WO2010030038A1 - Method for producing pulverized waste plastic and solid fuel or mineral reduction material - Google Patents

Method for producing pulverized waste plastic and solid fuel or mineral reduction material Download PDF

Info

Publication number
WO2010030038A1
WO2010030038A1 PCT/JP2009/066205 JP2009066205W WO2010030038A1 WO 2010030038 A1 WO2010030038 A1 WO 2010030038A1 JP 2009066205 W JP2009066205 W JP 2009066205W WO 2010030038 A1 WO2010030038 A1 WO 2010030038A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste plastic
pulverized
plastic
temperature
melting
Prior art date
Application number
PCT/JP2009/066205
Other languages
French (fr)
Japanese (ja)
Inventor
梶岡正彦
浅沼稔
鶴田秀和
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN2009801351801A priority Critical patent/CN102149526B/en
Priority to KR1020117004950A priority patent/KR101134809B1/en
Publication of WO2010030038A1 publication Critical patent/WO2010030038A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/48Solid fuels essentially based on materials of non-mineral origin on industrial residues and waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing a waste plastic pulverized product for producing ore reducing material, solid fuel and the like by reprocessing waste plastic.
  • the conventional technology for converting plastic to solid fuel is, for example, directly pulverizing plastic with a pulverizer (see, for example, Non-Patent Document 1).
  • a pulverizer see, for example, Non-Patent Document 1.
  • hard plastic can only be pulverized to a particle size of 1 to 2 mm, and this pulverization requires a lot of time and cost, and fiber and film plastics are difficult to pulverize. For this reason, there is a problem that the process must be pulverized after being melted and solidified, resulting in a complicated process.
  • waste plastic when waste plastic is finely pulverized, it can be made into a fuel that can be used as a combustion furnace such as a power generation boiler (see, for example, Patent Document 1). Is not described, and there is no technical disclosure regarding improvement of grindability of waste plastic itself.
  • Plastic having a particle size of 2000 ⁇ m or less is excellent as a solid fuel, and is known to be produced by a dry pulverization method or a wet pulverization method (for example, see Patent Document 2).
  • a jet mill or a vibration ball mill is suitable as a method for obtaining fine powder, but a technique for improving the pulverization property of waste plastic itself is not known.
  • waste plastic is heated, dechlorinated, cooled and solidified, then pulverized and put into a furnace (for example, techniques such as Patent Document 4 and Patent Document 5) are known.
  • plastics are excellent in impact resistance, so it is very difficult to pulverize them as they are.
  • the pulverization time is lengthened or repeatedly put into the pulverizer several times. The method of doing is taken.
  • the plastic is heated by shearing heat generation during pulverization and melts or the pulverized product becomes fibrous. In order to prevent this phenomenon, it is conceivable to cool the pulverizer or the pulverized product, but the equipment cost and the operating cost increase.
  • So-called freeze pulverization is also an effective method for pulverizing plastic. That is, it is a method in which a plastic is cooled to a temperature range where a general plastic causes brittle fracture, for example, tens of degrees below zero, and then pulverized.
  • a general plastic causes brittle fracture, for example, tens of degrees below zero
  • pulverized since this method requires the plastic to be cooled in advance, the equipment cost and operation cost increase.
  • the object of the present invention is to solve such problems of the prior art, and to pulverize waste plastic at a low cost to obtain a pulverized product, and to improve the productivity of the pulverized product. It is in providing the manufacturing method of a thing.
  • Waste plastic is melted at a temperature higher than the softening melting temperature and at a temperature at which flammable decomposition gas is not generated, and further kneaded at a shear rate of 100 (1 / second) or more, and then cooled and solidified to obtain a solidified body.
  • a method for producing a waste plastic pulverized product wherein the solidified product is pulverized.
  • the waste plastic is melted at 160 ° C.
  • a solid fuel or ore reducing material having excellent combustibility can be produced at low cost using waste plastic as a raw material without providing facilities for treating exhaust gas from waste plastic.
  • Productivity of waste plastic crushed material is also improved.
  • waste plastic processing method of the present invention by using the waste plastic processing method of the present invention, a large amount of waste plastic can be economically implemented.
  • the present invention cools waste plastics and container packaging materials contained in municipal waste, industrial waste, general waste, etc., and waste plastics generated in the process of dismantling electrical appliances, automobiles, etc. after heating, melting and kneading.
  • the present invention relates to a technology for producing a solidified body, pulverizing the solidified body, and producing a solid fuel, an ore reducing material, and the like.
  • waste plastic is a mixture of a plurality of types of plastics, and it is effective to melt and knead various types of plastics as a method for improving the pulverization properties of waste plastics and easily pulverizing them. Since most waste plastics contain chlorine by mixing PVC or the like, conventionally, waste plastic is melted and kneaded at a high temperature that generates chlorine gas to generate chlorine-containing gas, Dechlorination treatment to remove the chlorine component was performed.
  • PET polyethylene terephthalate
  • paper / wood cellulose, hemicellulose, lignin
  • flammable decomposition gas flammable organic matter
  • a method for melting and kneading at a relatively low temperature was examined in order to prevent generation of flammable decomposition gas generated when melting and kneading waste plastic.
  • the problem was that chlorine could not be removed sufficiently from waste plastic when melted at a relatively low temperature, but if waste plastic with low chlorine content is used, waste plastic with low chlorine concentration without dechlorination treatment. A solidified body and a pulverized product can be produced. Therefore, in the present invention, it is preferable to use a waste plastic having a low chlorine content (for example, a chlorine concentration of 2 mass% or less).
  • the solid yield after the treatment is increased.
  • the residual chlorine concentration in the solidified material after the treatment is somewhat higher.
  • the calorific value of the solidified body is considered to increase by the amount of chlorine.
  • the organic matter decomposes and separates as a side reaction, the calorific value of the solidified body after treatment is rather small. is there. Therefore, by performing the heat treatment of the waste plastic at a temperature equal to or higher than the softening melting temperature and not generating flammable decomposition gas, the calorific value of the solidified body does not decrease.
  • Patent Document 4 for example, according to Patent Document 4, the heating temperature when waste plastic is heated, melted, cooled, and solidified is increased to a temperature for removing low-boiling compounds originally contained and / or generated by thermal decomposition.
  • Heating is a major premise, specifically 150 to 450 ° C., more preferably 200 to 400 ° C., and even more preferably 250 to 380 ° C. In such a temperature range, combustible decomposition gas is generated together with hydrogen chloride by heating at a high temperature.
  • the generation of waste plastic decomposition gas is very low up to 270 ° C. Therefore, the waste plastic is heated, melted and kneaded below the temperature at which such cracked gas is generated, and cooled and solidified, so that no cracked gas treatment equipment such as a combustion furnace is required, and the waste plastic is processed at low cost.
  • a waste plastic solidified body can be produced.
  • the waste plastic treated in the present invention uses a low chlorine concentration. It is preferable.
  • a waste plastic having a chlorine concentration of 2 mass% or less treated by the method of the present invention can be sufficiently used for blowing blast furnace as an ore reducing material.
  • the temperature at which the flammable decomposition gas is not generated varies slightly depending on the type of waste plastic, but in the normal case, it is preferably 270 ° C. or less from the result of FIG. Furthermore, if it is 200 degrees C or less, generation
  • the temperature in this case is the highest temperature in the resin.
