESCRIPTION [0019] Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode, When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non- radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.
[0020] The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.
[0021] More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998;
("Baldo-I") and Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-H"), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in US Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference.
[0022] FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in US 7,279,704 at cols. 6- 10, which are incorporated by reference.
[0023] More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m- MTDATA doped with F.sub.4-TCNQ at amolar ratio of 50:1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n- doped electron transport layer is BPhen doped with Li at a molar ratio of 1 : 1 , as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg: Ag with an overlying transparent, electrically-conductive, sputter- deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097, 147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.
[0024] FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.
[0025] The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non- limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.
[0026] Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out-coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al., and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al., which are incorporated by reference in their entireties.
[0027] Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al., which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.
[0028] Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewflnders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C, and more preferably at room temperature (20-25 degrees C).
[0029] The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.
[0030] The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in US 7,279,704 at cols. 31-32, which are incorporated herein by reference.
The present invention provides an organoselenium compound comprising dibenzoselenophene, benzo[6]selenophene and/or benzo[c]selenophene. The present invention also provides OLED devices in which such material is used, e.g., as a host material.
The organoselenium compound of the invention can comprise one, two, three, four or more dibenzoselenophene moieties, benzo[6]selenophene moieties, benzo[c]selenophene moieties or a mixture thereof. The dibenzoselenophene moieties, benzo[£]selenophene moieties, benzo[c]selenophene moieties or a mixture thereof can be linked directly or through one or more other molecular moieties. In one embodiment, the organoselenium compound is selected from the groups
consisting of
Figure imgf000011_0001
R
Figure imgf000011_0002
Figure imgf000011_0004
Figure imgf000011_0003
Figure imgf000011_0005
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
wherein each of R1, R2, R3, R4, R5, R6 and R7 indicates an optional substituted to any possible position in the relevant moiety, Ar indicates an aromatic group, and each line linking two molecular moieties indicates attachment between the two moieties at any possible positions on the respective moieties. Each R1, R2, R3, R4, Rs1Re and R7 may represent multiple substitions Suitable substitutents include but are not limited to halo, alkyl, heteroalkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, and heteroaryl. Preferably, the substitutent is selected from the group consisting of heterocyclic group, aryl, aromatic group, and heteroaryl. In one embodiment, the substitutent is an aromatic group, including but not limited to benzene and substituted benzene; polyaromatic group such as benzocyclopropene, benzocyclopropane, benzocyclobutadiene, and benzocyclobutene, naphthalene, anthracene, tetracene, pentacene, phenanthrene, triphenylene, helicenes, corannulene, azulene, acenaphthylene, fluorene, chrysene, fluoranthene, pyrene, benzopyrene, coronene, hexacene, picene, perylene; and heteroaromatic group such as furan, benzofuran, isobenzofuran, pyrrole, indole, isoindole, thiophene, benzothiophene, benzoic] thiophene, imidazole, benzimidazole, purine, pyrazole, indazole, oxazole, benzoxazole, isoxazole, benzisoxazole, thiazole, benzothiazole, pyridine, quinoline, isoquinoline, pyrazine, quinoxaline, acridine, pyrimidine, quinazoline, pyridazine, cinnoline; and derivatives thereof.
The linkage between two molecular moieties as indicated by the line linking the two molecular moieties can be a single bond or multiple bonds. In one embodiment, the linkage is a single bond between two atoms in respective molecular moieties. In another embodiment, the linkage is via multiple bonds, e.g., via a fused ring.
In another embodiment, the invention provides an organoselenium compound selected from the group consisting of:
Figure imgf000016_0001
Figure imgf000016_0003
Figure imgf000016_0002
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0004
Figure imgf000017_0003

Figure imgf000018_0001

Figure imgf000019_0001

Figure imgf000020_0001

Figure imgf000021_0001

Figure imgf000022_0001
20
Figure imgf000023_0001
21
Figure imgf000024_0001
22
Figure imgf000025_0001

