WO2010035504A1 - 質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチド - Google Patents

質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチド Download PDF

Info

Publication number
WO2010035504A1
WO2010035504A1 PCT/JP2009/004948 JP2009004948W WO2010035504A1 WO 2010035504 A1 WO2010035504 A1 WO 2010035504A1 JP 2009004948 W JP2009004948 W JP 2009004948W WO 2010035504 A1 WO2010035504 A1 WO 2010035504A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
seq
amino acid
acid sequence
accession number
Prior art date
Application number
PCT/JP2009/004948
Other languages
English (en)
French (fr)
Inventor
上家潤一
大槻純男
寺崎哲也
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US13/120,705 priority Critical patent/US20110177491A1/en
Priority to EP09815923.9A priority patent/EP2352021B1/en
Publication of WO2010035504A1 publication Critical patent/WO2010035504A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase

Definitions

  • the present invention relates to a peptide used for quantifying a metabolic enzyme protein in a human or a mammal at once using a mass spectrometer and, more specifically, a method for using the peptide, and more specifically, a metabolic enzyme in a plurality of humans or mammals in a biological sample.
  • the present invention relates to a peptide consisting of a partial amino acid sequence of a human metabolic enzyme protein and the like, and a method for using the same, which are used for quantifying the absolute amount of a protein with high sensitivity using a mass spectrometer.
  • Metabolizing enzymes in mammals, including humans, include drug metabolizing enzymes, steroid metabolizing enzymes, amino acid metabolizing enzymes, and nucleic acid metabolizing enzymes.
  • drug metabolizing enzymes can be used to improve drug efficacy by modifying drugs through metabolism. It is an important enzyme involved in the development of toxicity.
  • Such metabolic enzymes include CYP (P-450), glucuronide conjugate, sulfate conjugate, and glucuronide conjugate enzyme. These enzyme molecules are induced and suppressed by various factors, and the efficacy and toxicity of the drug change due to such fluctuations in expression. Therefore, the expression profile of the drug-metabolizing enzymes is very important information in drug development because it defines how the drug is metabolized.
  • the expression profile of drug metabolizing enzymes can be analyzed at the mRNA level using PCR, DNA chips, or the like.
  • mRNA expression does not necessarily coincide with protein expression, which is the actual state of activity.
  • a single drug is often metabolized by a plurality of metabolic enzymes. In such a case, the magnitude of contribution of each metabolic enzyme cannot be analyzed in mRNA expression. Therefore, it is desired to enable comparison between different metabolic enzymes by analyzing metabolic enzymes based on protein expression levels and further determining their absolute expression levels.
  • One method for detecting metabolic enzyme proteins is to use antibodies. Although this method can be detected and quantified by Western blot, it is not only very difficult to prepare specific antibodies, but building a multi-molecule profile is very time consuming and labor intensive.
  • the mass spectrometer is an MS / MS in which two mass spectrometers with electrospray ionization (ESI), a mass spectrometer with liquid chromatography mass spectrometry (LC-MS), and a mass spectrometer are combined.
  • MS / MS mass spectrometers with various functions, such as spectrum (MS / MSspectrum) or tandem mass spectrum (tandem MS spectrum) mass spectrometers, have been developed. It is used for detection, measurement, and quantification (Patent Documents 1 to 3).
  • a highly sensitive peptide is selected from the tryptic peptides of a target protein, and a stable isotope-labeled peptide having the same amino acid sequence as that peptide is used to absolute expression of the peptide to be quantified in a trypsin-digested biological sample.
  • This is a method for determining the absolute expression level of a target protein by quantifying the amount. Therefore, selecting a highly sensitive peptide in the target protein is very important to achieve high sensitivity, accuracy, and reliability in quantification.
  • Patent Document 4 is an invention related to a method for quantifying the absolute expression level of a cell membrane protein and an amino acid sequence of the peptide, and information on the peptide that can be used for quantifying a metabolic enzyme that is an intracellular protein is It was unknown. Compared with cell membranes, there are enormous amounts of proteins in cells, so the quantification of metabolic enzymes, which are intracellular proteins, requires quantification of trace amounts of proteins in more complex protein samples. The selection of a peptide to be quantified for quantifying a metabolic enzyme as a sample was expected to be more difficult than the selection of a peptide to be quantified for a cell membrane protein.
  • JP 2004-28993 A Japanese Patent Laid-Open No. 2004-77276 JP-T-2004-533610 International Publication No. WO07 / 055116
  • An object of the present invention is to provide a peptide consisting of an amino acid sequence capable of simultaneously quantifying the protein absolute amount of a metabolic enzyme in a biological sample with high sensitivity and a method for using the peptide.
  • the present invention relates to (1) a peptide used for simultaneous protein quantification of a metabolic enzyme group using a mass spectrometer, and comprising a partial amino acid sequence of a human metabolic enzyme protein represented by any of SEQ ID NOs: 1 to 412 And (2) a peptide used for simultaneous protein quantification of a metabolic enzyme group using a mass spectrometer, comprising a partial amino acid sequence of a mouse metabolic enzyme protein represented by any of SEQ ID NOs: 413 to 695, ( 3) A peptide used for simultaneous protein quantification of a group of metabolic enzymes using a mass spectrometer, wherein one or two amino acids in the amino acid sequence shown in any of SEQ ID NOs: 1 to 695 are deleted, substituted or added In the peptide comprising the amino acid sequence obtained and (4) the peptide according to any one of (1) to (3) above, One or more amino acids constituting the soil, 15 N, 13 C, 18 O, and a stable isotope labeled peptide which comprises any one or
  • the present invention also relates to (5) simultaneous protein quantification of metabolic enzymes comprising the peptide according to any one of (1) to (3) and the stable isotope-labeled peptide according to (4). Kit, (6) the peptide according to any one of (1) to (3) above, and the stable isotope-labeled peptide according to (4) above, as a probe for simultaneous protein quantification of a group of metabolic enzymes On how to do.
  • the present invention provides (7) (a) using the peptide according to any one of (1) to (3) above and the stable isotope-labeled peptide according to (4) above, at each predetermined concentration step.
  • the area ratio A step of calculating a quantitative value using a calibration curve from a liquid chromatograph-tandem mass spectrometer (LC-MS / MS) using a stable isotope labeled peptide Determination on the protein.
  • Quantification of metabolic enzyme protein which has been difficult with conventional methods, can be performed simply, quickly, and with high accuracy by quantifying metabolic enzyme protein by mass spectrometry using a peptide composed of the amino acid sequence of the present invention. Is possible.
  • the metabolic enzyme protein quantification method of the present invention can quantitate the metabolic enzyme protein without using an antibody, it is possible to omit the antibody production step, which has been the most time consuming in the past, Metabolizing enzymes for which antibodies cannot be produced can also be quantified, and a method for quantifying metabolic enzyme proteins, which are highly applicable intracellular proteins with a wide range of applications, can be provided.
  • the metabolic enzyme protein quantification method using the present invention can be expected to greatly contribute to elucidation of drug interactions, individual differences, and toxicity.
  • the level of expression of the metabolic enzyme of a new drug candidate substance is extremely important for predicting interactions and toxicity. A great contribution to the promotion can be expected.
  • Example of analysis of CYP absolute expression level of human liver Peak of peptide to be quantified (left figure, red: *) when analyzing human liver and peak of labeled peptide as internal standard (right figure, red: *). Both peaks are detected at the same elution time.
  • the horizontal axis of the graph indicates elution time (minutes), and the vertical axis indicates Intensity (cps).
  • Example of analysis of CYP absolute expression level of human liver Peak of peptide to be quantified (left figure, red: *) when analyzing human liver and peak of labeled peptide as internal standard (right figure, red: *). Both peaks are detected at the same elution time.
  • the horizontal axis of the graph indicates elution time (minutes), and the vertical axis indicates Intensity (cps).
  • Example of analysis of CYP absolute expression level of human liver calibration curve of each CYP molecule.
  • the horizontal axis indicates the amount (fmol) of the peptide to be quantified, and the vertical axis indicates the peak area ratio of the peptide to be quantified to the labeled peptide.
  • blue circles indicate the standard products of synthetic peptides, and green triangles indicate the peptides to be quantified in the samples.
  • Example of analysis of CYP absolute expression level of human liver calibration curve of each CYP molecule.
  • the horizontal axis indicates the amount (fmol) of the peptide to be quantified, and the vertical axis indicates the peak area ratio of the peptide to be quantified to the labeled peptide.
  • blue circles indicate the standard products of synthetic peptides, and green triangles indicate the peptides to be quantified in the samples.
  • Each unlabeled quantified peptide 10fmol added 13 C 6, 15 N-labeled peptide 500 fmol, diagrams measured by conventionalLC-MS / MS. 10 fmol peptide (Ara-C metabolic enzyme) can be detected by conventional HPLC.
  • Example of analysis of absolute expression level of Ara-C-related metabolic enzymes in human leukemia cells Peak of peptide to be quantified (left figure, red: *) when analyzing human leukemia cells and peak of labeled peptide as internal standard (right figure) , Red: *). Both peaks are detected at the same elution time.
  • the horizontal axis of the graph represents elution time (minutes), and the vertical axis represents Intensity (cps).
  • Example of analysis of absolute expression level of Ara-C-related metabolic enzymes in human leukemia cells Peak of peptide to be quantified (left figure, red: *) when analyzing human leukemia cells and peak of labeled peptide as internal standard (right figure) , Red: *).
  • the horizontal axis of the graph represents elution time (minutes), and the vertical axis represents Intensity (cps).
  • Example of analysis of expression level of Ara-C-related metabolic enzyme in human leukemia cells calibration curve of each Ara-C metabolic enzyme molecule.
  • the horizontal axis indicates the amount (fmol) of the peptide to be quantified, and the vertical axis indicates the peak area ratio of the peptide to be quantified to the labeled peptide.
  • a blue circle indicates a standard product of a synthetic peptide
  • a green triangle indicates a peptide to be quantified in the sample.
  • Example of analysis of expression level of Ara-C-related metabolic enzyme in human leukemia cells calibration curve of each Ara-C metabolic enzyme molecule.
  • the horizontal axis indicates the amount (fmol) of the peptide to be quantified, and the vertical axis indicates the peak area ratio of the peptide to be quantified to the labeled peptide.
  • a blue circle indicates a standard product of a synthetic peptide, and a green triangle indicates a peptide to be quantified in the sample.
  • the peptide of the present invention is a peptide used for simultaneous protein quantification of a metabolic enzyme group using a mass spectrometer, and consists of a partial amino acid sequence of a human metabolic enzyme protein.
  • specific examples of the human metabolic enzyme protein include CYP1A1 (SwissProt accession number: P04798), CYP1A2 (SwissProt accession number: P05177), CYP1B1 (SwissProt accession number: Q16678), CYP2A6 (SwissProt accession number: P11509).
  • CYP2A7 (SwissProt accession number: P20853), CYP2A13 (SwissProt accession number: Q16696), CYP2B6 (SwissProt accession number: P20813), CYP2C8 (SwissProt accession number: P10632), CYP2C17 accession number (SwissProt accession number: P10632) ), CYP2C18 (SwissProt accession number: P33260), CYP2C19 (SwissProt accession number: P33261) CYP2D6 (SwissProt accession number: P10635), CYP2E1 (SwissProt accession number: P05181), CYP2F1 (SwissProt accession number: P24903), CYP2J2 (SwissProt accession number: P51589), CYP2R1 (V0, V0, session
  • the peptide of the present invention is a peptide consisting of the partial amino acid sequence of the human metabolic enzyme protein protein. Specifically, for example, each amino acid sequence shown in SEQ ID NOs: 1 to 5, which is a partial sequence of CYP1A1, and a partial sequence of CYP1A2 Each peptide consisting of each amino acid sequence shown in SEQ ID NOs: 6 to 8; each amino acid sequence shown in SEQ ID NOs: 9 to 14, which is a partial sequence of CYP1B1, and CYP1A1, CYP1A2, CYP1B1 using each peptide Can be quantified.
  • each amino acid sequence shown in SEQ ID NOs: 15 to 17 as a partial sequence of CYP2A6; each amino acid sequence shown in SEQ ID NOs: 18 to 19 as a partial sequence of CYP2A7; SEQ ID NOs: 20 to 21 as a partial sequence of CYP2A13
  • Each amino acid sequence shown in SEQ ID NO: 22-25, which is a partial sequence of CYP2B6; each amino acid sequence shown in SEQ ID NO: 26-29, which is a partial sequence of CYP2C8; sequence that is a partial sequence of CYP2C9 Each amino acid sequence shown in Nos. 30 to 31; each amino acid sequence shown in SEQ ID Nos.
  • each amino acid sequence shown in SEQ ID NOs: 80 to 81 which are partial sequences of CYP3A4
  • each amino acid sequence shown in SEQ ID NOs: 82 to 84 which is a partial sequence of CYP3A5
  • SEQ ID NOs: 85 to 88 which are partial sequences of CYP3A7
  • Each peptide consisting of each amino acid sequence shown in FIG. 8; each amino acid sequence shown in SEQ ID NOs: 89 to 96, which is a partial sequence of CYP3A43 is also a peptide of the present invention, and CYP3A4, CYP3A5, CYP3A7, CYP3A43 using each peptide. Can be quantified.
  • each amino acid sequence shown by SEQ ID Nos. 201 to 207, which is a partial sequence of CYP19A1, is also a peptide of the present invention, and each of these peptides is used for CYP7A1, CYP7B1, CYP8B1, YP11B1, CYP11B2, CYP17A1, CYP19A1 can be quantified.
  • each amino acid sequence shown in SEQ ID NOs: 208 to 210 which is a partial sequence of CYP21A2; each amino acid sequence shown in SEQ ID NOs: 211 to 216 which is a partial sequence of CYP24A1; SEQ ID NOS: 217 to 226 which is a partial sequence of CYP26A1
  • SEQ ID NO: 227-238 which is a partial sequence of CYP26B1
  • SEQ ID NO: 239-249 which is a partial sequence of CYP26C1
  • a sequence that is a partial sequence of CYP27A1 Each amino acid sequence shown in Nos. 250 to 256; each amino acid sequence shown in SEQ ID Nos.
  • each amino acid sequence shown in SEQ ID Nos. 266 to 275 which is a partial sequence of CYP27C1 Peptides are also of the present invention
  • a de may each CYP21A2, CYP24A1, CYP26A1, CYP26B1, CYP26C1, CYP27A1, CYP27B1, quantifying CYP27C1 by using the respective peptides.
  • amino acid sequence shown in SEQ ID NO: 276, which is a partial sequence of CYP39A1 each amino acid sequence shown in SEQ ID NOs: 277-284, which is a partial sequence of CYP46A1, and shown in SEQ ID NOs: 285-296, which is a partial sequence of CYP51A1.
  • Each peptide consisting of each amino acid sequence is also a peptide of the present invention, and CYP39A1, CYP46A1, and CYP51A1 can be quantified using each peptide.
  • amino acid sequence shown in SEQ ID NO: 297 which is a partial sequence of UGT1A1
  • each amino acid sequence shown in SEQ ID NOs: 298-299 which is a partial sequence of UGT1A3
  • SEQ ID NOs: 300-301 which is a partial sequence of UGT1A4
  • amino acid sequence; the amino acid sequence shown in SEQ ID NO: 302 which is a partial sequence of UGT1A5; each amino acid sequence shown in SEQ ID NOs: 303 to 305 which is a partial sequence of UGT1A6; shown in SEQ ID NOS: 306 to 307 which is a partial sequence of UGT1A7
  • Each peptide consisting of the amino acid sequence shown in SEQ ID NO: 308, which is a partial sequence of UGT1A10 is also a peptide of the present invention.
  • UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1 7, UGT1A10 can be quantified.
  • Each of the peptides consisting of the amino acid sequence shown in SEQ ID NO: 317, which is a partial sequence of the above, is also a peptide of the present invention, and UGT2A1, UGT2B4, UGT2B7, UGT2B10, UGT2B11, UGT2B17, UGT using the peptides.
  • amino acid sequence shown in SEQ ID NO: 318 which is a partial sequence of GSTA1
  • amino acid sequence shown in SEQ ID NO: 319 which is a partial sequence of GSTA2
  • amino acid sequence shown in SEQ ID NO: 320 which is a partial sequence of GSTA3
  • Each peptide consisting of each amino acid sequence shown in SEQ ID NOs: 321 to 323 as a partial sequence; amino acid sequence shown in SEQ ID NO: 324 as a partial sequence of GSTA5 is also a peptide of the present invention, GSTA1, GSTA2, GSTA3, GSTA4, and GSTA5 can be quantified.
  • amino acid sequence shown in SEQ ID NO: 325 which is a partial sequence of GSTK1