  • the maximum temperature in the resin can be measured by a general method such as inserting a thermocouple into the resin.
  • the temperature at which flammable decomposition gas is not generated is a temperature at which flammable organic substances are not substantially generated from waste plastic by heating, and is generated due to impurities in waste plastic (for example, liquefied gas in disposable lighters). Such gases are outside the scope of combustible cracked gas in this case.
  • the lower limit of the melting temperature is set to a temperature at which the waste plastic is softened and melted so that the waste plastic can be kneaded well as described later.
  • the softening and melting temperature varies depending on the type of waste plastic, but since the main components of ordinary waste plastic are polyethylene (PE) and polypropylene (PP), the lower limit of the softening and melting temperature is preferably 160 ° C. If the waste plastic is mainly composed of PE, the temperature can be set to 120 ° C.
  • the waste plastic to be treated is a mixture of various plastics. That is, the only plastic that melts below 160 ° C is mainly PE, and if it is processed forcibly, the required power required for kneading becomes extremely large, and a blockage occurs in the processing apparatus, making it difficult to continue the processing. It may become.
  • “Melting and further kneading” the waste plastic means that the waste plastic is kneaded simultaneously with the melting of the waste plastic or kneaded in a molten state after the melting.
  • the kneading is performed at a shear rate of at least 100 (1 / second) or more.
  • the molding shrinkage of different plastics differs depending on the plastic, and during the cooling process, the different plastics shrink according to their molding shrinkage and the bonding interface is separated.
  • the inside must be evacuated (vacuum voids), and when void formation does not occur, a stress that "shall be separated but cannot be separated” remains at the bonding interface (residual stress).
  • a dissimilar plastic highly dispersed by sufficient kneading has many adhesion interfaces, and the solidified body necessarily has a strong residual stress. When an impact is applied to the solidified body, stress concentration occurs at these different plastic bonding interfaces, and a breakage starting point is generated relatively easily.
  • the entire structure becomes brittle and the grindability is improved.
  • differences in dissolution parameters and the like also affect pulverizability improvement.
  • Solid particulates other than waste plastics are also incompatible with plastics in most cases, so they are discarded before waste plastic melting and kneading, or during melting and kneading, or both before melting and kneading and during melting and kneading.
  • solid particulates other than plastic By mixing solid particulates other than plastic with waste plastic and kneading with the waste plastic, after solidification by cooling, the solid particulate matter becomes a starting point of destruction, and the pulverization property of the solidified body can be further improved.
  • a tumbler or the like may be used to mix waste plastic and solid particulate matter in advance.
  • waste plastic and solid particulates may be separately supplied to the melting and kneading apparatus and mixed in the apparatus, or one of them is supplied first and then the other is supplied. May be.
  • the melting point of the solid granular material is higher than the melting start temperature of the waste plastic, it is preferable to add the solid granular material after supplying the waste plastic first and achieving a certain molten state.
  • Solid particulates include fossil fuels such as coal, coke and asphalt, synthetic polymers such as virgin plastic, natural polymers such as starch and cellulose, metals such as iron and aluminum, and those ores such as iron ore and bauxite, Examples include inorganic substances such as mica and talc.
  • biomass solids such as waste derived from agricultural products, such as rice husk, tea husk, and coffee husk (rice husk), and lignin-containing plants such as wood, charcoal, and bamboo, as the solid particulate matter.
  • wastes derived from agricultural crops and waste wood such as thinned wood and construction waste.
  • the biomass solid contains ash and is likely to be a starting point of destruction.
  • the rice husk tends to be elongated, and is further pulverized when kneading molten waste plastic, so that it can be effectively used as a starting point for destruction.
  • the compounding quantity of the solid granular material in this case shall be less than 100 mass parts of solid granular materials with respect to 100 mass parts of waste plastics.
  • the solid granular material is 100 parts by mass or more, the waste plastic is pulverized after the kneading process, and handling becomes difficult. Moreover, it is preferable to set it as 5 mass parts or more of solid granular materials with respect to 100 mass parts of waste plastics. This is because the effect of adding the solid particulate matter can be exhibited better. These solid particulate materials can be used if they can be introduced into the processing apparatus.
  • the waste plastic can be heated and kneaded at a shear rate of 100 (1 / second) or more at the same time.
  • the extruder can be further improved in kneadability by using a biaxial extruder.
  • waste plastic pulverized product By crushing the produced waste plastic solidified body, waste plastic pulverized product can be produced, and ore reducing material and solid fuel can be produced.
  • the solidified product cooled and solidified after heating and melting has improved pulverization properties, and a fine powder having a particle size of 2 mm or less can be easily produced using a normal pulverizer.
  • the crushed solidified body is preferably passed through a sieve to adjust the particle size.
  • the particle size after pulverization can be set by appropriately changing the sieve mesh. For example, fine powder which is a waste plastic pulverized product having a particle size of 0.5 mm or less can be obtained by passing through a sieve having an aperture of 0.5 mm using the production method of the present invention.
  • Waste plastics subject to the present invention that is, raw material plastics in the present invention include waste plastics and container packaging materials contained in municipal waste, industrial waste, general waste, etc., and dismantling of electrical products, automobiles, etc. Examples include waste plastic generated in the process.
  • polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, polystyrene, polyethylene terephthalate, polycarbonate, nylon, and other thermoplastic resins and thermosetting resins are all applicable.
  • a plastic material in which any two or more of the plastics are mixed is used. Normally, it contains some chlorine-containing plastic due to the nature of waste plastic, which is waste, but the present invention can be used even with waste plastic that does not contain chlorine-containing plastic.
  • the shape of the plastic to be heat-treated may be roughly pulverized, and a size of about 10 cm square is sufficient.
  • For general waste plastic it is not necessary to pulverize again, and it is processed in the recovered state. Yes, film, sheet, and fiber plastics can be processed as they are. Of course, it may be finely pulverized, but the processing cost increases accordingly.
  • the melting / kneading step examples include the following steps. That is, the waste plastic is melted at 160 ° C. or higher at a temperature at which combustible decomposition gas is not generated in a reactor or an extruder.
  • the temperature at which the combustible decomposition gas is not generated varies depending on the composition of the waste plastic, but the upper limit is usually 270 ° C. In the temperature range where the combustible decomposition gas is not generated, it is preferable to melt at a higher temperature, preferably 200 ° C. or higher, more preferably 230 ° C. or higher.
  • MI Melt Index
  • the molten plastic is a non-Newtonian fluid, and as shown in FIG. 2, the melt viscosity of low density polyethylene (LDPE) is substantially constant in the region where the shear rate is low.
  • LDPE low density polyethylene
  • kneading in a region where the shear rate is 100 (1 / second) or more is extremely effective for lowering kneading power and improving kneading efficiency.
  • the melting and kneading treatment may be a batch type or a continuous type. An intermediate type such as batch switching may also be used.
  • an extruder is preferable, and a twin screw extruder is more preferable from the viewpoint of kneadability.
  • Processing time is suitably 0.5 minutes to 30 hours.
  • the treatment time is less than 0.5 minutes, it is difficult to control the temperature in the reactor, and it is difficult to sufficiently knead the molten waste plastic product.
  • processing time exceeds 30 hours, processing efficiency falls and it is not economical.
