WO2010032756A1 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
WO2010032756A1
WO2010032756A1 PCT/JP2009/066174 JP2009066174W WO2010032756A1 WO 2010032756 A1 WO2010032756 A1 WO 2010032756A1 JP 2009066174 W JP2009066174 W JP 2009066174W WO 2010032756 A1 WO2010032756 A1 WO 2010032756A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
optical
modulator
waveguides
optical modulator
Prior art date
Application number
PCT/JP2009/066174
Other languages
English (en)
French (fr)
Inventor
薫 日隈
潤一郎 市川
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Priority to US12/998,071 priority Critical patent/US20110164844A1/en
Priority to CN2009801367655A priority patent/CN102159985A/zh
Publication of WO2010032756A1 publication Critical patent/WO2010032756A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5053Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2255Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure controlled by a high-frequency electromagnetic component in an electric waveguide structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5563Digital frequency modulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Definitions

  • the present invention relates to an optical modulator, and more particularly to an optical modulator that generates a multi-level phase modulation signal such as a DQPSK modulator or an FSK modulator.
  • DQPSK differential quadrature phase shift keying
  • the DQPSK modulator is used for generating an I (In-phase) signal and a Q (Quadrature) signal integrated on the optical paths of two branch waveguides of a Mach-Zehnder (MZ) interferometer, respectively. It comprises an MZ modulator for generation and a ⁇ / 2 phase shifter for making the phases of both optical signals orthogonal.
  • MZ Mach-Zehnder
  • each sub Mach zender (Sub MZ) type waveguides are provided, and a DC bias and an RF signal are applied to each sub MZ type waveguide, and a signal corresponding to modulation data is applied to the main MZ type waveguide.
  • an SSB (Single-Side Side-Band) modulator using an optical modulator that incorporates a sub-MZ waveguide in the branching waveguide of the main MZ waveguide is also provided.
  • a QAM (QuadraturerAmplitude Modulation) modulator or the like has also been proposed.
  • the wavelength variation of the light wave incident on the two branch waveguides of the MZ type interferometer the pattern error of the optical waveguide serving as the MZ type interferometer, the individual difference of the modulation signal amplifier, etc. Due to such secondary factors, an intensity difference occurs between the I signal component and the Q signal component, and high-performance DQPSK modulation cannot be performed.
  • Patent Document 2 it is applied to an electrode of an optical modulator having a light intensity correction mechanism provided in each arm (branch waveguide) of a main MZ type waveguide or a sub MZ type waveguide.
  • a modulation method for improving the extinction ratio by adjusting the bias voltage is disclosed.
  • an optimum bias voltage can be obtained by correcting the imbalance between the arms of the main MZ type waveguide using the sub MZ type waveguide.
  • the bias voltage could not be adjusted by the method described in Patent Document 2. That is, in the case of the DQPSK modulator, the sub-MZ waveguide interferometer is for applying a data signal, and thus cannot be used for balance adjustment. In the case of an FSK modulator, since a sine wave is applied to an interferometer of a sub-MZ waveguide in order to generate two frequency keys, it is difficult to use it in order to eliminate imbalance itself as in DQPSK. It is.
  • the problem to be solved by the present invention is to solve the above-described problems, and in an optical modulator that generates a multi-level phase modulation signal, such as a DQPSK modulator or an FSK modulator, an optical modulator with high signal quality is provided. It is possible to provide.
  • a high-performance optical modulator that can suppress deterioration of modulation characteristics due to signal component intensity differences caused by variations in the manufacture of optical modulators and improve characteristics without having complicated manufacturing processes. Is to provide.
  • the optical waveguide includes a main Mach-Zehnder type waveguide having two branch waveguides and a sub-Mach-Zehnder type waveguide provided in the branch waveguide. Is a voltage for adjusting the voltage applied to the light intensity adjusting means by providing a light intensity adjusting means in series with the sub-Mach-Zehnder type waveguide, monitoring a part of the light wave propagating through the branching waveguide.
  • a control circuit is provided.
  • the invention according to claim 2 is characterized in that, in the optical modulator according to claim 1, the light intensity adjusting means comprises an intensity modulator having a Mach-Zehnder type waveguide.
  • the optical modulator in the invention according to claim 3, is used as one of an SSB modulator, a DQPSK modulator, an FSK modulator, and a QAM modulator. It is characterized by.
  • an optical modulator comprising a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a control electrode for controlling a light wave propagating through the optical waveguide
  • the optical waveguide includes a main Mach-Zehnder (MZ) type waveguide having two branching waveguides and a sub-Mach-Zehnder (MZ) type waveguide provided in the branching waveguide.
  • MZ Mach-Zehnder
  • a voltage control for adjusting the voltage applied to the light intensity adjusting means by providing a light intensity adjusting means in series with the sub-Mach-Zehnder type waveguide, monitoring a part of the light wave propagating through the branching waveguide; Since the circuit is provided, it is possible to optimally adjust the intensity of the light wave propagating through each branch waveguide of the main MZ type waveguide, to suppress the deterioration of the modulation characteristic due to the difference in the intensity of the signal component, and to provide a high-performance optical modulator Can The ability.
  • the light intensity adjusting means is provided in each of the two branch waveguides constituting the main MZ type waveguide, it becomes possible to adjust the light intensity with respect to the light wave propagating through any of the branch waveguides. It becomes possible to provide an optical modulator having more excellent modulation characteristics.