Figure imgf000026_0001

Figure imgf000027_0001

Figure imgf000028_0001

Figure imgf000029_0001

Figure imgf000030_0001
and derivatives thereof. Derivatives, such as compounds substituted by a substitutent, including but not limited to halo, alkyl, heteroalkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, and heteroaryl, are contemplated.
In one embodiment, organoselenium compound is
Figure imgf000030_0002
or
Figure imgf000030_0003
or a derivative thereof, such as such as the compound substituted by a substitutent, including but not limited to halo, alkyl, heteroalkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, and heteroaryl.
In still another embodiment, the organoselenium compound is selected from the group consisting of:
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0003
Figure imgf000032_0001
and derivatives thereof. Derivatives, such compounds substituted by a substitutent, including but not limited to halo, alkyl, heteroalkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, and heteroaryl, are contemplated.
The organoselenium compounds of the present invention can be prepared by methods known in the art, including but not limited to method illustrated in the Examples below.
[0031] An organic light emitting device comprising the organoselenium compound of the invention is also provided. The device may include an anode, a cathode, and an organic emissive layer disposed between the anode and the cathode. The organic emissive layer may include a host and a phosphorescent dopant. In one embodiment, the device includes the organoselenium material of the invention as the host material in an emissive layer. Any of the dopants listed in Table 1 below may be used in the emissive layer in conjunction with an organoselenium material as the host material. In a preferred embodiment, the dopant is a red dopant selected from the list of red dopants in Table 1. In another preferred embodiment, the dopant is a green dopant selected from the list of green dopants in Table 1. In still another embodiment, the dopant is a blue dopant selected from the list of blue dopants in Table 1.
The concentration of the dopant in the emissive layer can be determined by a person skilled in the art based on the particular dopant used and the requirement of the device.
The organic light emitting device may comprise additionally a hole transporting layer (HTL) or an electron transporting layer (ETL). In preferred embodiments, the hole transporting layer or the electron transporting layer comprises an organoselenium material of the invention.
COMBINATION WITH OTHER MATERIALS [0032] The organoselenium materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, the organoselenium material of the invention can be used as a host of an emissive layer in conjunction with one or more emissive dopants disclosed in Table 1.
The organoselenium material may also be used in conjunction with a wide variety of other host materials disclosed in Table 1 in transport layers, blocking layers, injection layers, electrodes and other layers that may be present in an OLED.
The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.
[0033] In addition to and / or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non-limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 1 below. Table 1 lists non- limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.
TABLE 1
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001
Figure imgf000038_0001
Figure imgf000039_0001
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
EXAMPLES
Example 1: Compound H-I
1. Synthesis of dibenzoselenophene
Figure imgf000052_0002
A mixture of 10 g (21.5 mmol) of l,2-di(biphenyl-2-yl)diselane (synthesized according to J. Am. Chem. Soc. 1950, 72, 5753-5754), 3.45 g (21.5 mmol) of bromine and 30 mL of nitrobenzene was heated at 110 C for 3.5 hours. Then the reaction mixture was cooled and nitrobenzene was removed by vacuum distillation. The residue was purified by silica gel column chromatography using 10% methylene chloride in hexane as the elutent. 9.8 g of white solids were obtained as the product which was confirmed by MS.
2. dibenzoselenophen-4-ylboronic acid
Figure imgf000053_0001
4.0 g (17.3 mmol) of dibenzoselenophene and 150 mL of dry ether were added in a
250 mL three necked flask under nitrogen. To the mixture, 11.5 mL of BuLi (1.6 M in hexane) was added slowly at room temperature. The reaction mixture was then heated to reflux for 5 hours. The reaction mixture was cooled to -78 °C and 5 mL of trimethyl borate was added. It was then left to stir at room temperature for overnight About 50 mL of 1 M HCl was added to the reaction mixture. The organic phase was extracted with ethyl acetate and dried with sodium sulfate. The combined organic phase was evaporated to dryness and 100 mL of 30% ethyl acetate in hexane was added to the solid with stirring at room temperature for 8 hours. The suspension was filtered, the solids were washed with hexane and dried, yielding 2 of white solids as the product which was confirmed by NMR
3. Synthesis of Compound H-I
Figure imgf000053_0002
H- 1
1.0 g (3.6 mmol) of dibenzoselenophen-4-ylboronic acid , 1.51 g (3.3 mmol) of triphenylenephenyl triflate (synthesized according to the method disclosed in Example 3 below), 0.15 g (0.16 mmol) of Pd2(dba)3, 0.27 g (0.66 mniol) of dicyclohexylphosphino-2',6'- dimethoxybiphenyl, 4.2 g Of K3PO4, 90 niL of toluene and 10 mL of water were added in a 250 mL three necked flask. The reaction mixture was bubbled with nitrogen for 20 mins and heated to reflux for overnight under nitrogen. The reaction mixture was dried and purified by silica gel column chromatography with 15% methylene chloride in hexane as elutent. - 1.35 g of white solids were obtained as the product which was confirmed by NMR.
Example 2: Compound H-2
1. Synthesis of Compound H-2
Figure imgf000054_0001
H- 2
1.67 g (6.0 mmol) of dibenzoselenoρhen-4-ylboronic acid, 1.20 g (2.6 mmol) of biphenyl-4,4'-diyl bis(trifluoromethanesulfonate), 0.025 g (0.027 mmol) of Pd2(dba)3, 0.045 mg (0.11 mmol) of dicyclohexylphosphino-2'?6'-dimethoxybiphenyl, IJ g OfK3PO4, 90 mL of toluene and 10 mL of water were added in a 250 mL three necked flask. The reaction mixture was bubbled nitrogen for 20 mins and then heated to reflux for overnight under nitrogen. The reaction mixture was dried and the residue was purified by silica gel column chromatography with 10% methylene chloride in hexane as elutent. ~ 1.31 g of white solids was obtained as the product which was confirmed by NMR.
Example 3: method of preparing 3-(triphenylen-2-yl)phenyl trifluoromethanesulfonate (triphenylenephenyl triflate)
Figure imgf000055_0001
Triphenylene (19.0 g, 83 mmol) was added to and 600 niL of nitrobenzene. After all the triphenylene had dissolved, iron powder (0.07 g, 1.25 mmol) was added. The reaction flask was put in an ice bath. Bromine (20.0 g 125 mmol) in 50 mL of nitrobenzene was slowly added via addition runnel. After that, the reaction was stirred in an ice bath for 5 hours. HPLC was performed to monitor the reaction (TLC did not show separation of triphenylene and bromotriphenylenes). When the ratio of triphenylene:2-bromotriphenylene: dibromotriphenylenes reached approximately 2:7:1 (at 254 nm), the reaction was quenched by adding a Na2SO3 solution. The mixture was then extracted with CH2CI2. The combined organic extract was dried over MgSO4 and the CH2Cl2 was removed by rotovap. The remaining nitrobenzene was removed by vacuum distillation to yield the crude bromotriphenylene product which was used without further purification.
Figure imgf000055_0002
J0034] 12g (39 mmol) bromotriphenylene mixture containing a 2:7: 1 mixture of unreacted triphenylene, monobromo and dibromo triphenylene, 13g (86mmol) 3-phenylboronic acid, 0.6g (1.56 mmol) 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl and 25g (117 mmol) potassium phosphate tribasic (K3PO4) are weighed in a round bottom flask. 150 mL toluene and 80 mL water were added to the flask as solvent. The solution was purged with nitrogen and 0.4g (0.39 mmol) of tris(dibenzylideneacetone)dipalladium (0) [Pd2(dba)3] was added. The solution was heated to reflux for twelve hours. Upon cooling, the organic layer was separated, and dried with MgSO4. The product was readily separated by column chromatography from triphenylene and di-(3-methoxyphenyl) substituted triphenylene using Hexane/dichloromethane as eluent (1/0 gradient to 3/2). The solvent was removed by rotary evaporation, and the product, 2-(3-methoxyphenyl)triphenylene, was dried overnight under vacuum.
Figure imgf000056_0001
10035) In a round bottom flask under nitrogen, 1.8g (5.4 mmol) 2-(3- methoxyphenyl)triphenylene was dissolved in 25 mL anhydrous dichloromethane. The solution was cooled to -780C and 4g (1.5mL, 16 mmol) boron tribromide was added slowly via syringe. The solution was warmed to room temperature and stirred overnight. Ice was carefully added to quench unreacted BBr3. The 3-(triphenylen-2-yl)phenol intermediate precipitated upon addition of ice, and dichloromethane was added to dissolve. The organic layer was separated and dried with MgSO4, the dichloromethane was removed by rotary evaporation and the product was dried under vacuum.
[0036] 1 ,7g (5.3mmol) of 3-(triphenyIen-2-yl)phenol was added to a flask under nitrogen with 0.84g (10.5 mmol) anhydrous pyridine and 100 mL anhydrous dichloromethane. The solution was cooled in an ice bath and 2.97g (10.5 mmol) trifluoromethanesulfonic anhydride (Tf2O) was added slowly via syringe. The solution was warmed to room temperature and stirred overnight. The solution was washed with water, dried with MgSO4 and the solvent was removed by rotary evaporation. The product, 3~(triphenylen-2-yl)phenyl trifluoromethanesulfonate, was purified by column chromatography using hexane/dichloromethane as eluent (1/0 to 1/1 gradient).
Description of the method of synthesis can also be found in U.S. provisional application No: 60\963,944 , corresponding to International Application No: PCT/US08/72452, filed 8/7/2008, which is incorporated herein by reference in its entirety.
Example 4: Device Examples
All example devices were fabricated by high vacuum (<10" Torr) thermal evaporation. The anode electrode is 1200 A of indium tin oxide (ITO). The cathode consisted of 10 A of LiF followed by 1 ,000 A of Al. AU devices are encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H2O and O2) immediately after fabrication, and a moisture getter was incorporated inside the package.
The organic stack of the device examples consisted of sequentially, from the ITO surface, 100 A of Compound A as the hole injection layer (HIL), 300 A of 4,4'-bis[N-(l- naphthyl)-N-phenylamino]biphenyl (α-NPD) as the hole transporting layer (HTL), 300 A of the invention compound doped with 10 or 15 wt% of an Ir phosphorescent compound as the emissive layer (EML), 50 A of HPT or 100 A of the invention compound as the ETL2 and 450 or 400 A of AIq3 (tris-8-hydroxyquinoline aluminum) as the ETLl.
Comparative Examples 1 and 2 were fabricated similarly to the Device Examples except that the CBP is used as the host.
The device structures and data are summarized in Tables 2 and 3, where Table 2 shows device structure and Table 3 shows corresponding measured results for those devices. As used herein, Compounds A and B, and HPT, have the following structures:
Figure imgf000057_0001
Compound A Compound B
Figure imgf000057_0002
Table 2
Figure imgf000057_0003
Figure imgf000058_0001
Table 3
Figure imgf000058_0002
From Device Examples 1-8, it can be seen that Compounds H-I and H-2 as hosts in green phosphorescent OLEDs give high device efficiency (LE>40 cd/A at 1000 cd/m2), indicating the dienzoselenophene linked with aryl building blocks such as biphenyls or triphenylenes, have triplet energy high enough for efficient green electrophosphorescence. The high stability of devices incorporating Compounds H-I and H-2 as the host is notable. Device Example 1 and Comparative Example 2 are only different in the host. Device Example 1 uses Compound H-I as the host whereas Comparative Example 2 uses the commonly used host CBP. The lifetime, TSo% (defined as the time required for the initial luminance, L0, to decay to 80% of its value, at a constant current density of 40 mA/cm2 at room temperature) are 140 hours and 105 hours respectively, with Device Example 1 having a slightly higher L0. Similarly, Device Example 5 using Compound H-2 as the host, is more stable than Comparative Example 2. It is also notable that the compounds may function well as an enhancement layer material (ETL2). For example, Device Example 8 and Device Example 4 both have Compound H-I and H-2 as the host and ETL2 layer, respectively. They have To.g of 185 and 175 hours respectively, indicating the good performance of Compounds H-I and H-2 as the enhancement layer material. The data suggest that hosts containing dibenzoselenophenes are excellent host and enhancement layer materials for phosphorescent OLEDs, providing as least the same efficiency and improvement in stability compared to the commonly used CBP as the host. More conjugated versions of triphenylene containing benzoselenophenes, for example triphenylene and dibenzoselenophene units linked via/j-phenylene (such as 4,4'-biphenyl) may be very suitable for lower energy (yellow to red) phosphorescent OLEDs. The triphenylene containing group may be attached to any position of benzoselenophenes.
[0037] It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.