  • amino acid sequence shown in SEQ ID NO: 326 which is a partial sequence of GSTM1
  • amino acid sequences shown in SEQ ID NOS: 327 to 328 which is a partial sequence of GSTM2.
  • amino acid sequence shown in SEQ ID NO: 329 which is a partial sequence of GSTM3; amino acid sequence shown in SEQ ID NO: 330, which is a partial sequence of GSTM4; amino acid sequence shown in SEQ ID NO: 331, which is a partial sequence of GSTM5; partial sequence of GSTP1;
  • Each peptide comprising: an amino acid sequence represented by SEQ ID NO: 332; each amino acid sequence represented by SEQ ID NO: 333 to 334 which is a partial sequence of GSTT1; an amino acid sequence represented by SEQ ID NO: 335 which is a partial sequence of GSTT2; It is a peptide of the invention, Each have GSTM1, GSTM2, GSTM3, GSTM4, GSTM5, GSTT1, GSTT2 can be quantified.
  • an amino acid sequence represented by SEQ ID NO: 336 which is a partial sequence of MGST1
  • an amino acid sequence represented by SEQ ID NO: 337 which is a partial sequence of MGST2
  • an amino acid sequence represented by SEQ ID NO: 338 which is a partial sequence of MGST3.
  • Each peptide is also a peptide of the present invention, and MGST1, MGST2, and MGST3 can be quantified using each peptide.
  • amino acid sequence shown in SEQ ID NO: 339 that is a partial sequence of SULT1A2
  • amino acid sequence shown in SEQ ID NO: 340 that is a partial sequence of SULT1A3
  • amino acid sequence shown in SEQ ID NO: 341 that is a partial sequence of SULT1B1
  • Amino acid sequence shown in SEQ ID NO: 342 which is a partial sequence
  • Amino acid sequence shown in SEQ ID NO: 343 which is a partial sequence of SULT1C3
  • Amino acid sequence shown in SEQ ID NO: 344 which is a partial sequence of SULT1C4
  • SEQ ID NOs: 364, which is a partial sequence of CDA is also a peptide of the present invention, and P450R, MGMT, dCK, and CDA are quantified using each peptide. can do.
  • each amino acid sequence shown in SEQ ID NOs: 365 to 366 which is a partial sequence of cN-IA
  • each amino acid sequence shown in SEQ ID NOs: 367 to 374 which is a partial sequence of cN-IB
  • Each peptide consisting of the amino acid sequence shown in SEQ ID NO: 375; each amino acid sequence shown in SEQ ID NOS: 376 to 382, which is a partial sequence of cN-III is also a peptide of the present invention, cN-IA, cN-IB, cN-II, cN-III can be quantified.
  • amino acid sequence shown in SEQ ID NO: 383, which is a partial sequence of dNT-1, each amino acid sequence shown in SEQ ID NOs: 384 to 385, which is a partial sequence of dNT-2, and a partial sequence of Ecto-5′-NT Each amino acid sequence shown in certain SEQ ID NOs: 386 to 388; each amino acid sequence shown in SEQ ID NO: 389 to 392 which is a partial sequence of RRM1; each amino acid sequence shown in SEQ ID NOs: 393 to 394 which is a partial sequence of RRM2; UMP
  • Each peptide comprising the amino acid sequence shown in SEQ ID NO: 395, which is a partial sequence of / CMPK; and the amino acid sequence shown in SEQ ID NO: 396, which is a partial sequence of dCMPDA is also a peptide of the present invention.
  • DNT-1, dNT-2, Ecto-5'-NT, RRM1, RRM2, UMP / CM K it is possible to
  • each peptide consisting of each amino acid sequence shown in SEQ ID NOs: 397 to 405 which is a partial sequence of CTP Synthase 1; each amino acid sequence shown in SEQ ID NOs: 406 to 412 which is a partial sequence of CTP Synthase 2 is also a peptide of the present invention.
  • CTP Synthase 1 and CTP Synthase 2 can be quantified using each of the peptides.
  • the peptide of the present invention is a peptide consisting of a partial amino acid sequence of mouse metabolic enzyme protein described in SEQ ID NOs: 413 to 695.
  • specific examples of the mouse metabolic enzyme protein include Cyp11a1 (SwissProt accession number: Q9QZ82), Cyp17a1 (SwissProt accession number: P27786), Cyp19a1 (SwissProt accession number: P28649), Cyp1a1 (SwissProt accession number: P00184).
  • Cyp1a2 (SwissProt accession number: P00186), Cyp21 (SwissProt accession number: P03940), Cyp24a1 (SwissProt accession number: Q64441), Cyp26a1 (SwissProt accession number: O55127), Cyp27a1 session (GwSProt accession number: G5527) ), Cyp27b1 (SwissProt accession number: O35084), Cyp2a4 (SwissProt accession number: P15) 92), Cyp2a5 (SwissProt accession number: P20852), Cyp2b19 (SwissProt accession number: O55071), Cyp2c29 (SwissProt accession number: Q64458), Cyp2c39 (SwissProt accession number: P56656), Cyp2c70 accession number Q91W64), Cyp2d10 (SwissProt accession number
  • the peptide of the present invention is a peptide consisting of the partial amino acid sequences of the proteins listed above.
  • each amino acid sequence shown in SEQ ID NOs: 413 to 422, which is a partial sequence of Cyp11a1 is a partial sequence of Cyp17a1
  • each amino acid sequence shown in SEQ ID NOs: 423 to 429; each amino acid sequence shown in SEQ ID NOs: 430 to 436 which is a partial sequence of Cyp19a1; each amino acid sequence shown in SEQ ID NOs: 437 to 438 which is a partial sequence of Cyp1a1; Cyp11a1, Cyp17a1, Cyp19a1, Cyp1a1, and Cyp1a2 can be quantified using each of the peptides, each amino acid sequence represented by SEQ ID NOs: 439 to 443, which are partial sequences.
  • each amino acid sequence shown in SEQ ID NOs: 444 to 448 which is a partial sequence of Cyp21
  • each amino acid sequence shown in SEQ ID NOs: 449 to 455 which is a partial sequence of Cyp24a1
  • SEQ ID NOS: 456 to 464 which are a partial sequence of Cyp26a1
  • Each amino acid sequence shown in SEQ ID NOs: 465 to 470 which is a partial sequence of Cyp27a1
  • each amino acid sequence shown in SEQ ID NOs: 471 to 478 which is a partial sequence of Cyp27b1
  • Cyp21, Cyp24a1, Cyp26a1, Cyp27a1, and Cyp27b1 can be quantified using each of the peptides.
  • amino acid sequence shown in SEQ ID NO: 479 which is a partial sequence of Cyp2a4
  • amino acid sequence shown in SEQ ID NO: 480 which is a partial sequence of Cyp2a5
  • amino acid sequences shown in SEQ ID NOs: 481-483 which are partial sequences of Cyp2b19
  • Amino acid sequence shown in SEQ ID NO: 484 which is a partial sequence of Cyp2c29
  • amino acid sequences shown in SEQ ID NOs: 485 to 488 which are partial sequences of Cyp2c39
  • amino acids shown in SEQ ID NOs: 489 to 492 which are partial sequences of Cyp2c70
  • SEQ ID NO: 493 which is a partial sequence of Cyp2d10
  • each amino acid sequence shown in SEQ ID NOs: 494 to 497 which is a partial sequence of Cyp2d26
  • each amino acid sequence shown in SEQ ID NOs: 498 to 499 which is a partial sequence of Cyp2d9 Amino acid sequence;
  • amino acid sequence shown in SEQ ID NO: 527 which is a partial sequence of Cyp39a1
  • amino acid sequence shown in SEQ ID NO: 528 which is a partial sequence of Cyp3a11
  • amino acid sequences shown in SEQ ID NOs: 529 to 534 which are partial sequences of Cyp3a13
  • amino acid sequences shown in SEQ ID NOs: 535 to 536 which are partial sequences of Cyp3a16
  • amino acid sequences shown in SEQ ID NOs: 537 to 538 which are partial sequences of Cyp3a25 are also peptides of the present invention, Cyp39a1, Cyp3a11, Cyp3a13, Cyp3a16, and Cyp3a25 can be quantified using each peptide.
  • each peptide consisting of each amino acid sequence shown in SEQ ID NOs: 539 to 545, which is a partial sequence of Cyp46a1 is also a peptide of the present invention, and Cyp46a1 can be quantified using each peptide.
  • each amino acid sequence shown in SEQ ID NOs: 546 to 550 which is a partial sequence of Cyp4a14
  • each amino acid sequence shown in SEQ ID NOs: 551 to 554 which is a partial sequence of Cyp4b1
  • SEQ ID NOs: 555 to 558 which are a partial sequence of Cyp4f14
  • Each amino acid sequence shown in SEQ ID NOs: 559 to 566 which is a partial sequence of Cyp4v3
  • each amino acid sequence shown in SEQ ID NOs: 567 to 570 which is a partial sequence of Cyp5a
  • a sequence which is a partial sequence of Cyp8b1 Each peptide consisting of each amino acid sequence shown by numbers 571 to 576 is also a peptide of the present invention, and Cyp4a14, Cyp4b1, Cyp4f14, Cyp4v3, Cyp5a, and Cyp8b1 can be quantified using each peptide.
  • each amino acid sequence shown in SEQ ID NOs: 577 to 578 which is a partial sequence of GSTO1; amino acid sequence shown in SEQ ID NO: 579 which is a partial sequence of ST2B1; shown in SEQ ID NOs: 580 to 585 which is a partial sequence of ST3A1
  • Each peptide consisting of the sequence is also a peptide of the present invention, and GSTO1, ST2B1, ST3A1, CHST3, SNAT, and UD2B5 can be quantified using each peptide.
  • amino acid sequence shown in SEQ ID NO: 598 which is a partial sequence of GSTP1
  • amino acid sequence shown in SEQ ID NO: 599 which is a partial sequence of GSTM4
  • each amino acid sequence shown in SEQ ID NOs: 600 to 603 which is a partial sequence of GSTA4
  • amino acid sequence shown in SEQ ID NO: 604-605 which is a partial sequence of GSTA3
  • each amino acid sequence shown in SEQ ID NO: 606-609 which is a partial sequence of GSTM5
  • shown in SEQ ID NO: 610-613 which is a partial sequence of ST1E1
  • Each peptide consisting of each amino acid sequence is also a peptide of the present invention, and GSTP1, GSTM4, GSTA4, GSTA3, GSTM5, ST1E1 can be quantified using each peptide.
  • each amino acid sequence shown in SEQ ID NOs: 614 to 615 that are partial sequences of ARY1; each amino acid sequence shown in SEQ ID NOs: 616 to 620 that are partial sequences of ARY2; SEQ ID NOs: 621 to 624 that are partial sequences of ARY3 Each amino acid sequence shown in SEQ ID NO: 625 to 626 which is a partial sequence of ST1A1; each amino acid sequence shown in SEQ ID NO: 627 to 629 which is a partial sequence of UD12; a sequence which is a partial sequence of CGT
  • each amino acid sequence shown in SEQ ID Nos. 642 to 643 which is a partial sequence of ST1C1 Peptides are also peptides of the present invention, and each of these peptides is used for A Y1, ARY2, ARY3, ST1A1, UD12, CGT, can be quantified UD17C, ST1C1.
  • each amino acid sequence shown in SEQ ID NOs: 644 to 650 which is a partial sequence of CHST2; amino acid sequence shown in SEQ ID NO: 651 which is a partial sequence of MGST3; shown in SEQ ID NOs: 652 to 655 which is a partial sequence of ST1C2
  • Each peptide consisting of each amino acid sequence; each amino acid sequence represented by SEQ ID NOs: 656 to 659, which is a partial sequence of GSTK1 is also a peptide of the present invention, and CHST2, MGST3, ST1C2, and GSTK1 are quantified using each peptide. can do.
  • each amino acid sequence shown in SEQ ID NOs: 660 to 671 which are partial sequences of CHST7; each amino acid sequence shown in SEQ ID NOs: 672 to 676 which are partial sequences of CHST1; SEQ ID NOs: 677 to 683 which are partial sequences of CHST5
  • Each amino acid sequence shown in SEQ ID NO: 684 to 686 which is a partial sequence of NAT6; each amino acid sequence shown in SEQ ID NO: 687 to 691 which is a partial sequence of CHST4; a sequence which is a partial sequence of MAAI
  • Each peptide consisting of each amino acid sequence shown by the numbers 692 to 695 is also a peptide of the present invention, and CHST7, CHST1, CHST5, NAT6, CHST4, MAAI can be quantified using each peptide.
  • the peptide of the present invention is a peptide used for simultaneous protein quantification of a group of metabolic enzymes using a mass spectrometer, wherein one or two amino acids in the amino acid sequence represented by any of SEQ ID NOs: 1 to 695 are Examples thereof include peptides consisting of amino acid sequences that are deleted, substituted or added.
  • these peptides consist of an amino acid sequence in which one or two (preferably one) amino acids in the amino acid sequence shown in any of SEQ ID NOs: 1 to 695 are deleted, substituted or added, 1 or 2 (preferably 1) of peptides derived from mammalian homologs (homologous proteins) other than humans or mice, or partial amino acid sequences of human metabolic enzyme proteins shown in any one of SEQ ID NOs: 1 to 413 Peptides corresponding to SNPs of human metabolic enzyme proteins, which are composed of amino acid sequences in which amino acids are deleted, substituted or added, can be preferably exemplified.
  • mammals other than humans or mice include non-human primates (eg, monkeys, baboons, chimpanzees, etc.), pigs, cows, horses, goats, sheep, dogs, cats, rabbits, guinea pigs, gerbils, hamsters, rats, etc. Can be mentioned.
  • non-human primates eg, monkeys, baboons, chimpanzees, etc.
  • pigs cows, horses, goats, sheep, dogs, cats, rabbits, guinea pigs, gerbils, hamsters, rats, etc.
  • a peptide consisting of a partial amino acid sequence of the human metabolic enzyme protein of the present invention a peptide consisting of a partial amino acid sequence of the murine metabolic enzyme protein, a peptide derived from the above homolog or a peptide corresponding to human SNPs (hereinafter referred to as the peptide of the present invention is referred to as “ May be collectively referred to as “the present non-labeled peptide”.) Can be produced by a general chemical synthesis method.
  • a stepwise erosion method in which each amino acid is sequentially linked one by one to extend the chain, or a fragment consisting of several amino acids is synthesized in advance, and then each fragment is synthesized. Any of the fragment condensation methods for coupling reaction can be employed.
  • LC-MS / M separable mass difference tandem mass spectrometer
  • Such stable isotope-labeled peptides can be obtained by using the F-moc method (Amblard M, Fehrentz JA, Martinez J, Subra G. Methods Mol Biol. 298: 3-24 (2005)) using amino acids labeled with stable isotopes.
  • the target peptide can be chemically synthesized by any suitable means.
  • stable isotope-labeled peptides are chemically the same except for the mass of the peptide to be quantified and the labeled amino acid, and exhibit the same behavior in LC-MS / MS measurement. It can be advantageously used as an internal standard peptide in group simultaneous protein quantification.
  • the simultaneous protein quantification kit of the metabolic enzyme group of the present invention is not particularly limited as long as it comprises the unlabeled peptide and the stable isotope labeled peptide of the present invention, and the method of using the present invention is as follows.
  • the non-labeled peptide and the stable isotope-labeled peptide of the present invention are not particularly limited as long as they are used as a probe for quantifying simultaneous proteins of metabolic enzymes.
  • the stable isotope labeled peptide is used as a calibration curve for quantification and as an internal standard peptide.
  • Quantitative protein quantification of metabolic enzymes As a method for quantifying a simultaneous protein of metabolic enzymes by LC-MS / MS using the stable isotope-labeled peptide of the present invention, (a) using the present unlabeled peptide and the stable isotope-labeled peptide of the present invention, Performing mass spectrometry using LC-MS / MS for each predetermined concentration step to create a calibration curve, (b) Peptide fragments obtained by fragmenting the quantified metabolic enzyme protein of the sample with trypsin (C) calculating the mass spectrum area ratio of the quantified metabolic enzyme protein peptide / stable isotope labeled peptide by performing mass spectrometry using LC-MS / MS after adding the stable isotope labeled peptide of (c)
  • the method is not particularly limited as long as it is a method including each step of calculating a quantitative value using a calibration curve from the ratio, and it is not limited as a source of protein to be quantified
  • various tissues such as the liver, the cultured cells derived from various tissues can be exemplified.
  • the protein to be quantified contained in the sample is below the measurement limit value of the mass spectrometer, it is preferable to use a sample fractionated by a high-pressure nitrogen gas filling method or the like.
  • quantification of a group of proteins with high accuracy and reliability can be achieved by quantifying using multiple peptides to be quantified. It can be performed.
  • the difference between the quantitative value of the peptide common to them and the quantitative value of the peptide specific to one of them is obtained.
  • the quantitative value of the metabolic protein CYP3A4 can be determined by (quantitative value of peptide common to CYP3A4 and CYP3A5) ⁇ (quantitative value of peptide specific to CYP3A5).
  • CYP and P450R Detection of peptides (CYP and P450R) using nanoLC-MS / MS
  • the peptides to be quantified (unlabeled peptides: CYP1A2; YLPNPALQR (SEQ ID NO: 7), CYP2A6; GTGGANIDPTFFLSR (SEQ ID NO: 15), CYP2B6; GYPGIFINGNR (SEQ ID NO: 25), CYP2C8; partial peptides of human metabolic enzymes CYP and P450R GNSPIQR (SEQ ID NO: 28), CYP2C9; GIFPLAER (SEQ ID NO: 30), CYP2C18; IAENFAYIK (SEQ ID NO: 32), CYP2C19; GHFPLAER (SEQ ID NO: 35), CYP2D6; DIEVQGFR (SEQ ID NO: 39), CYP2G1PT; ), CYP2J2; E
  • the obtained crude membrane fraction was denatured in 7 M guanidine hydrochloride, 0.1 M Tris-HCl, 10 mM EDTA pH 8.5 buffer, and treated with reduction treatment with DTT and Iodoacetamide to protect the SH group of the cysteine residue. Carbamide methylation treatment was performed. Desalted and concentrated by methanol chloroform precipitation. After turbidity in 1.2 M Urea, 10 mM Tris-HCl, trypsin in an amount of 1/100 of the protein weight was added, and enzyme digestion was performed at 37 ° C. for 16 hours to obtain a peptide sample.
  • a peptide to be quantified (unlabeled peptide: dCK; AQLASLNGK (SEQ ID NO: 362), CDA; AVSEGYK (SEQ ID NO: 364), cN-IA; GFLEALGR (SEQ ID NO: 366), which is a partial sequence peptide of human Ara-C metabolic enzyme cN-IB; GFLEDGRR (SEQ ID NO: 369), cN-II; VFLATNSDYK (SEQ ID NO: 375), cN-III; GELIHVFNNK (SEQ ID NO: 379), dNT-1; VPSYDPLK (SEQ ID NO: 388), RRM1; LNSAIIYDR (SEQ ID NO: 390), RRM2; ENTTPALSGTR (SEQ ID NO: 393), UMP / CMPK; FLIDGFPR (SEQ ID NO: 393), UMP / CMPK; FLIDGFPR (SEQ ID NO: 393),

