WO2010035906A1 - Method for manufacturing composite polarizing plate - Google Patents

Method for manufacturing composite polarizing plate Download PDF

Info

Publication number
WO2010035906A1
WO2010035906A1 PCT/JP2009/067294 JP2009067294W WO2010035906A1 WO 2010035906 A1 WO2010035906 A1 WO 2010035906A1 JP 2009067294 W JP2009067294 W JP 2009067294W WO 2010035906 A1 WO2010035906 A1 WO 2010035906A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polarizing plate
transparent protective
protective film
resin
Prior art date
Application number
PCT/JP2009/067294
Other languages
French (fr)
Japanese (ja)
Inventor
松本寿和
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008250612A external-priority patent/JP2010079210A/en
Priority claimed from JP2008313488A external-priority patent/JP2010102282A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2010035906A1 publication Critical patent/WO2010035906A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a method for producing a composite polarizing plate.
  • Liquid crystal display devices are used in various display devices by taking advantage of low power consumption, operation at low voltage, light weight and thinness.
  • This liquid crystal display device is composed of many optical members such as a liquid crystal cell, a polarizing plate, a retardation film, a light collecting sheet, a diffusion film, a light guide plate, and a light reflecting sheet. Therefore, by improving the number of films or sheets constituting these optical members and reducing the film thickness, it is possible to improve the production efficiency and brightness of the liquid crystal display device and to reduce the weight and thickness. Such research is actively conducted.
  • a technique in which a protective film on one side of a polarizing plate is also used as a retardation film.
  • a protective film on one side of a polarizing plate is also used as a retardation film.
  • at least one of the protective films is a cyclic olefin resin having a function of a retardation film. It is disclosed that it comprises.
  • JP-A-9-325216 Patent Document 2 discloses that at least one of the transparent protective layers of the polarizing film is composed of a birefringent film (retardation film). Yes.
  • one of the functions required for the retardation film is to optically compensate for the retardation due to the birefringence of the liquid crystal cell equally in the front direction and the oblique direction. Therefore, the angle dependency of the phase difference value is a very important optical characteristic. Therefore, various retardation films having a substantially constant retardation value regardless of the angle have been proposed.
  • Patent Document 3 the intrinsic birefringence is positive, By stretching a film in which molecules are oriented in the normal direction of the film surface, a phase difference film in which the phase difference at normal incidence and the phase difference at incidence from a direction inclined by 40 ° from the normal is almost the same is obtained. It is disclosed.
  • the retardation film has an in-plane slow axis direction, a refractive index in the in-plane fast axis direction and the thickness direction respectively n x, when the n y and n z, a relationship n x> n z> n y Show.
  • a method for producing a retardation film which satisfies a relation of the n x> n z> n y in Japanese Laid-5-157911 (Patent Document 4), by bonding a shrinkable film to one or both surfaces of a resin film
  • Patent Document 4 Japanese Laid-5-157911
  • the resin film used in this production method is preferably one that easily causes a phase difference at a low stretch ratio, and conventionally, for example, a polycarbonate resin film, a polyarylate resin film, and a polysulfone resin film, Aromatic resin films have been used.
  • Patent Document 5 discloses a film having heat shrinkability on at least one surface of a uniaxially stretched thermoplastic resin film, and the direction of the heat shrink axis of the thermoplastic resin film. It is disclosed that a retardation film is produced by bonding and heat shrinking so as to be orthogonal to the stretching axis direction. In the retardation film thus obtained, molecules are oriented in the thickness direction. This method is also oriented in the thickness direction by utilizing the shrinkage of the uniaxially stretched thermoplastic resin film accompanying the heat shrinkage of the heat shrinkable film, so that mainly the aromatic resin film that easily develops the phase difference. Has been applied.
  • the aromatic resin film has a large absolute value of the photoelastic coefficient
  • the phase difference is likely to change with respect to the stress.
  • the retardation value may deviate from the design value due to the contraction stress of the polarizing film, or the heat of the backlight in the liquid crystal display device.
  • the unevenness of the phase difference value may occur due to the unevenness of the stress caused by the above-described problem, which deteriorates the display characteristics.
  • a shrinkable film having a large shrinkage rate in the width direction is bonded to one side or both sides of a cyclic olefin-based resin film, and an in-plane retardation value is 100.
  • a method of heating and stretching so that a coefficient (N z coefficient) represented by (n x ⁇ n z ) / (n x ⁇ n y ) is 0.1 to 0.9 nm is disclosed.
  • nx , ny and nz have the meanings as defined above.
  • the expression was hardly cycloolefin resin film of the phase difference, also oriented in the thickness direction with the stretching axis direction, is possible to produce a retardation film which satisfies a relation of n x> n z> n y it can.
  • the retardation film satisfying the relation of the cyclic olefin based resin film made of olefin resin film containing n x> n z> n y in order to undergo the shrinking step in the production process, the polarization width of fabrication can film There are cases where the width is smaller than the width of the film, and the conventional method for producing a polarizing plate has a problem that the productivity is remarkably lowered.
  • An object of the present invention is to provide a method for producing a composite polarizing plate excellent in adhesion between a polarizing film and a retardation film with high productivity, which is formed by laminating a polarizing plate and a retardation film having a smaller width than the polarizing plate. There is to do.
  • the present invention provides a first production method and a second production method of a composite polarizing plate.
  • a transparent protective film is bonded to one side of a polarizing film, an adhesive peelable film is bonded to the opposite side, and single-sided transparent protection is performed.
  • a step of producing a polarizing plate with a film (B) a step of cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the size of the retardation film, and (C) the step (B) The epoxy resin composition containing an epoxy resin that removes the peelable film of the polarizing plate with the single-sided transparent protective film cut in step) and cures the polarizing film surface and the retardation film by irradiation with active energy rays or heating. And a step of pasting using the method.
  • An olefin resin film satisfying the formulas (1) and (2) with respect to light having a wavelength of 590 nm is preferable.
  • the olefin resin film is preferably made of a resin mainly containing a structural unit derived from an alicyclic olefin.
  • the retardation film preferably has a width that is 10% or more smaller than the width of the polarizing plate with the one-side transparent protective film.
  • the epoxy resin preferably contains a compound having at least one epoxy group bonded to an alicyclic ring in the molecule.
  • the thickness of the transparent protective film is preferably 20 to 300 ⁇ m.
  • the second production method of the composite polarizing plate of the present invention is as follows. (A) A transparent protective film is bonded to one side of a polarizing film, an adhesive peelable film is bonded to the opposite side, and single-sided transparent protection is performed. A step of producing a polarizing plate with a film, (B) a step of cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the width of the retardation film, and (C) the peelable film.
  • a process (A), a process (B), a process (C), a process (D), and a process (E) are included in this order, and an adhesive layer is a process (D).
  • first mode A case where the film is laminated on the polarizing film surface of the polarizing plate with the single-sided transparent protective film after the step (C) is mentioned as one of preferable modes (hereinafter, this mode is referred to as “first mode”). ).
  • first mode a mode where the film is laminated on the polarizing film surface of the polarizing plate with the single-sided transparent protective film after the step (C) is mentioned as one of preferable modes (hereinafter, this mode is referred to as “first mode”).
  • second embodiment when laminated on the polarizing film surface of the polarizing plate with a single-sided transparent protective film that has undergone the step (C), it may be mentioned as one of preferred embodiments (hereinafter referred to as “second embodiment”).
  • the step (A), the step (B), the step (C) and the step (E) are included in this order.
  • the pressure-sensitive adhesive layer is a retardation film.
  • a mode of laminating on one side is also mentioned as one of the preferred modes (hereinafter referred to as “third mode”).
  • a phase difference film, and its in-plane slow axis direction, the in-plane fast axis direction and the refractive index in the thickness direction respectively n x, and n y and n z, thickness d An olefin resin film satisfying the formulas (1) and (2) with respect to light having a wavelength of 590 nm is preferable.
  • the olefin-based resin film is preferably made of a resin mainly containing a structural unit derived from an alicyclic olefin.
  • the retardation film preferably has a width that is 10% or more smaller than the width of the polarizing plate with a single-sided transparent protective film.
  • the polarizing film and the transparent protective film are bonded with an adhesive made of a solvent-free resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating. It is preferable.
  • the epoxy resin contains a compound having at least one epoxy group bonded to an alicyclic ring in the molecule.
  • the thickness of the transparent protective film is preferably 20 to 300 ⁇ m.
  • the pressure-sensitive adhesive layer preferably has a thickness of 1 to 40 ⁇ m.
  • the polarizing plate with a single-sided transparent protective film is cut along the longitudinal direction according to the size of the retardation film before being bonded to the retardation film, and the retardation is obtained.
  • the part which does not bond with the phase difference film of the polarizing plate with a single-sided transparent protective film can be used for another product, the whole productivity improves remarkably.
  • the peelable film which has adhesiveness to the polarizing film side of the polarizing plate with a single-sided transparent protective film to be cut it is possible to bond the transparent protective film and the polarizing film or the polarizing film in the cutting. Damage can be prevented.
  • the polarizing film used in the method for producing a composite polarizing plate of the present invention has a function of selectively transmitting unidirectional linearly polarized light from natural light.
  • an iodine polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film a dye polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol film, and a dichroic dye in a lyotropic liquid crystal state
  • examples thereof include a coating type polarizing film coated, oriented and fixed.
  • iodine-based polarizing films, dye-based polarizing films, and coating-type polarizing films have a function of selectively transmitting one direction of linearly polarized light from natural light and absorbing the other direction of linearly polarized light. It is called a type polarizing film.
  • the polarizing film used in the production method of the present invention has a function of selectively transmitting one direction of linearly polarized light from natural light and reflecting or scattering another direction of linearly polarized light as well as the above-described absorption polarizing film. What is called a reflective polarizing film or a scattering polarizing film may be used.
  • the polarizing film specifically mentioned here is not necessarily limited to these, What is necessary is just to have a function which selectively permeate
  • these polarizing films it is preferable to use an absorptive polarizing film having excellent visibility, and among them, it is more preferable to use an iodine polarizing film having excellent polarization degree and transmittance as the polarizing film.
  • the polyvinyl alcohol resin used for the polyvinyl alcohol film can be obtained by saponifying a polyvinyl acetate resin.
  • polyvinyl acetate resin examples include, in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate, copolymers with other monomers copolymerizable with vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, unsaturated sulfonic acids, olefins and vinyl ethers.
  • the saponification degree of the polyvinyl alcohol resin is usually 85 to 100 mol%, and more preferably 98 to 100 mol%.
  • the polyvinyl alcohol-based resin may be modified. For example, polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like are also used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10,000, and preferably about 1500 to 10,000. What formed such a polyvinyl alcohol-type resin into a film is used as a raw film of a polarizing film.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
  • the thickness of the polyvinyl alcohol-based raw film is not particularly limited, but is, for example, about 2 to 150 ⁇ m.
  • the polarizing film is usually a humidity adjusting step for adjusting the moisture of the raw film made of the polyvinyl alcohol resin as described above, a step of uniaxially stretching the polyvinyl alcohol resin film, and the polyvinyl alcohol resin film with a dichroic dye. It is manufactured through a process of dyeing and adsorbing the dichroic dye, a process of treating the polyvinyl alcohol resin film on which the dichroic dye is adsorbed and oriented with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution.
  • the Uniaxial stretching may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing, or may be performed after dyeing.
  • the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. Moreover, it is also possible to perform uniaxial stretching in these several steps. In uniaxial stretching, it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll. Further, it may be dry stretching such as stretching in the air, or may be wet stretching in which stretching is performed in a state swollen with a solvent. The draw ratio is usually 4 to 8 times.
  • the thickness of the polarizing film obtained by rinsing and drying can be, for example, 1 to 50 ⁇ m.
  • the transparent protective film used in the production method of the present invention is preferably made of a material having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, retardation value stability, and the like.
  • a material for a transparent protective film is not particularly limited, but examples thereof include (meth) acrylic resins such as methyl methacrylate resins, chain polyolefin resins such as polypropylene resins, and cyclic olefin resins.
  • Resin polyvinyl chloride resin, cellulose resin, styrene resin, acrylonitrile / butadiene / styrene resin, acrylonitrile / styrene resin, polyvinyl acetate resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, Polycarbonate resins, modified polyphenylene ether resins, polybutylene terephthalate resins, polyethylene terephthalate resins, polysulfone resins, polyethersulfone resins, polyarylate resins, polyamideimide resins and polyimide resins Etc. and the like. These resins can be used alone or in combination of two or more.
  • these resins can also be used after any suitable polymer modification.
  • the polymer modification include copolymerization, crosslinking, molecular terminal, stereoregularity control, and reaction between different polymers. Modifications such as mixing including the accompanying cases can be mentioned.
  • a (meth) acrylic resin such as a methyl methacrylate resin, a chain polyolefin resin such as a polyethylene terephthalate resin or a polypropylene resin, or a cellulose resin.
  • the methyl methacrylate resin is a polymer containing 50% by weight or more of methyl methacrylate units.
  • the content of methyl methacrylate units is preferably 70% by weight or more, and may be 100% by weight.
  • the polymer having a methyl methacrylate unit of 100% by weight is a methyl methacrylate homopolymer obtained by polymerizing methyl methacrylate alone.
  • This methyl methacrylate resin can be usually obtained by polymerization in the presence of a monofunctional monomer, a polyfunctional monomer, a radical polymerization initiator, and a chain transfer agent mainly composed of methyl methacrylate.
  • the monofunctional monomer that can be copolymerized with methyl methacrylate is not particularly limited.
  • the polyfunctional monomer that can be copolymerized with methyl methacrylate is not particularly limited.
  • methyl methacrylate resin having such a composition those modified by a reaction between functional groups copolymerized with the resin are also used.
  • Examples thereof include a dehydration condensation reaction within a polymer chain of a hydroxyl group of methyl acid.
  • methyl methacrylate resin can be easily obtained as a commercial product. For example, Sumipex (manufactured by Sumitomo Chemical Co., Ltd.), Acripet (manufactured by Mitsubishi Rayon Co., Ltd.) under the trade name, respectively.
  • the polyethylene terephthalate resin means a resin in which 80 mol% or more of repeating units are composed of ethylene terephthalate, and may contain other dicarboxylic acid components and diol components.
  • dicarboxylic acid components include, but are not limited to, isophthalic acid, p- ⁇ -oxyethoxybenzoic acid, 4,4′-dicarboxydiphenyl, 4,4′-dicarboxybenzophenone, bis (4-Carboxyphenyl) ethane, adipic acid, sebacic acid, 1,4-dicarboxycyclohexane and the like.
  • diol components are not particularly limited, but propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanediol, ethylene oxide adduct of bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. Is mentioned.
  • dicarboxylic acid components and diol components can be used in combination of two or more if necessary.
  • oxycarboxylic acids such as p-oxybenzoic acid, can also be used together.
  • a dicarboxylic acid component or a diol component containing a small amount of an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be used.
  • Polyethylene terephthalate resin can be produced by direct polycondensation of terephthalic acid and ethylene glycol (and other dicarboxylic acids or other diols as required), dialkyl esters of terephthalic acid and ethylene glycol (and if necessary) A transesterification reaction with a dialkyl ester of another dicarboxylic acid or other diol), and a polycondensation, and an ethylene glycol ester of terephthalic acid (and other dicarboxylic acids as required) For example, a method of polycondensation of other diol ester) in the presence of a catalyst is employed.
  • the polypropylene resin refers to a polymer obtained by polymerizing a chain olefin monomer in which 80% by weight or more of the repeating unit is a propylene monomer among the chain olefin resins.
  • a propylene homopolymer is preferable.
  • a copolymer comprising propylene as a main component and a comonomer copolymerizable therewith at a rate of 1 to 20% by weight, preferably 3 to 10% by weight.
  • ethylene, 1-butene and 1-hexene are preferred as comonomers copolymerizable with propylene.
  • ethylene copolymerized at a ratio of 3 to 10% by weight is preferable because of relatively excellent transparency.
  • the copolymerization ratio of ethylene is preferable because of relatively excellent transparency.
  • the ratio exceeds 20% by weight, the melting point of the resin is lowered and the heat resistance required for the protective film may be impaired.
  • Cellulosic resins are those in which some or all of the hydrogen atoms in the hydroxyl groups of cellulose obtained from raw material cellulose such as cotton linter and wood pulp (hardwood pulp, conifer pulp) are acetyl groups, propionyl groups and / or butyryl groups. It refers to a substituted cellulose organic acid ester or cellulose mixed organic acid ester. Examples include cellulose acetates, propionic acid esters, butyric acid esters, and mixed esters thereof.
  • a triacetyl cellulose film, a diacetyl cellulose film, a cellulose acetate propionate film, a cellulose acetate butyrate film, and the like are preferable.
  • a method for making such a methyl methacrylate resin, a polyethylene terephthalate resin, a polypropylene resin, a cellulose resin, and the like as a transparent protective film to be bonded to a polarizing film a method corresponding to the resin may be appropriately selected. There is no particular limitation.
  • a resin dissolved in a solvent is cast onto a metal band or drum, and a solvent casting method for obtaining a film by drying and removing the solvent, and the resin is heated and kneaded to a temperature higher than its melting temperature and extruded from a die, A melt extrusion method for obtaining a film by cooling is employed.
  • a single layer film may be extruded or a multilayer film may be simultaneously extruded.
  • the film used as the transparent protective film thus obtained can be easily obtained as a commercial product.
  • the trade name is Sumipex (manufactured by Sumitomo Chemical Co., Ltd.).
  • FILMAX CPP film manufactured by FILMAX
  • Santox manufactured by Sun Tox Co., Ltd.
  • Tosero manufactured by Tosero Co., Ltd.
  • Toyobo Pyrene Film Toyobo Co., Ltd.
  • Treffan Toray Film Processing Co., Ltd.
  • Nihon Polyace Nihon Polyace Co., Ltd.
  • Dazai FC Flutamura Chemical Co., Ltd.
  • a cellulose-based resin film Fujitac TD (manufactured by Fuji Film Co., Ltd.), Konica Minolta TAC film KC (manufactured by Konica Minolta Opto Co., Ltd.), and the like can be mentioned.
  • Antiglare property haze
  • the method for imparting antiglare properties is not particularly limited. For example, a method of mixing inorganic fine particles or organic fine particles into the raw material resin to form a film, the multilayer extrusion described above, and the like.
  • a method of forming a two-layer film from a resin in which fine particles are mixed and a resin in which fine particles are not mixed in the other, or a method of forming a three-layer film with the resin mixed with particles on the outside, and inorganic on one side of the film A method of coating a coating solution obtained by mixing fine particles or organic fine particles with a curable binder resin, curing the binder resin, and providing an antiglare layer is employed.
  • the inorganic fine particles for imparting antiglare properties are not particularly limited. For example, silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, carbonic acid.
  • the organic fine particles are not particularly limited.
  • crosslinked polyacrylic acid particles, methyl methacrylate / styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, and polyimide are used. Particles and the like.
  • the haze value of the transparent protective film provided with the antiglare property thus obtained is preferably in the range of 6 to 45%. When the haze value of the transparent protective film is less than 6%, a sufficient antiglare effect may not appear.
  • the haze value of the transparent protective film exceeds 45%, the screen of the liquid crystal display device using this film may be browned, resulting in a decrease in image quality.
  • the haze value can be measured according to JIS K 7136, for example, using a haze / transmittance meter HM-150 (manufactured by Murakami Color Research Laboratory Co., Ltd.).
  • a measurement sample in which the film surface is bonded to a glass substrate using an optically transparent adhesive so that the antiglare property-imparting surface is the surface. Is preferably used.
  • the resin composition which has these functions can also be selected for binder resin which comprises a transparent protective film.
  • the transparent protective film is preferably subjected to saponification treatment, corona treatment, plasma treatment and the like prior to bonding with the polarizing film.
  • the thickness of the transparent protective film is not particularly limited, but is usually about 1 to 500 ⁇ m, preferably 20 to 300 ⁇ m, and more preferably 20 to 100 ⁇ m from the viewpoint of strength and handleability. When the thickness is within this range, the polarizing film is mechanically protected, and even when exposed to high temperature and high humidity, the polarizing film does not shrink and stable optical characteristics can be maintained.
  • the adhesive used for bonding the polarizing film and the transparent protective film is not particularly limited.
  • a polyvinyl alcohol resin, an epoxy resin, a urethane resin, a cyanoacrylate resin, and an acrylamide resin are used as the adhesive.
  • An adhesive as a component can be mentioned.
  • a water-based adhesive that is, an adhesive component dissolved in water or dispersed in water is preferably used because the thickness of the adhesive layer can be further reduced.
  • the water-based adhesive include those containing, for example, a polyvinyl alcohol resin, a water-soluble crosslinkable epoxy resin, a urethane resin, or the like as an adhesive component.
  • polyvinyl alcohol-based resin various known resins used as water-based adhesives can be used.
  • an adhesive composed of a solventless resin composition in which a monomer or an oligomer is reactively cured by heating or irradiation with active energy rays to form an adhesive layer can be mentioned.
  • water-based adhesive will be described.
  • water-soluble crosslinkable epoxy resins include polyamide epoxies obtained by reacting epichlorohydrin with polyamide polyamines obtained by reaction of polyalkylene polyamines such as diethylenetriamine and triethylenetetramine with dicarboxylic acids such as adipic acid. Resins can be mentioned.
  • polyamide epoxy resins examples include Sumire Resin 650 (manufactured by Sumika Chemtex Co., Ltd.), Sumire Resin 675 (manufactured by Sumika Chemtex Co., Ltd.), and the like.
  • other water-soluble resin such as polyvinyl alcohol resin in the adhesive.
  • Polyvinyl alcohol-based resins include partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol, as well as modified carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol.
  • Polyvinyl alcohol resin may be used.
  • a saponified product of a copolymer of vinyl acetate and unsaturated carboxylic acid or a salt thereof, that is, carboxyl group-modified polyvinyl alcohol is preferably used.
  • the “carboxyl group” is a concept including —COOH and a salt thereof.
  • Examples of suitable carboxyl group-modified polyvinyl alcohol commercially available include Kuraray Poval KL-506 (manufactured by Kuraray Co., Ltd.), Kuraray Poval KL-318 (manufactured by Kuraray Co., Ltd.), and Kuraray Poval KL-118 (( Kuraray Co., Ltd.), Gohsenal T-330 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), Gohsenal T-350 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), DR-0415 (manufactured by Denki Kagaku Kogyo Co., Ltd.), AF -17 (manufactured by Nippon Vinegar Poval Co., Ltd.), AT-17 (manufactured by Nippon Vinegar Pobart Co., Ltd.), AP-17 (manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
  • the adhesive can be prepared as an adhesive solution by dissolving an epoxy resin and other water-soluble resin such as a polyvinyl alcohol-based resin added as necessary in water.
  • the content of the water-soluble crosslinkable epoxy resin is preferably about 0.2 to 2 parts by weight with respect to 100 parts by weight of water.
  • the blending amount is preferably about 1 to 10 parts by weight, and more preferably about 1 to 5 parts by weight with respect to 100 parts by weight of water.
  • examples of urethane resins that can be suitably used for water-based adhesives include ionomer-type urethane resins, particularly polyester-type ionomer-type urethane resins.
  • the ionomer type is obtained by introducing a small amount of an ionic component (hydrophilic component) into the skeleton constituting the urethane resin.
  • the polyester ionomer type urethane resin is a urethane resin having a polyester skeleton, and a small amount of an ionic component (hydrophilic component) is introduced into the skeleton.
  • Such an ionomer type urethane resin is suitable as a water-based adhesive because it is emulsified directly in water without using an emulsifier and becomes an emulsion.
  • polyester ionomer type urethane resins examples include Hydran AP-20 (Dainippon Ink Chemical Co., Ltd.), Hydran APX-101H (Dainippon Ink Chemical Co., Ltd.), etc. Is also available in the form of an emulsion.
  • an ionomer-type urethane resin is used as an adhesive component, it is preferable to further blend an isocyanate-based crosslinking agent.
  • the isocyanate-based crosslinking agent is a compound having at least two isocyanato groups (—NCO) in the molecule.
  • 2,4-tolylene diisocyanate, phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,6-hexa In addition to polyisocyanate monomers such as methylene diisocyanate and isophorone diisocyanate, adducts in which a plurality of these molecules are added to a polyhydric alcohol such as trimethylolpropane, and three molecules of diisocyanate are isocyanurates at each end isocyanato group
  • polyisocyanate modified products such as burettes formed by hydration and decarboxylation of trifunctional isocyanurate having a ring formed and three diisocyanate molecules at the respective one-end isocyanate groups.
  • isocyanate type crosslinking agent As a commercially available isocyanate type crosslinking agent which can be used suitably, Hydran Assist C-1 (made by Dainippon Ink & Chemicals, Inc.) etc. are mentioned, for example.
  • the concentration of the urethane resin is preferably dissolved or dispersed in water so as to be about 10 to 70% by weight. It is more preferably up to 50% by weight.
  • the blending amount is appropriately selected so that the isocyanate crosslinking agent is about 5 to 100 parts by weight with respect to 100 parts by weight of the urethane resin.
  • the adhesive is applied to the adhesive surface of the transparent protective film or the polarizing film, and the laminated body of the polarizing film and the transparent protective film is obtained by bonding and drying both. be able to.
  • an adhesive made of a solventless resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating will be described.
  • the adhesive used in the production method of the present invention is a curable composition that contains a curable compound that is polymerized by heating or irradiation with active energy rays and a polymerization initiator and does not contain a significant amount of solvent.
  • This curable compound is preferably one that is cured by cationic polymerization from the viewpoint of reactivity, and particularly preferably contains an epoxy compound (epoxy resin).
  • an epoxy compound epoxy resin
  • those having no aromatic ring in the molecule are suitably used from the viewpoint of weather resistance, refractive index and the like.
  • An adhesive using an epoxy compound that does not contain an aromatic ring in the molecule is described in, for example, Japanese Patent Application Laid-Open No. 2004-245925.
  • Examples of such epoxy compounds that do not contain an aromatic ring include hydrides of aromatic epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds.
  • a hydride of an aromatic epoxy compound is obtained by selectively hydrogenating an aromatic epoxy compound to an aromatic ring under pressure in the presence of a catalyst.
  • aromatic epoxy compound examples include bisphenol type epoxy compounds such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, and diglycidyl ether of bisphenol S; phenol novolac epoxy resin, cresol novolac epoxy resin, And a novolak type epoxy resin such as hydroxybenzaldehyde phenol novolac epoxy resin; a glycidyl ether of tetrahydroxydiphenylmethane, a glycidyl ether of tetrahydroxybenzophenone, and a polyfunctional type epoxy compound such as epoxidized polyvinylphenol.
  • hydrogenated diglycidyl ether of bisphenol A is preferred.
  • An alicyclic epoxy compound is a compound having at least one epoxy group bonded to an alicyclic ring in the molecule, as shown in the following formula.
  • m represents an integer of 2 to 5.
  • CH in this formula 2 A compound in which a group in which one or more hydrogen atoms are removed is bonded to another chemical structure can be an alicyclic epoxy compound.
  • the hydrogen forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • Specific examples of the alicyclic epoxy compound include the following.
  • the aliphatic epoxy compound is a polyglycidyl ether of an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof.
  • the epoxy compounds illustrated here may be used alone or in combination with a plurality of epoxy compounds.
  • the epoxy equivalent of such an epoxy compound is usually 30 to 3000 g / eq, preferably 50 to 1500 g / eq.
  • the epoxy equivalent is less than 30 g / eq, the flexibility of the cured protective film may be reduced or the adhesive strength may be reduced.
  • the compatibility with other components may decrease.
  • a cationic polymerization initiator is blended in order to cure the epoxy compound by cationic polymerization.
  • the cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, or by heating, and starts an epoxy group polymerization reaction. Regardless of the type of cationic polymerization initiator, it is preferable from the viewpoint of workability that latency is imparted.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams
  • a cationic photopolymerization initiator enables curing at room temperature, reduces the need to consider the internal stress due to heat resistance or thermal expansion of the polarizing film, and allows the transparent protective film and the polarizing film to adhere well. it can. Moreover, since a photocationic polymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound. Examples of the compound that generates a cation species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic diazonium salts, aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes.
  • aromatic sulfonium salts are particularly preferably used since they have ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, and can provide a cured product having excellent curability and good mechanical strength and adhesive strength.
  • a cationic photopolymerization initiator can be easily obtained as a commercial product.
  • Kayrad PCI-220 manufactured by Nippon Kayaku Co., Ltd.
  • Kayrad PCI-620 manufactured by Nippon Kayaku Co., Ltd.
  • UVI-6990 manufactured by Union Carbide
  • Adekaoptomer SP-150 manufactured by ADEKA
  • Adekaoptomer SP-170 manufactured by ADEKA
  • CI-5102 manufactured by Nippon Soda Co., Ltd.
  • CIT-1370 manufactured by Nippon Soda Co., Ltd.
  • CIT-1682 manufactured by Nippon Soda Co., Ltd.
  • CIP-1866S manufactured by Nippon Soda Co., Ltd.
  • CIP-2048S manufactured by Nippon Soda Co., Ltd.
  • CIP-2064S Natural Soda Co., Ltd.
  • DPI-101 Midori Chemical Co., Ltd.
  • DPI-102 Midori Chemical Co., Ltd.
  • DPI-103 Midori Chemical Co., Ltd.
  • DPI-105 manufactured by Union Carbide
  • the amount of the cationic photopolymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the epoxy compound.
  • a photosensitizer can be used in combination with the curable composition as necessary. By using a photosensitizer, the reactivity is improved and the mechanical strength and adhesive strength of the cured product can be improved. Examples of the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreductive dyes. When the photosensitizer is blended, the blending amount is usually about 0.1 to 20 parts by weight with 100 parts by weight of the photocationically polymerizable epoxy resin composition.
  • thermal cationic polymerization initiator will be described.
  • the compound that generates a cationic species or a Lewis acid by heating include benzylsulfonium salt, thiophenium salt, thiolanium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide.
  • Commercially available products of these thermal cationic polymerization initiators can also be easily obtained.
  • Adeka Opton CP77 (manufactured by ADEKA), Adeka Opton CP66 (manufactured by ADEKA), CI- 2639 (manufactured by Nippon Soda Co., Ltd.), CI-2624 (manufactured by Nippon Soda Co., Ltd.), Sun-Aid SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), Sun-Aid SI-80L (manufactured by Sanshin Chemical Industry Co., Ltd.) ), Sun Aid SI-100L (manufactured by Sanshin Chemical Industry Co., Ltd.) and the like.
  • the epoxy-based adhesive may further contain a compound that promotes cationic polymerization such as oxetanes and polyols.
  • the adhesive comprising the curable composition thus obtained is applied to the adhesive surface of the transparent protective film or the polarizing film, and after both are laminated, the adhesive is cured to laminate the polarizing film and the transparent protective film. You can get a body.
  • various coating methods such as doctor blade, wire bar, die coater, comma coater, and gravure coater are adopted. .
  • the thickness of the adhesive layer is usually 1 ⁇ m or more and 50 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, Examples include ultra-high pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps.
  • the light irradiation intensity to the adhesive composition is determined by the curability of the composition and is not particularly limited.
  • the light irradiation intensity in the wavelength region effective for activating the photocationic polymerization initiator is used.
  • Irradiation intensity is 0.1-100mW / cm 2 It is preferable that The light irradiation intensity to the adhesive composition is 0.1 mW / cm 2 If it is less than 100 mW / cm, the reaction time becomes too long. 2 Exceeding may cause yellowing of the curable epoxy resin composition or deterioration of the polarizing film due to heat radiated from the lamp and heat generation during polymerization of the curable epoxy resin composition.
  • the light irradiation time for the adhesive composition is determined by the curability of the composition, and is not particularly limited.
  • Integrated light quantity to curable epoxy resin composition is 10mJ / cm 2 If it is less than 1, the generation of the active species derived from the cationic photopolymerization initiator is not sufficient, and the curing of the adhesive may be insufficient. Also, the integrated light quantity is 5000mJ / cm 2 If it exceeds 1, irradiation time becomes very long, which is disadvantageous for productivity improvement.
  • the adhesive When the adhesive is cured by heat, the adhesive can be heated by a generally known method, and the conditions are not particularly limited, but usually the heat blended in the curable epoxy resin composition.
  • Heating is performed at a temperature higher than the temperature at which the cationic polymerization initiator generates cationic species and Lewis acid, and the temperature is, for example, about 50 to 200 ° C. Even if it is cured under any condition of irradiation with active energy rays or heating, it should be cured as long as the functions such as polarization degree, transmittance, hue, transparency of the transparent protective film of the polarizing plate with a single-sided protective film do not deteriorate. Is preferred.
  • the thickness of the cured layer formed by curing the adhesive composition is usually 50 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • peelable film As the peelable film having adhesiveness used in the production method of the present invention, a film that has been treated with a low molecular weight pressure-sensitive adhesive so as to be easily peeled can be used.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate Resins; Cyclic olefin resins; Chain olefin resins such as polyethylene, polypropylene, and propylene / ethylene copolymers can be used.
  • a polyethylene terephthalate film, a polypropylene film, or a polyethylene film is preferably used from the viewpoint that the adhesiveness can be adjusted as appropriate and a commercially available product is easily available.
  • the peelable film has self-adhesiveness and can be directly bonded to the surface of the polarizing film opposite to the surface to which the transparent protective film is bonded.
  • a polarizing plate with a single-sided transparent protective film in which a transparent protective film is bonded to one side of a polarizing film by an adhesive and a peelable film having adhesiveness is bonded to the opposite side is once a winding device. Is wound around a core such as a vinyl chloride tube.
  • either the process of bonding a transparent protective film to a polarizing film and the process of bonding a peelable film to a polarizing film may be performed first, and may be performed simultaneously.
  • the retardation film used in the production method of the present invention is made of an olefin resin, and n x > N z > N y A so-called biaxial retardation film satisfying the above relationship is preferable.
  • the olefin resin is mainly derived from a chain aliphatic olefin such as ethylene or propylene, or an alicyclic olefin such as norbornene or a substituted product thereof (hereinafter also collectively referred to as a norbornene monomer). It is a resin composed of structural units.
  • the olefin resin may be a copolymer using two or more kinds of monomers.
  • a resin mainly containing a structural unit mainly derived from an alicyclic olefin is preferable, and a cyclic olefin resin in which a cyclic structure derived from the alicyclic olefin remains in the main chain after polymerization is more preferable.
  • Typical examples of the alicyclic olefin constituting the cyclic olefin resin include a norbornene monomer.
  • Norbornene is a compound in which one carbon-carbon bond of norbornane is a double bond, and according to IUPAC nomenclature, it is named bicyclo [2,2,1] hept-2-ene. is there.
  • substituted norbornene examples include 3-substituted, 4-substituted, 4,5-disubstituted, etc., with the norbornene double bond located at the 1,2-position.
  • Examples also include cyclopentadiene and dimethanooctahydronaphthalene.
  • Such a resin mainly composed of a structural unit derived from a norbornene-based monomer is generally called a norbornene-based resin.
  • the norbornene-based resin containing a structural unit derived from a norbornene-based monomer may or may not have a norbornane ring in the structural unit.
  • Examples of the norbornene-based monomer that forms a norbornene-based resin having no norbornane ring as a structural unit include, for example, those that become a five-membered ring by ring opening, typically norbornene, dicyclopentadiene, 1- or 4-methyl. Examples include norbornene and 4-phenylnorbornene.
  • the norbornene resin is a copolymer, the arrangement state of the molecules is not particularly limited, and may be a random copolymer, a block copolymer, or a graft copolymer. May be.
  • cyclic olefin-based resin examples include, for example, a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer, a modified polymer obtained by adding maleic acid, cyclopentadiene, or the like to them. Further, a polymer or copolymer obtained by hydrogenation of these; an addition polymer of a norbornene monomer, an addition copolymer of a norbornene monomer and another monomer, and the like. Examples of other monomers in the copolymer include ⁇ -olefins, cycloalkenes, and non-conjugated dienes.
  • the cyclic olefin resin may be a copolymer using one or more of norbornene monomers and other alicyclic olefins.
  • the cyclic olefin-based resin a resin obtained by hydrogenating a ring-opening polymer or a ring-opening copolymer using a norbornene-based monomer is preferably used.
  • a film-like product obtained by subjecting such a norbornene-based resin to a stretching treatment, and a shrinkable film having a predetermined shrinkage rate are bonded to each other and heat-shrinked, thereby providing high uniformity and a large retardation value.
  • a phase difference film can be obtained.
  • a film made of a mixed resin containing two or more kinds of olefin resins or a film made of a mixed resin of an olefin resin and another thermoplastic resin is used.
  • a mixed resin containing two or more types of olefinic resins there can be mentioned a mixture of a cyclic olefinic resin and an acyclic aliphatic olefinic resin as described above.
  • another thermoplastic resin is appropriately selected depending on the purpose.
  • polyvinyl chloride resin for example, polyvinyl chloride resin, cellulose resin, polystyrene resin, acrylonitrile / butadiene / styrene copolymer resin, acrylonitrile / styrene copolymer resin, (meth) acrylic resin, polyvinyl acetate resin, polyvinylidene chloride resin , Polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyether ether ketone Examples thereof include resins, polyarylate resins, liquid crystalline resins, polyamideimide resins, polyimide resins, and polytetrafluoroethylene resins.
  • thermoplastic resins can be used alone or in combination of two or more.
  • the thermoplastic resin may be used after any appropriate polymer modification. Examples of the polymer modification include copolymerization, crosslinking, molecular terminal modification, and stereoregularity imparting.
  • the content of the other thermoplastic resin is usually 50% by weight or less and preferably 40% by weight or less based on the entire resin.
  • Such an olefin resin can be formed into a film by a casting method or a melt extrusion method from a commonly used solution.
  • the film forming method is not particularly limited. For example, by casting using a uniform solution obtained by stirring and mixing resin components with a solvent at a predetermined ratio.
  • a method for producing a film, a method for melt-mixing resin components at a predetermined ratio, and producing a film by a melt extrusion method are employed.
  • the film made of the olefin-based resin may contain other components such as a residual solvent, a stabilizer, a plasticizer, an anti-aging agent, an antistatic agent, and an ultraviolet absorber as long as the object of the present invention is not impaired. You may contain. Further, a leveling agent can be contained in order to reduce the surface roughness.
  • the retardation film used in the production method of the present invention has an in-plane slow axis direction, an in-plane fast axis direction, and a thickness direction refractive index of n. x , N y And n z When the thickness is d (nm), those satisfying the formulas (1) and (2) with respect to light having a wavelength of 590 nm are preferable.
  • the display characteristics of the liquid crystal cell can be suitably compensated over a wide angle when the composite polarizing plate is applied to a liquid crystal display device.
  • the thickness of the retardation film can be in the range of about 20 to 500 ⁇ m, preferably 20 to 300 ⁇ m. If the thickness is within this range, sufficient self-supporting property of the film can be obtained, and a wide range of retardation can be obtained.
  • the in-plane retardation value for the light having a wavelength of 590 nm is preferably in the range of about 200 to 300 nm, and more preferably in the range of 240 to 300 nm. .
  • the thickness is preferably in the range of 80 to 160 ⁇ m in order to sufficiently align in the thickness direction. More preferably, it is in the range of 85 to 145 ⁇ m.
  • this retardation film may be used as a ⁇ / 4 plate.
  • N of this retardation film Z Coefficient ((n x -N z ) / (N x -N y )) Is preferably from 0.1 to 0.7, more preferably from 0.3 to 0.6.
  • N of retardation film Z When the coefficient is around 0.5, it is possible to achieve a characteristic in which the phase difference value is almost constant regardless of the angle, and the display characteristics of the liquid crystal display device can be further improved.
  • the width of the retardation film is preferably 10% or more smaller than that of the polarizing plate because the effect of improving productivity stands out.
  • the polarizing plate with a single-sided transparent protective film is cut (slit) to half the width, and both of them are bonded to the retardation film. It is more preferable because it can be used for [First manufacturing method of composite polarizing plate] [1] Step (A) In the first production method of the composite polarizing plate of the present invention, first, a transparent protective film is bonded to one side of the polarizing film, and a peelable film having adhesiveness is bonded to the opposite surface, thereby providing single-sided transparent protection. A polarizing plate with a film is produced (step (A)).
  • the first method for producing the composite polarizing plate of the present invention is to cut the polarizing plate with a single-sided transparent protective film produced as described above along the longitudinal direction according to the width of the retardation film (slit (Step (B)).
  • the width after cutting of the polarizing plate with a single-sided transparent protective film is appropriately set according to the width of the retardation film.
  • at least one piece of the polarizing plate with a single-sided transparent protective film after cutting is made of the retardation film.
  • the width is preferably the same as the width.
  • the method of cutting the polarizing plate with a single-sided transparent protective film is not particularly limited, but usually the rolled-up polarizing plate with a single-sided transparent protective film is fed simultaneously to a slitter (long-direction cutting machine). Then, a method of rewinding the cut pieces is adopted.
  • Process (C) In the first production method of the composite polarizing plate of the present invention, next, the peelable film of the polarizing plate with the single-sided transparent protective film cut in the step (B) is removed, and the polarizing film surface and the phase difference are removed. The film is bonded using an epoxy resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating (step (C)).
  • Epoxy resin composition for retardation film bonding The epoxy resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating, which is used for bonding the polarizing film and the retardation film, is preferably solventless.
  • This epoxy resin composition the thing similar to what was illustrated as an adhesive agent used for adhesion
  • the method for adhering the polarizing plate with a single-sided protective film and the retardation film with this adhesive is not particularly limited, for example, a doctor blade, a wire bar, a die coater, a comma coater, a gravure coater, etc. Various coating methods are employed.
  • the method of pressurizing a polarizing film and a protective film with a roll etc. and spreading it uniformly can also be utilized.
  • metal, rubber, or the like can be used as the material of the roll, and these rolls may be made of the same material or different materials.
  • the thickness of the adhesive layer is usually 50 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, Examples include ultra-high pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps.
  • the light irradiation intensity to the adhesive composition is determined by the curability of the composition and is not particularly limited.
  • the light irradiation intensity of the adhesive composition has a wavelength region effective for activation of the photocationic polymerization initiator.
  • Irradiation intensity is 0.1-100mW / cm 2 It is preferable that The light irradiation intensity to the adhesive composition is 0.1 mW / cm 2 If it is less than 100 mW / cm, the reaction time becomes too long. 2 Exceeding may cause yellowing of the curable epoxy resin composition or deterioration of the polarizing film due to heat radiated from the lamp and heat generation during polymerization of the curable epoxy resin composition.
  • the light irradiation time for the adhesive composition is determined by the curability of the composition, and is not particularly limited. For example, it is expressed as a product of irradiation intensity and irradiation time. 10 to 5000mJ / cm 2 It is preferable to set so that.
  • Integrated light quantity to curable epoxy resin composition is 10mJ / cm 2 If it is less than 1, the generation of the active species derived from the cationic photopolymerization initiator is not sufficient, and the curing of the adhesive may be insufficient. Also, the integrated light quantity is 5000mJ / cm 2 If it exceeds 1, irradiation time becomes very long, which is disadvantageous for productivity improvement.
  • the adhesive When the adhesive is cured by heat, it can be heated by a generally known method, and the conditions thereof are not particularly limited, but usually the heat blended in the curable epoxy resin composition. Heating is performed at a temperature higher than the temperature at which the cationic polymerization initiator generates cationic species and Lewis acid, and the temperature is, for example, about 50 to 200 ° C.
  • the polarization degree, transmittance, hue, transparency of the transparent protective film, and retardation characteristics of the retardation film are combined. It is preferable to cure in the range where the various functions of the polarizing plate do not deteriorate.
  • the thickness of the cured layer formed by curing the adhesive composition is usually 50 ⁇ m or less, preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • an adhesive layer may be further provided in the outer side of the retardation film bonded by the composite polarizing plate.
  • the pressure-sensitive adhesive layer can be suitably used for bonding with other members such as a liquid crystal cell.
  • the composite polarizing plate thus formed is usually arranged so that the retardation film side faces the liquid crystal cell when being bonded to the liquid crystal cell.
  • the second manufacturing method of the composite polarizing plate of the present invention includes the following steps (A), (B), (C), (D) and (E).
  • ⁇ Process (A) A process for producing a polarizing plate with a single-sided transparent protective film by laminating a transparent protective film on one side of the polarizing film and laminating an adhesive peelable film on the opposite side.
  • ⁇ Process (B) The process of cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the width of the retardation film ⁇ Process (C) The process of removing the peelable film from the polarizing film surface ⁇ Process (D) The process of laminating
  • ⁇ Process (E) The process of bonding the said retardation film to the polarizing film surface from which the said peelable film was removed through the said adhesive layer.
  • Such a second method for producing a composite polarizing plate of the present invention roughly includes three embodiments (first embodiment, second embodiment and third embodiment). First, each embodiment included in the second production method of the present invention will be described.
  • the 1st aspect in the 2nd manufacturing method of this invention contains the process (A), the process (B), the process (C), the process (D), and the process (E) which were mentioned above in this order, and the process (D ),
  • the pressure-sensitive adhesive layer is laminated on the polarizing film surface of the polarizing plate with the single-side transparent protective film that has undergone the step (C).
  • a transparent protective film is bonded on the single side
  • a polarizing plate with a film is produced (step (A)).
  • the polarizing plate with a single-sided transparent protective film produced as described above is cut along the longitudinal direction according to the width of the retardation film ( Slit) (step (B)). The width after cutting of the polarizing plate with a transparent protective film is appropriately set according to the width of the retardation film.
  • At least one fragment of the polarizing plate with a single-side transparent protective film after cutting is the width of the retardation film.
  • the width is preferably the same.
  • the method of cutting the polarizing plate with a single-sided transparent protective film is not particularly limited, but usually the rolled-up polarizing plate with a single-sided transparent protective film is fed simultaneously to a slitter (long-direction cutting machine). Then, a method of rewinding the cut pieces is adopted. Moreover, the method of laminating
  • the peelable film is removed from the polarizing film surface (step (C)). Furthermore, in the 1st aspect in the 2nd manufacturing method of this invention, on the polarizing film surface (surface with which the peelable film was bonded) of the said polarizing plate with a single-sided transparent protective film which passed the said process (C), A pressure-sensitive adhesive layer showing a storage elastic modulus of 0.1 MPa or higher at 80 ° C. is laminated (step (D)). (Adhesive) The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer has a storage elastic modulus at 80 ° C. of 0.1 MPa or more, preferably 0.15 to 10 MPa.
  • the storage elastic modulus at 80 ° C. is less than 0.1 MPa, there is a problem that bubbles and peeling occur because the dimensional change of the polarizing film that occurs when the high temperature environment and the low temperature environment are repeated cannot be followed. Because. Further, the storage elastic modulus at a temperature of 23 ° C. of this pressure-sensitive adhesive is preferably 0.1 MPa or more, and more preferably 0.2 to 10 MPa. In addition, since the storage elastic modulus generally tends to be lower as the temperature is higher, if the storage elastic modulus of the material measured at 80 ° C. is 0.1 MPa or more, usually the same material measured at 23 ° C. A storage elastic modulus shows the value beyond it.
  • the storage elastic modulus (dynamic elastic modulus) is a commonly used term for viscoelasticity measurement, and gives a strain or stress that changes (vibrates) over time to a sample. This is a value determined by a method (dynamic viscoelasticity measurement) for measuring the mechanical properties of a sample by measuring the stress or strain generated by. Specifically, when the stress (strain) generated by the sinusoidal strain (stress) applied to the sample is divided into a component having the same phase as the strain (stress) and a component having a phase shifted by 90 degrees, The elastic modulus calculated from the stress (strain) component in phase with the stress.
  • the storage elastic modulus can be measured using a commercially available viscoelasticity measuring device, for example, a dynamic viscoelasticity measuring device (Dynamic Analyzer RDA II: manufactured by REOMETRIC) as shown in the examples described later.
  • a dynamic viscoelasticity measuring device Dynamic Analyzer RDA II: manufactured by REOMETRIC
  • various known temperature control devices such as a circulating thermostat, an electric heater, a Peltier element, and the like are used, and thereby the temperature at the time of measurement can be set.
  • the pressure-sensitive adhesive used in a normal image display device or an optical film applied thereto has a storage elastic modulus of about 0.1 MPa at most, but the pressure-sensitive adhesive used in the production method of the present invention is as described above.
  • the storage elastic modulus is high.
  • the specific high-elasticity adhesive used in the production method of the present invention can be composed of a composition mainly containing, for example, an acrylic polymer, a silicone polymer, polyester, polyurethane, and polyether. Above all, like acrylic polymer, it has excellent optical transparency, moderate wettability and cohesion, excellent adhesion to the substrate, weather resistance, heat resistance, etc.
  • a functional group comprising an alkyl ester of acrylic acid having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group and a butyl group, and (meth) acrylic acid or hydroxyethyl (meth) acrylate.
  • the acrylic polymer is not particularly limited, but (meth) such as butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • An acrylic ester polymer and a copolymer polymer using two or more of these (meth) acrylic esters are preferably used.
  • polar monomers may be copolymerized with these acrylic polymers.
  • polar monomers examples include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, and 2-N, N-dimethylaminoethyl (meth). Mention may be made of monomers having polar functional groups such as carboxyl groups, hydroxyl groups, amide groups, amino groups, and epoxy groups, such as acrylates and glycidyl (meth) acrylates. These acrylic polymers can be used alone as a pressure-sensitive adhesive, but are usually a pressure-sensitive adhesive composition containing a crosslinking agent.
  • a divalent or polyvalent metal ion that forms a carboxylic acid metal salt with a carboxyl group, a polyamine compound that forms an amide bond with a carboxyl group examples include polyepoxy compounds and polyol compounds that form an ester bond with a carboxyl group, and polyisocyanate compounds that form an amide bond with a carboxyl group. Of these, polyisocyanate compounds are preferably used.
  • the means for increasing the storage elastic modulus of the pressure-sensitive adhesive is not particularly limited.
  • an oligomer specifically, a urethane acrylate oligomer is added to the above-mentioned pressure-sensitive adhesive composition. A method is preferably employed.
  • a method of irradiating and curing an adhesive composition containing such a urethane acrylate oligomer with energy rays is more preferably employed because it has a higher storage elastic modulus.
  • a pressure-sensitive adhesive in which a urethane acrylate oligomer is blended or a pressure-sensitive adhesive with a separator obtained by coating it on a support film (separator) and curing it with ultraviolet rays is known and can be obtained from a pressure-sensitive adhesive manufacturer.
  • the adhesive if necessary, in addition to the above-mentioned polymer, crosslinking agent and oligomer, Appropriate additives such as natural and synthetic resins, tackifier resins, antioxidants, ultraviolet absorbers, dyes, pigments, antifoaming agents, corrosion inhibitors and photopolymerization initiators may be added. It can.
  • the ultraviolet absorber include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, nickel complex compounds, and the like.
  • the adhesive used by the manufacturing method of this invention can mix
  • the light diffusing agent used here may be fine particles having a refractive index different from that of the polymer constituting the pressure-sensitive adhesive layer, and fine particles made of an inorganic compound or fine particles made of an organic compound (polymer) can be used.
  • the fine particles made of an inorganic compound include aluminum oxide (refractive index: 1.76) and silicon oxide (refractive index: 1.45).
  • the fine particles comprising an organic compound (polymer) include melamine beads (refractive index: 1.57), polymethyl methacrylate beads (refractive index: 1.49), and methyl methacrylate / styrene copolymer resin beads.
  • the resin composition constituting the pressure-sensitive adhesive layer including the acrylic polymer usually has a refractive index of about 1.4, the light diffusing agent to be blended is appropriately selected from those having a refractive index of about 1-2. Just choose.
  • the difference in refractive index between the polymer and the light diffusing agent in the composition constituting the pressure-sensitive adhesive layer is usually 0.01 or more, and from the viewpoint of the brightness and visibility of the image display device, 0.01 to 0.00. 5 is preferred.
  • the fine particles used as the light diffusing agent are preferably spherical and those close to monodisperse. For example, fine particles having an average particle diameter in the range of about 2 to 6 ⁇ m are preferably used.
  • the blending amount of the light diffusing agent is appropriately determined in consideration of the haze value required for the light diffusing pressure-sensitive adhesive layer in which it is blended, the brightness of the image display device to which it is applied, etc.
  • the amount is about 3 to 30 parts by weight with respect to 100 parts by weight of the base polymer constituting the adhesive layer.
  • the haze value required for the light diffusive pressure-sensitive adhesive layer ensures the brightness of the image display device to which the composite polarizing plate obtained by using the haze value is applied, and hardly causes bleeding and blurring of the display image. Therefore, the range of 20 to 80% is preferable.
  • the haze is a value defined by JIS K 7105 and expressed by (diffuse transmittance / total light transmittance) ⁇ 100 (%).
  • the thickness of the pressure-sensitive adhesive layer and the thickness of the light-diffusible pressure-sensitive adhesive layer are determined according to the adhesive strength and the like, but are usually in the range of 1 to 40 ⁇ m. Furthermore, this thickness is such that the composite polarizing plate produced using the composite polarizing plate maintains good workability and exhibits high durability, and the image display device using the composite polarizing plate is viewed from the front or obliquely. From the standpoint of maintaining the brightness of the image and making it difficult for bleeding and blurring of the display image to occur, 3 to 25 ⁇ m is more preferable.
  • an adhesive layer is formed.
  • the peelable film having adhesiveness bonded to the polarizing film is peeled off before forming the pressure-sensitive adhesive layer.
  • the pressure-sensitive adhesive solution is applied to the surface of the polarizing film (first aspect, second aspect) or the surface of the retardation film (third aspect) of the cut polarizing plate with a single-sided transparent protective film.
  • the method of applying and drying is preferably employed.
  • a support film (separator) that has been subjected to a release treatment is prepared by forming a pressure-sensitive adhesive layer on the release treatment surface (separator-attached pressure-sensitive adhesive), and this is applied to the surface of the polarizing film or the retardation film.
  • a method of bonding to the surface is also preferably employed.
  • the pressure-sensitive adhesive solution for example, a solution prepared by dissolving or dispersing the raw material constituting the pressure-sensitive adhesive composition in an organic solvent such as toluene or ethyl acetate to obtain a 10 to 40% by weight solution, for example.
  • the pressure-sensitive adhesive layer thus formed may be laminated with a separator made of a resin film that has been treated with a silicone-based release agent.
  • the pressure-sensitive adhesive layer is formed on the surface of the polarizing film or retardation film of the cut polarizing plate with a single-sided transparent protective film, if necessary, adherence to the surface of the polarizing film or retardation film
  • a corona treatment or the like may be performed, or the same treatment may be performed on the surface of the pressure-sensitive adhesive layer bonded to the polarizing film surface.
  • the said retardation film is bonded through the said adhesive layer to the polarizing film surface from which the said peelable film was removed. (Step (E)).
  • the method for laminating the polarizing plate with a single-sided transparent protective film on which the pressure-sensitive adhesive layer is laminated and the retardation film is not particularly limited, but for example, with a single-sided transparent protective film using a laminating roll or the like.
  • the method of bonding so that it becomes is employ
  • the method of feeding a polarizing plate with a single-sided transparent protective film and a retardation film from each long roll and continuously bonding them together in the long side direction can produce a composite polarizing plate with high productivity.
  • the second aspect in the second production method of the present invention includes the above-described step (A), step (C), step (D), step (B) and step (E) in this order.
  • the said adhesive layer is laminated
  • a transparent protective film is bonded to one side of the polarizing film, and the peeled surface has adhesiveness on the opposite side.
  • the polarizing film with a single-sided transparent protective film is produced by bonding a conductive film (step (A)).
  • the production of the transparent protective film and the polarizing film and the adhesion thereof are performed in the same manner as in the step (A) in the first aspect described above.
  • the peelable film is removed from the polarizing film surface (step (C)).
  • the adhesive layer which shows the storage elastic modulus of 0.1 Mpa or more in 80 degreeC is laminated
  • the removal of the peelable film and the formation of the pressure-sensitive adhesive layer are performed in the same manner as in step (C) and step (D) in the first aspect described above.
  • the polarizing plate with a single-sided transparent protective film is cut along the longitudinal direction according to the width of the retardation film (step (B)).
  • the cutting of the polarizing plate with a single-sided transparent protective film is performed in the same manner as in the step (B) in the first aspect described above.
  • cutting of the polarizing plate with a single-sided transparent protective film is performed with the adhesive layer laminated
  • the said retardation film is finally bonded through the said adhesive layer to the polarizing film surface from which the said peelable film was removed (process (E )).
  • the production of the retardation film and the bonding thereof are performed in the same manner as in the step (E) in the first aspect described above.
  • the composite polarizing plate obtained by the 2nd aspect becomes the structure similar to the composite polarizing plate obtained by the 1st aspect mentioned above.
  • the third aspect of the second production method of the present invention includes the above-described step (A), step (B), step (C) and step (E) in this order.
  • the agent layer is laminated on one side of the retardation film.
  • a transparent protective film is bonded to one side of the polarizing film, and peeling is performed on the opposite side.
  • the polarizing film with a single-sided transparent protective film is produced by bonding a conductive film (step (A)).
  • the production of the transparent protective film and the polarizing film and the adhesion thereof are performed in the same manner as in the step (A) in the first aspect described above.
  • the polarizing plate with a single-sided transparent protective film is cut along the longitudinal direction according to the width of the retardation film (step (B)). .
  • the peelable film is removed from the polarizing film surface (step (C)).
  • the cutting of the polarizing plate with a single-sided transparent protective film and the removal of the peelable film are performed in the same manner as in the step (B) and the step (C) in the first aspect described above.
  • the adhesive layer which shows the storage elastic modulus of 0.1 Mpa or more in 80 degreeC is laminated
  • step (D) may be performed before step (A), in parallel with any of step (A), step (B) and step (C), or after any of them. You may go.
  • the retardation film with the pressure-sensitive adhesive layer may be supplied to the polarizing film surface from which the peelable film has been removed in the step (C).
  • the retardation film is bonded to the polarizing film surface from which the peelable film has been removed via the pressure-sensitive adhesive layer (step (E )).
  • the production of the retardation film and the bonding thereof are performed in the same manner as described above.
  • the composite polarizing plate obtained by the 3rd aspect becomes the structure similar to the composite polarizing plate obtained by the 1st aspect mentioned above.
  • an adhesive layer may be further provided in the outer side of the retardation film bonded by the composite polarizing plate.
  • the pressure-sensitive adhesive layer can be suitably used for bonding with other members such as a liquid crystal cell.
  • This pressure-sensitive adhesive layer may be formed after producing the composite polarizing plate, or may be formed in advance on the retardation film before bonding the polarizing plate with a single-sided transparent protective film and the retardation film.
  • the composite polarizing plate thus formed is usually arranged so that the retardation film side faces the liquid crystal cell when being bonded to the liquid crystal cell.
  • the composite polarizing plate manufactured by the manufacturing method of this invention can be set as a liquid crystal display device by bonding the retardation film side and a liquid crystal cell through an adhesive layer.
  • the same type of polarizing plate or a known polarizing plate can be bonded to the back side of the liquid crystal display device to which the composite polarizing plate is bonded.
  • the operation mode of the liquid crystal panel to be bonded is preferably an IPS mode in which optical compensation is satisfactorily compensated by the refractive index characteristics of the composite polarizing plate of the present invention.
  • the storage elastic modulus (G ′) of the pressure-sensitive adhesive is a disk-shaped test piece having a diameter of 8 mm ⁇ thickness of 1 mm made of the pressure-sensitive adhesive to be measured, and a dynamic viscoelasticity measuring device (Dynamic Analyzer RDA II: manufactured by REOMETRIC).
  • the initial strain was set to 1N by a torsional shear method with a frequency of 1 Hz, and the measurement was performed under conditions of 23 ° C. and 80 ° C.
  • the following were used as an adhesive, an adhesive agent, a polarizing film, and retardation film.
  • Adhesive sheet A The pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive sheet A is obtained by adding a urethane acrylate oligomer to a copolymer of butyl acrylate and acrylic acid, and further adding an isocyanate-based crosslinking agent. When the storage elastic modulus of this pressure-sensitive adhesive was measured by the above method, it was 0.40 MPa at 23 ° C.
  • the adhesive was applied to the release treatment surface of a 38 ⁇ m-thick polyethylene terephthalate film (separator) having been subjected to the release treatment by drying the organic solvent solution having the above composition, and then dried.
  • the separator was used as a sheet-like pressure-sensitive adhesive (pressure-sensitive adhesive sheet A) in which a layer of pressure-sensitive adhesive A having a thickness of 15 ⁇ m was formed on the surface of the separator.
  • the pressure-sensitive adhesive sheet B is a commercially available sheet-like pressure-sensitive adhesive and does not contain a urethane acrylate oligomer.
  • the storage elastic modulus of the pressure-sensitive adhesive sheet B was measured by the above method, it was 0.05 MPa at 23 ° C. and 0.04 MPa at 80 ° C.
  • the layer of the pressure-sensitive adhesive sheet B having a thickness of 15 ⁇ m is formed on the release treatment surface of the 38 ⁇ m-thick polyethylene terephthalate film (separator) subjected to the release treatment.
  • a commercially available adhesive with a separator was used.
  • Adhesive A To 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318, manufactured by Kuraray Co., Ltd.) and water-soluble polyamide epoxy resin (Smiles Resin 650, manufactured by Sumika Chemtex Co., Ltd.) (solid content concentration 30%) Aqueous solution) 1.5 parts was added and dissolved to prepare adhesive A.
  • carboxyl group-modified polyvinyl alcohol Karl Poval KL318, manufactured by Kuraray Co., Ltd.
  • water-soluble polyamide epoxy resin Smiles Resin 650, manufactured by Sumika Chemtex Co., Ltd.
  • Adhesive B 100 parts of bis (3,4-epoxycyclohexylmethyl) adipate, 25 parts of diglycidyl ether of hydrogenated bisphenol A, and 4,4′-bis (diphenylsulfonio) diphenyl sulfide bis (hexafluorophosphate as a photocationic polymerization initiator ) (50% propylene carbonate solution) 2.2 parts (active ingredient amount) were mixed and defoamed to prepare an adhesive B made of a curable epoxy resin composition.
  • a 75 ⁇ m-thick polyvinyl alcohol film made of polyvinyl alcohol having an average degree of polymerization of about 2400 and a saponification degree of 99.9 mol% or more was uniaxially stretched about 5 times by a dry method, and further maintained a tension state.
  • the sample was immersed in pure water at 60 ° C. for 1 minute, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds.
  • Retardation film A film having a thickness of 80 ⁇ m obtained by longitudinally uniaxially stretching a norbornene resin film (Zeonor film, manufactured by Optes Co., Ltd.) made of a hydrogenated ring-opening polymer of a norbornene monomer was used as a retardation film precursor.
  • the glass transition temperature of this film is 136 ° C.
  • the photoelastic coefficient is 3.1 ⁇ 10 ⁇ 12 m 2 / N
  • the in-plane retardation value for light with a wavelength of 590 nm is 300 nm
  • the retardation value in the thickness direction is 145 nm. there were.
  • a shrink film (a biaxially stretched film (thickness: 60 ⁇ m) made of polypropylene resin having a transverse stretching ratio larger than the longitudinal stretching ratio) is bonded to both surfaces of this uniaxially stretched film via an acrylic adhesive layer having a thickness of 25 ⁇ m. It was. After that, while holding the width direction of the film with a pin tenter, the film is sequentially passed through an air circulation type thermostatic oven at 175 ° C ⁇ 1 ° C and an air circulation type thermostatic oven at 160 ° C ⁇ 1 ° C, and shrinks 0.70 times in the width direction. I let you. At this time, the shrinkage ratio in the longitudinal direction was 0.92.
  • a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained.
  • the width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. Further, the appearance of this polarizing plate was good without damage such as scratches and cracks, despite being subjected to heat of drying and friction with the transport roll.
  • this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), and 720 mm.
  • a polarizing plate with a single-side transparent protective film having a width was obtained.
  • the appearance of this polarizing plate was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
  • the retardation film was subjected to corona treatment at an irradiation amount of 16.8 kJ / m 2 , and the adhesive B was applied to the treated surface.
  • the polyethylene film is peeled and removed from the polarizing plate cut in the step (B), immediately, the retardation film surface and the adhesive coating surface of the retardation film are laminated, and an ultraviolet irradiation device ( Lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2 ) was irradiated with ultraviolet rays and left at room temperature for 1 hour to obtain a composite polarizing plate of the present invention.
  • Lamp Fusion D lamp, integrated light quantity 1000 mJ / cm 2
  • the appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles.
  • 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with a commercially available acrylic pressure-sensitive adhesive sheet, and subjected to autoclave treatment at 50 ° C. for 20 minutes to make the composite polarizing plate into glass. It was made to adhere to a board. In this state, a heat shock test was performed by placing in an atmosphere of ⁇ 35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. The composite polarizing plate of Example 1-1 was maintained in a good state with no defects observed after the test.
  • Example 1-2> (Production and evaluation of liquid crystal display devices) Remove the backlight from the liquid crystal display device (W32L-H9000, manufactured by Hitachi, Ltd.) including the liquid crystal cell in the IPS mode, remove the polarizing plate arranged on the backlight side of the liquid crystal cell, and remove the glass surface. Washed. Next, on the backlight side of the liquid crystal cell, the retardation film is a liquid crystal so that the absorption axis of the composite polarizing plate obtained in Example 1-1 is the same as the absorption axis of the original polarizing plate. A liquid crystal panel was prepared by adhering via an acrylic pressure-sensitive adhesive so as to be on the cell side.
  • Example 1-1 A composite polarizing plate was produced in the same manner as in Example 1-1 except that the polarizing plate with a single-sided transparent protective film was not cut. The appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles. However, in obtaining a sheet in the same manner as in Example 1-1, only 48.3% of the total area of the composite polarizing plate could be used.
  • Example 1-2 A composite polarizing plate was prepared in the same manner as in Example 1-1, except that a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) was not used when the polarizing plate with a single-sided transparent protective film was prepared. .
  • the appearance of the produced composite polarizing plate was not practically used because the polarizing film was damaged during the production of the polarizing plate with a single-sided transparent protective film and when the polarizing plate with a single-sided transparent protective film was cut.
  • Example 1-3 A 40 ⁇ m thick triacetyl cellulose film (transparent protective film) having a surface subjected to saponification treatment is bonded to one surface of the polarizing film via an adhesive B, and the opposite surface has adhesiveness.
  • a peelable film a polyethylene film having a self-adhesive surface (adhesion surface with a polarizing film) is bonded, and ultraviolet irradiation is performed with an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2 ). And allowed to stand at room temperature for 1 hour to obtain a polarizing plate having a transparent protective film bonded on one side.
  • the width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm.
  • the appearance of the polarizing plate was good without damage such as scratches and cracks, despite being subjected to friction with the transport roll.
  • this polarizing plate with a single-sided transparent protective film was cut in the same manner as in Example 1-1 to obtain a polarizing plate with a single-sided transparent protective film having a width of 720 mm.
  • the appearance of the polarizing plate with a single-sided transparent protective film after the cutting was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
  • the composite polarizing plate of the present invention was obtained in the same manner as in the step (C) of Example 1-1.
  • the appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles.
  • 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate.
  • Example 1-4 the same procedure as in Example 1-2 was performed except that the composite polarizing plate obtained in Example 1-3 was used instead of the composite polarizing plate obtained in Example 1-1. Thus, a liquid crystal display device was produced.
  • a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained.
  • the width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. Further, the appearance of this polarizing plate was good without damage such as scratches and cracks, despite being subjected to heat of drying and friction with the transport roll.
  • this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), and 720 mm.
  • a polarizing plate with a single-side transparent protective film having a width was obtained.
  • the appearance of this polarizing plate was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
  • Example 2-1 maintained a good state with no defects observed even after the test.
  • Example 2-2> Provide and evaluation of liquid crystal display devices
  • the composite polarizing plate obtained in Example 2-1 was placed on the backlight side of the liquid crystal cell so that the absorption axis was the same as the absorption axis of the original polarizing plate, and the retardation film was a liquid crystal.
  • a liquid crystal panel was prepared by adhering via an acrylic pressure-sensitive adhesive so as to be on the cell side. Finally, the backlight that had been removed once was assembled again to produce a liquid crystal display device. With respect to this liquid crystal display device, the contrast ratio at an azimuth angle of 45 ° and a polar angle of 60 ° was measured 30 minutes after the backlight was turned on. As a result, a contrast ratio of 282 was shown.
  • ⁇ Comparative Example 2-1> A composite polarizing plate was produced in the same manner as in Example 2-1, except that the polarizing plate with a single-sided transparent protective film was not cut. The appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles.
  • Example 2-2 A composite polarizing plate was produced in the same manner as in Example 2-1, except that a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) was not used when producing a polarizing plate with a single-sided transparent protective film. .
  • the appearance of the produced composite polarizing plate was not practically used because the polarizing film was damaged during the production of the polarizing plate with a single-sided transparent protective film and when the polarizing plate with a single-sided transparent protective film was cut.
  • Example 2-3 A 40 ⁇ m thick triacetyl cellulose film (transparent protective film) having a surface subjected to saponification treatment is bonded to one surface of the polarizing film via an adhesive B, and the opposite surface has adhesiveness.
  • a peelable film a polyethylene film having a self-adhesive surface (bonding surface with a polarizing film) is bonded, and ultraviolet irradiation is performed with an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity: 1000 mJ / cm 2 ). And left at room temperature for 1 hour to obtain a polarizing plate having a transparent protective film bonded on one side.
  • the width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. Further, the appearance of this polarizing plate was good without damage such as scratches and cracks despite being subjected to friction with the transport roll. (Process (B)) Subsequently, this polarizing plate with a single-sided transparent protective film was cut in the same manner as in Example 2-1, to obtain a polarizing plate with a single-sided transparent protective film having a width of 720 mm. The appearance of the polarizing plate with a single-sided transparent protective film after the cutting was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
  • Example 2-4 A liquid crystal display device was produced in the same manner as in Example 2-2 except that the composite polarizing plate obtained in Example 2-3 was used instead of the composite polarizing plate obtained in Example 2-1. . With respect to this liquid crystal display device, the contrast ratio at an azimuth angle of 45 ° and a polar angle of 60 ° was measured 30 minutes after the backlight was turned on. As a result, a contrast ratio of 282 was shown.
  • Example 2-3 A composite polarizing plate was prepared in the same manner as in Example 2-1, except that the pressure-sensitive adhesive sheet A used in the step (D) was changed to the pressure-sensitive adhesive sheet B.
  • the appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles.
  • 96.6% was able to be used in the whole area of a composite polarizing plate.
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C.
  • the appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles. Moreover, when obtaining the sheet
  • the retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate. I let you. In this state, a heat shock test was performed by placing in an atmosphere of ⁇ 35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C.
  • Example 2-5 (Process (A)) A 40 ⁇ m-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness.
  • a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained.
  • the width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm.
  • the appearance of this polarizing plate was good without damage such as scratches and cracks, despite the heat of drying and the friction with the transport roll.
  • a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained.
  • the width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm.
  • the appearance of this polarizing plate was good without damage such as scratches and cracks, despite the heat of drying and the friction with the transport roll.
  • this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), 720 mm A polarizing plate with a single-side transparent protective film having a width was obtained.
  • the appearance of this polarizing plate was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
  • the composite polarizing plate of the present invention can be widely used as an optical member in various liquid crystal display devices.
  • it can be used in large liquid crystal display devices such as televisions, computer displays, car navigation systems, mobile phones, and mobile terminal devices. It can be used as an optical member in the medium- and small-sized liquid crystal display device used.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polarising Elements (AREA)

Abstract

Disclosed is a method for manufacturing a composite polarizing plate, comprising the step of laminating a transparent protective film onto one side surface of a polarizing film, laminating a releasable adhesive film on the opposite side surface of the polarizing film to prepare a polarizing plate with a transparent protective film on one side surface thereof, the step of cutting the polarizing plate with a transparent protective film on one side thereof along the direction of the length in accordance with the size of a phase difference film, and the step of removing the releasable film of the polarizing plate with a transparent protective film on one side surface thereof cut in the above step and laminating the polarizing film surface onto a phase difference film with an epoxy resin composition containing an epoxy resin curable by irradiation of active energy ray or heating.