Claims

What is claimed is:
1. An organic light emitting device, comprising an organic layer positioned between an anode layer and a cathode layer, said organic layer comprising an organoselenmm material selected from the group consisting of a compound comprising a dibenzoselenophene, a compound comprising a benzo[έ]selenophene, and a compound comprising benzo[c]selenoρhene.
2. The organic light emitting device of claim 1, wherein said organoselenium material is selected from the group consisting of
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000064_0002
Figure imgf000065_0001
wherein each OfR1, R2, R3, R4, Rg, R6 and R7 indicates an optional substituted to any possible position in the relevant moiety, Ar indicates an aromatic group, and each line linking two molecular moieties indicates attachment between the two moieties at any possible positions on the respective moieties.
3. The organic light emitting device of claim 2, wherein said organoselenium material is selected from the group consisting of
Figure imgf000065_0002
Figure imgf000065_0004
Figure imgf000065_0003
Figure imgf000066_0001
Figure imgf000066_0002
Figure imgf000066_0004
Figure imgf000066_0003
64
Figure imgf000067_0001
65
Figure imgf000068_0001
66
Figure imgf000069_0001

Figure imgf000070_0001

Figure imgf000071_0001

Figure imgf000072_0001
70
Figure imgf000073_0001
71
Figure imgf000074_0001
72
Figure imgf000075_0001
73
Figure imgf000076_0001
74
Figure imgf000077_0001
75
Figure imgf000078_0001
76
Figure imgf000079_0001
and derivatives thereof.
4. The organic light emitting device of claim 1, wherein said organoselenium material is selected from the group consisting of
Figure imgf000079_0002
Figure imgf000079_0003
7?
Figure imgf000080_0001
Figure imgf000080_0002
and derivatives thereof.
5. The organic light emitting device of claim 3, wherein said organoselenium material is
Figure imgf000080_0003
or a derivative thereof.
6. The organic light emitting device of claim 3, wherein said organoselenium material is
Figure imgf000081_0001
or a derivative thereof.
7. The organic light emitting device of any of claims 1 to 6, wherein said organoselenium material is a host material, and wherein said organic layer further comprises a dopant material.
8. The organic light emitting device of claim 7, wherein said organic layer is an emissive layer, and wherein said dopant material is a phosphorescent or fluorescent dopant material.
9. The organic light emitting device of claim 8, wherein said dopant material is a phosphorescent dopant material .
10. The organic light emitting device of claim 9, wherein said dopant material is a phosphorescent dopant material selected from the group consisting of
Figure imgf000081_0002
11. The organic light emitting device of claim 9, wherein said dopant material is a phosphorescent dopant material selected from the group consisting of
Figure imgf000082_0001
12. The organic light emitting device of claim 9, wherein said dopant material is a phosphorescent dopant material selected from the group consisting of
Figure imgf000082_0002
Figure imgf000083_0001
13. The organic light emitting device of claim 9, further comprising one or more organic layers selected from the group consisting of a hole injecting layer, an electron injecting layer, a hole transporting layer, an electron transporting layer, a hole blocking layer, an exciton blocking layer, and an electron blocking layer.
14. The organic light emitting device of claim 13, wherein said hole transporting layer comprises an organoselenium material.
15. The organic light emitting device of claim 13, wherein said electron transporting layer comprises an organoselenium material.
16. The organic light emitting device of any of claims 1 to 4, wherein said organic layer is a hole transporting layer or an electron transporting layer.
17. The organic light emitting device of claim 5 or 6, wherein said organic layer is an electron transporting layer.
18. An organoselenium compound selected from the group consisting of
Figure imgf000083_0002
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000088_0002
wherein each of Rj5 R2, R3, R4, Rs1R6 and R7 indicates an optional substituted to any possible position in the relevant moiety, Ar indicates an aromatic group, and each line linking two molecular moieties indicates attachment between the two moieties at any possible positions on the respective moieties.
19. The organoselenium compound of claim 18, which is selected from the group consisting of
Figure imgf000089_0001
Figure imgf000089_0002
Figure imgf000089_0003
Figure imgf000089_0004
87
Figure imgf000090_0001
88
Figure imgf000091_0001
Figure imgf000092_0001
Figure imgf000092_0002
90
Figure imgf000093_0001
91
Figure imgf000094_0001
92
Figure imgf000095_0001
93
Figure imgf000096_0001
94
Figure imgf000097_0001
95
Figure imgf000098_0001
96
Figure imgf000099_0001
97
Figure imgf000100_0001
98
Figure imgf000101_0001
99
Figure imgf000102_0001
and derivatives thereof.
20. The organoselenium compound of claim 18, which is
Figure imgf000102_0002
or a derivative thereof.
21. The organoselenium compound of claim 18, which is or a derivative thereof.
22. An organoselenium compound selected from the group consisting of
Figure imgf000103_0002
Figure imgf000103_0003
Figure imgf000103_0004
Figure imgf000104_0001
and derivatives thereof.
PCT/US2009/058162 2008-09-25 2009-09-24 Organoselenium materials and their uses in organic light emitting devices WO2010036765A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09792929.3A EP2329540B1 (en) 2008-09-25 2009-09-24 Organoselenium materials and their uses in organic light emitting devices
CN200980136720.8A CN102160206B (en) 2008-09-25 2009-09-24 Organoselenium materials and application thereof in organic light emitting devices
KR1020117005445A KR101678235B1 (en) 2008-09-25 2009-09-24 Organoselenium materials and their uses in organic light emitting devices
EP17150393.1A EP3185333B1 (en) 2008-09-25 2009-09-24 Organoselenium materials and their uses in organic light emitting devices
JP2011529209A JP5676454B2 (en) 2008-09-25 2009-09-24 Organic selenium materials and their use in organic light emitting devices
KR1020167017199A KR101804084B1 (en) 2008-09-25 2009-09-24 Organoselenium materials and their uses in organic light emitting devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10022908P 2008-09-25 2008-09-25
US61/100,229 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010036765A1 true WO2010036765A1 (en) 2010-04-01

Family

ID=41401827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/058162 WO2010036765A1 (en) 2008-09-25 2009-09-24 Organoselenium materials and their uses in organic light emitting devices

Country Status (7)

Country Link
US (3) US8426035B2 (en)
EP (2) EP3185333B1 (en)
JP (3) JP5676454B2 (en)
KR (2) KR101804084B1 (en)
CN (2) CN102160206B (en)
TW (3) TWI541237B (en)
WO (1) WO2010036765A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011137157A1 (en) 2010-04-28 2011-11-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
WO2011136755A1 (en) * 2010-04-28 2011-11-03 Universal Display Corporation Depositing premixed materials
CN102558168A (en) * 2010-12-23 2012-07-11 海洋王照明科技股份有限公司 Organic semiconductor material and preparation method and application thereof
WO2013125599A1 (en) 2012-02-22 2013-08-29 Jnc株式会社 Novel chalcogen-containing organic compound and use thereof
US8927977B2 (en) 2012-03-16 2015-01-06 Jnc Corporation Organic semiconductor thin film, organic semiconductor device and organic field effect transistor
JP2015042632A (en) * 2013-07-22 2015-03-05 日本曹達株式会社 Ruthenium complex

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676454B2 (en) * 2008-09-25 2015-02-25 ユニバーサル ディスプレイ コーポレイション Organic selenium materials and their use in organic light emitting devices
JP5815341B2 (en) 2010-09-09 2015-11-17 株式会社半導体エネルギー研究所 Heterocyclic compounds
CN103283308B (en) * 2010-10-11 2016-06-22 索尔维公司 Spiral shell two fluorene compound for light-emitting device
JP5959171B2 (en) * 2011-09-08 2016-08-02 国立大学法人名古屋大学 PI-conjugated organoboron compound and method for producing the same
US9859517B2 (en) 2012-09-07 2018-01-02 Nitto Denko Corporation White organic light-emitting diode
US9761807B2 (en) * 2013-07-15 2017-09-12 Universal Display Corporation Organic light emitting diode materials
US9944846B2 (en) 2014-08-28 2018-04-17 E I Du Pont De Nemours And Company Compositions for electronic applications
CN106032350B (en) * 2015-03-09 2019-03-01 广东阿格蕾雅光电材料有限公司 Organic electronic material
KR20160141931A (en) * 2015-06-01 2016-12-12 삼성디스플레이 주식회사 Organic light emitting diode and organic light emitting diode display including the same
CN104926785B (en) * 2015-07-06 2018-10-09 盐城工学院 A kind of selenium heteroaromatic ring derivative and preparation method thereof
JP6573979B2 (en) * 2015-08-04 2019-09-11 富士フイルム株式会社 Organic thin film transistor and manufacturing method thereof, organic thin film transistor material, organic thin film transistor composition, compound, and organic semiconductor film
US11522140B2 (en) * 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
TWI565095B (en) * 2015-11-09 2017-01-01 錼創科技股份有限公司 Light emitting module
KR102455528B1 (en) * 2015-11-24 2022-10-14 삼성전자주식회사 Compound for organic photoelectric device and organic photoelectric device, image sensor and electronic device including the same
JP2017171607A (en) * 2016-03-23 2017-09-28 国立大学法人九州大学 Compound, composition, organic semiconductor device, and method for producing compound
TW201829731A (en) * 2016-11-04 2018-08-16 美商陶氏全球科技責任有限公司 Composition containing aminium radical cation
US20200185604A1 (en) * 2016-11-04 2020-06-11 Dow Global Technologies Llc Composition containing aminium radical cation
US20200411773A1 (en) * 2017-04-27 2020-12-31 Sumitomo Chemical Company, Limited Composition and light emitting device using the same
CN108178767B (en) * 2018-01-19 2020-09-22 华南理工大学 Organic small-molecule luminescent material based on pyrazine receptor unit and preparation method and application thereof
KR20200069400A (en) * 2018-12-05 2020-06-17 삼성디스플레이 주식회사 Condensed ring compound, composition including the same and organic light-emitting device including thin film formed therefrom
CN111333611B (en) * 2018-12-19 2023-02-03 北京夏禾科技有限公司 Organic electroluminescent material and device thereof
US11602724B2 (en) 2019-04-30 2023-03-14 Saint Louis University Visible light induced photogeneration of ground state atomic oxygen
KR20230011859A (en) 2021-07-14 2023-01-25 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound and organic electroluminescent device comprising the same
KR20230019014A (en) 2021-07-30 2023-02-07 롬엔드하스전자재료코리아유한회사 Organic electroluminescent compound, a plurality of host materials, and organic electroluminescent device comprising the same
DE102022119036A1 (en) 2021-07-30 2023-02-02 Rohm And Haas Electronic Materials Korea Ltd. ORGANIC ELECTROLUMINESCENT COMPOUND, MULTIPLE HOST MATERIALS AND THIS COMPREHENSIVE ORGANIC ELECTROLUMINESCENT DEVICE
KR20240039580A (en) 2022-09-19 2024-03-26 롬엔드하스전자재료코리아유한회사 A plurality of host materials, organic electroluminescent compound, and organic electroluminescent device comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252065A (en) 1999-02-25 2000-09-14 Sumitomo Chem Co Ltd High molecular light emitting element
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US20080100207A1 (en) 2006-10-31 2008-05-01 Sang-Hoon Park Organoelectroluminescent compound and organoelectroluminescent device employing the same