  • the optical modulator since it has a voltage control circuit that monitors a part of the light wave propagating through the branching waveguide and adjusts the voltage applied to the light intensity adjusting means, it always has the appropriate light intensity according to the operating condition of the optical modulator. Adjustment can be realized and a high-performance optical modulator can be provided.
  • the light intensity adjusting means is composed of an intensity modulator having a Mach-Zehnder type waveguide, for example, in the manufacturing process of the optical waveguide and the control electrode constituting the optical modulator, It is also possible to form intensity modulation means and incorporate it in advance in the optical modulator.
  • the optical modulator is used as one of an SSB modulator, a DQPSK modulator, an FSK modulator, or a QAM modulator, in particular, two branches constituting the main MZ type waveguide Compared to SSB modulators, DQPSK modulators, FSK modulators, or QAM modulators, which are optical modulators in which the intensity difference of light waves propagating in the waveguide affects the quality of the modulation characteristics of the optical modulator An optical modulator can be realized.
  • FIG. 1 is a schematic diagram illustrating an example of a DQPSK modulator, particularly an optical modulator according to the present invention.
  • FIG. It is the schematic which shows the mode at the time of comprising the optical modulator of FIG. 1 with a Z cut type
  • 1 is a schematic diagram showing an example of an SSB modulator, particularly an optical modulator according to the present invention.
  • FIG. FIG. 2 is a schematic diagram showing an example of an FSK modulator, particularly an optical modulator according to the present invention.
  • FIG. 3 is a schematic diagram showing an example in which a voltage control circuit for the light intensity adjusting means is provided in the optical modulator according to the present invention. It is a figure explaining the example of a monitoring means.
  • the present invention relates to an optical modulator 1 having a substrate 4 having an electro-optic effect, an optical waveguide 5 formed on the substrate, and control electrodes 61 to 65 for controlling light waves propagating through the optical waveguide.
  • the optical waveguide 5 includes a main Mach-Zehnder (MZ) type waveguide 50 having two branch waveguides and sub-Mach-Zehnder (MZ) type waveguides 51 and 52 provided in the branch waveguide.
  • MZ Mach-Zehnder
  • MZ sub-Mach-Zehnder
  • the substrate 4 having an electro-optic effect for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and the like can be used.
  • the optical waveguide 5 can be formed by diffusing Ti or the like on the substrate surface by a thermal diffusion method or a proton exchange method.
  • the control electrodes can be formed by modulation electrodes 61 to 65, ground electrodes (not shown), etc. by forming a Ti / Au electrode pattern, a gold plating method, or the like.
  • a buffer layer such as dielectric SiO 2 can be provided on the surface of the substrate after forming the optical waveguide to suppress absorption and scattering of light waves by the electrodes formed on the upper side of the optical waveguide as shown in FIG. It is.
  • FIG. 1 shows an example of a DQPSK modulator.
  • sub MZ type waveguides 51 and 52 are formed in two branching waveguides constituting the main MZ type waveguide 50.
  • a modulation signal for generating a Q (Quadrature) signal is applied to the control electrode (ground electrode is not shown) 61 and configured by the sub-MZ type waveguide 52.
  • a modulation signal for generating an I (In-phase) signal is applied to the control electrode 62.
  • a DC bias that is ⁇ / 2 phase shifted by the control electrode 65 is applied to the main MZ type waveguide 50.
  • the optical modulator 1 is connected to an input optical fiber 2 for introducing a light wave and an output optical fiber 3 for deriving the light wave.
  • the light wave introduced into the main MZ type waveguide 50 is branched into two branch waveguides and propagates.
  • the intensity of the light wave propagating through each branching waveguide varies due to fluctuations in the wavelength of the lightwave, imbalance in the pattern shape of the optical waveguide, and the like. Further, due to factors such as variations in the relative positional relationship between the sub-MZ type waveguides 51 and 52 and the control electrodes 61 and 62 and the intensity difference of the modulation signal applied to the control electrodes, the light wave having the I signal component and the Q wave An intensity difference occurs between light waves having signal components.
  • the light intensity adjusting means is arranged in the branching waveguide constituting the main MZ type waveguide.
  • the light intensity adjusting means various optical attenuators or optical amplifiers can be used.
  • the main MZ type waveguide and the sub MZ type waveguide can be used due to the suppression of the number of parts, the simplicity of the manufacturing process and the ease of adjustment.
  • the intensity modulator has Mach-Zehnder type waveguides 53 and 54 as shown in FIG.
  • the control electrodes 63 and 64 used for the light intensity adjusting means are preferably formed in the same manner as the control electrodes 61, 62 and 65 used for DQPSK modulation.
  • the light intensity adjusting means is provided in both of the two branch waveguides constituting the main MZ type waveguide, the intensity of the light wave propagating through each branch waveguide can be adjusted with higher accuracy.
  • the light intensity adjusting means is arranged in series before or after the sub-MZ waveguide.
  • the DC bias is applied to the control electrodes 63 and 64 constituting the light intensity adjusting means.
  • a part of the light wave propagating through the branch waveguide constituting the main MZ type waveguide is monitored, and the extinction of the monitored light wave is performed.