Description

複合偏光板の製造方法Manufacturing method of composite polarizing plate
 本発明は、複合偏光板の製造方法に関するものである。 The present invention relates to a method for producing a composite polarizing plate.
 液晶表示装置は、消費電力が低く、低電圧で動作し、軽量で薄型である等の特徴を生かして、各種の表示用デバイスに用いられている。この液晶表示装置は、液晶セル、偏光板、位相差フィルム、集光シート、拡散フィルム、導光板、および光反射シート等、多くの光学部材から構成されている。そこで、これらの光学部材を構成するフィルムまたはシートの枚数削減や膜厚の低減等の改良により、液晶表示装置の生産効率や明度の向上および軽量・薄型化等を図ることが可能であり、このような研究が盛んに行われている。
 構成フィルムやシートの枚数を減らし、液晶表示装置の薄型化を図るための手段として、偏光板の片側の保護フィルムを位相差フィルムで兼ねる手法が知られている。例えば、特開平8−43812号公報(特許文献1)には、偏光フィルムの両面に保護フィルムを積層した偏光板において、その保護フィルムの少なくとも一方を、位相差フィルムの機能を有する環状オレフィン系樹脂で構成することが開示されている。また、特開平9−325216号公報(特許文献2)には、偏光フィルムの透明保護層のうち少なくとも片側の透明保護層を複屈折性のフィルム(位相差フィルム)で構成することが開示されている。
 一方、位相差フィルムに求められる機能の一つは、液晶セルの複屈折による位相差を正面方向および斜め方向において等しく光学補償することである。したがって、位相差値の角度依存性は非常に重要な光学特性である。
 そこで、角度によらず位相差値がほぼ一定である位相差フィルムが種々提案されており、例えば、特開平2−160204号公報(特許文献3)には、固有複屈折が正であって、分子がフィルム面の法線方向に配向してなるフィルムを延伸することにより、垂直入射における位相差と法線から40°傾いた方向からの入射における位相差がほぼ同じになる位相差フィルムとすることが開示されている。この位相差フィルムは、面内遅相軸方向、面内進相軸方向および厚み方向の屈折率をそれぞれn、nおよびnとしたとき、n>n>nの関係を示す。
 前記n>n>nの関係を満たす位相差フィルムの製造方法として、特開平5−157911号公報(特許文献4)には、樹脂フィルムの片面または両面に収縮性フィルムを接着して積層体を形成し、その積層体を加熱延伸処理する方法が開示されている。この方法は、樹脂フィルムをその延伸と同時にその延伸軸と直交する方向に収縮させ、厚み方向(Z方向)への配向を起こさせるものであり、樹脂フィルムの屈折率分布を延伸前後で大きく変化させている。このため、この製造方法に用いる樹脂フィルムは、低い延伸倍率で位相差を生じやすいものが好ましく、従来、例えば、ポリカーボネート系樹脂フィルムや、ポリアリレート系樹脂フィルム、およびポリサルフォン系樹脂フィルムのような、芳香族系樹脂フィルムが用いられてきた。
 また、特開平7−230007号公報(特許文献5)には、一軸延伸された熱可塑性樹脂フィルムの少なくとも片面に、熱収縮性を有するフィルムを、その熱収縮軸方向が前記熱可塑性樹脂フィルムの延伸軸方向と直交するように貼合して熱収縮させることにより、位相差フィルムを製造することが開示されている。こうして得られる位相差フィルムは、その厚み方向にも分子が配向される。この方法も、熱収縮性フィルムの熱収縮に伴う一軸延伸熱可塑性樹脂フィルムの収縮を利用して厚み方向に配向させるものであるため、やはり位相差の発現しやすい芳香族系樹脂フィルムを中心に適用されている。
 ところが、前記芳香族系樹脂フィルムは光弾性係数の絶対値が大きいために、応力に対して位相差が変化しやすい。そのため、液晶セルと偏光フィルムとの間に貼合配置された状態で高温に曝された場合に、偏光フィルムの収縮応力によって位相差値が設計値からずれたり、液晶表示装置におけるバックライトの熱によって発生する応力のムラによって位相差値のムラが発生したりする場合があり、表示特性を悪化させることが問題となっていた。
 一方、環状オレフィン系樹脂フィルム等の脂肪族系樹脂フィルムは、光弾性係数の絶対値が小さいため、近年、位相差フィルムに適用する動きが高まっている。しかし、脂肪族系樹脂フィルムは、一般に位相差を発現しにくいため、芳香族系樹脂フィルムのような低い延伸倍率ではもちろんのこと、延伸倍率を高くしても所望の位相差値を得ることが難しかった。特に、延伸軸方向とともに厚み方向にも所定の位相差値が得られるように配向させることは難しく、前記特許文献4や特許文献5に記載の方法に、脂肪族系樹脂フィルムを適用することには限界があった。
 そこで、特開2006−72309号公報(特許文献6)には、環状オレフィン系樹脂フィルムの片面または両面に、幅方向の収縮率が大きい収縮性フィルムを貼り合わせて、面内位相差値が100~350nm、かつ(n−n)/(n−n)で表される係数(N係数)が0.1~0.9となるように加熱延伸する方法が開示されている。ここで、n、nおよびnは、先に定義したとおりの意味を有する。この方法によれば、位相差の発現しにくい環状オレフィン系樹脂フィルムについて、延伸軸方向とともに厚み方向にも配向させ、n>n>nの関係を満たす位相差フィルムを製造することができる。
 しかし、前記環状オレフィン系樹脂フィルムを含むオレフィン系樹脂フィルムからなるn>n>nの関係を満たす位相差フィルムは、その製造過程において収縮工程を経るため、作製できるフィルムの幅が偏光フィルムの幅より小さい場合があり、従来の偏光板の製造方法ではその生産性が著しく低下するという問題があった。すなわち、この場合、偏光板と、偏光板より幅が小さい位相差フィルムとを貼合すると、位相差フィルムが貼合されていない偏光板部分が生じる。一方、偏光板を液晶セルへ貼合する所定の形状に切り出すには、通常、長尺方向に対して直角または斜角に裁断し、その所定の形状へ再度裁断するが、この裁断によって位相差フィルムの貼合されていない偏光板部分は廃棄される。さらに、この位相差フィルムが貼合されていない偏光板部分も裁断長さに加わることにより、生産性は著しく低下する。
 またさらに、環状オレフィン系フィルムからなる位相差フィルムは、偏光フィルムの保護フィルムを兼ねるように使用する場合、偏光フィルムとの接着性に劣る場合があった。
Liquid crystal display devices are used in various display devices by taking advantage of low power consumption, operation at low voltage, light weight and thinness. This liquid crystal display device is composed of many optical members such as a liquid crystal cell, a polarizing plate, a retardation film, a light collecting sheet, a diffusion film, a light guide plate, and a light reflecting sheet. Therefore, by improving the number of films or sheets constituting these optical members and reducing the film thickness, it is possible to improve the production efficiency and brightness of the liquid crystal display device and to reduce the weight and thickness. Such research is actively conducted.
As a means for reducing the number of constituent films and sheets and reducing the thickness of a liquid crystal display device, a technique is known in which a protective film on one side of a polarizing plate is also used as a retardation film. For example, in JP-A-8-43812 (Patent Document 1), in a polarizing plate in which protective films are laminated on both surfaces of a polarizing film, at least one of the protective films is a cyclic olefin resin having a function of a retardation film. It is disclosed that it comprises. JP-A-9-325216 (Patent Document 2) discloses that at least one of the transparent protective layers of the polarizing film is composed of a birefringent film (retardation film). Yes.
On the other hand, one of the functions required for the retardation film is to optically compensate for the retardation due to the birefringence of the liquid crystal cell equally in the front direction and the oblique direction. Therefore, the angle dependency of the phase difference value is a very important optical characteristic.
Therefore, various retardation films having a substantially constant retardation value regardless of the angle have been proposed. For example, in Japanese Patent Laid-Open No. 2-160204 (Patent Document 3), the intrinsic birefringence is positive, By stretching a film in which molecules are oriented in the normal direction of the film surface, a phase difference film in which the phase difference at normal incidence and the phase difference at incidence from a direction inclined by 40 ° from the normal is almost the same is obtained. It is disclosed. The retardation film has an in-plane slow axis direction, a refractive index in the in-plane fast axis direction and the thickness direction respectively n x, when the n y and n z, a relationship n x> n z> n y Show.
As a method for producing a retardation film which satisfies a relation of the n x> n z> n y , in Japanese Laid-5-157911 (Patent Document 4), by bonding a shrinkable film to one or both surfaces of a resin film A method of forming a laminate and subjecting the laminate to heat stretching is disclosed. This method shrinks the resin film in the direction perpendicular to the stretching axis at the same time as stretching, causing orientation in the thickness direction (Z direction), and the refractive index distribution of the resin film changes greatly before and after stretching. I am letting. For this reason, the resin film used in this production method is preferably one that easily causes a phase difference at a low stretch ratio, and conventionally, for example, a polycarbonate resin film, a polyarylate resin film, and a polysulfone resin film, Aromatic resin films have been used.
Japanese Patent Application Laid-Open No. 7-230007 (Patent Document 5) discloses a film having heat shrinkability on at least one surface of a uniaxially stretched thermoplastic resin film, and the direction of the heat shrink axis of the thermoplastic resin film. It is disclosed that a retardation film is produced by bonding and heat shrinking so as to be orthogonal to the stretching axis direction. In the retardation film thus obtained, molecules are oriented in the thickness direction. This method is also oriented in the thickness direction by utilizing the shrinkage of the uniaxially stretched thermoplastic resin film accompanying the heat shrinkage of the heat shrinkable film, so that mainly the aromatic resin film that easily develops the phase difference. Has been applied.
However, since the aromatic resin film has a large absolute value of the photoelastic coefficient, the phase difference is likely to change with respect to the stress. For this reason, when exposed to a high temperature in a state where the liquid crystal cell and the polarizing film are bonded and disposed, the retardation value may deviate from the design value due to the contraction stress of the polarizing film, or the heat of the backlight in the liquid crystal display device. In some cases, the unevenness of the phase difference value may occur due to the unevenness of the stress caused by the above-described problem, which deteriorates the display characteristics.
On the other hand, since aliphatic resin films such as cyclic olefin resin films have a small absolute value of the photoelastic coefficient, in recent years, there has been an increasing trend to apply them to retardation films. However, since an aliphatic resin film generally does not easily develop a retardation, a desired retardation value can be obtained even if the stretching ratio is increased, as well as a low stretching ratio such as an aromatic resin film. was difficult. In particular, it is difficult to align the film so that a predetermined retardation value can be obtained in the thickness direction as well as in the stretching axis direction, and the aliphatic resin film is applied to the methods described in Patent Document 4 and Patent Document 5. There was a limit.
Therefore, in JP-A-2006-72309 (Patent Document 6), a shrinkable film having a large shrinkage rate in the width direction is bonded to one side or both sides of a cyclic olefin-based resin film, and an in-plane retardation value is 100. A method of heating and stretching so that a coefficient (N z coefficient) represented by (n x −n z ) / (n x −n y ) is 0.1 to 0.9 nm is disclosed. . Here, nx , ny and nz have the meanings as defined above. According to this method, the expression was hardly cycloolefin resin film of the phase difference, also oriented in the thickness direction with the stretching axis direction, is possible to produce a retardation film which satisfies a relation of n x> n z> n y it can.
However, the retardation film satisfying the relation of the cyclic olefin based resin film made of olefin resin film containing n x> n z> n y, in order to undergo the shrinking step in the production process, the polarization width of fabrication can film There are cases where the width is smaller than the width of the film, and the conventional method for producing a polarizing plate has a problem that the productivity is remarkably lowered. That is, in this case, when a polarizing plate and a retardation film having a smaller width than the polarizing plate are bonded together, a polarizing plate portion where the retardation film is not bonded is generated. On the other hand, in order to cut the polarizing plate into a predetermined shape to be bonded to the liquid crystal cell, it is usually cut at a right angle or an oblique angle with respect to the longitudinal direction, and then cut again into the predetermined shape. The polarizing plate part where the film is not bonded is discarded. Furthermore, productivity is significantly reduced by adding a polarizing plate portion to which the retardation film is not bonded to the cutting length.
Furthermore, when the retardation film made of a cyclic olefin film is used so as to serve also as a protective film for the polarizing film, the adhesiveness to the polarizing film may be inferior.
 本発明の目的は、偏光板と、偏光板より幅が小さい位相差フィルムとを積層してなる、偏光フィルムと位相差フィルムの密着力に優れた複合偏光板を生産性良く製造する方法を提供することにある。
 上記目的を達成するため、本発明は複合偏光板の第一の製造方法および第二の製造方法を提供する。
 本発明の複合偏光板の第一の製造方法は、(A)偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する工程と、(B)前記片面透明保護フィルム付き偏光板を、位相差フィルムの大きさに合わせて長尺方向に沿って裁断する工程と、(C)前記工程(B)で裁断された片面透明保護フィルム付き偏光板の剥離性フィルムを除去するとともに、その偏光フィルム面と位相差フィルムとを活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有するエポキシ樹脂組成物を用いて貼合する工程とを含むことを特徴とする。
 本発明の第一の製造方法において、位相差フィルムは、その面内遅相軸方向、面内進相軸方向および厚み方向の屈折率をそれぞれn、nおよびnとし、厚みをdとするとき、波長590nmの光に対して式(1)および(2)を満たす、オレフィン系樹脂フィルムであることが好ましい。
 100nm≦(n−n)×d≦300nm         (1)
 0.1≦(n−n)/(n−n)≦0.7       (2)
 本発明の第一の製造方法において、前記オレフィン系樹脂フィルムは、脂環式オレフィンから誘導される構成単位を主に含む樹脂からなるものであることが好ましい。
 また本発明の第一の製造方法において、位相差フィルムは、その幅が、前記片面透明保護フィルム付き偏光板の幅より10%以上小さいものであることが、好ましい。
 本発明の第一の製造方法において、エポキシ樹脂は、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物を含有することが、好ましい。
 また本発明の第一の製造方法において、透明保護フィルムの厚みは20~300μmであることが、好ましい。
 本発明の複合偏光板の第二の製造方法は、(A)偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する工程と、(B)前記片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断する工程と、(C)前記剥離性フィルムを偏光フィルム面から除去する工程と、(D)前記位相差フィルムの片面、または、前記工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を積層する工程と、(E)前記剥離性フィルムが除去された偏光フィルム面に、前記粘着剤層を介して前記位相差フィルムを貼合する工程とを含むことを特徴とする。
 本発明の第二の製造方法において、工程(A)、工程(B)、工程(C)、工程(D)および工程(E)をこの順で含み、工程(D)において、粘着剤層が、工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に積層される場合が、好ましい態様の1つとして挙げられる(以下、当該態様を「第一の態様」と呼称する。)。
 本発明の第二の製造方法において、工程(A)、工程(C)、工程(D)、工程(B)および工程(E)をこの順で含み、工程(D)において、粘着剤層が、工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に積層される場合も、好ましい態様の1つとして挙げられる(以下、「第二の態様」と呼称する。)。
 また本発明の第二の製造方法において、工程(A)、工程(B)、工程(C)および工程(E)をこの順で含み、工程(D)において、粘着剤層は、位相差フィルムの片面に積層される態様も、好ましい態様の1つとして挙げられる(以下、「第三の態様」と呼称する。)。
 本発明の第二の製造方法において、位相差フィルムは、その面内遅相軸方向、面内進相軸方向および厚み方向の屈折率をそれぞれn、nおよびnとし、厚みをdとするとき、波長590nmの光に対して式(1)および(2)を満たす、オレフィン系樹脂フィルムであることが好ましい。
 100nm≦(n−n)×d≦300nm         (1)
 0.1≦(n−n)/(n−n)≦0.7       (2)
 本発明の第二の製造方法において、前記オレフィン系樹脂フィルムは、脂環式オレフィンから誘導される構成単位を主に含む樹脂からなるものであることが好ましい。
 また本発明の第二の製造方法において、位相差フィルムは、その幅が、前記片面透明保護フィルム付き偏光板の幅より10%以上小さいものであることが、好ましい。
 本発明の第二の製造方法においては、前記偏光フィルムと、透明保護フィルムとを、ポリビニルアルコール系樹脂およびエポキシ樹脂を含有する水溶性接着剤によって接着することが好ましい。
 さらに本発明の第二の製造方法において、前記偏光フィルムと、透明保護フィルムとを、活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有する無溶剤の樹脂組成物からなる接着剤によって接着することが好ましい。この場合、前記エポキシ樹脂が、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物を含有することが、好ましい。
 本発明の第二の製造方法において、透明保護フィルムの厚みは20~300μmであることが、好ましい。
 また本発明の第二の製造方法において、粘着剤層の厚みは1~40μmであることが、好ましい。
 本発明の複合偏光板の製造方法によれば、位相差フィルムとの貼合前に片面透明保護フィルム付き偏光板を位相差フィルムの大きさに合わせて長尺方向に沿って裁断し、位相差フィルムと貼合する片面透明保護フィルム付き偏光板と位相差フィルムと貼合しない片面透明保護フィルム付き偏光板とに分けることにより、生産性低下を招くことがなくなる。さらに、片面透明保護フィルム付き偏光板の位相差フィルムと貼合しない部分は他製品に用いることができるため、全体の生産性は著しく向上する。
 また、裁断される片面透明保護フィルム付き偏光板の偏光フィルム側に、粘着性を有する剥離性フィルムを貼合しておくことにより、透明保護フィルムと偏光フィルムの貼合や、裁断における偏光フィルムの損傷を防止することができる。
An object of the present invention is to provide a method for producing a composite polarizing plate excellent in adhesion between a polarizing film and a retardation film with high productivity, which is formed by laminating a polarizing plate and a retardation film having a smaller width than the polarizing plate. There is to do.
In order to achieve the above object, the present invention provides a first production method and a second production method of a composite polarizing plate.
In the first production method of the composite polarizing plate of the present invention, (A) a transparent protective film is bonded to one side of a polarizing film, an adhesive peelable film is bonded to the opposite side, and single-sided transparent protection is performed. A step of producing a polarizing plate with a film, (B) a step of cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the size of the retardation film, and (C) the step (B) The epoxy resin composition containing an epoxy resin that removes the peelable film of the polarizing plate with the single-sided transparent protective film cut in step) and cures the polarizing film surface and the retardation film by irradiation with active energy rays or heating. And a step of pasting using the method.
In the first production method of the present invention, a phase difference film, and its in-plane slow axis direction, the in-plane fast axis direction and the refractive index in the thickness direction respectively n x, and n y and n z, thickness d , An olefin resin film satisfying the formulas (1) and (2) with respect to light having a wavelength of 590 nm is preferable.
100nm ≦ (n x -n y) × d ≦ 300nm (1)
0.1 ≦ (n x -n z) / (n x -n y) ≦ 0.7 (2)
In the first production method of the present invention, the olefin resin film is preferably made of a resin mainly containing a structural unit derived from an alicyclic olefin.
In the first production method of the present invention, the retardation film preferably has a width that is 10% or more smaller than the width of the polarizing plate with the one-side transparent protective film.
In the first production method of the present invention, the epoxy resin preferably contains a compound having at least one epoxy group bonded to an alicyclic ring in the molecule.
In the first production method of the present invention, the thickness of the transparent protective film is preferably 20 to 300 μm.
The second production method of the composite polarizing plate of the present invention is as follows. (A) A transparent protective film is bonded to one side of a polarizing film, an adhesive peelable film is bonded to the opposite side, and single-sided transparent protection is performed. A step of producing a polarizing plate with a film, (B) a step of cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the width of the retardation film, and (C) the peelable film. The step of removing from the polarizing film surface, (D) on the one side of the retardation film, or the polarizing film surface of the polarizing plate with the single-side transparent protective film that has undergone the step (C) Including a step of laminating a pressure-sensitive adhesive layer exhibiting storage elastic modulus, and (E) a step of bonding the retardation film to the polarizing film surface from which the peelable film has been removed via the pressure-sensitive adhesive layer. With features That.
In the 2nd manufacturing method of this invention, a process (A), a process (B), a process (C), a process (D), and a process (E) are included in this order, and an adhesive layer is a process (D). A case where the film is laminated on the polarizing film surface of the polarizing plate with the single-sided transparent protective film after the step (C) is mentioned as one of preferable modes (hereinafter, this mode is referred to as “first mode”). ).
In the 2nd manufacturing method of this invention, a process (A), a process (C), a process (D), a process (B), and a process (E) are included in this order, and an adhesive layer is a process (D). In addition, when laminated on the polarizing film surface of the polarizing plate with a single-sided transparent protective film that has undergone the step (C), it may be mentioned as one of preferred embodiments (hereinafter referred to as “second embodiment”).
In the second production method of the present invention, the step (A), the step (B), the step (C) and the step (E) are included in this order. In the step (D), the pressure-sensitive adhesive layer is a retardation film. A mode of laminating on one side is also mentioned as one of the preferred modes (hereinafter referred to as “third mode”).
In the second production method of the present invention, a phase difference film, and its in-plane slow axis direction, the in-plane fast axis direction and the refractive index in the thickness direction respectively n x, and n y and n z, thickness d , An olefin resin film satisfying the formulas (1) and (2) with respect to light having a wavelength of 590 nm is preferable.
100nm ≦ (n x -n y) × d ≦ 300nm (1)
0.1 ≦ (n x -n z) / (n x -n y) ≦ 0.7 (2)
In the second production method of the present invention, the olefin-based resin film is preferably made of a resin mainly containing a structural unit derived from an alicyclic olefin.
In the second production method of the present invention, the retardation film preferably has a width that is 10% or more smaller than the width of the polarizing plate with a single-sided transparent protective film.
In the 2nd manufacturing method of this invention, it is preferable to adhere | attach the said polarizing film and a transparent protective film with the water-soluble adhesive containing a polyvinyl alcohol-type resin and an epoxy resin.
Furthermore, in the second production method of the present invention, the polarizing film and the transparent protective film are bonded with an adhesive made of a solvent-free resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating. It is preferable. In this case, it is preferable that the epoxy resin contains a compound having at least one epoxy group bonded to an alicyclic ring in the molecule.
In the second production method of the present invention, the thickness of the transparent protective film is preferably 20 to 300 μm.
In the second production method of the present invention, the pressure-sensitive adhesive layer preferably has a thickness of 1 to 40 μm.
According to the method for producing a composite polarizing plate of the present invention, the polarizing plate with a single-sided transparent protective film is cut along the longitudinal direction according to the size of the retardation film before being bonded to the retardation film, and the retardation is obtained. By dividing into a polarizing plate with a single-sided transparent protective film to be bonded to a film and a polarizing plate with a single-sided transparent protective film that is not bonded to a retardation film, productivity is not reduced. Furthermore, since the part which does not bond with the phase difference film of the polarizing plate with a single-sided transparent protective film can be used for another product, the whole productivity improves remarkably.
Moreover, by sticking the peelable film which has adhesiveness to the polarizing film side of the polarizing plate with a single-sided transparent protective film to be cut, it is possible to bond the transparent protective film and the polarizing film or the polarizing film in the cutting. Damage can be prevented.
 (偏光フィルム)
 本発明の複合偏光板の製造方法で用いられる偏光フィルムとは、自然光からある一方向の直線偏光を選択的に透過する機能を有するものである。例えば、ポリビニルアルコール系フィルムにヨウ素を吸着・配向させたヨウ素系偏光フィルム、ポリビニルアルコール系フィルムに二色性の染料を吸着・配向させた染料系偏光フィルム、およびリオトロピック液晶状態の二色性染料をコーティングし、配向・固定化した塗布型偏光フィルム等が挙げられる。これらのヨウ素系偏光フィルム、染料系偏光フィルム、および塗布型偏光フィルムは、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を吸収する機能を有するもので、吸収型偏光フィルムと呼ばれている。
 本発明の製造方法で用いられる偏光フィルムは、上述した吸収型偏光フィルムだけでなく、自然光からある一方向の直線偏光を選択的に透過し、もう一方向の直線偏光を反射または散乱する機能を有する反射型偏光フィルムまたは散乱型偏光フィルムと呼ばれているものでもよい。また、ここで具体的に挙げた偏光フィルムは、必ずしもこれらに限定されるわけではなく、自然光からある一方向の直線偏光を選択的に透過する機能を有するものであればよい。これらの偏光フィルムの中でも、視認性に優れている吸収型偏光フィルムを用いるのが好ましく、中でも、偏光度および透過率に優れるヨウ素系偏光フィルムを偏光フィルムとして用いるのがより好ましい。
 前記ポリビニルアルコール系フィルムに用いられるポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルの他に、酢酸ビニルと共重合可能な他の単量体との共重合体等が挙げられる。酢酸ビニルと共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、不飽和スルホン酸類、オレフィン類およびビニルエーテル類等が挙げられる。
 ポリビニルアルコール系樹脂のケン化度は、通常85~100mol%であり、98~100mol%がより好ましい。ポリビニルアルコール系樹脂は、変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、およびポリビニルブチラール等も用いられる。ポリビニルアルコール系樹脂の重合度は、通常、1000~10000程度であり、1500~10000程度が好ましい。
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの厚みは特に限定されるものではないが、例えば、2~150μm程度である。
 偏光フィルムは、通常、上述したようなポリビニルアルコール系樹脂からなる原反フィルムの水分を調整する調湿工程、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色してその二色性色素を吸着させる工程、二色性色素が吸着配向されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、およびホウ酸水溶液による処理後に水洗する工程を経て製造される。
 一軸延伸は、二色性色素による染色の前に行ってもよいし、染色と同時に行ってもよいし、染色の後に行ってもよい。一軸延伸を二色性色素による染色の後で行う場合には、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また、大気中で延伸を行う等の乾式延伸であってもよいし、溶剤にて膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常、4~8倍である。水洗後、乾燥して得られる偏光フィルムの厚みは、例えば、1~50μmとすることができる。
 (透明保護フィルム)
 本発明の製造方法で用いられる透明保護フィルムは、透明性、機械的強度、熱安定性、水分遮蔽性、および位相差値の安定性等に優れる材料からなることが好ましい。このような透明保護フィルム用材料としては、特に限定されるものではないが、例えば、メタクリル酸メチル系樹脂などの(メタ)アクリル系樹脂、ポリプロピレン系樹脂などの鎖状ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリ塩化ビニル系樹脂、セルロース系樹脂、スチレン系樹脂、アクリロニトリル・ブタジエン・スチレン系樹脂、アクリロニトリル・スチレン系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリブチレンテレタレート系樹脂、ポリエチレンテフタレート系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリアリレート系樹脂、ポリアミドイミド系樹脂およびポリイミド系樹脂等などが挙げられる。
 これらの樹脂は、単独で、または2種類以上を組み合わせて用いることができる。また、これらの樹脂は、任意の適切なポリマー変性を行ってから用いることもでき、このポリマー変性としては、例えば、共重合、架橋、分子末端、立体規則性制御、および異種ポリマー同士の反応を伴う場合を含む混合等の変性が挙げられる。
 これらの中でも、透明保護フィルムの材料としては、メタクリル酸メチル系樹脂などの(メタ)アクリル系樹脂、ポリエチレンテレフタレート系樹脂、ポリプロピレン系樹脂などの鎖状ポリオレフィン系樹脂、セルロース系樹脂を用いることが好ましい。
 メタクリル酸メチル系樹脂とは、メタクリル酸メチル単位を50重量%以上含む重合体である。メタクリル酸メチル単位の含有量は、好ましくは70重量%以上であり、100重量%であってもよい。メタクリル酸メチル単位が100重量%の重合体は、メタクリル酸メチルを単独で重合させて得られるメタクリル酸メチル単独重合体である。
 このメタクリル酸メチル系樹脂は、通常、メタクリル酸メチルを主成分とする単官能単量体、多官能単量体、ラジカル重合開始剤および連鎖移動剤の共存下に重合して得ることができる。
 メタクリル酸メチルと共重合し得る単官能単量体としては、特に限定されるものではないが、例えば、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸2−エチルヘキシルおよびメタクリル酸2−ヒドロキシエチル等のメタクリル酸メチル以外のメタクリル酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸シクロヘキシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸2−エチルヘキシルおよびアクリル酸2−ヒドロキシエチル等のアクリル酸エステル類;2−(ヒドロキシメチル)アクリル酸メチル、3−(ヒドロキシエチル)アクリル酸メチル、2−(ヒドロキシメチル)アクリル酸エチルおよび2−(ヒドロキシメチル)アクリル酸ブチル等のヒドロキシアクリル酸エステル類;メタクリル酸およびアクリル酸等の不飽和酸類;クロロスチレンおよびブロモスチレン等のハロゲン化スチレン類;ビニルトルエンおよびα−メチルスチレン等の置換スチレン類;アクリロニトリルおよびメタクリロニトリル等の不飽和ニトリル類;無水マレイン酸および無水シトラコン酸等の不飽和酸無水物類;ならびにフェニルマレイミドおよびシクロヘキシルマレイミド等の不飽和イミド類等を挙げることができる。このような単量体は、それぞれ単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
 メタクリル酸メチルと共重合し得る多官能単量体としては、特に限定されるものではないが、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレートおよびテトラデカエチレングリコール(メタ)アクリレート等のエチレングリコールまたはそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;プロピレングリコールまたはそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレートおよびブタンジオールジ(メタ)アクリレート等の2価アルコールの水酸基をアクリル酸またはメタクリル酸でエステル化したもの;ビスフェノールA、ビスフェノールAのアルキレンオキサイド付加物、またはこれらのハロゲン置換体の両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;トリメチロールプロパンおよびペンタエリスリトール等の多価アルコールをアクリル酸またはメタクリル酸でエステル化したもの、ならびにこれら末端水酸基にグリシジルアクリレートまたはグリシジルメタクリレートのエポキシ基を開環付加させたもの;コハク酸、アジピン酸、テレフタル酸、フタル酸、これらのハロゲン置換体等の二塩基酸およびこれらのアルキレンオキサイド付加物等にグリシジルアクリレートまたはグリシジルメタクリレートのエポキシ基を開環付加させたもの;アリール(メタ)アクリレート;およびジビニルベンゼン等のジアリール化合物等が挙げられる。中でも、エチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレートおよびネオペンチルグリコールジメタクリレートが好ましく用いられる。
 このような組成からなるメタクリル酸メチル系樹脂は、さらに、樹脂に共重合させた官能基間の反応を行い変性されたものも用いられる。その反応としては、例えば、アクリル酸メチルのメチルエステル基と2−(ヒドロキシメチル)アクリル酸メチルの水酸基の高分子鎖内脱メタノール縮合反応、またはアクリル酸のカルボキシル基と2−(ヒドロキシメチル)アクリル酸メチルの水酸基の高分子鎖内脱水縮合反応等が挙げられる。
 このようなメタクリル酸メチル系樹脂は、市販品を容易に入手することが可能であり、例えば、各々商品名で、スミペックス(住友化学(株)製)、アクリペット(三菱レイヨン(株)製)、デルペット(旭化成(株)製)、パラペット((株)クラレ製)およびアクリビュア((株)日本触媒製)等が挙げられる。
 ポリエチレンテレフタレート系樹脂とは、繰り返し単位の80mol%以上がエチレンテレフタレートで構成される樹脂を意味し、他のジカルボン酸成分とジオール成分を含んでいてもよい。他のジカルボン酸成分としては、特に限定されるものでないが、例えば、イソフタル酸、p−β−オキシエトキシ安息香酸、4,4’−ジカルボキシジフェニール、4,4’−ジカルボキシベンゾフェノン、ビス(4−カルボキシフェニル)エタン、アジピン酸、セバシン酸および1,4−ジカルボキシシクロヘキサン等が挙げられる。
 他のジオール成分としては、特に限定されるものではないが、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、シクロヘキサンジオール、ビスフェノールAのエチレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコールおよびポリテトラメチレングリコール等が挙げられる。
 これらのジカルボン酸成分やジオール成分は、必要により2種類以上を組み合わせて用いることができる。また、p−オキシ安息香酸等のオキシカルボン酸を併用することもできる。また、他の共重合成分として、少量のアミド結合、ウレタン結合、エーテル結合、およびカーボネート結合等を含有するジカルボン酸成分またはジオール成分が用いられてもよい。
 ポリエチレンテレフタレート系樹脂の製造方法としては、テレフタル酸およびエチレングリコール(ならびに必要に応じて他のジカルボン酸または他のジオール)を直接重縮合させる方法、テレフタル酸のジアルキルエステルおよびエチレングリコール(ならびに必要に応じて他のジカルボン酸のジアルキルエステルまたは他のジオール)とをエステル交換反応させた後重縮合させる方法、およびテレフタル酸(および必要に応じて他のジカルボン酸)のエチレングリコールエステル(および必要に応じて他のジオールエステル)を触媒の存在下で重縮合させる方法等が採用される。さらに、必要に応じて固相重合を行い、分子量を向上させたり、低分子量成分を低減させたりすることもできる。
 またポリプロピレン系樹脂とは、前記鎖状オレフィン系樹脂の中でも、繰り返し単位の80重量%以上がプロピレンモノマーである鎖状オレフィンモノマーを、重合用触媒を用いて重合されたものをいう。中でも、プロピレンの単独重合体であるものが好ましい。また、プロピレンを主体とし、それと共重合可能なコモノマーを、1~20重量%の割合で、好ましくは3~10重量%の割合で共重合させた共重合体も好ましい。
 プロピレン共重合体を用いる場合、プロピレンと共重合可能なコモノマーとしては、エチレン、1−ブテンおよび1−ヘキセンが好ましい。中でも、透明性に比較的優れることから、エチレンを3~10重量%の割合で共重合させたものが好ましい。エチレンの共重合割合を1重量%以上とすることで、透明性を上げる効果が現れる。一方、その割合が20重量%を超えると、樹脂の融点が下がり保護フィルムに要求される耐熱性が損なわれる場合がある。
 中でも、20℃のキシレンに可溶な成分(CXS成分)が1重量%以下であるプロピレンホモポリマーがより好ましく、CXS成分が0.5重量%以下のプロピレンホモポリマーがさらに好ましい。
 また、セルロース系樹脂とは、綿花リンタや木材パルプ(広葉樹パルプ、針葉樹パルプ)等の原料セルロースから得られるセルロースの水酸基における水素原子の一部または全部がアセチル基、プロピオニル基および/またはブチリル基で置換された、セルロース有機酸エステルまたはセルロース混合有機酸エステルをいう。例えば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、およびそれらの混合エステル等からなるものが挙げられる。中でも、トリアセチルセルロースフィルム、ジアセチルセルロースフィルム、セルロースアセテートプロピオネートフィルムおよびセルロースアセテートブチレートフィルム等が好ましい。
 このようなメタクリル酸メチル系樹脂、ポリエチレンテレフタレート系樹脂、ポリプロピレン系樹脂およびセルロース系樹脂等を、偏光フィルムに接着する透明保護フィルムとする方法としては、その樹脂に応じた方法を適宜選択すればよく、特に限定されるものではない。例えば、溶媒に溶解させた樹脂を金属製バンド、またはドラムへ流延し、溶媒を乾燥除去してフィルムを得る溶媒キャスト法、および樹脂をその溶融温度以上に加熱・混練してダイより押し出し、冷却することによりフィルムを得る溶融押出法が採用される。この溶融押出法では、単層フィルムの押し出しであってもよく、また多層フィルムの同時押し出しであってもよい。
 こうして得られる透明保護フィルムとして用いられるフィルムは、市販品を容易に入手することが可能であり、例えば、メタクリル酸メチル系樹脂フィルムとしては、それぞれ商品名で、スミペックス(住友化学(株)製)、アクリライト(三菱レイヨン(株)製)、アクリプレン(三菱レイヨン(株)製)、デラグラス(旭化成(株)製)、パラグラス((株)クラレ製)、コモグラス((株)クラレ製)およびアクリビュア((株)日本触媒製)等が挙げられる。
 また、例えば、ポリエチレンテレフタレート系樹脂フィルムとしては、それぞれ商品名で、ノバクリアー(三菱化学(株)製)および帝人A−PETシート(帝人化成(株)製)等が挙げられる。
 また、例えば、ポリプロピレン系樹脂フィルムとしては、それぞれ商品名で、FILMAX CPPフィルム(FILMAX社製)、サントックス(サン・トックス(株)製)、トーセロ(東セロ(株)製)、東洋紡パイレンフィルム(東洋紡績(株)製)、トレファン(東レフィルム加工(株)製)、ニホンポリエース(日本ポリエース(株)製)および太閤FC(フタムラ化学(株)製)等が挙げられる。
 さらに、例えば、セルロース系樹脂フィルムなら、それぞれ商品名で、フジタックTD(富士フィルム(株)製)およびコニカミノルタTACフィルムKC(コニカミノルタオプト(株)製)等が挙げられる。
 本発明に用いられる透明保護フィルムには、防眩性(ヘイズ)を付与することができる。防眩性を付与する方法は、特に限定されるものではないが、例えば、前記の原料樹脂中に無機微粒子もしくは有機微粒子を混合してフィルム化する方法、前記の多層押し出しを用いて、一方に微粒子が混合された樹脂ともう一方に微粒子が混合されていない樹脂とから二層フィルム化する方法、または粒子が混合された樹脂を外側にして三層フィルム化する方法、およびフィルムの片側に無機微粒子もしくは有機微粒子を硬化性バインダー樹脂に混合してなる塗布液をコートし、バインダー樹脂を硬化して防眩層を設ける方法等が採用される。
 防眩性を付与するための無機微粒子としては、特に限定されるものではないが、例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、アルミノシリケート、アルミナ−シリカ複合酸化物、カオリン、タルク、マイカ、炭酸カルシウムおよびリン酸カルシウム等が挙げられる。また、有機微粒子としては、特に限定されるものではないが、例えば、架橋ポリアクリル酸粒子、メタクリル酸メチル/スチレン共重合体樹脂粒子、架橋ポリスチレン粒子、架橋ポリメチルメタクリレート粒子、シリコーン樹脂粒子およびポリイミド粒子等が挙げられる。
 こうして得られる防眩性を付与された透明保護フィルムのヘイズ値は、6~45%の範囲内であることが好ましい。透明保護フィルムのヘイズ値が6%を下回ると、十分な防眩効果が現れない場合がある。また、透明保護フィルムのヘイズ値が45%を超えると、このフィルムを用いてなる液晶表示装置の画面が白茶け、画質の低下をまねく場合がある。
 なお、このヘイズ値は、JIS K 7136に準拠し、例えば、ヘイズ・透過率計HM−150((株)村上色彩技術研究所製)を用いて測定することができる。ヘイズ値の測定に際しては、フィルムの反りを防止するために、例えば、光学的に透明な粘着剤を用いて防眩性付与面が表面となるようにフィルム面をガラス基板に貼合した測定サンプルを用いることが好ましい。
 透明保護フィルム上には、さらに、導電層、ハードコート層および低反射層等の機能層を積層することができる。また、透明保護フィルムを構成するバインダー樹脂には、これらの機能を有する樹脂組成物を選択することもできる。
 また、透明保護フィルムは、偏光フィルムとの貼合に先立って、ケン化処理、コロナ処理、およびプラズマ処理等を施しておくことが好ましい。
 透明保護フィルムの厚みは、得に制限されるものではないが、通常、強度や取り扱い性等の観点から1~500μm程度であり、20~300μmが好ましく、20~100μmがさらに好ましい。この範囲内の厚みであれば、偏光フィルムを機械的に保護し、高温高湿下に曝されても偏光フィルムが収縮せず、安定した光学特性を保つことができる。
 (透明保護フィルム貼合用接着剤)
 偏光フィルムと透明保護フィルムの接着に用いる接着剤は、特に限定されるものではないが、例えば、ポリビニルアルコール系樹脂、エポキシ系樹脂、ウレタン系樹脂、シアノアクリレート系樹脂およびアクリルアミド系樹脂等を接着剤成分とする接着剤が挙げられる。中でも、水系の接着剤、すなわち、接着剤成分を水に溶解したものまたはこれを水に分散させたものは、接着剤層の厚みをより低減することができるため好ましく用いられる。水系の接着剤としては、接着剤成分として、例えば、ポリビニルアルコール系樹脂、水溶性の架橋性エポキシ樹脂またはウレタン系樹脂等を含有するものが挙げられる。ポリビニルアルコール系樹脂としては、水系接着剤として用いられる種々公知の樹脂を用いることができる。また、別の好ましい接着剤としては、加熱や活性エネルギー線の照射によりモノマーまたはオリゴマーを反応硬化させて接着剤層を形成する無溶剤の樹脂組成物からなるものが挙げられる。
 まず、水系の接着剤について説明する。水溶性の架橋性エポキシ樹脂としては、例えば、ジエチレントリアミンやトリエチレンテトラミン等のポリアルキレンポリアミンとアジピン酸等のジカルボン酸との反応で得られるポリアミドポリアミンにエピクロロヒドリンを反応させて得られるポリアミドエポキシ樹脂を挙げることができる。このようなポリアミドエポキシ樹脂の市販品としては、スミレーズレジン 650(住化ケムテックス(株)製)、スミレーズレジン 675(住化ケムテックス(株)製)等が挙げられる。
 接着剤には、塗工性と接着性を向上させるために、さらにポリビニルアルコール系樹脂等の他の水溶性樹脂を混合することが好ましい。ポリビニルアルコール系樹脂としては、部分ケン化ポリビニルアルコールおよび完全ケン化ポリビニルアルコールの他に、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコールおよびアミノ基変性ポリビニルアルコール等の変性されたポリビニルアルコール系樹脂であってもよい。中でも、酢酸ビニルと不飽和カルボン酸またはその塩との共重合体のケン化物、すなわち、カルボキシル基変性ポリビニルアルコールが好ましく用いられる。なお、ここでいう「カルボキシル基」とは、−COOHおよびその塩を含む概念である。
 市販されている好適なカルボキシル基変性ポリビニルアルコールとしては、例えば、それぞれクラレポバール KL−506((株)クラレ製)、クラレポバール KL−318((株)クラレ製)、クラレポバール KL−118((株)クラレ製)、ゴーセナール T−330(日本合成化学工業(株)製)、ゴーセナール T−350(日本合成化学工業(株)製)、DR−0415(電気化学工業(株)製)、AF−17(日本酢ビ・ポバール(株)製)、AT−17(日本酢ビ・ポバール(株)製)、AP−17(日本酢ビ・ポバール(株)製)などが挙げられる。
 接着剤は、エポキシ樹脂および必要に応じて加えられるポリビニルアルコール系樹脂等の他の水溶性樹脂を水に溶解し、接着剤溶液として調製することができる。この場合、水溶性の架橋性エポキシ樹脂の含有量は、水100重量部に対して、0.2~2重量部程度とすることが好ましい。また、ポリビニルアルコール系樹脂を配合する場合、その配合量は、水100重量部に対して、1~10重量部程度とすることが好ましく、1~5重量部程度とすることがより好ましい。
 一方、水系の接着剤に好適に用いることができるウレタン系樹脂としては、アイオノマー型のウレタン樹脂、特にポリエステル系アイオノマー型ウレタン樹脂を挙げることができる。ここで、アイオノマー型とは、ウレタン樹脂を構成する骨格内に、少量のイオン性成分(親水成分)が導入されたものである。また、ポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その骨格内に少量のイオン性成分(親水成分)が導入されたものである。このようなアイオノマー型ウレタン樹脂は、乳化剤を使用せずに直接、水中で乳化してエマルジョンとなるため、水系の接着剤として好適である。ポリエステル系アイオノマー型ウレタン樹脂の市販品としては、例えば、ハイドラン AP−20(大日本インキ化学工業(株)製)、ハイドラン APX−101H(大日本インキ化学工業(株)製)等があり、いずれもエマルジョンの形で入手できる。
 アイオノマー型のウレタン樹脂を接着剤成分とする場合、さらにイソシアネート系架橋剤を配合することが好ましい。イソシアネート系架橋剤は、分子内にイソシアナト基(−NCO)を少なくとも2個有する化合物であり、例えば、2,4−トリレンジイソシアネート、フェニレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,6−ヘキサメチレンジイソシアネートおよびイソホロンジイソシアネート等のポリイソシアネート単量体の他に、それらの複数分子がトリメチロールプロパン等の多価アルコールに付加したアダクト体、ジイソシアネート3分子がそれぞれの片末端イソシアナト基の部分でイソシアヌレート環を形成した3官能のイソシアヌレート体およびジイソシアネート3分子がそれぞれの片末端イソシアナト基の部分で水和・脱炭酸して形成されるビュレット体等のポリイソシアネート変性体等が挙げられる。好適に使用し得る市販のイソシアネート系架橋剤としては、例えば、ハイドランアシスター C−1(大日本インキ化学工業(株)製)等が挙げられる。
 アイオノマー型のウレタン樹脂を含む水系接着剤においては、粘度と接着性の観点から、そのウレタン樹脂の濃度は、10~70重量%程度となるように水中に溶解または分散されることが好ましく、20~50重量%以下がより好ましい。また、イソシアネート系架橋剤を配合する場合、その配合量は、ウレタン系樹脂100重量部に対してイソシアネート系架橋剤が5~100重量部程度となるように適宜選択される。
 こうしてなる水系接着剤を用いる場合、その接着剤を、透明保護フィルム、または偏光フィルムの接着面に塗布し、両者を貼り合わせて乾燥することにより、偏光フィルムと透明保護フィルムとの積層体を得ることができる。
 次に、活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有する無溶剤の樹脂組成物からなる接着剤について説明する。
 本発明の製造方法に用いられる前記接着剤とは、加熱や活性エネルギー線の照射により重合する硬化性の化合物と重合開始剤とを含有し有意量の溶剤を含まない硬化性組成物である。この硬化性の化合物は、反応性の観点からカチオン重合で硬化するものが好ましく、特にエポキシ化合物(エポキシ樹脂)を含有することが好ましい。
 このエポキシ化合物は、耐候性や屈折率等の観点から、分子内に芳香環を含まないものが好適に用いられる。分子内に芳香環を含まないエポキシ化合物を用いた接着剤は、例えば、特開2004−245925号公報に記載されている。このような芳香環を含まないエポキシ化合物としては、芳香族エポキシ化合物の水素化物、脂環式エポキシ化合物、および脂肪族エポキシ化合物等が挙げられる。
 芳香族エポキシ化合物の水素化物とは、芳香族エポキシ化合物を触媒の存在下、加圧下で芳香環に選択的に水素化反応を行うことにより得られるものである。芳香族エポキシ化合物しては、例えば、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテル、およびビスフェノールSのジグリシジルエーテルのようなビスフェノール型エポキシ化合物;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、およびヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂のようなノボラック型のエポキシ樹脂;テトラヒドロキシジフェニルメタンのグリシジルエーテル、テトラヒドロキシベンゾフェノンのグリシジルエーテル、およびエポキシ化ポリビニルフェノールのような多官能型のエポキシ化合物等が挙げられる。中でも、水素化されたビスフェノールAのジグリシジルエーテルが好ましい。
 脂環式エポキシ化合物とは、次式に示すような、脂環式環に結合したエポキシ基を分子内に少なくとも1個有する化合物である。
Figure JPOXMLDOC01-appb-I000001
(式中、mは2~5の整数を表す。)
 この式における(CH中の水素原子を1個または複数個取り除いた形の基が他の化学構造に結合した化合物が、脂環式エポキシ化合物となりうる。また、脂環式環を形成する水素がメチル基やエチル基のような直鎖状アルキル基で適宜置換されていてもよい。中でも、エポキシシクロペンタン環(上式においてm=3のもの)や、エポキシシクロヘキサン環(上式においてm=4のもの)を有する化合物を用いることが好ましい。脂環式エポキシ化合物の具体例として、次のものを挙げることができる。