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 生体試料中の代謝酵素のタンパク質絶対量を高感度に一斉定量することが可能なアミノ酸配列からなるペプチドやその使用方法を提供する。細胞内タンパク質である代謝酵素を高感度に一斉定量することを可能とする質量分析装置で高感度検出可能なペプチドを選択し、アミノ酸配列を同定する。この定量対象ペプチドと、同じアミノ酸配列を有する安定同位体標識ペプチドとを用いて、それぞれの所定濃度段階に対するLC-MS/MSを用いた質量分析を行い、検量線を作成する。試料の被定量代謝酵素タンパク質をトリプシンにより断片化して得られるペプチド断片に、安定同位体標識ペプチドを添加してLC-MS/MSを用いた質量分析を行い、被定量代謝酵素タンパク質ペプチド/安定同位体標識ペプチドのマススペクトル面積比を算出し、該面積比から検量線を用いて定量値を算出する。

Description

質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチド
 本発明は、ヒト又は哺乳類における代謝酵素タンパク質を、質量分析装置を用いて一斉に定量するために用いるペプチドやその使用方法に関し、より詳細には、生体試料中の複数のヒト又は哺乳類における代謝酵素タンパク質の絶対量を、質量分析装置を用いて高感度に一斉定量するために用いる、ヒト代謝酵素タンパク質の部分アミノ酸配列等からなるペプチドやその使用方法に関する。
 ヒトをも含む哺乳類における代謝酵素としては、薬物代謝酵素、ステロイド代謝酵素、アミノ酸代謝酵素、核酸代謝酵素等があるが、なかでも薬物代謝酵素は、薬物を代謝により修飾することによって薬の効き目や毒性発現に関わっている重要な酵素である。かかる代謝酵素にはCYP(P-450)や、グルクロン酸抱合、硫酸抱合、及び、グルクロナイド抱合酵素などがある。これらの酵素分子は、様々な要因で発現の誘導、抑制がかかり、そのような発現の変動によって薬の効き目や毒性発現が変化する。従って、薬物代謝酵素群の発現プロファイルはどのように薬が代謝されるかを規定するため、薬の開発において非常に重要な情報である。
 薬物代謝酵素の発現プロファイルは、PCRやDNAチップ等を用いてmRNAレベルで解析を行うことが可能である。しかし、mRNAの発現は活性の実態であるタンパク質の発現と必ずしも一致しない。さらに、一つの薬物が複数の代謝酵素で代謝されることが多く、このような場合、mRNA発現では、各代謝酵素の寄与の大きさは解析できない。従って、代謝酵素をタンパク質発現量で解析し、さらにその絶対発現量を求めることによって異なる代謝酵素間の比較を可能にすることが望まれている。
 代謝酵素タンパク質を検出する一つの方法に、抗体を用いた方法がある。当該方法では、Western blotによって検出及び定量が可能であるが、特異的抗体を調製することが大変困難であるだけではなく、複数分子のプロファイルを構築することは大変な時間と労力を有する。
 一方、近年、質量分析法(mass spectrometry)の進展が目覚しく、種々の生物学材料の検出や測定にこの方法が検討され、利用されてきた。質量分析計には、エレクトロスプレー・イオン化法(ESI:electrosprayionization)による質量分析計、液体クロマトグラフィーマススペクトロメトリー(LC-MS)をもつ質量分析計、質量分析計を2台結合した、MS/MSスペクトル(MS/MSspectrum)又はタンデムマススペクトル(tandem mass spectrum: tandem MS)質量分析計等、種々の機能をもつ質量分析計が開発されており、これらの機能を組み合わせたものが、生物学材料の検出や測定や定量に利用されている(特許文献1~3)。
 本発明者らは質量分析装置を用いて20種類以上の膜タンパク質の絶対発現量を一斉定量する方法を発明している(特許文献4)。この発明は、標的タンパク質のトリプシン消化ペプチドのうち、高感度ペプチドを選択し、そのペプチドと同一アミノ酸配列を持つ安定同位体標識ペプチドを用いて、トリプシン消化した生体試料中の定量対象ペプチドの絶対発現量を定量することによって標的タンパク質の絶対発現量を求める方法である。従って、標的タンパク質中の高感度のペプチドを選択することが、定量において高い感度、精度、信頼性を達成するために非常に重要である。
 しかし、上記特許文献4記載の発明は、細胞膜タンパク質の絶対発現量の定量に関する方法とペプチドのアミノ酸配列に関する発明であり、細胞内のタンパク質である代謝酵素の定量に用いることができるペプチドに関する情報は不明であった。細胞膜と比較して細胞内には膨大なタンパク質が存在することから、細胞内タンパク質である代謝酵素の定量は、より複雑なタンパク質試料中の微量なタンパク質を定量する必要があり、細胞内タンパク質を試料とする代謝酵素の定量のための定量対象ペプチドの選択は、細胞膜タンパク質の定量対象ペプチド選択と比較してより困難が予想されていた。
特開2004-28993号公報 特開2004-77276号公報 特表2004-533610号公報 国際公開公報WO07/055116号
 本発明の課題は、生体試料中の代謝酵素のタンパク質絶対量を高感度に一斉定量することが可能なアミノ酸配列からなるペプチドやその使用方法を提供することにある。
 発明者らは、上記課題を解決すべく鋭意検討する中で、特定のアミノ酸が存在するとペプチドがイオン化しにくく感度が低くなること、これとは異なる特定のアミノ酸が存在すると衝突誘起解離の効率が上がりペプチドがイオン化しやすく感度が高くなることを見出し、それぞれのクライテリアにスコアをつけて総合スコアで複数のペプチドから候補を絞り込むことにより、細胞内タンパク質である代謝酵素を高感度に一斉定量することを可能とする、質量分析装置で高感度検出可能なペプチドを選択し、アミノ酸配列を同定するに至り本発明を完成した。
 すなわち本発明は、(1)質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチドであって、配列番号1~412のいずれかに示されるヒト代謝酵素タンパク質の部分アミノ酸配列からなるペプチドや、(2)質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチドであって、配列番号413~695のいずれかに示されるマウス代謝酵素タンパク質の部分アミノ酸配列からなるペプチドや、(3)質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチドであって、配列番号1~695のいずれかに示されるアミノ酸配列中の1又は2個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるペプチドや、(4)前記(1)~(3)のいずれかに記載のペプチドにおいて、ペプチドを構成するアミノ酸の1個以上が、15N,13C,18O,及びHのいずれか1以上を含むことを特徴とする安定同位体標識ペプチドに関する。
 また、本発明は、(5)前記(1)~(3)のいずれかに記載のペプチド、及び、前記(4)に記載の安定同位体標識ペプチドを備えた、代謝酵素群の一斉タンパク質定量用キットや、(6)前記(1)~(3)のいずれかに記載のペプチド、及び、前記(4)に記載の安定同位体標識ペプチドを、代謝酵素群の一斉タンパク質定量用プローブとして使用する方法に関する。
 さらに、本発明は、(7)(a)前記(1)~(3)のいずれかに記載のペプチドと前記(4)に記載の安定同位体標識ペプチドとを用いて、それぞれの所定濃度段階に対するLC-MS/MSを用いた質量分析を行い、検量線を作成する工程;(b)試料の被定量代謝酵素タンパク質をトリプシンにより断片化して得られるペプチド断片に、前記(4)に記載の安定同位体標識ペプチドを添加してLC-MS/MSを用いた質量分析を行い、被定量代謝酵素タンパク質ペプチド/安定同位体標識ペプチドのマススペクトル面積比を算出する工程;(c)該面積比から検量線を用いて定量値を算出する工程;を備えた安定同位体標識ペプチドを用いた液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)による代謝酵素群の一斉タンパク質の定量法に関する。
 本発明のアミノ酸配列によって構成されるペプチドを用いた質量分析による代謝酵素タンパク質の定量法により、従来法では困難であった代謝酵素タンパク質の定量を、簡便、かつ迅速に、更に、精度よく行うことが可能となる。また、本発明の代謝酵素タンパク質の定量法は、抗体を使用せずに、代謝酵素タンパク質を定量することできるので、従来もっとも時間のかかっていた抗体作製の段階を省略することができ、更に、抗体が作製できない代謝酵素についても定量が可能となって、適用範囲の広い、精度の高い細胞内タンパク質である代謝酵素タンパク質の定量法を提供することができる。従って、本発明を利用した代謝酵素タンパク質の定量法は、薬物の相互作用、個人差、毒性の解明において大きく貢献が期待できるものである。特に、新薬の開発に際しては、新薬候補物質がどのような代謝酵素をどの程度発現を変動させるかは相互作用や毒性を予測する上で非常に重要な意義を有しており、新薬開発における開発促進に多大な貢献が期待できる。
1fmolの非標識定量対象ペプチドにそれぞれ50fmolの1315N標識ペプチドを添加し、nanoLC-MS/MSによって測定した図である。NanoLCによって1fmolの選択したペプチド(CYP)が検出可能である。 ヒト肝臓のCYP絶対発現量解析例:ヒト肝臓を解析した際の定量対象ペプチドのピーク(左図、赤:*印)と内部標準としての標識ペプチドのピーク(右図、赤:*印)。両ピークは同じ溶出時間に検出されている。グラフの横軸は溶出時間(分)を示し、縦軸はIntensity (cps)を示す。 ヒト肝臓のCYP絶対発現量解析例:ヒト肝臓を解析した際の定量対象ペプチドのピーク(左図、赤:*印)と内部標準としての標識ペプチドのピーク(右図、赤:*印)。両ピークは同じ溶出時間に検出されている。グラフの横軸は溶出時間(分)を示し、縦軸はIntensity (cps)を示す。 ヒト肝臓のCYP絶対発現量解析例:ヒト肝臓を解析した際の定量対象ペプチドのピーク(左図、赤:*印)と内部標準としての標識ペプチドのピーク(右図、赤:*印)。両ピークは同じ溶出時間に検出されている。グラフの横軸は溶出時間(分)を示し、縦軸はIntensity (cps)を示す。 ヒト肝臓のCYP絶対発現量解析例:各CYP分子の検量線である。横軸は定量対象ペプチドの量(fmol)を示し、縦軸は定量対象ペプチド対標識ペプチドのピークエリア比を示す。チャート中、青丸は合成ペプチドの標準品、緑三角は試料中の定量対象ペプチドをそれぞれ示す。 ヒト肝臓のCYP絶対発現量解析例:各CYP分子の検量線である。横軸は定量対象ペプチドの量(fmol)を示し、縦軸は定量対象ペプチド対標識ペプチドのピークエリア比を示す。チャート中、青丸は合成ペプチドの標準品、緑三角は試料中の定量対象ペプチドをそれぞれ示す。 10fmolの非標識定量対象ペプチドにそれぞれ500fmolの1315N標識ペプチドを添加し、conventionalLC-MS/MSによって測定した図である。ConventionalHPLCによって10fmolのペプチド(Ara-C代謝酵素)が検出可能である。 ヒト白血病細胞のAra-C関連代謝酵素絶対発現量解析例:ヒト白血病細胞を解析した際の定量対象ペプチドのピーク(左図、赤:*印)と内部標準としての標識ペプチドのピーク(右図、赤:*印)。両ピークは同じ溶出時間に検出されている。グラフの横軸は溶出時間(分)を示し、縦軸はIntensity(cps)を示す。 ヒト白血病細胞のAra-C関連代謝酵素絶対発現量解析例:ヒト白血病細胞を解析した際の定量対象ペプチドのピーク(左図、赤:*印)と内部標準としての標識ペプチドのピーク(右図、赤:*印)。両ピークは同じ溶出時間に検出されている。グラフの横軸は溶出時間(分)を示し、縦軸はIntensity(cps)を示す。 ヒト白血病細胞のAra-C関連代謝酵素発現量解析例:各Ara-C代謝酵素分子の検量線である。横軸は定量対象ペプチドの量(fmol)を示し、縦軸は定量対象ペプチド対標識ペプチドのピークエリア比を示す。チャート中、青丸は合成ペプチドの標準品、緑三角は試料中の定量対象ペプチドを示す。 ヒト白血病細胞のAra-C関連代謝酵素発現量解析例:各Ara-C代謝酵素分子の検量線である。横軸は定量対象ペプチドの量(fmol)を示し、縦軸は定量対象ペプチド対標識ペプチドのピークエリア比を示す。チャート中、青丸は合成ペプチドの標準品、緑三角は試料中の定量対象ペプチドを示す。
(ヒト代謝酵素タンパク質の部分アミノ酸配列からなるペプチド)
 本発明のペプチドは、質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチドであって、ヒト代謝酵素タンパク質の部分アミノ酸配列からなるものである。当該ヒト代謝酵素タンパク質としては、具体的にはCYP1A1(SwissProtアクセッション番号:P04798)、CYP1A2(SwissProtアクセッション番号:P05177)、CYP1B1(SwissProtアクセッション番号:Q16678)、CYP2A6(SwissProtアクセッション番号:P11509)、CYP2A7(SwissProtアクセッション番号:P20853)、CYP2A13(SwissProtアクセッション番号:Q16696)、CYP2B6(SwissProtアクセッション番号:P20813)、CYP2C8(SwissProtアクセッション番号:P10632)、CYP2C9(SwissProtアクセッション番号:P11712)、CYP2C18(SwissProtアクセッション番号:P33260)、CYP2C19(SwissProtアクセッション番号:P33261)、CYP2D6(SwissProtアクセッション番号:P10635)、CYP2E1(SwissProtアクセッション番号:P05181)、CYP2F1(SwissProtアクセッション番号:P24903)、CYP2J2(SwissProtアクセッション番号:P51589)、CYP2R1(SwissProtアクセッション番号:Q6VVX0)、CYP2S1(SwissProtアクセッション番号:Q96SQ9)、CYP2W1(SwissProtアクセッション番号:Q8TAV3)、CYP3A4(SwissProtアクセッション番号:P08684)、CYP3A5(SwissProtアクセッション番号:P20815)、CYP3A7(SwissProtアクセッション番号:P24462)、CYP3A43(SwissProtアクセッション番号:Q9HB55)、CYP4A11(SwissProtアクセッション番号:Q02928)、CYP4B1(SwissProtアクセッション番号:P13584)、CYP4F2(SwissProtアクセッション番号:P78329)、CYP4F3(SwissProtアクセッション番号:Q08477)、CYP4F8(SwissProtアクセッション番号:P98187)、CYP4F11(SwissProtアクセッション番号:Q9HBI6)、CYP4F12(SwissProtアクセッション番号:Q9HCS2)、CYP4F22(SwissProtアクセッション番号:Q6NT55)、CYP4V2(SwissProtアクセッション番号:Q6ZWL3)、CYP4X1(SwissProtアクセッション番号:Q8N118)、CYP4Z1(SwissProtアクセッション番号:Q86W10)、CYP7A1(SwissProtアクセッション番号:P22680)、CYP7B1(SwissProtアクセッション番号:O75881)、CYP8B1(SwissProtアクセッション番号:Q9UNU6)、CYP11B1(SwissProtアクセッション番号:P15538)、CYP11B2(SwissProtアクセッション番号:P19099)、CYP17A1(SwissProtアクセッション番号:P05093)、CYP19A1(SwissProtアクセッション番号:P11511)、CYP21A2(SwissProtアクセッション番号:P08686)、CYP24A1(SwissProtアクセッション番号:Q07973)、CYP26A1(SwissProtアクセッション番号:O43174)、CYP26B1