  • the light wave to be monitored in the present invention is not only the light wave propagating through the branching waveguide itself, but also the radiation emitted from the combining point of the light intensity adjusting means composed of the sub-MZ type waveguide or MZ type interferometer. It is possible to observe mode light.
  • Reference numerals 70 and 71 in FIG. 6 indicate monitor means, and reference numerals 80 and 81 indicate detection signals output from the monitor means 70 and 71, respectively.
  • an auxiliary waveguide 72 close to the branch waveguide of the main MZ type waveguide 50 is formed, and a part of the signal light a is used for detection.
  • an oblique cut 74 is formed in a part of the branching waveguide, a part of the signal light a is reflected above the substrate 4, and the reflected light c is received by the light receiving element 75.
  • a detection method can also be used.
  • the optical modulator of the present invention has a plurality of MZ type waveguides as well as the main MZ type waveguide, a wide variety of light waves including radiation mode light propagate in the substrate 4. For this reason, in order to detect the focused light wave more reliably, it is preferable to directly monitor a part of the focused light wave using an auxiliary waveguide, a reflecting means, a light refractive index film, or the like as shown in FIG. .
  • the modulation signal applied to the control electrode of the sub-MZ waveguide is not applied with, for example, the modulation signal related to the Q signal or the I signal. Or, it is set to a modulation state where the light intensity of the light wave propagating through each branching waveguide is the same, such as a state where the same modulation signal is applied to each sub-MZ type waveguide, and each monitored signal output is the same.
  • a method for setting and adjusting the DC bias voltage of each light intensity modulation means is a method for setting and adjusting the DC bias voltage of each light intensity modulation means.
  • each light intensity adjusting means so that the intensity is the same.
  • a light intensity adjusting means is disposed in front of the sub MZ type waveguide, and the sub MZ type is influenced by the light intensity adjusting means, for example, output light or radiation mode light of the light intensity modulating means. It is also possible to monitor light waves that are not affected by the modulation associated with the waveguide. In this case, the light intensity of the light wave propagating through the branch waveguide of the main MZ type waveguide can be set optimally regardless of the modulation state of the sub MZ type waveguide.
  • FIG. 2 is an example of an optical modulator using a Z-cut substrate, and a light wave propagating through a sub-MZ waveguide is a control electrode formed on the upper side of a branching waveguide constituting the sub-MZ waveguide. Modulated by modulation electrodes 61a and 61b. The same applies to the sub-MZ type waveguide 52, and furthermore, control electrodes (modulation electrodes) 65a and 65b that modulate light waves propagating through the main MZ type waveguide are similarly formed on the upper side of each branching waveguide. Yes.
  • Mach-Zehnder type waveguides 53 and 54 are used as the light intensity modulation means, and control electrodes 63a and 63b and 64a and 64b are arranged in each branching waveguide of each Mach-Zehnder type waveguide.
  • FIG. 3 shows an example using an X-cut substrate, and basically, control electrodes (modulation electrodes) 61 to 65 are used as in the example shown in FIG.
  • FIG. 4 shows a case where the optical modulator is used as an SSB modulator (SSB-SC modulation).
  • the interferometer having the sub-MZ type waveguide 51 has a modulation signal “ ⁇ sin2 ⁇ ft + DC” ( ⁇ is a modulation signal). Amplitude voltage, f is a modulation frequency, and DC is a predetermined bias voltage.) Is applied, and a modulation signal “ ⁇ cos2 ⁇ ft + DC” is applied to an interferometer having a sub-MZ waveguide 52.
  • a DC bias voltage corresponding to V ⁇ / 2 is applied to the control electrode 65 in the main MZ type waveguide.
  • the SSB modulator of FIG. 4 is also provided with light intensity adjusting means composed of optical waveguides 53 and 54 and control electrodes 63 and 64, as in FIG.
  • FIG. 5 is an example of an FSK modulator, except that the modulation signal applied to the control electrode 65 provided for the main MZ type waveguide is a modulation data signal with ⁇ V ⁇ / 2.
  • the configuration is basically the same as that of the SSB modulator of FIG.
  • the optical modulator according to the present invention is an optical modulator in which the intensity difference between the light waves propagating through the two branch waveguides constituting the main MZ type waveguide affects the quality of the modulation characteristics of the optical modulator.
  • the present invention is preferably applied to an SSB modulator, a DQPSK modulator, or an FSK modulator, and further to a QAM modulator. Can be realized.
  • an optical modulator with high signal quality in an optical modulator that generates a multi-level phase modulation signal, such as a DQPSK modulator or an FSK modulator.
  • a high-performance optical modulator that can suppress the deterioration of modulation characteristics due to differences in the intensity of signal components caused by variations in the manufacturing of optical modulators and improve the characteristics without complicated manufacturing processes can do.
  • SYMBOLS 1 Optical modulator 2, 3 Optical fiber 4 Substrate 5 Optical waveguide 10, 11 DC bias voltage 50 Main Mach-Zehnder type waveguides 51, 52 Sub-Mach-Zehnder type waveguides 53, 54 Mach-Zehnder type waveguides 61-65 Control electrode 70, 71 Monitor means 72 Auxiliary waveguide 73, 75 Light receiving element 74 Reflecting means 80-83 Detection signal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 DQPSK変調器やFSK変調器などの多レベルの位相変調信号を生成する光変調器において、信号品質の高い光変調器を提供することを可能とすること、特に、光変調器の製造のバラツキなどによって起こる信号成分の強度差による変調特性の劣化を抑制し、複雑な製造工程を有することなく特性を向上すること可能な、高性能な光変調器を提供することを目的とする。  電気光学効果を有する基板4と、該基板上に形成された光導波路5と、該光導波路を伝搬する光波を制御するための制御電極61~65とを有する光変調器1において、該光導波路5は、2つの分岐導波路を有するメイン・マッハツェンダー(MZ)型導波路50と、該分岐導波路に設けられるサブ・マッハツェンダー(MZ)型導波路51,52から構成され、各分岐導波路には、該サブ・マッハツェンダー型導波路51,52に直列状態で光強度調整手段(例えば、光導波路53,54及び制御電極63,64で構成)を設け、該分岐導波路を伝搬する光波の一部をモニタして、該光強度調整手段に印加する電圧を調整する電圧制御回路を備えることを特徴とする。