 3,4−エポキシシクロヘキシルメチル 3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−6−メチルシクロヘキシルメチル 3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート、エチレンビス(3,4−エポキシシクロヘキサンカルボキシレート)、ビス(3,4−エポキシシクロヘキシルメチル) アジペート、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル) アジペート、ジエチレングリコールビス(3,4−エポキシシクロヘキシルメチルエーテル)、エチレングリコールビス(3,4−エポキシシクロヘキシルメチルエーテル)、2,3,14,15−ジエポキシ−7,11,18,21−テトラオキサトリスピロ−[5.2.2.5.2.2]ヘンイコサン(また、3,4−エポキシシクロヘキサンスピロ−2’,6’−ジオキサンスピロ−3’’,5’’−ジオキサンスピロ−3’’’,4’’’−エポキシシクロヘキサンとも命名できる化合物)、
 4−(3,4−エポキシシクロヘキシル)−2,6−ジオキサ−8,9−エポキシスピロ[5.5]ウンデカン、4−ビニルシクロヘキセンジオキサイド、ビス−2,3−エポキシシクロペンチルエーテル、およびジシクロペンタジエンジオキサイド等。
 脂肪族エポキシ化合物とは、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテルである。例えば、1,4−ブタンジオールのジグリシジルエーテル、1,6−ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、ポリプロピレングリコールのジグリシジルエーテル、エチレングリコールやポリプロピレングリコール、およびグリセリンのような脂肪族多価アルコールに1種または2種以上のアルキレンオキサイド(エチレンオキサイドやポリプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル等が挙げられる。
 ここに例示したエポキシ化合物は、それぞれ単独で使用してもよいし、また複数のエポキシ化合物を混合して使用してもよい。
 このようなエポキシ化合物のエポキシ当量は、通常、30~3000g/eqであり、50~1500g/eqが好ましい。エポキシ当量が30g/eqを下回ると、硬化後の保護フィルムの可撓性が低下したり、接着強度が低下したりする場合がある。一方、3000g/eqを超えると、他の成分との相溶性が低下する場合がある。
 前記硬化性組成物には、エポキシ化合物をカチオン重合で硬化させるためにカチオン重合開始剤が配合される。カチオン重合開始剤は、可視光線、紫外線、X線、および電子線等の活性エネルギー線の照射、または加熱により、カチオン種またはルイス酸を発生し、エポキシ基の重合反応を開始する。いずれのタイプのカチオン重合開始剤であっても、潜在性が付与されていることが作業性の観点から好ましい。
 以下、活性エネルギー線の照射によりカチオン種やルイス酸を生じる光カチオン重合開始剤について説明する。光カチオン重合開始剤を使用すると、常温での硬化が可能となり、偏光フィルムの耐熱性または熱膨張による内部応力を考慮する必要が減少し、透明保護フィルムと偏光フィルムとを良好に接着することができる。また、光カチオン重合開始剤は光で触媒的に作用するため、エポキシ化合物に混合しても保存安定性や作業性に優れる。活性エネルギー線の照射によりカチオン種やルイス酸を生じる化合物としては、例えば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩および芳香族スルホニウム塩のようなオニウム塩、ならびに鉄−アレン錯体等を挙げられる。中でも、特に芳香族スルホニウム塩は300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ良好な機械強度や接着強度を有する硬化物を与えることができるため、好ましく用いられる。
 このような光カチオン重合開始剤は市販品として容易に入手でき、例えば、それぞれ商品名で、カヤラッド PCI−220(日本化薬(株)製)、カヤラッド PCI−620(日本化薬(株)製)、UVI−6990(ユニオンカーバイド社製)、アデカオプトマー SP−150((株)ADEKA製)、アデカオプトマー SP−170((株)ADEKA製)、CI−5102(日本曹達(株)製)、CIT−1370(日本曹達(株)製)、CIT−1682(日本曹達(株)製)、CIP−1866S(日本曹達(株)製)、CIP−2048S(日本曹達(株)製)、CIP−2064S(日本曹達(株)製)、DPI−101(みどり化学(株)製)、DPI−102(みどり化学(株)製)、DPI−103(みどり化学(株)製)、DPI−105(みどり化学(株)製)、MPI−103(みどり化学(株)製)、MPI−105(みどり化学(株)製)、BBI−101(みどり化学(株)製)、BBI−102(みどり化学(株)製)、BBI−103(みどり化学(株)製)、BBI−105(みどり化学(株)製)、TPS−101(みどり化学(株)製)、TPS−102(みどり化学(株)製)、TPS−103(みどり化学(株)製)、TPS−105(みどり化学(株)製)、MDS−103(みどり化学(株)製)、MDS−105(みどり化学(株)製)、DTS−102(みどり化学(株)製)、DTS−103(みどり化学(株)製)、PI−2074(ローディア社製)等が挙げられる。
 光カチオン重合開始剤の配合量は、エポキシ化合物100重量部に対して、通常、0.5~20重量部であり、1重量部~15重量部が好ましい。
 硬化性組成物には、必要に応じて光増感剤を併用することができる。光増感剤を使用することで反応性が向上し、硬化物の機械強度や接着強度を向上させることができる。光増感剤としては、例えば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾおよびジアゾ化合物、ハロゲン化合物、ならびに光還元性色素等が挙げられる。光増感剤を配合する場合、その配合量は、光カチオン重合性エポキシ樹脂組成物を100重量部として、通常、0.1~20重量部程度である。
 次に、熱カチオン重合開始剤について説明する。加熱によりカチオン種またはルイス酸を発生する化合物としては、ベンジルスルホニウム塩、チオフェニウム塩、チオラニウム塩、ベンジルアンモニウム、ピリジニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル、およびアミンイミド等を挙げられる。これらの熱カチオン重合開始剤も、市販品を容易に入手することができ、例えば、いずれも商品名で、アデカオプトン CP77((株)ADEKA製)、アデカオプトン CP66((株)ADEKA製)、CI−2639(日本曹達(株)製)、CI−2624(日本曹達(株)製)、サンエイド SI−60L(三新化学工業(株)製)、サンエイド SI−80L(三新化学工業(株)製)、サンエイド SI−100L(三新化学工業(株)製)等が挙げられる。
 前記の光カチオン重合と熱カチオン重合を併用することも、有用な技術である。
 エポキシ系接着剤は、さらにオキセタン類やポリオール類等のカチオン重合を促進する化合物を含有してもよい。
 こうして得られる硬化性組成物からなる接着剤を、透明保護フィルムまたは偏光フィルムの接着面に塗布し、両者を貼り合わせた後、接着剤を硬化させることにより、偏光フィルムと透明保護フィルムとの積層体を得ることができる。この接着剤を透明保護フィルムまたは偏光フィルムに塗工する方法に特別な限定はなく、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、およびグラビアコーター等、種々の塗工方式が採用される。接着剤層の厚さは、通常、1μm以上、50μm以下であり、20μm以下が好ましく、10μm以下がさらに好ましい。
 活性エネルギー線の照射により接着剤の硬化を行う場合、用いられる光源としては、特に限定されるものではないが、波長400nm以下に発光分布を有する、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯およびメタルハライドランプ等が挙げられる。接着剤組成物への光照射強度は、その組成物の硬化性によって決定されるものであり、特に制限されるものではないが、たとえば、光カチオン重合開始剤の活性化に有効な波長領域の照射強度が0.1~100mW/cmであることが好ましい。接着剤組成物への光照射強度が0.1mW/cm未満であると、反応時間が長くなりすぎ、100mW/cmを超えると、ランプから輻射される熱および硬化性エポキシ樹脂組成物の重合時の発熱により、硬化性エポキシ樹脂組成物の黄変や偏光フィルムの劣化を生じる場合がある。同様に、接着剤組成物への光照射時間は、その組成物の硬化性によって決定されるものであり、特に制限されるものではないが、たとえば、照射強度と照射時間との積として表される積算光量が10~5000mJ/cmとなるように設定されることが好ましい。硬化性エポキシ樹脂組成物への積算光量が10mJ/cm未満であると、光カチオン重合開始剤由来の活性種の発生が十分でなく、接着剤の硬化が不十分となる場合がある。また、積算光量が5000mJ/cmを超えると、照射時間が非常に長くなり、生産性向上には不利なものとなる。
 熱により接着剤の硬化を行なう場合、一般的に知られた方法で加熱することができ、その条件等も特に限定されるものではないが、通常、硬化性エポキシ樹脂組成物に配合された熱カチオン重合開始剤がカチオン種やルイス酸を発生する温度以上で加熱が行なわれ、たとえば、50~200℃程度である。
 活性エネルギー線の照射または加熱のいずれの条件で硬化させる場合でも、片面保護フィルム付き偏光板の偏光度、透過率、色相、透明保護フィルムの透明性等の諸機能が低下しない範囲で硬化させることが好ましい。接着剤組成物を硬化してなる硬化層の厚さは、通常、50μm以下であり、20μm以下が好ましく、10μm以下がより好ましい。
 (剥離性フィルム)
 本発明の製造方法で用いられる粘着性を有する剥離性フィルムとしては、剥離が容易になるよう低分子量の粘着剤処理がなされたフィルムが使用でき、例えば、ポリエチレンテレフタレートおよびポリエチレンナフタレート等のポリエステル系樹脂;環状オレフィン系樹脂;ポリエチレン、ポリプロピレンおよびプロピレン/エチレン共重合体等の鎖状オレフィン系樹脂等を使用できる。中でも、粘着性を適宜調節することができ、市販品の入手が容易であるという点から、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、またはポリエチレンフィルムが好ましく用いられる。
 剥離性フィルムは自己粘着性を有しており、偏光フィルムにおける透明保護フィルムが貼合される面とは反対側の面に、直接貼合することができる。
 こうして、接着剤により偏光フィルムの片面に透明保護フィルムが貼合され、反対側の面には粘着性を有する剥離性フィルムが貼合された片面透明保護フィルム付き偏光板は、一旦、巻き取り装置によって塩化ビニル管等のコアに巻き取られる。なお、偏光フィルムに透明保護フィルムを貼合する工程と、偏光フィルムに剥離性フィルムを貼合する工程とは、いずれを先に行ってもよく、同時に行ってもよい。
 (位相差フィルム)
 本発明の製造方法に用いられる位相差フィルムは、オレフィン系樹脂からなり、n>n>nの関係を満たす、いわゆる二軸性の位相差フィルムであることが好ましい。オレフィン系樹脂とは、主に、エチレン、プロピレン等の鎖状脂肪族オレフィン、または、ノルボルネンやその置換体(以下、これらを総称してノルボルネン系モノマーとも称する。)等の脂環式オレフィンから誘導される構成単位からなる樹脂である。オレフィン系樹脂は、2種以上のモノマーを用いた共重合体であってもよい。
 中でも、主に脂環式オレフィンから誘導される構成単位を主に含む樹脂であることが好ましく、重合後も脂環式オレフィン由来の環状構造が主鎖中に残っている環状オレフィン系樹脂がより好ましく用いられる。環状オレフィン系樹脂を構成する脂環式オレフィンの典型的な例としては、ノルボルネン系モノマー等を挙げることができる。ノルボルネンとは、ノルボルナンの1つの炭素−炭素結合が二重結合となった化合物であって、IUPAC命名法によれば、ビシクロ[2,2,1]ヘプト−2−エンと命名されるものである。ノルボルネンの置換体の例としては、ノルボルネンの二重結合位置を1,2−位として、3−置換体、4−置換体、4,5−ジ置換体等を挙げることができ、さらにはジシクロペンタジエンやジメタノオクタヒドロナフタレン等も挙げることができる。このような主にノルボルネン系モノマーから誘導される構成単位からなる樹脂は、一般にノルボルネン系樹脂と呼ばれている。
 ノルボルネン系モノマーから誘導される構成単位を含むノルボルネン系樹脂は、その構成単位にノルボルナン環を有していてもよいし、有していなくてもよい。構成単位にノルボルナン環を有さないノルボルネン系樹脂を形成するノルボルネン系モノマーとしては、例えば、開環により5員環となるもの、代表的には、ノルボルネン、ジシクロペンタジエン、1−または4−メチルノルボルネンならびに4−フェニルノルボルネン等が挙げられる。ノルボルネン系樹脂が共重合体である場合、その分子の配列状態は特に限定されず、ランダム共重合体であってもよいし、ブロック共重合体であってもよいし、グラフト共重合体であってもよい。
 環状オレフィン系樹脂としては、例えば、ノルボルネン系モノマーの開環重合体、ノルボルネン系モノマーと他のモノマーとの開環共重合体、それらにマレイン酸付加やシクロペンタジエン付加等がなされたポリマー変性物、さらにはこれらを水素添加した重合体または共重合体;ノルボルネン系モノマーの付加重合体、およびノルボルネン系モノマーと他のモノマーとの付加共重合体等が挙げられる。共重合体における他のモノマーとしては、α−オレフィン類、シクロアルケン類、および非共役ジエン類等が挙げられる。また、環状オレフィン系樹脂は、ノルボルネン系モノマーおよび他の脂環式オレフィンの1種または2種以上を用いた共重合体であってもよい。
 中でも、環状オレフィン系樹脂としては、ノルボルネン系モノマーを用いた開環重合体または開環共重合体に水素添加した樹脂が好ましく用いられる。このようなノルボルネン系樹脂へ延伸処理を施したフィルム状物とし、これに所定の収縮率を有する収縮性フィルムを貼り合わせて加熱収縮させることにより、均一性が高く、大きな位相差値を有する位相差フィルムを得ることができる。このようなノルボルネン系モノマーを用いた開環重合体または開環共重合体の水素添加物の市販品としては、いずれも商品名で、ゼオネックス(日本ゼオン(株)製)、ゼオノア(日本ゼオン(株)製)、アートン(JSR(株)製)等がある。これらのノルボルネン系樹脂のフィルムやその延伸フィルムも、例えば、ゼオノアフィルム((株)オプテス製)、アートンフィルム(JSR(株)製)、エスシーナ(積水化学工業(株)製)等がそれぞれ販売されている。
 また、本発明の製造方法に用いられる位相差フィルムには、オレフィン系樹脂を2種類以上含む混合樹脂からなるフィルムや、オレフィン系樹脂と他の熱可塑性樹脂との混合樹脂からなるフィルムを用いることもできる。例えば、オレフィン系樹脂を2種類以上含む混合樹脂の例としては、前記したような環状オレフィン系樹脂と非環状脂肪族オレフィン系樹脂との混合物を挙げることができる。オレフィン系樹脂と他の熱可塑性樹脂との混合樹脂を用いる場合、他の熱可塑性樹脂は、目的に応じて適宜適切なものが選択される。例えば、ポリ塩化ビニル系樹脂、セルロース系樹脂、ポリスチレン系樹脂、アクリロニトリル/ブタジエン/スチレン共重合樹脂、アクリロニトリル/スチレン共重合樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂、ポリカーボネート系樹脂、変性ポリフェニレンエーテル系樹脂、ポリブチレンテレフタレート系樹脂、ポリエチレンテレフタレート系樹脂、ポリフェニレンスルフィド系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリアリレート系樹脂、液晶性樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂、およびポリテトラフルオロエチレン系樹脂等が挙げられる。これらの熱可塑性樹脂は、それぞれ単独で、または2種以上組み合わせて用いることができる。また、前記熱可塑性樹脂は、任意の適切なポリマー変性を行ってから用いることもできる。ポリマー変性の例としては、共重合、架橋、分子末端変性、および立体規則性付与等が挙げられる。
 オレフィン系樹脂と他の熱可塑性樹脂との混合樹脂を用いる場合、他の熱可塑性樹脂の含有量は、樹脂全体に対して、通常、50重量%以下であり、40重量%以下が好ましい。他の熱可塑性樹脂の含有量をこの範囲内とすることによって、光弾性係数の絶対値が小さく、良好な波長分散特性を示し、かつ、耐久性や機械的強度、透明性に優れる位相差フィルムを得ることができる。
 このようなオレフィン系樹脂は、一般に用いられる溶液からのキャスティング法や溶融押出法等により、フィルムに製膜することができる。2種以上の混合樹脂からフィルムを製膜する場合、その製膜方法については特に限定されず、例えば、樹脂成分を所定の割合で溶媒とともに撹拌混合して得られる均一溶液を用いてキャスティング法によりフィルムを作製する方法、および樹脂成分を所定の割合で溶融混合し、溶融押出法によりフィルムを作製する方法等が採用される。
 前記オレフィン系樹脂からなるフィルムは、本発明の目的を損なわない範囲で、残存溶媒、安定剤、可塑剤、老化防止剤、帯電防止剤、および紫外線吸収剤等、その他の成分を必要に応じて含有していてもよい。また、表面粗さを小さくするため、レベリング剤を含有することもできる。
 本発明の製造方法に用いられる位相差フィルムは、その面内遅相軸方向、面内進相軸方向および厚み方向の屈折率をそれぞれn、nおよびnとし、厚みをd(nm)とするとき、波長590nmの光に対して式(1)および(2)を満たすものが好ましい。
 100nm≦(n−n)×d≦300nm     (1)
 0.1≦(n−n)/(n−n)≦0.7   (2)
 このような特定の屈折率異方性を有する位相差フィルムを用いることにより、複合偏光板を液晶表示装置に適用した際に、液晶セルの表示特性を広い角度にわたって好適に補償することができる。
 位相差フィルムの厚みは、20~500μm程度の範囲内とすることができ、好ましくは20~300μmである。厚みがこの範囲内であれば、フィルムの十分な自己支持性が得られ、広範囲の位相差を得ることができる。
 この位相差フィルムをλ/2板として用いる場合、前記波長590nmの光に対する面内位相差値は200~300nm程度の範囲内であることが好ましく、240~300nmの範囲内であることがより好ましい。この波長590nmの光に対する面内位相差値を、測定波長の約1/2とすることによって、液晶表示装置の表示特性をより一層改善することができる。位相差フィルムをλ/2板として用いる場合、厚み方向への配向を十分に行うために、その厚みは80~160μmの範囲内にあることが好ましい。より好ましくは85~145μmの範囲内である。なお、この位相差フィルムは、λ/4板として用いられてもよい。
 この位相差フィルムのN係数(前記式(2)における(n−n)/(n−n))は、0.1~0.7が好ましく、0.3~0.6がより好ましい。位相差フィルムのN係数を0.5付近とすると、角度によらず位相差値がほぼ一定の特性を達成することができ、液晶表示装置の表示特性をより一層改善することができる。
 この位相差フィルムの幅は、前記偏光板より10%以上小さいことが、生産性向上の効果が際立つために好ましい。さらに、その幅が前記偏光板の40~50%の範囲であれば、片面透明保護フィルム付き偏光板をその半分の幅へ裁断(スリット)することにより、その双方ともに位相差フィルムとの貼合に用いることができるためより好ましい。
 [複合偏光板の第一の製造方法]
 〔1〕工程(A)
 本発明の複合偏光板の第一の製造方法においては、まず、偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する(工程(A))。
 〔2〕工程(B)
 本発明の複合偏光板の第一の製造方法は、次に、上述のようにして作製した片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断(スリット)する(工程(B))。片面透明保護フィルム付き偏光板の裁断後の幅は、位相差フィルムの幅に応じて適宜設定されるが、例えば、裁断後の片面透明保護フィルム付き偏光板の少なくとも一断片は、位相差フィルムの幅と同じ幅とされることが好ましい。
 片面透明保護フィルム付き偏光板を裁断する方法は、特に限定されるものではないが、通常、巻き取られた片面透明保護フィルム付き偏光板をスリッター(長尺方向の裁断機)へ繰り出すと同時に裁断し、次いで裁断された複数の断片を再び巻き取る方法が採用される。
 〔3〕工程(C)
 本発明の複合偏光板の第一の製造方法においては、次に、上記工程(B)で裁断された片面透明保護フィルム付き偏光板の剥離性フィルムを除去するとともに、その偏光フィルム面と位相差フィルムとを活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有するエポキシ樹脂組成物を用いて貼合する(工程(C))。
 (位相差フィルム貼合用エポキシ樹脂組成物)
 偏光フィルムと位相差フィルムとの接着に用いられる、活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有するエポキシ樹脂組成物は、無溶剤であることが好ましい。該エポキシ樹脂組成物としては、偏光フィルムと透明保護フィルムとの接着に用いられる接着剤として例示したものと同様のものが挙げられる。
 片面保護フィルム付き偏光板と位相差フィルムとをこの接着剤で接着する方法としては、特に限定されるものではないが、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、およびグラビアコーター等、種々の塗工方式が採用される。また、偏光フィルムと保護フィルムの間に前記接着剤組成物を滴下した後、ロール等で偏光フィルムと保護フィルムを加圧して均一に押し広げる方法も利用できる。ここで、ロールの材質は金属やゴム等を用いることが可能であり、これらロールは同じ材質であってもよく、異なる材質であっても良い。接着剤層の厚さは、通常、50μm以下であり、20μm以下が好ましく、10μm以下がより好ましい。
 活性エネルギー線の照射により接着剤の硬化を行う場合、用いられる光源としては、特に限定されるものではないが、波長400nm以下に発光分布を有する、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯およびメタルハライドランプ等が挙げられる。接着剤組成物への光照射強度は、その組成物の硬化性によって決定されるものであり、特に制限されるものではないが、例えば、光カチオン重合開始剤の活性化に有効な波長領域の照射強度が0.1~100mW/cmであることが好ましい。接着剤組成物への光照射強度が0.1mW/cm未満であると、反応時間が長くなりすぎ、100mW/cmを超えると、ランプから輻射される熱および硬化性エポキシ樹脂組成物の重合時の発熱により、硬化性エポキシ樹脂組成物の黄変や偏光フィルムの劣化を生じる場合がある。同様に、接着剤組成物への光照射時間は、その組成物の硬化性によって決定されるものであり、特に制限されるものではないが、例えば、照射強度と照射時間との積として表される積算光量が10~5000mJ/cmとなるように設定されることが好ましい。硬化性エポキシ樹脂組成物への積算光量が10mJ/cm未満であると、光カチオン重合開始剤由来の活性種の発生が十分でなく、接着剤の硬化が不十分となる場合がある。また、積算光量が5000mJ/cmを超えると、照射時間が非常に長くなり、生産性向上には不利なものとなる。
 熱により接着剤の硬化を行う場合、一般的に知られた方法で加熱することができ、その条件等も特に限定されるものではないが、通常、硬化性エポキシ樹脂組成物に配合された熱カチオン重合開始剤がカチオン種やルイス酸を発生する温度以上で加熱が行われ、例えば、50~200℃程度である。
 活性エネルギー線の照射または加熱のいずれの条件で硬化させる場合でも、片面保護フィルム付き偏光板の偏光度、透過率、色相、透明保護フィルムの透明性、および位相差フィルムの位相差特性等、複合偏光板の諸機能が低下しない範囲で硬化させることが好ましい。接着剤組成物を硬化してなる硬化層の厚さは、通常、50μm以下であり、20μm以下が好ましく、10μm以下がより好ましい。
 本発明の複合偏光板の第一の製造方法においては、複合偏光板に貼合された位相差フィルムの外側に、さらに粘着剤層が設けられてもよい。その粘着剤層は、液晶セル等の他の部材との貼合に好適に用いることができる。こうしてなる複合偏光板は、通常、液晶セルへの貼合にあたりその位相差フィルム側が液晶セルに向き合うように配置される。
 [複合偏光板の第二の製造方法]
 本発明の複合偏光板の第二の製造方法は、以下の工程(A)、工程(B)、工程(C)、工程(D)および工程(E)を含む。
 ・工程(A)
 偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する工程
 ・工程(B)
 前記片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断する工程
 ・工程(C)
 剥離性フィルムを偏光フィルム面から除去する工程
 ・工程(D)
 前記位相差フィルムの片面、または、前記工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を積層する工程
 ・工程(E)
 前記剥離性フィルムが除去された偏光フィルム面に、前記粘着剤層を介して前記位相差フィルムを貼合する工程。
 このような本発明の複合偏光板の第二の製造方法は、大きく3つの実施態様(第一の態様、第二の態様および第三の態様)を包含する。まずは、本発明の第二の製造方法に包含される各実施態様について説明する。
 <第一の態様>
 本発明の第二の製造方法における第一の態様は、上述した工程(A)、工程(B)、工程(C)、工程(D)および工程(E)をこの順で含み、工程(D)において、粘着剤層が、工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に積層される。
 本発明の第二の製造方法における第一の態様では、まず、偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する(工程(A))。
 本発明の第二の製造方法における第一の態様では、次に、上述したようにして作製した片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断(スリット)する(工程(B))。透明保護フィルム付き偏光板の裁断後の幅は、位相差フィルムの幅に応じて適宜設定されるが、たとえば、裁断後の片面透明保護フィルム付き偏光板の少なくとも一断片は、位相差フィルムの幅と同じ幅とされることが好ましい。
 片面透明保護フィルム付き偏光板を裁断する方法は、特に限定されるものではないが、通常、巻き取られた片面透明保護フィルム付き偏光板をスリッター(長尺方向の裁断機)へ繰り出すと同時に裁断し、次いで裁断された複数の断片を再び巻き取る方法が採用される。また、位相差フィルムの幅に合わせて裁断された偏光板を、その場で粘着剤を介して位相差フィルムと貼合する方法も採用される。
 本発明の第二の製造方法における第一の態様では、次に、剥離性フィルムを偏光フィルム面から除去する(工程(C))。さらに、本発明の第二の製造方法における第一の態様では、当該工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面(剥離性フィルムが貼合されていた面)に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を積層する(工程(D))。
 (粘着剤)
 粘着剤層の形成に用いられる粘着剤は、80℃での貯蔵弾性率が0.1MPa以上であり、好ましくは0.15~10MPaである。80℃での貯蔵弾性率が0.1MPa未満である場合には、高温環境と低温環境が繰り返されたとき発生する偏光フィルムの寸法変化に追随できないため気泡、はがれが発生するなどの不具合があるためである。また、この粘着剤の23℃の温度における貯蔵弾性率は0.1MPa以上が好ましく、0.2~10MPaがより好ましい。なお、貯蔵弾性率は一般的に温度が高い条件ほど低くなる傾向があるため、80℃で測定した材料の貯蔵弾性率が0.1MPa以上であれば、通常、23℃で測定した同じ材料の貯蔵弾性率はそれ以上の値を示す。
 ここで、貯蔵弾性率(動的弾性率)とは、一般的に用いられる粘弾性測定の用語を意味するものであるが、試料に時間によって変化(振動)する歪または応力を与えて、それによって発生する応力または歪を測定することにより、試料の力学的な性質を測定する方法(動的粘弾性測定)によって求められる値である。具体的には、試料に加える正弦波形の歪(応力)によって発生する応力(歪)を、歪(応力)と同位相の成分と90度ずれた位相の成分の波に分けたとき、歪(応力)と同位相の応力(歪)成分から算出される弾性率をいう。貯蔵弾性率は、市販の粘弾性測定装置、例えば、後述する実施例に示すような動的粘弾性測定装置(Dynamic Analyzer RDA II:REOMETRIC社製)を用いて測定することができる。粘弾性測定装置の温度制御には、循環恒温槽、電気ヒーター、ペルチェ素子等の種々公知の温度制御デバイスが用いられており、これによって測定時の温度を設定することができる。
 通常の画像表示装置またはそれに適用される光学フィルムに用いられている粘着剤は、その貯蔵弾性率が高々0.1MPa程度であるが、本発明の製造方法に用いる粘着剤は、上述したようにその貯蔵弾性率が高いものである。このような高い貯蔵弾性率を有する、すなわち硬い粘着剤を用いることにより、高温環境下に置かれたときや、高温環境と低温環境が繰り返されたときの凝集力不足を補うことができ、そのときに発生する偏光フィルムの収縮に伴う寸法変化を抑制できる。この作用により、本発明の複合偏光板は良好な耐久性を有する。
 本発明の製造方法に用いられる具体的な高弾性粘着剤としては、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、およびポリエーテル等を主に含有する組成物で構成することができる。中でも、アクリル系ポリマーのように、光学的な透明性に優れ、適度の濡れ性や凝集力を保持し、基材との接着性にも優れ、さらに耐候性や耐熱性等を有し、加熱や加湿の条件下で浮きや剥がれ等の剥離問題を生じないものを選択して用いることが好ましい。アクリル系ポリマーにおいては、メチル基、エチル基およびブチル基等の炭素数が20以下のアルキル基を有するアクリル酸のアルキルエステルと、(メタ)アクリル酸や(メタ)アクリル酸ヒドロキシエチル等からなる官能基含有アクリル系モノマーとを、ガラス転移温度が好ましくは25℃以下、さらに好ましくは0℃以下となるように配合した、重量平均分子量が10万以上のアクリル系共重合体が有用である。
 アクリル系ポリマーとしては、特に限定されるものではないが、(メタ)アクリル酸ブチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソオクチル、および(メタ)アクリル酸2−エチルヘキシル等の(メタ)アクリル酸エステル系ポリマーや、これらの(メタ)アクリル酸エステルを2種類以上用いた共重合系ポリマーが好適に用いられる。また、これらのアクリル系ポリマーには、極性モノマーが共重合されていてもよい。極性モノマーとしては、例えば、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリルアミド、2−N,N−ジメチルアミノエチル(メタ)アクリレート、およびグリシジル(メタ)アクリレート等の、カルボキシル基、水酸基、アミド基、アミノ基、およびエポキシ基等の極性官能基を有するモノマーを挙げることができる。
 これらのアクリル系ポリマーは、単独でも粘着剤として使用可能であるが、通常、架橋剤が配合された粘着剤組成物とされる。架橋剤としては、2価または多価金属イオンであって、カルボキシル基との間でカルボン酸金属塩を形成するもの、ポリアミン化合物であって、カルボキシル基との間でアミド結合を形成するもの、ポリエポキシ化合物やポリオール化合物であって、カルボキシル基との間でエステル結合を形成するもの、およびポリイソシアネート化合物であって、カルボキシル基との間でアミド結合を形成するもの等が例示される。中でもポリイソシアネート化合物が好ましく用いられる。
 粘着剤の貯蔵弾性率を高い値にするための手段としては、特に限定されるものではないが、例えば、上述した粘着剤組成物に、オリゴマー、具体的にはウレタンアクリレート系のオリゴマーを配合する方法が好ましく採用される。さらに、このようなウレタンアクリレート系オリゴマーを配合した粘着剤組成物にエネルギー線を照射して硬化させる方法が、より高い貯蔵弾性率を有するようになるためより好ましく採用される。ウレタンアクリレート系オリゴマーが配合された粘着剤、またはそれを支持フィルム(セパレータ)上に塗工し紫外線硬化させたセパレータ付き粘着剤は公知であり、粘着剤メーカーから入手できる。
 粘着剤組成物には、上述したポリマー、架橋剤およびオリゴマーの他に、必要に応じて、粘着剤の粘着力、凝集力、粘性、弾性率およびガラス転移温度等を調整するために、例えば、天然物や合成物である樹脂類、粘着性付与樹脂、酸化防止剤、紫外線吸収剤、染料、顔料、消泡剤、腐食抑制剤および光重合開始剤等の適宜な添加剤を配合することもできる。紫外線吸収剤としては、例えば、サリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、およびニッケル錯塩系化合物等が挙げられる。
 また、本発明の製造方法で用いられる粘着剤は、光拡散剤を配合して光拡散性粘着剤とすることができる。ここで用いる光拡散剤は、粘着剤層を構成するポリマーとは屈折率が異なる微粒子であればよく、無機化合物からなる微粒子や有機化合物(ポリマー)からなる微粒子を用いることができる。
 無機化合物からなる微粒子としては、例えば、酸化アルミニウム(屈折率:1.76)および酸化ケイ素(屈折率:1.45)等が挙げられる。また、有機化合物(ポリマー)からなる微粒子としては、例えば、メラミンビーズ(屈折率:1.57)、ポリメタクリル酸メチルビーズ(屈折率:1.49)、メタクリル酸メチル/スチレン共重合体樹脂ビーズ(屈折率:1.50~1.59)、ポリカーボネートビーズ(屈折率:1.55)、ポリエチレンビーズ(屈折率:1.53)、ポリスチレンビーズ(屈折率:1.6)、ポリ塩化ビニルビーズ(屈折率:1.46)、およびシリコーン樹脂ビーズ(屈折率:1.46)等が挙げられる。
 前記アクリル系ポリマーを含めて、粘着剤層を構成する樹脂組成物は、通常、1.4前後の屈折率を有するので、配合する光拡散剤はその屈折率が1~2程度のものから適宜選択すればよい。粘着剤層を構成する組成物中のポリマーと光拡散剤との屈折率差は、通常、0.01以上であり、また画像表示装置の明るさと視認性の観点から、0.01~0.5が好ましい。光拡散剤として用いる微粒子は、球形のもの、それも単分散に近いものが好ましく、例えば、平均粒径が2~6μm程度の範囲にある微粒子が好適に用いられる。
 光拡散剤の配合量は、それが配合された光拡散性粘着剤層に必要とされるヘイズ値や、それが適用される画像表示装置の明るさ等を考慮して適宜決められるが、通常、粘着剤層を構成するベースポリマー100重量部に対して3~30重量部程度である。
 また、光拡散性粘着剤層に必要とされるヘイズ値は、それを用いて得られる複合偏光板が適用された画像表示装置の明るさを確保するとともに、表示像のにじみやボケを生じにくくする観点から、20~80%の範囲が好ましい。ヘイズは、JIS K 7105に規定され、(拡散透過率/全光線透過率)×100(%)で表される値である。
 さらに、粘着剤層の厚みおよび光拡散性粘着剤層の厚みは、その接着力等に応じて決定されるが、通常、1~40μmの範囲である。さらに、この厚みはそれを用いて製造される複合偏光板が良好な加工性を保ち、高い耐久性を示し、またその複合偏光板を用いた画像表示装置が正面から見た場合や斜めから見た場合の明るさを保ち、表示像のにじみやボケが生じにくくする観点から、3~25μmがより好ましい。
 本発明の第二の製造方法では、裁断された片面透明保護フィルム付き偏光板の偏光フィルムの表面(第一の態様、ならびに、後述する第二の態様)もしくは位相差フィルムの表面(後述する第三の態様)に粘着剤層が形成される。偏光フィルムに貼合されている粘着性を有する剥離性フィルムは、粘着剤層の形成の前に剥離除去される。
 粘着剤層の形成には、裁断された片面透明保護フィルム付き偏光板の偏光フィルムの表面(第一の態様、第二の態様)もしくは位相差フィルムの表面(第三の態様)に粘着剤溶液を塗布し乾燥する方法が好ましく採用される。また、離型処理が施された支持フィルム(セパレータ)の離型処理面に粘着剤層が形成されたもの(セパレータ付き粘着剤)を用意し、それを前記偏光フィルムの表面もしくは位相差フィルムの表面に貼り合わせる方法も好ましく採用される。
 粘着剤溶液には、例えば、トルエンや酢酸エチル等の有機溶媒に前記粘着剤組成物を構成する原料を溶解または分散させて、たとえば10~40重量%溶液としたものが用いられる。こうして形成された粘着剤層には、シリコーン系等の離型剤による処理が施された樹脂フィルムからなるセパレータを積層してあってもよい。
 さらに、裁断された片面透明保護フィルム付き偏光板の偏光フィルム面もしくは位相差フィルムの表面に粘着剤層を形成する際に、必要に応じて、前記偏光フィルム面もしくは位相差フィルムの表面に密着性を向上させるための処理、例えば、コロナ処理等を施してもよく、同様の処理を前記偏光フィルム面に貼り合わされる粘着剤層の表面に施してもよい。
 本発明の複合偏光板の第二の製造方法における第一の態様では、次に、前記剥離性フィルムが除去された偏光フィルム面に、前記粘着剤層を介して前記位相差フィルムを貼合する(工程(E))。
 粘着剤層が積層された片面透明保護フィルム付き偏光板と位相差フィルムとの貼合方法としては、特に限定されるものではないが、例えば、貼合ロール等を用いて、片面透明保護フィルム付き偏光板の偏光透過軸に対して位相差フィルムの遅相軸が直交または平行となるように積層する方法や、偏光フィルムの偏光透過軸に対して位相差フィルムの遅相軸が所定の角度となるように貼合する方法が採用される。特に、片面透明保護フィルム付き偏光板と位相差フィルムとを各々の長尺ロールから繰り出し長辺方向を合わせて連続的に貼合する方法は、生産性よく複合偏光板を製造することができるため好ましく採用される。
 <第二の態様>
 本発明の第二の製造方法におけるにおける第二の態様は、上述した工程(A)、工程(C)、工程(D)、工程(B)および工程(E)をこの順で含み、前記工程(D)において、前記粘着剤層は、前記工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に積層される。
 本発明の第二の製造方法における第二の態様では、まず、上述した第一の態様と同様に、偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する(工程(A))。透明保護フィルムおよび偏光フィルムの作製、ならびにそれらの接着としては、上述した第一の態様における工程(A)と同様になされる。
 本発明の第二の製造方法における第二の態様では、次に、剥離性フィルムを偏光フィルム面から除去する(工程(C))。そして、当該工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を積層する(工程(D))。この剥離性フィルムの除去および粘着剤層の形成は、上述した第一の態様における工程(C)、工程(D)と同様になされる。
 本発明の第二の製造方法における第二の態様では、次に、片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断する(工程(B))。この片面透明保護フィルム付き偏光板の裁断は、上述した第一の態様における工程(B)と同様になされる。この第二の態様においては、片面透明保護フィルム付き偏光板の裁断は、粘着剤層が積層されたまま行われる。
 本発明の第二の製造方法における第二の態様では、最後に、前記剥離性フィルムが除去された偏光フィルム面に、前記粘着剤層を介して前記位相差フィルムを貼合する(工程(E))。位相差フィルムの作製、ならびにその貼合は、上述した第一の態様における工程(E)と同様になされる。こうして第二の態様により得られる複合偏光板は、上述した第一の態様により得られる複合偏光板と同様の構成となる。
 <第三の態様>
 本発明の第二の製造方法における第三の態様は、上述した工程(A)、工程(B)、工程(C)および工程(E)をこの順で含み、前記工程(D)において、粘着剤層は、位相差フィルムの片面に積層される。
 本発明の第二の製造方法における第三の態様では、まず、上述した第一の態様と同様に、偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する(工程(A))。透明保護フィルムおよび偏光フィルムの作製、ならびにそれらの接着としては、上述した第一の態様における工程(A)と同様になされる。
 本発明の第二の製造方法における第三の態様では、次に、片面透明保護フィルム付き偏光板を、前記位相差フィルムの幅に合わせて長尺方向に沿って裁断する(工程(B))。次に、剥離性フィルムを偏光フィルム面から除去する(工程(C))。この片面透明保護フィルム付き偏光板の裁断および剥離性フィルムの除去は、上述した第一の態様における工程(B)、工程(C)と同様になされる。
 一方、本発明の第二の製造方法における第三の態様では、位相差フィルム面上に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を積層する(工程(D))。位相差フィルムの構成およびその作製方法は、第一の態様で説明したものと同様である。また、位相差フィルムへの粘着剤層の積層は、第一の態様の工程(D)と同様にして行うことができる。第三の態様において、工程(D)が実施されるタイミングは、特に限定されるものではなく、後述の工程(E)がなされるまでに実施されればよい。すなわち、工程(D)は、工程(A)の前に行ってもよいし、工程(A)、工程(B)および工程(C)のいずかと並列して、あるいはそれらのいずれかの後に行ってもよい。要は、工程(C)で剥離性フィルムが除去された偏光フィルム面に、粘着剤層付き位相差フィルムが供給されるようにすればよい。
 本発明の第二の製造方法における第三の態様でも、最後に、前記剥離性フィルムが除去された偏光フィルム面に、前記粘着剤層を介して前記位相差フィルムを貼合する(工程(E))。位相差フィルムの作製、ならびにその貼合は、上述と同様になされる。こうして第三の態様により得られる複合偏光板は、上述した第一の態様により得られる複合偏光板と同様の構成となる。
 本発明の複合偏光板の第二の製造方法においては、複合偏光板に貼合された位相差フィルムの外側に、さらに粘着剤層が設けられてもよい。その粘着剤層は、液晶セル等の他の部材との貼合に好適に用いることができる。この粘着剤層は、複合偏光板を作製した後に形成しても、片面透明保護フィルム付き偏光板と位相差フィルムとを貼合する前に、位相差フィルムに予め形成しておいてもよい。こうしてなる複合偏光板は、通常、液晶セルへの貼合にあたりその位相差フィルム側が液晶セルに向き合うように配置される。
 本発明の製造方法により製造された複合偏光板は、その位相差フィルム側と液晶セルを粘着剤層を介して貼合することで、液晶表示装置とすることができる。この複合偏光板を貼合した液晶表示装置の裏面側には、同種の偏光板、または公知の偏光板を貼合することができる。また、貼合される液晶パネルの動作モードは、本発明の複合偏光板の屈折率特性により良好に光学補償されるIPSモードが好ましい。
(Polarizing film)
The polarizing film used in the method for producing a composite polarizing plate of the present invention has a function of selectively transmitting unidirectional linearly polarized light from natural light. For example, an iodine polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film, a dye polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol film, and a dichroic dye in a lyotropic liquid crystal state Examples thereof include a coating type polarizing film coated, oriented and fixed. These iodine-based polarizing films, dye-based polarizing films, and coating-type polarizing films have a function of selectively transmitting one direction of linearly polarized light from natural light and absorbing the other direction of linearly polarized light. It is called a type polarizing film.
The polarizing film used in the production method of the present invention has a function of selectively transmitting one direction of linearly polarized light from natural light and reflecting or scattering another direction of linearly polarized light as well as the above-described absorption polarizing film. What is called a reflective polarizing film or a scattering polarizing film may be used. Moreover, the polarizing film specifically mentioned here is not necessarily limited to these, What is necessary is just to have a function which selectively permeate | transmits the linearly polarized light of a certain one direction from natural light. Among these polarizing films, it is preferable to use an absorptive polarizing film having excellent visibility, and among them, it is more preferable to use an iodine polarizing film having excellent polarization degree and transmittance as the polarizing film.
The polyvinyl alcohol resin used for the polyvinyl alcohol film can be obtained by saponifying a polyvinyl acetate resin. Examples of the polyvinyl acetate resin include, in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate, copolymers with other monomers copolymerizable with vinyl acetate. Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, unsaturated sulfonic acids, olefins and vinyl ethers.
The saponification degree of the polyvinyl alcohol resin is usually 85 to 100 mol%, and more preferably 98 to 100 mol%. The polyvinyl alcohol-based resin may be modified. For example, polyvinyl formal modified with aldehydes, polyvinyl acetal, polyvinyl butyral, and the like are also used. The degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10,000, and preferably about 1500 to 10,000.
What formed such a polyvinyl alcohol-type resin into a film is used as a raw film of a polarizing film. The method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method. The thickness of the polyvinyl alcohol-based raw film is not particularly limited, but is, for example, about 2 to 150 μm.
The polarizing film is usually a humidity adjusting step for adjusting the moisture of the raw film made of the polyvinyl alcohol resin as described above, a step of uniaxially stretching the polyvinyl alcohol resin film, and the polyvinyl alcohol resin film with a dichroic dye. It is manufactured through a process of dyeing and adsorbing the dichroic dye, a process of treating the polyvinyl alcohol resin film on which the dichroic dye is adsorbed and oriented with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution. The
Uniaxial stretching may be performed before dyeing with a dichroic dye, may be performed simultaneously with dyeing, or may be performed after dyeing. When uniaxial stretching is performed after dyeing with a dichroic dye, the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment. Moreover, it is also possible to perform uniaxial stretching in these several steps. In uniaxial stretching, it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll. Further, it may be dry stretching such as stretching in the air, or may be wet stretching in which stretching is performed in a state swollen with a solvent. The draw ratio is usually 4 to 8 times. The thickness of the polarizing film obtained by rinsing and drying can be, for example, 1 to 50 μm.
(Transparent protective film)
The transparent protective film used in the production method of the present invention is preferably made of a material having excellent transparency, mechanical strength, thermal stability, moisture shielding properties, retardation value stability, and the like. Such a material for a transparent protective film is not particularly limited, but examples thereof include (meth) acrylic resins such as methyl methacrylate resins, chain polyolefin resins such as polypropylene resins, and cyclic olefin resins. Resin, polyvinyl chloride resin, cellulose resin, styrene resin, acrylonitrile / butadiene / styrene resin, acrylonitrile / styrene resin, polyvinyl acetate resin, polyvinylidene chloride resin, polyamide resin, polyacetal resin, Polycarbonate resins, modified polyphenylene ether resins, polybutylene terephthalate resins, polyethylene terephthalate resins, polysulfone resins, polyethersulfone resins, polyarylate resins, polyamideimide resins and polyimide resins Etc. and the like.
These resins can be used alone or in combination of two or more. These resins can also be used after any suitable polymer modification. Examples of the polymer modification include copolymerization, crosslinking, molecular terminal, stereoregularity control, and reaction between different polymers. Modifications such as mixing including the accompanying cases can be mentioned.
Among these, as the material for the transparent protective film, it is preferable to use a (meth) acrylic resin such as a methyl methacrylate resin, a chain polyolefin resin such as a polyethylene terephthalate resin or a polypropylene resin, or a cellulose resin. .
The methyl methacrylate resin is a polymer containing 50% by weight or more of methyl methacrylate units. The content of methyl methacrylate units is preferably 70% by weight or more, and may be 100% by weight. The polymer having a methyl methacrylate unit of 100% by weight is a methyl methacrylate homopolymer obtained by polymerizing methyl methacrylate alone.
This methyl methacrylate resin can be usually obtained by polymerization in the presence of a monofunctional monomer, a polyfunctional monomer, a radical polymerization initiator, and a chain transfer agent mainly composed of methyl methacrylate.
The monofunctional monomer that can be copolymerized with methyl methacrylate is not particularly limited. For example, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, methacrylic acid 2 -Methacrylic acid esters other than methyl methacrylate such as ethylhexyl and 2-hydroxyethyl methacrylate; methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, phenyl acrylate, benzyl acrylate, 2-ethylhexyl acrylate And acrylic esters such as 2-hydroxyethyl acrylate; methyl 2- (hydroxymethyl) acrylate, methyl 3- (hydroxyethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate and 2 Hydroxyacrylic acid esters such as (hydroxymethyl) butyl acrylate; Unsaturated acids such as methacrylic acid and acrylic acid; Halogenated styrenes such as chlorostyrene and bromostyrene; Substituted styrenes such as vinyltoluene and α-methylstyrene Unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated acid anhydrides such as maleic anhydride and citraconic anhydride; and unsaturated imides such as phenylmaleimide and cyclohexylmaleimide. Such monomers may be used alone or in combination of two or more.
The polyfunctional monomer that can be copolymerized with methyl methacrylate is not particularly limited. For example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate , Ethylene glycol such as tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, and tetradecaethylene glycol (meth) acrylate, or both ester hydroxyl groups esterified with acrylic acid or methacrylic acid; Propylene glycol or its oligomers with both terminal hydroxyl groups esterified with acrylic acid or methacrylic acid; neopentyl glycol di (meth) acrylate, hexanediol di (meth) acrylate And a hydroxyl group of a dihydric alcohol such as butanediol di (meth) acrylate esterified with acrylic acid or methacrylic acid; bisphenol A, an alkylene oxide adduct of bisphenol A, or both terminal hydroxyl groups of these halogen-substituted products are acrylic Esterified with acid or methacrylic acid; polyhydric alcohol such as trimethylolpropane and pentaerythritol esterified with acrylic acid or methacrylic acid, and ring-opening addition of epoxy group of glycidyl acrylate or glycidyl methacrylate to these terminal hydroxyl groups Glycidyl acrylate or glycidyl succinic acid, adipic acid, terephthalic acid, phthalic acid, dibasic acids such as halogen substitution products thereof, and alkylene oxide adducts thereof. Those obtained by ring-opening addition of the epoxy group of Gilles methacrylate; aryl (meth) acrylate; and diaryl compounds such as divinylbenzene, and the like. Among these, ethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate and neopentyl glycol dimethacrylate are preferably used.
As the methyl methacrylate resin having such a composition, those modified by a reaction between functional groups copolymerized with the resin are also used. As the reaction, for example, demethanol condensation reaction in the polymer chain of a methyl ester group of methyl acrylate and a hydroxyl group of methyl 2- (hydroxymethyl) acrylate, or a carboxyl group of acrylic acid and 2- (hydroxymethyl) acrylic Examples thereof include a dehydration condensation reaction within a polymer chain of a hydroxyl group of methyl acid.
Such methyl methacrylate resin can be easily obtained as a commercial product. For example, Sumipex (manufactured by Sumitomo Chemical Co., Ltd.), Acripet (manufactured by Mitsubishi Rayon Co., Ltd.) under the trade name, respectively. , Delpet (manufactured by Asahi Kasei Co., Ltd.), Parapet (manufactured by Kuraray Co., Ltd.), and Acryviewer (manufactured by Nippon Shokubai Co., Ltd.).
The polyethylene terephthalate resin means a resin in which 80 mol% or more of repeating units are composed of ethylene terephthalate, and may contain other dicarboxylic acid components and diol components. Examples of other dicarboxylic acid components include, but are not limited to, isophthalic acid, p-β-oxyethoxybenzoic acid, 4,4′-dicarboxydiphenyl, 4,4′-dicarboxybenzophenone, bis (4-Carboxyphenyl) ethane, adipic acid, sebacic acid, 1,4-dicarboxycyclohexane and the like.
Other diol components are not particularly limited, but propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanediol, ethylene oxide adduct of bisphenol A, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc. Is mentioned.
These dicarboxylic acid components and diol components can be used in combination of two or more if necessary. Moreover, oxycarboxylic acids, such as p-oxybenzoic acid, can also be used together. Further, as other copolymerization component, a dicarboxylic acid component or a diol component containing a small amount of an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be used.
Polyethylene terephthalate resin can be produced by direct polycondensation of terephthalic acid and ethylene glycol (and other dicarboxylic acids or other diols as required), dialkyl esters of terephthalic acid and ethylene glycol (and if necessary) A transesterification reaction with a dialkyl ester of another dicarboxylic acid or other diol), and a polycondensation, and an ethylene glycol ester of terephthalic acid (and other dicarboxylic acids as required) For example, a method of polycondensation of other diol ester) in the presence of a catalyst is employed. Furthermore, if necessary, solid-state polymerization can be performed to improve the molecular weight or reduce the low molecular weight components.
The polypropylene resin refers to a polymer obtained by polymerizing a chain olefin monomer in which 80% by weight or more of the repeating unit is a propylene monomer among the chain olefin resins. Among these, a propylene homopolymer is preferable. Also preferred is a copolymer comprising propylene as a main component and a comonomer copolymerizable therewith at a rate of 1 to 20% by weight, preferably 3 to 10% by weight.
When using a propylene copolymer, ethylene, 1-butene and 1-hexene are preferred as comonomers copolymerizable with propylene. Among these, ethylene copolymerized at a ratio of 3 to 10% by weight is preferable because of relatively excellent transparency. By setting the copolymerization ratio of ethylene to 1% by weight or more, an effect of increasing transparency appears. On the other hand, when the ratio exceeds 20% by weight, the melting point of the resin is lowered and the heat resistance required for the protective film may be impaired.
Among these, a propylene homopolymer having a component (CXS component) soluble in xylene at 20 ° C. of 1% by weight or less is more preferable, and a propylene homopolymer having a CXS component of 0.5% by weight or less is more preferable.
Cellulosic resins are those in which some or all of the hydrogen atoms in the hydroxyl groups of cellulose obtained from raw material cellulose such as cotton linter and wood pulp (hardwood pulp, conifer pulp) are acetyl groups, propionyl groups and / or butyryl groups. It refers to a substituted cellulose organic acid ester or cellulose mixed organic acid ester. Examples include cellulose acetates, propionic acid esters, butyric acid esters, and mixed esters thereof. Among these, a triacetyl cellulose film, a diacetyl cellulose film, a cellulose acetate propionate film, a cellulose acetate butyrate film, and the like are preferable.