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34656A (en) * 1862-03-11 Improvement in liquids for exciting galvanic batteries
US182441A (en) * 1876-09-19 Improvement in gold-foil condensers for dental use
US222886A (en) * 1879-12-23 Improvement in automatic let-off mechanisms for looms
US174116A (en) * 1876-02-29 Improvement in car-couplings
US72964A (en) * 1868-01-07 Improved fire-kindling and fuel
US8010A (en) * 1851-04-01 Peter mckinlay
US115079A (en) * 1871-05-23 Improvement in heating-stoves
US280965A (en) * 1883-07-10 Map-drawing
US230980A (en) * 1880-08-10 Thomas e wobthlngto
US4795242A (en) 1985-05-22 1989-01-03 University Of California Conducting substituted polyisothianaphthenes
JPS63211265A (en) 1987-02-27 1988-09-02 Sds Biotech Kk Tetracyanobenzene electric charge transfer complex
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JPH02263823A (en) * 1989-04-04 1990-10-26 Toyobo Co Ltd Electrically conductive polymer
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JPH0753950Y2 (en) 1990-11-06 1995-12-13 シチズン時計株式会社 Molded parts
JPH06212151A (en) * 1993-01-14 1994-08-02 Toyo Ink Mfg Co Ltd Organic electroluminescent element
JP3114445B2 (en) * 1993-08-10 2000-12-04 東洋インキ製造株式会社 Organic electroluminescent device material and organic electroluminescent device using the same
DE69412567T2 (en) 1993-11-01 1999-02-04 Hodogaya Chemical Co Ltd Amine compound and electroluminescent device containing it
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5844363A (en) 1997-01-23 1998-12-01 The Trustees Of Princeton Univ. Vacuum deposited, non-polymeric flexible organic light emitting devices
KR100462723B1 (en) 1996-08-12 2004-12-20 더 트러스티즈 오브 프린스턴 유니버시티 Flexible orgarnic light emitting device and method of preparing thereof
EP0837141B1 (en) 1996-10-03 2003-01-08 Canon Kabushiki Kaisha Process for detecting target nucleic acid, process for quantifying the same, and pyrylium compound for chemiluminescence analysis
US5834893A (en) 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
US6013982A (en) 1996-12-23 2000-01-11 The Trustees Of Princeton University Multicolor display devices
US6091195A (en) 1997-02-03 2000-07-18 The Trustees Of Princeton University Displays having mesa pixel configuration
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6337102B1 (en) 1997-11-17 2002-01-08 The Trustees Of Princeton University Low pressure vapor phase deposition of organic thin films
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
JP3539221B2 (en) * 1998-07-13 2004-07-07 豊田合成株式会社 Resin molded product and method for producing the same
US6528187B1 (en) 1998-09-08 2003-03-04 Fuji Photo Film Co., Ltd. Material for luminescence element and luminescence element using the same
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
GB9822963D0 (en) 1998-10-20 1998-12-16 Agner Erik Improvements in or relating to chromatography
US6310360B1 (en) 1999-07-21 2001-10-30 The Trustees Of Princeton University Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices
US6294398B1 (en) 1999-11-23 2001-09-25 The Trustees Of Princeton University Method for patterning devices
US6458475B1 (en) 1999-11-24 2002-10-01 The Trustee Of Princeton University Organic light emitting diode having a blue phosphorescent molecule as an emitter
KR100377321B1 (en) 1999-12-31 2003-03-26 주식회사 엘지화학 Electronic device comprising organic compound having p-type semiconducting characteristics
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US6939624B2 (en) 2000-08-11 2005-09-06 Universal Display Corporation Organometallic compounds and emission-shifting organic electrophosphorescence
CN102041001B (en) 2000-08-11 2014-10-22 普林斯顿大学理事会 Organometallic compounds and emission-shifting organic electrophosphorescence
US6579630B2 (en) 2000-12-07 2003-06-17 Canon Kabushiki Kaisha Deuterated semiconducting organic compounds used for opto-electronic devices
JP3812730B2 (en) 2001-02-01 2006-08-23 富士写真フイルム株式会社 Transition metal complex and light emitting device
JP4307000B2 (en) 2001-03-08 2009-08-05 キヤノン株式会社 Metal coordination compound, electroluminescent element and display device
EP1374320B1 (en) 2001-03-14 2020-05-06 The Trustees Of Princeton University Materials and devices for blue phosphorescence based organic light emitting diodes
JP4310077B2 (en) 2001-06-19 2009-08-05 キヤノン株式会社 Metal coordination compound and organic light emitting device
EP1407501B1 (en) 2001-06-20 2009-05-20 Showa Denko K.K. Light emitting material and organic light-emitting device
US7071615B2 (en) 2001-08-20 2006-07-04 Universal Display Corporation Transparent electrodes
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
US7431968B1 (en) 2001-09-04 2008-10-07 The Trustees Of Princeton University Process and apparatus for organic vapor jet deposition
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US7166368B2 (en) 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
US6869695B2 (en) 2001-12-28 2005-03-22 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
KR100691543B1 (en) 2002-01-18 2007-03-09 주식회사 엘지화학 New material for transporting electron and organic electroluminescent display using the same
US6878975B2 (en) 2002-02-08 2005-04-12 Agilent Technologies, Inc. Polarization field enhanced tunnel structures
US20030230980A1 (en) 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
US7189989B2 (en) 2002-08-22 2007-03-13 Fuji Photo Film Co., Ltd. Light emitting element
CN100439469C (en) 2002-08-27 2008-12-03 富士胶片株式会社 Organometallic complexes, organic EL devices, and organic EL displays
US6687266B1 (en) 2002-11-08 2004-02-03 Universal Display Corporation Organic light emitting materials and devices
JP4365196B2 (en) 2002-12-27 2009-11-18 富士フイルム株式会社 Organic electroluminescence device
JP4365199B2 (en) 2002-12-27 2009-11-18 富士フイルム株式会社 Organic electroluminescence device
JP5095206B2 (en) 2003-03-24 2012-12-12 ユニバーシティ オブ サザン カリフォルニア Phenyl and fluorenyl substituted phenyl-pyrazole complexes of iridium (Ir)
US7090928B2 (en) 2003-04-01 2006-08-15 The University Of Southern California Binuclear compounds
WO2004093207A2 (en) 2003-04-15 2004-10-28 Covion Organic Semiconductors Gmbh Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures
US7029765B2 (en) 2003-04-22 2006-04-18 Universal Display Corporation Organic light emitting devices having reduced pixel shrinkage
JP4673744B2 (en) 2003-05-29 2011-04-20 新日鐵化学株式会社 Organic electroluminescence device