Description

光変調器
 本発明は、光変調器に関し、特に、DQPSK変調器やFSK変調器などの多レベルの位相変調信号を生成する光変調器に関する。
 通信トラフィックの増大に伴い、高速・大容量化が求められる次世代長距離大容量光通信システムでは、多値変復調符号化技術の導入が検討されている。その代表的なものの一つに差動四相位相偏移変調(DQPSK,Differential Quadrature Phase Shift keying)方式がある。この方式では、従来の2値強度変調(OOK)方式と比べ、信号帯域が狭く、周波数利用効率の向上や伝送距離の拡大が実現できるほか、高感度化も期待できる。
 DQPSK変調器は、特許文献1記載のように、マッハツェンダー(MZ)型干渉計の二つの分岐導波路の光路上にそれぞれ集積されたI(In-phase)信号生成用とQ(Quadrature)信号生成用のMZ変調器と、両光信号の位相を直交させるためのπ/2位相シフタで構成されている。
米国特許7116460号明細書 特開2006-242975号公報
Masataka Nakazawa, Jumpei Hongo, Keisuke Kasai, Masato Yoshida; Res. Inst.of Electrical Communication, Tohoku Univ., Japan." Polarization-Multiplexed 1 Gsymbol/s, 64 QAM (12 Gbit/s) Coherent Optical Transmission over 150 km with an Optical Bandwidth of 2 GHz", OFC07 PDP26
 また、周波数変調を利用する周波数シフトキーイング(FSK)変調方式では、特許文献2に示すように、メインマッハツェンダー(メインMZ)型導波路を構成する2つの分岐導波路に、各サブマッハツェンダー(サブMZ)型導波路を設け、各サブMZ型導波路には、直流バイアスとRF信号が印加され、メインMZ型導波路には変調データに応じた信号が印加される。
 さらに、メインMZ型導波路の分岐導波路にサブMZ型導波路を組み込む光変調器を利用してSSB(Single Side-Band)変調器なども提供されている。また、非特許文献1に開示されているように、QAM(Quadrature Amplitude Modulation)変調器なども提案されている。
 しかしながら、DQPSK変調器の場合には、MZ型干渉計の二つの分岐導波路に入射する光波の波長変動や、MZ型干渉計となる光導波路のパターンエラー、あるいは変調信号の増幅器の個体差などの二次的な要因等によって、I信号成分とQ信号成分の間に強度差が生じ、高性能なDQPSK変調を行うことができなかった。
 また、FSK変調では、メインMZ型導波路の分岐導波路間の形状がアンバランスとなると、出射される光スペクトル中に不要な周波数成分が残り、信号品質が劣化するという問題を生じる。
 このような問題に鑑み、特許文献2においては、メインMZ型導波路やサブMZ型導波路の各アーム(分岐導波路)に設けられた光強度補正機構を有する光変調器の電極に印加するバイアス電圧を調整することにより、消光比を向上させるための変調方法が開示されている。特に、サブMZ型導波路を利用してメインMZ型導波路のアーム間のアンバランスを補正することにより、最適なバイアス電圧を得ることができるようにしたものである。
 しかしDQPSK変調器およびFSK変調器においては、特許文献2のような方法でバイアス電圧を調整することはできなかった。つまり、DQPSK変調器の場合、サブMZ型導波路の干渉計はデータ信号を印加するためのものであるので、バランス調整に使えるわけではない。また、FSK変調器の場合、2つの周波数キーを発生させるために、サブMZ型導波路の干渉計に正弦波を印加するため、DQPSK同様、アンバランス自体を解消するために利用することは困難である。
 本発明が解決しようとする課題は、上述したような問題を解決し、DQPSK変調器やFSK変調器などの多レベルの位相変調信号を生成する光変調器において、信号品質の高い光変調器を提供することを可能とすることである。特に、光変調器の製造のバラツキなどによって起こる信号成分の強度差による変調特性の劣化を抑制し、複雑な製造工程を有することなく特性を向上することが可能な、高性能な光変調器を提供することである。
 上記課題を解決するため、請求項1に係る発明では、電気光学効果を有する基板と、該基板上に形成された光導波路と、該光導波路を伝搬する光波を制御するための制御電極とを有する光変調器において、該光導波路は、2つの分岐導波路を有するメイン・マッハツェンダー型導波路と、該分岐導波路に設けられるサブ・マッハツェンダー型導波路から構成され、各分岐導波路には、該サブ・マッハツェンダー型導波路に直列状態で光強度調整手段を設け、該分岐導波路を伝搬する光波の一部をモニタして、該光強度調整手段に印加する電圧を調整する電圧制御回路を備えることを特徴とする。
 請求項2に係る発明では、請求項1に記載の光変調器において、該光強度調整手段は、マッハツェンダー型導波路を有する強度変調器で構成されることを特徴とする。
 請求項3に係る発明では、請求項1又は2に記載の光変調器において、該光変調器がSSB変調器、DQPSK変調器、FSK変調器、又はQAM変調器のいずれかとして利用されることを特徴とする。