As a method for making such a methyl methacrylate resin, a polyethylene terephthalate resin, a polypropylene resin, a cellulose resin, and the like as a transparent protective film to be bonded to a polarizing film, a method corresponding to the resin may be appropriately selected. There is no particular limitation. For example, a resin dissolved in a solvent is cast onto a metal band or drum, and a solvent casting method for obtaining a film by drying and removing the solvent, and the resin is heated and kneaded to a temperature higher than its melting temperature and extruded from a die, A melt extrusion method for obtaining a film by cooling is employed. In this melt extrusion method, a single layer film may be extruded or a multilayer film may be simultaneously extruded.
The film used as the transparent protective film thus obtained can be easily obtained as a commercial product. For example, as a methyl methacrylate-based resin film, the trade name is Sumipex (manufactured by Sumitomo Chemical Co., Ltd.). , Acrylite (Mitsubishi Rayon Co., Ltd.), Acryprene (Mitsubishi Rayon Co., Ltd.), Delagras (Asahi Kasei Co., Ltd.), Paragrass (Kuraray Co., Ltd.), Como Glass (Kuraray Co., Ltd.) (Manufactured by Nippon Shokubai Co., Ltd.).
Examples of the polyethylene terephthalate resin film include Novaclear (manufactured by Mitsubishi Chemical Corporation) and Teijin A-PET sheet (manufactured by Teijin Chemicals Ltd.).
In addition, for example, as polypropylene resin films, FILMAX CPP film (manufactured by FILMAX), Santox (manufactured by Sun Tox Co., Ltd.), Tosero (manufactured by Tosero Co., Ltd.), Toyobo Pyrene Film ( Toyobo Co., Ltd.), Treffan (Toray Film Processing Co., Ltd.), Nihon Polyace (Nihon Polyace Co., Ltd.), Dazai FC (Futamura Chemical Co., Ltd.), and the like.
Furthermore, for example, in the case of a cellulose-based resin film, Fujitac TD (manufactured by Fuji Film Co., Ltd.), Konica Minolta TAC film KC (manufactured by Konica Minolta Opto Co., Ltd.), and the like can be mentioned.
Antiglare property (haze) can be imparted to the transparent protective film used in the present invention. The method for imparting antiglare properties is not particularly limited. For example, a method of mixing inorganic fine particles or organic fine particles into the raw material resin to form a film, the multilayer extrusion described above, and the like. A method of forming a two-layer film from a resin in which fine particles are mixed and a resin in which fine particles are not mixed in the other, or a method of forming a three-layer film with the resin mixed with particles on the outside, and inorganic on one side of the film A method of coating a coating solution obtained by mixing fine particles or organic fine particles with a curable binder resin, curing the binder resin, and providing an antiglare layer is employed.
The inorganic fine particles for imparting antiglare properties are not particularly limited. For example, silica, colloidal silica, alumina, alumina sol, aluminosilicate, alumina-silica composite oxide, kaolin, talc, mica, carbonic acid. Examples thereof include calcium and calcium phosphate. Further, the organic fine particles are not particularly limited. For example, crosslinked polyacrylic acid particles, methyl methacrylate / styrene copolymer resin particles, crosslinked polystyrene particles, crosslinked polymethyl methacrylate particles, silicone resin particles, and polyimide are used. Particles and the like.
The haze value of the transparent protective film provided with the antiglare property thus obtained is preferably in the range of 6 to 45%. When the haze value of the transparent protective film is less than 6%, a sufficient antiglare effect may not appear. On the other hand, when the haze value of the transparent protective film exceeds 45%, the screen of the liquid crystal display device using this film may be browned, resulting in a decrease in image quality.
The haze value can be measured according to JIS K 7136, for example, using a haze / transmittance meter HM-150 (manufactured by Murakami Color Research Laboratory Co., Ltd.). In measuring the haze value, in order to prevent warping of the film, for example, a measurement sample in which the film surface is bonded to a glass substrate using an optically transparent adhesive so that the antiglare property-imparting surface is the surface. Is preferably used.
On the transparent protective film, functional layers such as a conductive layer, a hard coat layer and a low reflection layer can be further laminated. Moreover, the resin composition which has these functions can also be selected for binder resin which comprises a transparent protective film.
The transparent protective film is preferably subjected to saponification treatment, corona treatment, plasma treatment and the like prior to bonding with the polarizing film.
The thickness of the transparent protective film is not particularly limited, but is usually about 1 to 500 μm, preferably 20 to 300 μm, and more preferably 20 to 100 μm from the viewpoint of strength and handleability. When the thickness is within this range, the polarizing film is mechanically protected, and even when exposed to high temperature and high humidity, the polarizing film does not shrink and stable optical characteristics can be maintained.
(Adhesive for transparent protective film bonding)
The adhesive used for bonding the polarizing film and the transparent protective film is not particularly limited. For example, a polyvinyl alcohol resin, an epoxy resin, a urethane resin, a cyanoacrylate resin, and an acrylamide resin are used as the adhesive. An adhesive as a component can be mentioned. Among them, a water-based adhesive, that is, an adhesive component dissolved in water or dispersed in water is preferably used because the thickness of the adhesive layer can be further reduced. Examples of the water-based adhesive include those containing, for example, a polyvinyl alcohol resin, a water-soluble crosslinkable epoxy resin, a urethane resin, or the like as an adhesive component. As the polyvinyl alcohol-based resin, various known resins used as water-based adhesives can be used. As another preferable adhesive, an adhesive composed of a solventless resin composition in which a monomer or an oligomer is reactively cured by heating or irradiation with active energy rays to form an adhesive layer can be mentioned.
First, the water-based adhesive will be described. Examples of water-soluble crosslinkable epoxy resins include polyamide epoxies obtained by reacting epichlorohydrin with polyamide polyamines obtained by reaction of polyalkylene polyamines such as diethylenetriamine and triethylenetetramine with dicarboxylic acids such as adipic acid. Resins can be mentioned. Examples of commercially available products of such polyamide epoxy resins include Sumire Resin 650 (manufactured by Sumika Chemtex Co., Ltd.), Sumire Resin 675 (manufactured by Sumika Chemtex Co., Ltd.), and the like.
In order to improve coatability and adhesiveness, it is preferable to further mix other water-soluble resin such as polyvinyl alcohol resin in the adhesive. Polyvinyl alcohol-based resins include partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol, as well as modified carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino group-modified polyvinyl alcohol. Polyvinyl alcohol resin may be used. Among them, a saponified product of a copolymer of vinyl acetate and unsaturated carboxylic acid or a salt thereof, that is, carboxyl group-modified polyvinyl alcohol is preferably used. Here, the “carboxyl group” is a concept including —COOH and a salt thereof.
Examples of suitable carboxyl group-modified polyvinyl alcohol commercially available include Kuraray Poval KL-506 (manufactured by Kuraray Co., Ltd.), Kuraray Poval KL-318 (manufactured by Kuraray Co., Ltd.), and Kuraray Poval KL-118 (( Kuraray Co., Ltd.), Gohsenal T-330 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), Gohsenal T-350 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.), DR-0415 (manufactured by Denki Kagaku Kogyo Co., Ltd.), AF -17 (manufactured by Nippon Vinegar Poval Co., Ltd.), AT-17 (manufactured by Nippon Vinegar Pobart Co., Ltd.), AP-17 (manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
The adhesive can be prepared as an adhesive solution by dissolving an epoxy resin and other water-soluble resin such as a polyvinyl alcohol-based resin added as necessary in water. In this case, the content of the water-soluble crosslinkable epoxy resin is preferably about 0.2 to 2 parts by weight with respect to 100 parts by weight of water. When the polyvinyl alcohol-based resin is blended, the blending amount is preferably about 1 to 10 parts by weight, and more preferably about 1 to 5 parts by weight with respect to 100 parts by weight of water.
On the other hand, examples of urethane resins that can be suitably used for water-based adhesives include ionomer-type urethane resins, particularly polyester-type ionomer-type urethane resins. Here, the ionomer type is obtained by introducing a small amount of an ionic component (hydrophilic component) into the skeleton constituting the urethane resin. The polyester ionomer type urethane resin is a urethane resin having a polyester skeleton, and a small amount of an ionic component (hydrophilic component) is introduced into the skeleton. Such an ionomer type urethane resin is suitable as a water-based adhesive because it is emulsified directly in water without using an emulsifier and becomes an emulsion. Examples of commercially available polyester ionomer type urethane resins include Hydran AP-20 (Dainippon Ink Chemical Co., Ltd.), Hydran APX-101H (Dainippon Ink Chemical Co., Ltd.), etc. Is also available in the form of an emulsion.
When an ionomer-type urethane resin is used as an adhesive component, it is preferable to further blend an isocyanate-based crosslinking agent. The isocyanate-based crosslinking agent is a compound having at least two isocyanato groups (—NCO) in the molecule. For example, 2,4-tolylene diisocyanate, phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,6-hexa In addition to polyisocyanate monomers such as methylene diisocyanate and isophorone diisocyanate, adducts in which a plurality of these molecules are added to a polyhydric alcohol such as trimethylolpropane, and three molecules of diisocyanate are isocyanurates at each end isocyanato group And polyisocyanate modified products such as burettes formed by hydration and decarboxylation of trifunctional isocyanurate having a ring formed and three diisocyanate molecules at the respective one-end isocyanate groups. As a commercially available isocyanate type crosslinking agent which can be used suitably, Hydran Assist C-1 (made by Dainippon Ink & Chemicals, Inc.) etc. are mentioned, for example.
In an aqueous adhesive containing an ionomer type urethane resin, from the viewpoint of viscosity and adhesiveness, the concentration of the urethane resin is preferably dissolved or dispersed in water so as to be about 10 to 70% by weight. It is more preferably up to 50% by weight. Further, when the isocyanate crosslinking agent is blended, the blending amount is appropriately selected so that the isocyanate crosslinking agent is about 5 to 100 parts by weight with respect to 100 parts by weight of the urethane resin.
In the case of using the aqueous adhesive thus formed, the adhesive is applied to the adhesive surface of the transparent protective film or the polarizing film, and the laminated body of the polarizing film and the transparent protective film is obtained by bonding and drying both. be able to.
Next, an adhesive made of a solventless resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating will be described.
The adhesive used in the production method of the present invention is a curable composition that contains a curable compound that is polymerized by heating or irradiation with active energy rays and a polymerization initiator and does not contain a significant amount of solvent. This curable compound is preferably one that is cured by cationic polymerization from the viewpoint of reactivity, and particularly preferably contains an epoxy compound (epoxy resin).
As this epoxy compound, those having no aromatic ring in the molecule are suitably used from the viewpoint of weather resistance, refractive index and the like. An adhesive using an epoxy compound that does not contain an aromatic ring in the molecule is described in, for example, Japanese Patent Application Laid-Open No. 2004-245925. Examples of such epoxy compounds that do not contain an aromatic ring include hydrides of aromatic epoxy compounds, alicyclic epoxy compounds, and aliphatic epoxy compounds.
A hydride of an aromatic epoxy compound is obtained by selectively hydrogenating an aromatic epoxy compound to an aromatic ring under pressure in the presence of a catalyst. Examples of the aromatic epoxy compound include bisphenol type epoxy compounds such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, and diglycidyl ether of bisphenol S; phenol novolac epoxy resin, cresol novolac epoxy resin, And a novolak type epoxy resin such as hydroxybenzaldehyde phenol novolac epoxy resin; a glycidyl ether of tetrahydroxydiphenylmethane, a glycidyl ether of tetrahydroxybenzophenone, and a polyfunctional type epoxy compound such as epoxidized polyvinylphenol. Of these, hydrogenated diglycidyl ether of bisphenol A is preferred.
An alicyclic epoxy compound is a compound having at least one epoxy group bonded to an alicyclic ring in the molecule, as shown in the following formula.
Figure JPOXMLDOC01-appb-I000001
(In the formula, m represents an integer of 2 to 5.)
(CH in this formula 2 ) m A compound in which a group in which one or more hydrogen atoms are removed is bonded to another chemical structure can be an alicyclic epoxy compound. Further, the hydrogen forming the alicyclic ring may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group. Among them, it is preferable to use a compound having an epoxycyclopentane ring (m = 3 in the above formula) or an epoxycyclohexane ring (m = 4 in the above formula). Specific examples of the alicyclic epoxy compound include the following.
3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate, ethylenebis (3,4-epoxycyclohexanecarboxy Rate), bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, diethylene glycol bis (3,4-epoxycyclohexylmethyl ether), ethylene glycol bis (3,4 4-epoxycyclohexyl methyl ether), 2,3,14,15-diepoxy-7,11,18,21-tetraoxatrispiro- [5.2.2.5.2.2] henicosane (also 3, 4-epoki Cycyclohexanespiro-2 ′, 6′-dioxanespiro-3 ″, 5 ″ -dioxanespiro-3 ″ ′, 4 ′ ″-epoxycyclohexane compound),
4- (3,4-epoxycyclohexyl) -2,6-dioxa-8,9-epoxyspiro [5.5] undecane, 4-vinylcyclohexene dioxide, bis-2,3-epoxycyclopentyl ether, and dicyclo Pentadiene dioxide etc.
The aliphatic epoxy compound is a polyglycidyl ether of an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof. For example, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl Polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides (ethylene oxide or polypropylene oxide) to aliphatic polyhydric alcohols such as ether, ethylene glycol, polypropylene glycol, and glycerin, etc. Is mentioned.
The epoxy compounds illustrated here may be used alone or in combination with a plurality of epoxy compounds.
The epoxy equivalent of such an epoxy compound is usually 30 to 3000 g / eq, preferably 50 to 1500 g / eq. When the epoxy equivalent is less than 30 g / eq, the flexibility of the cured protective film may be reduced or the adhesive strength may be reduced. On the other hand, when it exceeds 3000 g / eq, the compatibility with other components may decrease.
In the curable composition, a cationic polymerization initiator is blended in order to cure the epoxy compound by cationic polymerization. The cationic polymerization initiator generates a cationic species or a Lewis acid by irradiation with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams, or by heating, and starts an epoxy group polymerization reaction. Regardless of the type of cationic polymerization initiator, it is preferable from the viewpoint of workability that latency is imparted.
Hereinafter, a photocationic polymerization initiator that generates a cationic species or a Lewis acid by irradiation with active energy rays will be described. Use of a cationic photopolymerization initiator enables curing at room temperature, reduces the need to consider the internal stress due to heat resistance or thermal expansion of the polarizing film, and allows the transparent protective film and the polarizing film to adhere well. it can. Moreover, since a photocationic polymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with an epoxy compound. Examples of the compound that generates a cation species or a Lewis acid upon irradiation with active energy rays include onium salts such as aromatic diazonium salts, aromatic iodonium salts and aromatic sulfonium salts, and iron-allene complexes. Among these, aromatic sulfonium salts are particularly preferably used since they have ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, and can provide a cured product having excellent curability and good mechanical strength and adhesive strength.
Such a cationic photopolymerization initiator can be easily obtained as a commercial product. For example, Kayrad PCI-220 (manufactured by Nippon Kayaku Co., Ltd.), Kayrad PCI-620 (manufactured by Nippon Kayaku Co., Ltd.) under the trade names, respectively. ), UVI-6990 (manufactured by Union Carbide), Adekaoptomer SP-150 (manufactured by ADEKA), Adekaoptomer SP-170 (manufactured by ADEKA), CI-5102 (manufactured by Nippon Soda Co., Ltd.) ), CIT-1370 (manufactured by Nippon Soda Co., Ltd.), CIT-1682 (manufactured by Nippon Soda Co., Ltd.), CIP-1866S (manufactured by Nippon Soda Co., Ltd.), CIP-2048S (manufactured by Nippon Soda Co., Ltd.), CIP-2064S (Nippon Soda Co., Ltd.), DPI-101 (Midori Chemical Co., Ltd.), DPI-102 (Midori Chemical Co., Ltd.), DPI-103 (Midori Chemical Co., Ltd.) ), DPI-105 (manufactured by Midori Chemical Co., Ltd.), MPI-103 (manufactured by Midori Chemical Co., Ltd.), MPI-105 (manufactured by Midori Chemical Co., Ltd.), BBI-101 (manufactured by Midori Chemical Co., Ltd.) ), BBI-102 (manufactured by Midori Chemical Co., Ltd.), BBI-103 (manufactured by Midori Chemical Co., Ltd.), BBI-105 (manufactured by Midori Chemical Co., Ltd.), TPS-101 (manufactured by Midori Chemical Co., Ltd.), TPS-102 (manufactured by Midori Chemical Co., Ltd.), TPS-103 (manufactured by Midori Chemical Co., Ltd.), TPS-105 (manufactured by Midori Chemical Co., Ltd.), MDS-103 (manufactured by Midori Chemical Co., Ltd.), MDS- 105 (manufactured by Midori Chemical Co., Ltd.), DTS-102 (manufactured by Midori Chemical Co., Ltd.), DTS-103 (manufactured by Midori Chemical Co., Ltd.), PI-2074 (manufactured by Rhodia) and the like.
The amount of the cationic photopolymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 to 15 parts by weight, based on 100 parts by weight of the epoxy compound.
A photosensitizer can be used in combination with the curable composition as necessary. By using a photosensitizer, the reactivity is improved and the mechanical strength and adhesive strength of the cured product can be improved. Examples of the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreductive dyes. When the photosensitizer is blended, the blending amount is usually about 0.1 to 20 parts by weight with 100 parts by weight of the photocationically polymerizable epoxy resin composition.
Next, the thermal cationic polymerization initiator will be described. Examples of the compound that generates a cationic species or a Lewis acid by heating include benzylsulfonium salt, thiophenium salt, thiolanium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester, and amine imide. Commercially available products of these thermal cationic polymerization initiators can also be easily obtained. For example, they are trade names such as Adeka Opton CP77 (manufactured by ADEKA), Adeka Opton CP66 (manufactured by ADEKA), CI- 2639 (manufactured by Nippon Soda Co., Ltd.), CI-2624 (manufactured by Nippon Soda Co., Ltd.), Sun-Aid SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), Sun-Aid SI-80L (manufactured by Sanshin Chemical Industry Co., Ltd.) ), Sun Aid SI-100L (manufactured by Sanshin Chemical Industry Co., Ltd.) and the like.
It is also a useful technique to use the above cationic photopolymerization and thermal cationic polymerization together.
The epoxy-based adhesive may further contain a compound that promotes cationic polymerization such as oxetanes and polyols.
The adhesive comprising the curable composition thus obtained is applied to the adhesive surface of the transparent protective film or the polarizing film, and after both are laminated, the adhesive is cured to laminate the polarizing film and the transparent protective film. You can get a body. There is no particular limitation on the method of applying this adhesive to the transparent protective film or polarizing film. For example, various coating methods such as doctor blade, wire bar, die coater, comma coater, and gravure coater are adopted. . The thickness of the adhesive layer is usually 1 μm or more and 50 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
When the adhesive is cured by irradiation with active energy rays, the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, Examples include ultra-high pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps. The light irradiation intensity to the adhesive composition is determined by the curability of the composition and is not particularly limited. For example, the light irradiation intensity in the wavelength region effective for activating the photocationic polymerization initiator is used. Irradiation intensity is 0.1-100mW / cm 2 It is preferable that The light irradiation intensity to the adhesive composition is 0.1 mW / cm 2 If it is less than 100 mW / cm, the reaction time becomes too long. 2 Exceeding may cause yellowing of the curable epoxy resin composition or deterioration of the polarizing film due to heat radiated from the lamp and heat generation during polymerization of the curable epoxy resin composition. Similarly, the light irradiation time for the adhesive composition is determined by the curability of the composition, and is not particularly limited. For example, it is expressed as a product of irradiation intensity and irradiation time. 10 to 5000mJ / cm 2 It is preferable to set so that. Integrated light quantity to curable epoxy resin composition is 10mJ / cm 2 If it is less than 1, the generation of the active species derived from the cationic photopolymerization initiator is not sufficient, and the curing of the adhesive may be insufficient. Also, the integrated light quantity is 5000mJ / cm 2 If it exceeds 1, irradiation time becomes very long, which is disadvantageous for productivity improvement.
When the adhesive is cured by heat, the adhesive can be heated by a generally known method, and the conditions are not particularly limited, but usually the heat blended in the curable epoxy resin composition. Heating is performed at a temperature higher than the temperature at which the cationic polymerization initiator generates cationic species and Lewis acid, and the temperature is, for example, about 50 to 200 ° C.
Even if it is cured under any condition of irradiation with active energy rays or heating, it should be cured as long as the functions such as polarization degree, transmittance, hue, transparency of the transparent protective film of the polarizing plate with a single-sided protective film do not deteriorate. Is preferred. The thickness of the cured layer formed by curing the adhesive composition is usually 50 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
(Peelable film)
As the peelable film having adhesiveness used in the production method of the present invention, a film that has been treated with a low molecular weight pressure-sensitive adhesive so as to be easily peeled can be used. For example, polyesters such as polyethylene terephthalate and polyethylene naphthalate Resins; Cyclic olefin resins; Chain olefin resins such as polyethylene, polypropylene, and propylene / ethylene copolymers can be used. Among them, a polyethylene terephthalate film, a polypropylene film, or a polyethylene film is preferably used from the viewpoint that the adhesiveness can be adjusted as appropriate and a commercially available product is easily available.
The peelable film has self-adhesiveness and can be directly bonded to the surface of the polarizing film opposite to the surface to which the transparent protective film is bonded.
Thus, a polarizing plate with a single-sided transparent protective film in which a transparent protective film is bonded to one side of a polarizing film by an adhesive and a peelable film having adhesiveness is bonded to the opposite side is once a winding device. Is wound around a core such as a vinyl chloride tube. In addition, either the process of bonding a transparent protective film to a polarizing film and the process of bonding a peelable film to a polarizing film may be performed first, and may be performed simultaneously.
(Retardation film)
The retardation film used in the production method of the present invention is made of an olefin resin, and n x > N z > N y A so-called biaxial retardation film satisfying the above relationship is preferable. The olefin resin is mainly derived from a chain aliphatic olefin such as ethylene or propylene, or an alicyclic olefin such as norbornene or a substituted product thereof (hereinafter also collectively referred to as a norbornene monomer). It is a resin composed of structural units. The olefin resin may be a copolymer using two or more kinds of monomers.
Among them, a resin mainly containing a structural unit mainly derived from an alicyclic olefin is preferable, and a cyclic olefin resin in which a cyclic structure derived from the alicyclic olefin remains in the main chain after polymerization is more preferable. Preferably used. Typical examples of the alicyclic olefin constituting the cyclic olefin resin include a norbornene monomer. Norbornene is a compound in which one carbon-carbon bond of norbornane is a double bond, and according to IUPAC nomenclature, it is named bicyclo [2,2,1] hept-2-ene. is there. Examples of substituted norbornene include 3-substituted, 4-substituted, 4,5-disubstituted, etc., with the norbornene double bond located at the 1,2-position. Examples also include cyclopentadiene and dimethanooctahydronaphthalene. Such a resin mainly composed of a structural unit derived from a norbornene-based monomer is generally called a norbornene-based resin.
The norbornene-based resin containing a structural unit derived from a norbornene-based monomer may or may not have a norbornane ring in the structural unit. Examples of the norbornene-based monomer that forms a norbornene-based resin having no norbornane ring as a structural unit include, for example, those that become a five-membered ring by ring opening, typically norbornene, dicyclopentadiene, 1- or 4-methyl. Examples include norbornene and 4-phenylnorbornene. When the norbornene resin is a copolymer, the arrangement state of the molecules is not particularly limited, and may be a random copolymer, a block copolymer, or a graft copolymer. May be.
Examples of the cyclic olefin-based resin include, for example, a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer, a modified polymer obtained by adding maleic acid, cyclopentadiene, or the like to them. Further, a polymer or copolymer obtained by hydrogenation of these; an addition polymer of a norbornene monomer, an addition copolymer of a norbornene monomer and another monomer, and the like. Examples of other monomers in the copolymer include α-olefins, cycloalkenes, and non-conjugated dienes. Moreover, the cyclic olefin resin may be a copolymer using one or more of norbornene monomers and other alicyclic olefins.
Among these, as the cyclic olefin-based resin, a resin obtained by hydrogenating a ring-opening polymer or a ring-opening copolymer using a norbornene-based monomer is preferably used. A film-like product obtained by subjecting such a norbornene-based resin to a stretching treatment, and a shrinkable film having a predetermined shrinkage rate are bonded to each other and heat-shrinked, thereby providing high uniformity and a large retardation value. A phase difference film can be obtained. Commercially available hydrogenated products of ring-opening polymers or ring-opening copolymers using such norbornene-based monomers are all trade names, Zeonex (manufactured by Nippon Zeon Co., Ltd.), Zeonore (Japan Zeon ( And Arton (manufactured by JSR Corporation). As these norbornene-based resin films and stretched films, for example, Zeonore Film (manufactured by Optes Co., Ltd.), Arton Film (manufactured by JSR Co., Ltd.), Essina (manufactured by Sekisui Chemical Co., Ltd.), etc. are sold. ing.
In addition, as the retardation film used in the production method of the present invention, a film made of a mixed resin containing two or more kinds of olefin resins or a film made of a mixed resin of an olefin resin and another thermoplastic resin is used. You can also. For example, as an example of a mixed resin containing two or more types of olefinic resins, there can be mentioned a mixture of a cyclic olefinic resin and an acyclic aliphatic olefinic resin as described above. When a mixed resin of an olefin resin and another thermoplastic resin is used, another thermoplastic resin is appropriately selected depending on the purpose. For example, polyvinyl chloride resin, cellulose resin, polystyrene resin, acrylonitrile / butadiene / styrene copolymer resin, acrylonitrile / styrene copolymer resin, (meth) acrylic resin, polyvinyl acetate resin, polyvinylidene chloride resin , Polyamide resin, polyacetal resin, polycarbonate resin, modified polyphenylene ether resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyphenylene sulfide resin, polysulfone resin, polyethersulfone resin, polyether ether ketone Examples thereof include resins, polyarylate resins, liquid crystalline resins, polyamideimide resins, polyimide resins, and polytetrafluoroethylene resins. These thermoplastic resins can be used alone or in combination of two or more. The thermoplastic resin may be used after any appropriate polymer modification. Examples of the polymer modification include copolymerization, crosslinking, molecular terminal modification, and stereoregularity imparting.
When a mixed resin of an olefin resin and another thermoplastic resin is used, the content of the other thermoplastic resin is usually 50% by weight or less and preferably 40% by weight or less based on the entire resin. By setting the content of other thermoplastic resins within this range, the retardation value film has a small absolute value of the photoelastic coefficient, exhibits good wavelength dispersion characteristics, and is excellent in durability, mechanical strength, and transparency. Can be obtained.
Such an olefin resin can be formed into a film by a casting method or a melt extrusion method from a commonly used solution. When forming a film from two or more kinds of mixed resins, the film forming method is not particularly limited. For example, by casting using a uniform solution obtained by stirring and mixing resin components with a solvent at a predetermined ratio. A method for producing a film, a method for melt-mixing resin components at a predetermined ratio, and producing a film by a melt extrusion method are employed.
The film made of the olefin-based resin may contain other components such as a residual solvent, a stabilizer, a plasticizer, an anti-aging agent, an antistatic agent, and an ultraviolet absorber as long as the object of the present invention is not impaired. You may contain. Further, a leveling agent can be contained in order to reduce the surface roughness.
The retardation film used in the production method of the present invention has an in-plane slow axis direction, an in-plane fast axis direction, and a thickness direction refractive index of n. x , N y And n z When the thickness is d (nm), those satisfying the formulas (1) and (2) with respect to light having a wavelength of 590 nm are preferable.
100 nm ≦ (n x -N y ) × d ≦ 300 nm (1)
0.1 ≦ (n x -N z ) / (N x -N y ) ≦ 0.7 (2)
By using such a retardation film having specific refractive index anisotropy, the display characteristics of the liquid crystal cell can be suitably compensated over a wide angle when the composite polarizing plate is applied to a liquid crystal display device.
The thickness of the retardation film can be in the range of about 20 to 500 μm, preferably 20 to 300 μm. If the thickness is within this range, sufficient self-supporting property of the film can be obtained, and a wide range of retardation can be obtained.