(SwissProtアクセッション番号:Q9NR63)、CYP26C1(SwissProtアクセッション番号:Q6V0L0)、CYP27A1(SwissProtアクセッション番号:Q02318)、CYP27B1(SwissProtアクセッション番号:O15528)、CYP27C1(SwissProtアクセッション番号:Q4G0S4)、CYP39A1(SwissProtアクセッション番号:Q9NYL5)、CYP46A1(SwissProtアクセッション番号:Q9Y6A2)、CYP51A1(SwissProtアクセッション番号:Q16850)、UGT1A1(SwissProtアクセッション番号:P22309)、UGT1A3(SwissProtアクセッション番号:P35503)、UGT1A4(SwissProtアクセッション番号:P22310)、UGT1A5(SwissProtアクセッション番号:P35504)、UGT1A6(SwissProtアクセッション番号:P19224)、UGT1A7(SwissProtアクセッション番号:Q9HAW7)、UGT1A10(SwissProtアクセッション番号:Q9HAW8)、UGT2A1(SwissProtアクセッション番号:Q9Y4X1)、UGT2B4(SwissProtアクセッション番号:P06133)、UGT2B7(SwissProtアクセッション番号:P16662)、UGT2B10(SwissProtアクセッション番号:P36537)、UGT2B11(SwissProtアクセッション番号:O75310)、UGT2B17(SwissProtアクセッション番号:075795)、UGT2B28(SwissProtアクセッション番号:Q9BY64)、GSTA1(SwissProtアクセッション番号:P08263)、GSTA2(SwissProtアクセッション番号:P09210)、GSTA3(SwissProtアクセッション番号:Q16772)、GSTA4(SwissProtアクセッション番号:O15217)、GSTA5(SwissProtアクセッション番号:Q7RTV2)、GSTK1(SwissProtアクセッション番号:Q9Y2Q3)、GSTM1(SwissProtアクセッション番号:P09488)、GSTM2(SwissProtアクセッション番号:P28161)、GSTM3(SwissProtアクセッション番号:P21266)、GSTM4(SwissProtアクセッション番号:Q03013)、GSTM5(SwissProtアクセッション番号:P46439)、GSTP1(SwissProtアクセッション番号:P09211)、GSTT1(SwissProtアクセッション番号:P30711)、GSTT2(SwissProtアクセッション番号:P30712)、MGST1(SwissProtアクセッション番号:P10620)、MGST2(SwissProtアクセッション番号:Q99735)、MGST3(SwissProtアクセッション番号:O14880)、SULT1A2(SwissProtアクセッション番号:P50226)、SULT1A3(SwissProtアクセッション番号:P50224)、SULT1B1(SwissProtアクセッション番号:O43704)、SULT1C2(SwissProtアクセッション番号:PO00338)、SULT1C3(SwissProtアクセッション番号:Q6IMI6)、SULT1C4(SwissProtアクセッション番号:O75897)、SULT1E1(SwissProtアクセッション番号:P49888)、SULT2A1(SwissProtアクセッション番号:Q06520)、SULT2B1(SwissProtアクセッション番号:O00204)、SULT4A1(SwissProtアクセッション番号:Q9BR01)、SULT4S6(SwissProtアクセッション番号:Q7LFX5)、P450R(SwissProtアクセッション番号:P16435)、MGMT(SwissProtアクセッション番号:P16455)、dCK(SwissProtアクセッション番号:P27707)、CDA(SwissProtアクセッション番号:P32320)、cN-IA(SwissProtアクセッション番号:Q9BX13)、cN-IB(SwissProtアクセッション番号:Q96P26)、cN-II(SwissProtアクセッション番号:P49902)、cN-III(SwissProtアクセッション番号:Q9H0P0)、dNT-1(SwissProtアクセッション番号:Q8TCD5)、dNT-2(SwissProtアクセッション番号:Q9NPB1)、Ecto-5’-NT(SwissProtアクセッション番号:P21589)、RRM1(SwissProtアクセッション番号:P23921)、RRM2(SwissProtアクセッション番号:P31350)、UMP/CMPK(SwissProtアクセッション番号:P30085)、dCMPDA(SwissProtアクセッション番号:P32321)、CTP synthase1(SwissProtアクセッション番号:P17812)、CTP synthase2(SwissProtアクセッション番号:Q9NRF8)等を例示することができる。
 本発明のペプチドは前記ヒト代謝酵素タンパク質タンパク質の部分アミノ酸配列からなるペプチドであり、具体的には例えば、CYP1A1の部分配列である配列番号1~5に示される各アミノ酸配列;CYP1A2の部分配列である配列番号6~8に示される各アミノ酸配列;CYP1B1の部分配列である配列番号9~14に示される各アミノ酸配列;からなる各ペプチドであり、当該各ペプチドを用いてそれぞれCYP1A1、CYP1A2、CYP1B1を定量することができる。
 同様に、CYP2A6の部分配列である配列番号15~17に示される各アミノ酸配列;CYP2A7の部分配列である配列番号18~19に示される各アミノ酸配列;CYP2A13の部分配列である配列番号20~21に示される各アミノ酸配列;CYP2B6の部分配列である配列番号22~25に示される各アミノ酸配列;CYP2C8の部分配列である配列番号26~29に示される各アミノ酸配列;CYP2C9の部分配列である配列番号30~31に示される各アミノ酸配列;CYP2C18の部分配列である配列番号32~34に示される各アミノ酸配列;CYP2C19の部分配列である配列番号35~37に示される各アミノ酸配列;CYP2D6の部分配列である配列番号38~39に示される各アミノ酸配列;CYP2E1の部分配列である配列番号40~46に示される各アミノ酸配列;CYP2F1の部分配列である配列番号47に示される各アミノ酸配列;CYP2J2の部分配列である配列番号48~55に示される各アミノ酸配列;CYP2R1の部分配列である配列番号56~63に示される各アミノ酸配列;CYP2S1の部分配列である配列番号64~72に示される各アミノ酸配列;CYP2W1の部分配列である配列番号73~79に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCYP2A6、CYP2A7、CYP2A13、CYP2B6、CYP2C8、CYP2C9、CYP2C18、CYP2C19、CYP2D6、CYP2E1、CYP2F1、CYP2J2、CYP2R1、CYP2S1、CYP2W1を定量することができる。
 同様に、CYP3A4の部分配列である配列番号80~81に示される各アミノ酸配列;CYP3A5の部分配列である配列番号82~84に示される各アミノ酸配列;CYP3A7の部分配列である配列番号85~88に示される各アミノ酸配列;CYP3A43の部分配列である配列番号89~96に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてCYP3A4、CYP3A5、CYP3A7、CYP3A43を定量することができる。
 同様に、CYP4A11の部分配列である配列番号97~101に示される各アミノ酸配列;CYP4B1の部分配列である配列番号102~111に示される各アミノ酸配列;CYP4F2の部分配列である配列番号112~114に示される各アミノ酸配列;CYP4F3の部分配列である配列番号115に示されるアミノ酸配列;CYP4F8の部分配列である配列番号116~119に示される各アミノ酸配列;CYP4F11の部分配列である配列番号120~122に示される各アミノ酸配列;CYP4F12の部分配列である配列番号123~127に示される各アミノ酸配列;CYP4F22の部分配列である配列番号128~136に示される各アミノ酸配列;CYP4V2の部分配列である配列番号137~144に示される各アミノ酸配列;CYP4X1の部分配列である配列番号145~154に示される各アミノ酸配列;CYP4Z1の部分配列である配列番号155~165に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCYP4A11、CYP4B1、CYP4F2、CYP4F3、CYP4F8、CYP4F11、CYP4F12、CYP4F22、CYP4V2、CYP4X1、CYP4Z1を定量することができる。
 同様に、CYP7A1の部分配列である配列番号166~171に示される各アミノ酸配列;CYP7B1の部分配列である配列番号172~178に示される各アミノ酸配列;CYP8B1の部分配列である配列番号179~185に示される各アミノ酸配列;CYP11B1の部分配列である配列番号186~191に示される各アミノ酸配列;CYP11B2の部分配列である配列番号192~195に示される各アミノ酸配列;CYP17A1の部分配列である配列番号196~200に示される各アミノ酸配列;CYP19A1の部分配列である配列番号201~207に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCYP7A1、CYP7B1、CYP8B1、CYP11B1、CYP11B2、CYP17A1、CYP19A1を定量することができる。
 同様に、CYP21A2の部分配列である配列番号208~210に示される各アミノ酸配列;CYP24A1の部分配列である配列番号211~216に示される各アミノ酸配列;CYP26A1の部分配列である配列番号217~226に示される各アミノ酸配列;CYP26B1の部分配列である配列番号227~238に示される各アミノ酸配列;CYP26C1の部分配列である配列番号239~249に示される各アミノ酸配列;CYP27A1の部分配列である配列番号250~256に示される各アミノ酸配列;CYP27B1の部分配列である配列番号257~265に示される各アミノ酸配列;CYP27C1の部分配列である配列番号266~275に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCYP21A2、CYP24A1、CYP26A1、CYP26B1、CYP26C1、CYP27A1、CYP27B1、CYP27C1を定量することができる。
 同様に、CYP39A1の部分配列である配列番号276に示されるアミノ酸配列;CYP46A1の部分配列である配列番号277~284に示される各アミノ酸配列;CYP51A1の部分配列である配列番号285~296に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCYP39A1、CYP46A1、CYP51A1を定量することができる。
 同様に、UGT1A1の部分配列である配列番号297に示されるアミノ酸配列;UGT1A3の部分配列である配列番号298~299に示される各アミノ酸配列;UGT1A4の部分配列である配列番号300~301に示される各アミノ酸配列;UGT1A5の部分配列である配列番号302に示されるアミノ酸配列;UGT1A6の部分配列である配列番号303~305に示される各アミノ酸配列;UGT1A7の部分配列である配列番号306~307に示される各アミノ酸配列;UGT1A10の部分配列である配列番号308に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれUGT1A1、UGT1A3、UGT1A4、UGT1A5、UGT1A6、UGT1A7、UGT1A10を定量することができる。
 同様に、UGT2A1の部分配列である配列番号309~310に示される各アミノ酸配列;UGT2B4の部分配列である配列番号311に示されるアミノ酸配列;UGT2B7の部分配列である配列番号312~313に示される各アミノ酸配列;UGT2B10の部分配列である配列番号314に示されるアミノ酸配列;UGT2B11の部分配列である配列番号315に示されるアミノ酸配列;UGT2B17の部分配列である配列番号316に示されるアミノ酸配列;UGT2B28の部分配列である配列番号317に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれUGT2A1、UGT2B4、UGT2B7、UGT2B10、UGT2B11、UGT2B17、UGT2B28を定量することができる。
 同様に、GSTA1の部分配列である配列番号318に示されるアミノ酸配列;GSTA2の部分配列である配列番号319に示されるアミノ酸配列;GSTA3の部分配列である配列番号320に示されるアミノ酸配列;GSTA4の部分配列である配列番号321~323に示される各アミノ酸配列;GSTA5の部分配列である配列番号324に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれGSTA1、GSTA2、GSTA3、GSTA4、GSTA5を定量することができる。
 同様に、GSTK1の部分配列である配列番号325に示されるアミノ酸配列;GSTM1の部分配列である配列番号326に示されるアミノ酸配列;GSTM2の部分配列である配列番号327~328に示される各アミノ酸配列;GSTM3の部分配列である配列番号329に示されるアミノ酸配列;GSTM4の部分配列である配列番号330に示されるアミノ酸配列;GSTM5の部分配列である配列番号331に示されるアミノ酸配列;GSTP1の部分配列である配列番号332に示されるアミノ酸配列;GSTT1の部分配列である配列番号333~334に示される各アミノ酸配列;GSTT2の部分配列である配列番号335に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれGSTM1、GSTM2、GSTM3、GSTM4、GSTM5、GSTT1、GSTT2を定量することができる。
 同様に、MGST1の部分配列である配列番号336に示されるアミノ酸配列;MGST2の部分配列である配列番号337に示されるアミノ酸配列;MGST3の部分配列である配列番号338に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれMGST1、MGST2、MGST3を定量することができる。
 同様に、SULT1A2の部分配列である配列番号339に示されるアミノ酸配列;SULT1A3の部分配列である配列番号340に示されるアミノ酸配列;SULT1B1の部分配列である配列番号341に示されるアミノ酸配列;SULT1C2の部分配列である配列番号342に示されるアミノ酸配列;SULT1C3の部分配列である配列番号343に示されるアミノ酸配列;SULT1C4の部分配列である配列番号344に示されるアミノ酸配列;SULT1E1の部分配列である配列番号345に示されるアミノ酸配列;SULT2A1の部分配列である配列番号346に示されるアミノ酸配列;SULT2B1の部分配列である配列番号347に示されるアミノ酸配列;SULT4A1の部分配列である配列番号348に示されるアミノ酸配列;SULT4S6の部分配列である配列番号349に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれSULT1A2、SULT1A3、SULT1B1、SULT1C2、SULT1C3、SULT1C4、SULT1E1、SULT2A1、SULT2B1、SULT4A1、SULT4S6を定量することができる。
 同様に、P450Rの部分配列である配列番号350~359に示される各アミノ酸配列;MGMTの部分配列である配列番号360~361に示される各アミノ酸配列;dCKの部分配列である配列番号362~363に示される各アミノ酸配列;CDAの部分配列である配列番号364に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれP450R、MGMT、dCK、CDAを定量することができる。