  • a heat medium In the melting / kneading process, a heat medium can be allowed to coexist.
  • the waste plastic after the melting treatment is cooled and solidified by supplying a fixed amount of the molten plastic to a belt cooler by a molten plastic conveying device.
  • the amount of heat removal is calculated from the amount of enthalpy between the temperature after heat treatment and the temperature until fully solidified, and the treatment speed.
  • the center temperature after cooling is about 110 ° C. It is sufficient to control so that
  • a continuous heating and melting apparatus when using a continuous heating and melting apparatus, it can be cooled at the outlet of the apparatus, or it can be cooled without being cut, such as air cooling or charging into water.
  • the solidified body that has undergone the cooling and solidification step is preferably pulverized so as to have a predetermined particle size.
  • the pulverization of the plastic treated product which is a cooled solidified body obtained by the above-described method of the present invention, can be performed very easily as compared with the pulverization of untreated plastic. That is, the processed plastic product obtained by the method of the present invention can be pulverized by any type of pulverizer, and for example, a jaw crusher, a roll crusher, a ball mill, a centrifugal mill, or the like can be used.
  • the particle size after pulverization may be determined according to the purpose of use of the processed plastic. If the particle size is adjusted to a predetermined particle size, for example, ore reducing material such as iron ore, that is, pig iron such as blast furnace is produced. It can be used as raw fuel such as reducing material for vertical furnaces, reducing material for converters, combustion fuel such as boilers and kilns, cupola fuel, and raw materials for coke ovens. Moreover, it can be used as a solid fuel other than the above-mentioned use.
  • ore reducing material such as iron ore
  • pig iron such as blast furnace
  • the solidified body yield was calculated from the raw material charge amount and the solidified body recovered amount at this time. Further, the chlorine concentration in this solidified body (solidified body residual chlorine concentration) and the calorific value of the solidified body were measured. The results are shown in Table 1.
  • This solidified body was coarsely pulverized by a small pulverizer (cutter mill) manufactured by Horai Co., Ltd., and passed through a 9 mm screen.
  • the coarsely pulverized product was finely pulverized with an ACM pulverizer (hammer mill) manufactured by Hosokawa Micron Corporation, and then subjected to a classification test with a test sieve to measure the particle size distribution. The results are shown in Table 2.
  • the average particle size was calculated from the particle size distribution.
  • R (Dp) is the mass% on the integrated sieve of the sieve mesh Dp
  • De is the particle size characteristic number [R (Dp) is the number corresponding to mass%]
  • n is an equal number ( Index for evaluating the uniformity of the particle size distribution of the granular material)
  • b is a constant and indicates an index for evaluating the fineness of the granular material.
  • the average particle size of the waste plastic pulverized product of Example 1 of the present invention that was melt-treated at 180 ° C. was less than 500 ⁇ m and was sufficiently fine.
  • Invention Example 2 The same operation as in Invention Example 1 was conducted except that 70 parts by mass of general waste container packaging waste plastic pulverized to about 1 cm and 30 parts by mass of rice husk were mixed and supplied to the twin screw extruder. The solidified product and the pulverized product thereof were manufactured. Tables 1 and 2 show the results of measurement of the solidified body yield, the residual chlorine concentration in the solidified body, the calorific value of the solidified body, the calculation result of the average particle size, and the measurement result of the particle size distribution after pulverization.
  • Invention Example 3 Invention Example except that 70 parts by mass of general waste container packaging waste plastic pulverized to about 1 cm and 30 parts by mass of coal (brand: Xinglongzhuang) were mixed and supplied to a twin screw extruder. The same operation as in No. 1 was performed to produce a solidified product and a pulverized product thereof. Tables 1 and 2 show the results of measurement of the solidified body yield, the residual chlorine concentration in the solidified body, the calorific value of the solidified body, the calculation result of the average particle size, and the measurement result of the particle size distribution after pulverization.
  • the average particle size after pulverization is smaller, but this is because the added coal itself has better pulverizability than rice husk.
  • Comparative Example 1 the residual chlorine concentration in the solidified body was sufficiently reduced. Moreover, although the average particle diameter is small and pulverized, the main cause was a high ratio of ultrafine powder of 75 ⁇ m or less.
  • the ultra fine powder of 75 ⁇ m or less has safety problems such as dust explosiveness, and costs for countermeasures such as nitrogen filling are required.
  • the average particle size was small and pulverized, but the main cause was a high proportion of ultrafine powder of 75 ⁇ m or less.
  • the ultra fine powder of 75 ⁇ m or less has safety problems such as dust explosiveness, and costs for countermeasures such as nitrogen filling are required.
  • Example 4 The same processing as in Example 1 of the present invention was attempted except that the processing temperature at the time of kneading with a twin-screw extruder was set to 140 ° C. However, the screw motor stopped due to overload about 5 minutes after the start of the treatment, and the treatment could not be continued. When the screw was extracted after cooling the twin screw extruder, unmelted waste plastic solid was clogged inside.
  • Example 1 of the present invention all the pulverized products could be finely pulverized to an average particle size of 500 ⁇ m or less, despite being melted and kneaded at a low temperature. By adding rice husk and coal, the grindability is further improved.
  • Example 1 of the present invention and Comparative Example 1 were compared, in Example 1 of the present invention, the residual chlorine concentration in the solidified body did not decrease, but the solidified body yield increased and the calorific value of the solidified body increased. This clearly improves the productivity of the pulverized product. In Comparative Example 1, this is thought to be due to the fact that terephthalic acid, which is a combustion component, is also removed during the dechlorination process, but the combustion component remains in the present invention example.
  • Comparative Example 3 when Comparative Example 3 is compared with Comparative Example 1, the average particle size is increased despite the addition of rice husk, and at first glance, it seems that the grindability is lowered.
  • Comparative Example 3 has a higher particle size ratio of 150 to 500 ⁇ m and 75 to 150 ⁇ m than Comparative Example 1, and the width of the particle size distribution is It is narrower and the grindability is improved. Therefore, the effect of “better crushability is exhibited by forming the starting point of fracture” by adding rice husk was recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a method for producing a pulverized waste plastic wherein it is possible to produce at a low cost and with improved productivity a pulverized product by micropulverization of waste plastic. The method for producing a pulverized waste plastic is characterized in that waste plastic is kneaded at a shear speed of 100 (1/second) or greater as it is being melted at a temperature that is the softening and melting temperature or greater, preferably 160°C, but is a temperature at which flammable decomposition gases are not generated, preferably 270°C or lower, and then is cooled and solidified and the solid product is pulverized. Melting and kneading are preferably performed using an extruder, particularly a biaxial extruder.

Description

廃プラスチック粉砕物の製造方法および固体燃料または鉱石還元材Method for producing waste plastic crushed material and solid fuel or ore reducing material
 本発明は、廃プラスチックを再生処理して鉱石還元材や固形燃料等を製造するための、廃プラスチック粉砕物の製造方法に関する。 The present invention relates to a method for producing a waste plastic pulverized product for producing ore reducing material, solid fuel and the like by reprocessing waste plastic.
 近年、廃プラスチックの有効利用のための一つの解決手段として、廃プラスチックから鉱石還元材、固体燃料等を製造する方法が検討されている。これは、プラスチックを微粉化すると燃焼性が飛躍的に向上し、有用な燃料資源となり得るためである。 In recent years, methods for producing ore reducing materials, solid fuels, and the like from waste plastics have been studied as a solution for effective use of waste plastics. This is because pulverization of plastic can dramatically improve combustibility and become a useful fuel resource.
