WO2010032524A1 - 液晶表示装置、及び液晶表示装置の駆動方法 - Google Patents

液晶表示装置、及び液晶表示装置の駆動方法 Download PDF

Info

Publication number
WO2010032524A1
WO2010032524A1 PCT/JP2009/061043 JP2009061043W WO2010032524A1 WO 2010032524 A1 WO2010032524 A1 WO 2010032524A1 JP 2009061043 W JP2009061043 W JP 2009061043W WO 2010032524 A1 WO2010032524 A1 WO 2010032524A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
liquid crystal
gradation data
crystal display
pixel
Prior art date
Application number
PCT/JP2009/061043
Other languages
English (en)
French (fr)
Inventor
智朗 古川
和巧 藤岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/119,010 priority Critical patent/US20110169880A1/en
Publication of WO2010032524A1 publication Critical patent/WO2010032524A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/363Graphics controllers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/068Adjustment of display parameters for control of viewing angle adjustment
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/202Gamma control

Definitions

  • the present invention relates to a liquid crystal display device that performs display driving using a so-called area division method, and a driving method thereof.
  • the liquid crystal display device is a flat display device having excellent features such as high definition, thinness, light weight and low power consumption.
  • the display performance has been improved, the production capacity has been improved, and the price competitiveness with respect to other display devices has been improved. As a result, the market scale is expanding rapidly.
  • a conventional twisted nematic mode (TN mode) liquid crystal display device has a liquid crystal molecule having a positive dielectric anisotropy oriented substantially parallel to the substrate surface, and a liquid crystal display device. Alignment treatment is performed so that the major axis of the molecule is twisted approximately 90 degrees between the upper and lower substrates along the thickness direction of the liquid crystal layer. When a voltage is applied to the liquid crystal layer, the liquid crystal molecules rise in parallel with the electric field, and the twist alignment (twist alignment) is eliminated.
  • the TN mode liquid crystal display device controls the amount of transmitted light by utilizing a change in optical rotation accompanying a change in the orientation of liquid crystal molecules due to a voltage.
  • TN mode liquid crystal display devices have a wide production margin and excellent productivity.
  • display performance particularly in view angle characteristics.
  • the contrast ratio of the display is significantly reduced, and a plurality of gradations from black to white are clearly observed when observed from the front.
  • the problem is that the luminance difference between gradations becomes extremely unclear.
  • the phenomenon that the gradation characteristics of the display are reversed and a darker portion when observed from the front is observed brighter when observed from an oblique direction is also a problem.
  • liquid crystal display devices with improved viewing angle characteristics in these TN mode liquid crystal display devices include IPS mode (in-plane switching mode), MVA mode (multi-domain vertical aligned mode), and CPA mode (continuous pinwheel). Alignment) and the like have been developed.
  • the problem of viewing angle characteristics is that the ⁇ characteristics during frontal observation and ⁇ characteristics during oblique observation are different, that is, the viewing angle dependence of ⁇ characteristics.
  • the problem (white floating etc.) has been newly revealed.
  • the ⁇ characteristic is the gradation dependency of the display luminance.
  • the fact that the ⁇ characteristic is different between the front direction and the diagonal direction means that the gradation display state differs depending on the observation direction. This is particularly a problem when displaying, or when displaying TV broadcasts.
  • the problem of viewing angle dependency of the ⁇ characteristic is more conspicuous in the MVA mode and the CPA mode than in the IPS mode.
  • the IPS mode it is difficult to manufacture a panel having a high contrast ratio at the time of front observation with high productivity as compared with the MVA mode and the CPA mode. From these points, it is desired to improve the viewing angle dependency of the ⁇ characteristic particularly in the liquid crystal display device of the MVA mode or the CPA mode.
  • Patent Document 1 As a method for improving the viewing angle dependency of the ⁇ characteristic, a multi-pixel driving method is proposed in Patent Document 1.
  • the multi-pixel driving method is a technique for improving viewing angle characteristics (viewing angle dependency of ⁇ characteristics) by configuring one display pixel with two or more sub-pixels (sub-pixels) having different luminances.
  • the multi-pixel driving method when obtaining target luminance in one display pixel, display control is performed so that the average luminance of the plurality of sub-pixels having different luminance becomes the target luminance.
  • display control is performed so that the average luminance of the plurality of sub-pixels having different luminance becomes the target luminance.
  • the multi-pixel driving method in the sub-pixel, A region near bright luminance and a region near dark luminance with small luminance deviation are displayed, and the halftone luminance is obtained by averaging the luminance of the sub-pixels for the entire pixel.
  • the multi-pixel driving method as described above is preferably used for a large liquid crystal display panel in which one pixel is relatively large because one pixel is divided into two or more sub-pixels. Yes.
  • a small liquid crystal display panel with higher definition such as a liquid crystal display panel used in mobile devices, has a small size of one pixel. Therefore, when this is further divided into a plurality of sub-pixels, the pixel structure is reduced. As a result, the aperture ratio is remarkably lowered and a problem arises that sufficient luminance cannot be obtained.
  • the present invention has been made in view of the above problems, and without complicating the pixel structure, the ⁇ characteristic when the liquid crystal display panel is viewed from the front direction and the ⁇ characteristic when viewed from the oblique direction.
  • the purpose is to further improve the display quality.
  • a driving method of a liquid crystal display device includes a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, and the plurality of data signal lines. And a plurality of pixels arranged in a matrix corresponding to each intersection of the plurality of scanning signal lines, and a method of driving a liquid crystal display device having a liquid crystal display panel.
  • Each unit included in the unit performs gradation display by supplying gradation data converted from the input gradation data to a different value depending on the position in the unit. It is characterized in that the target gradation display is performed in the unit.
  • a plurality of pixels are combined into one unit, and area division display can be performed in units. Therefore, it is possible to prevent the pixel structure from becoming complicated and the aperture ratio of the pixel from decreasing. Then, conversion from one input gradation data to a plurality of different gradation data is performed (for example, from gradation data of halftone to gradation data of higher gradation side and gradation data of lower gradation side)
  • conversion from one input gradation data to a plurality of different gradation data is performed (for example, from gradation data of halftone to gradation data of higher gradation side and gradation data of lower gradation side)
  • the difference between the ⁇ characteristic in the front direction and the ⁇ characteristic in the oblique direction is reduced, and the display appearance from the front direction and the display appearance from the oblique direction are reduced. The difference can be reduced. Thereby, display quality can be improved.
  • gradation display when gradation display is performed by supplying different gradation data to each pixel included in the unit, thereby performing target gradation display in the unit, the level of each pixel is displayed.
  • the tone data is averaged in terms of display area within the unit, thereby converting the tone data into each tone data that provides tone display based on the input tone data.
  • the gradation display of each pixel included in the unit is averaged, so that the gradation display based on the inputted gradation data (target) is made in the entire unit.
  • Gradation table the gradation display based on the inputted gradation data (target) is made in the entire unit.
  • the driving method of the liquid crystal display device of the present invention on the basis of the input grayscale data and the input synchronization signal corresponding to the grayscale data, the position of the pixel in which the input grayscale data is in the unit. Based on the position information detection step for detecting whether the display is to be performed and the position information detected by the position information detection step, the method of converting the input gradation data varies depending on the position in the unit. Thus, different gradation data may be supplied to each pixel included in the unit by a gradation data conversion process for converting gradation data that differs depending on the position.
  • the gradation data obtained by averaging the gradation data displayed in all the frame periods within the unit period, with a plurality of consecutive frames as one unit period, It is preferable to further perform time-division driving for display gradation data in a unit cycle.
  • time division driving is also performed.
  • the time-division driving is a driving method in which a plurality of frames are set as a unit period, different data is written for each frame, and averaged in unit time.
  • Patent Document 2 in order to increase the viewing angle of a liquid crystal display device, a technique of using time-division driving (that is, the ⁇ characteristic of an image signal is switched every n frames (n ⁇ 2) to display liquid crystal. (Technology for driving voltage) is disclosed. However, this method has a problem in that flicker becomes conspicuous because the ⁇ characteristic is switched using only time-division driving.
  • the area division drive and the time division drive are combined to bring the ⁇ characteristic from the oblique direction closer to the ⁇ characteristic from the front direction.
  • a uniform display can be performed.
  • gradation data is converted using a plurality of look-up tables, and the plurality of looks are based on the detected position information. It is preferred to determine which of the uptables to select.
  • the gradation data conversion process can be performed using the lookup table, and the conversion process can be performed more easily. This simplifies the configuration of circuits and the like necessary for data conversion processing.
  • gradation data conversion step when performing the time-division driving, gradation data is converted using a plurality of lookup tables, and the detected position information is And determining which one of the plurality of lookup tables is to be selected based on frame information indicating which frame period of the unit cycle the gradation data is the gradation data of. preferable.
  • the gradation data conversion process can be performed using the lookup table, and the conversion process can be performed more easily. This simplifies the configuration of circuits and the like necessary for data conversion processing.
  • the number of the look-up tables may be 2, 3, or 4.
  • the liquid crystal display device has red, green, and blue color filters, one red pixel, one green pixel, and one blue pixel.
  • the unit of the three pixels configured is one picture element
  • the above one unit is four picture elements consisting of (vertical two picture elements) ⁇ (two horizontal picture elements) or (vertical four picture elements) ⁇ ( It may be composed of 16 picture elements consisting of 4 horizontal picture elements).
  • the number of frames of the unit period may be 2 or 4.
  • the dot inversion driving is a driving method in which the polarity of the voltage applied to the data signal line is inverted every horizontal scanning period and the adjacent data signal lines have different polarities.
  • the gradation data conversion step the gradation data is converted by the same conversion method” means that, for example, when the gradation data is converted using a lookup table, a plurality of gradation data are converted. This means that gradation data is converted using the same lookup table of the lookup tables.
  • the same type of gradation data is selected for pixels having the same polarity in a certain frame period within one picture element, and different types of gradations are selected for pixels having different polarities. Data will be selected.
  • a liquid crystal display device includes a plurality of data signal lines, a plurality of scanning signal lines intersecting with the plurality of data signal lines, the plurality of data signal lines, and the plurality of data lines.
  • a liquid crystal display device having a liquid crystal display panel provided with pixels arranged in a matrix corresponding to each intersection with the scanning signal line, wherein a plurality of the pixels are used as one unit,
  • Each pixel included in the pixel is provided with a display driving unit that performs gradation display by supplying gradation data converted from input gradation data to a different value depending on the position in the unit.
  • the gradation display when viewed in (1) is a target gradation display.
  • time division driving is also performed.
  • the time-division driving is a driving method in which a plurality of frames are set as a unit period, different data is written for each frame, and averaged in unit time.
  • the gradation data conversion unit converts gradation data using a plurality of look-up tables, and the plurality of looks based on the detected position information. It is preferable to decide which one of the up tables is selected.
  • gradation data conversion processing can be performed using a lookup table, and conversion processing can be performed more easily. This simplifies the configuration of circuits and the like necessary for data conversion processing.
  • gradation data conversion processing can be performed using a lookup table, and conversion processing can be performed more easily. This simplifies the configuration of circuits and the like necessary for data conversion processing.
  • the number of the lookup tables may be 2, 3, or 4.
  • the liquid crystal display device of the present invention has red, green, and blue color filters
  • a unit of three pixels including one red pixel, one green pixel, and one blue pixel is used.
  • the above unit is composed of 4 picture elements consisting of (vertical 2 picture elements) x (2 horizontal picture elements) or 16 pictures consisting of (vertical 4 picture elements) x (4 horizontal picture elements). It may be composed of element.
  • the number of frames of the unit period may be 2 or 4.
  • the polarity of the signal voltage applied to the data signal line is inverted by dot inversion driving, and the liquid crystal display device has red, green, and blue color filters.
  • the signal voltage in one of the frame periods within the unit cycle.
  • the gradation data input to each pixel in the one picture element having the same polarity is preferably converted into gradation data in the same manner in the gradation data conversion unit.
  • shadowing (crosstalk) in display can be prevented by employing dot inversion driving.
  • the gradation data conversion unit performs gradation data conversion in the same conversion method” means that, for example, when converting gradation data using a lookup table, a plurality of gradation data are converted. This means that gradation data is converted using the same lookup table of the lookup tables.
  • the same type of gradation data is selected for pixels having the same polarity in a certain frame period within one picture element, and different types of gradations are used for pixels having different polarities. Data will be selected.
  • a plurality of the above-described pixels are formed as one unit, and each pixel included in the unit has a value that varies depending on the position in the unit from the input gradation data.
  • the converted gradation data is supplied to perform gradation display, thereby performing target gradation display.
  • the difference between the ⁇ characteristic when the liquid crystal display panel is viewed from the front direction and the ⁇ characteristic when viewed from the oblique direction is reduced, and the display quality is further improved. Can be improved.
  • the liquid crystal display device of the 1st Embodiment of this invention it is a schematic diagram which shows the structure of the unit which consists of a some pixel. 4 is a graph showing a result of measuring a relationship between a gradation value and a transmittance in the liquid crystal display device according to the first embodiment of the present invention. It is a schematic diagram explaining the dot inversion drive in a liquid crystal display device.
  • a mobile liquid crystal display device such as a mobile phone will be described as an example of the liquid crystal display device of the present invention.
  • the present invention is not limited to this.
  • the liquid crystal display device uses a plurality of the above pixels as one unit, supplies different gradation data to each pixel included in the unit, and sets each pixel included in the unit. By averaging the gradation display, display driving by so-called area division is performed in which the target gradation display is performed in the one unit. Further, in the liquid crystal display device of the present embodiment, in addition to the area division driving, a plurality of continuous frames are set as one unit period, and the grayscale data displayed in all frame periods within the unit period is averaged. Time-division driving is performed using the tone data as display gradation data in the unit period.
  • FIG. 1 shows a configuration of a liquid crystal display device 10 of the present embodiment.
  • the liquid crystal display device 10 includes a liquid crystal display panel 11, a backlight (not shown), a gate driver 12, a source driver 13, a display controller 14 (display drive unit) and the like as main components. I have.
  • the liquid crystal display panel 11 includes a liquid crystal layer between an active matrix substrate and a counter substrate.
  • an MVA mode, a TN mode, an IPS mode, or the like can be adopted as a display mode of the liquid crystal display panel 11.
  • the present invention is more preferably applied to a normally black mode liquid crystal display panel that displays black when no voltage is applied.
  • normally black mode liquid crystal display panels include IPS mode, MVA mode, and CPA mode liquid crystal display panels.
  • FIG. 2 shows a configuration of the liquid crystal display panel 11 provided in the liquid crystal display device 10.
  • a plurality of scanning signal lines 21 connected to the gate driver 12 are provided, and a plurality of data are crossed with these scanning signal lines 21.
  • a signal line 22 is provided. These data signal lines 22 are connected to the source driver 13.
  • a TFT 23 serving as a switching element is formed in the vicinity of each intersection of each scanning signal line 21 and each data signal line 22.
  • a pixel electrode 24 is formed in each lattice formed by intersecting each scanning signal line 21 and each data signal line 22, and one pixel electrode 24 constitutes one pixel.
  • the pixel electrode 24 is configured to be electrically connected to each TFT 23.
  • the TFT 23 when the scanning signal input to the scanning signal line 21 indicates conduction, the corresponding data is displayed.
  • the signal line 22 and the pixel electrode 24 are connected, and a data signal transmitted to the data signal line is input to the pixel electrode 24. Thereby, in each pixel electrode 24, display based on the input data signal is performed.
  • a backlight (not shown) is provided on the back surface of the liquid crystal display panel 11 and irradiates the liquid crystal panel with light.
  • the display controller 14 is based on an image data signal (input gradation data (R, G, B data), input synchronization signal (vertical synchronization signal and horizontal synchronization signal)) and a dot clock transmitted from a signal source (not shown).
  • a display drive signal for displaying an image on the liquid crystal display panel 11 is generated.
  • the signal source when the liquid crystal display device 10 is a mobile phone, an image control system in the mobile phone can be used.
  • the signal source may be a reception system that receives the television broadcast.
  • a position information detection unit 31 a frame counter 32, an input data conversion unit 33 (gradation data conversion unit), two types of lookup tables 34a and 34b (LUT1 and LUT2), a timing controller 35, and the like are provided. Is provided.
  • the position information detection unit 31 receives the input gradation data based on the input gradation data, and the input synchronization signal (specifically, horizontal synchronization signal) and the dot clock corresponding to the gradation data. It is detected at which position in the unit the pixel is to be displayed.
  • the input synchronization signal specifically, horizontal synchronization signal
  • the frame counter 32 calculates frame information indicating which frame period in the unit cycle period the input gradation data is based on the input gradation data and the corresponding vertical synchronization signal. To do.
  • the input data conversion unit 33 varies depending on the position by changing the method of converting the input gradation data depending on the position in the unit based on the position information detected by the position information detection unit 31. Performs gradation data conversion processing. Further, based on the frame information calculated by the frame counter 32, gradation data conversion processing different for each frame is performed. Details of the gradation data conversion processing performed here will be described later.
  • the look-up tables 34a and 34b are tables in which the gradation data input to the input data conversion unit 33 and the gradation data output from the input data conversion unit 33 are associated on a one-to-one basis. It is. These LUTs are used when the input data conversion unit 33 performs gradation data conversion processing.
  • a plurality of pixels are regarded as one unit, and one of two kinds of different gradation data is supplied to each pixel included in the unit.
  • a gradation data conversion process is performed.
  • gradation display is performed based on different gradation data, and the gradation display of each pixel is averaged. Key is displayed.
  • FIG. 3 shows the configuration of one unit 25 when display driving is performed in the present embodiment.
  • a unit of three pixels including one pixel 24 of red (R), one pixel 24 of green (G), and one pixel 24 of blue (B) is represented by one pixel ( (Area surrounded by a broken-line frame in FIG. 3).
  • one unit 25 is composed of four picture elements composed of (vertical 2 picture elements) ⁇ (horizontal 2 picture elements).
  • area division driving is performed in this one unit. That is, the display controller 14 (display driving unit) sets four picture elements each consisting of (vertical two picture elements) ⁇ (two horizontal picture elements) as one unit 25, and inputs each pixel 24 included in the unit 25 to each pixel 24. Data conversion processing is performed to supply gradation data converted from the gradation data (R data, G data, or B data) to a different value for each position in the unit.
  • a plurality of continuous vertical periods are one unit.
  • Time-division driving is also performed in which the time average of the data displayed in each frame is used as the cycle, and the display data of the unit cycle is used.
  • the display controller 14 receives gradation data (R, G, B data), an input synchronization signal (vertical synchronization signal and horizontal synchronization signal), and a dot clock from an unillustrated signal source as an image data signal. Is entered as
  • the position information detection unit 31 in the display controller 14 is input based on the input gradation data, an input synchronization signal (specifically, a horizontal synchronization signal) and a dot clock corresponding to the gradation data. It is detected at which position in the unit 25 shown in FIG. 3 the gradation data is to be displayed, and this is output as position information.
  • an input synchronization signal specifically, a horizontal synchronization signal
  • a dot clock corresponding to the gradation data. It is detected at which position in the unit 25 shown in FIG. 3 the gradation data is to be displayed, and this is output as position information.
  • the frame counter 32 counts the input vertical synchronization signal to calculate what frame data the gradation data corresponding to the vertical synchronization signal is, and outputs this as frame information.
  • the above position information and frame information are input to the input data conversion unit 33.
  • the input data conversion unit 33 performs gradation data conversion processing based on the gradation data and the corresponding position information and frame information. In this conversion process, based on the position information and the frame information, the method of converting the input gradation data is changed depending on the position and the frame in the unit 25, so that the position and the unit in the unit 25 are changed. Different gradation data conversion processing is performed for each frame in the cycle.
  • the gradation data conversion process here is performed using two types of lookup tables 34a and 34b.
  • the gradation data conversion process can be performed by two types of methods.
  • the input data conversion unit 33 determines which one of the two types of lookup tables 34a and 34b is to be selected based on the input position information and frame information, The method of converting gradation data differs depending on the frame.
  • the gradation data that has been subjected to the data conversion process by the method as described above is input to the timing controller 35.
  • the timing controller 35 determines the input timing of each signal supplied to the scanning signal line 21 and the data signal line 22. Specifically, the timing controller 35 outputs various signals such as a clock signal and a start pulse signal generated based on the input synchronization signal, and the gradation data converted by the input data converter 33 at a predetermined timing.
  • the liquid crystal display panel 11 performs display based on gradation data subjected to different data conversion processing depending on the position of each pixel 24 in the unit 25, and when the frame is switched, each pixel 24 has the same as the previous frame. Is switched to display with gradation data subjected to different data conversion processing.
  • the gradation data D is divided into two types of data, D1 (R1, G1, B1) and D2 (R2, G2, B2).
  • D1 and D2 are combinations of gradation data that averages to D when each is displayed with the same area and the same time.
  • the first lookup table 34a (LUT1) stores the output gradation values D1 corresponding to the input gradation values D (0 to 63).
  • the second look-up table 34b (LUT2) stores the output tone values D2 corresponding to the input tone values D (0 to 63).
  • D1 and D2 are determined based on the position information obtained by the position information detection unit 31 and the frame information obtained by the frame counter 32. Which one is to be selected is determined, and the corresponding converted gradation data is determined from the corresponding LUT.
  • FIG. 3 shows an example of gradation data after conversion in a certain frame period.
  • the display in a certain frame is a display in which D1 and D2 are mixed, but when the whole unit is averaged, the data D is displayed.
  • one unit cycle period is set to two frame periods, and the gradation data D1 displayed in the first frame period which is the first half and the second frame period which is the second half are displayed.
  • Time division driving is performed in which the gradation data D obtained by averaging the gradation data D2 is used as the display gradation data in the one unit cycle period.
  • D1 and D2 data are switched when the frame is changed, and the same data is displayed in a cycle of 2 frames (every 2 frames). Therefore, when one pixel is viewed, the data D is displayed when the time average is taken.
  • the gradation data D1 and D2 into which the gradation data D is divided are the gradations used in the display drive of the multi-pixel driving method as disclosed in Patent Document 1 and the like. It can be performed according to the data conversion processing method.
  • the luminance deviation is small in each pixel 24 in the unit 25.
  • the gradation display of the area near the bright luminance and the area near the dark luminance is performed, and the entire unit 25 can obtain halftone luminance by the average of the luminance of each pixel 24.
  • FIG. 4 shows the results of measurement of gradation luminance characteristics (relationship between gradation value and transmittance) when the driving method of the present embodiment is used in an MVA mode liquid crystal display device. Note that FIG. 4 also shows the results when a conventional driving method is used for comparison.
  • the gradation luminance characteristic when the liquid crystal display panel is viewed from the front direction is shown by a solid line, and the driving method of the present embodiment is adopted.
  • Fig. 5 shows the gradation luminance characteristics when the liquid crystal display panel is viewed from an oblique angle of 45 ° in the left-right direction by a one-dot chain line. The gradation luminance characteristic when viewed is shown by a broken line.
  • the evaluation standard of the degree of whitening is determined as “whitening rate” as follows.
  • the polarity of the signal voltage applied to the data signal line is driven by dot inversion.
  • dot inversion driving the polarity of the R pixel and the B pixel and the polarity of the G pixel are reversed, so that the pull-in characteristics differ between these pixels. For this reason, when the same data is written in each pixel of RGB, the display is slightly different due to the difference in pull-in due to the difference in pixel polarity, resulting in display unevenness.
  • the data is written differently between the G pixel and the R and B pixels, thereby unifying only the + polarity or the ⁇ polarity display. Therefore, display unevenness due to the difference in polarity can be suppressed.
  • FIG. 5 schematically shows the polarity of the signal voltage in each pixel 24 when performing dot inversion driving.
  • the polarity of each pixel in a certain frame period is shown in parentheses.
  • adjacent pixels have different polarities.
  • the same type of gradation data is selected as the gradation data input to each pixel in one picture element having the same signal voltage polarity in a certain frame period. I am doing so.
  • the gradation data D1 is selected and the polarity is ( ⁇ ) in the pixel whose polarity is (+) (R pixel and B pixel in the upper left picture element in the unit 25).
  • the gradation data D2 is selected. Thereby, image sticking and unevenness of each pattern in time-division driving can be suppressed.
  • the liquid crystal display device of the present embodiment also performs display driving that combines area-division driving and time-division driving, as in the first embodiment. Therefore, the configuration of the liquid crystal display device 10 of the present embodiment is the same as that of the liquid crystal display device of the first embodiment shown in FIG. Here, only differences from the driving method in the first embodiment will be described.
  • FIG. 6 shows a configuration of one unit 45 in the case where display driving is performed in the present embodiment.
  • a unit of three pixels including one pixel 24 of red (R), one pixel 24 of green (G), and one pixel 24 of blue (B) is represented by one pixel ( Area surrounded by a broken-line frame in FIG.
  • one unit 45 is composed of 16 picture elements consisting of (vertical 4 picture elements) ⁇ (horizontal 4 picture elements).
  • the gradation data D is divided into two types of data, D1 (R1, G1, B1) and D2 (R2, G2, B2).
  • the first lookup table 34a LUT1 stores the output gradation values D1 corresponding to the input gradation values D (0 to 63).
  • the second look-up table 34b (LUT2) stores the output tone values D2 corresponding to the input tone values D (0 to 63).
  • D1 and D2 are determined based on the position information obtained in the position information detection unit 31 and the frame information obtained in the frame counter 32. Which one is selected is determined, and the corresponding converted gradation data is determined from either LUT1 or LUT2.
  • FIG. 6 shows an example of gradation data after conversion in a certain frame period.
  • the display in a certain frame is a display in which D1 and D2 are mixed, but when the whole unit is averaged, the data D is displayed.
  • one unit cycle period is divided into four frame periods, and gradation data D obtained by averaging the gradation data displayed in these four frame periods is displayed in the one unit period period.
  • Time-division driving for gradation data is performed. That is, four consecutive frame periods are defined as one unit cycle period.
  • the data of D1 and D2 are switched when the subframe is changed, and the same data is displayed at a cycle of 4 frames (every 4 frames). Therefore, when one pixel is viewed, the data D is displayed when the time average is taken.
  • FIG. 7 shows the results of measurement of gradation luminance characteristics (relationship between gradation value and transmittance) when the driving method of this embodiment is used in an MVA mode liquid crystal display device.
  • FIG. 7 also shows the results when the conventional driving method is used.
  • the gradation luminance characteristic when the liquid crystal display panel is viewed from the front direction is shown by a solid line, and the driving method of the present embodiment is adopted.
  • Fig. 5 shows the gradation luminance characteristics when the liquid crystal display panel is viewed from an oblique angle of 45 ° in the left-right direction by a one-dot chain line.
  • the gradation luminance characteristic when viewed is shown by a broken line.
  • the display in a certain frame period when the display in a certain frame period is viewed.
  • the type of gradation data (whether D1 or D2 is selected) is different between the G pixel and the R and B pixels included in one picture element.
  • LUT selection is performed so that the combination of pixel data of (R1, G2, B1) or (R2, G1, B2) is switched in a certain frame in all the pixels. Therefore, the effect of reducing flicker can be obtained.
  • display drive combining area division drive and time division drive is performed as in the above embodiments.
  • FIG. 8 shows a configuration of the liquid crystal display device 110 of the present embodiment.
  • the liquid crystal display device 110 includes a liquid crystal display panel 111, a backlight (not shown), a gate driver 112, a source driver 113, a display controller 114 (display drive unit), and the like as main components. I have.
  • the liquid crystal display panel 111, the backlight, the gate driver 112, and the source driver 113 are the liquid crystal display panel 11, the backlight (not shown), the gate driver 12, and the source driver 13 in the liquid crystal display device 10 shown in FIG. Since it is the same structure, the description is omitted.
  • the display controller 114 has substantially the same configuration as the display controller 14 shown in FIG. 1, and includes a position information detector 131, a frame counter 132, an input data converter 133 (gradation data converter), and a lookup. Tables 134a to 134d (LUT1 to LUT4), a timing controller 135, and the like are provided.
  • the liquid crystal display device 10 shown in FIG. 1 has two types of lookup tables, the liquid crystal display device 110 has four types of lookup tables. It is different from Form 1.
  • a plurality of pixels are regarded as one unit, and one of four different kinds of gradation data is supplied to each pixel included in the unit.
  • a gradation data conversion process is performed.
  • gradation display is performed based on different gradation data, and the gradation display of each pixel is averaged. Key is displayed.
  • the liquid crystal display device 110 has red (R), green (G), and blue (B) color filters.
  • FIG. 9 shows a configuration of one unit 55 when display driving is performed in the present embodiment.
  • a unit of three pixels including one pixel 24 of red (R), one pixel 24 of green (G), and one pixel 24 of blue (B) is represented by one pixel ( (Area surrounded by a broken-line frame in FIG. 9).
  • one unit 55 is composed of 16 picture elements each consisting of (vertical 4 picture elements) ⁇ (horizontal 4 picture elements).
  • area division driving is performed in this one unit. That is, the display controller 114 (display drive unit) sets 16 pixels consisting of (vertical 4 picture elements) ⁇ (horizontal 4 picture elements) as one unit 55, and inputs each pixel 24 included in the unit 55 to each pixel 24. Data conversion processing is performed to supply gradation data converted from the gradation data (R data, G data, or B data) to a different value for each position in the unit.
  • a plurality of consecutive frames are set as one unit period period.
  • Time-division driving is also performed in which different data is written to one pixel each time. That is, in the display controller 114, a plurality of frame periods are set as one unit cycle period, and tone data obtained by averaging each tone data displayed in each frame is set as display tone data in the one unit cycle period. Data conversion processing is performed.
  • the display controller 114 receives gradation data (R, G, B data), an input synchronization signal (vertical synchronization signal and horizontal synchronization signal), and a dot clock from an unillustrated signal source as an image data signal. Is entered as
  • the position information detection unit 131 in the display controller 114 is input based on the input gradation data, an input synchronization signal (specifically, a horizontal synchronization signal) and a dot clock corresponding to the gradation data. It is detected at which position in the unit 55 shown in FIG. 9 the gradation data is to be displayed, and this is output as position information.
  • an input synchronization signal specifically, a horizontal synchronization signal
  • a dot clock corresponding to the gradation data. It is detected at which position in the unit 55 shown in FIG. 9 the gradation data is to be displayed, and this is output as position information.
  • the frame counter 132 counts the input vertical synchronization signal to calculate what frame data the grayscale data corresponding to the vertical synchronization signal is. Furthermore, in the present embodiment, since four consecutive frame periods are set as one unit period, the frame counter calculates which frame period the data is and outputs this as frame information.
  • the above position information and frame information are input to the input data conversion unit 133.
  • the input data conversion unit 133 performs gradation data conversion processing based on the gradation data and the corresponding position information and frame information. In this conversion process, based on the position information and frame information, the method of converting the input gradation data varies depending on the position and frame in the unit 55, so that the position and frame in the unit 55 are changed. Different gradation data conversion processing is performed for each.
  • the gradation data conversion process here is performed using four types of lookup tables 134a, 134b, 134c, and 134d. Thereby, the conversion process of gradation data can be performed by four types of methods.
  • the input data conversion unit 133 determines which of the four types of lookup tables 134a to 134d is to be selected based on the input position information and frame information, so that the position in the unit 55 and The method of converting gradation data differs depending on the frame.
  • the gradation data that has been subjected to the data conversion process by the method as described above is input to the timing controller 135.
  • timing controller 135 The processing after the timing controller 135 is the same as in the first embodiment.
  • the gradation data D is divided into four types of data D1 (R1, G1, B1), D2 (R2, G2, B2), D3 (R3, G3, B3), and D4 (R4, G4, B4).
  • D1, D2, D3, and D4 are combinations of gradation data that averages to D when each is displayed with the same area and the same time.
  • the first lookup table 134a (LUT1) stores the output gradation values D1 corresponding to the input gradation values D (0 to 63).
  • the second lookup table 134b (LUT2) stores the output tone values D2 corresponding to the input tone values D (0 to 63), and the input tone values D (0 to 63).
  • Is a fourth lookup table 134d (LUT4).
  • the input data conversion unit 133 sets D1 to D4 for each pixel 24 in the unit 55 in a specific frame period. Which one is to be selected is determined, and the corresponding converted gradation data is determined from the corresponding LUT.
  • FIG. 9 shows an example of gradation data after conversion in a certain frame period.
  • the display in a certain frame is a display in which D1, D2, D3, and D4 are mixed, but when the whole unit is averaged, the data D is displayed.
  • continuous four frame periods are set as one unit period period, and gradation data D obtained by averaging the gradation data displayed in these four frame periods is displayed in the one unit period period.
  • Time-division driving for gradation data is performed.
  • the data of D1 to D4 is switched when the frame is changed, and the same data is displayed at a cycle of 4 frames (every 4 frames). Therefore, when one pixel is viewed, the data D is displayed when the time average is taken.
  • FIG. 10 shows the result of measuring the gradation luminance characteristics (relationship between gradation value and transmittance) when the driving method of this embodiment is used in the MVA mode liquid crystal display device.
  • FIG. 10 also shows the results when the conventional driving method is used.
  • the gradation luminance characteristic when the liquid crystal display panel is viewed from the front direction is shown by a solid line, and the driving method of the present embodiment is adopted.
  • Fig. 5 shows the gradation luminance characteristics when the liquid crystal display panel is viewed from an oblique angle of 45 ° in the left-right direction by a one-dot chain line.
  • the gradation luminance characteristic when viewed is shown by a broken line.
  • the display in a certain frame period is seen as shown in FIG.
  • the types of gradation data are different between the G pixel and the R and B pixels included in one picture element, and the R pixel and the B pixel have the same kind of gradation. Data is selected.
  • the same kind of gradation data is selected between pixels having the same polarity (here, R and B) in a certain frame period, and pixels having different polarities (here, In R, B and G), different types of gradation data are selected.
  • FIG. 9 the polarity of each pixel in a certain frame period is shown in parentheses. Thereby, image sticking and unevenness of each pattern in time-division driving can be suppressed.
  • liquid crystal display device of the present embodiment As well, display drive combining area division drive and time division drive is performed as in the above embodiments.
  • the configuration of the liquid crystal display device 110 of the present embodiment is the same as that of the liquid crystal display device of the third embodiment shown in FIG. Here, only differences from the driving method in the third embodiment will be described.
  • FIG. 11 shows the configuration of one unit 65 when display driving is performed in the present embodiment.
  • a unit of three pixels including one pixel 24 of red (R), one pixel 24 of green (G), and one pixel 24 of blue (B) is represented by one pixel ( (Area surrounded by a broken-line frame in FIG. 11).
  • one unit 65 is composed of four picture elements composed of (vertical 2 picture elements) ⁇ (horizontal 2 picture elements).
  • the gradation data D is referred to as D1 (R1, G1, B1), D2 (R2, G2, B2), D3 (R3, G3, B3), D4 (R4, G4, B4).
  • D1, D2, D3, and D4 are combinations of gradation data that averages to D when each is displayed with the same area and the same time.
  • the first lookup table 134a LUT1 stores the output gradation values D1 corresponding to the input gradation values D (0 to 63).
  • the second lookup table 134b (LUT2) stores the output tone values D2 corresponding to the input tone values D (0 to 63), and the input tone values D (0 to 63). ) Is stored in the third look-up table 134c (LUT3), and the output gradation values D4 corresponding to the input gradation values D (0 to 63) are stored. Is a fourth lookup table 134d (LUT4).
  • the input data conversion unit 133 sets D1 to D4 for each pixel 24 in the unit 65 in a specific frame period. Which one is to be selected is determined, and the corresponding converted gradation data is determined from the corresponding LUT.
  • FIG. 11 shows an example of gradation data after conversion in a certain frame period.
  • the display in a certain frame is a display in which D1, D2, D3, and D4 are mixed, but when the whole unit is averaged, the data D is displayed.
  • continuous four frame periods are set as one unit period period, and gradation data D obtained by averaging the gradation data displayed in these four frame periods is displayed in the one unit period period.
  • Time-division driving for gradation data is performed.
  • the data of D1 to D4 is switched when the frame is changed, and the same data is displayed at a cycle of 4 frames (every 4 frames). Therefore, when one pixel is viewed, the data D is displayed when the time average is taken.
  • FIG. 12 shows the results of measurement of gradation luminance characteristics (relationship between gradation value and transmittance) when the driving method of the present embodiment is used in an MVA mode liquid crystal display device.
  • FIG. 12 also shows the results when the conventional driving method is used.
  • the gradation luminance characteristic when the liquid crystal display panel is viewed from the front direction is shown by a solid line, and the driving method of the present embodiment is employed.
  • Fig. 5 shows the gradation luminance characteristics when the liquid crystal display panel is viewed from an oblique angle of 45 ° in the left-right direction by a one-dot chain line.
  • the gradation luminance characteristic when viewed is shown by a broken line.
  • the types of gradation data are different between the G pixel and the R and B pixels included in one picture element, and the R pixel and the B pixel have the same kind of gradation. Data is selected.
  • the same kind of gradation data is selected between pixels having the same polarity (here, R and B) in a certain frame period, and pixels having different polarities (here, In R, B and G), different types of gradation data are selected.
  • R and B pixels having the same polarity
  • In R, B and G pixels having different polarities
  • FIG. 11 the polarity of each pixel in a certain frame period is shown in parentheses. Thereby, image sticking and unevenness of each pattern in time-division driving can be suppressed.
  • the liquid crystal display device of the present embodiment also performs display driving that combines area-division driving and time-division driving, as in the first embodiment. Therefore, the configuration of the liquid crystal display device 10 of the present embodiment is the same as that of the liquid crystal display device of the first embodiment shown in FIG. Here, only differences from the first embodiment will be described.
  • FIG. 13 shows the configuration of one unit 75 when display driving is performed in the present embodiment.
  • a unit of three pixels including one pixel 24 of red (R), one pixel 24 of green (G), and one pixel 24 of blue (B) is represented by one pixel ( (Area surrounded by a broken-line frame in FIG. 13).
  • one unit 75 is composed of four picture elements composed of (vertical 2 picture elements) ⁇ (horizontal 2 picture elements).
  • the data conversion process here is almost the same as in the first embodiment, but in the first embodiment, when the display in a certain frame period is seen, the G pixel and R, B pixels in one picture element In this embodiment, as shown in FIG. 13, three types of pixels (R pixel, G pixels and B pixels) all select the same type of gradation data in a certain frame period.
  • the display in a certain frame is a display in which D1 and D2 are mixed, but when the whole unit is averaged, the data D is displayed.
  • two consecutive frame periods are defined as one unit period period, and the grayscale data D1 displayed in the first frame period which is the first half and the second frame period which is the second half are displayed.
  • Time-division driving is performed in which the gradation data D obtained by averaging the gradation data D2 is used as the display gradation data in the one unit cycle period.
  • FIG. 13 shows an example of gradation data after conversion in a certain frame period.
  • D1 and D2 data are switched when the frame is changed, and the same data is displayed in a cycle of 2 frames (every 2 frames). Therefore, when one pixel is viewed, the data D is displayed when the time average is taken.
  • FIG. 14 shows the results of measurement of gradation luminance characteristics (relationship between gradation value and transmittance) when the driving method of the present embodiment is used in an MVA mode liquid crystal display device.
  • FIG. 14 also shows the results when the conventional driving method is used.
  • the gradation luminance characteristic when the liquid crystal display panel is viewed from the front direction is shown by a solid line, and the driving method of the present embodiment is adopted.
  • Fig. 5 shows the gradation luminance characteristics when the liquid crystal display panel is viewed from an oblique angle of 45 ° in the left-right direction by a one-dot chain line.
  • the gradation luminance characteristic when viewed is shown by a broken line.
  • the liquid crystal display device of the present embodiment also performs display driving that combines area-division driving and time-division driving, as in the first embodiment. Therefore, the configuration of the liquid crystal display device 10 of the present embodiment is the same as that of the liquid crystal display device of the first embodiment shown in FIG. In the present embodiment, a driving method similar to that of the second embodiment is performed. Therefore, only the points different from the second embodiment will be described here.
  • FIG. 15 shows a configuration of one unit 85 when display driving is performed in the present embodiment.
  • a unit of three pixels including one pixel 24 of red (R), one pixel 24 of green (G), and one pixel 24 of blue (B) is represented by one pixel ( 15) (Area surrounded by a broken line frame in FIG. 15).
  • one unit 85 is composed of 16 picture elements consisting of (vertical 4 picture elements) ⁇ (horizontal 4 picture elements).
  • the data conversion process here is almost the same as in the second embodiment.
  • the second embodiment when a display in a certain frame period is seen, some of the picture elements in the unit 45 are within one picture element.
  • one picture is different in the type of gradation data between the G pixel and the R and B pixels in FIG.
  • the three pixels in the element (R pixel, G pixel, and B pixel) all select the same type of gradation data in a certain frame period.
  • the display in a certain frame is a display in which D1 and D2 are mixed, but when the whole unit is averaged, the data D is displayed.
  • continuous four frame periods are set as one unit period period, and gradation data D obtained by averaging the gradation data displayed in these four frame periods is displayed in the one unit period period.
  • Time-division driving for gradation data is performed.
  • FIG. 15 shows an example of gradation data after conversion in a certain frame period.
  • the data of D1 and D2 is switched when the frame is changed, and the same data is displayed at a cycle of 4 frames (every 4 frames). Therefore, when one pixel is viewed, the data D is displayed when the time average is taken.
  • FIG. 16 shows the results of measurement of gradation luminance characteristics (relationship between gradation value and transmittance) when the driving method of the present embodiment is used in an MVA mode liquid crystal display device.
  • FIG. 16 also shows the results when the conventional driving method is used.
  • the gradation luminance characteristic when the liquid crystal display panel is viewed from the front direction is shown by a solid line, and the driving method of the present embodiment is adopted.
  • Fig. 5 shows the gradation luminance characteristics when the liquid crystal display panel is viewed from an oblique angle of 45 ° in the left-right direction by a one-dot chain line.
  • the gradation luminance characteristic when viewed is shown by a broken line.
  • the seventh embodiment of the present invention will be described with reference to FIGS. 17 to 18 as follows.
  • the configuration of the liquid crystal display device 110 of the present embodiment is the same as that of the liquid crystal display device of the third embodiment shown in FIG. 8, and a driving method similar to that of the third embodiment is performed. Therefore, only the points different from the third embodiment will be described here.
  • FIG. 17 shows a configuration of one unit 95 when display driving is performed in the present embodiment.
  • a unit of three pixels including one pixel 24 of red (R), one pixel 24 of green (G), and one pixel 24 of blue (B) is represented by one pixel ( (Area surrounded by a broken-line frame in FIG. 17).
  • one unit 95 is composed of 16 picture elements consisting of (vertical 4 picture elements) ⁇ (horizontal 4 picture elements).
  • the data conversion process here is almost the same as in the third embodiment.
  • the G pixel, R, B pixel in one picture element are
  • three pixels (R pixel, G pixels and B pixels) all select the same type of gradation data in a certain frame period.
  • D1 (R1, G1, B1), D2 (R2, G2, B2), D3 (R3, G3, B3), and D4 (R4, G4, B4)
  • the display in a certain frame is a display in which D1, D2, D3, and D4 are mixed, but when the whole unit is averaged, the data D is displayed.
  • continuous four frame periods are set as one unit period period, and gradation data D obtained by averaging the gradation data displayed in these four frame periods is displayed in the one unit period period.
  • Time-division driving for gradation data is performed.
  • FIG. 17 shows an example of gradation data after conversion in a certain frame period.
  • the data of D1 to D4 is switched when the frame is changed, and the same data is displayed at a cycle of 4 frames (every 4 frames). Therefore, when one pixel is viewed, the data D is displayed when the time average is taken.
  • FIG. 18 shows the results of measurement of gradation luminance characteristics (relationship between gradation value and transmittance) when the driving method of the present embodiment is used in an MVA mode liquid crystal display device.
  • FIG. 18 also shows the results when the conventional driving method is used.
  • the gradation luminance characteristic when the liquid crystal display panel is viewed from the front direction is indicated by a solid line, and the driving method of the present embodiment is employed.
  • Fig. 2 shows the gradation luminance characteristics when the liquid crystal display panel is viewed from an oblique angle of 45 ° in the left-right direction by a one-dot chain line. The gradation luminance characteristic when viewed is shown by a broken line.
  • FIG. 19 shows a configuration of one unit 105 when display driving is performed in the present embodiment.
  • a unit of three pixels including one pixel 24 of red (R), one pixel 24 of green (G), and one pixel 24 of blue (B) is represented by one pixel ( (Area surrounded by a broken line frame in FIG. 19).
  • one unit 105 is composed of four picture elements composed of (vertical 2 picture elements) ⁇ (2 horizontal picture elements).
  • the data conversion process here is almost the same as in the fourth embodiment.
  • the G pixel and R, B pixels in one picture element are In this embodiment, as shown in FIG. 19, three types of pixels (R pixel, G pixels and B pixels) all select the same type of gradation data in a certain frame period.
  • D1 (R1, G1, B1), D2 (R2, G2, B2), D3 (R3, G3, B3), and D4 (R4, G4, B4)
  • the display in a certain frame is a display in which D1, D2, D3, and D4 are mixed, but when the whole unit is averaged, the data D is displayed.
  • continuous four frame periods are set as one unit period period, and gradation data D obtained by averaging the gradation data displayed in these four frame periods is displayed in the one unit period period.
  • Time-division driving for gradation data is performed.
  • FIG. 19 shows an example of gradation data after conversion in a certain frame period.
  • the data of D1 to D4 is switched when the frame is changed, and the same data is displayed at a cycle of 4 frames (every 4 frames). Therefore, when one pixel is viewed, the data D is displayed when the time average is taken.
  • FIG. 20 shows the results of measurement of gradation luminance characteristics (relationship between gradation value and transmittance) when the driving method of the present embodiment is used in an MVA mode liquid crystal display device. Note that FIG. 20 also shows a result of using a conventional driving method for comparison.
  • the gradation luminance characteristic when the liquid crystal display panel is viewed from the front direction is shown by a solid line, and the driving method of the present embodiment is employed.
  • Fig. 2 shows the gradation luminance characteristics when the liquid crystal display panel is viewed from an oblique angle of 45 ° in the left-right direction by a one-dot chain line. The gradation luminance characteristics when viewed are indicated by broken lines.
  • the size of one unit is 4 pixels consisting of (vertical 2 picture elements) ⁇ (2 horizontal picture elements) or (vertical 4 picture elements) ⁇ (4 horizontal picture elements).
  • the present invention is not necessarily limited to such a configuration.
  • the number of lookup tables is 2 or 4, but the present invention is not necessarily limited to this configuration.
  • LUTs in the order of LUT1, LUT2, LUT3, and LUT2 in four frame periods using three lookup tables.
  • the present invention reduces the difference between the ⁇ characteristic when the liquid crystal display panel is viewed from the front direction and the ⁇ characteristic when the liquid crystal display panel is viewed from the oblique direction, without further complicating the pixel structure, and further improves the display quality. Can be improved. Therefore, the liquid crystal display device of the present invention can be suitably used as a mobile liquid crystal display device using a relatively small liquid crystal display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 本発明の液晶表示装置(10)は、複数個の画素を1つのユニットとし、このユニット内に含まれる各画素には、入力された階調データからユニット内の位置によって異なる値に変換された階調データを供給して階調表示を行う表示コントローラ(14)(表示駆動部)を備えている。表示コントローラ(14)では、ユニット内のそれぞれの画素の階調データを表示面積的に平均化することで、入力された階調データによる階調表示となるような各階調データに変換している。表示コントローラ(14)には、位置情報検出部(31)、入力データ変換部(33)(階調データ変換部)などが設けられている。

Description

液晶表示装置、及び液晶表示装置の駆動方法
 本発明は、いわゆる面積分割方式を用いて表示駆動を行う液晶表示装置、およびその駆動方法に関するものである。
 液晶表示装置は、高精細、薄型、軽量および低消費電力等の優れた特長を有する平面表示装置であり、近年、表示性能の向上、生産能力の向上および他の表示装置に対する価格競争力の向上に伴い、市場規模が急速に拡大している。
 従来一般的であったツイステッド・ネマティク・モード(TNモード)の液晶表示装置は、正の誘電率異方性を持つ液晶分子の長軸を基板表面に対して略平行に配向させ、且つ、液晶分子の長軸が液晶層の厚さ方向に沿って上下の基板間で略90度捻れるように配向処理が施されている。この液晶層に電圧を印加すると、液晶分子が電界に平行に立ち上がり、捻れ配向(ツイスト配向)が解消される。TNモードの液晶表示装置は、電圧による液晶分子の配向変化に伴う旋光性の変化を利用することによって、透過光量を制御するものである。
 TNモードの液晶表示装置は、生産マージンが広く生産性に優れている。一方、表示性能、とりわけ視野角特性の点で問題があった。具体的には、TNモードの液晶表示装置の表示面を斜め方向から観測すると、表示のコントラスト比が著しく低下し、正面からの観測で黒から白までの複数の階調が明瞭に観測される画像を斜め方向から観測すると階調間の輝度差が著しく不明瞭となる点が問題であった。さらに、表示の階調特性が反転し、正面からの観測でより暗い部分が斜め方向からの観測ではより明るく観測される現象(いわゆる、階調反転現象)も問題であった。
 近年、これらTNモードの液晶表示装置における視野角特性を改善した液晶表示装置として、IPSモード(インプレイン・スイッチング・モード)、MVAモード(マルチドメイン・バーティカル・アラインド・モード)、CPAモード(Continuous Pinwheel Alignment)等が開発されている。
 これらの新規なモード(広視野角モード)の液晶表示装置は、いずれも視野角特性に関する上記の具体的な問題点を解決している。すなわち、表示面を斜め方向から観測した場合に表示コントラスト比が著しく低下したり、表示階調が反転するなどの問題は起こらない。
 しかしながら、液晶表示装置の表示品位の改善が進む状況下において、今日では視野角特性の問題点として、正面観測時のγ特性と斜め観測時のγ特性が異なる点、すなわちγ特性の視角依存性の問題(白浮き等)が新たに顕在化してきた。ここで、γ特性とは表示輝度の階調依存性であり、γ特性が正面方向と斜め方向とで異なるということは、階調表示状態が観測方向によって異なることにつながるため、写真等の画像を表示する場合や、またTV放送等を表示する場合に特に問題となる。
 γ特性の視野角依存性の問題は、IPSモードよりも、MVAモードやCPAモードにおいて顕著である。一方、IPSモードは、MVAモードやCPAモードに比べて正面観測時のコントラスト比の高いパネルを生産性良く製造することが難しい。これらの点から、特にMVAモードやCPAモードの液晶表示装置におけるγ特性の視角依存性を改善することが望まれる。
 上記γ特性の視角依存性を改善する方法として、特許文献1においては、マルチ画素駆動方式が提案されている。
 マルチ画素駆動方式とは、1つの表示画素を、輝度の異なる2つ以上の副画素(サブピクセル)で構成することによって視野角特性(γ特性の視角依存性)を改善する技術である。
 マルチ画素駆動方式では、1つの表示画素において目標とする輝度を得ようとする場合に、輝度の異なる複数の副画素において、その平均輝度が目標となる輝度になるように表示制御を行う。例えば、従来では、正面方向から見た場合と斜め方向から見た場合との間で輝度ズレの大きくなる中間調の目標輝度を得ようとする場合に、マルチ画素駆動方式では、副画素においては輝度ズレの小さい明輝度付近の領域及び暗輝度付近の領域の表示を行い、画素全体としては、それら副画素の輝度の平均によって中間調輝度を得ている。
 これにより、正面方向から見た場合と斜め方向から見た場合との間での輝度ズレが小さくなり、斜め方向から見た場合における中間調表示時の白浮きを抑えることができる。このように、特許文献1に開示されているようなマルチ画素駆動方式を採用することによって、液晶表示パネルを正面方向から見た場合のγ特性と斜め方向からの見た場合のγ特性との差を低減させることができる。
日本国公開特許公報「特開2004-62146号公報(公開日:2004年2月26日)」 日本国公開特許公報「特開平7-121144号公報(公開日:1995年5月12日)」
 上記のようなマルチ画素駆動方式は、1つの画素を2つ以上の副画素に分割しているため、一画素の大きさが比較的大きい大型の液晶表示パネルに対しては好適に用いられている。しかしながら、モバイル機器に用いられる液晶表示パネルなどのように、より精細度の高い小型の液晶表示パネルは、一画素の大きさが小さいため、これをさらに複数の副画素に分割すると、ピクセル構造が複雑化して開口率が著しく低下してしまい、十分な輝度が得られないという問題が発生する。
 本発明は、上記の問題点に鑑みてなされたものであり、画素構造の複雑化を招くことなく、液晶表示パネルを正面方向から見た場合のγ特性と斜め方向から見た場合のγ特性との差を低減させ、表示品質をさらに向上させることを目的とする。
 本発明にかかる液晶表示装置の駆動方法は、上記の課題を解決するために、複数のデータ信号線と、これら複数のデータ信号線と交差する複数の走査信号線と、上記複数のデータ信号線と上記複数の走査信号線との各交点に対応してマトリクス状に配置された画素と、を備えた液晶表示パネルを有する液晶表示装置の駆動方法であって、複数個の上記画素を1つのユニットとし、上記ユニット内に含まれる各画素には、入力された階調データから上記ユニット内の位置によって異なる値に変換された階調データを供給して階調表示を行い、これにより、上記ユニットにおいて目標とする階調表示を行うことを特徴としている。
 従来の一画素を複数のサブピクセル(副画素)に分割するという方式では、構造が複雑化してしまうことに加え、画素の開口率が低下してしまうという問題があった。そのため、特に、液晶表示パネルのサイズが比較的小さいモバイル形式の液晶表示装置においては、実用化が困難であった。
 上記の方法によれば、一画素を分割するのではなく、複数個の画素を組み合わせて1つのユニットとし、ユニット単位で面積分割表示を行うことができる。そのため、画素構造が複雑化したり、画素の開口率が低下することを防ぐことができる。そして、一つの入力階調データから、複数の異なる階調データへの変換を行う(例えば、中間調の階調データから、より高階調側の階調データおよびより低階調側の階調データという2つの階調データに変換する)ことで、正面方向のγ特性と斜め方向のγ特性との差を低減し、正面方向からの表示の見え方と斜め方向からの表示の見え方との差異を小さくすることができる。これにより、表示品質を向上させることができる。
 なお、上記のように、ユニット内に含まれる各画素に、異なる階調データを供給して階調表示を行い、これにより上記ユニットにおいて目標とする階調表示を行う場合、それぞれの画素の階調データを、ユニット内で表示面積的に平均化することで、入力された階調データによる階調表示となるような各階調データに変換する。これにより、一つのユニットでは、ユニット内に含まれる各画素の階調表示を平均化することで、上記1つのユニット全体において、上記の入力された階調データに基づく階調表示(目標とする階調表時)を行うことができる。
 本発明の液晶表示装置の駆動方法は、入力される階調データ、および、当該階調データに対応する入力同期信号に基づいて、入力された階調データが上記ユニット内のどの位置の画素の表示を行うものであるかを検出する位置情報検出工程と、上記位置情報検出工程によって検出された位置情報に基づき、入力された階調データの変換の仕方を上記ユニット内の位置によって異ならせることで、位置によって異なる階調データの変換処理を行う階調データ変換工程とにより、上記ユニット内に含まれる各画素に、それぞれ異なる階調データを供給してもよい。
 なお、上記のように、複数個の画素を組み合わせて1つのユニットとし、ユニット単位で面積分割駆動を行うと、斜め方向のγ特性を改善することができる一方で、解像度が低下してしまうという問題がある。
 そこで、本発明の液晶表示装置の駆動方法は、連続する複数のフレームを1つの単位周期とし、上記単位周期内の全フレーム期間で表示される階調データを平均化した階調データを、上記単位周期における表示階調データとする時分割駆動をさらに行うことが好ましい。
 上記の方法では、面積分割駆動に加えて、時分割駆動も行う。ここでいう時分割駆動とは、複数のフレームを単位周期として、フレーム毎に異なるデータを書き込み、それを単位時間で平均化するという駆動方法である。
 上記の方法によれば、複数個の画素で構成されたユニット単位での表示駆動に加えて、一画素単位で、フレーム期間ごとに異なる階調データによる表示を行うことができる。そのため、ユニット単位で面積分割駆動を行うことによる解像度の低下を防ぐことができる。
 ところで、特許文献2には、液晶表示装置の広視野角化を図るために、時分割駆動を用いるという技術(すなわち、画像信号のγ特性をnフレームごと(n≧2)に切り替えて、液晶駆動電圧とする技術)が開示されている。しかしながら、この方法では、時分割駆動のみを用いてγ特性の切り替えを行っているためフリッカーが目立ってしまうという問題がある。
 これに対して、上記の構成では、面積分割駆動と時分割駆動とを組み合わせて、斜め方向からのγ特性を、正面方向からのγ特性に近づけているため、フリッカーが目立つことなく、パネル全体において均一な表示を行うことができる。
 本発明の液晶表示装置の駆動方法において、上記階調データ変換工程では、複数のルックアップテーブルを用いて階調データの変換を行い、上記の検出された位置情報に基づいて、上記複数のルックアップテーブルのうちの何れを選択するかを決定することが好ましい。
 上記の方法によれば、ルックアップテーブルを使用して階調データの変換処理を行うことができ、より容易に変換処理を行うことができる。これにより、データ変換処理に必要な回路などの構成を簡略化することができる。
 本発明の液晶表示装置の駆動方法において、上記時分割駆動を行う場合の上記階調データ変換工程では、複数のルックアップテーブルを用いて階調データの変換を行い、上記の検出された位置情報、および、上記階調データが上記単位周期のうちのどのフレーム期間の階調データであるかというフレーム情報に基づいて、上記複数のルックアップテーブルのうちの何れを選択するかを決定することが好ましい。
 上記の方法によれば、ルックアップテーブルを使用して階調データの変換処理を行うことができ、より容易に変換処理を行うことができる。これにより、データ変換処理に必要な回路などの構成を簡略化することができる。
 本発明の液晶表示装置の駆動方法において、上記ルックアップテーブルの数は、2、3、または4のいずれかであってもよい。
 上記の方法によれば、ルックアップテーブルの数を2、3、または4とすることで、階調データ変換工程において、入力された階調データの変換の仕方が2種類、3種類、または4種類となる。これにより、1つのユニットにおいて、2種類、3種類、または4種類の階調データを平均化して階調表示を行うことができる。
 本発明の液晶表示装置の駆動方法において、上記液晶表示装置が、赤色、緑色、および青色のカラーフィルタを有するものであるときに、赤色の一画素、緑色の一画素、および青色の一画素で構成される3つの画素の単位を一絵素とすると、上記1つのユニットは、(縦2絵素)×(横2絵素)からなる4絵素、または、(縦4絵素)×(横4絵素)からなる16絵素で構成されていてもよい。
 本発明の液晶表示装置の駆動方法において、上記単位周期のフレーム数は、2または4であってもよい。
 本発明の液晶表示装置の駆動方法では、上記データ信号線に印加する信号電圧の極性をドット反転駆動させており、上記液晶表示装置が、赤色、緑色、および青色のカラーフィルタを有するものであるときに、赤色の一画素、緑色の一画素、および青色の一画素で構成される3つの画素の単位を一絵素とすると、上記単位周期内のフレーム期間の一つにおいて、上記信号電圧の極性が同じになる上記一絵素内の各画素に対して入力される階調データは、上記階調データ変換工程において、同じ変換の仕方で階調データの変換が行われることが好ましい。
 ドット反転駆動とは、1水平走査期間ごとにデータ信号線に印加される電圧の極性が反転するとともに、隣接するデータ信号線同士は互いに異なる極性となっている駆動方式である。
 このドット反転駆動を採用することにより、表示におけるシャドーイング(クロストーク)を防止することができる。
 また、ここで「上記階調データ変換工程において、同じ変換の仕方で階調データの変換が行われる」とは、例えばルックアップテーブルを用いて階調データの変換を行う場合には、複数のルックアップテーブルのうちの同じルックアップテーブルを用いて階調データの変換が行われることを意味する。
 上記の方法によれば、一つの絵素内において、あるフレーム期間において、極性が同じになる画素同士では、同じ種類の階調データが選択され、極性が異なる画素同士では、異なる種類の階調データが選択されることになる。これにより、ドット反転駆動の液晶ディスプレイにおいて、本発明の駆動方法を適用した場合に起こり得る焼きつき、表示ムラの発生を抑えることができる。
 本発明にかかる液晶表示装置は、上記の課題を解決するために、複数のデータ信号線と、これら複数のデータ信号線と交差する複数の走査信号線と、上記複数のデータ信号線と上記複数の走査信号線との各交点に対応してマトリクス状に配置された画素と、を備えた液晶表示パネルを有する液晶表示装置であって、複数個の上記画素を1つのユニットとし、上記ユニット内に含まれる各画素には、入力された階調データから上記ユニット内の位置によって異なる値に変換された階調データを供給して階調表示を行う表示駆動部を備えており、上記ユニット全体で見たときの階調表示は、目標とする階調表示となっていることを特徴としている。
 従来の一画素を複数のサブピクセル(副画素)に分割するという方式では、構造が複雑化してしまうことに加え、画素の開口率が低下してしまうという問題があった。そのため、特に、液晶表示パネルのサイズが比較的小さいモバイル形式の液晶表示装置においては、実用化が困難であった。
 上記の構成によれば、一画素を分割するのではなく、複数個の画素を組み合わせて1つのユニットとし、ユニット単位で面積分割表示を行うことができる。そのため、画素構造が複雑化したり、画素の開口率が低下することを防ぐことができる。そして、一つの入力階調データから、複数の異なる階調データへの変換を行う(例えば、中間調の階調データから、より高階調側の階調データおよびより低階調側の階調データという2つの階調データに変換する)ことで、正面方向のγ特性と斜め方向のγ特性との差を低減し、正面方向からの表示の見え方と斜め方向からの表示の見え方との差異を小さくすることができる。これにより、表示品質を向上させることができる。
 なお、上記のように、ユニット内に含まれる各画素に、異なる階調データを供給して階調表示を行い、これにより上記ユニットにおいて目標とする階調表示を行う場合、それぞれの画素の階調データを、ユニット内で表示面積的に平均化することで、入力された階調データによる階調表示となるような各階調データに変換する。これにより、一つのユニットでは、ユニット内に含まれる各画素の階調表示を平均化することで、上記1つのユニット全体で見たときに、上記の入力された階調データに基づく階調表示(目標とする階調表時)を行うことができる。
 本発明の液晶表示装置において、上記表示駆動部は、入力される階調データ、および、当該階調データに対応する入力同期信号に基づいて、入力された階調データが上記ユニット内のどの位置の画素の表示を行うものであるかを検出する位置情報検出部と、上記位置情報検出部によって検出された位置情報に基づいて、入力された階調データの変換の仕方を上記ユニット内の位置によって異ならせることで、位置によって異なる階調データの変換処理を行う階調データ変換部とを有しており、これらにより、上記ユニット内に含まれる各画素に、異なる値に変換された階調データをそれぞれ供給してもよい。
 なお、上記のように、複数個の画素を組み合わせて1つのユニットとし、ユニット単位で面積分割駆動を行うと、斜め方向のγ特性を改善することができる一方で、解像度が低下してしまうという問題がある。
 そこで、本発明の液晶表示装置において、上記表示駆動部は、連続する複数のフレームを1つの単位周期とし、上記単位周期内の全フレーム期間で表示される階調データを平均化した階調データを、上記単位周期における表示階調データとする時分割駆動をさらに行うことが好ましい。
 上記の構成では、面積分割駆動に加えて、時分割駆動も行っている。ここでいう時分割駆動とは、複数のフレームを単位周期として、フレーム毎に異なるデータを書き込み、それを単位時間で平均化するという駆動方法である。
 上記の構成によれば、複数個の画素で構成されたユニット単位での表示駆動に加えて、一画素単位で、単位周期内のフレーム期間ごとに異なる階調データによる表示を行うことができる。そのため、ユニット単位で面積分割駆動を行うことによる解像度の低下を防ぐことができる。
 本発明の液晶表示装置において、上記階調データ変換部は、複数のルックアップテーブルを用いて階調データの変換を行うものであり、上記の検出された位置情報に基づいて、上記複数のルックアップテーブルのうちの何れを選択するかを決定していることが好ましい。
 上記の構成によれば、ルックアップテーブルを使用して階調データの変換処理を行うことができ、より容易に変換処理を行うことができる。これにより、データ変換処理に必要な回路などの構成を簡略化することができる。
 本発明の液晶表示装置において、上記時分割駆動を行う場合の上記階調データ変換部は、複数のルックアップテーブルを用いて階調データの変換を行うものであり、上記の検出された位置情報、および、上記階調データが上記単位周期期間のうちのどのフレーム期間の階調データであるかというフレーム情報に基づいて、上記複数のルックアップテーブルのうちの何れを選択するかを決定していることが好ましい。
 上記の構成によれば、ルックアップテーブルを使用して階調データの変換処理を行うことができ、より容易に変換処理を行うことができる。これにより、データ変換処理に必要な回路などの構成を簡略化することができる。
 本発明の液晶表示装置において、上記ルックアップテーブルの数は、2、3、または4のいずれかであってもよい。
 上記の構成によれば、ルックアップテーブルの数を2、3、または4とすることで、階調データ変換部における、入力された階調データの変換の仕方が2種類、3種類、または4種類となる。これにより、1つのユニットにおいて、2種類、3種類、または4種類の階調データを平均化して階調表示を行うことができる。
 本発明の液晶表示装置は、赤色、緑色、および青色のカラーフィルタを有するものであるときに、赤色の一画素、緑色の一画素、および青色の一画素で構成される3つの画素の単位を一絵素とすると、上記1つのユニットは、(縦2絵素)×(横2絵素)からなる4絵素、または、(縦4絵素)×(横4絵素)からなる16絵素で構成されていてもよい。
 本発明の液晶表示装置において、上記単位周期のフレームの数は、2または4であってもよい。
 本発明の液晶表示装置において、上記データ信号線に印加される信号電圧の極性は、ドット反転駆動によって反転されており、当該液晶表示装置が、赤色、緑色、および青色のカラーフィルタを有するものであるときに、赤色の一画素、緑色の一画素、および青色の一画素で構成される3つの画素の単位を一絵素とすると、上記単位周期内のフレーム期間の一つにおいて、上記信号電圧の極性が同じになる上記一絵素内の各画素に対して入力される階調データは、上記階調データ変換部では、同じ変換の仕方で階調データの変換が行われることが好ましい。
 上記の構成によれば、ドット反転駆動を採用することにより、表示におけるシャドーイング(クロストーク)を防止することができる。
 また、ここで「上記階調データ変換部では、同じ変換の仕方で階調データの変換が行われる」とは、例えばルックアップテーブルを用いて階調データの変換を行う場合には、複数のルックアップテーブルのうちの同じルックアップテーブルを用いて階調データの変換が行われることを意味する。
 上記の構成によれば、一つの絵素内において、あるフレーム期間において、極性が同じになる画素同士では、同じ種類の階調データが選択され、極性が異なる画素同士では、異なる種類の階調データが選択されることになる。これにより、ドット反転駆動の液晶ディスプレイにおいて、本発明の液晶表示装置における駆動方法を適用した場合に懸念される焼きつき、表示ムラの発生を抑えることができる。
 また、本発明のかかる液晶表示装置において、液晶表示パネルは、ノーマリーブラックモードの液晶表示パネルであってもよい。本発明を、ノーマリーブラックモードの液晶表示装置に適用することで、表示画像の白浮きをより低減させコントラストを向上させることができるため、表示品位を一層向上させた液晶表示装置を実現することができる。
 本発明にかかる液晶表示装置の駆動方法は、複数個の上記画素を1つのユニットとし、上記ユニット内に含まれる各画素には、入力された階調データから上記ユニット内の位置によって異なる値に変換された階調データを供給して階調表示を行い、これにより目標とする階調表示を行うことを特徴としている。
 また、本発明にかかる液晶表示装置は、複数個の上記画素を1つのユニットとし、上記ユニット内に含まれる各画素には、入力された階調データから上記ユニット内の位置によって異なる値に変換された階調データを供給して階調表示を行う表示駆動部を備えており、上記ユニット全体で見たときの階調表示は、目標とする階調表示となっていることを特徴としている。
 本発明によれば、画素構造の複雑化を招くことなく、液晶表示パネルを正面方向から見た場合のγ特性と斜め方向から見た場合のγ特性との差を低減させ、表示品質をさらに向上させることができる。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明によって明白になるであろう。
本発明の第1、第2、第5、および、第6の実施形態にかかる液晶表示装置の構成を示すブロック図である。 本発明の実施形態にかかる液晶表示装置に備えられた液晶表示パネルの構成を示す平面図である。 本発明の第1の実施形態の液晶表示装置において、複数の画素からなるユニットの構成を示す模式図である。 本発明の第1の実施形態の液晶表示装置において、階調値と透過率との関係を測定した結果を示すグラフである。 液晶表示装置におけるドット反転駆動について説明する模式図である。 本発明の第2の実施形態の液晶表示装置において、複数の画素からなるユニットの構成を示す模式図である。 本発明の第2の実施形態の液晶表示装置において、階調値と透過率との関係を測定した結果を示すグラフである。 本発明の第3、第4、第7、および、第8の実施形態にかかる液晶表示装置の構成を示すブロック図である。 本発明の第3の実施形態の液晶表示装置において、複数の画素からなるユニットの構成を示す模式図である。 本発明の第3の実施形態の液晶表示装置において、階調値と透過率との関係を測定した結果を示すグラフである。 本発明の第4の実施形態の液晶表示装置において、複数の画素からなるユニットの構成を示す模式図である。 本発明の第4の実施形態の液晶表示装置において、階調値と透過率との関係を測定した結果を示すグラフである。 本発明の第5の実施形態の液晶表示装置において、複数の画素からなるユニットの構成を示す模式図である。 本発明の第5の実施形態の液晶表示装置において、階調値と透過率との関係を測定した結果を示すグラフである。 本発明の第6の実施形態の液晶表示装置において、複数の画素からなるユニットの構成を示す模式図である。 本発明の第6の実施形態の液晶表示装置において、階調値と透過率との関係を測定した結果を示すグラフである。 本発明の第7の実施形態の液晶表示装置において、複数の画素からなるユニットの構成を示す模式図である。 本発明の第7の実施形態の液晶表示装置において、階調値と透過率との関係を測定した結果を示すグラフである。 本発明の第8の実施形態の液晶表示装置において、複数の画素からなるユニットの構成を示す模式図である。 本発明の第8の実施形態の液晶表示装置において、階調値と透過率との関係を測定した結果を示すグラフである。
 〔実施の形態1〕
 本発明の第1の実施形態について、図1~図5に基づいて説明すると以下の通りである。
 本実施の形態では、本発明の液晶表示装置の一例として、携帯電話などのモバイル型の液晶表示装置を例に挙げて説明する。但し、本発明はこれに限定はされない。
 本実施の形態の液晶表示装置は、複数個の上記画素を1つのユニットとし、このユニット内に含まれる各画素に対して、それぞれ異なる階調データを供給し、ユニット内に含まれる各画素の階調表示を平均化することで、上記1つのユニットにおいて、目標とする階調表示を行うという、いわゆる面積分割による表示駆動を行っている。また、本実施の形態の液晶表示装置では、この面積分割駆動に加え、連続する複数のフレームを1つの単位周期とし、単位周期内の全フレーム期間で表示される階調データを平均化した階調データを、上記単位周期における表示階調データとする時分割駆動を行っている。
 図1には、本実施の形態の液晶表示装置10の構成を示す。
図1に示すように、液晶表示装置10は、主な構成部材として、液晶表示パネル11、バックライト(図示せず)、ゲートドライバ12、ソースドライバ13、表示コントローラ14(表示駆動部)などを備えている。
 液晶表示パネル11は、アクティブマトリクス基板と対向基板との間に液晶層を備えた構成となっている。本実施の形態では、液晶表示パネル11の表示モードとして、MVAモード、TNモード、IPSモードなどが採用可能である。但し、本発明は、電圧無印加状態で黒表示となるノーマリーブラックモードの液晶表示パネルに適用することがより好ましい。ノーマリーブラックモードの液晶表示パネルとしては、例えば、IPSモード、MVAモード、CPAモードの各液晶表示パネルが挙げられる。このようなノーマリーブラックモードの液晶表示パネルを採用することで、コントラストを高くすることができ、表示品位を向上させることができる。
 なお、上記した各モードのうち、MVAモード、CPAモードなどの垂直配向を用いた各液晶表示パネルに本発明を適用することがさらに好ましい。これらの各モードに本発明を適用すれば、正面方向から見た場合のγ特性と斜め方向から見た場合のγ特性との差をより効果的に低減させ、表示品質をさらに向上させることができる。
 図2には、液晶表示装置10に備えられた液晶表示パネル11の構成を示す。
液晶表示パネル11を構成しているアクティブマトリクス基板上には、ゲートドライバ12に接続された複数の走査信号線21が設けられており、これらの走査信号線21と交差するように、複数のデータ信号線22が設けられている。これらのデータ信号線22は、ソースドライバ13と接続されている。そして、各走査信号線21と各データ信号線22との各交差部の近傍には、スイッチング素子であるTFT23が形成されている。
 また、各走査信号線21と各データ信号線22とが交差して形成された各格子の中に、画素電極24が形成されており、一つの画素電極24で一画素が構成されている。
 図2に示すように、画素電極24は、各TFT23に電気的に接続する構成となっており、TFT23では、走査信号線21に入力される走査信号が導通を指示した場合に、対応するデータ信号線22と画素電極24とを接続し、データ信号線に送信されるデータ信号を画素電極24へ入力する。これにより、各画素電極24では、入力されたデータ信号に基づいた表示が行われる。
 図示しないバックライトは、液晶表示パネル11の背面に設けられ、液晶パネルに対して光を照射する。
 表示コントローラ14は、図示しない信号源から送信された画像データ信号(入力階調データ(R・G・Bデータ)、入力同期信号(垂直同期信号および水平同期信号))およびドットクロックに基づいて、液晶表示パネル11に画像を表示させるための表示駆動信号を生成する。なお、上記信号源としては、液晶表示装置10が携帯電話の場合は、当該携帯電話における画像制御システムが挙げられる。また、液晶表示装置10が、テレビジョン放送の表示機能を有している場合には、信号源は、テレビジョン放送を受信する受信システムであってもよい。
 表示コントローラ14内には、位置情報検出部31、フレームカウンタ32、入力データ変換部33(階調データ変換部)、2種類のルックアップテーブル34a・34b(LUT1・LUT2)、タイミングコントローラ35などが設けられている。
 位置情報検出部31は、入力される階調データ、および、当該階調データに対応する入力同期信号(具体的には、水平同期信号)およびドットクロックに基づいて、入力された階調データが上記ユニット内のどの位置の画素の表示を行うものであるかを検出する。
 フレームカウンタ32は、入力された階調データとそれに対応する垂直同期信号に基づいて、入力された階調データが単位周期期間のうちのどのフレーム期間の階調データであるかというフレーム情報を算出する。
 入力データ変換部33は、位置情報検出部31によって検出された位置情報に基づいて、上記の入力された階調データの変換の仕方を上記ユニット内の位置によって異ならせることで、位置ごとに異なる階調データの変換処理を行う。さらに、フレームカウンタ32によって算出されたフレーム情報に基づいて、フレームごとに異なる階調データの変換処理を行う。ここで行われる階調データの変換処理の詳細については後述する。
 ルックアップテーブル34aおよび34b(LUT1およびLUT2)は、入力データ変換部33に入力される階調データと、入力データ変換部33から出力される階調データとが、一対一で対応付けられたテーブルである。これらのLUTは、入力データ変換部33が階調データの変換処理を行う際に使用される。
 以上のような構成を有する表示コントローラ14では、複数個の画素を1つのユニットとみなし、当該ユニット内に含まれる各画素に対して、2種類の異なる階調データの何れかを供給するための階調データの変換処理を行っている。そして、1つのユニットに含まれる各画素では、それぞれ異なる階調データに基づいて階調表示が行われ、各画素の階調表示を平均化することで、上記1つのユニットにおいて、目標とする階調表示が行われる。
 以下に、液晶表示装置10において行われる表示駆動の具体的な方法について説明する。ここでは、液晶表示装置10が赤色(R)、緑色(G)、および青色(B)のカラーフィルタを有する場合を例に挙げて説明する。
 図3には、本実施の形態において表示駆動を行う場合の一つのユニット25の構成を示す。なお、ここでは、赤色(R)の1つの画素24、緑色(G)の1つの画素24、および青色(B)の1つの画素24で構成される3つの画素の単位を、一絵素(図3中の破線の枠で囲まれた領域)とする。この図に示すように、本実施の形態では、1つのユニット25は、(縦2絵素)×(横2絵素)からなる4絵素で構成されている。
 本実施の形態では、この1ユニットにおいて、面積分割駆動を行う。すなわち、表示コントローラ14(表示駆動部)は、(縦2絵素)×(横2絵素)からなる4絵素を1つのユニット25とし、ユニット25内に含まれる各画素24には、入力された階調データ(Rデータ、Gデータ、またはBデータ)からユニット内の位置ごとに異なる値に変換された階調データを供給するためのデータ変換処理を行う。そして、このデータ変換処理によって得られた階調データをユニット内の各画素に供給して階調表示を行った場合、ユニット内に含まれる各画素の階調表示を平均化すると、上記1つのユニット全体において、上記の入力された階調データに基づく階調表示(すなわち、目標とする階調表示)が実現できる。
 さらに、本実施の形態では、上記のような面積分割駆動を行うことによって起こり得る解像度の劣化を抑えるために、上記の面積分割駆動に加え、連続する複数の垂直期間(複数フレーム)を1単位周期とし、各フレームで表示されるデータの時間平均をその単位周期の表示データとする時分割駆動も行っている。
 次に、表示コントローラ14で行われるデータ変換処理の方法について説明する。
 図1に示すように、表示コントローラ14には、図示しない信号源から、階調データ(R,G,Bデータ)および入力同期信号(垂直同期信号および水平同期信号)およびドットクロックが画像データ信号として入力される。
 表示コントローラ14内の位置情報検出部31では、入力される階調データ、および、当該階調データに対応する入力同期信号(具体的には、水平同期信号)およびドットクロックに基づいて、入力された階調データが図3に示すユニット25内のどの位置の画素24の表示を行うものであるかを検出し、これを位置情報として出力する。
 また、フレームカウンタ32では、入力された垂直同期信号をカウントすることで、その垂直同期信号に対応する階調データが何フレーム目のデータであるかを算出し、これをフレーム情報として出力する。
 上記の位置情報およびフレーム情報は、入力データ変換部33へ入力される。入力データ変換部33では、階調データ、および、これに対応する位置情報およびフレーム情報に基づいて階調データの変換処理を行う。ここでの変換処理は、上記の位置情報およびフレーム情報に基づいて、入力された階調データの変換の仕方を、ユニット25内の位置およびフレームによって異ならせることで、ユニット25内の位置および単位周期内のフレームごとに異なる階調データの変換処理を行うというものである。
 本実施の形態では、ここでの階調データ変換処理を、2種類のルックアップテーブル34aおよび34bを用いて行っている。これにより、階調データの変換処理を2種類の方法で行うことができる。
 つまり、入力データ変換部33では、入力された位置情報およびフレーム情報に基づいて、2種類のルックアップテーブル34aおよび34bのうちの何れを選択するかを決定することで、ユニット25内の位置およびフレームによって、階調データの変換の仕方を異ならせている。
 上記のような方法でデータ変換処理が行われた階調データは、タイミングコントローラ35へ入力される。
 タイミングコントローラ35は、走査信号線21およびデータ信号線22へ供給する各信号の入力タイミングを決める。具体的には、タイミングコントローラ35は、入力同期信号に基づき生成したクロック信号、スタートパルス信号などの各種信号、および、入力データ変換部33で変換した階調データを所定のタイミングで出力する。
 タイミングコントローラ35から出力された各種信号は、ゲートドライバ12およびソースドライバ13を通して液晶表示パネル11の走査信号線21およびデータ信号線22へ供給される。これによって、液晶表示パネル11では、ユニット25内における各画素24の位置によって異なるデータ変換処理をされた階調データによる表示がなされるとともに、フレームが切り替わると、各画素24において、前のフレームとは異なるデータ変換処理をされた階調データによる表示に切り替わることになる。
 ここで、より具体的な例として、図3に示すようなユニット構成であって、このユニット25全体において、D(R,G,B)という階調を表示したい場合のデータ変換処理について説明する。
 この場合、階調データDをD1(R1,G1,B1)とD2(R2,G2,B2)の2種類のデータに分割する。ここで、D1およびD2は、それぞれを同じ面積および同じ時間で表示した場合に、平均してDとなるような階調データの組み合わせである。そして、例えば、6ビットの階調データの場合、入力階調値D(0~63)のそれぞれに対応する出力階調値D1を格納したものが、第1のルックアップテーブル34a(LUT1)であり、入力階調値D(0~63)のそれぞれに対応する出力階調値D2を格納したものが、第2のルックアップテーブル34b(LUT2)である。
 入力データ変換部33では、位置情報検出部31において得られた位置情報およびフレームカウンタ32において得られたフレーム情報に基づいて、特定のフレーム期間におけるユニット25内の各画素24について、D1とD2のどちらを選択するかを決定し、該当するLUTから対応する変換後の階調データを決定する。
 図3には、あるフレーム期間における変換後の階調データの一例を示している。図3に示すように、D1(R1,G1,B1)とD2(R2,G2,B2)の表示比率(面積比率)は、D1:D2=1:1となっている。
 その結果、あるフレームにおける表示は、D1とD2が入り混じった表示になるが、ユニット全体を平均化した場合、データDを表示していることになる。
 また、本実施の形態では、1単位周期期間を2つのフレーム期間とし、前半部分である第1のフレーム期間に表示される階調データD1と後半部分である第2のフレーム期間に表示される階調データD2とを平均化した階調データDを、上記1単位周期期間における表示階調データとする時分割駆動を行っている。
 D1とD2のデータはフレームが変わると切り替わり、2フレーム周期で(2フレームごとに)同一データが表示される。そのため、一つの画素について見た場合、時間平均をとるとデータDを表示していることになる。
 以上の結果、ユニット全体で時間的にも空間的にも均一な表示を得ることができ、表示むらや解像度低下を起こすこともない。
 なお、階調データDをどのような階調データD1およびD2に分割するかという点については、特許文献1などに開示されているようなマルチ画素駆動方式の表示駆動において採用されている階調データの変換処理方法に準じて行うことができる。
 例えば、正面方向から見た場合と斜め方向から見た場合との間で輝度ズレの大きくなる中間調の目標輝度を得ようとする場合に、ユニット25内の各画素24においては輝度ズレの小さい明輝度付近の領域及び暗輝度付近の領域の階調表示を行い、ユニット25全体としては、各画素24の輝度の平均によって中間調輝度を得ることができる。
 これにより、液晶表示パネルを正面方向から見た場合のγ特性と斜め方向からの見た場合のγ特性との差を低減させることができる。
 また、従来のマルチ画素駆動方式では、一画素を複数のサブピクセル(副画素)に分割していたため、構造が複雑化してしまうことに加え、画素の開口率が低下してしまうという問題があった。これに対して、本実施の形態の構成によれば、一画素を分割するのではなく、複数個の画素を組み合わせて1つのユニットとし、ユニット単位で面積分割表示を行うことができる。そのため、画素構造を複雑化することなく、正面方向からの表示の見え方と斜め方向からの表示の見え方との差異を小さくすることができ、表示品質を向上させることができる。
 図4には、MVAモードの液晶表示装置において、本実施の形態の駆動方法を用いた場合の階調輝度特性(階調値と透過率との関係)を測定した結果を示す。なお、図4には、比較のために、従来の駆動方法を用いた場合の結果も示す。図4では、(本実施の形態および従来の方法の両方の場合における)液晶表示パネルを正面方向から見た場合の階調輝度特性を実線で示し、本実施の形態の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を一点鎖線で示し、従来の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を破線で示している。
 図4のグラフをみると、本実施の形態の駆動方法を採用した場合には、従来の方法と比較して、斜め方向から見た場合に輝度が高くなってしまう現象(白浮き)を抑えることができることがわかる。
 ここで、6ビット(全64階調)のデータの場合、白浮きの度合いの評価基準を、「白浮き率」として以下のように決める。
 白浮き率=(斜め方向での31階調の輝度-正面での31階調の輝度)
       /(正面での31階調の輝度)
 このとき、図4に示す実施例では、以下のような結果となった。
   本実施例の駆動方法:白浮き率=25.6%
   従来の駆動方法:白浮き率=53.6%
 ところで、本実施の形態では、図3に示すように、あるフレーム期間における表示を見た場合、一絵素内におけるGの画素とR,Bの画素との間で、(D1またはD2の何れを選択するかという)階調データの種類を異ならせている。
 これは、本実施の形態の液晶表示装置10では、データ信号線に印加する信号電圧の極性をドット反転駆動させているからである。ドット反転駆動の場合、R画素、B画素の極性とG画素の極性が逆になっているため、これらの画素間では引き込みの特性が異なる。このため、RGBの各画素に同じデータを書き込んだ場合、画素の極性の違いによる引き込みの違いによって表示がわずかに異なってしまい、それによる表示むらが発生しまう。
 そこで、上記の極性の違いを考慮して、Gの画素とR,Bの画素との間でデータを異ならせて書き込むことにより、+極性のみおよび-極性のみのどちらか一方の表示に統一することができるため、極性の違いによる表示むらを抑えることができる。
 図5には、ドット反転駆動を行う場合の各画素24における信号電圧の極性を模式的に示す。また、図3には、あるフレーム期間における各画素の極性を括弧書きで示している。これらの図を見ればわかるように、ドット反転駆動を採用した場合、隣接する画素同士は、互いに異なる極性となっている。
 そこで、本実施の形態では、あるフレーム期間において、信号電圧の極性が同じになる一絵素内の各画素に対して入力される階調データには、同じ種類の階調データが選択されるようにしている。図3に示す例では、極性が(+)となる画素(ユニット25内の左上の絵素では、Rの画素とBの画素)では、階調データD1が選択され、極性が(-)となる画素(ユニット25内の左上の絵素では、Gの画素)では、階調データD2が選択されている。これにより、焼きつきや時分割駆動における各パターンのむらを抑えることができる。
 〔実施の形態2〕
 本発明の第2の実施形態について、図6~図7に基づいて説明すると以下の通りである。
 なお、本実施の形態の液晶表示装置においても、実施の形態1と同様に、面積分割駆動と時分割駆動とを組み合わせた表示駆動を行っている。そのため、本実施の形態の液晶表示装置10の構成は、図1に示す実施の形態1の液晶表示装置と同じである。ここでは、実施の形態1における駆動方法と異なる点のみを説明する。
 図6には、本実施の形態において表示駆動を行う場合の一つのユニット45の構成を示す。なお、ここでは、赤色(R)の1つの画素24、緑色(G)の1つの画素24、および青色(B)の1つの画素24で構成される3つの画素の単位を、一絵素(図6中の破線の枠で囲まれた領域)とする。この図に示すように、本実施の形態では、1つのユニット45は、(縦4絵素)×(横4絵素)からなる16絵素で構成されている。
 ここで、図6に示すようなユニット構成であって、このユニット45全体において、D(R,G,B)という階調を表示したい場合のデータ変換処理について説明する。
 この場合、階調データDをD1(R1,G1,B1)とD2(R2,G2,B2)の2種類のデータに分割する。ここで、D1およびD2は、面積当たりの表示比率がD1:D2=1:3、および、時間当たりの表示比率がD1:D2=1:3となるように表示した場合に、平均してDとなるような階調データの組み合わせである。そして、例えば、6ビットの階調データの場合、入力階調値D(0~63)のそれぞれに対応する出力階調値D1を格納したものが、第1のルックアップテーブル34a(LUT1)であり、入力階調値D(0~63)のそれぞれに対応する出力階調値D2を格納したものが、第2のルックアップテーブル34b(LUT2)である。
 入力データ変換部33では、位置情報検出部31において得られた位置情報およびフレームカウンタ32において得られたフレーム情報に基づいて、特定のフレーム期間におけるユニット45内の各画素24について、D1とD2のどちらを選択するかを決定し、LUT1およびLUT2の何れかから対応する変換後の階調データを決定する。
 図6には、あるフレーム期間における変換後の階調データの一例を示している。図6に示すように、D1(R1,G1,B1)とD2(R2,G2,B2)の表示比率(面積比率)は、D1:D2=1:3となっている。
 その結果、あるフレームにおける表示は、D1とD2が入り混じった表示になるが、ユニット全体を平均化した場合、データDを表示していることになる。
 また、本実施の形態では、1単位周期期間を4つのフレーム期間に分割し、これら4つのフレーム期間に表示される階調データを平均化した階調データDを、上記1単位周期期間における表示階調データとする時分割駆動を行っている。つまり、連続する4つのフレーム期間を1単位周期期間としている。
 D1とD2のデータはサブフレームが変わると切り替わり、4フレーム周期で(4フレームごとに)同一データが表示される。そのため、一つの画素について見た場合、時間平均をとるとデータDを表示していることになる。
 以上の結果、ユニット全体で時間的にも空間的にも均一な表示を得ることができ、表示むらや解像度低下を起こすこともない。
 図7には、MVAモードの液晶表示装置において、本実施の形態の駆動方法を用いた場合の階調輝度特性(階調値と透過率との関係)を測定した結果を示す。なお、図7には、比較のために、従来の駆動方法を用いた場合の結果も示す。図7では、(本実施の形態および従来の方法の両方の場合における)液晶表示パネルを正面方向から見た場合の階調輝度特性を実線で示し、本実施の形態の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を一点鎖線で示し、従来の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を破線で示している。
 図7のグラフをみると、本実施の形態の駆動方法を採用した場合には、従来の方法と比較して、斜め方向から見た場合に輝度が高くなってしまう現象(白浮き)を抑えることができることがわかる。
 ここで、実施の形態1の実施例と同様に「白浮き率」を算出したところ、図7に示す実施例では、以下のような結果となった。
   本実施例の駆動方法:白浮き率=14.7%
   従来の駆動方法:白浮き率=53.6%
 上記の結果から、実施の形態2の実施例では、実施の形態1における実施例よりも白浮き率が抑えられ、また、特に低階調領域での白浮きが低減できることがわかった。これは、特に低階調領域を多用する肌色等といった白浮きに敏感な階調に対して大きな効果がある。
 なお、本実施の形態においても実施の形態1と同様に、ドット反転駆動を行う場合の焼きつきおよびフリッカーの低減を図るために、図6に示すように、あるフレーム期間における表示を見た場合、一絵素内に含まれるGの画素とR,Bの画素との間で、(D1またはD2の何れを選択するかという)階調データの種類を異ならせている。但し、本実施の形態では、図6に示すように、ユニット45内におけるD1(R1,G1,B1)とD2(R2,G2,B2)の表示比率(面積比率)が、D1:D2=1:3となっているため、ユニット45内の一部の絵素では、当該絵素内に含まれるR,G,Bの画素は、全て同じ種類の階調データとなっている。しかし、単位周期で考えた場合、全絵素において、あるフレームでは、(R1,G2,B1)または(R2,G1,B2)となる画素データの組合せに切り替わるようなLUT選択を行うため、焼きつき、フリッカー低減の効果は得られる。
 〔実施の形態3〕
 本発明の第3の実施形態について、図8~図10に基づいて説明すると以下の通りである。
 なお、本実施の形態の液晶表示装置においても、上記の各実施形態と同様に、面積分割駆動と時分割駆動とを組み合わせた表示駆動を行っている。
 図8には、本実施の形態の液晶表示装置110の構成を示す。
図8に示すように、液晶表示装置110は、主な構成部材として、液晶表示パネル111、バックライト(図示せず)、ゲートドライバ112、ソースドライバ113、表示コントローラ114(表示駆動部)などを備えている。
 液晶表示パネル111、バックライト、ゲートドライバ112、およびソースドライバ113は、図1に示す液晶表示装置10における液晶表示パネル11、バックライト(図示せず)、ゲートドライバ12、およびソースドライバ13とそれぞれ同じ構成であるためその説明を省略する。
 また、表示コントローラ114も、図1に示す表示コントローラ14とほぼ同様の構成であり、内部に、位置情報検出部131、フレームカウンタ132、入力データ変換部133(階調データ変換部)、ルックアップテーブル134a~134d(LUT1~LUT4)、タイミングコントローラ135などが設けられている。図1に示す液晶表示装置10では、2種類のルックアップテーブルを有している構成であったが、液晶表示装置110では、4種類のルックアップテーブルを有しており、この点が実施の形態1とは異なっている。
 以上のような構成を有する表示コントローラ114では、複数個の画素を1つのユニットとみなし、当該ユニット内に含まれる各画素に対して、4種類の異なる階調データの何れかを供給するための階調データの変換処理を行っている。そして、1つのユニットに含まれる各画素では、それぞれ異なる階調データに基づいて階調表示が行われ、各画素の階調表示を平均化することで、上記1つのユニットにおいて、目標とする階調表示が行われる。
 以下に、液晶表示装置110において行われる表示駆動の具体的な方法について説明する。ここでは、液晶表示装置110が赤色(R)、緑色(G)、および青色(B)のカラーフィルタを有する場合を例に挙げて説明する。
 図9には、本実施の形態において表示駆動を行う場合の一つのユニット55の構成を示す。なお、ここでは、赤色(R)の1つの画素24、緑色(G)の1つの画素24、および青色(B)の1つの画素24で構成される3つの画素の単位を、一絵素(図9中の破線の枠で囲まれた領域)とする。図9に示すように、本実施の形態では、1つのユニット55は、(縦4絵素)×(横4絵素)からなる16絵素で構成されている。
 本実施の形態では、この1ユニットにおいて、面積分割駆動を行う。すなわち、表示コントローラ114(表示駆動部)は、(縦4絵素)×(横4絵素)からなる16絵素を1つのユニット55とし、ユニット55内に含まれる各画素24には、入力された階調データ(Rデータ、Gデータ、またはBデータ)からユニット内の位置ごとに異なる値に変換された階調データを供給するためのデータ変換処理を行う。そして、このデータ変換処理によって得られた階調データをユニット内の各画素に供給して階調表示を行った場合、ユニット内に含まれる各画素の階調表示を平均化すると、上記1つのユニット全体において、上記の入力された階調データに基づく階調表示(すなわち、目標とする階調表示)が実現できる。
 さらに、本実施の形態では、上記のような面積分割駆動を行うことによって起こり得る解像度の劣化を抑えるために、上記の面積分割駆動に加え、連続する複数のフレームを1単位周期期間とし、フレームごとに1画素に異なるデータの書き込みを行う時分割駆動も行っている。すなわち、表示コントローラ114では、複数のフレーム期間を1単位周期期間とし、各フレームにおいて表示される各階調データを平均化した階調データを、上記1単位周期期間における表示階調データとするようなデータ変換処理を行っている。
 次に、表示コントローラ114で行われるデータ変換処理の方法について説明する。
 図8に示すように、表示コントローラ114には、図示しない信号源から、階調データ(R,G,Bデータ)および入力同期信号(垂直同期信号および水平同期信号)およびドットクロックが画像データ信号として入力される。
 表示コントローラ114内の位置情報検出部131では、入力される階調データ、および、当該階調データに対応する入力同期信号(具体的には、水平同期信号)およびドットクロックに基づいて、入力された階調データが図9に示すユニット55内のどの位置の画素24の表示を行うものであるかを検出し、これを位置情報として出力する。
 また、フレームカウンタ132では、入力された垂直同期信号をカウントすることで、その垂直同期信号に対応する階調データが何フレーム目のデータであるかを算出する。さらに、本実施の形態では、連続する4フレーム期間を1つの単位周期としているため、フレームカウンタでは、何れのフレーム期間のデータであるかを算出し、これをフレーム情報として出力する。
 上記の位置情報およびフレーム情報は、入力データ変換部133へ入力される。入力データ変換部133では、階調データ、および、これに対応する位置情報およびフレーム情報に基づいて階調データの変換処理を行う。ここでの変換処理は、上記の位置情報およびフレーム情報に基づいて、入力された階調データの変換の仕方を、ユニット55内の位置およびフレームによって異ならせることで、ユニット55内の位置およびフレームごとに異なる階調データの変換処理を行うというものである。
 本実施の形態では、ここでの階調データ変換処理を、4種類のルックアップテーブル134a・134b・134c・134dを用いて行っている。これにより、階調データの変換処理を4種類の方法で行うことができる。
 つまり、入力データ変換部133では、入力された位置情報およびフレーム情報に基づいて、4種類のルックアップテーブル134a~134dのうちの何れを選択するかを決定することで、ユニット55内の位置およびフレームによって、階調データの変換の仕方を異ならせている。
 上記のような方法でデータ変換処理が行われた階調データは、タイミングコントローラ135へ入力される。
 タイミングコントローラ135以降の処理については、実施の形態1と同様である。
 ここで、より具体的な例として、図9に示すようなユニット構成であって、このユニット55全体において、D(R,G,B)という階調を表示したい場合のデータ変換処理について説明する。
 この場合、階調データDをD1(R1,G1,B1)、D2(R2,G2,B2)、D3(R3,G3,B3)、D4(R4,G4,B4)という4種類のデータに分割する。ここで、D1、D2、D3、およびD4は、それぞれを同じ面積および同じ時間で表示した場合に、平均してDとなるような階調データの組み合わせである。そして、例えば、6ビットの階調データの場合、入力階調値D(0~63)のそれぞれに対応する出力階調値D1を格納したものが、第1のルックアップテーブル134a(LUT1)であり、入力階調値D(0~63)のそれぞれに対応する出力階調値D2を格納したものが、第2のルックアップテーブル134b(LUT2)であり、入力階調値D(0~63)のそれぞれに対応する出力階調値D3を格納したものが、第3のルックアップテーブル134c(LUT3)であり、入力階調値D(0~63)のそれぞれに対応する出力階調値D4を格納したものが、第4のルックアップテーブル134d(LUT4)である。
 入力データ変換部133では、位置情報検出部131において得られた位置情報およびフレームカウンタ132において得られたフレーム情報に基づいて、特定のフレーム期間におけるユニット55内の各画素24について、D1~D4の何れを選択するかを決定し、該当するLUTから対応する変換後の階調データを決定する。
 図9には、あるフレーム期間における変換後の階調データの一例を示している。図9に示すように、D1(R1,G1,B1)、D2(R2,G2,B2)、D3(R3,G3,B3)、およびD4(R4,G4,B4)の表示比率(面積比率)は、D1:D2:D3:D4=1:1:1:1となっている。
 その結果、あるフレームにおける表示は、D1、D2、D3、およびD4が入り混じった表示になるが、ユニット全体を平均化した場合、データDを表示していることになる。
 また、本実施の形態では、連続する4フレーム期間を1つの単位周期期間とし、これら4つのフレーム期間に表示される階調データを平均化した階調データDを、上記1単位周期期間における表示階調データとする時分割駆動を行っている。
 D1~D4のデータはフレームが変わると切り替わり、4フレーム周期で(4フレームごとに)同一データが表示される。そのため、一つの画素について見た場合、時間平均をとるとデータDを表示していることになる。
 以上の結果、ユニット全体で時間的にも空間的にも均一な表示を得ることができ、表示むらや解像度低下を起こすこともない。
 図10には、MVAモードの液晶表示装置において、本実施の形態の駆動方法を用いた場合の階調輝度特性(階調値と透過率との関係)を測定した結果を示す。なお、図10には、比較のために、従来の駆動方法を用いた場合の結果も示す。図10では、(本実施の形態および従来の方法の両方の場合における)液晶表示パネルを正面方向から見た場合の階調輝度特性を実線で示し、本実施の形態の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を一点鎖線で示し、従来の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を破線で示している。
 図10のグラフをみると、本実施の形態の駆動方法を採用した場合には、従来の方法と比較して、斜め方向から見た場合に輝度が高くなってしまう現象(白浮き)を抑えることができることがわかる。
 ここで、実施の形態1の実施例と同様に「白浮き率」を算出したところ、図10に示す実施例では、以下のような結果となった。
   本実施例の駆動方法:白浮き率=19.0%
   従来の駆動方法:白浮き率=53.6%
 上記の結果から、実施の形態2の実施例では、実施の形態1における実施例よりも白浮き率が抑えられ、ほぼ全階調にわたって白浮きを低減できることがわかった。また、本実施の形態によれば、1つのデータを4種類に分割しているため、多彩なデータの組み合わせが可能になり、より均一な画像を表示することができる。
 なお、本実施の形態においては、実施の形態1と同様に、ドット反転駆動を行う場合の焼きつきおよびフリッカーの低減を図るために、図9に示すように、あるフレーム期間における表示を見た場合、一絵素内に含まれるGの画素とR,Bの画素との間で、階調データの種類を異ならせており、かつ、Rの画素とBの画素とは同じ種類の階調データを選択している。
 つまり、一つの絵素内において、あるフレーム期間において、極性が同じになる画素同士(ここでは、RおよびB)では、同じ種類の階調データが選択され、極性が異なる画素同士(ここでは、R,BとG)では、異なる種類の階調データが選択されている。図9には、あるフレーム期間における各画素の極性を括弧書きで示している。これにより、焼きつきや時分割駆動における各パターンのむらを抑えることができる。
 〔実施の形態4〕
 本発明の第4の実施形態について、図11~図12に基づいて説明すると以下の通りである。
 なお、本実施の形態の液晶表示装置においても、上記の各実施形態と同様に、面積分割駆動と時分割駆動とを組み合わせた表示駆動を行っている。本実施の形態の液晶表示装置110の構成は、図8に示す実施の形態3の液晶表示装置と同じである。ここでは、実施の形態3における駆動方法と異なる点のみを説明する。
 図11には、本実施の形態において表示駆動を行う場合の一つのユニット65の構成を示す。なお、ここでは、赤色(R)の1つの画素24、緑色(G)の1つの画素24、および青色(B)の1つの画素24で構成される3つの画素の単位を、一絵素(図11中の破線の枠で囲まれた領域)とする。この図に示すように、本実施の形態では、1つのユニット65は、(縦2絵素)×(横2絵素)からなる4絵素で構成されている。
 ここで、図11に示すようなユニット構成であって、このユニット65全体において、D(R,G,B)という階調を表示したい場合のデータ変換処理について説明する。
 この場合、本実施の形態では、階調データDをD1(R1,G1,B1)、D2(R2,G2,B2)、D3(R3,G3,B3)、D4(R4,G4,B4)という4種類のデータに分割する。ここで、D1、D2、D3、およびD4は、それぞれを同じ面積および同じ時間で表示した場合に、平均してDとなるような階調データの組み合わせである。そして、例えば、6ビットの階調データの場合、入力階調値D(0~63)のそれぞれに対応する出力階調値D1を格納したものが、第1のルックアップテーブル134a(LUT1)であり、入力階調値D(0~63)のそれぞれに対応する出力階調値D2を格納したものが、第2のルックアップテーブル134b(LUT2)であり、入力階調値D(0~63)のそれぞれに対応する出力階調値D3を格納したものが、第3のルックアップテーブル134c(LUT3)であり、入力階調値D(0~63)のそれぞれに対応する出力階調値D4を格納したものが、第4のルックアップテーブル134d(LUT4)である。
 入力データ変換部133では、位置情報検出部131において得られた位置情報およびフレームカウンタ132において得られたフレーム情報に基づいて、特定のフレーム期間におけるユニット65内の各画素24について、D1~D4の何れを選択するかを決定し、該当するLUTから対応する変換後の階調データを決定する。
 図11には、あるフレーム期間における変換後の階調データの一例を示している。図11に示すように、D1(R1,G1,B1)、D2(R2,G2,B2)、D3(R3,G3,B3)、およびD4(R4,G4,B4)の表示比率(面積比率)は、D1:D2:D3:D4=1:1:1:1となっている。
 その結果、あるフレームにおける表示は、D1、D2、D3、およびD4が入り混じった表示になるが、ユニット全体を平均化した場合、データDを表示していることになる。
 また、本実施の形態では、連続する4フレーム期間を1つの単位周期期間とし、これら4つのフレーム期間に表示される階調データを平均化した階調データDを、上記1単位周期期間における表示階調データとする時分割駆動を行っている。
 D1~D4のデータはフレームが変わると切り替わり、4フレーム周期で(4フレームごとに)同一データが表示される。そのため、一つの画素について見た場合、時間平均をとるとデータDを表示していることになる。
 以上の結果、ユニット全体で時間的にも空間的にも均一な表示を得ることができ、表示むらや解像度低下を起こすこともない。
 図12には、MVAモードの液晶表示装置において、本実施の形態の駆動方法を用いた場合の階調輝度特性(階調値と透過率との関係)を測定した結果を示す。なお、図12には、比較のために、従来の駆動方法を用いた場合の結果も示す。図12では、(本実施の形態および従来の方法の両方の場合における)液晶表示パネルを正面方向から見た場合の階調輝度特性を実線で示し、本実施の形態の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を一点鎖線で示し、従来の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を破線で示している。
 図12のグラフをみると、本実施の形態の駆動方法を採用した場合には、従来の方法と比較して、斜め方向から見た場合に輝度が高くなってしまう現象(白浮き)を抑えることができることがわかる。
 ここで、実施の形態1の実施例と同様に「白浮き率」を算出したところ、図12に示す実施例では、以下のような結果となった。
   本実施例の駆動方法:白浮き率=19.0%
   従来の駆動方法:白浮き率=53.6%
 上記の結果から、実施の形態4の実施例では、実施の形態3の実施例と同等の効果が得られることがわかった。また、本実施の形態の構成によれば、1つの階調データを4種類に分割するため、多彩なデータの組み合わせが可能になる。さらに、実施の形態3よりもユニットの画素数が少ないため、より均一な表示を行うことができる。
 なお、本実施の形態においては、実施の形態1と同様に、ドット反転駆動を行う場合の焼きつきおよびフリッカーの低減を図るために、図11に示すように、あるフレーム期間における表示を見た場合、一絵素内に含まれるGの画素とR,Bの画素との間で、階調データの種類を異ならせており、かつ、Rの画素とBの画素とは同じ種類の階調データを選択している。
 つまり、一つの絵素内において、あるフレーム期間において、極性が同じになる画素同士(ここでは、RおよびB)では、同じ種類の階調データが選択され、極性が異なる画素同士(ここでは、R,BとG)では、異なる種類の階調データが選択されている。図11には、あるフレーム期間における各画素の極性を括弧書きで示している。これにより、焼きつきや時分割駆動における各パターンのむらを抑えることができる。
 〔実施の形態5〕
 本発明の第5の実施形態について、図13~図14に基づいて説明すると以下の通りである。
 なお、本実施の形態の液晶表示装置においても、実施の形態1と同様に、面積分割駆動と時分割駆動とを組み合わせた表示駆動を行っている。そのため、本実施の形態の液晶表示装置10の構成は、図1に示す実施の形態1の液晶表示装置と同じである。ここでは、実施の形態1とは異なる点のみを説明する。
 図13には、本実施の形態において表示駆動を行う場合の一つのユニット75の構成を示す。なお、ここでは、赤色(R)の1つの画素24、緑色(G)の1つの画素24、および青色(B)の1つの画素24で構成される3つの画素の単位を、一絵素(図13中の破線の枠で囲まれた領域)とする。この図に示すように、本実施の形態では、1つのユニット75は、(縦2絵素)×(横2絵素)からなる4絵素で構成されている。
 ここで、図13に示すようなユニット構成であって、このユニット75全体において、D(R,G,B)という階調を表示したい場合のデータ変換処理について説明する。
 ここでのデータ変換処理は、実施の形態1とほぼ同様であるが、実施の形態1では、あるフレーム期間における表示を見た場合、一絵素内におけるGの画素とR,Bの画素との間で、階調データの種類を異ならせている(図3参照)のに対して、本実施の形態では、図13に示すように、一絵素内の3つの画素(Rの画素、Gの画素、および、Bの画素)は、あるフレーム期間において全て同じ種類の階調データを選択している。
 この場合においても、実施の形態1と同様に、D1(R1,G1,B1)とD2(R2,G2,B2)の表示比率(面積比率)は、D1:D2=1:1となっている。
 その結果、あるフレームにおける表示は、D1とD2が入り混じった表示になるが、ユニット全体を平均化した場合、データDを表示していることになる。
 また、本実施の形態では、連続する2フレーム期間を1つの単位周期期間とし、前半部分である第1のフレーム期間に表示される階調データD1と後半部分である第2のフレーム期間に表示される階調データD2とを平均化した階調データDを、上記1単位周期期間における表示階調データとする時分割駆動を行っている。図13には、あるフレーム期間における変換後の階調データの一例を示している。
 D1とD2のデータはフレームが変わると切り替わり、2フレーム周期で(2フレームごとに)同一データが表示される。そのため、一つの画素について見た場合、時間平均をとるとデータDを表示していることになる。
 以上の結果、ユニット全体で時間的にも空間的にも均一な表示を得ることができ、表示むらや解像度低下を起こすこともない。
 図14には、MVAモードの液晶表示装置において、本実施の形態の駆動方法を用いた場合の階調輝度特性(階調値と透過率との関係)を測定した結果を示す。なお、図14には、比較のために、従来の駆動方法を用いた場合の結果も示す。図14では、(本実施の形態および従来の方法の両方の場合における)液晶表示パネルを正面方向から見た場合の階調輝度特性を実線で示し、本実施の形態の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を一点鎖線で示し、従来の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を破線で示している。
 図14のグラフをみると、本実施の形態の駆動方法を採用した場合には、従来の方法と比較して、斜め方向から見た場合に輝度が高くなってしまう現象(白浮き)を抑えることができることがわかる。
 ここで、実施の形態1の実施例と同様に「白浮き率」を算出したところ、図14に示す実施例では、以下のような結果となった。
   本実施例の駆動方法:白浮き率=25.6%
   従来の駆動方法:白浮き率=53.6%
 この結果から、実施の形態1の場合と同程度に白浮きを抑えることができることがわかった。
 〔実施の形態6〕
 本発明の第6の実施形態について、図15~図16に基づいて説明すると以下の通りである。
 なお、本実施の形態の液晶表示装置においても、実施の形態1と同様に、面積分割駆動と時分割駆動とを組み合わせた表示駆動を行っている。そのため、本実施の形態の液晶表示装置10の構成は、図1に示す実施の形態1の液晶表示装置と同じである。また、本実施の形態では、上記した実施の形態2に類似した駆動方法を行っている。そのため、ここでは、実施の形態2とは異なる点のみを説明する。
 図15には、本実施の形態において表示駆動を行う場合の一つのユニット85の構成を示す。なお、ここでは、赤色(R)の1つの画素24、緑色(G)の1つの画素24、および青色(B)の1つの画素24で構成される3つの画素の単位を、一絵素(図15中の破線の枠で囲まれた領域)とする。この図に示すように、本実施の形態では、1つのユニット85は、(縦4絵素)×(横4絵素)からなる16絵素で構成されている。
 ここで、図15に示すようなユニット構成であって、このユニット85全体において、D(R,G,B)という階調を表示したい場合のデータ変換処理について説明する。
 ここでのデータ変換処理は、実施の形態2とほぼ同様であるが、実施の形態2では、あるフレーム期間における表示を見た場合、ユニット45内の一部の絵素では、一絵素内におけるGの画素とR,Bの画素との間で、階調データの種類を異ならせている(図6参照)のに対して、本実施の形態では、図15に示すように、一絵素内の3つの画素(Rの画素、Gの画素、および、Bの画素)は、あるフレーム期間において全て同じ種類の階調データを選択している。
 この場合においても、実施の形態2と同様に、D1(R1,G1,B1)とD2(R2,G2,B2)の表示比率(面積比率)は、D1:D2=1:3となっている。
 その結果、あるフレームにおける表示は、D1とD2が入り混じった表示になるが、ユニット全体を平均化した場合、データDを表示していることになる。
 また、本実施の形態では、連続する4フレーム期間を1つの単位周期期間とし、これら4つのフレーム期間に表示される階調データを平均化した階調データDを、上記1単位周期期間における表示階調データとする時分割駆動を行っている。図15には、あるフレーム期間における変換後の階調データの一例を示している。
 そのため、D1とD2のデータはフレームが変わると切り替わり、4フレーム周期で(4フレームごとに)同一データが表示される。そのため、一つの画素について見た場合、時間平均をとるとデータDを表示していることになる。
 以上の結果、ユニット全体で時間的にも空間的にも均一な表示を得ることができ、表示むらや解像度低下を起こすこともない。
 図16には、MVAモードの液晶表示装置において、本実施の形態の駆動方法を用いた場合の階調輝度特性(階調値と透過率との関係)を測定した結果を示す。なお、図16には、比較のために、従来の駆動方法を用いた場合の結果も示す。図16では、(本実施の形態および従来の方法の両方の場合における)液晶表示パネルを正面方向から見た場合の階調輝度特性を実線で示し、本実施の形態の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を一点鎖線で示し、従来の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を破線で示している。
 図16のグラフをみると、本実施の形態の駆動方法を採用した場合には、従来の方法と比較して、斜め方向から見た場合に輝度が高くなってしまう現象(白浮き)を抑えることができることがわかる。
 ここで、実施の形態1の実施例と同様に「白浮き率」を算出したところ、図16に示す実施例では、以下のような結果となった。
   本実施例の駆動方法:白浮き率=14.7%
   従来の駆動方法:白浮き率=53.6%
 この結果から、実施の形態2の場合と同程度に白浮きを抑えることができることがわかった。
 〔実施の形態7〕
 本発明の第7の実施形態について、図17~図18に基づいて説明すると以下の通りである。本実施の形態の液晶表示装置110の構成は、図8に示す実施の形態3の液晶表示装置と同じであり、実施の形態3に類似した駆動方法を行っている。そのため、ここでは、実施の形態3とは異なる点のみを説明する。
 図17には、本実施の形態において表示駆動を行う場合の一つのユニット95の構成を示す。なお、ここでは、赤色(R)の1つの画素24、緑色(G)の1つの画素24、および青色(B)の1つの画素24で構成される3つの画素の単位を、一絵素(図17中の破線の枠で囲まれた領域)とする。この図に示すように、本実施の形態では、1つのユニット95は、(縦4絵素)×(横4絵素)からなる16絵素で構成されている。
 ここで、図17に示すようなユニット構成であって、このユニット95全体において、D(R,G,B)という階調を表示したい場合のデータ変換処理について説明する。
 ここでのデータ変換処理は、実施の形態3とほぼ同様であるが、実施の形態3では、あるフレーム期間における表示を見た場合、一絵素内におけるGの画素とR,Bの画素との間で、階調データの種類を異ならせている(図9参照)のに対して、本実施の形態では、図17に示すように、一絵素内の3つの画素(Rの画素、Gの画素、および、Bの画素)は、あるフレーム期間において全て同じ種類の階調データを選択している。
 この場合においても、実施の形態3と同様に、D1(R1,G1,B1)、D2(R2,G2,B2)、D3(R3,G3,B3)、およびD4(R4,G4,B4)の表示比率(面積比率)は、D1:D2:D3:D4=1:1:1:1となっている。
 その結果、あるフレームにおける表示は、D1、D2、D3、およびD4が入り混じった表示になるが、ユニット全体を平均化した場合、データDを表示していることになる。
 また、本実施の形態では、連続する4フレーム期間を1つの単位周期期間とし、これら4つのフレーム期間に表示される階調データを平均化した階調データDを、上記1単位周期期間における表示階調データとする時分割駆動を行っている。図17には、あるフレーム期間における変換後の階調データの一例を示している。
 D1~D4のデータはフレームが変わると切り替わり、4フレーム周期で(4フレームごとに)同一データが表示される。そのため、一つの画素について見た場合、時間平均をとるとデータDを表示していることになる。
 以上の結果、ユニット全体で時間的にも空間的にも均一な表示を得ることができ、表示むらや解像度低下を起こすこともない。
 図18には、MVAモードの液晶表示装置において、本実施の形態の駆動方法を用いた場合の階調輝度特性(階調値と透過率との関係)を測定した結果を示す。なお、図18には、比較のために、従来の駆動方法を用いた場合の結果も示す。図18では、(本実施の形態および従来の方法の両方の場合における)液晶表示パネルを正面方向から見た場合の階調輝度特性を実線で示し、本実施の形態の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を一点鎖線で示し、従来の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を破線で示している。
 図18のグラフをみると、本実施の形態の駆動方法を採用した場合には、従来の方法と比較して、斜め方向から見た場合に輝度が高くなってしまう現象(白浮き)を抑えることができることがわかる。
 ここで、実施の形態1の実施例と同様に「白浮き率」を算出したところ、図18に示す実施例では、以下のような結果となった。
   本実施例の駆動方法:白浮き率=19.0%
   従来の駆動方法:白浮き率=53.6%
 この結果から、実施の形態3の場合と同程度に白浮きを抑えることができることがわかった。
 〔実施の形態8〕
 本発明の第8の実施形態について、図19~図20に基づいて説明すると以下の通りである。本実施の形態の液晶表示装置110の構成は、図8に示す実施の形態3の液晶表示装置と同じである。また、本実施の形態では、上記した実施の形態4に類似した駆動方法を行っている。そのため、ここでは、実施の形態4とは異なる点のみを説明する。
 図19には、本実施の形態において表示駆動を行う場合の一つのユニット105の構成を示す。なお、ここでは、赤色(R)の1つの画素24、緑色(G)の1つの画素24、および青色(B)の1つの画素24で構成される3つの画素の単位を、一絵素(図19中の破線の枠で囲まれた領域)とする。この図に示すように、本実施の形態では、1つのユニット105は、(縦2絵素)×(横2絵素)からなる4絵素で構成されている。
 ここで、図19に示すようなユニット構成であって、このユニット105全体において、D(R,G,B)という階調を表示したい場合のデータ変換処理について説明する。
 ここでのデータ変換処理は、実施の形態4とほぼ同様であるが、実施の形態4では、あるフレーム期間における表示を見た場合、一絵素内におけるGの画素とR,Bの画素との間で、階調データの種類を異ならせている(図11参照)のに対して、本実施の形態では、図19に示すように、一絵素内の3つの画素(Rの画素、Gの画素、および、Bの画素)は、あるフレーム期間において全て同じ種類の階調データを選択している。
 この場合においても、実施の形態4と同様に、D1(R1,G1,B1)、D2(R2,G2,B2)、D3(R3,G3,B3)、およびD4(R4,G4,B4)の表示比率(面積比率)は、D1:D2:D3:D4=1:1:1:1となっている。
 その結果、あるフレームにおける表示は、D1、D2、D3、およびD4が入り混じった表示になるが、ユニット全体を平均化した場合、データDを表示していることになる。
 また、本実施の形態では、連続する4フレーム期間を1つの単位周期期間とし、これら4つのフレーム期間に表示される階調データを平均化した階調データDを、上記1単位周期期間における表示階調データとする時分割駆動を行っている。図19には、あるフレーム期間における変換後の階調データの一例を示している。
 D1~D4のデータはフレームが変わると切り替わり、4フレーム周期で(4フレームごとに)同一データが表示される。そのため、一つの画素について見た場合、時間平均をとるとデータDを表示していることになる。
 以上の結果、ユニット全体で時間的にも空間的にも均一な表示を得ることができ、表示むらや解像度低下を起こすこともない。
 図20には、MVAモードの液晶表示装置において、本実施の形態の駆動方法を用いた場合の階調輝度特性(階調値と透過率との関係)を測定した結果を示す。なお、図20には、比較のために、従来の駆動方法を用いた場合の結果も示す。図20では、(本実施の形態および従来の方法の両方の場合における)液晶表示パネルを正面方向から見た場合の階調輝度特性を実線で示し、本実施の形態の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を一点鎖線で示し、従来の駆動方法を採用した場合に液晶表示パネルを左右方向の斜め45°の角度から見た場合の階調輝度特性を破線で示している。
 図20のグラフをみると、本実施の形態の駆動方法を採用した場合には、従来の方法と比較して、斜め方向から見た場合に輝度が高くなってしまう現象(白浮き)を抑えることができることがわかる。
 ここで、実施の形態1の実施例と同様に「白浮き率」を算出したところ、図20に示す実施例では、以下のような結果となった。
   本実施例の駆動方法:白浮き率=19.0%
   従来の駆動方法:白浮き率=53.6%
 この結果から、実施の形態4の場合と同程度に白浮きを抑えることができることがわかった。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を各々組み合わせて得られる実施形態、および、上記の各実施形態に記載されたそれぞれの構成を組み合わせて得られる構成についても本発明の技術的範囲に含まれる。
 なお、上記の各実施形態では、1ユニットのサイズは、(縦2絵素)×(横2絵素)からなる4絵素、または、(縦4絵素)×(横4絵素)からなる16絵素の何れかであったが、本発明は必ずしもこのような構成に限定はされない。
 また、上記の各実施形態では、ルックアップテーブルの数の2または4であったが、本発明では必ずしもこの構成に限定されない。例えば、3つのルックアップテーブルを用いて、4フレーム周期で、LUT1→LUT2→LUT3→LUT2という順番でLUTを使用することも可能である。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。
 本発明を用いれば、画素構造の複雑化を招くことなく、液晶表示パネルを正面方向から見た場合のγ特性と斜め方向から見た場合のγ特性との差を低減させ、表示品質をさらに向上させることができる。そのため、本発明の液晶表示装置は、比較的小型の液晶表示パネルを使用するモバイル型の液晶表示装置として好適に利用することができる。
  10  液晶表示装置
  11  液晶表示パネル
  12  ゲートドライバ
  13  ソースドライバ
  14  表示コントローラ(表示駆動部)
  21  走査信号線
  22  データ信号線
  23  TFT
  24  画素
  31  位置情報検出部
  32  フレームカウンタ
  33  入力データ変換部(階調データ変換部)
  34a 第1のルックアップテーブル(ルックアップテーブル)
  34b 第2のルックアップテーブル(ルックアップテーブル)
  35  タイミングコントローラ
  25・45・55・65・75・85・95・105  ユニット
 110  液晶表示装置
 111  液晶表示パネル
 112  ゲートドライバ
 113  ソースドライバ
 114  表示コントローラ(表示駆動部)
 131  位置情報検出部
 132  フレームカウンタ
 133  入力データ変換部(階調データ変換部)
 134a 第1のルックアップテーブル(ルックアップテーブル)
 134b 第2のルックアップテーブル(ルックアップテーブル)
 134c 第3のルックアップテーブル(ルックアップテーブル)
 134d 第4のルックアップテーブル(ルックアップテーブル)
 135  タイミングコントローラ

Claims (19)

  1.  複数のデータ信号線と、これら複数のデータ信号線と交差する複数の走査信号線と、上記複数のデータ信号線と上記複数の走査信号線との各交点に対応してマトリクス状に配置された画素と、を備えた液晶表示パネルを有する液晶表示装置の駆動方法であって、
     複数個の上記画素を1つのユニットとし、上記ユニット内に含まれる各画素には、入力された階調データから上記ユニット内の位置によって異なる値に変換された階調データを供給して階調表示を行い、これにより、上記ユニットにおいて目標とする階調表示を行うことを特徴とする液晶表示装置の駆動方法。
  2.  入力される階調データ、および、当該階調データに対応する入力同期信号に基づいて、入力された階調データが上記ユニット内のどの位置の画素の表示を行うものであるかを検出する位置情報検出工程と、
     上記位置情報検出工程によって検出された位置情報に基づき、入力された階調データの変換の仕方を上記ユニット内の位置によって異ならせることで、位置によって異なる階調データの変換処理を行う階調データ変換工程とにより、
     上記ユニット内に含まれる各画素に、それぞれ異なる階調データを供給することを特徴とする請求項1に記載の液晶表示装置の駆動方法。
  3.  連続する複数のフレームを1つの単位周期とし、
     上記単位周期内の全フレーム期間で表示される階調データを平均化した階調データを、上記単位周期における表示階調データとする時分割駆動をさらに行うことを特徴とする請求項2に記載の液晶表示装置の駆動方法。
  4.  上記階調データ変換工程では、複数のルックアップテーブルを用いて階調データの変換を行い、
     上記の検出された位置情報に基づいて、上記複数のルックアップテーブルのうちの何れを選択するかを決定することを特徴とする請求項2に記載の液晶表示装置の駆動方法。
  5.  上記時分割駆動を行う場合の上記階調データ変換工程では、複数のルックアップテーブルを用いて階調データの変換を行い、
     上記の検出された位置情報、および、上記階調データが上記単位周期のうちのどのフレーム期間の階調データであるかというフレーム情報に基づいて、上記複数のルックアップテーブルのうちの何れを選択するかを決定することを特徴とする請求項3に記載の液晶表示装置の駆動方法。
  6.  上記ルックアップテーブルの数は、2、3、または4のいずれかであることを特徴とする請求項4または5に記載の液晶表示装置の駆動方法。
  7.  上記液晶表示装置が、赤色、緑色、および青色のカラーフィルタを有するものであるときに、
     赤色の一画素、緑色の一画素、および青色の一画素で構成される3つの画素の単位を一絵素とすると、
     上記1つのユニットは、(縦2絵素)×(横2絵素)からなる4絵素、または、(縦4絵素)×(横4絵素)からなる16絵素で構成されていることを特徴とする請求項1から6の何れか1項に記載の液晶表示装置の駆動方法。
  8.  上記単位周期のフレーム数は、2または4であることを特徴とする請求項3または5に記載の液晶表示装置の駆動方法。
  9.  上記データ信号線に印加する信号電圧の極性をドット反転駆動させており、
     上記液晶表示装置が、赤色、緑色、および青色のカラーフィルタを有するものであるときに、赤色の一画素、緑色の一画素、および青色の一画素で構成される3つの画素の単位を一絵素とすると、
     上記単位周期内のフレーム期間の一つにおいて、上記信号電圧の極性が同じになる上記一絵素内の各画素に対して入力される階調データは、上記階調データ変換工程において、同じ変換の仕方で階調データの変換が行われることを特徴とする請求項3に記載の液晶表示装置の駆動方法。
  10.  複数のデータ信号線と、これら複数のデータ信号線と交差する複数の走査信号線と、上記複数のデータ信号線と上記複数の走査信号線との各交点に対応してマトリクス状に配置された画素と、を備えた液晶表示パネルを有する液晶表示装置であって、
     複数個の上記画素を1つのユニットとし、上記ユニット内に含まれる各画素には、入力された階調データから上記ユニット内の位置によって異なる値に変換された階調データを供給して階調表示を行う表示駆動部を備えており、
     上記ユニット全体で見たときの階調表示は、目標とする階調表示となっていることを特徴とする液晶表示装置。
  11.  上記表示駆動部は、
     入力される階調データ、および、当該階調データに対応する入力同期信号に基づいて、入力された階調データが上記ユニット内のどの位置の画素の表示を行うものであるかを検出する位置情報検出部と、
     上記位置情報検出部によって検出された位置情報に基づいて、入力された階調データの変換の仕方を上記ユニット内の位置によって異ならせることで、位置によって異なる階調データの変換処理を行う階調データ変換部とを有しており、
     これらにより、上記ユニット内に含まれる各画素に、異なる値に変換された階調データをそれぞれ供給していることを特徴とする請求項10に記載の液晶表示装置。
  12.  上記表示駆動部は、
     連続する複数のフレームを1つの単位周期とし、
     上記単位周期内の全フレーム期間で表示される階調データを平均化した階調データを、上記単位周期における表示階調データとする時分割駆動をさらに行うことを特徴とする請求項11に記載の液晶表示装置。
  13.  上記階調データ変換部は、複数のルックアップテーブルを用いて階調データの変換を行うものであり、
     上記の検出された位置情報に基づいて、上記複数のルックアップテーブルのうちの何れを選択するかを決定していることを特徴とする請求項11に記載の液晶表示装置。
  14.  上記時分割駆動を行う場合の上記階調データ変換部は、複数のルックアップテーブルを用いて階調データの変換を行うものであり、
     上記の検出された位置情報、および、上記階調データが上記単位周期のうちのどのフレーム期間の階調データであるかというフレーム情報に基づいて、上記複数のルックアップテーブルのうちの何れを選択するかを決定していることを特徴とする請求項12に記載の液晶表示装置。
  15.  上記ルックアップテーブルの数は、2、3、または4のいずれかであることを特徴とする請求項13または14に記載の液晶表示装置。
  16.  当該液晶表示装置が、赤色、緑色、および青色のカラーフィルタを有するものであるときに、
     赤色の一画素、緑色の一画素、および青色の一画素で構成される3つの画素の単位を一絵素とすると、
     上記1つのユニットは、(縦2絵素)×(横2絵素)からなる4絵素、または、(縦4絵素)×(横4絵素)からなる16絵素で構成されていることを特徴とする請求項10から15の何れか1項に記載の液晶表示装置。
  17.  上記単位周期のフレーム数は、2または4であることを特徴とする請求項12または14に記載の液晶表示装置。
  18.  上記データ信号線に印加される信号電圧の極性は、ドット反転駆動によって反転されており、
     当該液晶表示装置が、赤色、緑色、および青色のカラーフィルタを有するものであるときに、赤色の一画素、緑色の一画素、および青色の一画素で構成される3つの画素の単位を一絵素とすると、
     上記単位周期内のフレーム期間の一つにおいて、上記信号電圧の極性が同じになる上記一絵素内の各画素に対して入力される階調データは、上記階調データ変換部では、同じ変換の仕方で階調データの変換が行われることを特徴とする請求項12に記載の液晶表示装置。
  19.  上記液晶表示パネルは、ノーマリーブラックモードの液晶表示パネルであることを特徴とする請求項10から18の何れか1項に記載の液晶表示装置。
PCT/JP2009/061043 2008-09-18 2009-06-17 液晶表示装置、及び液晶表示装置の駆動方法 WO2010032524A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/119,010 US20110169880A1 (en) 2008-09-18 2009-06-17 Liquid crystal display device and method for driving liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-239830 2008-09-18
JP2008239830 2008-09-18

Publications (1)

Publication Number Publication Date
WO2010032524A1 true WO2010032524A1 (ja) 2010-03-25

Family

ID=42039369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061043 WO2010032524A1 (ja) 2008-09-18 2009-06-17 液晶表示装置、及び液晶表示装置の駆動方法

Country Status (2)

Country Link
US (1) US20110169880A1 (ja)
WO (1) WO2010032524A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093499A1 (zh) * 2018-11-05 2020-05-14 惠科股份有限公司 一种显示面板的驱动方法、驱动装置及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352933A (ja) * 1998-06-04 1999-12-24 Sharp Corp 液晶表示装置
JP2003122332A (ja) * 2001-10-13 2003-04-25 Lg Phillips Lcd Co Ltd 液晶表示装置のデータ駆動装置及び方法
JP2003255908A (ja) * 2002-03-05 2003-09-10 Matsushita Electric Ind Co Ltd 液晶表示装置の駆動方法
JP2004062146A (ja) * 2002-06-06 2004-02-26 Sharp Corp 液晶表示装置
JP2004233813A (ja) * 2003-01-31 2004-08-19 Seiko Epson Corp 色むら補正画像処理装置、方法及びプログラム、並びに投射型画像表示装置
JP2004525402A (ja) * 2001-01-26 2004-08-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶ディスプレイにおけるサブピクセルの輝度特性に基ずくサブピクセル信号強度値の調節
WO2006009106A1 (ja) * 2004-07-16 2006-01-26 Sony Corporation 画像表示装置および画像表示方法
JP2006085185A (ja) * 2005-10-06 2006-03-30 Seiko Epson Corp 画像表示装置、画像表示方法及び画像表示プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352933A (ja) * 1998-06-04 1999-12-24 Sharp Corp 液晶表示装置
JP2004525402A (ja) * 2001-01-26 2004-08-19 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶ディスプレイにおけるサブピクセルの輝度特性に基ずくサブピクセル信号強度値の調節
JP2003122332A (ja) * 2001-10-13 2003-04-25 Lg Phillips Lcd Co Ltd 液晶表示装置のデータ駆動装置及び方法
JP2003255908A (ja) * 2002-03-05 2003-09-10 Matsushita Electric Ind Co Ltd 液晶表示装置の駆動方法
JP2004062146A (ja) * 2002-06-06 2004-02-26 Sharp Corp 液晶表示装置
JP2004233813A (ja) * 2003-01-31 2004-08-19 Seiko Epson Corp 色むら補正画像処理装置、方法及びプログラム、並びに投射型画像表示装置
WO2006009106A1 (ja) * 2004-07-16 2006-01-26 Sony Corporation 画像表示装置および画像表示方法
JP2006085185A (ja) * 2005-10-06 2006-03-30 Seiko Epson Corp 画像表示装置、画像表示方法及び画像表示プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020093499A1 (zh) * 2018-11-05 2020-05-14 惠科股份有限公司 一种显示面板的驱动方法、驱动装置及显示装置

Also Published As

Publication number Publication date
US20110169880A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP3999081B2 (ja) 液晶表示装置
JP5793079B2 (ja) 液晶ディスプレイの色ずれを低減する低減方法、装置およびコンピュータプログラム
JP5863925B2 (ja) 制御装置及び制御方法
WO2011004538A1 (ja) 液晶駆動回路および液晶表示装置
US9304342B2 (en) Display device
TWI476753B (zh) 處理用於顯示於包含多原色圖像顯示面板之顯示裝置之圖像資料之方法
WO2013002146A1 (ja) 液晶表示装置
WO2007052381A1 (ja) カラー液晶表示装置およびそのためのガンマ補正方法
TWI536338B (zh) 液晶顯示裝置及其驅動方法
CN106023939A (zh) 液晶显示器及其驱动方法
KR100923676B1 (ko) 액정 표시장치 및 그 색 재현율 향상 방법
JPH0990910A (ja) 液晶表示装置の駆動方法および液晶表示装置
WO2010058644A1 (ja) 液晶表示装置、及び液晶表示装置の駆動方法
WO2010032524A1 (ja) 液晶表示装置、及び液晶表示装置の駆動方法
CN109461421B (zh) 一种场序显示器及驱动方法
JP6804237B2 (ja) 画像表示装置および画像表示方法
JP2007183563A (ja) 液晶表示装置及びその駆動方法
KR20110072217A (ko) 시야각 제어 액정 표시 장치 및 이의 구동 방법
JP2012208255A (ja) 画像データ生成装置、液晶表示装置、及び表示駆動方法
TWI408656B (zh) 降低色偏之畫素驅動方法
JPH07191634A (ja) アクティブマトリクス型液晶表示装置
JP2011170048A (ja) 画像データ生成装置、液晶表示装置、及び表示駆動方法
JP2010197926A (ja) クロストーク補正テーブル取得装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814369

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13119010

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09814369

Country of ref document: EP

Kind code of ref document: A1