 請求項1に係る発明により、電気光学効果を有する基板と、該基板上に形成された光導波路と、該光導波路を伝搬する光波を制御するための制御電極とを有する光変調器において、該光導波路は、2つの分岐導波路を有するメイン・マッハツェンダー(MZ)型導波路と、該分岐導波路に設けられるサブ・マッハツェンダー(MZ)型導波路から構成され、各分岐導波路には、該サブ・マッハツェンダー型導波路に直列状態で光強度調整手段を設け、該分岐導波路を伝搬する光波の一部をモニタして、該光強度調整手段に印加する電圧を調整する電圧制御回路を備えるため、メインMZ型導波路の各分岐導波路を伝搬する光波の強度を最適に調整でき、信号成分の強度差による変調特性の劣化を抑制し、高性能な光変調器を提供することが可能となる。
 しかも、光強度調整手段は、メインMZ型導波路を構成する2つの分岐導波路の各々に設けられるため、いずれの分岐導波路を伝搬する光波に対しても光強度を調整することが可能となり、より優れた変調特性を有する光変調器を提供することが可能となる。
 さらに、分岐導波路を伝搬する光波の一部をモニタして、光強度調整手段に印加する電圧を調整する電圧制御回路を備えるため、光変調器の動作状況に応じて、常に適正な光強度調整が実現でき、高性能な光変調器を提供することが可能となる。
 請求項2に係る発明により、光強度調整手段は、マッハツェンダー型導波路を有する強度変調器で構成されるため、例えば、光変調器を構成する光導波路や制御電極の製造工程で、同時に光強度変調手段を形成し、光変調器に予め組み込むことも可能となる。
 請求項3に係る発明により、光変調器がSSB変調器、DQPSK変調器、FSK変調器、又はQAM変調器のいずれかとして利用されるため、特に、メインMZ型導波路を構成する2つの分岐導波路を伝搬する光波の強度差が光変調器の変調特性の品質に影響を与える光変調器である、SSB変調器、DQPSK変調器、FSK変調器、又はQAM変調器に対し、高性能な光変調器を実現することが可能となる。
本発明に係る光変調器で、特に、DQPSK変調器の例を示す概略図である。 図1の光変調器をZカット型基板で構成した場合の様子を示す概略図である。 図1の光変調器をXカット型基板で構成した場合の様子を示す概略図である。 本発明に係る光変調器で、特に、SSB変調器の例を示す概略図である。 本発明に係る光変調器で、特に、FSK変調器の例を示す概略図である。 本発明に係る光変調器で、特に、光強度調整手段に対する電圧制御回路を設けた例を示す概略図である。 モニタ手段の例を説明する図である。
 以下、図1乃至5に示すような、本発明を好適例を用いて詳細に説明する。
 本発明は、電気光学効果を有する基板4と、該基板上に形成された光導波路5と、該光導波路を伝搬する光波を制御するための制御電極61~65とを有する光変調器1において、該光導波路5は、2つの分岐導波路を有するメイン・マッハツェンダー(MZ)型導波路50と、該分岐導波路に設けられるサブ・マッハツェンダー(MZ)型導波路51,52から構成され、各分岐導波路には、該サブMZ型導波路51,52に直列状態で光強度調整手段(例えば、光導波路53,54及び制御電極63,64で構成)を設けることを特徴とする。
 電気光学効果を有する基板4としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料などが利用することが可能である。光導波路5は、Tiなどを熱拡散法やプロトン交換法などで基板表面に拡散させることにより形成することができる。さらに、制御電極は、変調電極61~65や接地電極(不図示)などは、Ti・Auの電極パターンの形成及び金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設け、図2のように光導波路の上側に形成した電極による光波の吸収や散乱を抑制することも可能である。
 図1は、DQPSK変調器の例を示したものであり、光導波路5は、メインMZ型導波路50を構成する2つの分岐導波路に、サブMZ型導波路51,52を形成している。サブMZ型導波路51で構成される干渉計には、Q(Quadrature)信号生成用の変調信号が制御電極(接地電極は不図示)61に印加され、サブMZ型導波路52で構成される干渉計には、I(In-phase)信号生成用の変調信号が制御電極62に印加されている。さらに、メインMZ型導波路50には、制御電極65によりπ/2位相シフトさせるDCバイアスが印加されている。
 光変調器1には、光波を導入するための入力用光ファイバー2と、光波を導出するための出力用光ファイバー3が接続されている。
 メインMZ型導波路50に導入された光波は、2つの分岐導波路に分岐され伝搬する。この分岐の際に、光波の波長変動や、光導波路のパターン形状のアンバランスなどにより、各分岐導波路を伝搬する光波の強度にバラツキが生じる。また、サブMZ型導波路51,52と制御電極61,62との相対的位置関係のバラツキや、制御電極に印加される変調信号の強度差などの要因によって、I信号成分を有する光波とQ信号成分を有する光波の間に強度差が生じる。
 これらの強度差を調整するため、本発明に係る光変調器では、メインMZ型導波路を構成する分岐導波路に光強度調整手段を配置している。
 光強度調整手段としては、各種の光減衰器又は光増幅器が利用可能であるが、部品点数の抑制、製造工程の簡便性並びに調整の容易性などにより、メインMZ型導波路やサブMZ型導波路などと同様に、図1に示すようなマッハツェンダー型導波路53,54を有する強度変調器で構成することが好ましい。当然、光強度調整手段に利用する制御電極63,64についても、DQPSK変調で利用される制御電極61,62及び65と同様に形成することが好ましい。
 また、光強度調整手段は、メインMZ型導波路を構成する2つの分岐導波路の両方に設ける方が、各分岐導波路を伝搬する光波をより精度良く強度調整することが可能となる。光強度調整手段は、サブMZ型導波路の前又は後に直列状態で配置される。