 同様に、cN-IAの部分配列である配列番号365~366に示される各アミノ酸配列;cN-IBの部分配列である配列番号367~374に示される各アミノ酸配列;cN-IIの部分配列である配列番号375に示されるアミノ酸配列;cN-IIIの部分配列である配列番号376~382に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれ、cN-IA、cN-IB、cN-II、cN-IIIを定量することができる。
 同様に、dNT-1の部分配列である配列番号383に示されるアミノ酸配列;dNT-2の部分配列である配列番号384~385に示される各アミノ酸配列;Ecto-5’-NTの部分配列である配列番号386~388に示される各アミノ酸配列;RRM1の部分配列である配列番号389~392に示される各アミノ酸配列;RRM2の部分配列である配列番号393~394に示される各アミノ酸配列;UMP/CMPKの部分配列である配列番号395に示されるアミノ酸配列;dCMPDAの部分配列である配列番号396に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれ、dNT-1、dNT-2、Ecto-5’-NT、RRM1、RRM2、UMP/CMPK、dCMPDAを定量することができる。
 同様に、CTP Synthase1の部分配列である配列番号397~405に示される各アミノ酸配列;CTP Synthase2の部分配列である配列番号406~412に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれ、CTP Synthase1、CTP Synthase2を定量することができる。
(マウス代謝酵素タンパク質の部分アミノ酸配列からなるペプチド)
 また、本発明のペプチドは配列番号413~695記載のマウス代謝酵素タンパク質の部分アミノ酸配列からなるペプチドである。当該マウス代謝酵素タンパク質としては、具体的にはCyp11a1(SwissProtアクセッション番号:Q9QZ82)、Cyp17a1(SwissProtアクセッション番号:P27786)、Cyp19a1(SwissProtアクセッション番号:P28649)、Cyp1a1(SwissProtアクセッション番号:P00184)、Cyp1a2(SwissProtアクセッション番号:P00186)、Cyp21(SwissProtアクセッション番号:P03940)、Cyp24a1(SwissProtアクセッション番号:Q64441)、Cyp26a1(SwissProtアクセッション番号:O55127)、Cyp27a1(SwissProtアクセッション番号:Q9DBG1)、Cyp27b1(SwissProtアクセッション番号:O35084)、Cyp2a4(SwissProtアクセッション番号:P15392)、Cyp2a5(SwissProtアクセッション番号:P20852)、Cyp2b19(SwissProtアクセッション番号:O55071)、Cyp2c29(SwissProtアクセッション番号:Q64458)、Cyp2c39(SwissProtアクセッション番号:P56656)、Cyp2c70(SwissProtアクセッション番号:Q91W64)、Cyp2d10(SwissProtアクセッション番号:P24456)、Cyp2d26(SwissProtアクセッション番号:Q8CIM7)、Cyp2d9(SwissProtアクセッション番号:P11714)、Cyp2e1(SwissProtアクセッション番号:Q05421)、Cyp2f2(SwissProtアクセッション番号:P33267)、Cyp2j5(SwissProtアクセッション番号:O54749)、Cyp2r1(SwissProtアクセッション番号:Q6VVW9)、Cyp2s1(SwissProtアクセッション番号:Q9DBX6)、Cyp39a1(SwissProtアクセッション番号:Q9JKJ9)、Cyp3a11(SwissProtアクセッション番号:Q64459)、Cyp3a13(SwissProtアクセッション番号:Q64464)、Cyp3a16(SwissProtアクセッション番号:Q64481)、Cyp3a25(SwissProtアクセッション番号:O09158)、Cyp46a1(SwissProtアクセッション番号:Q9WVK8)、Cyp4a14(SwissProtアクセッション番号:O35728)、Cyp4b1(SwissProtアクセッション番号:Q64462)、Cyp4f14(SwissProtアクセッション番号:Q9EP75)、Cyp4v3(SwissProtアクセッション番号:Q9DBW0)、Cyp5a(SwissProtアクセッション番号:P36423)、Cyp8b1(SwissProtアクセッション番号:O88962)、GSTO1(SwissProtアクセッション番号:O09131)、ST2B1(SwissProtアクセッション番号:O35400)、ST3A1(SwissProtアクセッション番号:O35403)、CHST3(SwissProtアクセッション番号:O88199)、SNAT(SwissProtアクセッション番号:O88816)、UD2B5(SwissProtアクセッション番号:P17717)、GSTP1(SwissProtアクセッション番号:P19157)、GSTM4(SwissProtアクセッション番号:P19639)、GSTA4(SwissProtアクセッション番号:P24472)、GSTA3(SwissProtアクセッション番号:P30115)、GSTM5(SwissProtアクセッション番号:P48774)、ST1E1(SwissProtアクセッション番号:P49891)、ARY1(SwissProtアクセッション番号:P50294)、ARY2(SwissProtアクセッション番号:P50295)、ARY3(SwissProtアクセッション番号:P50296)、ST1A1(SwissProtアクセッション番号:P52840)、UD12(SwissProtアクセッション番号:P70691)、CGT(SwissProtアクセッション番号:Q64676)、UD17C(SwissProtアクセッション番号:Q6ZQM8)、ST1C1(SwissProtアクセッション番号:Q80VR3)、CHST2(SwissProtアクセッション番号:Q80WV3)、MGST3(SwissProtアクセッション番号:Q9CPU4)、ST1C2(SwissProtアクセッション番号:Q9D939)、GSTK1(SwissProtアクセッション番号:Q9DCM2)、CHST7(SwissProtアクセッション番号:Q9EP78)、CHST1(SwissProtアクセッション番号:Q9EQC0)、CHST5(SwissProtアクセッション番号:Q9QUP4)、NAT6(SwissProtアクセッション番号:Q9R123)、CHST4(SwissProtアクセッション番号:Q9R1I1)、MAAI(SwissProtアクセッション番号:Q9WVL0)等を例示することができる。
 本発明のペプチドは上に列挙したタンパク質の部分アミノ酸配列からなるペプチドであり、具体的には例えば、Cyp11a1の部分配列である配列番号413~422に示される各アミノ酸配列;Cyp17a1の部分配列である配列番号423~429に示される各アミノ酸配列;Cyp19a1の部分配列である配列番号430~436に示される各アミノ酸配列;Cyp1a1の部分配列である配列番号437~438に示される各アミノ酸配列;Cyp1a2の部分配列である配列番号439~443に示される各アミノ酸配列;からなる各ペプチドであり、当該各ペプチドを用いてそれぞれCyp11a1、Cyp17a1、Cyp19a1、Cyp1a1、Cyp1a2を定量することができる。
 同様に、Cyp21の部分配列である配列番号444~448に示される各アミノ酸配列;Cyp24a1の部分配列である配列番号449~455に示される各アミノ酸配列;Cyp26a1の部分配列である配列番号456~464に示される各アミノ酸配列;Cyp27a1の部分配列である配列番号465~470に示される各アミノ酸配列;Cyp27b1の部分配列である配列番号471~478に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCyp21、Cyp24a1、Cyp26a1、Cyp27a1、Cyp27b1を定量することができる。
 同様に、Cyp2a4の部分配列である配列番号479に示されるアミノ酸配列;Cyp2a5の部分配列である配列番号480に示されるアミノ酸配列;Cyp2b19の部分配列である配列番号481~483に示される各アミノ酸配列;Cyp2c29の部分配列である配列番号484に示されるアミノ酸配列;Cyp2c39の部分配列である配列番号485~488に示される各アミノ酸配列;Cyp2c70の部分配列である配列番号489~492に示される各アミノ酸配列;Cyp2d10の部分配列である配列番号493に示されるアミノ酸配列;Cyp2d26の部分配列である配列番号494~497に示される各アミノ酸配列;Cyp2d9の部分配列である配列番号498~499に示される各アミノ酸配列;Cyp2e1の部分配列である配列番号500に示されるアミノ酸配列;Cyp2f2の部分配列である配列番号501~505に示される各アミノ酸配列;Cyp2j5の部分配列である配列番号506~511に示される各アミノ酸配列;Cyp2r1の部分配列である配列番号512~513に示される各アミノ酸配列;Cyp2s1の部分配列である配列番号514~526に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCyp2a4、Cyp2a5、Cyp2b19、Cyp2c29、Cyp2c39、Cyp2c70、Cyp2d10、Cyp2d26、Cyp2d9、Cyp2e1、Cyp2f2、Cyp2j5、Cyp2r1、Cyp2s1を定量することができる。
 同様に、Cyp39a1の部分配列である配列番号527に示されるアミノ酸配列;Cyp3a11の部分配列である配列番号528に示されるアミノ酸配列;Cyp3a13の部分配列である配列番号529~534に示される各アミノ酸配列;Cyp3a16の部分配列である配列番号535~536に示される各アミノ酸配列;Cyp3a25の部分配列である配列番号537~538に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてCyp39a1、Cyp3a11、Cyp3a13、Cyp3a16、Cyp3a25を定量することができる。
 同様に、Cyp46a1の部分配列である配列番号539~545に示される各アミノ酸配列からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてCyp46a1を定量することができる。
 同様に、Cyp4a14の部分配列である配列番号546~550に示される各アミノ酸配列;Cyp4b1の部分配列である配列番号551~554に示される各アミノ酸配列;Cyp4f14の部分配列である配列番号555~558に示される各アミノ酸配列;Cyp4v3の部分配列である配列番号559~566に示される各アミノ酸配列;Cyp5aの部分配列である配列番号567~570に示される各アミノ酸配列;Cyp8b1の部分配列である配列番号571~576に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCyp4a14、Cyp4b1、Cyp4f14、Cyp4v3、Cyp5a、Cyp8b1を定量することができる。
 同様に、GSTO1の部分配列である配列番号577~578に示される各アミノ酸配列;ST2B1の部分配列である配列番号579に示されるアミノ酸配列;ST3A1の部分配列である配列番号580~585に示される各アミノ酸配列;CHST3の部分配列である配列番号586~595に示される各アミノ酸配列;SNATの部分配列である配列番号596に示されるアミノ酸配列;UD2B5の部分配列である配列番号597に示されるアミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれGSTO1、ST2B1、ST3A1、CHST3、SNAT、UD2B5を定量することができる。
 同様に、GSTP1の部分配列である配列番号598に示されるアミノ酸配列;GSTM4の部分配列である配列番号599に示されるアミノ酸配列;GSTA4の部分配列である配列番号600~603に示される各アミノ酸配列;GSTA3の部分配列である配列番号604~605に示される各アミノ酸配列;GSTM5の部分配列である配列番号606~609に示される各アミノ酸配列;ST1E1の部分配列である配列番号610~613に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれGSTP1、GSTM4、GSTA4、GSTA3、GSTM5、ST1E1を定量することができる。
 同様に、ARY1の部分配列である配列番号614~615に示される各アミノ酸配列;ARY2の部分配列である配列番号616~620に示される各アミノ酸配列;ARY3の部分配列である配列番号621~624に示される各アミノ酸配列;ST1A1の部分配列である配列番号625~626に示される各アミノ酸配列;UD12の部分配列である配列番号627~629に示される各アミノ酸配列;CGTの部分配列である配列番号630~638に示される各アミノ酸配列;UD17Cの部分配列である配列番号639~641に示される各アミノ酸配列;ST1C1の部分配列である配列番号642~643に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれARY1、ARY2、ARY3、ST1A1、UD12、CGT、UD17C、ST1C1を定量することができる。
 同様に、CHST2の部分配列である配列番号644~650に示される各アミノ酸配列;MGST3の部分配列である配列番号651に示されるアミノ酸配列;ST1C2の部分配列である配列番号652~655に示される各アミノ酸配列;GSTK1の部分配列である配列番号656~659に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCHST2、MGST3、ST1C2、GSTK1を定量することができる。
 同様に、CHST7の部分配列である配列番号660~671に示される各アミノ酸配列;CHST1の部分配列である配列番号672~676に示される各アミノ酸配列;CHST5の部分配列である配列番号677~683に示される各アミノ酸配列;NAT6の部分配列である配列番号684~686に示される各アミノ酸配列;CHST4の部分配列である配列番号687~691に示される各アミノ酸配列;MAAIの部分配列である配列番号692~695に示される各アミノ酸配列;からなる各ペプチドも本発明のペプチドであり、当該各ペプチドを用いてそれぞれCHST7、CHST1、CHST5、NAT6、CHST4、MAAIを定量することができる。
(ホモログ由来ペプチド又はヒトSNPs対応ペプチド)
 また、本発明のペプチドとして、質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチドであって、配列番号1~695のいずれかに示されるアミノ酸配列中の1又は2個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるペプチドを例示することができる。これらペプチドとして、具体的には、配列番号1~695のいずれかに示されるアミノ酸配列中の1又は2個(好ましくは1個)のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、ヒト又はマウス以外の哺乳類のホモログ(相同タンパク質)に由来するペプチドや、配列番号1~413のいずれかに示されるヒト代謝酵素タンパク質の部分アミノ酸配列中の1又は2個(好ましくは1個)のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、ヒト代謝酵素タンパク質のSNPsに対応するペプチドを好適に例示することができる。上記ヒト又はマウス以外の哺乳類としては、ヒト以外の霊長類(例えば、サル、ヒヒ又はチンパンジー等)、ブタ、ウシ、ウマ、ヤギ、ヒツジ、イヌ、ネコ、ウサギ、モルモット、スナネズミ、ハムスター、ラット等を挙げることができる。