When this retardation film is used as a λ / 2 plate, the in-plane retardation value for the light having a wavelength of 590 nm is preferably in the range of about 200 to 300 nm, and more preferably in the range of 240 to 300 nm. . By setting the in-plane retardation value for light with a wavelength of 590 nm to about ½ of the measurement wavelength, the display characteristics of the liquid crystal display device can be further improved. When the retardation film is used as a λ / 2 plate, the thickness is preferably in the range of 80 to 160 μm in order to sufficiently align in the thickness direction. More preferably, it is in the range of 85 to 145 μm. In addition, this retardation film may be used as a λ / 4 plate.
N of this retardation film Z Coefficient ((n x -N z ) / (N x -N y )) Is preferably from 0.1 to 0.7, more preferably from 0.3 to 0.6. N of retardation film Z When the coefficient is around 0.5, it is possible to achieve a characteristic in which the phase difference value is almost constant regardless of the angle, and the display characteristics of the liquid crystal display device can be further improved.
The width of the retardation film is preferably 10% or more smaller than that of the polarizing plate because the effect of improving productivity stands out. Furthermore, if the width is in the range of 40 to 50% of the polarizing plate, the polarizing plate with a single-sided transparent protective film is cut (slit) to half the width, and both of them are bonded to the retardation film. It is more preferable because it can be used for
[First manufacturing method of composite polarizing plate]
[1] Step (A)
In the first production method of the composite polarizing plate of the present invention, first, a transparent protective film is bonded to one side of the polarizing film, and a peelable film having adhesiveness is bonded to the opposite surface, thereby providing single-sided transparent protection. A polarizing plate with a film is produced (step (A)).
[2] Process (B)
Next, the first method for producing the composite polarizing plate of the present invention is to cut the polarizing plate with a single-sided transparent protective film produced as described above along the longitudinal direction according to the width of the retardation film (slit (Step (B)). The width after cutting of the polarizing plate with a single-sided transparent protective film is appropriately set according to the width of the retardation film. For example, at least one piece of the polarizing plate with a single-sided transparent protective film after cutting is made of the retardation film. The width is preferably the same as the width.
The method of cutting the polarizing plate with a single-sided transparent protective film is not particularly limited, but usually the rolled-up polarizing plate with a single-sided transparent protective film is fed simultaneously to a slitter (long-direction cutting machine). Then, a method of rewinding the cut pieces is adopted.
[3] Process (C)
In the first production method of the composite polarizing plate of the present invention, next, the peelable film of the polarizing plate with the single-sided transparent protective film cut in the step (B) is removed, and the polarizing film surface and the phase difference are removed. The film is bonded using an epoxy resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating (step (C)).
(Epoxy resin composition for retardation film bonding)
The epoxy resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating, which is used for bonding the polarizing film and the retardation film, is preferably solventless. As this epoxy resin composition, the thing similar to what was illustrated as an adhesive agent used for adhesion | attachment with a polarizing film and a transparent protective film is mentioned.
The method for adhering the polarizing plate with a single-sided protective film and the retardation film with this adhesive is not particularly limited, for example, a doctor blade, a wire bar, a die coater, a comma coater, a gravure coater, etc. Various coating methods are employed. Moreover, after dripping the said adhesive composition between a polarizing film and a protective film, the method of pressurizing a polarizing film and a protective film with a roll etc. and spreading it uniformly can also be utilized. Here, metal, rubber, or the like can be used as the material of the roll, and these rolls may be made of the same material or different materials. The thickness of the adhesive layer is usually 50 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
When the adhesive is cured by irradiation with active energy rays, the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, Examples include ultra-high pressure mercury lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps. The light irradiation intensity to the adhesive composition is determined by the curability of the composition and is not particularly limited. For example, the light irradiation intensity of the adhesive composition has a wavelength region effective for activation of the photocationic polymerization initiator. Irradiation intensity is 0.1-100mW / cm 2 It is preferable that The light irradiation intensity to the adhesive composition is 0.1 mW / cm 2 If it is less than 100 mW / cm, the reaction time becomes too long. 2 Exceeding may cause yellowing of the curable epoxy resin composition or deterioration of the polarizing film due to heat radiated from the lamp and heat generation during polymerization of the curable epoxy resin composition. Similarly, the light irradiation time for the adhesive composition is determined by the curability of the composition, and is not particularly limited. For example, it is expressed as a product of irradiation intensity and irradiation time. 10 to 5000mJ / cm 2 It is preferable to set so that. Integrated light quantity to curable epoxy resin composition is 10mJ / cm 2 If it is less than 1, the generation of the active species derived from the cationic photopolymerization initiator is not sufficient, and the curing of the adhesive may be insufficient. Also, the integrated light quantity is 5000mJ / cm 2 If it exceeds 1, irradiation time becomes very long, which is disadvantageous for productivity improvement.
When the adhesive is cured by heat, it can be heated by a generally known method, and the conditions thereof are not particularly limited, but usually the heat blended in the curable epoxy resin composition. Heating is performed at a temperature higher than the temperature at which the cationic polymerization initiator generates cationic species and Lewis acid, and the temperature is, for example, about 50 to 200 ° C.
Even if it is cured under either conditions of irradiation with active energy rays or heating, the polarization degree, transmittance, hue, transparency of the transparent protective film, and retardation characteristics of the retardation film are combined. It is preferable to cure in the range where the various functions of the polarizing plate do not deteriorate. The thickness of the cured layer formed by curing the adhesive composition is usually 50 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.
In the 1st manufacturing method of the composite polarizing plate of this invention, an adhesive layer may be further provided in the outer side of the retardation film bonded by the composite polarizing plate. The pressure-sensitive adhesive layer can be suitably used for bonding with other members such as a liquid crystal cell. The composite polarizing plate thus formed is usually arranged so that the retardation film side faces the liquid crystal cell when being bonded to the liquid crystal cell.
[Second production method of composite polarizing plate]
The second manufacturing method of the composite polarizing plate of the present invention includes the following steps (A), (B), (C), (D) and (E).
・ Process (A)
A process for producing a polarizing plate with a single-sided transparent protective film by laminating a transparent protective film on one side of the polarizing film and laminating an adhesive peelable film on the opposite side.
・ Process (B)
The process of cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the width of the retardation film
・ Process (C)
The process of removing the peelable film from the polarizing film surface
・ Process (D)
The process of laminating | stacking the adhesive layer which shows the storage elastic modulus of 0.1 Mpa or more in 80 degreeC on the polarizing film surface of the polarizing plate with the said single-sided transparent protective film which passed through the said process (C) of the said retardation film.
・ Process (E)
The process of bonding the said retardation film to the polarizing film surface from which the said peelable film was removed through the said adhesive layer.
Such a second method for producing a composite polarizing plate of the present invention roughly includes three embodiments (first embodiment, second embodiment and third embodiment). First, each embodiment included in the second production method of the present invention will be described.
<First aspect>
The 1st aspect in the 2nd manufacturing method of this invention contains the process (A), the process (B), the process (C), the process (D), and the process (E) which were mentioned above in this order, and the process (D ), The pressure-sensitive adhesive layer is laminated on the polarizing film surface of the polarizing plate with the single-side transparent protective film that has undergone the step (C).
In the 1st aspect in the 2nd manufacturing method of this invention, first, a transparent protective film is bonded on the single side | surface of a polarizing film, the peelable film which has adhesiveness is bonded on the surface of an other side, and single-sided transparent protection A polarizing plate with a film is produced (step (A)).
In the first aspect of the second production method of the present invention, next, the polarizing plate with a single-sided transparent protective film produced as described above is cut along the longitudinal direction according to the width of the retardation film ( Slit) (step (B)). The width after cutting of the polarizing plate with a transparent protective film is appropriately set according to the width of the retardation film. For example, at least one fragment of the polarizing plate with a single-side transparent protective film after cutting is the width of the retardation film. The width is preferably the same.
The method of cutting the polarizing plate with a single-sided transparent protective film is not particularly limited, but usually the rolled-up polarizing plate with a single-sided transparent protective film is fed simultaneously to a slitter (long-direction cutting machine). Then, a method of rewinding the cut pieces is adopted. Moreover, the method of laminating | stacking the polarizing plate cut according to the width | variety of retardation film with a retardation film through an adhesive on the spot is also employ | adopted.
In the first aspect of the second production method of the present invention, next, the peelable film is removed from the polarizing film surface (step (C)). Furthermore, in the 1st aspect in the 2nd manufacturing method of this invention, on the polarizing film surface (surface with which the peelable film was bonded) of the said polarizing plate with a single-sided transparent protective film which passed the said process (C), A pressure-sensitive adhesive layer showing a storage elastic modulus of 0.1 MPa or higher at 80 ° C. is laminated (step (D)).
(Adhesive)
The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer has a storage elastic modulus at 80 ° C. of 0.1 MPa or more, preferably 0.15 to 10 MPa. When the storage elastic modulus at 80 ° C. is less than 0.1 MPa, there is a problem that bubbles and peeling occur because the dimensional change of the polarizing film that occurs when the high temperature environment and the low temperature environment are repeated cannot be followed. Because. Further, the storage elastic modulus at a temperature of 23 ° C. of this pressure-sensitive adhesive is preferably 0.1 MPa or more, and more preferably 0.2 to 10 MPa. In addition, since the storage elastic modulus generally tends to be lower as the temperature is higher, if the storage elastic modulus of the material measured at 80 ° C. is 0.1 MPa or more, usually the same material measured at 23 ° C. A storage elastic modulus shows the value beyond it.
Here, the storage elastic modulus (dynamic elastic modulus) is a commonly used term for viscoelasticity measurement, and gives a strain or stress that changes (vibrates) over time to a sample. This is a value determined by a method (dynamic viscoelasticity measurement) for measuring the mechanical properties of a sample by measuring the stress or strain generated by. Specifically, when the stress (strain) generated by the sinusoidal strain (stress) applied to the sample is divided into a component having the same phase as the strain (stress) and a component having a phase shifted by 90 degrees, The elastic modulus calculated from the stress (strain) component in phase with the stress. The storage elastic modulus can be measured using a commercially available viscoelasticity measuring device, for example, a dynamic viscoelasticity measuring device (Dynamic Analyzer RDA II: manufactured by REOMETRIC) as shown in the examples described later. For the temperature control of the viscoelasticity measuring apparatus, various known temperature control devices such as a circulating thermostat, an electric heater, a Peltier element, and the like are used, and thereby the temperature at the time of measurement can be set.
The pressure-sensitive adhesive used in a normal image display device or an optical film applied thereto has a storage elastic modulus of about 0.1 MPa at most, but the pressure-sensitive adhesive used in the production method of the present invention is as described above. The storage elastic modulus is high. By using such a high storage elastic modulus, that is, a hard adhesive, it is possible to compensate for the lack of cohesive force when placed in a high temperature environment or when a high temperature environment and a low temperature environment are repeated. The dimensional change accompanying the shrinkage | contraction of the polarizing film sometimes generated can be suppressed. By this action, the composite polarizing plate of the present invention has good durability.
The specific high-elasticity adhesive used in the production method of the present invention can be composed of a composition mainly containing, for example, an acrylic polymer, a silicone polymer, polyester, polyurethane, and polyether. Above all, like acrylic polymer, it has excellent optical transparency, moderate wettability and cohesion, excellent adhesion to the substrate, weather resistance, heat resistance, etc. It is preferable to select and use one that does not cause peeling problems such as floating and peeling under humidifying conditions. In the acrylic polymer, a functional group comprising an alkyl ester of acrylic acid having an alkyl group having 20 or less carbon atoms such as a methyl group, an ethyl group and a butyl group, and (meth) acrylic acid or hydroxyethyl (meth) acrylate. An acrylic copolymer having a weight average molecular weight of 100,000 or more obtained by blending a group-containing acrylic monomer with a glass transition temperature of preferably 25 ° C. or lower, more preferably 0 ° C. or lower is useful.
The acrylic polymer is not particularly limited, but (meth) such as butyl (meth) acrylate, ethyl (meth) acrylate, isooctyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. An acrylic ester polymer and a copolymer polymer using two or more of these (meth) acrylic esters are preferably used. Moreover, polar monomers may be copolymerized with these acrylic polymers. Examples of polar monomers include (meth) acrylic acid, 2-hydroxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, (meth) acrylamide, and 2-N, N-dimethylaminoethyl (meth). Mention may be made of monomers having polar functional groups such as carboxyl groups, hydroxyl groups, amide groups, amino groups, and epoxy groups, such as acrylates and glycidyl (meth) acrylates.
These acrylic polymers can be used alone as a pressure-sensitive adhesive, but are usually a pressure-sensitive adhesive composition containing a crosslinking agent. As the crosslinking agent, a divalent or polyvalent metal ion that forms a carboxylic acid metal salt with a carboxyl group, a polyamine compound that forms an amide bond with a carboxyl group, Examples include polyepoxy compounds and polyol compounds that form an ester bond with a carboxyl group, and polyisocyanate compounds that form an amide bond with a carboxyl group. Of these, polyisocyanate compounds are preferably used.
The means for increasing the storage elastic modulus of the pressure-sensitive adhesive is not particularly limited. For example, an oligomer, specifically, a urethane acrylate oligomer is added to the above-mentioned pressure-sensitive adhesive composition. A method is preferably employed. Furthermore, a method of irradiating and curing an adhesive composition containing such a urethane acrylate oligomer with energy rays is more preferably employed because it has a higher storage elastic modulus. A pressure-sensitive adhesive in which a urethane acrylate oligomer is blended or a pressure-sensitive adhesive with a separator obtained by coating it on a support film (separator) and curing it with ultraviolet rays is known and can be obtained from a pressure-sensitive adhesive manufacturer.
In order to adjust the adhesive force, cohesive force, viscosity, elastic modulus, glass transition temperature, etc. of the adhesive, if necessary, in addition to the above-mentioned polymer, crosslinking agent and oligomer, Appropriate additives such as natural and synthetic resins, tackifier resins, antioxidants, ultraviolet absorbers, dyes, pigments, antifoaming agents, corrosion inhibitors and photopolymerization initiators may be added. it can. Examples of the ultraviolet absorber include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, nickel complex compounds, and the like.
Moreover, the adhesive used by the manufacturing method of this invention can mix | blend a light-diffusion agent, and can be used as a light diffusable adhesive. The light diffusing agent used here may be fine particles having a refractive index different from that of the polymer constituting the pressure-sensitive adhesive layer, and fine particles made of an inorganic compound or fine particles made of an organic compound (polymer) can be used.
Examples of the fine particles made of an inorganic compound include aluminum oxide (refractive index: 1.76) and silicon oxide (refractive index: 1.45). Examples of the fine particles comprising an organic compound (polymer) include melamine beads (refractive index: 1.57), polymethyl methacrylate beads (refractive index: 1.49), and methyl methacrylate / styrene copolymer resin beads. (Refractive index: 1.50 to 1.59), polycarbonate beads (refractive index: 1.55), polyethylene beads (refractive index: 1.53), polystyrene beads (refractive index: 1.6), polyvinyl chloride beads (Refractive index: 1.46) and silicone resin beads (refractive index: 1.46).
Since the resin composition constituting the pressure-sensitive adhesive layer including the acrylic polymer usually has a refractive index of about 1.4, the light diffusing agent to be blended is appropriately selected from those having a refractive index of about 1-2. Just choose. The difference in refractive index between the polymer and the light diffusing agent in the composition constituting the pressure-sensitive adhesive layer is usually 0.01 or more, and from the viewpoint of the brightness and visibility of the image display device, 0.01 to 0.00. 5 is preferred. The fine particles used as the light diffusing agent are preferably spherical and those close to monodisperse. For example, fine particles having an average particle diameter in the range of about 2 to 6 μm are preferably used.
The blending amount of the light diffusing agent is appropriately determined in consideration of the haze value required for the light diffusing pressure-sensitive adhesive layer in which it is blended, the brightness of the image display device to which it is applied, etc. The amount is about 3 to 30 parts by weight with respect to 100 parts by weight of the base polymer constituting the adhesive layer.
In addition, the haze value required for the light diffusive pressure-sensitive adhesive layer ensures the brightness of the image display device to which the composite polarizing plate obtained by using the haze value is applied, and hardly causes bleeding and blurring of the display image. Therefore, the range of 20 to 80% is preferable. The haze is a value defined by JIS K 7105 and expressed by (diffuse transmittance / total light transmittance) × 100 (%).
Furthermore, the thickness of the pressure-sensitive adhesive layer and the thickness of the light-diffusible pressure-sensitive adhesive layer are determined according to the adhesive strength and the like, but are usually in the range of 1 to 40 μm. Furthermore, this thickness is such that the composite polarizing plate produced using the composite polarizing plate maintains good workability and exhibits high durability, and the image display device using the composite polarizing plate is viewed from the front or obliquely. From the standpoint of maintaining the brightness of the image and making it difficult for bleeding and blurring of the display image to occur, 3 to 25 μm is more preferable.
In the second production method of the present invention, the surface of the polarizing film with the cut polarizing plate with a single-sided transparent protective film (the first embodiment and the second embodiment described later) or the surface of the retardation film (the first film described later). In the third embodiment, an adhesive layer is formed. The peelable film having adhesiveness bonded to the polarizing film is peeled off before forming the pressure-sensitive adhesive layer.
For the formation of the pressure-sensitive adhesive layer, the pressure-sensitive adhesive solution is applied to the surface of the polarizing film (first aspect, second aspect) or the surface of the retardation film (third aspect) of the cut polarizing plate with a single-sided transparent protective film. The method of applying and drying is preferably employed. In addition, a support film (separator) that has been subjected to a release treatment is prepared by forming a pressure-sensitive adhesive layer on the release treatment surface (separator-attached pressure-sensitive adhesive), and this is applied to the surface of the polarizing film or the retardation film. A method of bonding to the surface is also preferably employed.
As the pressure-sensitive adhesive solution, for example, a solution prepared by dissolving or dispersing the raw material constituting the pressure-sensitive adhesive composition in an organic solvent such as toluene or ethyl acetate to obtain a 10 to 40% by weight solution, for example. The pressure-sensitive adhesive layer thus formed may be laminated with a separator made of a resin film that has been treated with a silicone-based release agent.
Furthermore, when forming the pressure-sensitive adhesive layer on the surface of the polarizing film or retardation film of the cut polarizing plate with a single-sided transparent protective film, if necessary, adherence to the surface of the polarizing film or retardation film For example, a corona treatment or the like may be performed, or the same treatment may be performed on the surface of the pressure-sensitive adhesive layer bonded to the polarizing film surface.
In the 1st aspect in the 2nd manufacturing method of the composite polarizing plate of this invention, next, the said retardation film is bonded through the said adhesive layer to the polarizing film surface from which the said peelable film was removed. (Step (E)).
The method for laminating the polarizing plate with a single-sided transparent protective film on which the pressure-sensitive adhesive layer is laminated and the retardation film is not particularly limited, but for example, with a single-sided transparent protective film using a laminating roll or the like. A method of laminating the retardation film so that the slow axis of the retardation film is perpendicular or parallel to the polarizing transmission axis of the polarizing plate, and the slow axis of the retardation film is a predetermined angle with respect to the polarizing transmission axis of the polarizing film. The method of bonding so that it becomes is employ | adopted. In particular, the method of feeding a polarizing plate with a single-sided transparent protective film and a retardation film from each long roll and continuously bonding them together in the long side direction can produce a composite polarizing plate with high productivity. Preferably employed.
<Second aspect>
The second aspect in the second production method of the present invention includes the above-described step (A), step (C), step (D), step (B) and step (E) in this order. In (D), the said adhesive layer is laminated | stacked on the polarizing film surface of the said polarizing plate with a single-sided transparent protective film which passed through the said process (C).
In the second aspect of the second production method of the present invention, first, as in the first aspect described above, a transparent protective film is bonded to one side of the polarizing film, and the peeled surface has adhesiveness on the opposite side. The polarizing film with a single-sided transparent protective film is produced by bonding a conductive film (step (A)). The production of the transparent protective film and the polarizing film and the adhesion thereof are performed in the same manner as in the step (A) in the first aspect described above.
In the second embodiment of the second production method of the present invention, next, the peelable film is removed from the polarizing film surface (step (C)). And the adhesive layer which shows the storage elastic modulus of 0.1 Mpa or more in 80 degreeC is laminated | stacked on the polarizing film surface of the said polarizing plate with a single-sided transparent protective film which passed the said process (C) (process (D)). The removal of the peelable film and the formation of the pressure-sensitive adhesive layer are performed in the same manner as in step (C) and step (D) in the first aspect described above.
In the second aspect of the second production method of the present invention, next, the polarizing plate with a single-sided transparent protective film is cut along the longitudinal direction according to the width of the retardation film (step (B)). The cutting of the polarizing plate with a single-sided transparent protective film is performed in the same manner as in the step (B) in the first aspect described above. In this 2nd aspect, cutting of the polarizing plate with a single-sided transparent protective film is performed with the adhesive layer laminated | stacked.
In the 2nd aspect in the 2nd manufacturing method of this invention, the said retardation film is finally bonded through the said adhesive layer to the polarizing film surface from which the said peelable film was removed (process (E )). The production of the retardation film and the bonding thereof are performed in the same manner as in the step (E) in the first aspect described above. Thus, the composite polarizing plate obtained by the 2nd aspect becomes the structure similar to the composite polarizing plate obtained by the 1st aspect mentioned above.
<Third embodiment>
The third aspect of the second production method of the present invention includes the above-described step (A), step (B), step (C) and step (E) in this order. The agent layer is laminated on one side of the retardation film.
In the third aspect of the second production method of the present invention, first, as in the first aspect described above, a transparent protective film is bonded to one side of the polarizing film, and peeling is performed on the opposite side. The polarizing film with a single-sided transparent protective film is produced by bonding a conductive film (step (A)). The production of the transparent protective film and the polarizing film and the adhesion thereof are performed in the same manner as in the step (A) in the first aspect described above.
In the third aspect of the second production method of the present invention, next, the polarizing plate with a single-sided transparent protective film is cut along the longitudinal direction according to the width of the retardation film (step (B)). . Next, the peelable film is removed from the polarizing film surface (step (C)). The cutting of the polarizing plate with a single-sided transparent protective film and the removal of the peelable film are performed in the same manner as in the step (B) and the step (C) in the first aspect described above.
On the other hand, in the 3rd aspect in the 2nd manufacturing method of this invention, the adhesive layer which shows the storage elastic modulus of 0.1 Mpa or more in 80 degreeC is laminated | stacked on a retardation film surface (process (D)). The configuration of the retardation film and the production method thereof are the same as those described in the first embodiment. Moreover, lamination | stacking of the adhesive layer to a phase difference film can be performed like the process (D) of a 1st aspect. 3rd aspect WHEREIN: The timing at which a process (D) is implemented is not specifically limited, What is necessary is just to be implemented by the below-mentioned process (E) being made. That is, step (D) may be performed before step (A), in parallel with any of step (A), step (B) and step (C), or after any of them. You may go. In short, the retardation film with the pressure-sensitive adhesive layer may be supplied to the polarizing film surface from which the peelable film has been removed in the step (C).
Also in the third aspect of the second production method of the present invention, finally, the retardation film is bonded to the polarizing film surface from which the peelable film has been removed via the pressure-sensitive adhesive layer (step (E )). The production of the retardation film and the bonding thereof are performed in the same manner as described above. Thus, the composite polarizing plate obtained by the 3rd aspect becomes the structure similar to the composite polarizing plate obtained by the 1st aspect mentioned above.
In the 2nd manufacturing method of the composite polarizing plate of this invention, an adhesive layer may be further provided in the outer side of the retardation film bonded by the composite polarizing plate. The pressure-sensitive adhesive layer can be suitably used for bonding with other members such as a liquid crystal cell. This pressure-sensitive adhesive layer may be formed after producing the composite polarizing plate, or may be formed in advance on the retardation film before bonding the polarizing plate with a single-sided transparent protective film and the retardation film. The composite polarizing plate thus formed is usually arranged so that the retardation film side faces the liquid crystal cell when being bonded to the liquid crystal cell.
The composite polarizing plate manufactured by the manufacturing method of this invention can be set as a liquid crystal display device by bonding the retardation film side and a liquid crystal cell through an adhesive layer. The same type of polarizing plate or a known polarizing plate can be bonded to the back side of the liquid crystal display device to which the composite polarizing plate is bonded. The operation mode of the liquid crystal panel to be bonded is preferably an IPS mode in which optical compensation is satisfactorily compensated by the refractive index characteristics of the composite polarizing plate of the present invention.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、使用量または含有量を表す「部」および「%」は、特に断りのない限り重量基準である。なお、以下の例において、貯蔵弾性率は次の方法によって測定した。
 [貯蔵弾性率の測定方法]
 粘着剤の貯蔵弾性率(G’)は、測定対象の粘着剤からなる直径8mm×厚み1mmの円盤状の試験片を作製し、動的粘弾性測定装置(Dynamic Analyzer RDA II:REOMETRIC社製)を用いて、周波数1Hzの捻りせん断法で初期歪1Nとし、23℃および80℃の条件で測定を行った。
 また、実施例および比較例においては、粘着剤、接着剤、偏光フィルムおよび位相差フィルムとして、次のものを用いた。
 (粘着剤シートA)
 粘着剤シートAを構成する粘着剤組成物は、アクリル酸ブチルとアクリル酸の共重合体にウレタンアクリレートオリゴマーが配合され、さらにイソシアネート系架橋剤が添加されたものである。この粘着剤の貯蔵弾性率を前記の方法で測定したところ、23℃において0.40MPa、80℃において0.18MPaであった。以下の実施例において、粘着剤は、前記組成の有機溶剤溶液を、離型処理が施された厚さ38μmのポリエチレンテレフタレートフィルム(セパレータ)の離型処理面に塗工し、乾燥することにより、そのセパレータの表面に厚さ15μmの粘着剤Aの層が形成されたセパレータ付きシート状粘着剤(粘着剤シートA)として用いた。
 (粘着剤シートB)
 粘着剤シートBは、市販のシート状粘着剤であり、ウレタンアクリレートオリゴマーは配合されていない。粘着剤シートBの貯蔵弾性率を上記の方法で測定したところ、23℃において0.05MPa、80℃において0.04MPaであった。以下の実施例および比較例においては、粘着剤シートBとして、離型処理が施された厚さ38μmのポリエチレンテレフタレートフィルム(セパレータ)の離型処理面に厚さ15μmの粘着剤シートBの層が設けられている市販のセパレータ付き粘着剤を使用した。
 (接着剤A)
 水100部に、カルボキシル基変性ポリビニルアルコール(クラレポバール KL318、(株)クラレ製)3部と水溶性ポリアミドエポキシ樹脂(スミレーズレジン 650、住化ケムテックス(株)製)(固形分濃度30%の水溶液)1.5部を添加し、溶解させて接着剤Aを調製した。
 (接着剤B)