 光強度調整手段を構成する制御電極63,64には、DCバイアスが印加される。図6に示すように、このDCバイアス電圧の値をより適正な値とするため、メインMZ型導波路を構成する分岐導波路を伝搬する光波の一部をモニタし、該モニタする光波の消光比や光強度等が最適な値となるように、DCバイアス電圧10,11を制御する電圧制御回路9を設けることが好ましい。本発明においてモニタする対象の光波としては、分岐導波路自体を伝搬する光波だけでなく、サブMZ型導波路又はMZ型干渉計で構成された光強度調整手段の合波点から放出される放射モード光を観測することが可能である。図6の符号70,71はモニタ手段を、符号80,81は、各モニタ手段70,71から出力される検出信号を示す。
 出力光をモニタする方法としては、図7(a)に示すように、メインMZ型導波路50の分岐導波路に近接する補助導波路72を形成し、信号光aの一部を検出用に導波路71に案内させ、検出光bを基板4外に配置された受光素子73に導入する方法がある。また、図7(b)のように、分岐導波路の一部に斜めの切り込み74を形成し、信号光aの一部を基板4の上方に反射させ、該反射光cを受光素子75で検出する方法なども、利用可能である。本発明の光変調器のようにメインMZ型導波路だけでなく複数のMZ型導波路を有する場合には、基板4内に放射モード光を含む多種多様な光波が伝搬している。このため、着目する光波をより確実に検出するには、図7に示すような補助導波路や反射手段又は光屈折率膜などを利用して着目する光波の一部を直接モニタすることが好ましい。
 電圧制御回路9における光強度変調手段を制御する方法としては、サブMZ型導波路の制御電極に印加される変調信号が、例えば、Q信号又はI信号に係る変調信号が共に印加されていない状態、又は、各サブMZ型導波路に同じ変調信号が印加されている状態など、各分岐導波路を伝搬する光波の光強度が同じとなる変調状態に設定し、モニタした各信号出力が同じとなるように、各光強度変調手段のDCバイアス電圧を設定調整する方法がある。当然、各サブMZ型導波路に印加される変調信号の状態が予め判別している場合には、その変調信号が印加されている場合の理想的な光波の光強度と、実際にモニタした光強度とが同じとなるように、各光強度調整手段を調整することも可能である。
 さらに、サブMZ型導波路の前に光強度調整手段を配置し、例えば、光強度変調手段の出力光や放射モード光のように、該光強度調整手段の影響は受けるが、該サブMZ型導波路に係る変調の影響を受けていない光波をモニタすることも可能である。この場合には、サブMZ型導波路の変調状態と無関係に、メインMZ型導波路の分岐導波路を伝搬する光波の光強度を最適に設定することが可能となる。
 図2は、Zカット型基板を用いた光変調器の例であり、サブMZ型導波路を伝搬する光波は、サブMZ型導波路を構成する分岐導波路の上側に形成された制御電極(変調電極)61a及び61bにより変調される。サブMZ型導波路52についても同様であり、さらには、メインMZ型導波路を伝搬する光波を変調する制御電極(変調電極)65a及び65bも同様に、各分岐導波路の上側に形成されている。
 図2においては、光強度変調手段は、マッハツェンダー型導波路53,54が利用され、各マッハツェンダー型導波路の各分岐導波路に制御電極63a,63b及び64a,64bが配置されている。
 図3は、Xカット型基板を用いた例であり、基本的には図1に示した例と同様に、制御電極(変調電極)61~65が利用される。
 さらに、図4は、光変調器をSSB変調器(SSB-SC変調)として利用する場合を示し、サブMZ型導波路51を有する干渉計には、変調信号「Φsin2πft+DC」(Φは変調信号の振幅電圧、fは変調周波数、DCは所定バイアス電圧を意味している。)が印加され、サブMZ型導波路52を有する干渉計には、変調信号「Φcos2πft+DC」が印加される。
 また、メインMZ型導波路には、制御電極65にVπ/2に相当するDCバイアス電圧が印加されている。図4のSSB変調器も、図1と同様に、光導波路53,54及び制御電極63,64で構成される光強度調整手段が設けられている。
 図5は、FSK変調器の例であり、メインMZ型導波路に対して設けられた制御電極65に印加される変調信号が、±Vπ/2となる変調データ信号であることを除けば、基本的に図4のSSB変調器と同様の構成を有している。
 本発明に係る光変調器は、上述したように、メインMZ型導波路を構成する2つの分岐導波路を伝搬する光波の強度差が光変調器の変調特性の品質に影響を与える光変調器に対して、適用することが特に好ましく、具体的には、SSB変調器、DQPSK変調器、またはFSK変調器、さらにはQAM変調器に対し、本発明を利用することで高性能な光変調器を実現することが可能となる。
 以上説明したように、本発明によれば、DQPSK変調器やFSK変調器などの多レベルの位相変調信号を生成する光変調器において、信号品質の高い光変調器を提供することが可能となる。特に、光変調器の製造のバラツキなどによって起こる信号成分の強度差による変調特性の劣化を抑制し、複雑な製造工程を有することなく特性を向上すること可能な、高性能な光変調器を提供することができる。
1 光変調器
2,3 光ファイバー
4 基板
5 光導波路
10,11 DCバイアス電圧
50 メイン・マッハツェンダー型導波路
51,52 サブ・マッハツェンダー型導波路
53,54 マッハツェンダー型導波路
61~65 制御電極
70,71 モニタ手段
72 補助導波路
73,75 受光素子
74 反射手段
80~83 検出信号