JP2005011610A (en) 2003-06-18 2005-01-13 Nippon Steel Chem Co Ltd Organic electroluminescent element
US20050025993A1 (en) 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
TWI390006B (en) 2003-08-07 2013-03-21 Nippon Steel Chemical Co Organic EL materials with aluminum clamps
DE10338550A1 (en) 2003-08-19 2005-03-31 Basf Ag Transition metal complexes with carbene ligands as emitters for organic light-emitting diodes (OLEDs)
US20060269780A1 (en) 2003-09-25 2006-11-30 Takayuki Fukumatsu Organic electroluminescent device
KR100553752B1 (en) * 2003-10-13 2006-02-20 삼성에스디아이 주식회사 Imidazole ring containing compound and organic electroluminescence display device
JP4822687B2 (en) 2003-11-21 2011-11-24 富士フイルム株式会社 Organic electroluminescence device
US7332232B2 (en) 2004-02-03 2008-02-19 Universal Display Corporation OLEDs utilizing multidentate ligand systems
EP2325191A1 (en) 2004-03-11 2011-05-25 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same
TW200531592A (en) 2004-03-15 2005-09-16 Nippon Steel Chemical Co Organic electroluminescent device
JP4869565B2 (en) 2004-04-23 2012-02-08 富士フイルム株式会社 Organic electroluminescence device
US7154114B2 (en) 2004-05-18 2006-12-26 Universal Display Corporation Cyclometallated iridium carbene complexes for use as hosts
US7445855B2 (en) 2004-05-18 2008-11-04 The University Of Southern California Cationic metal-carbene complexes
US7491823B2 (en) 2004-05-18 2009-02-17 The University Of Southern California Luminescent compounds with carbene ligands
US7534505B2 (en) 2004-05-18 2009-05-19 The University Of Southern California Organometallic compounds for use in electroluminescent devices
US7393599B2 (en) 2004-05-18 2008-07-01 The University Of Southern California Luminescent compounds with carbene ligands
JP4894513B2 (en) 2004-06-17 2012-03-14 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
KR101272490B1 (en) 2004-06-28 2013-06-07 시바 홀딩 인크 Electroluminescent metal complexes with triazoles and benzotriazoles
US20060008670A1 (en) 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
EP1784056B1 (en) 2004-07-23 2011-04-13 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
DE102004057072A1 (en) 2004-11-25 2006-06-01 Basf Ag Use of Transition Metal Carbene Complexes in Organic Light Emitting Diodes (OLEDs)
WO2006072002A2 (en) 2004-12-30 2006-07-06 E.I. Dupont De Nemours And Company Organometallic complexes
CN101103037B (en) * 2005-01-19 2010-10-13 国立大学法人广岛大学 Novel condensed polycyclic aromatic compound and use thereof
GB2437453B (en) 2005-02-04 2011-05-04 Konica Minolta Holdings Inc Material for organic electroluminescence element, organic electroluminescence element, display device and lighting device
KR100803125B1 (en) 2005-03-08 2008-02-14 엘지전자 주식회사 Red phosphorescent compounds and organic electroluminescence devices using the same
WO2006098120A1 (en) 2005-03-16 2006-09-21 Konica Minolta Holdings, Inc. Organic electroluminescent device material and organic electroluminescent device
DE102005014284A1 (en) 2005-03-24 2006-09-28 Basf Ag Use of compounds containing aromatic or heteroaromatic rings containing groups via carbonyl groups as matrix materials in organic light-emitting diodes
WO2006103874A1 (en) 2005-03-29 2006-10-05 Konica Minolta Holdings, Inc. Organic electroluminescent device material, organic electroluminescent device, display and illuminating device
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
WO2006114966A1 (en) 2005-04-18 2006-11-02 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
US7807275B2 (en) 2005-04-21 2010-10-05 Universal Display Corporation Non-blocked phosphorescent OLEDs
US8007927B2 (en) 2007-12-28 2011-08-30 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
JP4533796B2 (en) 2005-05-06 2010-09-01 富士フイルム株式会社 Organic electroluminescence device
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
CN103435436A (en) 2005-05-31 2013-12-11 通用显示公司 Triphenylene hosts in phosphorescent light emitting diodes
WO2006132173A1 (en) 2005-06-07 2006-12-14 Nippon Steel Chemical Co., Ltd. Organic metal complex and organic electroluminescent device using same
JPWO2006137210A1 (en) 2005-06-24 2009-01-08 出光興産株式会社 Benzothiophene derivative and organic electroluminescence device using the same
WO2007002683A2 (en) 2005-06-27 2007-01-04 E. I. Du Pont De Nemours And Company Electrically conductive polymer compositions
JP5076891B2 (en) 2005-07-01 2012-11-21 コニカミノルタホールディングス株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2007028417A1 (en) 2005-09-07 2007-03-15 Technische Universität Braunschweig Triplett emitter having condensed five-membered rings
JP4887731B2 (en) 2005-10-26 2012-02-29 コニカミノルタホールディングス株式会社 Organic electroluminescence element, display device and lighting device
DE202005017678U1 (en) * 2005-11-11 2007-03-22 Seda S.P.A., Arzano Box-shaped container and blank
EP1956666A4 (en) 2005-12-01 2010-06-16 Nippon Steel Chemical Co Organic electroluminescent device
CN102633820B (en) 2005-12-01 2015-01-21 新日铁住金化学株式会社 Compound for organic electroluminescent element and organic electroluminescent element
JP5290581B2 (en) * 2005-12-15 2013-09-18 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
KR102103062B1 (en) 2006-02-10 2020-04-22 유니버셜 디스플레이 코포레이션 METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF
JP5181190B2 (en) * 2006-03-10 2013-04-10 国立大学法人 岡山大学 Method for producing heterocyclic compound
JP4823730B2 (en) 2006-03-20 2011-11-24 新日鐵化学株式会社 Luminescent layer compound and organic electroluminescent device
JP5186365B2 (en) * 2006-04-26 2013-04-17 出光興産株式会社 Aromatic amine derivatives and organic electroluminescence devices using them
EP2018090A4 (en) 2006-05-11 2010-12-01 Idemitsu Kosan Co Organic electroluminescent device
KR20090016684A (en) 2006-06-02 2009-02-17 이데미쓰 고산 가부시키가이샤 Material for organic electroluminescence element, and organic electroluminescence element using the material
WO2008023549A1 (en) 2006-08-23 2008-02-28 Idemitsu Kosan Co., Ltd. Aromatic amine derivatives and organic electroluminescent devices made by using the same
JP5589251B2 (en) 2006-09-21 2014-09-17 コニカミノルタ株式会社 Organic electroluminescence element material
US8062769B2 (en) 2006-11-09 2011-11-22 Nippon Steel Chemical Co., Ltd. Indolocarbazole compound for use in organic electroluminescent device and organic electroluminescent device
CN103254113A (en) 2006-11-24 2013-08-21 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using same
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