 ビス(3,4−エポキシシクロヘキシルメチル)アジペート100部、水添ビスフェノールAのジグリシジルエーテル25部、および光カチオン重合開始剤として4,4’−ビス(ジフェニルスルホニオ)ジフェニルスルフィド ビス(ヘキサフルオロホスフェート)(50%プロピレンカーボネート溶液)2.2部(有効成分量)を混合した後、脱泡して、硬化性エポキシ樹脂組成物からなる接着剤Bを調製した。
 (偏光フィルム)
 平均重合度が約2400であり、ケン化度が99.9モル%以上であるポリビニルアルコールからなる厚さ75μmのポリビニルアルコールフィルムを、乾式で約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向された偏光フィルムを得た。
 (位相差フィルム)
 ノルボルネン系モノマーの開環重合体の水素添加物からなるノルボルネン系樹脂フィルム(ゼオノアフィルム、(株)オプテス製)を縦一軸延伸した厚み80μmのフィルムを位相差フィルム前駆体とした。このフィルムのガラス転移温度は136℃であり、光弾性係数は3.1×10−12/N、波長590nmの光に対する面内位相差値は300nm、厚み方向の位相差値は145nmであった。この一軸延伸フィルムの両面に、それぞれ厚み25μmのアクリル系粘着剤層を介して収縮フィルム(ポリプロピレン系樹脂からなる、横延伸倍率が縦延伸倍率より大きい二軸延伸フィルム(厚み60μm))を貼り合わせた。その後、ピンテンターでフィルムの幅方向を保持しながら、175℃±1℃の空気循環式恒温オーブンおよび160℃±1℃の空気循環式恒温オーブンを順次通過させ、幅方向で0.70倍に収縮させた。このときの長手方向の収縮倍率は0.92倍であった。その後、両面に貼った収縮性フィルムを粘着剤層ごと剥がして、ノルボルネン系樹脂からなる位相差フィルムを得た。こうして得られた位相差フィルムは、厚み107μm、波長590nmの光に対する面内位相差値241.9nmであり、N係数は0.49であった。また、得られた位相差フィルムの幅は、720mmであった。
 <実施例1−1>
 (工程(A))
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Aを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、その積層体を60℃で乾燥させ、片面に透明保護フィルムが貼合された偏光板を得た。得られた片面透明保護フィルム付き偏光板の幅は、1490mmであった。また、この偏光板の外観は、乾燥の熱や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(B))
 次いで、この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの大きさに合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面透明保護フィルム付き偏光板を得た。この偏光板の外観は、スリット時の剪断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(C))
 位相差フィルムに、照射量16.8kJ/mでコロナ処理を施し、その処理面に接着剤Bを塗工した。次いで、前記工程(B)で裁断された偏光板からポリエチレンフィルムを剥離除去し、ただちにその位相差フィルム面と前記位相差フィルムの接着剤塗工面とを積層し、その積層体に紫外線照射装置(ランプ:Fusion Dランプ、積算光量1000mJ/cm)で紫外線の照射を行い、室温で1時間放置して、本発明の複合偏光板を得た。
 こうして得られた複合偏光板の外観は、フィルムの浮きやはがれ、気泡等はなく良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、片面保護フィルム付き偏光板の全面積中96.6%を使用できた。
 得られた複合偏光板の位相差フィルム面を市販のアクリル系粘着剤シートでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行った。実施例1−1の複合偏光板は、試験後にも欠陥は観察されず、良好な状態を維持した。
 <実施例1−2>
 (液晶表示装置の作製と評価)
 IPSモードの液晶セルを含む液晶表示装置(W32L−H9000、(株)日立製作所製)からバックライトを取り外し、さらに液晶セルのバックライト側に配置されていた偏光板を取り外して、そのガラス面を洗浄した。次に、この液晶セルのバックライト側に、実施例1−1で得られた複合偏光板を、その吸収軸がオリジナルの偏光板の吸収軸と同じになるように、かつ位相差フィルムが液晶セル側となるように、アクリル系粘着剤を介して接着し、液晶パネルを作製した。最後に、一旦取り外しておいたバックライトを再び組み込んで、液晶表示装置を作製した。
 この液晶表示装置について、バックライトを点灯させて30分後に、方位角45°、極角60°のコントラスト比を測定した。その結果、282のコントラスト比を示した。
 <比較例1−1>
 片面透明保護フィルム付き偏光板を裁断しなかったこと以外は実施例1−1と同様にして、複合偏光板を作製した。こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。しかし、実施例1−1と同様にシートを得るにあたっては、複合偏光板の全面積中48.3%しか使用できなかった。
 <比較例1−2>
 片面透明保護フィルム付き偏光板の作製時に、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを使用しなかった以外は、実施例1−1と同様に複合偏光板を作製した。作製した複合偏光板の外観は、片面透明保護フィルム付き偏光板の作製時および片面透明保護フィルム付き偏光板の裁断時に偏光フィルムが損傷を受けており、実用に供せられるものではなかった。
 <実施例1−3>
 (工程(A))
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Bを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、紫外線照射装置(ランプ:Fusion Dランプ、積算光量1000mJ/cm)にて紫外線の照射を行い、室温で1時間放置して、片面に透明保護フィルムが貼合された偏光板を得た。得られた片面透明保護フィルム付き偏光板の幅は、1490mmであった。この偏光板の外観は、搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(B))
 次いで、この片面透明保護フィルム付き偏光板を実施例1−1と同様にして裁断し、720mm幅の片面透明保護フィルム付き偏光板を得た。この裁断後の片面透明保護フィルム付き偏光板の外観は、スリット時のせん断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(C))
 実施例1−1の工程(C)と同様にして、本発明の複合偏光板を得た。こうして得られた複合偏光板の外観は、フィルムの浮きやはがれ、気泡等はなく良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、片面保護フィルム付き偏光板の全面積中96.6%を使用できた。
 得られた複合偏光板の位相差フィルム面を粘着剤シートBでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させる。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行なう。実施例1−3の複合偏光板は、試験後にも欠陥は観察されず、良好な状態を維持している。
 <実施例1−4>
 実施例1−2において、実施例1−1で得られた複合偏光板の代わりに、実施例1−3で得られた複合偏光板を用いたこと以外は、実施例1−2と同様にして液晶表示装置を作製した。この液晶表示装置について、バックライトを点灯させて30分後に、方位角45°、極角60°のコントラスト比を測定した。その結果、282のコントラスト比を示した。
 <実施例2−1>
 (工程(A))
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Aを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、その積層体を60℃で乾燥させ、片面に透明保護フィルムが貼合された偏光板を得た。得られた片面透明保護フィルム付き偏光板の幅は、1490mmであった。また、この偏光板の外観は、乾燥の熱や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(B))
 次いで、この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの大きさに合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面透明保護フィルム付き偏光板を得た。この偏光板の外観は、スリット時の剪断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(C)、工程(D))
 前記工程(B)で裁断された偏光板からポリエチレンフィルムを剥離除去し、ただちにその偏光フィルム面上に、粘着剤シートAを貼合して粘着剤層を積層させた。
 (工程(E))
 位相差フィルムに照射量16.8kJ/mでコロナ処理を施した後、そのコロナ処理面と、前記工程(B)でスリットされた偏光板とを、前記工程(D)で設けた粘着剤層を介して貼合し、複合偏光板を得た。
 こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。
 得られた複合偏光板の位相差フィルム面を粘着剤シートBでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行った。実施例2−1の複合偏光板は、試験後にも欠陥は観察されず、良好な状態を維持した。
 <実施例2−2>
 (液晶表示装置の作製と評価)
 IPSモードの液晶セルを含む液晶表示装置(W32L−H9000、(株)日立製作所製)からバックライトを取り外し、さらに液晶セルのバックライト側に配置されていた偏光板を取り外して、そのガラス面を洗浄した。次に、この液晶セルのバックライト側に、実施例2−1で得られた複合偏光板を、その吸収軸がオリジナルの偏光板の吸収軸と同じになるように、かつ位相差フィルムが液晶セル側となるように、アクリル系粘着剤を介して接着し、液晶パネルを作製した。最後に、一旦取り外しておいたバックライトを再び組み込んで、液晶表示装置を作製した。
 この液晶表示装置について、バックライトを点灯させて30分後に、方位角45°、極角60°のコントラスト比を測定した。その結果、282のコントラスト比を示した。
 <比較例2−1>
 片面透明保護フィルム付き偏光板を裁断しなかったこと以外は実施例2−1と同様にして、複合偏光板を作製した。こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。しかし、実施例2−1と同様にシートを得るにあたっては、複合偏光板の全面積中48.3%しか使用できなかった。
 <比較例2−2>
 片面透明保護フィルム付き偏光板の作製時に、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを使用しなかった以外は、実施例2−1と同様に複合偏光板を作製した。作製した複合偏光板の外観は、片面透明保護フィルム付き偏光板の作製時および片面透明保護フィルム付き偏光板の裁断時に偏光フィルムが損傷を受けており、実用に供せられるものではなかった。
 <実施例2−3>
 (工程(A))
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Bを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、紫外線照射装置(ランプ:Fusion Dランプ、積算光量:1000mJ/cm)にて紫外線の照射を行い、室温で1時間放置して、片面に透明保護フィルムが貼合された偏光板を得た。得られた片面透明保護フィルム付き偏光板の幅は、1490mmであった。また、この偏光板の外観は、搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(B))
 次いで、この片面透明保護フィルム付き偏光板を実施例2−1と同様にして裁断し、720mm幅の片面透明保護フィルム付き偏光板を得た。この裁断後の片面透明保護フィルム付き偏光板の外観は、スリット時のせん断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(C)、工程(D))
 前記工程(B)でスリットされた偏光板からポリエチレンフィルムを剥離除去し、ただちにその偏光フィルム面上に、粘着剤シートAを貼合して粘着剤層を積層させた。
 (工程(E))
 位相差フィルムに照射量16.8kJ/mでコロナ処理を施した後、そのコロナ処理面と、前記工程(B)でスリットされた偏光板とを、前記工程(D)で設けた粘着剤層を介して貼合し、複合偏光板を得た。
 こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、片面保護フィルム付き偏光板の全面積中96.6%を使用できた。
 得られた複合偏光板の位相差フィルム面を粘着剤シートBでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行った。実施例2−3の複合偏光板は、試験後にも欠陥は観察されず、良好な状態を維持していた。
 <実施例2−4>
 実施例2−1で得られた複合偏光板の代わりに、実施例2−3で得られた複合偏光板を用いたこと以外は、実施例2−2と同様にして液晶表示装置を作製した。この液晶表示装置について、バックライトを点灯させて30分後に、方位角45°、極角60°のコントラスト比を測定した。その結果、282のコントラスト比を示した。
 <比較例2−3>
 実施例2−1において、工程(D)で用いる粘着剤シートAを粘着剤シートBに変更した以外は、同様に複合偏光板を作製した。こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。
 得られた複合偏光板の位相差フィルム面を粘着剤シートBでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行った。比較例2−3の偏光板は、試験後に位相差フィルムとガラスの間の粘着剤層に気泡が発生し、実用に足るものではなかった。
 <比較例2−4>
 実施例2−3において、工程(D)で用いる粘着剤シートAを粘着剤シートBに変更した以外は、同様に複合偏光板を作製した。こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。
 得られた複合偏光板の位相差フィルム面を粘着剤シートBでソーダガラス(液晶セルの代わりとして使用)に固定し、50℃で20分間のオートクレーブ処理を施して複合偏光板をガラス板に密着させた。この状態で、−35℃の雰囲気に30分置き、次に+85℃の雰囲気に移して30分置くことを1サイクルとし、これを100サイクル繰り返すヒートショック試験を行った。比較例2−3の偏光板は、試験後に位相差フィルムとガラスの間の粘着剤層に気泡が発生し、実用に足るものではなかった。
 <実施例2−5>
 (工程(A))
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Aを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、その積層体を60℃で乾燥させ、片面に透明保護フィルムが貼合された偏光板を得た。得られた片面透明保護フィルム付き偏光板の幅は、1490mmであった。また、この偏光板の外観は、乾燥の熱や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(C)、工程(D))
 次いで、この片面透明保護フィルム付き偏光板からポリエチレンフィルムを剥離除去し、ただちにその偏光フィルム面上に、粘着剤シートAを貼合して粘着剤層を積層させた。
 (工程(B))
 この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの大きさに合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面透明保護フィルム付き偏光板を得た。この偏光板の外観は、スリット時の剪断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(E))
 位相差フィルムに照射量16.8kJ/mでコロナ処理を施した後、そのコロナ処理面と、前記工程(B)でスリットされた偏光板とを、前記工程(D)で設けた粘着剤層を介して貼合し、複合偏光板を得た。
 こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。
 <実施例2−6>
 (工程(A))
 偏光フィルムの片面に、表面にケン化処理を施した厚み40μmのトリアセチルセルロースフィルム(透明保護フィルム)を、接着剤Aを介して貼合し、その反対側の面には、粘着性を有する剥離性フィルムとして、表面(偏光フィルムとの接着面)が自己粘着性を有するポリエチレンフィルムを貼合し、その積層体を60℃で乾燥させ、片面に透明保護フィルムが貼合された偏光板を得た。得られた片面透明保護フィルム付き偏光板の幅は、1490mmであった。また、この偏光板の外観は、乾燥の熱や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(B))
 次いで、この片面透明保護フィルム付き偏光板を、スリッター(Model FN25、(株)西村製作所製)を用いて、位相差フィルムの大きさに合わせて長尺方向に沿って裁断(スリット)し、720mm幅の片面透明保護フィルム付き偏光板を得た。この偏光板の外観は、スリット時の剪断や搬送ロールとの摩擦を受けたにもかかわらず、キズ、割れ等の損傷もなく良好であった。
 (工程(D))
 位相差フィルムに照射量16.8kJ/mでコロナ処理を施した後、そのコロナ処理面上に、粘着剤シートAを貼合して粘着剤層を積層させた。
 (工程(C)、工程(E))
 前記工程(B)でスリットされた偏光板からポリエチレンフィルムを剥離除去した。そして、ポリエチレンフィルム剥離後の偏光フィルム面および前記工程(D)で位相差フィルムに設けた粘着剤層側に、照射量16.8kJ/mでコロナ処理を施した後、偏光板と位相差フィルムとを、位相差フィルム上の粘着剤層を介して貼合し、複合偏光板を得た。
 こうして得られた複合偏光板の外観は、フィルムの浮き、はがれ、および気泡等のない良好なものであった。また、この複合偏光板から液晶セル貼合用のシートを裁断によって得るにあたり、複合偏光板の全面積中96.6%を使用できた。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は前記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited by these examples. In the examples, “part” and “%” representing the amount used or content are based on weight unless otherwise specified. In the following examples, the storage elastic modulus was measured by the following method.
[Method for measuring storage modulus]
The storage elastic modulus (G ′) of the pressure-sensitive adhesive is a disk-shaped test piece having a diameter of 8 mm × thickness of 1 mm made of the pressure-sensitive adhesive to be measured, and a dynamic viscoelasticity measuring device (Dynamic Analyzer RDA II: manufactured by REOMETRIC). The initial strain was set to 1N by a torsional shear method with a frequency of 1 Hz, and the measurement was performed under conditions of 23 ° C. and 80 ° C.
Moreover, in the Example and the comparative example, the following were used as an adhesive, an adhesive agent, a polarizing film, and retardation film.
(Adhesive sheet A)
The pressure-sensitive adhesive composition constituting the pressure-sensitive adhesive sheet A is obtained by adding a urethane acrylate oligomer to a copolymer of butyl acrylate and acrylic acid, and further adding an isocyanate-based crosslinking agent. When the storage elastic modulus of this pressure-sensitive adhesive was measured by the above method, it was 0.40 MPa at 23 ° C. and 0.18 MPa at 80 ° C. In the following examples, the adhesive was applied to the release treatment surface of a 38 μm-thick polyethylene terephthalate film (separator) having been subjected to the release treatment by drying the organic solvent solution having the above composition, and then dried. The separator was used as a sheet-like pressure-sensitive adhesive (pressure-sensitive adhesive sheet A) in which a layer of pressure-sensitive adhesive A having a thickness of 15 μm was formed on the surface of the separator.
(Adhesive sheet B)
The pressure-sensitive adhesive sheet B is a commercially available sheet-like pressure-sensitive adhesive and does not contain a urethane acrylate oligomer. When the storage elastic modulus of the pressure-sensitive adhesive sheet B was measured by the above method, it was 0.05 MPa at 23 ° C. and 0.04 MPa at 80 ° C. In the following examples and comparative examples, as the pressure-sensitive adhesive sheet B, the layer of the pressure-sensitive adhesive sheet B having a thickness of 15 μm is formed on the release treatment surface of the 38 μm-thick polyethylene terephthalate film (separator) subjected to the release treatment. A commercially available adhesive with a separator was used.
(Adhesive A)
To 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Poval KL318, manufactured by Kuraray Co., Ltd.) and water-soluble polyamide epoxy resin (Smiles Resin 650, manufactured by Sumika Chemtex Co., Ltd.) (solid content concentration 30%) Aqueous solution) 1.5 parts was added and dissolved to prepare adhesive A.
(Adhesive B)
100 parts of bis (3,4-epoxycyclohexylmethyl) adipate, 25 parts of diglycidyl ether of hydrogenated bisphenol A, and 4,4′-bis (diphenylsulfonio) diphenyl sulfide bis (hexafluorophosphate as a photocationic polymerization initiator ) (50% propylene carbonate solution) 2.2 parts (active ingredient amount) were mixed and defoamed to prepare an adhesive B made of a curable epoxy resin composition.
(Polarizing film)
A 75 μm-thick polyvinyl alcohol film made of polyvinyl alcohol having an average degree of polymerization of about 2400 and a saponification degree of 99.9 mol% or more was uniaxially stretched about 5 times by a dry method, and further maintained a tension state. The sample was immersed in pure water at 60 ° C. for 1 minute, and then immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, it was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a polarizing film in which iodine was adsorbed and oriented on polyvinyl alcohol.
(Retardation film)
A film having a thickness of 80 μm obtained by longitudinally uniaxially stretching a norbornene resin film (Zeonor film, manufactured by Optes Co., Ltd.) made of a hydrogenated ring-opening polymer of a norbornene monomer was used as a retardation film precursor. The glass transition temperature of this film is 136 ° C., the photoelastic coefficient is 3.1 × 10 −12 m 2 / N, the in-plane retardation value for light with a wavelength of 590 nm is 300 nm, and the retardation value in the thickness direction is 145 nm. there were. A shrink film (a biaxially stretched film (thickness: 60 μm) made of polypropylene resin having a transverse stretching ratio larger than the longitudinal stretching ratio) is bonded to both surfaces of this uniaxially stretched film via an acrylic adhesive layer having a thickness of 25 μm. It was. After that, while holding the width direction of the film with a pin tenter, the film is sequentially passed through an air circulation type thermostatic oven at 175 ° C ± 1 ° C and an air circulation type thermostatic oven at 160 ° C ± 1 ° C, and shrinks 0.70 times in the width direction. I let you. At this time, the shrinkage ratio in the longitudinal direction was 0.92. Then, the shrinkable film stuck on both surfaces was peeled off together with the pressure-sensitive adhesive layer to obtain a retardation film made of a norbornene resin. The retardation film obtained in this way, the thickness 107Myuemu, an in-plane retardation value 241.9nm with respect to light having a wavelength of 590 nm, N z coefficient was 0.49. Moreover, the width | variety of the obtained retardation film was 720 mm.
<Example 1-1>
(Process (A))
A 40 μm-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness. As a peelable film, a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained. The width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. Further, the appearance of this polarizing plate was good without damage such as scratches and cracks, despite being subjected to heat of drying and friction with the transport roll.
(Process (B))
Next, this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), and 720 mm. A polarizing plate with a single-side transparent protective film having a width was obtained. The appearance of this polarizing plate was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
(Process (C))
The retardation film was subjected to corona treatment at an irradiation amount of 16.8 kJ / m 2 , and the adhesive B was applied to the treated surface. Next, the polyethylene film is peeled and removed from the polarizing plate cut in the step (B), immediately, the retardation film surface and the adhesive coating surface of the retardation film are laminated, and an ultraviolet irradiation device ( Lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2 ) was irradiated with ultraviolet rays and left at room temperature for 1 hour to obtain a composite polarizing plate of the present invention.
The appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with a commercially available acrylic pressure-sensitive adhesive sheet, and subjected to autoclave treatment at 50 ° C. for 20 minutes to make the composite polarizing plate into glass. It was made to adhere to a board. In this state, a heat shock test was performed by placing in an atmosphere of −35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. The composite polarizing plate of Example 1-1 was maintained in a good state with no defects observed after the test.
<Example 1-2>
(Production and evaluation of liquid crystal display devices)
Remove the backlight from the liquid crystal display device (W32L-H9000, manufactured by Hitachi, Ltd.) including the liquid crystal cell in the IPS mode, remove the polarizing plate arranged on the backlight side of the liquid crystal cell, and remove the glass surface. Washed. Next, on the backlight side of the liquid crystal cell, the retardation film is a liquid crystal so that the absorption axis of the composite polarizing plate obtained in Example 1-1 is the same as the absorption axis of the original polarizing plate. A liquid crystal panel was prepared by adhering via an acrylic pressure-sensitive adhesive so as to be on the cell side. Finally, the backlight that had been removed once was assembled again to produce a liquid crystal display device.
With respect to this liquid crystal display device, the contrast ratio at an azimuth angle of 45 ° and a polar angle of 60 ° was measured 30 minutes after the backlight was turned on. As a result, a contrast ratio of 282 was shown.
<Comparative Example 1-1>
A composite polarizing plate was produced in the same manner as in Example 1-1 except that the polarizing plate with a single-sided transparent protective film was not cut. The appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles. However, in obtaining a sheet in the same manner as in Example 1-1, only 48.3% of the total area of the composite polarizing plate could be used.
<Comparative Example 1-2>
A composite polarizing plate was prepared in the same manner as in Example 1-1, except that a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) was not used when the polarizing plate with a single-sided transparent protective film was prepared. . The appearance of the produced composite polarizing plate was not practically used because the polarizing film was damaged during the production of the polarizing plate with a single-sided transparent protective film and when the polarizing plate with a single-sided transparent protective film was cut.
<Example 1-3>
(Process (A))
A 40 μm thick triacetyl cellulose film (transparent protective film) having a surface subjected to saponification treatment is bonded to one surface of the polarizing film via an adhesive B, and the opposite surface has adhesiveness. As a peelable film, a polyethylene film having a self-adhesive surface (adhesion surface with a polarizing film) is bonded, and ultraviolet irradiation is performed with an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity 1000 mJ / cm 2 ). And allowed to stand at room temperature for 1 hour to obtain a polarizing plate having a transparent protective film bonded on one side. The width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. The appearance of the polarizing plate was good without damage such as scratches and cracks, despite being subjected to friction with the transport roll.
(Process (B))
Next, this polarizing plate with a single-sided transparent protective film was cut in the same manner as in Example 1-1 to obtain a polarizing plate with a single-sided transparent protective film having a width of 720 mm. The appearance of the polarizing plate with a single-sided transparent protective film after the cutting was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
(Process (C))
The composite polarizing plate of the present invention was obtained in the same manner as in the step (C) of Example 1-1. The appearance of the composite polarizing plate thus obtained was good with no floating or peeling of the film and no bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate. Let In this state, a heat shock test is performed by placing in an atmosphere of −35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. In the composite polarizing plate of Example 1-3, no defects were observed even after the test, and the good state was maintained.
<Example 1-4>
In Example 1-2, the same procedure as in Example 1-2 was performed except that the composite polarizing plate obtained in Example 1-3 was used instead of the composite polarizing plate obtained in Example 1-1. Thus, a liquid crystal display device was produced. With respect to this liquid crystal display device, the contrast ratio at an azimuth angle of 45 ° and a polar angle of 60 ° was measured 30 minutes after the backlight was turned on. As a result, a contrast ratio of 282 was shown.
<Example 2-1>
(Process (A))
A 40 μm-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness. As a peelable film, a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained. The width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. Further, the appearance of this polarizing plate was good without damage such as scratches and cracks, despite being subjected to heat of drying and friction with the transport roll.
(Process (B))
Next, this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), and 720 mm. A polarizing plate with a single-side transparent protective film having a width was obtained. The appearance of this polarizing plate was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
(Process (C), Process (D))
The polyethylene film was peeled and removed from the polarizing plate cut in the step (B), and the pressure-sensitive adhesive sheet A was immediately bonded onto the surface of the polarizing film to laminate a pressure-sensitive adhesive layer.
(Process (E))
After the corona treatment was applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the pressure-sensitive adhesive provided with the corona-treated surface and the polarizing plate slit in the step (B) in the step (D) Bonding via the layers gave a composite polarizing plate.
The appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles. Moreover, when obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate. I let you. In this state, a heat shock test was performed by placing in an atmosphere of −35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. The composite polarizing plate of Example 2-1 maintained a good state with no defects observed even after the test.
<Example 2-2>
(Production and evaluation of liquid crystal display devices)
Remove the backlight from the liquid crystal display device (W32L-H9000, manufactured by Hitachi, Ltd.) including the liquid crystal cell in the IPS mode, remove the polarizing plate arranged on the backlight side of the liquid crystal cell, and remove the glass surface. Washed. Next, the composite polarizing plate obtained in Example 2-1 was placed on the backlight side of the liquid crystal cell so that the absorption axis was the same as the absorption axis of the original polarizing plate, and the retardation film was a liquid crystal. A liquid crystal panel was prepared by adhering via an acrylic pressure-sensitive adhesive so as to be on the cell side. Finally, the backlight that had been removed once was assembled again to produce a liquid crystal display device.
With respect to this liquid crystal display device, the contrast ratio at an azimuth angle of 45 ° and a polar angle of 60 ° was measured 30 minutes after the backlight was turned on. As a result, a contrast ratio of 282 was shown.
<Comparative Example 2-1>
A composite polarizing plate was produced in the same manner as in Example 2-1, except that the polarizing plate with a single-sided transparent protective film was not cut. The appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles. However, in obtaining the sheet in the same manner as in Example 2-1, only 48.3% of the total area of the composite polarizing plate could be used.
<Comparative Example 2-2>
A composite polarizing plate was produced in the same manner as in Example 2-1, except that a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) was not used when producing a polarizing plate with a single-sided transparent protective film. . The appearance of the produced composite polarizing plate was not practically used because the polarizing film was damaged during the production of the polarizing plate with a single-sided transparent protective film and when the polarizing plate with a single-sided transparent protective film was cut.
<Example 2-3>
(Process (A))
A 40 μm thick triacetyl cellulose film (transparent protective film) having a surface subjected to saponification treatment is bonded to one surface of the polarizing film via an adhesive B, and the opposite surface has adhesiveness. As a peelable film, a polyethylene film having a self-adhesive surface (bonding surface with a polarizing film) is bonded, and ultraviolet irradiation is performed with an ultraviolet irradiation device (lamp: Fusion D lamp, integrated light quantity: 1000 mJ / cm 2 ). And left at room temperature for 1 hour to obtain a polarizing plate having a transparent protective film bonded on one side. The width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. Further, the appearance of this polarizing plate was good without damage such as scratches and cracks despite being subjected to friction with the transport roll.
(Process (B))
Subsequently, this polarizing plate with a single-sided transparent protective film was cut in the same manner as in Example 2-1, to obtain a polarizing plate with a single-sided transparent protective film having a width of 720 mm. The appearance of the polarizing plate with a single-sided transparent protective film after the cutting was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
(Process (C), Process (D))
The polyethylene film was peeled and removed from the polarizing plate slit in the step (B), and immediately, the pressure-sensitive adhesive sheet A was bonded onto the surface of the polarizing film to laminate a pressure-sensitive adhesive layer.
(Process (E))
After the corona treatment was applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the pressure-sensitive adhesive provided with the corona-treated surface and the polarizing plate slit in the step (B) in the step (D) Bonding via the layers gave a composite polarizing plate.
The appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% of the total area of the polarizing plate with a single-sided protective film could be used.
The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate. I let you. In this state, a heat shock test was performed by placing in an atmosphere of −35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. In the composite polarizing plate of Example 2-3, no defects were observed even after the test, and the good state was maintained.
<Example 2-4>
A liquid crystal display device was produced in the same manner as in Example 2-2 except that the composite polarizing plate obtained in Example 2-3 was used instead of the composite polarizing plate obtained in Example 2-1. . With respect to this liquid crystal display device, the contrast ratio at an azimuth angle of 45 ° and a polar angle of 60 ° was measured 30 minutes after the backlight was turned on. As a result, a contrast ratio of 282 was shown.
<Comparative Example 2-3>
A composite polarizing plate was prepared in the same manner as in Example 2-1, except that the pressure-sensitive adhesive sheet A used in the step (D) was changed to the pressure-sensitive adhesive sheet B. The appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles. Moreover, when obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate. I let you. In this state, a heat shock test was performed by placing in an atmosphere of −35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. In the polarizing plate of Comparative Example 2-3, bubbles were generated in the pressure-sensitive adhesive layer between the retardation film and the glass after the test, which was not practical.
<Comparative Example 2-4>
A composite polarizing plate was produced in the same manner as in Example 2-3, except that the pressure-sensitive adhesive sheet A used in the step (D) was changed to the pressure-sensitive adhesive sheet B. The appearance of the composite polarizing plate thus obtained was good with no film floating, peeling or bubbles. Moreover, when obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
The retardation film surface of the obtained composite polarizing plate is fixed to soda glass (used as a substitute for a liquid crystal cell) with an adhesive sheet B, and subjected to autoclave treatment at 50 ° C. for 20 minutes to adhere the composite polarizing plate to the glass plate. I let you. In this state, a heat shock test was performed by placing in an atmosphere of −35 ° C. for 30 minutes, then moving to an atmosphere of + 85 ° C. and placing for 30 minutes as one cycle, and repeating this for 100 cycles. In the polarizing plate of Comparative Example 2-3, bubbles were generated in the pressure-sensitive adhesive layer between the retardation film and the glass after the test, which was not practical.
<Example 2-5>
(Process (A))
A 40 μm-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness. As a peelable film, a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained. The width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. In addition, the appearance of this polarizing plate was good without damage such as scratches and cracks, despite the heat of drying and the friction with the transport roll.
(Process (C), Process (D))
Subsequently, the polyethylene film was peeled and removed from the polarizing plate with a single-sided transparent protective film, and immediately, the pressure-sensitive adhesive sheet A was bonded onto the surface of the polarizing film to laminate a pressure-sensitive adhesive layer.
(Process (B))
Using a slitter (Model FN25, manufactured by Nishimura Seisakusho Co., Ltd.), the polarizing plate with a single-side transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film, A polarizing plate with a single-sided transparent protective film was obtained. The appearance of this polarizing plate was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
(Process (E))
After the corona treatment was applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the pressure-sensitive adhesive provided with the corona-treated surface and the polarizing plate slit in the step (B) in the step (D) Bonding via the layers gave a composite polarizing plate.
The appearance of the composite polarizing plate thus obtained was good without the film floating, peeling, or bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
<Example 2-6>
(Process (A))
A 40 μm-thick triacetyl cellulose film (transparent protective film) having a saponified surface is bonded to one surface of the polarizing film via an adhesive A, and the opposite surface has adhesiveness. As a peelable film, a polarizing film in which a polyethylene film having a self-adhesive surface (adhesive surface with a polarizing film) is bonded, the laminate is dried at 60 ° C., and a transparent protective film is bonded on one side is used. Obtained. The width of the obtained polarizing plate with a single-sided transparent protective film was 1490 mm. In addition, the appearance of this polarizing plate was good without damage such as scratches and cracks, despite the heat of drying and the friction with the transport roll.
(Process (B))
Next, this polarizing plate with a single-sided transparent protective film was cut (slit) along the longitudinal direction according to the size of the retardation film using a slitter (Model FN25, manufactured by Nishimura Seisakusho), 720 mm A polarizing plate with a single-side transparent protective film having a width was obtained. The appearance of this polarizing plate was good without damage such as scratches and cracks, despite being sheared at the time of slitting and friction with the transport roll.
(Process (D))
After the corona treatment was applied to the retardation film at an irradiation amount of 16.8 kJ / m 2 , the pressure-sensitive adhesive sheet A was bonded on the corona-treated surface to laminate the pressure-sensitive adhesive layer.
(Process (C), Process (E))
The polyethylene film was peeled off from the polarizing plate slit in the step (B). And after giving a corona treatment with the irradiation amount of 16.8 kJ / m < 2 > to the polarizing film surface after peeling a polyethylene film, and the adhesive layer side provided in the phase difference film at the said process (D), a polarizing plate and phase difference The film was bonded via an adhesive layer on a retardation film to obtain a composite polarizing plate.
The appearance of the composite polarizing plate thus obtained was good without the film floating, peeling, or bubbles. Moreover, in obtaining the sheet | seat for liquid crystal cell bonding from this composite polarizing plate by cutting, 96.6% was able to be used in the whole area of a composite polarizing plate.
It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明の複合偏光板は、種々の液晶表示装置における光学部材として広く利用され得るものであり、例えば、テレビ等の大型液晶表示装置や、コンピュータ用ディスプレイ、カーナビ、携帯電話、携帯端末機器等に用いられる中小型液晶表示装置における光学部材として利用され得るものである。 The composite polarizing plate of the present invention can be widely used as an optical member in various liquid crystal display devices. For example, it can be used in large liquid crystal display devices such as televisions, computer displays, car navigation systems, mobile phones, and mobile terminal devices. It can be used as an optical member in the medium- and small-sized liquid crystal display device used.

Claims (14)

  1.  (A)偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する工程と、
     (B)前記片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断する工程と、
     (C)前記工程(B)で裁断された片面透明保護フィルム付き偏光板の剥離性フィルムを除去するとともに、その偏光フィルム面と位相差フィルムとを活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有するエポキシ樹脂組成物を用いて貼合する工程とを含む、複合偏光板の製造方法。
    (A) a step of pasting a transparent protective film on one side of the polarizing film, pasting a peelable film having adhesiveness on the opposite side, and producing a polarizing plate with a single-sided transparent protective film;
    (B) cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the width of the retardation film;
    (C) An epoxy resin that removes the peelable film of the polarizing plate with the single-sided transparent protective film cut in the step (B) and cures the polarizing film surface and the retardation film by irradiation with active energy rays or heating. The manufacturing method of a composite polarizing plate including the process of bonding using the epoxy resin composition containing this.
  2.  前記エポキシ樹脂が、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物を含有する請求項1に記載の製造方法。 The production method according to claim 1, wherein the epoxy resin contains a compound having at least one epoxy group bonded to an alicyclic ring in the molecule.
  3.  (A)偏光フィルムの片面に透明保護フィルムを貼合し、反対側の面に粘着性を有する剥離性フィルムを貼合し、片面透明保護フィルム付き偏光板を作製する工程と、
     (B)前記片面透明保護フィルム付き偏光板を、位相差フィルムの幅に合わせて長尺方向に沿って裁断する工程と、
     (C)前記剥離性フィルムを偏光フィルム面から除去する工程と、
     (D)前記位相差フィルムの片面、または、前記工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に、80℃において0.1MPa以上の貯蔵弾性率を示す粘着剤層を積層する工程と、
     (E)前記剥離性フィルムが除去された偏光フィルム面に、前記粘着剤層を介して前記位相差フィルムを貼合する工程とを含む、複合偏光板の製造方法。
    (A) a step of pasting a transparent protective film on one side of the polarizing film, pasting a peelable film having adhesiveness on the opposite side, and producing a polarizing plate with a single-sided transparent protective film;
    (B) cutting the polarizing plate with a single-sided transparent protective film along the longitudinal direction according to the width of the retardation film;
    (C) removing the peelable film from the polarizing film surface;
    (D) An adhesive layer exhibiting a storage elastic modulus of 0.1 MPa or more at 80 ° C. on one side of the retardation film or the polarizing film side of the polarizing plate with the one-side transparent protective film that has undergone the step (C). Laminating steps;
    (E) The manufacturing method of a composite polarizing plate including the process of bonding the said retardation film through the said adhesive layer on the polarizing film surface from which the said peelable film was removed.
  4.  前記工程(A)、工程(B)、工程(C)、工程(D)および工程(E)をこの順で含み、前記工程(D)において、前記粘着剤層は、前記工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に積層される、請求項3に記載の製造方法。 The process (A), the process (B), the process (C), the process (D), and the process (E) are included in this order. In the process (D), the pressure-sensitive adhesive layer includes the process (C). The manufacturing method of Claim 3 laminated | stacked on the polarizing film surface of the polarizing plate with the said single-sided transparent protective film which passed.
  5.  前記工程(A)、工程(C)、工程(D)、工程(B)および工程(E)をこの順で含み、前記工程(D)において、前記粘着剤層は、前記工程(C)を経た前記片面透明保護フィルム付き偏光板の偏光フィルム面に積層される、請求項3に記載の製造方法。 The process (A), the process (C), the process (D), the process (B), and the process (E) are included in this order. In the process (D), the pressure-sensitive adhesive layer includes the process (C). The manufacturing method of Claim 3 laminated | stacked on the polarizing film surface of the polarizing plate with the said single-sided transparent protective film which passed.
  6.  前記工程(A)、工程(B)、工程(C)および工程(E)をこの順で含み、前記工程(D)において、前記粘着剤層は、前記位相差フィルムの片面に積層される、請求項3に記載の製造方法。 The process (A), the process (B), the process (C) and the process (E) are included in this order, and in the process (D), the pressure-sensitive adhesive layer is laminated on one surface of the retardation film. The manufacturing method according to claim 3.
  7.  前記粘着剤層の厚みが1~40μmである請求項3~6のいずれかに記載の製造方法。 The method according to any one of claims 3 to 6, wherein the pressure-sensitive adhesive layer has a thickness of 1 to 40 µm.
  8.  前記位相差フィルムが、その面内遅相軸方向、面内進相軸方向および厚み方向の屈折率をそれぞれn、nおよびnとし、厚みをdとするとき、波長590nmの光に対して式(1)および(2)を満たす、オレフィン系樹脂フィルムである請求項1~7のいずれかに記載の製造方法。
     100nm≦(n−n)×d≦300nm        (1)
     0.1≦(n−n)/(n−n)≦0.7      (2)
    The retardation film, the in-plane slow axis direction, the in-plane fast axis direction and n the refractive index in the thickness direction, respectively x, and n y and n z, when the thickness is d, the light of wavelength 590nm The production method according to any one of claims 1 to 7, which is an olefin resin film satisfying the formulas (1) and (2).
    100nm ≦ (n x -n y) × d ≦ 300nm (1)
    0.1 ≦ (n x -n z) / (n x -n y) ≦ 0.7 (2)
  9.  前記オレフィン系樹脂フィルムは、脂環式オレフィンから誘導される構成単位を主に含む樹脂からなる請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the olefin-based resin film is made of a resin mainly including a structural unit derived from an alicyclic olefin.
  10.  前記位相差フィルムは、その幅が、前記片面透明保護フィルム付き偏光板の幅より10%以上小さいものである、請求項1~9のいずれかに記載の製造方法。 10. The production method according to claim 1, wherein the retardation film has a width that is 10% or more smaller than the width of the polarizing plate with a single-sided transparent protective film.
  11.  前記偏光フィルムと、透明保護フィルムとを、ポリビニルアルコール系樹脂およびエポキシ樹脂を含有する水溶性接着剤によって接着する、請求項1~10のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 10, wherein the polarizing film and the transparent protective film are bonded with a water-soluble adhesive containing a polyvinyl alcohol resin and an epoxy resin.
  12.  前記偏光フィルムと、透明保護フィルムとを、活性エネルギー線の照射または加熱により硬化するエポキシ樹脂を含有する無溶剤の樹脂組成物からなる接着剤によって接着する、請求項1~11のいずれかに記載の製造方法。 The polarizing film and the transparent protective film are bonded to each other with an adhesive made of a solventless resin composition containing an epoxy resin that is cured by irradiation with active energy rays or heating. Manufacturing method.
  13.  前記エポキシ樹脂が、脂環式環に結合したエポキシ基を分子内に1個以上有する化合物を含有する請求項12に記載の製造方法。 The production method according to claim 12, wherein the epoxy resin contains a compound having one or more epoxy groups bonded to an alicyclic ring in the molecule.
  14.  前記透明保護フィルムの厚みが20~300μmである請求項1~13のいずれかに記載の製造方法。 14. The production method according to claim 1, wherein the thickness of the transparent protective film is 20 to 300 μm.
PCT/JP2009/067294 2008-09-29 2009-09-28 Method for manufacturing composite polarizing plate WO2010035906A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-250611 2008-09-29
JP2008-250612 2008-09-29
JP2008250612A JP2010079210A (en) 2008-09-29 2008-09-29 Method for manufacturing composite polarizing plate
JP2008250611 2008-09-29
JP2008-313488 2008-12-09
JP2008313488A JP2010102282A (en) 2008-09-29 2008-12-09 Method for manufacturing composite polarizing plate