Claims (3)

  1.  電気光学効果を有する基板と、該基板上に形成された光導波路と、該光導波路を伝搬する光波を制御するための制御電極とを有する光変調器において、
     該光導波路は、2つの分岐導波路を有するメイン・マッハツェンダー型導波路と、該分岐導波路に設けられるサブ・マッハツェンダー型導波路から構成され、
     各分岐導波路には、該サブ・マッハツェンダー型導波路に直列状態で光強度調整手段を設け、
     該分岐導波路を伝搬する光波の一部をモニタして、該光強度調整手段に印加する電圧を調整する電圧制御回路を備えることを特徴とする光変調器。
  2.  請求項1に記載の光変調器において、該光強度調整手段は、マッハツェンダー型導波路を有する強度変調器で構成されることを特徴とする光変調器。
  3.  請求項1又は2に記載の光変調器において、該光変調器がSSB変調器、DQPSK変調器、FSK変調器、又はQAM変調器のいずれかとして利用されることを特徴とする光変調器。
PCT/JP2009/066174 2008-09-19 2009-09-16 光変調器 WO2010032756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/998,071 US20110164844A1 (en) 2008-09-19 2009-09-16 Optical modulator
CN2009801367655A CN102159985A (zh) 2008-09-19 2009-09-16 光调制器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-241305 2008-09-19
JP2008241305A JP5198996B2 (ja) 2008-09-19 2008-09-19 光変調器

Publications (1)

Publication Number Publication Date
WO2010032756A1 true WO2010032756A1 (ja) 2010-03-25

Family

ID=42039580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066174 WO2010032756A1 (ja) 2008-09-19 2009-09-16 光変調器

Country Status (4)