 本発明の前記ヒト代謝酵素タンパク質の部分アミノ酸配列からなるペプチドや、前記ネズミ代謝酵素タンパク質の部分アミノ酸配列からなるペプチドや、上記ホモログ由来ペプチド又はヒトSNPs対応ペプチド(以下、これら本発明のペプチドを「本件非標識ペプチド」と総称する場合がある。)は、一般的な化学合成法により製造することができる。かかるペプチド合成法として、アミノ酸配列情報に基づいて、各アミノ酸を1個ずつ逐次結合させ鎖を延長させていくステップワイズエロゲーション法や、アミノ酸数個からなるフラグメントを予め合成し、次いで各フラグメントをカップリング反応させるフラグメント・コンデンセーション法のいずれも採用することができる。
(安定同位体標識ペプチド)
 また、本発明の標識ペプチドとしては、上記の本件非標識ペプチドを構成するアミノ酸の1個以上が、15N,13C,18O,及びHのいずれか1以上を含む安定同位体標識ペプチドであれば、アミノ酸の種類、位置、及び数は、液体クロマトグラフ-タンデム質量分析装置(LC-MS/M)で分離可能な質量差を有する限りにおいて特に制限されないが、中でも13Cで6箇所標識されたロイシン(Leucine)を含むことがより好ましい。かかる安定同位体標識ペプチドは、安定同位元素により標識されたアミノ酸を用いてF-moc法(Amblard M, Fehrentz JA, Martinez J, Subra G. Methods Mol Biol.298:3-24(2005))等の適当な手段で目的ペプチドを化学合成することができる。また、安定同位体標識ペプチドは、定量対象ペプチドと標識アミノ酸の質量が異なる点以外では化学的に同一でLC-MS/MS測定において同一の挙動を示すことから、質量分析装置を用いた代謝酵素群の一斉タンパク質定量における内部標準ペプチドとして有利に用いることができる。
(定量用キットとプローブとしての使用)
 本発明の代謝酵素群の一斉タンパク質定量用キットとしては、本件非標識ペプチドと本発明の安定同位体標識ペプチドとを備えたものであれば特に制限されず、また、本発明の使用方法としては、本件非標識ペプチドと本発明の安定同位体標識ペプチドとを代謝酵素群の一斉タンパク質定量用プローブとして使用する方法であれば特に制限されず、定量対象ペプチドでもある本件非標識ペプチドは、定量用の検量線作成に用いられ、安定同位体標識ペプチドは、定量用の検量線作成及び内部標準ペプチドとして用いられる。
(代謝酵素群の一斉タンパク質の定量)
 本発明の安定同位体標識ペプチドを用いたLC-MS/MSによる代謝酵素群の一斉タンパク質の定量法としては、(a)本件非標識ペプチドと本発明の安定同位体標識ペプチドとを用いて、それぞれの所定濃度段階に対するLC-MS/MSを用いた質量分析を行い、検量線を作成する工程、(b)試料の被定量代謝酵素タンパク質をトリプシンにより断片化して得られるペプチド断片に、本発明の安定同位体標識ペプチドを添加してLC-MS/MSを用いた質量分析を行い、被定量代謝酵素タンパク質ペプチド/安定同位体標識ペプチドのマススペクトル面積比を算出する工程、(c)該面積比から検量線を用いて定量値を算出する工程の各工程を備えた方法であれば特に制限されず、定量の対象となるタンパク質の供給源としての上記試料として、肝臓等の各種組織、各種組織由来の培養細胞等を例示することができる。また、試料中に含まれる被定量タンパク質が質量分析計の測定限界値以下である場合、高圧窒素ガス充填法等により分画した試料を測定に用いることが好ましい。また、一つの標的代謝酵素タンパク質に対して複数の定量対象ペプチドが同定されている場合、複数の定量対象ペプチドを用い、定量することによってより精度と信頼性の高い代謝酵素群の一斉タンパク質の定量を行うことができる。
 さらに、被定量タンパク質とそのサブタイプが極めて似たアミノ酸配列を有する場合には、それらに共通のペプチドの定量値と、一方に特異的なペプチドの定量値の差を求めることにより、被定量タンパク質を定量することもできる。例えば、代謝タンパク質CYP3A4の定量値は、(CYP3A4及びCYP3A5に共通のペプチドの定量値)-(CYP3A5特異的なペプチドの定量値)により求めることができる。
 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。
(nanoLC-MS/MSを用いたペプチド(CYP及びP450R)の検出)
 ヒト代謝酵素CYP及びP450Rの部分配列ペプチドである、定量対象ペプチド(非標識ペプチド:CYP1A2;YLPNPALQR(配列番号7)、CYP2A6;GTGGANIDPTFFLSR(配列番号15)、CYP2B6;GYGVIFANGNR(配列番号25)、CYP2C8;GNSPISQR(配列番号28)、CYP2C9;GIFPLAER(配列番号30)、CYP2C18;IAENFAYIK(配列番号32)、CYP2C19;GHFPLAER(配列番号35)、CYP2D6;DIEVQGFR(配列番号39)、CYP2E1;GIIFNNGPTWK(配列番号44)、CYP2J2;EENGQPFDPHFK(配列番号52)、CYP3A4;LQEEIDAVLPNK(配列番号81)、CYP3A5;DTINFLSK(配列番号83)、CYP3A7;FNPLDPFVLSIK(配列番号85)、CYP3A43;YIPFGAGPR(配列番号91)、CYP4A11;IPIPIAR(配列番号100)、CYP51A1;FAYVPFGAGR(配列番号290)、P450R;FAVFGLGNK(配列番号355)、及び合成した安定同位体標識ペプチド[同位体標識ペプチド:CYP1A2;YLPNPAL(1315N)QR(配列番号7)、CYP2A6;GTGGANIDPTFFL(1315N)SR(配列番号15)、CYP2B6;GYGVIFA(1315N)NGNR(配列番号25)、CYP2C8;GNSPI(1315N)SQR(配列番号28)、CYP2C9;GIFPL(1315N)AER(配列番号30)、CYP2C18;IAENFAYI(1315N)K(配列番号32)、CYP2C19;GHFPL(1315N)AER(配列番号35)、CYP2D6;DIEVQGF(1315N)R(配列番号39)、CYP2E1;GIIFNNGP(1315N)TWK(配列番号44)、CYP2J2;EENGQPFDPHF(1315N)K(配列番号52)、CYP3A4;LQEEIDAVLP(1315N)NK(配列番号81)、CYP3A5;DTINFL(1315N)SK(配列番号83)、CYP3A7;FNPLDPFVLSI(1315N)K(配列番号85)、CYP3A43;YIPFGAGP(1315N)R(配列番号91)、CYP4A11;IPIPIA(1315N)R(配列番号100)、CYP51A1;FAYVPFGA(1315N)GR(配列番号290)、P450R;FAVFGL(1315N)GNK(配列番号355)]を用いて、次の条件でnanoLC-MS/MS測定を行った。
 1fmolの非標識ペプチドにそれぞれ50fmolの1315N標識ペプチドを添加し、nanoLC-MS/MSにより測定した。カラムは逆相C18 150μm I.D.×40mmを用い、移動相は0.1%ギ酸と0.1%ギ酸、アセトニトリルとし、35分間で0.1%ギ酸、アセトニトリル濃度が45%となるリニアグラジエントで分析を行った。質量分析計はアプライドバイオシステムの4000Qtrapを用いた。ペプチドは、定量対象ペプチドと標識ペプチドが、同一時間に溶出されることで同定した。結果を図1に示す。
(ヒト肝組織試料におけるCYP及びP450Rの一斉定量)
 ヒト肝臓組織をハサミで細断した後に、10mM Tris-HCl,10mM NaCl,1.5mM MgClに懸濁した。ガラスホモジナイザーにてホモジナイズし、溶液を8,000×g,10分間遠心した。さらに、上清を100,000×g,60分間遠心して粗膜画分を得た。得られた粗膜画分を7M 塩酸グアニジン、0.1M Tris-HCl,10mM EDTA pH8.5緩衝液中で変性させ、システイン残基のSH基を保護するために、DTTによる還元処理とIodoacetamideによるカルバミドメチル化処理を行なった。メタノールクロロホルム沈殿法により、脱塩濃縮した。1.2M Urea、10mM Tris-HClに顕濁した後に、タンパク質重量の1/100量のTrypsinを加え37℃で16時間酵素消化してペプチド試料を得た。
 得られた粗膜画分ペプチド試料5μgに、50fmolの1315N標識ペプチドを加えてLC-MS/MSで測定した(図2)。測定後、MSスペクトル面積比(非標識ペプチド/1315N標識ペプチド)を算出し、検量線を用いて定量値を算出した。
(検量線の作成)
 選定した定量対象ペプチドを用いて、検量線を作成し直線性を検討した。1fmol,5fmol,10fmol,50fmol,100fmolの非標識ペプチドに、それぞれ50fmolの1315N標識ペプチドを添加し、同様にnanoLC-MS/MSにより測定した、MSスペクトル面積比(非標識ペプチド/1315N標識ペプチド)を算出し、検量線を作成した。
 CYP及びP450R定量結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(ConventionalLC-MS/MSを用いたペプチド(Ara-C代謝酵素)の検出)
 ヒトAra-C代謝酵素の部分配列ペプチドである、定量対象ペプチド(非標識ペプチド:dCK;AQLASLNGK(配列番号362)、CDA;AVSEGYK(配列番号364)、cN-IA;GFLEALGR(配列番号366)、cN-IB;GFLEDLGR(配列番号369)、 cN-II;VFLATNSDYK(配列番号375)、cN-III;GELIHVFNK(配列番号379)、dNT-1;TVVLGDLLIDDK(配列番号383)、Ecto-5’-NT;VPSYDPLK(配列番号388)、RRM1;LNSAIIYDR(配列番号390)、RRM2;ENTPPALSGTR(配列番号393)、UMP/CMPK;FLIDGFPR(配列番号395)、dCMPDA;LIIQAGIK(配列番号396)、CTPS1;FVGQDVEGER(配列番号402)、CTPS2;ADGILVPGGFGIR(配列番号409))及び合成した安定同位体標識ペプチド[同位体標識ペプチド:dCK; AQLASL(1315N)NGK(配列番号362)、CDA;AV(1315N)SEGYK(配列番号364)、cN-IA;GFLEAL(1315N)GR(配列番号366)、cN-IB;GFLEDL(1315N)GR(配列番号369)、cN-II;VFLA(1315N)TNSDYK(配列番号375)、cN-III;GELIHVF(1315N)NK(配列番号379)、dNT-1;TVVLGDLLI(1315N)DDK(配列番号383)、Ecto-5’-NT;VPSYDPL(1315N)K(配列番号388)、RRM1;LNSAII(1315N)YDR(配列番号390)、RRM2;ENTPPAL(1315N)SGTR(配列番号393)、UMP/CMPK;FLIDGFP(1315N)R(配列番号395)、dCMPDA;LIIQAGI(1315N)K(配列番号396)、CTPS1;FVGQDV(1315N)EGER(配列番号402)、CTPS2;ADGILVPGGFGI(1315N)R(配列番号409)]を用いて、次の条件でconventionalLC-MS/MS測定を行った。
 10fmolの非標識ペプチドにそれぞれ500fmolの1315N標識ペプチドを添加し、conventionalLC-MS/MSにより測定した。カラムは逆相C18 0.5mmI.D.×150mmを用い、移動相は0.1%ギ酸と0.1%ギ酸、アセトニトリルとし、60分間で0.1%ギ酸、アセトニトリル濃度が45%となるリニアグラジエントで分析を行った。質量分析計はアプライドバイオシステムのAPI5000を用いた。ペプチドは、定量対象ペプチドと標識ペプチドが同一時間に溶出されることで同定した。結果を図7に示す。
(ヒト培養細胞におけるAra-C代謝タンパク質の一斉定量)
 10% FBSを添加したRPMI1640培地において培養したヒト白血病細胞株K562細胞5.0×10個を、cavitation法によって細胞破砕した。この溶液を10,000×g,10分間遠心した。さらに、上清を100,000×g,60分間遠心して可溶性画分を得た。得られた可溶性画分を7M 塩酸グアニジン、0.1M Tris-HCl、10mM EDTA pH8.5緩衝液中で変性させ、システイン残基のSH基を保護するために、DTTによる還元処理とIodoacetamideによるカルバミドメチル化処理を行なった。 メタノールクロロホルム沈殿法により、脱塩濃縮した。1.2M Urea、10mM Tris-HClに顕濁した後に、タンパク質重量の1/100量のTrypsinを加え37度で16時間酵素消化してペプチド試料を得た。
 得られた粗膜画分ペプチド試料 50μgに、500fmolの1315N標識ペプチドを加えてLC-MS/MSで測定した。測定後、MSスペクトル面積比(1315N標識ペプチド)を算出し、検量線を用いて定量値を算出した。
(検量線の作成)
 選定した定量対象ペプチドを用いて、検量線を作成した。1fmol、5fmol、10fmol、50fmol、100fmol、500fmol、1000fmolの非標識ペプチドにそれぞれ500fmolの1315N標識ペプチドを添加し、実施例1と同様にconventionalLC-MS/MSにより測定した、MSスペクトル面積比(非標識ペプチド/1315N標識ペプチド)を算出し、検量線を作成した。
 Ara-C代謝酵素定量結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
[比較例1]
 ヒトトランスポーターENT2(SLC29A2)の部分配列ペプチドである、定量対象ペプチド(非標識ペプチド:ENT2;VALTLDLDLEK(配列番号696))及び合成した安定同位体標識ペプチド[同位体標識ペプチド:ENT2;VALTLDLDL(1315N)EK(配列番号696)]を用いて次の条件でLC-MS/MS測定を行ったが、検出感度が低く、定量することができなかった。
 500fmolの非標識ペプチドにそれぞれ500fmolの1315N標識ペプチドを添加し、conventionalLC-MS/MSにより測定した。カラムは逆相C18 0.5mmI.D.×150mmを用い、移動相は0.1%ギ酸と0.1%ギ酸、アセトニトリルとし、60分間で0.1%ギ酸、アセトニトリル濃度が45%となるリニアグラジエントで分析を行った。質量分析計はアプライドバイオシステムのAPI5000を用いた。ペプチドは、定量対象ペプチドと標識ペプチドが同一時間に溶出されることを同定条件としたが、両者とも感度が低くピークとして確認することができなかった。
[比較例2]
 ヒトトランスポーターBGT1(SLC6A12)の部分配列ペプチドである、定量対象ペプチド(非標識ペプチド:BGT1;QELIAWEK(配列番号697))及び合成した安定同位体標識ペプチド[同位体標識ペプチド:BGT1;QELIA(1315N)WEK(配列番号697)]を用いて、次の条件でLC-MS/MS測定を行ったが、逆相カラムに保持されないため検出感度が低く、定量することができなかった。
 500fmolの非標識ペプチドにそれぞれ500fmolの1315N標識ペプチドを添加し、conventionalLC-MS/MSにより測定した。カラムは逆相C18 0.5mmI.D.×150mmを用い、移動相は0.1%ギ酸と0.1%ギ酸、アセトニトリルとし、60分間で0.1%ギ酸、アセトニトリル濃度が45%となるリニアグラジエントで分析を行った。質量分析計はアプライドバイオシステムのAPI5000を用いた。ペプチドは、定量対象ペプチドと標識ペプチドが同一時間に溶出されることを同定条件としたが、定量対象ペプチド、標識ペプチドともにピークは検出されなかった。