 プラスチックを固体燃料に転化するこれまでの技術は、例えば、プラスチックを直接、粉砕機で微粉砕するものである(例えば、非特許文献1参照。)。しかし、この方法の場合、堅いプラスチックを1~2mmの粒度にまでしか粉砕できず、しかも、この粉砕に多大の時間と費用を要し、また、繊維状やフィルム状のプラスチックは粉砕が困難なため、別途、溶融固化後に粉砕しなければならず、工程が複雑になるなどの問題があった。 The conventional technology for converting plastic to solid fuel is, for example, directly pulverizing plastic with a pulverizer (see, for example, Non-Patent Document 1). However, in this method, hard plastic can only be pulverized to a particle size of 1 to 2 mm, and this pulverization requires a lot of time and cost, and fiber and film plastics are difficult to pulverize. For this reason, there is a problem that the process must be pulverized after being melted and solidified, resulting in a complicated process.
 また、廃プラスチックを微粉砕すると、発電用ボイラ等の燃焼炉として使用可能な燃料にすることができることが知られているが(例えば、特許文献1参照。)、特許文献1には特に粉砕方法の記載は無く、廃プラスチックそのものの粉砕性の向上に関する技術的開示は無い。 In addition, it is known that when waste plastic is finely pulverized, it can be made into a fuel that can be used as a combustion furnace such as a power generation boiler (see, for example, Patent Document 1). Is not described, and there is no technical disclosure regarding improvement of grindability of waste plastic itself.
 粒径2000μm以下のプラスチックは固形燃料として優れており、乾式粉砕法や湿式粉砕法で製造することが知られている(例えば、特許文献2参照。)。特に、微粉末を得る方法としては、ジェットミルや振動ボールミルが好適であるとも言われているが、やはり、廃プラスチックそのものの粉砕性の向上に関する技術は知られていない。 Plastic having a particle size of 2000 μm or less is excellent as a solid fuel, and is known to be produced by a dry pulverization method or a wet pulverization method (for example, see Patent Document 2). In particular, it is said that a jet mill or a vibration ball mill is suitable as a method for obtaining fine powder, but a technique for improving the pulverization property of waste plastic itself is not known.
 一方、例えば家庭などから排出される廃プラスチックを高炉用還元材などの還元材や燃料として用いる場合、廃プラスチックにはポリ塩化ビニル(以下、PVCと記載する。)などの塩素含有プラスチックが混入しているため、そのまま用いると塩化水素などが発生し、炉が腐食するなどの問題がある。このため、PVCなどの塩素含有プラスチックを分離除去して造粒処理を施し粒状プラスチック成形物を得る技術(例えば、特許文献3参照。)が知られている。 On the other hand, for example, when waste plastic discharged from homes is used as a reducing material such as a blast furnace reducing material or fuel, chlorine-containing plastics such as polyvinyl chloride (hereinafter referred to as PVC) are mixed in the waste plastic. Therefore, when used as it is, there are problems such as generation of hydrogen chloride and corrosion of the furnace. For this reason, the technique (for example, refer patent document 3) which isolate | separates and removes chlorine containing plastics, such as PVC, performs a granulation process, and obtains a granular plastic molding is known.
 また、塩素を含有する廃プラスチックに脱塩素処理を施した上で、廃プラスチックを微粉化する技術として、廃プラスチックを加熱、脱塩素処理、冷却固化した後、微粉砕して炉に投入する(例えば、特許文献4参照、特許文献5。)等の技術が知られている。 In addition, as a technology for pulverizing waste plastic containing chlorine-containing waste plastic, waste plastic is heated, dechlorinated, cooled and solidified, then pulverized and put into a furnace ( For example, techniques such as Patent Document 4 and Patent Document 5) are known.
特開平7−119922号公報Japanese Patent Laid-Open No. 7-111992 特開平4−332792号公報Japanese Patent Laid-Open No. 4-332792 特開2002−67029号公報JP 2002-67029 A 特開平11−192469号公報JP-A-11-192469 特開2006−241442号公報JP 2006-241442 A
 一般にプラスチックは耐衝撃性に優れるため、そのまま粉砕するのは非常に困難であり、特に0.5mm以下の粒径まで粉砕する場合、粉砕時間を長くすることや、何度か繰り返し粉砕機に投入する等の方法がとられる。この場合、粉砕機のタイプによっては粉砕中にプラスチックがせん断発熱により加熱状態になり、溶融したり、粉砕品が繊維状になったりするケースが認められる。この現象を防ぐために粉砕機あるいは粉砕物を冷却することが考えられるが、設備費や運転コストが増加する。 In general, plastics are excellent in impact resistance, so it is very difficult to pulverize them as they are. Especially when pulverizing to a particle size of 0.5 mm or less, the pulverization time is lengthened or repeatedly put into the pulverizer several times. The method of doing is taken. In this case, depending on the type of pulverizer, there are cases where the plastic is heated by shearing heat generation during pulverization and melts or the pulverized product becomes fibrous. In order to prevent this phenomenon, it is conceivable to cool the pulverizer or the pulverized product, but the equipment cost and the operating cost increase.
 プラスチックを微粉砕する方法として、いわゆる凍結粉砕も有力な手段である。すなわち、一般のプラスチックが脆性破壊を起こす温度領域、たとえば零下数十度までプラスチックを冷却した後、粉砕する方法である。しかし、この方法は事前にプラスチックを冷却する必要があるため、設備費や運転コストが増加する。 So-called freeze pulverization is also an effective method for pulverizing plastic. That is, it is a method in which a plastic is cooled to a temperature range where a general plastic causes brittle fracture, for example, tens of degrees below zero, and then pulverized. However, since this method requires the plastic to be cooled in advance, the equipment cost and operation cost increase.
 前述した特許文献4、特許文献5に記載の方法をはじめとする、いわゆる廃プラスチックの溶融脱塩素法に従えば、脱塩素後のPVCは炭素質化し、脆化するため、全体として粉砕性を向上することが可能である。しかし、脱塩素処理により発生する塩素を含む排ガスの処理を行なう必要があり、コスト高である。排ガスから塩素を回収して塩酸として有効利用することも可能であるが、やはり設備コストの増大を招く。安価に廃プラスチック微粉砕物を製造するためには設備コストを引き下げ、かつ生産性を向上させることが重要である。 According to the so-called waste plastic melting and dechlorination method including the methods described in Patent Document 4 and Patent Document 5 described above, PVC after dechlorination becomes carbonized and embrittled. It is possible to improve. However, it is necessary to treat exhaust gas containing chlorine generated by dechlorination treatment, which is expensive. Although it is possible to recover chlorine from the exhaust gas and effectively use it as hydrochloric acid, it also increases the equipment cost. In order to produce finely pulverized waste plastic at a low cost, it is important to reduce the equipment cost and improve the productivity.
 したがって本発明の目的は、このような従来技術の課題を解決し、低コストで廃プラスチックを微粉砕して粉砕物を得ることが可能であり、粉砕物の生産性も向上する、廃プラスチック粉砕物の製造方法を提供することにある。 Accordingly, the object of the present invention is to solve such problems of the prior art, and to pulverize waste plastic at a low cost to obtain a pulverized product, and to improve the productivity of the pulverized product. It is in providing the manufacturing method of a thing.
 このような課題を解決するための本発明の特徴は以下の通りである。
(1)廃プラスチックを軟化溶融温度以上、かつ可燃性分解ガスが生成しない温度で溶融し、更に100(1/秒)以上の剪断速度で混練した後、冷却・固化して固化体とし、該固化体を粉砕することを特徴とする、廃プラスチック粉砕物の製造方法。
(2)軟化溶融温度が160℃、可燃性分解ガスが生成しない温度が270℃以下であることを特徴とする、(1)に記載の廃プラスチック粉砕物の製造方法。
(3)廃プラスチックを160℃~270℃で溶融し、更に100(1/秒)以上の剪断速度で混練した後、冷却・固化して固化体とし、該固化体を粉砕することを特徴とする、廃プラスチック粉砕物の製造方法。
(4)溶融・混練を、押し出し機を用いて行なうことを特徴とする、(1)ないし(3)のいずれかに記載の廃プラスチック粉砕物の製造方法。
(5)押し出し機が、二軸押し出し機であることを特徴とする、(4)に記載の廃プラスチック粉砕物の製造方法。
(6)廃プラスチックの溶融・混練の前および/または溶融・混練時に、廃プラスチック以外の固体粒状物を混合し、廃プラスチックと共に混練することを特徴とする、(1)ないし(5)のいずれかに記載の廃プラスチック粉砕物の製造方法。
(7)篩を通過させて粉砕した固化体の粒度を調整することを特徴とする、(1)ないし(6)のいずれかに記載の廃プラスチック粉砕物の製造方法。
(8)(1)ないし(7)のいずれかで製造される粉砕物である鉱石還元材または固体燃料。
(9)目開き0.5mmのふるいを通過することを特徴とする、(8)に記載の鉱石還元材または固体燃料。
The features of the present invention for solving such problems are as follows.
(1) Waste plastic is melted at a temperature higher than the softening melting temperature and at a temperature at which flammable decomposition gas is not generated, and further kneaded at a shear rate of 100 (1 / second) or more, and then cooled and solidified to obtain a solidified body. A method for producing a waste plastic pulverized product, wherein the solidified product is pulverized.
(2) The method for producing a waste plastic pulverized product according to (1), wherein the softening and melting temperature is 160 ° C., and the temperature at which the combustible decomposition gas is not generated is 270 ° C. or less.
(3) The waste plastic is melted at 160 ° C. to 270 ° C., kneaded at a shear rate of 100 (1 / second) or more, then cooled and solidified to form a solidified body, and the solidified body is pulverized. The manufacturing method of waste plastic ground material.
(4) The method for producing a pulverized waste plastic according to any one of (1) to (3), wherein melting and kneading are performed using an extruder.
(5) The method for producing a waste plastic pulverized product according to (4), wherein the extruder is a twin screw extruder.
(6) Any one of (1) to (5), wherein solid particulates other than waste plastic are mixed and kneaded together with waste plastic before and / or during melting and kneading of waste plastic A method for producing a waste plastic pulverized product according to claim 1.
(7) The method for producing a pulverized waste plastic according to any one of (1) to (6), wherein the particle size of the solidified body that has been pulverized by passing through a sieve is adjusted.
(8) An ore reducing material or a solid fuel which is a pulverized product produced in any one of (1) to (7).
(9) The ore reducing material or solid fuel according to (8), which passes through a sieve having an aperture of 0.5 mm.
 本発明によれば、廃プラスチックからの排ガスを処理する設備を設けることなく、低コストで廃プラスチックを原料として燃焼性に優れた固体燃料または鉱石還元材等を製造することができる。廃プラスチック粉砕物の生産性も向上する。 According to the present invention, a solid fuel or ore reducing material having excellent combustibility can be produced at low cost using waste plastic as a raw material without providing facilities for treating exhaust gas from waste plastic. Productivity of waste plastic crushed material is also improved.
 また、本発明の廃プラスチックの処理方法を用いることで、廃プラスチックの大量処理を、経済的に実施することができる。 Also, by using the waste plastic processing method of the present invention, a large amount of waste plastic can be economically implemented.
廃プラスチックを溶融する温度とプラスチックの分解率の関係を示すグラフである。It is a graph which shows the relationship between the temperature which melt | dissolves waste plastic, and the decomposition rate of plastic. プラスチックの剪断速度と粘度との関係を示すグラフである。It is a graph which shows the relationship between the shear rate of a plastic, and a viscosity.
 本発明は、都市ゴミ、産業廃棄物、一般廃棄物などに含まれる廃プラスチックや容器包装材料、および電気製品、自動車などの解体の過程で発生する廃プラスチックなどを加熱溶融・混練後に冷却して固化体とし、該固化体を粉砕して、固形燃料や鉱石還元材等を製造する技術に関するものである。上記のように廃プラスチックは複数種類のプラスチックの混合物であり、廃プラスチックの粉砕性を向上させ、容易に微粉化するための方法として、多種類のプラスチックを溶融混練することが有効である。ほとんどの廃プラスチックはPVC等の混入により塩素を含有するものであるので、従来は廃プラスチックを塩素ガスが発生する高温で溶融・混練することにより塩素含有ガスを発生させて、廃プラスチック粉砕物から塩素成分を除去する脱塩素処理を行っていた。 The present invention cools waste plastics and container packaging materials contained in municipal waste, industrial waste, general waste, etc., and waste plastics generated in the process of dismantling electrical appliances, automobiles, etc. after heating, melting and kneading. The present invention relates to a technology for producing a solidified body, pulverizing the solidified body, and producing a solid fuel, an ore reducing material, and the like. As described above, waste plastic is a mixture of a plurality of types of plastics, and it is effective to melt and knead various types of plastics as a method for improving the pulverization properties of waste plastics and easily pulverizing them. Since most waste plastics contain chlorine by mixing PVC or the like, conventionally, waste plastic is melted and kneaded at a high temperature that generates chlorine gas to generate chlorine-containing gas, Dechlorination treatment to remove the chlorine component was performed.
 しかし、十分に脱塩素を行なうために、例えば300℃以上の温度で処理すると、脱塩化水素反応と同時に廃プラスチックに含まれるPET(ポリエチレンテレフタレート)や紙・木材(セルロース、ヘミセルロース、リグニン)などが熱分解、加水分解し、可燃性分解ガス(可燃性有機物)が発生する。これらの可燃性分解ガスの大部分は常温では固体であり、しかも一般的に昇華性を有するため、捕集装置の構造が複雑になり、かつ、これらを別途処理する必要が生ずる。さらに、捕集物は塩素を数%程度含むことが多く、燃料とはなりにくい。 However, for sufficient dechlorination, for example, when treated at a temperature of 300 ° C. or higher, PET (polyethylene terephthalate) and paper / wood (cellulose, hemicellulose, lignin), etc. contained in the waste plastic simultaneously with the dehydrochlorination reaction Pyrolysis and hydrolysis generate flammable decomposition gas (flammable organic matter). Most of these combustible cracked gases are solid at room temperature and generally have sublimation properties, so that the structure of the collection device becomes complicated and it is necessary to treat them separately. Furthermore, the collected material often contains about several percent of chlorine, and is difficult to become a fuel.
 そこで本発明においては、廃プラスチックを加熱して溶融・混練する際に発生する可燃性分解ガスの発生を防止するために、溶融・混練を比較的低温で行なう方法について検討した。比較的低温で溶融すると、廃プラスチックからの塩素除去が十分に行なえないことが問題であったが、塩素含有量が低い廃プラスチックを用いれば、脱塩素処理を行なうことなく塩素濃度が低い廃プラスチック固化体や粉砕物を製造することができる。したがって、本発明では塩素含有量の低い廃プラスチック(例えば、塩素濃度が2mass%以下)を用いることが好ましい。また、検討の結果、ある程度の塩素の含有は許容される場合があり、必ずしも全ての場合について脱塩素処理が必須ではないことが明らかになった。例えば廃プラスチック粉砕物を溶鉱炉の鉱石還元材に使用する場合は、炉内に存在するスラグ成分と塩素が反応し、固定化されるため、廃プラスチックの含有塩素量によっては脱塩素処理が省略可能であることが分かった。また、原料廃プラスチックの含有塩素濃度が高く粉砕物の塩素含有濃度が高い場合であっても、鉱石還元材や固体燃料として使用できないというわけではなく、その単位時間あたりの使用量を含有塩素濃度に応じて適宜調整することで、炉の腐食等の問題の発生を回避することができる。したがって、脱塩素処理を行うことなく製造された廃プラスチック粉砕物であっても、十分に微粉砕されていれば実用上の問題は発生しない。 Therefore, in the present invention, a method for melting and kneading at a relatively low temperature was examined in order to prevent generation of flammable decomposition gas generated when melting and kneading waste plastic. The problem was that chlorine could not be removed sufficiently from waste plastic when melted at a relatively low temperature, but if waste plastic with low chlorine content is used, waste plastic with low chlorine concentration without dechlorination treatment. A solidified body and a pulverized product can be produced. Therefore, in the present invention, it is preferable to use a waste plastic having a low chlorine content (for example, a chlorine concentration of 2 mass% or less). Further, as a result of examination, it has become clear that a certain amount of chlorine may be allowed, and dechlorination treatment is not necessarily required in all cases. For example, when waste plastic pulverized material is used as ore reducing material for a blast furnace, the slag component present in the furnace reacts with chlorine to be immobilized, so dechlorination can be omitted depending on the amount of chlorine contained in the waste plastic. It turns out that. In addition, even if the chlorine content of the waste plastic is high and the chlorine content of the pulverized product is high, it does not mean that it cannot be used as an ore reducing material or solid fuel. By adjusting appropriately according to this, generation | occurrence | production of problems, such as corrosion of a furnace, can be avoided. Therefore, even if it is a waste plastic pulverized product manufactured without dechlorination, there is no practical problem if it is sufficiently pulverized.
 一方で比較的低温で溶融処理することにより、脱塩素後のPVC等が炭素質化し、脆化する効果が得られなくなるため、製造される廃プラスチック固化体の粉砕性が低下し、生産性が低下することが問題となる。これについては廃プラスチックの溶融・混練工程における混練の度合いを十分に高めることで、粉砕性の低下を問題のない程度に抑えることが可能であることが分かった。同時に、低温で溶融処理して、可燃性分解ガスの発生を防止することにより、可燃性分解ガスとして除去されるはずだった成分をも廃プラスチック粉砕物として取り込むことができるので、歩留も向上し、全体として粉砕物の生産性も向上する。 On the other hand, by performing the melting treatment at a relatively low temperature, the PVC after dechlorination becomes carbonized, and the effect of embrittlement cannot be obtained, so the pulverization property of the produced waste plastic solidified body is lowered, and the productivity is reduced. Decreasing becomes a problem. Regarding this, it has been found that by sufficiently increasing the degree of kneading in the melting and kneading process of the waste plastic, it is possible to suppress the decrease in pulverization to a level where there is no problem. At the same time, by melting at low temperature and preventing the generation of flammable cracked gas, the components that should have been removed as flammable cracked gas can be taken in as waste plastic crushed material, improving yield. In addition, the productivity of the pulverized product is improved as a whole.
 上記のように、廃プラスチックの熱処理を、軟化溶融温度以上、可燃性分解ガスが生成しない温度で行なうことで、処理後の固体収率が増加する。このとき、処理後の固化体中の残存塩素濃度は幾分高めになるが、たとえば高炉の還元材として使用する場合、高炉内に存在するカルシウムと反応するため、塩素が幾分高くても設備上特に大きな支障をきたさない。また、脱塩素反応が起こると、塩素の分だけ固化体の発熱量が増加すると考えられるが、むしろ副反応として有機物が分解・離脱するため、処理後固化体の発熱量はむしろ小さくなる方向である。したがって、廃プラスチックの熱処理を、軟化溶融温度以上、可燃性分解ガスが生成しない温度で行なうことで、固化体の発熱量が低下することは無い。 As described above, by performing the heat treatment of the waste plastic at a temperature equal to or higher than the softening and melting temperature and not generating flammable decomposition gas, the solid yield after the treatment is increased. At this time, the residual chlorine concentration in the solidified material after the treatment is somewhat higher. For example, when used as a reducing material in a blast furnace, it reacts with calcium present in the blast furnace, so even if the chlorine is somewhat high, It will not cause any major trouble. In addition, when dechlorination occurs, the calorific value of the solidified body is considered to increase by the amount of chlorine. However, since the organic matter decomposes and separates as a side reaction, the calorific value of the solidified body after treatment is rather small. is there. Therefore, by performing the heat treatment of the waste plastic at a temperature equal to or higher than the softening melting temperature and not generating flammable decomposition gas, the calorific value of the solidified body does not decrease.
 廃プラスチックを加熱溶融、冷却、固化する際の加熱温度は、例えば特許文献4によれば、元々含有されていた、および/または、熱分解によって生成した低沸点化合物を除去するための温度に昇温することが大前提となっており、具体的には、150~450℃であり、より好ましくは200~400℃、さらに好ましくは250~380℃の温度範囲とされている。このような温度範囲のうち、高温で加熱することで、塩化水素とともに、可燃性分解ガスが発生する。 According to Patent Document 4, for example, according to Patent Document 4, the heating temperature when waste plastic is heated, melted, cooled, and solidified is increased to a temperature for removing low-boiling compounds originally contained and / or generated by thermal decomposition. Heating is a major premise, specifically 150 to 450 ° C., more preferably 200 to 400 ° C., and even more preferably 250 to 380 ° C. In such a temperature range, combustible decomposition gas is generated together with hydrogen chloride by heating at a high temperature.
 また、一般に塩素を含有するプラスチックの脱塩素処理を行なうためには300℃以上に加熱することが好ましく、この場合には発生した塩素ガスを処理・回収するための設備が必要となる。 In general, in order to dechlorinate plastics containing chlorine, it is preferable to heat to 300 ° C. or higher. In this case, equipment for treating and recovering the generated chlorine gas is required.
 従って、廃プラスチックの脱塩素処理を前提として、廃プラスチックを加熱して溶融後に冷却して固化体とする設備では、廃プラスチックの加熱溶融工程で発生する廃プラスチック分解ガスの燃焼炉と塩酸回収装置等の塩素処理設備が必要となる。このような設備はコスト高であるので、廃プラスチックの処理コストを下げるため溶融・混練した後、冷却・固化して固化体とする際に、本発明者らは可燃性分解ガスが生成する温度について検討し、廃プラスチックを加熱溶融する温度とプラスチックの分解率について、図1に示す関係を見出した。尚、分解率は、処理に用いた廃プラスチック量(処理量、ドライベース)と、処理後の回収量との比を用いて(1−回収量/処理量)×100(mass%)で定義される。 Therefore, on the premise of dechlorination treatment of waste plastic, in equipment that heats waste plastic and cools it after melting, it becomes a solidified body. Combustion furnace and hydrochloric acid recovery device for waste plastic decomposition gas generated in the waste plastic heating and melting process A chlorination facility such as is required. Since such equipment is expensive, the present inventors have set the temperature at which combustible cracked gas is generated when cooling and solidifying into a solidified body after melting and kneading to reduce the processing cost of waste plastic. 1 was found, and the relationship shown in FIG. 1 was found for the temperature at which the waste plastic was heated and melted and the decomposition rate of the plastic. The decomposition rate is defined as (1−recovered amount / processed amount) × 100 (mass%) using the ratio of the amount of waste plastic used for processing (processed amount, dry base) and the recovered amount after processing. Is done.
 図1によれば、270℃までは廃プラスチック分解ガスの発生は極めて少ない。従って、このような分解ガスの発生する温度以下で廃プラスチックを加熱溶融・混練して、冷却固化することで、燃焼炉等の分解ガス処理設備が不要となり、廃プラスチックを低コストで処理し、廃プラスチック固化体を製造することができる。 According to FIG. 1, the generation of waste plastic decomposition gas is very low up to 270 ° C. Therefore, the waste plastic is heated, melted and kneaded below the temperature at which such cracked gas is generated, and cooled and solidified, so that no cracked gas treatment equipment such as a combustion furnace is required, and the waste plastic is processed at low cost. A waste plastic solidified body can be produced.
 廃プラスチックに残留する塩素は、低濃度であれば、鉱石還元材、固体燃料等に使用する際に問題とならない場合が多く、本発明で処理する廃プラスチックには、塩素濃度の低いものを用いることが好ましい。例えば、塩素濃度が2mass%以下の廃プラスチックを本発明方法で処理したものは、鉱石還元材として高炉吹込みに充分に利用可能である。 If the chlorine remaining in the waste plastic is low in concentration, there is often no problem when used for ore reducing material, solid fuel, etc., and the waste plastic treated in the present invention uses a low chlorine concentration. It is preferable. For example, a waste plastic having a chlorine concentration of 2 mass% or less treated by the method of the present invention can be sufficiently used for blowing blast furnace as an ore reducing material.
 可燃性分解ガスが生成しない温度は、廃プラスチックの種類により若干変動するが、通常の場合、図1の結果より270℃以下とすることが好ましい。更に、200℃以下とすれば、より確実に可燃性ガスの発生を防止できる。この場合の温度は、樹脂中の最高温度とする。樹脂中の最高温度は、樹脂中に熱電対を挿入するなどの一般的な方法により測定することができる。尚、可燃性分解ガスが生成しない温度は、加熱により廃プラスチックから可燃性の有機物が実質的に発生しない温度であり、廃プラスチック中の不純物(例えば使い捨てライター中の液化ガス)に起因して発生するようなガスはこの場合の可燃性分解ガスの対象外である。 The temperature at which the flammable decomposition gas is not generated varies slightly depending on the type of waste plastic, but in the normal case, it is preferably 270 ° C. or less from the result of FIG. Furthermore, if it is 200 degrees C or less, generation | occurrence | production of combustible gas can be prevented more reliably. The temperature in this case is the highest temperature in the resin. The maximum temperature in the resin can be measured by a general method such as inserting a thermocouple into the resin. The temperature at which flammable decomposition gas is not generated is a temperature at which flammable organic substances are not substantially generated from waste plastic by heating, and is generated due to impurities in waste plastic (for example, liquefied gas in disposable lighters). Such gases are outside the scope of combustible cracked gas in this case.
 溶融温度の下限は、後述するように廃プラスチックの混練を良好に行なうために、廃プラスチックが軟化溶融する温度とする。軟化溶融温度は廃プラスチックの種類により変動するが、通常の廃プラスチックの主成分がポリエチレン(PE)とポリプロピレン(PP)であることから、軟化溶融温度の下限を160℃とすることが好ましい。PEのみが主体の廃プラスチックであれば120℃とすることも可能である。 The lower limit of the melting temperature is set to a temperature at which the waste plastic is softened and melted so that the waste plastic can be kneaded well as described later. The softening and melting temperature varies depending on the type of waste plastic, but since the main components of ordinary waste plastic are polyethylene (PE) and polypropylene (PP), the lower limit of the softening and melting temperature is preferably 160 ° C. If the waste plastic is mainly composed of PE, the temperature can be set to 120 ° C.
 もっとも、溶融・混練処理を160℃未満で実施することは、被処理物の廃プラスチックが各種プラスチックの混合物であることから実際的ではない。すなわち、160℃未満で溶融するプラスチックは主にPEだけであり、無理に処理を行うと、混練に要する所要動力が極端に大きくなるとともに、処理装置内で閉塞が発生し、処理の継続が困難になる場合がある。 However, it is not practical to carry out the melting / kneading treatment at less than 160 ° C. because the waste plastic to be treated is a mixture of various plastics. That is, the only plastic that melts below 160 ° C is mainly PE, and if it is processed forcibly, the required power required for kneading becomes extremely large, and a blockage occurs in the processing apparatus, making it difficult to continue the processing. It may become.
 廃プラスチックを「溶融し、更に混練する」とは、廃プラスチックの溶融と同時に混練するか、溶融後に廃プラスチックを溶融状態で混練することを言う。ここで、混練は少なくとも100(1/秒)以上の剪断速度で行なうものとする。混練を十分に行なうことで、異種のプラスチックが混合されて、高度に分散され、プラスチックの異種界面が増加し、破壊の起点を発現させる。プラスチックはその種類により特性が異なり、このような異種プラスチックを溶融混練後、冷却固化すると、高分子同士はお互いに十分混合された状態のまま固化するが、その接着界面は、化学的にではなく、単に物理的に接触しているに過ぎない一方で、異種プラスチックの成形収縮率はそれぞれのプラスチックで異なり、冷却の過程で異種プラスチックはそれぞれの成形収縮率に応じて収縮し、接着界面が離れるためには内部が真空にならざるを得ず(真空ボイド)、ボイド形成に至らない場合は接着界面に「離れようとするが離れられない」応力が残る(残留応力)。十分な混練により高度に分散された異種プラスチックは、接着界面が多くなり、固化体は必然的に強い残留応力を有する。そして、固化体に衝撃を与えた場合、これらの異種プラスチック接着界面に応力集中を起こし、比較的容易に破壊の起点が生成される。また、亀裂の伝播をとめる要素がないため、結果的に全体がもろい構造になり、粉砕性が向上する。成形収縮率の他に、溶解パラメーター等の差も粉砕性向上に影響する。 “Melting and further kneading” the waste plastic means that the waste plastic is kneaded simultaneously with the melting of the waste plastic or kneaded in a molten state after the melting. Here, the kneading is performed at a shear rate of at least 100 (1 / second) or more. By sufficiently kneading, different types of plastics are mixed and highly dispersed, the number of different types of plastics increases, and the starting point of fracture is expressed. Plastics have different characteristics depending on the type, and when these different types of plastics are melt-kneaded and then cooled and solidified, the polymers solidify while being sufficiently mixed with each other, but the bonding interface is not chemically. While it is merely in physical contact, the molding shrinkage of different plastics differs depending on the plastic, and during the cooling process, the different plastics shrink according to their molding shrinkage and the bonding interface is separated. For this purpose, the inside must be evacuated (vacuum voids), and when void formation does not occur, a stress that "shall be separated but cannot be separated" remains at the bonding interface (residual stress). A dissimilar plastic highly dispersed by sufficient kneading has many adhesion interfaces, and the solidified body necessarily has a strong residual stress. When an impact is applied to the solidified body, stress concentration occurs at these different plastic bonding interfaces, and a breakage starting point is generated relatively easily. In addition, since there is no element that stops the propagation of cracks, the entire structure becomes brittle and the grindability is improved. In addition to molding shrinkage, differences in dissolution parameters and the like also affect pulverizability improvement.