US8119255B2 (en) 2006-12-08 2012-02-21 Universal Display Corporation Cross-linkable iridium complexes and organic light-emitting devices using the same
WO2008072596A1 (en) 2006-12-13 2008-06-19 Konica Minolta Holdings, Inc. Organic electroluminescent device, display and illuminating device
EP2112994B1 (en) 2007-02-23 2011-01-26 Basf Se Electroluminescent metal complexes with benzotriazoles
EP2150556B1 (en) 2007-04-26 2011-01-12 Basf Se Silanes containing phenothiazine-s-oxide or phenothiazine-s,s-dioxide groups and the use thereof in oleds
WO2008156879A1 (en) 2007-06-20 2008-12-24 Universal Display Corporation Blue phosphorescent imidazophenanthridine materials
EP2170911B1 (en) 2007-06-22 2018-11-28 UDC Ireland Limited Light emitting cu(i) complexes
JP5675349B2 (en) 2007-07-05 2015-02-25 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Carbene transition metal complex luminophore and at least one selected from disilylcarbazole, disilyldibenzofuran, disilyldibenzothiophene, disilyldibenzophosphole, disilyldibenzothiophene S-oxide and disilyldibenzothiophene S, S-dioxide Light-emitting diodes containing two compounds
US20090045731A1 (en) 2007-07-07 2009-02-19 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8221907B2 (en) 2007-07-07 2012-07-17 Idemitsu Kosan Co., Ltd. Chrysene derivative and organic electroluminescent device using the same
TW200911730A (en) 2007-07-07 2009-03-16 Idemitsu Kosan Co Naphthalene derivative, material for organic electroluminescence device, and organic electroluminescence device using the same
TW200909560A (en) 2007-07-07 2009-03-01 Idemitsu Kosan Co Organic electroluminescence device and material for organic electroluminescence devcie
US8779655B2 (en) 2007-07-07 2014-07-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and material for organic electroluminescence device
US8080658B2 (en) 2007-07-10 2011-12-20 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
US8114530B2 (en) 2007-07-10 2012-02-14 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device utilizing the same
CN101688052A (en) 2007-07-27 2010-03-31 E.I.内穆尔杜邦公司 The aqueous dispersion that comprises the conductive polymers of inorganic nanoparticles
JP6009144B2 (en) 2007-08-08 2016-10-19 ユニバーサル ディスプレイ コーポレイション Benzo-fused thiophene or benzo-fused furan compounds containing a triphenylene group
JP2009040728A (en) 2007-08-09 2009-02-26 Canon Inc Organometallic complex and organic light-emitting element using the same
CN101896494B (en) 2007-10-17 2015-04-08 巴斯夫欧洲公司 Transition metal complexes having bridged carbene ligands and the use thereof in OLEDs
US20090101870A1 (en) 2007-10-22 2009-04-23 E. I. Du Pont De Nemours And Company Electron transport bi-layers and devices made with such bi-layers
US7914908B2 (en) 2007-11-02 2011-03-29 Global Oled Technology Llc Organic electroluminescent device having an azatriphenylene derivative
DE102007053771A1 (en) 2007-11-12 2009-05-14 Merck Patent Gmbh Organic electroluminescent devices
JPWO2009063833A1 (en) 2007-11-15 2011-03-31 出光興産株式会社 Benzochrysene derivative and organic electroluminescence device using the same
US8759819B2 (en) 2007-11-22 2014-06-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP5390396B2 (en) 2007-11-22 2014-01-15 出光興産株式会社 Organic EL device and organic EL material-containing solution
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
CN101910147B (en) 2007-12-28 2014-02-19 出光兴产株式会社 Aromatic amine derivative and organic electroluminescent element using the same
KR101691610B1 (en) 2008-02-12 2017-01-02 유디씨 아일랜드 리미티드 Electroluminescent metal complexes with dibenzo[f,h]quinoxalines
JP5676454B2 (en) * 2008-09-25 2015-02-25 ユニバーサル ディスプレイ コーポレイション Organic selenium materials and their use in organic light emitting devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252065A (en) 1999-02-25 2000-09-14 Sumitomo Chem Co Ltd High molecular light emitting element
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US20080100207A1 (en) 2006-10-31 2008-05-01 Sang-Hoon Park Organoelectroluminescent compound and organoelectroluminescent device employing the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
GAIDIS, J.M.: "Biphenylene Insertion Products, Dibenzoselenophene and Diphenyldibenzostannole", J. ORG. CHEM, vol. 35, no. 8, 1970, pages 2811 - 2813, XP002560305, DOI: doi:10.1021/jo00833a078
GAIDIS, J.M.: "Biphenylene Insertion Products, Dibenzoselenophene and Diphenyldibenzostannole", J.ORG.CHEM., vol. 35, no. 8, 1970, pages 2811 - 2813, XP002560305 *
KIMURA, T., ISHIKAVA, Y., UEKI, K., HORIE, Y., FURUKAWA, N.: "Effect of Through-Space Interaction on the Photolytic Desulfurization or Deselenization and Intramolecular Cyclization Reactions of 1,9-Disubstituted Dibenzochalcogenophenes", J. ORG. CHEM., vol. 59, 1994, pages 7117 - 7124, XP002560308 *
KIMURA, T.; ISHIKAVA, Y.; UEKI, K.; HORIE, Y.; FURUKAWA, N.: "Effect of Through-Space Interaction on the Photolytic Desulfurization or Deselenization and Intramolecular Cyclization Reactions of 1,9-Disubstituted Dibenzochalcogenophenes", J. ORG. CHEM., vol. 59, 1994, pages 7117 - 7124, XP002560308, DOI: doi:10.1021/jo00102a043
SATO, S. AND FURUKAWA, N.: "First Detection of 2,2'-Biphenylylenediphenylsulfurane and -Selenurane [10-M-4(C4), M=S,Se] by Low Temperature NMR Experiments and Isolation of the Tellurane", TETRAHEDRON LETTERS, vol. 36, no. 16, 1995, pages 2803 - 2806, XP002560306 *
SATO, S.; FURUKAWA, N.: "First Detection of 2,2'-Biphenylylenediphenylsulfurane and -Selenurane [10-M-4(C4), M=S,Se] by Low Temperature NMR Experiments and Isolation of the Tellurane", TETRAHEDRON LETTERS, vol. 36, no. 16, 1995, pages 2803 - 2806, XP002560306, DOI: doi:10.1016/0040-4039(95)00401-W
SUZUKI, H. AND NAKAMURA, T.: "A Convenient Synthesis of Functionalized Dibenzotellurophenes and Related Compounds via the Intramolecular Telluro Coupling Reaction. The positive Effect of Heavy Chalcogen Atoms on the Molecular Hyperpolarizability of a Captodative Conjugation System", J. ORG. CHEM., vol. 60, 1995, pages 5274 - 5278, XP002560307 *
SUZUKI, H.; NAKAMURA, T.: "A Convenient Synthesis of Functionalized Dibensotellurophenes and Related Compounds via the Intramolecular Telluro Coupling Reaction. The positive Effect of Heavy Chalcogen Atoms on the Molecular Hyperpolarizability of a Captodative Conjugation System", J. ORG. CHEM., vol. 60, 1995, pages 5274 - 5278, XP002560307, DOI: doi:10.1021/jo00121a053