Country Link
US (1) US20110164844A1 (ja)
JP (1) JP5198996B2 (ja)
CN (1) CN102159985A (ja)
WO (1) WO2010032756A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267476B2 (ja) * 2010-01-29 2013-08-21 富士通オプティカルコンポーネンツ株式会社 光デバイスおよび光送信装置
JP5506575B2 (ja) * 2010-07-08 2014-05-28 三菱電機株式会社 光変調器、光送信装置およびバイアス調整方法
US9069193B2 (en) 2011-06-01 2015-06-30 Nec Corporation Optical waveguide device, optical interferometer, and method for producing optical waveguide device
JP5773440B2 (ja) * 2012-01-31 2015-09-02 住友大阪セメント株式会社 光変調器
US20140334764A1 (en) * 2013-05-07 2014-11-13 Christophe Galland Broadband optical isolator using phase modulators and mach-zehnder interferometers
CN104253654A (zh) * 2013-06-27 2014-12-31 中兴通讯股份有限公司 一种改进mz调制器调制性能的装置和方法
CN110350979A (zh) * 2019-07-02 2019-10-18 上海交通大学 一种光电调制器和光电互联接口

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004318052A (ja) * 2003-03-28 2004-11-11 Sumitomo Osaka Cement Co Ltd 光変調器のバイアス制御方法及びその装置
US20050117191A1 (en) * 2001-11-30 2005-06-02 Robert Griffin Modulation control
JP2006101436A (ja) * 2004-09-30 2006-04-13 Sumitomo Osaka Cement Co Ltd 光送信装置及び光送信方法
JP2006242975A (ja) * 2005-02-28 2006-09-14 National Institute Of Information & Communication Technology 超高消光比変調方法
JP2007329886A (ja) * 2006-05-09 2007-12-20 Fujitsu Ltd 光送信装置
JP2008092172A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 光送信機
JP2008089778A (ja) * 2006-09-29 2008-04-17 Sumitomo Osaka Cement Co Ltd 光デバイスおよび光デバイスの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031647A (en) * 1996-10-23 2000-02-29 Nortel Networks Corporation Stable power control for optical transmission systems
GB2383424B (en) * 2001-11-30 2004-12-22 Marconi Optical Components Ltd Photonic integrated device
US20040208646A1 (en) * 2002-01-18 2004-10-21 Seemant Choudhary System and method for multi-level phase modulated communication
JP4696264B2 (ja) * 2005-08-24 2011-06-08 独立行政法人情報通信研究機構 強度バランス機能を有する光fsk/ssb変調器
CN101896855B (zh) * 2007-10-10 2013-04-03 日本电气株式会社 光调制器和光通信系统
JP5035075B2 (ja) * 2008-03-31 2012-09-26 富士通株式会社 光変調器の制御方法および制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117191A1 (en) * 2001-11-30 2005-06-02 Robert Griffin Modulation control
JP2004318052A (ja) * 2003-03-28 2004-11-11 Sumitomo Osaka Cement Co Ltd 光変調器のバイアス制御方法及びその装置
JP2006101436A (ja) * 2004-09-30 2006-04-13 Sumitomo Osaka Cement Co Ltd 光送信装置及び光送信方法
JP2006242975A (ja) * 2005-02-28 2006-09-14 National Institute Of Information & Communication Technology 超高消光比変調方法
JP2007329886A (ja) * 2006-05-09 2007-12-20 Fujitsu Ltd 光送信装置
JP2008092172A (ja) * 2006-09-29 2008-04-17 Fujitsu Ltd 光送信機
JP2008089778A (ja) * 2006-09-29 2008-04-17 Sumitomo Osaka Cement Co Ltd 光デバイスおよび光デバイスの製造方法

Also Published As

Publication number Publication date
CN102159985A (zh) 2011-08-17
JP2010072462A (ja) 2010-04-02
US20110164844A1 (en) 2011-07-07
JP5198996B2 (ja) 2013-05-15

Similar Documents

Publication Publication Date Title
US7907324B2 (en) Optical modulator and controlling method and apparatus thereof
US8676060B2 (en) Quadrature amplitude modulation signal generating device
EP1918761B1 (en) Light fsk/ssb modulator having intensity balance function
US7272271B2 (en) Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
JP4934566B2 (ja) 遅延復調デバイス
US20190271896A1 (en) Optical modulator, and optical transceiver module using the same
JP5198996B2 (ja) 光変調器
EP2042913A2 (en) Optical quaternary phase modulator
US10901153B2 (en) Null bias mach-zehnder interferometer with ring resonators
US20060159466A1 (en) Offset quadrature phase-shift-keying method and optical transmitter using the same
JP6048410B2 (ja) キャリア抑圧光発生装置
US9235100B1 (en) Apparatus for dual-polarization QAM and optical communications system using the same cross-reference to related application
JP5700731B2 (ja) 光変調器
WO2004005972A2 (en) Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
US20070280701A1 (en) Method and Apparatus for Producing High Extinction Ratio Data Modulation Formats
JP5630512B2 (ja) 光変調器
JP2006267201A (ja) 位相連続光fsk変調方法,位相連続光fsk変調器
TWI762933B (zh) 光調變裝置
JP4544542B2 (ja) 光素子
Shreyas et al. External modulators and, Electro-optic Mach-Zehnder modulatormodelling and analysis using Matlab
GB2414563A (en) Method and apparatus for producing high extinction ratio data modulation format

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136765.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814601

Country of ref document: EP

Kind code of ref document: A1