Claims (7)

  1. 質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチドであって、配列番号1~412のいずれかに示されるヒト代謝酵素タンパク質の部分アミノ酸配列からなるペプチド。
  2. 質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチドであって、配列番号413~695のいずれかに示されるマウス代謝酵素タンパク質の部分アミノ酸配列からなるペプチド。
  3. 質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチドであって、配列番号1~695のいずれかに示されるアミノ酸配列中の1又は2個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるペプチド。
  4. 請求項1~3のいずれかに記載のペプチドにおいて、ペプチドを構成するアミノ酸の1個以上が、15N,13C,18O,及びHのいずれか1以上を含むことを特徴とする安定同位体標識ペプチド。
  5. 請求項1~3のいずれかに記載のペプチド、及び、請求項4に記載の安定同位体標識ペプチドを備えた、代謝酵素群の一斉タンパク質定量用キット。
  6. 請求項1~3のいずれかに記載のペプチド、及び、請求項4に記載の安定同位体標識ペプチドを、代謝酵素群の一斉タンパク質定量用プローブとして使用する方法。
  7. 以下の工程(a)~(c)を備えた安定同位体標識ペプチドを用いた液体クロマトグラフ-タンデム質量分析装置(LC-MS/MS)による代謝酵素群の一斉タンパク質の定量法。
    (a)請求項1~3のいずれかに記載のペプチドと請求項4に記載の安定同位体標識ペプチドとを用いて、それぞれの所定濃度段階に対するLC-MS/MSを用いた質量分析を行い、検量線を作成する工程;
    (b)試料の被定量代謝酵素タンパク質をトリプシンにより断片化して得られるペプチド断片に、請求項4に記載の安定同位体標識ペプチドを添加してLC-MS/MSを用いた質量分析を行い、被定量代謝酵素タンパク質ペプチド/安定同位体標識ペプチドのマススペクトル面積比を算出する工程;
    (c)該面積比から検量線を用いて定量値を算出する工程;
     