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637061B1 (en) 2010-04-28 2016-07-06 유니버셜 디스플레이 코포레이션 Depositing premixed materials
KR102084336B1 (en) * 2010-04-28 2020-04-24 유니버셜 디스플레이 코포레이션 Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
KR20180033602A (en) * 2010-04-28 2018-04-03 유니버셜 디스플레이 코포레이션 Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
CN102858913A (en) * 2010-04-28 2013-01-02 通用显示公司 Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
DE112011101498T5 (en) 2010-04-28 2013-02-28 Universal Display Corporation Triphenylene-benzofuran / benzothiophene / benzoselenophen compounds having substituents which combine to form fused rings
CN103026521A (en) * 2010-04-28 2013-04-03 通用显示公司 Depositing premixed materials
JP2013525446A (en) * 2010-04-28 2013-06-20 ユニバーサル ディスプレイ コーポレイション Triphenylene-benzofuran / benzothiophene / benzoselenophene compounds with substituents involved to form fused rings
KR20130073023A (en) * 2010-04-28 2013-07-02 유니버셜 디스플레이 코포레이션 Depositing premixed materials
JP2013530515A (en) * 2010-04-28 2013-07-25 ユニバーサル ディスプレイ コーポレイション Premixed material deposition
TWI573853B (en) * 2010-04-28 2017-03-11 環球展覽公司 Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
CN103026521B (en) * 2010-04-28 2016-11-09 通用显示公司 The material of deposition premixing
WO2011136755A1 (en) * 2010-04-28 2011-11-03 Universal Display Corporation Depositing premixed materials
JP2016185951A (en) * 2010-04-28 2016-10-27 ユニバーサル ディスプレイ コーポレイション Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
US8968887B2 (en) 2010-04-28 2015-03-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
CN105968088A (en) * 2010-04-28 2016-09-28 通用显示公司 Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
WO2011137157A1 (en) 2010-04-28 2011-11-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
CN102558168A (en) * 2010-12-23 2012-07-11 海洋王照明科技股份有限公司 Organic semiconductor material and preparation method and application thereof
CN102558168B (en) * 2010-12-23 2014-07-23 海洋王照明科技股份有限公司 Organic semiconductor material and preparation method and application thereof
WO2013125599A1 (en) 2012-02-22 2013-08-29 Jnc株式会社 Novel chalcogen-containing organic compound and use thereof
US9537110B2 (en) 2012-02-22 2017-01-03 Jnc Corporation Chalcogen-containing organic compound and use thereof
KR20140125407A (en) 2012-02-22 2014-10-28 제이엔씨 주식회사 Novel chalcogen-containing organic compound and use thereof
US8927977B2 (en) 2012-03-16 2015-01-06 Jnc Corporation Organic semiconductor thin film, organic semiconductor device and organic field effect transistor
JP2015042632A (en) * 2013-07-22 2015-03-05 日本曹達株式会社 Ruthenium complex

Also Published As

Publication number Publication date
US8426035B2 (en) 2013-04-23
US20130168660A1 (en) 2013-07-04
TW201522324A (en) 2015-06-16
JP6506243B2 (en) 2019-04-24
EP2329540A1 (en) 2011-06-08
JP6067668B2 (en) 2017-01-25
US9455411B2 (en) 2016-09-27
JP2017098556A (en) 2017-06-01
US8945727B2 (en) 2015-02-03
EP3185333A2 (en) 2017-06-28
EP3185333B1 (en) 2023-09-06
KR20160078526A (en) 2016-07-04
CN102160206B (en) 2014-06-11
JP5676454B2 (en) 2015-02-25
CN103094490B (en) 2016-03-09
TW201538493A (en) 2015-10-16
JP2015119186A (en) 2015-06-25
KR101678235B1 (en) 2016-11-21
EP2329540B1 (en) 2017-01-11
CN102160206A (en) 2011-08-17
US20150155499A1 (en) 2015-06-04
KR20110071061A (en) 2011-06-28
TWI628173B (en) 2018-07-01
EP3185333A3 (en) 2017-10-04
JP2012503889A (en) 2012-02-09
CN103094490A (en) 2013-05-08
TWI504596B (en) 2015-10-21
TW201022224A (en) 2010-06-16
KR101804084B1 (en) 2017-12-01
US20100072887A1 (en) 2010-03-25
TWI541237B (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6506243B2 (en) Organic selenium material and its use in organic light emitting devices
US10374171B2 (en) Organic electroluminescent materials and devices
KR101698220B1 (en) Heteroleptic iridium complex
TW201708209A (en) Novel compound and organic electroluminescent device comprising same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136720.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09792929

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009792929

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009792929

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117005445

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011529209

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2240/DELNP/2011

Country of ref document: IN