Publications (1)

Publication Number Publication Date
WO2010035906A1 true WO2010035906A1 (en) 2010-04-01

Family

ID=42059887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067294 WO2010035906A1 (en) 2008-09-29 2009-09-28 Method for manufacturing composite polarizing plate

Country Status (1)

Country Link
WO (1) WO2010035906A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021051A (en) * 2019-07-30 2021-02-18 株式会社クラレ adhesive

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031942A (en) * 1989-05-30 1991-01-08 Dainippon Plastics Co Ltd Surface layer cutting method for laminate and its device
JP2003207629A (en) * 2002-01-10 2003-07-25 Fuji Photo Film Co Ltd Method for manufacturing polarizing film, polarizing plate and liquid crystal display device
JP2005246972A (en) * 2005-03-11 2005-09-15 Kaneka Corp Peeling method of layer of laminate
JP2006072309A (en) * 2004-08-05 2006-03-16 Nitto Denko Corp Retardation film, process for producing same, optical film, image display device, liquid crystal panel, and liquid crystal display device
JP2007316603A (en) * 2006-04-28 2007-12-06 Sumitomo Chemical Co Ltd Composite polarizing plate and liquid crystal display device using the same
JP2008197309A (en) * 2007-02-13 2008-08-28 Sumitomo Chemical Co Ltd Thin polarizing plate and image display device using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031942A (en) * 1989-05-30 1991-01-08 Dainippon Plastics Co Ltd Surface layer cutting method for laminate and its device
JP2003207629A (en) * 2002-01-10 2003-07-25 Fuji Photo Film Co Ltd Method for manufacturing polarizing film, polarizing plate and liquid crystal display device
JP2006072309A (en) * 2004-08-05 2006-03-16 Nitto Denko Corp Retardation film, process for producing same, optical film, image display device, liquid crystal panel, and liquid crystal display device
JP2005246972A (en) * 2005-03-11 2005-09-15 Kaneka Corp Peeling method of layer of laminate
JP2007316603A (en) * 2006-04-28 2007-12-06 Sumitomo Chemical Co Ltd Composite polarizing plate and liquid crystal display device using the same
JP2008197309A (en) * 2007-02-13 2008-08-28 Sumitomo Chemical Co Ltd Thin polarizing plate and image display device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021051A (en) * 2019-07-30 2021-02-18 株式会社クラレ adhesive
JP7365806B2 (en) 2019-07-30 2023-10-20 株式会社クラレ glue

Similar Documents

Publication Publication Date Title
JP6090399B2 (en) Liquid crystal display
KR101708944B1 (en) A liquid crystal display device
KR101640949B1 (en) Liquid crystal display device
KR101685715B1 (en) A liquid crystal display device
JP5569773B2 (en) Composite polarizing plate and IPS mode liquid crystal display device using the same
KR101811878B1 (en) Polarizer, method for producing polarizer, and liquid crystal display device
JP2009109993A (en) Set of polarizing plate, liquid crystal panel using the same, and liquid crystal display device
JP2010277063A (en) Liquid crystal display device
WO2010067896A1 (en) Method for manufacturing composite polarizing plate
JP2009258589A (en) Composite polarizing plate, method of manufacturing composite polarizing plate, and liquid crystal display using it
JP2013003515A (en) Composite polarizer and liquid crystal display device using the same
JP2010107953A (en) Polarizing plate for ips mode liquid crystal display device and ips mode liquid crystal display device
JP2010091602A (en) Polarizing plate and liquid crystal display device
JP2010091603A (en) Polarizing plate and liquid crystal display
JP2012133301A (en) Liquid crystal display device
JP6390764B2 (en) Polarizing plate and liquid crystal display device
JP2010091606A (en) Composite polarizing plate for ips mode liquid crystal display device, and ips mode liquid crystal display device
JP2009271490A (en) Composite polarizing plate and liquid crystal display device using the same
KR101781308B1 (en) Polarizing plate set and liquid crystal panel
KR101643503B1 (en) Polarizing plate and liquid crystal display device
JP2010139729A (en) Method for manufacturing composite polarizing plate
JP2016018184A (en) Polarizing plate, high luminance polarizing plate, and ips mode liquid crystal display device
KR20170059401A (en) Polarizing plate and liquid crystal panel
JP2010102282A (en) Method for manufacturing composite polarizing plate
JP2010079210A (en) Method for manufacturing composite polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09816313

Country of ref document: EP

Kind code of ref document: A1