PCT/JP2009/004948 2008-09-29 2009-09-28 質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチド WO2010035504A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/120,705 US20110177491A1 (en) 2008-09-29 2009-09-28 Peptide for use in simultaneous protein quantification of metabolizing enzymes using mass spectrometric analysis apparatus
EP09815923.9A EP2352021B1 (en) 2008-09-29 2009-09-28 Peptide for use in simultaneous protein quantification of metabolizing enzymes using mass spectrometric analysis apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008251212A JP5299956B2 (ja) 2008-09-29 2008-09-29 質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチド
JP2008-251212 2008-09-29

Publications (1)

Publication Number Publication Date
WO2010035504A1 true WO2010035504A1 (ja) 2010-04-01

Family

ID=42059515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004948 WO2010035504A1 (ja) 2008-09-29 2009-09-28 質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチド

Country Status (4)

Country Link
US (1) US20110177491A1 (ja)
EP (1) EP2352021B1 (ja)
JP (1) JP5299956B2 (ja)
WO (1) WO2010035504A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7989160B2 (en) 2006-02-13 2011-08-02 Alethia Biotherapeutics Inc. Polynucleotides and polypeptide sequences involved in the process of bone remodeling
US8168181B2 (en) 2006-02-13 2012-05-01 Alethia Biotherapeutics, Inc. Methods of impairing osteoclast differentiation using antibodies that bind siglec-15
US9493562B2 (en) 2012-07-19 2016-11-15 Alethia Biotherapeutics Inc. Anti-Siglec-15 antibodies
WO2017162801A1 (fr) 2016-03-23 2017-09-28 Anaquant Billes solubles pour la préparation de solutions
EP2735871B1 (en) * 2011-07-22 2017-12-06 Tohoku University Method for fabricating stable-isotope-labeled target peptide fragment in mass spectrometry
US9933416B1 (en) 2013-07-30 2018-04-03 Pioneer Hi-Bred International, Inc. Detection and quantification of polypeptides in plants without a reference standard by mass spectrometry
GB2559928A (en) * 2010-07-07 2018-08-22 Thermo Fisher Scient Gmbh Analyte mass spectrometry quantitation using a universal reporter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2777690C (en) * 2009-10-16 2019-05-21 Dh Technologies Development Pte. Ltd. Mass spectrometry quantitation of p450 protein isoforms in hepatocytes
JP2012197258A (ja) * 2011-03-23 2012-10-18 Tohoku Univ 個別化治療診断のためのマーカータンパク質絶対量の定量方法
WO2014037977A1 (ja) * 2012-09-05 2014-03-13 国立大学法人東北大学 個別化治療診断のためのマーカータンパク質絶対量の定量方法
CN103776891B (zh) * 2013-09-04 2017-03-29 中国科学院计算技术研究所 一种检测差异表达蛋白质的方法
WO2016183595A1 (en) * 2015-05-14 2016-11-17 Expression Pathology, Inc. Srm/mrm assay for the 6-o-methylguanine-dna methyltransferase (mgmt) protein
CN108957008B (zh) * 2018-08-07 2022-04-05 余鹏 检测大鼠cyp2e1酶的特征肽段及其筛选方法与应用
CN108956839A (zh) * 2018-08-07 2018-12-07 余鹏 基于特征肽段定量大鼠cyp2e1酶的检测方法及检测试剂盒
CN109444279A (zh) * 2018-11-06 2019-03-08 北京蛋白世界生物科技有限公司 一种15n代谢标记蛋白质结合质谱平行反应监测定量的方法
CN113866312B (zh) * 2021-09-29 2022-11-08 湖南师范大学 Pirin同源蛋白的特征肽及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028993A (ja) 2002-03-14 2004-01-29 Warner Lambert Co Llc 水素/重水素交換を用いる代謝物のキャラクタリゼーション・システムおよび方法
JP2004077276A (ja) 2002-08-19 2004-03-11 Shimadzu Corp Lc−ms分析方法及びその移動相
JP2004533610A (ja) 2001-05-08 2004-11-04 パーセプティブ バイオシステムズ,インコーポレーテッド タンパク質サンプルを分析するためのプロセス
WO2007055116A1 (ja) 2005-11-08 2007-05-18 Tohoku University 質量分析計を使った膜タンパク質の定量方法
JP2007538262A (ja) * 2004-05-19 2007-12-27 アプレラ コーポレイション 質量分析を使用する発現の定量化

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501286B2 (en) * 2002-08-14 2009-03-10 President And Fellows Of Harvard College Absolute quantification of proteins and modified forms thereof by multistage mass spectrometry
US20070054345A1 (en) * 2004-05-19 2007-03-08 Hunter Christie L Expression quantification using mass spectrometry
US20070092926A1 (en) * 2005-10-14 2007-04-26 Alterman Michail A Analysis of protein isoforms using unique tryptic peptides by mass spectrometry and immunochemistry
US20090215098A1 (en) * 2006-04-28 2009-08-27 Ucl Business Plc. Quantification of enzyme activity by mass spectrometry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533610A (ja) 2001-05-08 2004-11-04 パーセプティブ バイオシステムズ,インコーポレーテッド タンパク質サンプルを分析するためのプロセス
JP2004028993A (ja) 2002-03-14 2004-01-29 Warner Lambert Co Llc 水素/重水素交換を用いる代謝物のキャラクタリゼーション・システムおよび方法
JP2004077276A (ja) 2002-08-19 2004-03-11 Shimadzu Corp Lc−ms分析方法及びその移動相
JP2007538262A (ja) * 2004-05-19 2007-12-27 アプレラ コーポレイション 質量分析を使用する発現の定量化
WO2007055116A1 (ja) 2005-11-08 2007-05-18 Tohoku University 質量分析計を使った膜タンパク質の定量方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AMBLARD M, FEHRENTZ JA, MARTINEZ J, SUBRA G., METHODS MOL BIOL., vol. 298, 2005, pages 3 - 24
FAGEN ZHANG ET AL.: "Quantitation of human glutathione S-transferases in complex matrices by liquid chromatography/tandem mass spectrometry with signature peptides", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 18, no. ISS.4, 2004, pages 491 - 498, XP002360988 *
See also references of EP2352021A4
XIAOTAO DUAN ET AL.: "Precolumn derivatization of cysteine residues for quantitative analysis of five major cytochrome P450 isoenzymes by liquid chromatography/tandem mass spectrometry", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 21, no. ISS.20, 2007, pages 3234 - 3244, XP008144332 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067984B2 (en) 2006-02-13 2015-06-30 Alethia Biotherapeutics Inc. Methods of impairing osteoclast differentiation using antibodies that bind Siglec-15
US8168181B2 (en) 2006-02-13 2012-05-01 Alethia Biotherapeutics, Inc. Methods of impairing osteoclast differentiation using antibodies that bind siglec-15
US8431126B2 (en) 2006-02-13 2013-04-30 Alethia Biotherapeutics Inc. Antibodies that bind polypeptides involved in the process of bone remodeling
US8540988B2 (en) 2006-02-13 2013-09-24 Alethia Biotherapeutics Inc. Antibodies that bind polypeptides involved in the process of bone remodeling
US9695419B2 (en) 2006-02-13 2017-07-04 Daiichi Sankyo Company, Limited Polynucleotides and polypeptide sequences involved in the process of bone remodeling
US7989160B2 (en) 2006-02-13 2011-08-02 Alethia Biotherapeutics Inc. Polynucleotides and polypeptide sequences involved in the process of bone remodeling
US9040246B2 (en) 2006-02-13 2015-05-26 Alethia Biotherapeutics Inc. Methods of making antibodies that bind polypeptides involved in the process of bone remodeling
US9617337B2 (en) 2009-10-06 2017-04-11 Daiichi Sankyo Company, Limited Siglec-15 antibodies in treating bone loss-related disease
US9388242B2 (en) 2009-10-06 2016-07-12 Alethia Biotherapeutics Inc. Nucleic acids encoding anti-Siglec-15 antibodies
USRE47672E1 (en) 2009-10-06 2019-10-29 Daiichi Sankyo Company, Limited Methods of impairing osteoclast differentiation using antibodies that bind siglec-15
US8900579B2 (en) 2009-10-06 2014-12-02 Alethia Biotherapuetics Inc. Siglec-15 antibodies in treating bone loss-related disease
US8741289B2 (en) 2009-10-06 2014-06-03 Alethia Biotherapeutics Inc. Siglec 15 antibodies in treating bone loss-related disease
GB2559928B (en) * 2010-07-07 2019-01-30 Thermo Fisher Scient Gmbh Analyte mass spectrometry quantitation using a universal reporter
GB2559928A (en) * 2010-07-07 2018-08-22 Thermo Fisher Scient Gmbh Analyte mass spectrometry quantitation using a universal reporter
GB2494567B (en) * 2010-07-07 2018-11-21 Thermo Fisher Scient Gmbh Analyte mass spectrometry quantitation using a universal reporter
EP2735871B1 (en) * 2011-07-22 2017-12-06 Tohoku University Method for fabricating stable-isotope-labeled target peptide fragment in mass spectrometry
US9493562B2 (en) 2012-07-19 2016-11-15 Alethia Biotherapeutics Inc. Anti-Siglec-15 antibodies
US9933416B1 (en) 2013-07-30 2018-04-03 Pioneer Hi-Bred International, Inc. Detection and quantification of polypeptides in plants without a reference standard by mass spectrometry
US11249072B2 (en) 2013-07-30 2022-02-15 Pioneer Hi-Bred International, Inc. Detection and quantification of polypeptides in plants without a reference standard by mass spectrometry
WO2017162801A1 (fr) 2016-03-23 2017-09-28 Anaquant Billes solubles pour la préparation de solutions
US11237084B2 (en) 2016-03-23 2022-02-01 Anaquant Soluble balls for preparing solutions

Also Published As

Publication number Publication date
EP2352021A4 (en) 2012-03-28
EP2352021B1 (en) 2016-05-04
US20110177491A1 (en) 2011-07-21
JP5299956B2 (ja) 2013-09-25
EP2352021A1 (en) 2011-08-03
JP2010085103A (ja) 2010-04-15

Similar Documents

Publication Publication Date Title
JP5299956B2 (ja) 質量分析装置を用いた代謝酵素群の一斉タンパク質定量に用いるペプチド
Rozanova et al. Quantitative mass spectrometry-based proteomics: an overview
Arul et al. Sample multiplexing strategies in quantitative proteomics
Bhatt et al. Critical issues and optimized practices in quantification of protein abundance level to determine interindividual variability in DMET proteins by LC‐MS/MS proteomics
Schulze et al. Quantitation in mass-spectrometry-based proteomics
Frost et al. 21-plex DiLeu isobaric tags for high-throughput quantitative proteomics
Zang et al. Proteomic analysis of ductal carcinoma of the breast using laser capture microdissection, LC− MS, and 16O/18O isotopic labeling
Deracinois et al. Comparative and quantitative global proteomics approaches: an overview
Neubert et al. Label-free detection of differential protein expression by LC/MALDI mass spectrometry
Everley et al. Increasing throughput in targeted proteomics assays: 54-plex quantitation in a single mass spectrometry run
JP2005534906A (ja) 質量分析法を使用した、プロテオームまたはオルガネオームの分子フラックス速度の自動化大規模測定
JP2009509517A (ja) 肝細胞癌の分子マーカーおよびそれらの利用
Van der Hauwaert et al. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models
Wegler et al. Drug disposition protein quantification in matched human jejunum and liver from donors with obesity
Zhang et al. Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture
Taylor et al. Accelerating the drug optimization process: identification, structure elucidation, and quantification of in vivo metabolites using stable isotopes with LC/MS n and the chemiluminescent nitrogen detector
Liu et al. A quasi-direct LC-MS/MS-based targeted proteomics approach for miRNA quantification via a covalently immobilized DNA-peptide probe
Xu et al. Large-scale proteome quantification of hepatocellular carcinoma tissues by a three-dimensional liquid chromatography strategy integrated with sample preparation
Wenzel et al. Mass spectrometry-based targeted proteomics method for the quantification of clinically relevant drug metabolizing enzymes in human specimens
Bowser et al. Enhanced multiplexing technology for proteomics
Isenegger et al. Posttranslational, site-directed photochemical fluorine editing of protein sidechains to probe residue oxidation state via 19F-nuclear magnetic resonance
Ai et al. Standard-Free Absolute Quantitation of Antibody Deamidation Degradation and Host Cell Proteins by Coulometric Mass Spectrometry
JP5137168B2 (ja) 安定同位体標識脂肪族アミノ酸、その標的蛋白質への組み込み方法並びに蛋白質のnmr構造解析方法
Korfmacher Advances in the integration of drug metabolism into the lead optimization paradigm
Pelkonen et al. From known knowns to known unknowns: predicting in vivo drug metabolites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815923

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009815923

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13120705

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE