WO2010031490A1 - Elektretfilterelement und verfahren zu dessen herstellung - Google Patents

Elektretfilterelement und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2010031490A1
WO2010031490A1 PCT/EP2009/006217 EP2009006217W WO2010031490A1 WO 2010031490 A1 WO2010031490 A1 WO 2010031490A1 EP 2009006217 W EP2009006217 W EP 2009006217W WO 2010031490 A1 WO2010031490 A1 WO 2010031490A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
fluid
spray
filter element
charged
Prior art date
Application number
PCT/EP2009/006217
Other languages
English (en)
French (fr)
Inventor
Klaus Veeser
Martin Krause
Toan-Hieu Giang
Jochen Zabold
Original Assignee
Carl Freudenberg Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg Kg filed Critical Carl Freudenberg Kg
Priority to KR1020117008526A priority Critical patent/KR101307877B1/ko
Priority to US13/063,484 priority patent/US8871011B2/en
Priority to CN200980136085.3A priority patent/CN102159295B/zh
Priority to EP09778154.6A priority patent/EP2326402B1/de
Publication of WO2010031490A1 publication Critical patent/WO2010031490A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • D06M11/05Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/13Ammonium halides or halides of elements of Groups 1 or 11 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/76Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon oxides or carbonates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/06Processes in which the treating agent is dispersed in a gas, e.g. aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/48Processes of making filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter

Definitions

  • the invention relates to a method for producing an electret filter element, comprising the steps of providing fibers, providing a spray for a fluid, generating a spray of electrically charged fluid droplets, guiding the fibers through the spray, wetting the fibers with the fluid drops and depositing the fibers to a fiber layer.
  • the invention further relates to an electret filter element having at least one fiber layer with fibers which carry electrical charges.
  • Fluid droplets are electrostatically charged by splitting using the Lenard effect (“Lenard-Charging-Effect”) .
  • the already charged droplets of fluid are passed through an electric field together with the fibers, giving rise to statistically distributed droplets of fluid with different polarities both positively and negatively charged Fluid drops in difficult to control distribution.
  • the polarity of the electrical charge of the fluid droplets is dependent on the fluid droplet size.
  • the fluid drops are divided by the mechanical spraying into large and small fluid droplets, each with a different electrical charge.
  • Filter elements of the type mentioned are also already known from the prior art. In particular, it is known to load microfibrous nonwovens by various methods. From EP 0 845 058 A1 a method is known with which filter elements of a very high filter efficiency can be created. These filter elements are characterized by a very high filtration efficiency compared to fine aerosols.
  • water drops are applied as charge carriers to a finished nonwoven fabric.
  • the simultaneously applied drops of water have different charges.
  • an additive is added to the polymer from which the fibers of the nonwoven fabric are made.
  • the drying process is required. During the drying process, the nonwoven fabric is thermally charged, which reduces the electrical charge can be. Therefore, the drying is preferably carried out at low temperatures in a vacuum. This involves a lot of equipment and considerable costs.
  • the invention is therefore based on the object to provide an electret filter element, which shows a homogeneous charge distribution and high filter efficiency at low cost manufacturing.
  • the method mentioned above is characterized in that the fluid droplets are electrically charged by an electric field between tearing fluid droplets and a counter electrode.
  • the fluid droplets are polarized according to the invention by an electric field, which forms between a counterelectrode and the tearing off fluid droplet itself.
  • This electric field makes for a
  • the fluid droplets are not only polarized but also charged with a preferred charge when they are torn off at the spray device by the electric field.
  • the charging of the fluid drops is therefore not random and with a certain distribution, but uniform.
  • all fluid droplets generated by the sprayer carry the same electrical charges, that is, show the same electrical polarity. Therefore, according to the invention, it has been concretely recognized that the charge on the fluid drop can not be generated randomly but is defined by an electric field with a controllable distribution.
  • fluid droplets of a uniform electrical charge can be generated in order to charge fibers exclusively with an electrical charge of a uniform polarity.
  • the electric field allows to achieve a significantly higher charge quantity per fluid drop surface. Therefore, the electret filter element of the present invention using a relatively small amount of the fluid can show a very high electric charge. By using a relatively small amount of the fluid, it is not necessary to strongly heat the electret filter element for drying, so that on the one hand saves energy and on the other hand, the electric charge on the electret filter element is not weakened.
  • a fluid can be sprayed onto fibers under low pressure before they are deposited into a fiber layer. As a result, a change in the structure of the fiber layer is avoided.
  • the fibers can be provided with charges in such a way that they also have a sufficient amount of charge in the interior of the deposited fiber layer.
  • fiber layers can be produced with a spatially homogeneous fiber charge over the entire thickness cross-section, wherein the fiber layer is almost not affected in their structure by fluids.
  • a spray could be generated in which 60% or more than 60% of the electrically charged fluid drops contained therein have an electrical charge of the same polarity.
  • the fibers can be provided with a nearly uniform electrical charge.
  • a spray is generated in which 80% or more than 80% of the electrically charged fluid drops therein have an electrical charge of the same polarity
  • a spray could be generated in which the polarity of the electrical charge of the fluid drops residing therein is dissipated
  • Fluid drop size is independent. This allows a uniform, homogeneous and gentle material wetting of the fibers.
  • the fibers could be passed through the spray on the side facing away from the sprayer side of the counter electrode.
  • the material from which the fibers are made largely unaffected by the electric field.
  • the fluid drops are therefore guided by a strong electric field, the fibers through a nearly field-free space.
  • the electrical voltage between the tearing fluid droplet and the counter electrode is to be selected depending on the geometric arrangement and the fluid used. Preferred values for the electrical voltage are between 60 volts and 15000 volts. It is also conceivable to generate voltages between 30000 V and 100000 volts for larger distances between spray device and counter electrode.
  • the counter electrode can be designed as a ring electrode. The design as a ring electrode is advantageous because a conical spray can penetrate the interior of the ring.
  • the values for the diameter d of the ring electrode and the distance x of the ring electrode from the tip of the spraying device are to be determined empirically and depend on the electric field strength at the point of demolition of the fluid drop.
  • the value d also depends on the dimensions of the Cone of conical spray off. Preferably, d is between 10 and 50 mm and x between 5 and 40 mm.
  • the counterelectrode can be designed as a punctiform electrode within a hollow spray cone.
  • a nozzle shows a relatively narrow exit area, at which a fluid can break off and be atomized into fluid droplets. Care must be taken that the nozzle is made of a non-conductive material or is electrically insulated at the point of discharge of the fluid droplet. Furthermore, it would be conceivable to use as the spraying device an aerosol source which generates a defined size distribution of the fluid droplets, for example a vibrating diaphragm aerosol generator.
  • the fluid drops could be charged by an electric field with temporally periodically alternating polarity.
  • the frequency of this periodic change is to be chosen depending on the rate at which the fibers pass the spray and the desired charge distribution. Due to this specific embodiment, it is possible to use fluid drops of different electrical charge or different polarity for charging the passing fibers. In concrete terms, it is conceivable that several charges of different polarity are distributed on a single fiber. Against this background, it is also conceivable to realize a strip charging or a strip-shaped charging of the fibers.
  • the fibers could be made and provided by a melt-blown process.
  • the fibers can be passed through the spray directly after being produced by a melt-blown process and charged.
  • This can be a fluid can be used, which is sprayed under light pressure on the fibers.
  • the fibers are deposited only after charging to a fiber layer, so that a negative effect on the structure of the fiber layer is prevented by the fluid droplets.
  • the fluid could be vaporized on the fibers, with the electrical charge of the fluid drops providing for the charging of the fibers.
  • the fibers When the fibers are produced by a melt-blown process, the fibers have process heat immediately after leaving the melt-blown nozzle. This process heat can be used to vaporize the fluid drops that accumulate on the passing fibers.
  • fibers made by a melt-blown process are still soft immediately after leaving the melt-blown die. This has the advantage that the polymers from which the MeIt-Blown-Fasem are made, can be particularly easily modified and charged by the electrically charged fluid droplets. This electrical charge is thus frozen in polymers, so to speak, as they cool. The charges are located not only on the surface but also within the fiber, resulting in a much longer life.
  • an electret filter element can be created, which has different fiber layers of different electrical charges or polarities.
  • an alternating sequence of negative and positively charged fiber layers is conceivable, which are formed as a laminate.
  • the fibers could be passed between two sprays.
  • the fibers could be passed between two spray mists, with the fluid drops oriented in the opposite direction or in the same direction electric fields between the tearing fluid drops and the respective counter electrodes are electrically charged.
  • a two-sided charging of a fiber stream or fibers of a fiber stream can be realized, with either electrical charges of the same polarity or different polarities can be applied on both sides.
  • a fluid could be used in which a conductivity salt is dissolved.
  • the conductivity salt can be configured as NaCl or ammonium bicarbonate.
  • an electret filter element mentioned at the outset which is characterized in that the electrical charges are caused by charged fluid droplets which have been charged in an electric field, wherein the fluid droplets are electrically connected by an electric field between tearing fluid droplets and a counterelectrode were charged.
  • the increased charge amount in the fluid droplets improves the filter efficiency of the electret filter element, so that a ⁇ value of> 0.14 is achieved.
  • the ⁇ -value is determined from the equation:
  • Y (- In (Penetration)) / pressure difference.
  • the pressure difference between inflow side and outflow side of an electret filter element in Pascal is used.
  • Values between 0 and 1 are used for the penetration, whereby 1 stands for a degree of penetration of 100%. This means that all particles pass through a flowed electret filter element surface.
  • a value of 0 expresses that all particles are retained.
  • the particles are designed as NaCl particles with a mean diameter of 0.26 ⁇ m.
  • the concentration of NaCl in the inflowing fluid flow is 12 to 20 mg / m 3 .
  • the electret filter element is preferably manufactured by the method described here.
  • the fibers could carry charges of the same name within a fiber layer.
  • an electret filter element which consists of several different fiber layers, which show different electrical polarities.
  • the fibers carry charges of different polarity within a fiber layer, wherein on at least one of the fibers, several charges of different polarity are distributed.
  • a large number of microfibers can be produced on one fiber, so that the entire fiber layer exhibits a particularly high separation capacity for fine aerosols.
  • 1 is a side view of the spraying device, which faces a ring electrode
  • FIG. 2 is a detailed view of the tip of the spray device showing an orientation of the electric field to the fluid droplets in the demolition
  • FIG. 3 is a schematic view of fibers produced by melt-blowing
  • Fig. 4 is a schematic view of a single fiber on which attach negatively charged fluid droplets example
  • Fig. 5 is a schematic view of a process in which fibers are passed between two spray mists.
  • Fig. 1 shows a side view of a spraying device 1, which is designed as a nozzle. From the tip 2 of the spray 1 exits a conical spray 3, which consists of individual fluid droplets 4. The fluid drops 4 are electrically charged. The charging takes place by an electric field, which forms between the tearing fluid droplets 4a and a ring electrode 5.
  • FIG. 2 shows in a detail view (circular view) of the tip 2 of the spray device 1 according to FIG. 1, from which fluid drops 4 emerge and tear off.
  • the fluid droplets 4a are charged before being torn off by an electric field whose field lines are represented by arrows defined in the case described here with a negative electrical charge.
  • the spray 3 shows a schematic view of the spray device 1, from the tip 2 of which a spray 3 exits.
  • the spray 3 consists of electrically charged fluid drops 4.
  • the fluid droplets 4 are charged by an electric field, which forms between the tearing fluid drops 4a and the ring electrode 5.
  • the ring electrode 5 has a distance x of about 5 to 40 mm to the outlet opening of the tip 2. The interruption of the electrical connection to the grounded spray device 1 or to the grounded fluid caused by the demolition of the fluid droplet 4 prevents charge equalization.
  • the defined negative charges remain on the fluid drop 4 and can thus be transported to the fiber 6.
  • the electret filter element according to the invention is produced by the following method: Fibers 6 are provided which are ejected from a melt-blown nozzle 7. Furthermore, a spray device 1 is provided which generates a spray 3 of electrically charged fluid drops 4. The spray 3 is designed as a spray cone. The fibers 6 are passed through the conical spray 3. The fibers 6 are guided on the sprayer 1 side facing away from the counter electrode 5 through the spray 3. The fibers 6 are wetted with the fluid droplets 4. Then the fibers 6 are deposited to a fiber layer 8. The storage takes place on a conveyor belt 9, so that a continuous production of a fiber layer 8 is possible.
  • the fluid drops 4 are electrically negatively charged by the electric field between the counter electrode 5 and the tearing fluid droplet 4a.
  • a nozzle is used as spraying device 1.
  • the fibers 6 are produced and provided by a melt-blown process.
  • the fibers 6 are microfibers which have a diameter of between 0.1 ⁇ m and 20 ⁇ m.
  • the fluid is water.
  • the fluid or the water shows an electrical conductivity which facilitates a polarizability of the tearing-off fluid droplet 4a at the present electric field strength at the break-away location of the fluid droplet 4a.
  • the electrical conductivity can be modified by a suitable additive, for example a conductivity salt such as NaCl or ammonium hydrogencarbonate.
  • the additive should preferably not remain on the fiber 6.
  • the additive can advantageously remain on the fibers 6 in quantities which are not critical for the application, in order to be detectable by suitable analytics.
  • FIG. 4 shows a detailed representation, not to scale, of a fiber 6 on which negative-charged fluid drops 4 are deposited by way of example.
  • the fluid evaporates on the fiber 6 and the electrical charge of the fluid droplets 4 causes the charging of the fiber 6.
  • the process heat of the fiber 6, which by a MeIt- Blown method is used to evaporate the fluid.
  • the polymers from which the fibers 6 are made may be incorporated with a charge control additive to improve electrical chargeability.
  • a charge control additive for example, Chimassorb, CIBA company could be used.
  • Fig. 5 shows a schematic view of the implementation of a method in which the fibers 6 are passed between two opposite spray 3.
  • the fibers 6 can be passed between two spray mists 3, wherein the fluid drops 4 are electrically charged by opposing or in the same direction oriented electric fields between the tearing fluid drops 4 a and the respective counter electrodes 5.
  • Fibers 6 are provided which are ejected from the melt-blown nozzle 7. Furthermore, opposing two spraying devices 1 are provided, which generate two sprays 3 of electrically charged fluid droplets 4.
  • the spray 3 are designed as spray cone.
  • the fibers 6 are performed between the cone-shaped sprays 3.
  • the fibers 6 are guided on the side facing away from the respective spray device 1 side of the respective counter electrode 5 through the spray 3.
  • the fibers 6 are wetted with the fluid droplets 4 on both sides. Then the fibers 6 are deposited to a fiber layer 8.
  • the storage takes place on a conveyor belt 9, so that a continuous production of a fiber layer 8 is possible.
  • the fluid drops 4 become electrically negative due to the electric fields between the counter electrodes 5 and the tearing fluid drops 4a charged.
  • a nozzle is used.
  • the fibers 6 are produced and provided by a melt-blown process.
  • the fibers 6 are microfibers having a diameter of between 0.1 ⁇ m and 20 ⁇ m.
  • the fluid is water.
  • the fluid or the water shows an electrical conductivity which facilitates a polarizability of the tearing-off fluid droplet 4a at the present electric field strength at the break-away location of the fluid droplet 4a.
  • the electrical conductivity can be modified by a suitable additive, for example a conductivity salt such as NaCl or ammonium hydrogencarbonate.
  • the additive should preferably not remain on the fiber 6.
  • the additive can advantageously remain on the fibers 6 in quantities which are not critical for the application, in order to be detectable by suitable analytics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Filtering Materials (AREA)
  • Electrostatic Separation (AREA)

Abstract

Ein Verfahren zur Herstellung eines Elektretfilterelements nach einem der voranstehenden Ansprüche, umfassend die Schritte: Bereitstellen von Fasern (6), Bereitstellen einer Sprüheinrichtung (1) für ein Fluid, Erzeugen eines Sprühnebels (3) aus elektrisch geladenen Fluidtropfen (4), Führen der Fasern (6) durch den Sprühnebel (3), Benetzen der Fasern (6) mit den Fluidtropfen (4) und Ablegen der Fasern (6) zu einer Faserlage (8), ist im Hinblick auf die Aufgabe, ein Filterelement zu schaffen, welches bei kostengünstiger Fertigung eine homogene Ladungsverteilung und eine hohe Filtereffizienz zeigt, dadurch gekennzeichnet, dass die Fluidtropfen (4) durch ein elektrisches Feld zwischen abreissenden Fluidtropfen (4a) und einer Gegenelektrode (5) elektrisch aufgeladen werden. Ein Elektretfilterelement wird nach dem Verfahren hergestellt.

Description

Elektretfilterelement und Verfahren zu dessen Herstellung
Beschreibung
Technisches Gebiet
Die Erfindung betrifft ein Verfahren zur Herstellung eines Elektretfilterelements, welches die folgenden Schritte umfasst: Bereitstellen von Fasern, Bereitstellen einer Sprüheinrichtung für ein Fluid, Erzeugen eines Sprühnebels aus elektrisch geladenen Fluidtropfen, Führen der Fasern durch den Sprühnebel, Benetzen der Fasern mit den Fluidtropfen und Ablegen der Fasern zu einer Faserlage. Die Erfindung betrifft des Weiteren ein Elektretfilterelement mit mindestens einer Faserlage mit Fasern, welche elektrische Ladungen tragen.
Stand der Technik
Aus der EP 1 417 176 A1 ist ein Verfahren bekannt, bei welchem Fasern durch einen Sprühnebel aus Fluidtropfen geführt werden. Die Fluidtropfen weisen eine Größe von weniger als 20 μm auf. Bei diesem Verfahren werden die
Fluidtropfen unter Nutzung des Lenard-Effekts („Lenard-Charging-Effect") durch Aufspalten elektrisch geladen. Die bereits geladenen Fluidtropfen werden gemeinsam mit den Fasern durch ein elektrisches Feld geführt. Bei diesem Verfahren entstehen statistisch verteilt Fluidtropfen mit unterschiedlichen Polaritäten. Es entstehen hier sowohl positiv als auch negativ geladene Fluidtropfen in nur schwer steuerbarer Verteilung. Des Weiteren ist die Polarität der elektrischen Ladung der Fluidtropfen von der Fluidtropfengröße abhängig. Die Fluidtropfen werden durch das mechanische Versprühen in große und kleine Fluidtropfen mit jeweils unterschiedlicher elektrischer Ladung aufgeteilt.
Filterelemente der eingangs genannten Art sind aus dem Stand der Technik ebenfalls bereits bekannt. Insbesondere ist es bekannt, Vliesstoffe aus Mikrofasem durch verschiedene Verfahren aufzuladen. Aus der EP 0 845 058 A1 ist ein Verfahren bekannt, mit dem Filterelemente einer sehr hohen Filtereffizienz geschaffen werden können. Diese Filterelemente zeichnen sich durch eine sehr hohe Filtereffizienz gegenüber Feinaerosolen aus.
Bei dem aus der EP 0 845 058 A1 bekannten Verfahren werden Wassertropfen als Ladungsträger auf einen fertigen Vliesstoff aufgebracht. Dabei weisen die zugleich aufgebrachten Wassertropfen unterschiedliche Ladungen auf. Zur Verbesserung der elektrischen Aufladbarkeit wird dem Polymer, aus dem die Fasern des Vliesstoffes gefertigt sind, ein Zusatzstoff beigemengt.
Bei diesem Verfahren ist nachteilig, dass die Wassertropfen auf den bereits fertig gestellten Vliesstoff gesprüht werden. Durch die Anwendung dieses Verfahrens treten Filtereffekte auf, die eine kontinuierliche Verteilung der Ladungen innerhalb des Vliesstoffes verhindern. Je dichter der verwendete Vliesstoff ist, desto höher sind die Wasserdrücke, die aufzuwenden sind, um Ladungen homogen innerhalb des Vliesstoffes zu verteilen. Diese hohen Wasserdrücke können jedoch die Vliesstoffstruktur negativ verändern oder sogar zerstören.
Des Weiteren ist nach dem Aufsprühen großer Mengen Wasser ein Trockenprozess erforderlich. Während des Trockenprozesses wird der Vliesstoff thermisch beaufschlagt, wodurch die elektrische Ladung reduziert werden kann. Daher erfolgt die Trocknung vorzugsweise bei niedrigen Temperaturen in einem Vakuum. Hiermit sind ein großer apparativer Aufwand und erhebliche Kosten verbunden.
Darstellung der Erfindung
Der Erfindung liegt daher die Aufgabe zu Grunde, ein Elektretfilterelement zu schaffen, welches bei kostengünstiger Fertigung eine homogene Ladungsverteilung und eine hohe Filtereffizienz zeigt.
Erfindungsgemäß wird die voranstehende Aufgabe mit den Merkmalen des Patentanspruchs 1 gelöst.
Danach ist das eingangs genannte Verfahren dadurch gekennzeichnet, dass die Fluidtropfen durch ein elektrisches Feld zwischen abreissenden Fluidtropfen und einer Gegenelektrode elektrisch aufgeladen werden.
Die Fluidtropfen werden erfindungsgemäß durch ein elektrisches Feld, welches sich zwischen einer Gegenelektrode und dem abreissenden Fluidtropfen selbst ausbildet, polarisiert. Dieses elektrische Feld sorgt für einen
Ladungsüberschuss am Fluidtropfen, der nach dessen Abriss bestehen bleibt.
Durch diese konkrete Ausgestaltung werden die Fluidtropfen beim Abreißen an der Sprüheinrichtung durch das elektrische Feld nicht nur polarisiert sondern mit einer bevorzugten Ladung aufgeladen. Die Aufladung der Fluidtropfen erfolgt daher nicht zufällig und mit einer gewissen Verteilung, sondern einheitlich. Im Idealfall tragen alle von der Sprüheinrichtung erzeugten Fluidtropfen gleichnamige elektrische Ladungen, das heißt, zeigen die gleiche elektrische Polarität. Erfindungsgemäß ist daher konkret erkannt worden, dass die Ladung auf den Fluidtropfen nicht zufällig, sondern durch ein elektrisches Feld definiert mit einer steuerbaren Verteilung erzeugbar ist. Dabei ist insbesondere erkannt worden, dass Fluidtropfen einer einheitlichen elektrischen Ladung erzeugbar sind, um Fasern ausschließlich mit einer elektrischen Ladung einer einheitlichen Polarität aufzuladen.
Des Weiteren ist erfindungsgemäß erkannt worden, dass das elektrische Feld erlaubt, eine deutlich höhere Ladungsmenge pro Fluidtropfenoberfläche zu erzielen. Daher kann das erfindungsgemäße Elektretfilterelement unter Verwendung einer relativ geringen Menge des Fluids eine sehr starke elektrische Aufladung zeigen. Durch Verwendung einer relativ geringen Menge des Fluids ist es nicht notwendig, das Elektretfilterelement zur Trocknung stark zu erwärmen, so dass einerseits Energie gespart und andererseits die elektrische Ladung auf dem Elektretfilterelement nicht geschwächt wird.
Bei diesem Verfahren kann vorteilhaft ein Fluid unter geringem Druck auf Fasern gesprüht werden, bevor diese zu einer Faserlage abgelegt werden. Hierdurch wird eine Veränderung der Struktur der Faserlage vermieden.
Des Weiteren können die Fasern derart mit Ladungen versehen werden, dass diese auch im Inneren der abgelegten Faserlage eine ausreichende Ladungsmenge aufweisen. Durch das genannte Verfahren können Faserlagen mit einer räumlich homogenen Faserladung über dem gesamten Dickenquerschnitt erzeugt werden, wobei die Faserlage nahezu nicht in ihrer Struktur durch Fluide beeinträchtigt wird.
Folglich ist die eingangs genannte Aufgabe gelöst. Vor diesem Hintergrund könnte ein Sprühnebel erzeugt werden, in welchem 60% oder mehr als 60% der sich darin aufhaltenden elektrisch geladenen Fluidtropfen eine elektrische Ladung gleicher Polarität aufweisen. Hierdurch können die Fasern mit einer nahezu einheitlichen elektrischen Ladung versehen werden. Vorzugsweise wird ein Sprühnebel erzeugt, in welchem 80% oder mehr als80 % der sich darin aufhaltenden elektrisch geladenen Fluidtropfen eine elektrische Ladung gleicher Polarität aufweisen
Ein Sprühnebel könnte erzeugt werden, in welchem die Polarität der elektrischen Ladung der sich darin aufhaltenden Fluidtropfen von der
Fluidtropfengröße unabhängig ist. Hierdurch ist eine gleichmäßige, homogene und materialschonende Benetzung der Fasern ermöglicht.
Die Fasern könnten auf der der Sprüheinrichtung abgewandten Seite der Gegenelektrode durch den Sprühnebel geführt werden. Hierdurch bleibt das Material, aus dem die Fasern gefertigt sind, vom elektrischen Feld weitgehend unbeeinträchtigt. Die Fluidtropfen werden daher durch ein starkes elektrisches Feld, die Fasern durch einen nahezu feldfreien Raum geführt.
Die elektrische Spannung zwischen dem abreissenden Fluidtropfen und der Gegenelektrode ist in Abhängigkeit von der geometrischen Anordnung und dem eingesetzten Fluid zu wählen. Bevorzugte Werte für die elektrische Spannung liegen zwischen 60 Volt und 15000 Volt. Es ist auch denkbar, bei größeren Abständen zwischen Sprüheinrichtung und Gegenelektrode Spannungen zwischen 30000 V und 100000 Volt zu erzeugen. Die Gegenelektrode kann als Ringelektrode ausgestaltet sein. Die Ausgestaltung als Ringelektrode ist vorteilhaft, da ein kegelförmiger Sprühnebel das Innere des Rings durchdringen kann. Die Werte für den Durchmesser d der Ringelektrode und die Entfernung x der Ringelektrode von der Spitze der Sprüheinrichtung sind empirisch zu ermitteln und hängen von der elektrischen Feldstärke am Abrissort des Fluidtropfens ab. Der Wert d hängt außerdem von den Dimensionen des Kegels des kegelförmigen Sprühnebels ab. Bevorzugt beträgt d zwischen 10 und 50 mm und x zwischen 5 und 40 mm. Des weiteren kann die Gegenelektrode als punktförmige Elektrode innerhalb eines hohlen Sprühkegels ausgestaltet sein.
Als Sprüheinrichtung könnte eine Düse verwendet werden. Eine Düse zeigt einen relativ engen Austrittsbereich, an dem ein Fluid abreißen und zu Fluidtropfen zerstäubt werden kann. Dabei ist darauf zu achten, dass die Düse aus einem nicht leitfähigen Material besteht oder am Austrittsort des Fluidtropfens elektrisch isoliert ist. Des Weiteren wäre denkbar, als Sprüheinrichtung eine Aerosolquelle zu verwenden, die eine definierte Größenverteilung der Fluidtropfen erzeugt, beispielsweise ein Schwingblendenaerosolgenerator.
Die Fluidtropfen könnten durch ein elektrisches Feld mit zeitlich periodisch wechselnder Polarität aufgeladen werden. Die Frequenz dieses periodischen Wechsels ist in Abhängigkeit von der Geschwindigkeit, mit der die Fasern die Sprüheinrichtung passieren, und der gewünschten Ladungsverteilung zu wählen. Durch diese konkrete Ausgestaltung ist es möglich, Fluidtropfen unterschiedlicher elektrischer Ladung bzw. unterschiedlicher Polarität zur Aufladung der vorbeiströmenden Fasern zu nutzen. Ganz konkret ist hierbei denkbar, dass auf einer einzelnen Faser dadurch mehrere Ladungen unterschiedlicher Polarität verteilt sind. Vor diesem Hintergrund ist auch denkbar, eine Streifenaufladung bzw. eine streifenförmige Aufladung der Fasern zu realisieren.
Die Fasern könnten durch ein Melt-Blown-Verfahren hergestellt und bereitgestellt werden. Durch diese konkrete Ausgestaltung können die Fasern direkt nach ihrer Erzeugung durch einen Melt-Blown-Prozess durch den Sprühnebel hindurchgeführt und aufgeladen werden. Dabei kann ein Fluid verwendet werden, welches unter geringem Druck auf die Fasern gesprüht wird. Die Fasern werden erst nach Aufladung zu einer Faserlage abgelegt, so dass eine negative Beeinträchtigung der Struktur der Faserlage durch die Fluidtropfen verhindert wird.
Das Fluid könnte auf den Fasern verdampft werden, wobei die elektrische Ladung der Fluidtropfen für die Aufladung der Fasern sorgt. Bei Erzeugung der Fasern durch ein Melt-Blown-Verfahren weisen die Fasern unmittelbar nach Verlassen der Melt-Blown-Düse eine Prozesswärme auf. Diese Prozesswärme kann genutzt werden, um die Fluidtropfen zu verdampfen, die sich auf den vorbeiströmenden Fasern anlagern. Des Weiteren sind Fasern, die durch ein Melt-Blown-Verfahren hergestellt sind, direkt nach Verlassen der Melt-Blown- Düse noch weich. Dies hat den Vorteil, dass die Polymere, aus denen die MeIt- Blown-Fasem hergestellt sind, durch die elektrisch geladenen Fluidtropfen besonders leicht modifiziert und aufgeladen werden können. Diese elektrische Ladung wird daher sozusagen in Polymeren eingefroren, wenn diese erkalten. Die Ladungen befinden sich nicht nur an der Oberfläche sondern auch innerhalb der Faser, was eine wesentlich höhere Lebensdauer bewirkt.
Es könnten mehrere Faserlagen übereinander abgelegt werden. Durch diese konkrete Ausgestaltung kann ein Elektretfilterelement geschaffen werden, welches verschiedene Faserlagen unterschiedlicher elektrischer Ladungen bzw. Polaritäten aufweist. Beispielsweise ist eine alternierende Abfolge negativ und positiv geladener Faserlagen denkbar, die als Laminat ausgebildet sind.
Die Fasern könnten zwischen zwei Sprühnebeln hindurchgeführt werden.
Hierdurch ist eine beidseitige Aufladung eines Faserstroms oder von Fasern eines Faserstroms realisierbar.
Die Fasern könnten zwischen zwei Sprühnebeln hindurchgeführt werden, wobei die Fluidtropfen durch gegensinnig oder gleichsinnig orientierte elektrische Felder zwischen den abreissenden Fluidtropfen und den jeweiligen Gegenelektroden elektrisch aufgeladen werden. Hierdurch ist eine beidseitige Aufladung eines Faserstroms oder von Fasern eines Faserstroms realisierbar, wobei auf beiden Seiten entweder elektrische Ladungen gleicher Polarität oder unterschiedlicher Polaritäten aufbringbar sind.
Für die Erzeugung des Sprühnebels könnte ein Fluid verwendet wird, in welchem ein Leitfähigkeitssalz gelöst ist. Hierdurch kann nachgewiesen werden, ob ein Elektretfilterelement nach dem hier beschriebenen Verfahren gefertigt wurde, da das Leitfähigkeitssalz und dessen Verteilung auf den Fasern des Elektretfilterelements analytisch nachgewiesen werden kann. Das Leitfähigkeitssalz kann als NaCI oder Ammoniumhydrogencarbonat ausgestaltet sein.
Die eingangs genannte Aufgabe wird auch durch ein eingangs genanntes Elektretfilterelement gelöst, welches dadurch gekennzeichnet ist, dass die elektrischen Ladungen durch geladene Fluidtropfen entstanden sind, die in einem elektrischen Feld geladen wurden, wobei die Fluidtropfen durch ein elektrisches Feld zwischen abreissenden Fluidtropfen und einer Gegenelektrode elektrisch aufgeladen wurden.
Um Wiederholungen in Bezug auf die erfinderische Tätigkeit zu vermeiden, sei auf die Ausführungen zum Verfahren verwiesen.
Durch die erhöhte Ladungsmenge in den Fluidtropfen wird die Filterwirksamkeit des Elektretfilterelements verbessert, so dass ein γ-Wert von > 0,14 erreicht wird. Dabei ermittelt sich der γ-Wert aus der Gleichung:
Y = (- In (Penetration)) / Druckdifferenz . Dabei wird die Druckdifferenz zwischen Anströmseite und Abströmseite eines Elektretfilterelements in Pascal eingesetzt. Für die Penetration werden Werte zwischen 0 und 1 eingesetzt, wobei 1 für einen Penetrationsgrad von 100 % steht. Dies bedeutet, dass durch eine angeströmte Elektretfilterelementfläche alle Partikel hindurchgehen. Ein Wert von 0 drückt aus, dass alle Partikel zurückgehalten werden. Die Partikel sind als NaCI-Partikel mit einem mittleren Durchmesser von 0,26 μm ausgestaltet. Die Konzentration des NaCI im anströmenden Fluidstrom beträgt 12 bis 20 mg/m3.
Das Elektretfilterelement wird vorzugsweise durch das hier beschriebene Verfahren gefertigt.
Die Fasern könnten innerhalb einer Faserlage gleichnamige Ladungen tragen. Durch diese konkrete Ausgestaltung ist es möglich, ein Elektretfilterelement zu schaffen, welches aus mehreren unterschiedlichen Faserlagen besteht, die unterschiedliche elektrische Polaritäten zeigen.
Vor diesem Hintergrund ist denkbar, dass die Fasern innerhalb einer Faserlage Ladungen unterschiedlicher Polarität tragen, wobei auf mindestens einer der Fasern mehrere Ladungen unterschiedlicher Polarität verteilt sind. Dadurch können eine Vielzahl von Mikrofeldem auf einer Faser erzeugt werden, so dass die gesamte Faserlage ein besonders hohes Abscheidevermögen für Feinaerosole zeigt.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung auf vorteilhafte Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die nachgeordneten Ansprüche, andererseits auf die nachfolgende Erläuterung bevorzugter Ausführungsbeispiele des erfindungsgemäßen Verfahrens anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung der bevorzugten Ausführungsbeispiele anhand der Zeichnung werden auch im Allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert.
Kurzbeschreibung der Zeichnung
In der Zeichnung zeigen
Fig. 1 eine Seitenansicht der Sprüheinrichtung, der eine Ringelektrode gegenüberliegt,
Fig. 2 eine Detailansicht der Spitze der Sprüheinrichtung mit Darstellung einer Ausrichtung des elektrischen Feldes zum im Abriss befindlichen Fluidtropfen,
Fig. 3 eine schematische Ansicht von Fasern, die durch ein Melt-Blown-
Verfahren hergestellt sind und durch einen kegelförmigen Sprühnebel aus elektrisch geladenen Fluidtropfen geführt werden,
Fig. 4 eine schematische Ansicht einer einzelnen Faser, auf der sich exemplarisch negativ geladene Fluidtropfen anlagern, und
Fig. 5 eine schematische Ansicht eines Verfahrens, bei dem Fasern zwischen zwei Sprühnebeln hindurchgeführt werden.
Ausführung der Erfindung
Fig. 1 zeigt in einer Seitenansicht eine Sprüheinrichtung 1 , die als Düse ausgebildet ist. Aus der Spitze 2 der Sprüheinrichtung 1 tritt ein kegelförmiger Sprühnebel 3 aus, der aus einzelnen Fluidtropfen 4 besteht. Die Fluidtropfen 4 sind elektrisch geladen. Die Aufladung erfolgt durch ein elektrisches Feld, das sich zwischen den abreissenden Fluidtropfen 4a und einer Ringelektrode 5 ausbildet.
Im Sprühnebel 3 weisen 60% oder mehr als 60% der sich darin aufhaltenden elektrisch geladenen Fluidtropfen 4 eine elektrische Ladung gleicher Polarität auf. Im Sprühnebel 3 ist die Polarität der elektrischen Ladung der sich darin aufhaltenden Fluidtropfen 4 von der Fluidtropfengröße unabhängig.
Fig. 2 zeigt in einer Detailansicht (kreisförmige Ansicht) die Spitze 2 der Sprüheinrichtung 1 gemäß Fig. 1 , aus der Fluidtropfen 4 austreten und abreissen. Die Fluidtropfen 4a werden vor ihrem Abreissen durch ein elektrisches Feld, dessen Feldlinien durch Pfeile dargestellt sind, definiert im hier skizzierten Fall mit negativer elektrischer Ladung aufgeladen.
Fig. 3 zeigt in einer schematischen Ansicht die Sprüheinrichtung 1 , aus deren Spitze 2 ein Sprühnebel 3 austritt. Der Sprühnebel 3 besteht aus elektrisch geladenen Fluidtropfen 4. Die Fluidtropfen 4 werden durch ein elektrisches Feld aufgeladen, welches sich zwischen den abreissenden Fluidtropfen 4a und der Ringelektrode 5 ausbildet. Die Ringelektrode 5 weist einen Abstand x von etwa 5 bis 40 mm zur Austrittsöffnung der Spitze 2 auf. Die durch den Abriss des Fluidtropfens 4 bedingte Unterbrechung der elektrischen Verbindung zur geerdeten Sprüheinrichtung 1 oder zum geerdeten Fluid verhindert einen Ladungsausgleich. Die definiert negativen Ladungen verbleiben auf dem Fluidtropfen 4 und können so zur Faser 6 transportiert werden.
Das erfindungsgemäße Elektretfilterelement wird nach dem folgenden Verfahren hergestellt: Es werden Fasern 6 bereitgestellt, die aus einer Melt-Blown-Düse 7 ausgestoßen werden. Des Weiteren wird eine Sprüheinrichtung 1 bereitgestellt, welche einen Sprühnebel 3 aus elektrisch geladenen Fluidtropfen 4 erzeugt. Der Sprühnebel 3 ist als Sprühkegel ausgestaltet. Die Fasern 6 werden durch den kegelförmigen Sprühnebel 3 geführt. Die Fasern 6 werden auf der der Sprüheinrichtung 1 abgewandten Seite der Gegenelektrode 5 durch den Sprühnebel 3 geführt. Dabei werden die Fasern 6 mit den Fluidtropfen 4 benetzt. Darauf werden die Fasern 6 zu einer Faserlage 8 abgelegt. Die Ablage erfolgt auf einem Förderband 9, so dass eine kontinuierliche Herstellung einer Faserlage 8 möglich ist.
Die Fluidtropfen 4 werden durch das elektrische Feld zwischen der Gegenelektrode 5 und dem abreissenden Fluidtropfen 4a elektrisch negativ aufgeladen. Als Sprüheinrichtung 1 wird eine Düse verwendet. Die Fasern 6 werden durch ein Melt-Blown-Verfahren hergestellt und bereitgestellt. Bei den Fasern 6 handelt es sich um Mikrofasem, die einen Durchmesser zwischen 0,1 μm und 20 μm aufweisen. Bei dem Fluid handelt es sich um Wasser. Bevorzugt zeigt das Fluid bzw. das Wasser eine elektrische Leitfähigkeit, die eine Polarisierbarkeit des abreissenden Fluidtropfens 4a bei der vorliegenden elektrischen Feldstärke am Abrissort des Fluidtropfens 4a erleichtert. Die elektrische Leitfähigkeit kann durch ein geeignetes Additiv, beispielsweise ein Leitfähigkeitssalz wie NaCI oder Ammoniumhydrogencabonat, modifiziert werden. Das Additiv sollte vorzugsweise nicht auf der Faser 6 verbleiben. Das Additiv kann aber in für die Anwendung unkritischen Mengen vorteilhaft auf den Fasern 6 verbleiben, um durch geeignete Analytik nachweisbar zu sein.
Fig. 4 zeigt eine nicht maßstäbliche Detailansicht einer Faser 6, auf der sich exemplarisch negativ geladene Fluidtropfen 4 anlagern. Das Fluid verdampft auf der Faser 6 und die elektrische Ladung der Fluidtropfen 4 bewirkt die Aufladung der Faser 6. Die Prozesswärme der Faser 6, die durch ein MeIt- Blown-Verfahren hergestellt wurde, wird genutzt, um das Fluid zu verdampfen. Den Polymeren, aus denen die Fasern 6 hergestellt sind, kann zur Verbesserung der elektrischen Aufladbarkeit ein Zusatzstoff zur Ladungssteuerung beigemengt werden. Als Zusatzstoff könnte beispielsweise Chimassorb, Firma CIBA eingesetzt werden.
Fig. 5 zeigt in schematischer Ansicht die Durchführung eines Verfahrens, bei dem die Fasern 6 zwischen zwei gegenüberliegenden Sprühnebeln 3 hindurchgeführt werden. Die Fasern 6 können zwischen zwei Sprühnebeln 3 hindurchgeführt werden, wobei die Fluidtropfen 4 durch gegensinnig oder gleichsinnig orientierte elektrische Felder zwischen den abreissenden Fluidtropfen 4a und den jeweiligen Gegenelektroden 5 elektrisch aufgeladen werden.
Ein weiteres Elektretfilterelement wird dann nach dem folgenden Verfahren hergestellt:
Es werden Fasern 6 bereitgestellt, die aus der Melt-Blown-Düse 7 ausgestoßen werden. Des Weiteren werden gegenüberliegende zwei Sprüheinrichtungen 1 bereitgestellt, welche zwei Sprühnebel 3 aus elektrisch geladenen Fluidtropfen 4 erzeugen. Die Sprühnebel 3 sind als Sprühkegel ausgestaltet. Die Fasern 6 werden zwischen den kegelförmigen Sprühnebeln 3 durchgeführt. Die Fasern 6 werden auf den der jeweiligen Sprüheinrichtung 1 abgewandten Seite der jeweiligen Gegenelektrode 5 durch den Sprühnebel 3 geführt. Dabei werden die Fasern 6 mit den Fluidtropfen 4 beidseitig benetzt. Darauf werden die Fasern 6 zu einer Faserlage 8 abgelegt. Die Ablage erfolgt auf einem Förderband 9, so dass eine kontinuierliche Herstellung einer Faserlage 8 möglich ist.
Die Fluidtropfen 4 werden durch die elektrischen Felder zwischen den Gegenelektroden 5 und den abreissenden Fluidtropfen 4a elektrisch negativ aufgeladen. Als Sprüheinrichtung 1 wird eine Düse verwendet. Die Fasern 6 werden durch ein Melt-Blown-Verfahren hergestellt und bereitgestellt. Bei den Fasern 6 handelt es sich um Mikrofasern, die einen Durchmesser zwischen 0,1 μm und 20 μm aufweisen. Bei dem Fluid handelt es sich um Wasser. Bevorzugt zeigt das Fluid bzw. das Wasser eine elektrische Leitfähigkeit, die eine Polarisierbarkeit des abreissenden Fluidtropfens 4a bei der vorliegenden elektrischen Feldstärke am Abrissort des Fluidtropfens 4a erleichtert. Die elektrische Leitfähigkeit kann durch ein geeignetes Additiv, beispielsweise ein Leitfähigkeitssalz wie NaCI oder Ammoniumhydrogencabonat, modifiziert werden. Das Additiv sollte vorzugsweise nicht auf der Faser 6 verbleiben. Das Additiv kann aber in für die Anwendung unkritischen Mengen vorteilhaft auf den Fasern 6 verbleiben, um durch geeignete Analytik nachweisbar zu sein.
Hinsichtlich weiterer vorteilhafter Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Lehre wird einerseits auf den allgemeinen Teil der Beschreibung und andererseits auf die Patentansprüche verwiesen.
Abschließend sei ganz besonders hervorgehoben, dass die zuvor ausgewählten Ausführungsbeispiele lediglich zur Erörterung der erfindungsgemäßen Lehre dienen, diese jedoch nicht auf diese Ausführungsbeispiele einschränken.

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Elektretfilterelements nach einem der voranstehenden Ansprüche, umfassend die Schritte:
Bereitstellen von Fasern (6), Bereitstellen einer Sprüheinrichtung (1 ) für ein Fluid, Erzeugen eines Sprühnebels (3) aus elektrisch geladenen Fluidtropfen (4), Führen der Fasern (6) durch den Sprühnebel (3), Benetzen der Fasern (6) mit den Fluidtropfen (4) und Ablegen der Fasern (6) zu einer Faserlage (8), dadurch gekennzeichnet, dass die Fluidtropfen (4) durch ein elektrisches Feld zwischen abreissenden Fluidtropfen (4a) und einer Gegenelektrode (5) elektrisch aufgeladen werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein
Sprühnebel (3) erzeugt wird, in welchem 60% oder mehr als 60% der sich darin aufhaltenden elektrisch geladenen Fluidtropfen (4) eine elektrische Ladung gleicher Polarität aufweisen.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Sprühnebel (3) erzeugt wird, in welchem die Polarität der elektrischen Ladung der sich darin aufhaltenden Fluidtropfen (4) von der Fluidtropfengröße unabhängig ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Fasern (6) auf der der Sprüheinrichtung (1) abgewandten Seite der Gegenelektrode (5) durch den Sprühnebel (3) geführt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Sprüheinrichtung (1) eine Düse (2) verwendet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Fluidtropfen (4) durch ein elektrisches Feld mit zeitlich wechselnder Polarität aufgeladen werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Fasern (6) durch ein Melt-Blown-Verfahren hergestellt und bereitgestellt werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Fluid auf den Fasern (6) verdampft wird, wobei die elektrische
Ladung der Fluidtropfen (4) die Aufladung der Fasern (6) bewirkt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mehrere Faserlagen (8) übereinander abgelegt werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Fasern (6) zwischen zwei Sprühnebeln (3) hindurchgeführt werden.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Fasern (6) zwischen zwei Sprühnebeln (3) hindurchgeführt werden, wobei die Fluidtropfen (4) durch gegensinnig oder gleichsinnig orientierte elektrische Felder zwischen den abreissenden Fluidtropfen (4a) und den jeweiligen Gegenelektroden (5) elektrisch aufgeladen werden.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass für die Erzeugung des Sprühnebels (3) ein Fluid verwendet wird, in welchem ein Leitfähigkeitssalz gelöst ist.
13. Elektretfilterelement mit mindestens einer Faserlage (8) mit Fasern (6), welche elektrische Ladungen tragen, dadurch gekennzeichnet, dass die elektrischen Ladungen durch geladene Fluidtropfen (4) entstanden sind, die in einem elektrischen Feld geladen wurden, wobei die Fluidtropfen (4) durch ein elektrisches Feld zwischen abreissenden Fluidtropfen (4a) und einer Gegenelektrode (5) elektrisch aufgeladen wurden.
14. Elektretfilterelement nach Anspruch 13, dadurch gekennzeichnet, dass die Fasern (6) innerhalb einer Faserlage (8) gleichnamige Ladungen tragen.
15. Elektretfilterelement nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Fasern (6) innerhalb einer Faserlage (8) Ladungen unterschiedlicher Polarität tragen, wobei auf mindestens einer der Fasern (6) mehrere Ladungen unterschiedlicher Polarität verteilt sind.
PCT/EP2009/006217 2008-09-16 2009-08-27 Elektretfilterelement und verfahren zu dessen herstellung WO2010031490A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117008526A KR101307877B1 (ko) 2008-09-16 2009-08-27 일렉트렛 필터 소자 및 그 제조 방법
US13/063,484 US8871011B2 (en) 2008-09-16 2009-08-27 Electret filter element and method for the manufacture thereof
CN200980136085.3A CN102159295B (zh) 2008-09-16 2009-08-27 驻极体滤材及其制造方法
EP09778154.6A EP2326402B1 (de) 2008-09-16 2009-08-27 Verfahren zur herstellung eines elektretfilterelements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008047552A DE102008047552A1 (de) 2008-09-16 2008-09-16 Elektretfilterelement und Verfahren zu dessen Herstellung
DE102008047552.1 2008-09-16

Publications (1)

Publication Number Publication Date
WO2010031490A1 true WO2010031490A1 (de) 2010-03-25

Family

ID=41558180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/006217 WO2010031490A1 (de) 2008-09-16 2009-08-27 Elektretfilterelement und verfahren zu dessen herstellung

Country Status (6)

Country Link
US (1) US8871011B2 (de)
EP (1) EP2326402B1 (de)
KR (1) KR101307877B1 (de)
CN (1) CN102159295B (de)
DE (1) DE102008047552A1 (de)
WO (1) WO2010031490A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150107457A1 (en) * 2013-10-21 2015-04-23 E I Du Pont De Nemours And Company Electret nanofibrous web as air filtration media

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3214215A4 (de) * 2014-10-28 2018-05-30 Kuraray Co., Ltd. Elektrisch geladener vliesstoff, filtermaterial damit und verfahren zur herstellung eines elektrisch geladenen vliesstoffes
WO2016081937A1 (en) * 2014-11-21 2016-05-26 E. I. Du Pont De Nemours And Company In-situ charging fiber spinning method for producing a nonwoven electret
ES2950903T3 (es) * 2015-03-16 2023-10-16 Toray Industries Lámina de fibra de electreto
JPWO2017110299A1 (ja) * 2015-12-22 2018-10-11 東レ株式会社 エレクトレット繊維シート
CN105920919B (zh) * 2016-05-17 2018-07-10 华南理工大学 一种用于净化pm2.5的超疏水驻极体滤材的制备及活化方法
CN110392601B (zh) * 2017-03-10 2021-05-28 优泊公司 驻极体化片材及过滤器
CN107088473B (zh) * 2017-06-13 2020-04-10 青岛海纳能源环保科技开发有限公司 一种极性物质吸附分离与提纯材料的制备及使用方法
CN110820174B (zh) * 2019-11-20 2021-05-28 邯郸恒永防护洁净用品有限公司 一种聚丙烯熔喷无纺布的驻极设备
JPWO2021199717A1 (de) * 2020-03-30 2021-10-07
JP7359327B1 (ja) 2022-03-03 2023-10-11 東レ株式会社 エレクトレットメルトブロー不織布の製造方法および製造装置
JP7416330B1 (ja) 2022-03-03 2024-01-17 東レ株式会社 エレクトレットメルトブロー不織布、および、これを用いてなるエアフィルター濾材

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215682A (en) * 1978-02-06 1980-08-05 Minnesota Mining And Manufacturing Company Melt-blown fibrous electrets
US4473863A (en) * 1983-09-02 1984-09-25 Gte Communication Products Corporation Apparatus for and method of making an electret tape
EP0550029A1 (de) * 1991-12-31 1993-07-07 Kimberly-Clark Corporation Leitender Fliessstoff und Verfahren zu seiner Herstellung
WO2001027371A1 (en) * 1999-10-08 2001-04-19 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
JP2002161467A (ja) * 2000-11-28 2002-06-04 Toray Ind Inc エレクトレット加工品の製造方法
JP2002161471A (ja) * 2000-11-28 2002-06-04 Toray Ind Inc エレクトレット加工品の製造方法
DE10109474C1 (de) * 2001-02-28 2002-06-20 Sandler Helmut Helsa Werke Filtermaterialien mit bipolarer Beschichtung
EP1471176A1 (de) * 2002-01-11 2004-10-27 Japan Vilene Company, Ltd. Verfahren zur herstellung von elektret und herstellungsvorrichtung
US20060254419A1 (en) * 2005-05-12 2006-11-16 Leonard William K Method and apparatus for electric treatment of substrates

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE354199B (de) * 1969-09-30 1973-03-05 G Romell
US4143196A (en) * 1970-06-29 1979-03-06 Bayer Aktiengesellschaft Fibre fleece of electrostatically spun fibres and methods of making same
US3757491A (en) * 1970-11-05 1973-09-11 Gourdine Systems Ins Apparatus for suppressing airborne particles
US4095962A (en) * 1975-03-31 1978-06-20 Richards Clyde N Electrostatic scrubber
US4375718A (en) * 1981-03-12 1983-03-08 Surgikos, Inc. Method of making fibrous electrets
AU565762B2 (en) * 1983-02-04 1987-09-24 Minnesota Mining And Manufacturing Company Method and apparatus for manufacturing an electret filter medium
US4513049A (en) * 1983-04-26 1985-04-23 Mitsui Petrochemical Industries, Ltd. Electret article
US4904174A (en) * 1988-09-15 1990-02-27 Peter Moosmayer Apparatus for electrically charging meltblown webs (B-001)
CA2027687C (en) * 1989-11-14 2002-12-31 Douglas C. Sundet Filtration media and method of manufacture
CA2037942A1 (en) * 1990-03-12 1991-09-13 Satoshi Matsuura Process for producing an electret, a film electret, and an electret filter
TW206266B (de) * 1991-06-12 1993-05-21 Toray Industries
ES2336163T3 (es) * 1993-08-17 2010-04-08 Minnesota Mining And Manufacturing Company Metodo para cargar medios filtrantes de electretos.
US5908598A (en) 1995-08-14 1999-06-01 Minnesota Mining And Manufacturing Company Fibrous webs having enhanced electret properties
US5978208A (en) * 1997-12-12 1999-11-02 Eaton Corporation Circuit breaker arrangement with improved terminal collar having interlock sections
US6123752A (en) * 1998-09-03 2000-09-26 3M Innovative Properties Company High efficiency synthetic filter medium
US6827764B2 (en) * 2002-07-25 2004-12-07 3M Innovative Properties Company Molded filter element that contains thermally bonded staple fibers and electrically-charged microfibers
EP1556731A4 (de) * 2002-10-07 2011-03-16 Arena Ind Llc Elektrostatisch gefilterte brille
JP4239692B2 (ja) * 2003-06-04 2009-03-18 パナソニック電工株式会社 空気清浄機
US7906080B1 (en) * 2003-09-05 2011-03-15 Sharper Image Acquisition Llc Air treatment apparatus having a liquid holder and a bipolar ionization device
JP4396580B2 (ja) * 2005-06-01 2010-01-13 パナソニック電工株式会社 静電霧化装置
US7780761B2 (en) * 2007-11-06 2010-08-24 Honeywell International Inc. Adsorptive gas sampler using ionic nano-droplets

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215682A (en) * 1978-02-06 1980-08-05 Minnesota Mining And Manufacturing Company Melt-blown fibrous electrets
US4473863A (en) * 1983-09-02 1984-09-25 Gte Communication Products Corporation Apparatus for and method of making an electret tape
EP0550029A1 (de) * 1991-12-31 1993-07-07 Kimberly-Clark Corporation Leitender Fliessstoff und Verfahren zu seiner Herstellung
WO2001027371A1 (en) * 1999-10-08 2001-04-19 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
JP2002161467A (ja) * 2000-11-28 2002-06-04 Toray Ind Inc エレクトレット加工品の製造方法
JP2002161471A (ja) * 2000-11-28 2002-06-04 Toray Ind Inc エレクトレット加工品の製造方法
DE10109474C1 (de) * 2001-02-28 2002-06-20 Sandler Helmut Helsa Werke Filtermaterialien mit bipolarer Beschichtung
EP1471176A1 (de) * 2002-01-11 2004-10-27 Japan Vilene Company, Ltd. Verfahren zur herstellung von elektret und herstellungsvorrichtung
US20060254419A1 (en) * 2005-05-12 2006-11-16 Leonard William K Method and apparatus for electric treatment of substrates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200259, Derwent World Patents Index; AN 2002-552886, XP002566402 *
DATABASE WPI Week 200333, Derwent World Patents Index; AN 2003-345244, XP002566401 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150107457A1 (en) * 2013-10-21 2015-04-23 E I Du Pont De Nemours And Company Electret nanofibrous web as air filtration media
US9610588B2 (en) * 2013-10-21 2017-04-04 E I Du Pont De Nemours And Company Electret nanofibrous web as air filtration media

Also Published As

Publication number Publication date
DE102008047552A1 (de) 2010-04-08
US8871011B2 (en) 2014-10-28
CN102159295A (zh) 2011-08-17
US20110168024A1 (en) 2011-07-14
KR101307877B1 (ko) 2013-09-13
KR20110069080A (ko) 2011-06-22
EP2326402A1 (de) 2011-06-01
EP2326402B1 (de) 2016-10-05
CN102159295B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
EP2326402B1 (de) Verfahren zur herstellung eines elektretfilterelements
DE69919139T2 (de) Vorrichtung und Verfahren zur Herstellung eines Filtermaterials
DE112006003400T5 (de) Vorrichtung und Verfahren zum elektrostatischen Sprühen
DE3504187A1 (de) Verfahren zur herstellung eines elektretfilters
DE10136256A1 (de) Vorrichtung zur Herstellung von Fasern in einem elektrostatischen Spinnverfahren
DE2750372A1 (de) Elektrostatisches beschichtungsverfahren
EP3523472B1 (de) Verfahren zur herstellung eines plissierbaren textilen gebildes mit elektrostatisch geladenen fasern und plissierbares textiles gebilde
DE2938806A1 (de) Triboelektrische pulverspruehpistole
DE102015117941A1 (de) Verfahren und Einrichtung zur Erzeugung eines die polymeren Nanofasern enthaltenden Textilkompositmaterials, Textilkompositmaterial, das die polymeren Nanofasern enthält
DD225350A5 (de) Verfahren und vorrichtung zum grossflaechigen ausbringen und verteilen elektrisch leitfaehiger fluessigkeiten
DE102010051086B4 (de) Verfahren und Vorrichtung zum elektrostatischen Beschichten von Gegenständen
WO2004048001A1 (de) Ultraschall-stehwellen-zerstäuberanordnung
EP3038732A2 (de) Filtermaterial, filterelement und verfahren sowie vorrichtung zum herstellen eines filtermaterials
EP3755450A1 (de) Filtermedium
DE102014015563A1 (de) Nanofaserbeschichtung, Verfahren zu deren Herstellung und Filtermedium mit einer solchen Beschichtung
WO2017028983A1 (de) Verfahren zur herstellung eines filtermediums und ein filtermedium
DE102005024518A1 (de) Verfahren und Anordnung zum Beschichten eines Substrates
DE2159909A1 (de) Verfahren und Luftfahrzeug zum Versprühen von landwirtschaftlichen Nutzstoffen
EP1410900A1 (de) Verfahren zur Herstellung einer Verbundbahn
DE102014004631A1 (de) Vorrichtung und Verfahren zum elektrostatischen Verspinnen von Polymerlösungen und Filtermedium
CH709630A2 (de) Verfahren und Vorrichtung zum Fokussieren eines aus einer Ausgabeöffnung einer Ausgabevorrichtung einer Jet-Vorrichtung ausgegebenen viskosen Mediums.
DE102004038413B4 (de) Verfahren und Vorrichtung zur Herstellung einer Beschichtung mit räumlich variierenden Eigenschaften
DE3130879A1 (de) Elektrostatische, nach dem prinzip der triboelektrischen aufladung arbeitende farbspritzpistole
EP1633493B1 (de) Ultraschall-stehwellen-zerstäuberanordnung
DE102010012554A1 (de) Zweistoff-Innenmischdüsenanordnung und Verfahren zur Zerstäubung einer Flüssigkeit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136085.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778154

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009778154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009778154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13063484

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117008526

Country of ref document: KR

Kind code of ref document: A