 廃プラスチック以外の固体粒状物も、ほとんどの場合プラスチックと相溶しないため、廃プラスチックの溶融・混練の前、または溶融・混練時に、または溶融・混練の前と溶融・混練時の両方で、廃プラスチック以外の固体粒状物を廃プラスチックに混合し、廃プラスチックと共に混練することで、冷却固化した後は固体粒状物が破壊の起点となり、固化体の粉砕性をよりいっそう向上させることが出来る。 Solid particulates other than waste plastics are also incompatible with plastics in most cases, so they are discarded before waste plastic melting and kneading, or during melting and kneading, or both before melting and kneading and during melting and kneading. By mixing solid particulates other than plastic with waste plastic and kneading with the waste plastic, after solidification by cooling, the solid particulate matter becomes a starting point of destruction, and the pulverization property of the solidified body can be further improved.
 溶融・混練前に混合する方法としては、たとえばタンブラー等を使用してあらかじめ廃棄プラスチックと固体粒状物とを混合すればよい。溶融・混練時に混合する方法としては、溶融・混練装置に廃プラスチックと固体粒状物を別々に供給し、装置内で混合してもよいし、どちらかを先に供給したのち、他方を供給してもよい。固体粒状物の融点が廃プラスチックの溶融開始温度よりも高い場合、先に廃プラスチックを供給し、ある程度の溶融状態を達成した後に固体粒状物を添加することが好ましい。 As a method for mixing before melting and kneading, for example, a tumbler or the like may be used to mix waste plastic and solid particulate matter in advance. As a method of mixing at the time of melting and kneading, waste plastic and solid particulates may be separately supplied to the melting and kneading apparatus and mixed in the apparatus, or one of them is supplied first and then the other is supplied. May be. When the melting point of the solid granular material is higher than the melting start temperature of the waste plastic, it is preferable to add the solid granular material after supplying the waste plastic first and achieving a certain molten state.
 固体粒状物としては、石炭、コークス、アスファルト等の化石燃料、バージンプラスチックなどの合成高分子、でんぷんやセルロースなどの天然高分子、鉄やアルミニウム等の金属および鉄鉱石やボーキサイト等のそれらの鉱石、マイカ・タルク等の無機物があげられる。また、固体粒状物として、籾殻、茶殻、コーヒー殻(滓)等の、農作物由来の廃棄物、木材、木炭や竹などの含リグニン植物など、いわゆるバイオマス固体を用いることが好ましい。特に、農作物由来の廃棄物や、間伐材・建築廃材などの廃木材を利用することは、地球環境保護の点からも有用である。上記したように、廃プラスチック以外の固体粒状物は、ほとんどの場合プラスチックと相溶しないため、溶融した廃プラスチックと混練し、冷却固化した後は破壊の起点となり、粉砕性を向上せしめることが出来るが、特にバイオマス固体中には灰分が含まれており、破壊の起点となり易いため好ましい。更に、籾殻は細長い形状になりやすく、また溶融した廃プラスチックを混練する際にさらに粉砕されるので、破壊の起点として効果的に用いることができる。なお、この場合の固体粒状物の配合量は、廃プラスチック100質量部に対して、固体粒状物100質量部未満とすることが好ましい。固体粒状物が100質量部以上では、混練処理後に廃プラスチックが粉化してハンドリングが困難になるからである。また、廃プラスチック100質量部に対して、固体粒状物5質量部以上とすることが好ましい。固体粒状物添加の効果が、より良く発揮できるからである。これら固体粒状物は、処理装置に導入できる大きさであれば使用可能である。 Solid particulates include fossil fuels such as coal, coke and asphalt, synthetic polymers such as virgin plastic, natural polymers such as starch and cellulose, metals such as iron and aluminum, and those ores such as iron ore and bauxite, Examples include inorganic substances such as mica and talc. Moreover, it is preferable to use what is called biomass solids, such as waste derived from agricultural products, such as rice husk, tea husk, and coffee husk (rice husk), and lignin-containing plants such as wood, charcoal, and bamboo, as the solid particulate matter. In particular, it is useful from the viewpoint of protecting the global environment to use wastes derived from agricultural crops and waste wood such as thinned wood and construction waste. As mentioned above, solid particulates other than waste plastics are incompatible with plastics in most cases, so after kneading with molten waste plastic and cooling and solidifying, it becomes a starting point of destruction and can improve grindability. However, it is particularly preferable because the biomass solid contains ash and is likely to be a starting point of destruction. Furthermore, the rice husk tends to be elongated, and is further pulverized when kneading molten waste plastic, so that it can be effectively used as a starting point for destruction. In addition, it is preferable that the compounding quantity of the solid granular material in this case shall be less than 100 mass parts of solid granular materials with respect to 100 mass parts of waste plastics. This is because if the solid granular material is 100 parts by mass or more, the waste plastic is pulverized after the kneading process, and handling becomes difficult. Moreover, it is preferable to set it as 5 mass parts or more of solid granular materials with respect to 100 mass parts of waste plastics. This is because the effect of adding the solid particulate matter can be exhibited better. These solid particulate materials can be used if they can be introduced into the processing apparatus.
 廃プラスチックの加熱および溶融は、押し出し機を用いて混練しながら行なうことが好ましい。押出し機を用いることで、廃プラスチックを加熱すると同時に剪断速度100(1/秒)以上の混練を、効率的に行なうことができる。押し出し機は、二軸押し出し機を用いることで、より混練性を高めることができる。 It is preferable to heat and melt the waste plastic while kneading using an extruder. By using an extruder, the waste plastic can be heated and kneaded at a shear rate of 100 (1 / second) or more at the same time. The extruder can be further improved in kneadability by using a biaxial extruder.
 製造した廃プラスチックの固化体を、粉砕することで、廃プラスチック粉砕物を製造し、鉱石還元材や固体燃料を製造することができる。加熱溶融後に冷却、固化した固化体は粉砕性が向上し、通常の粉砕機を用いて、粒径2mm以下の微粉を、容易に製造することができる。粉砕した固化体は、篩を通過させて粒度を調整することが好ましい。篩いの篩目を適宜変更することで、粉砕後粒度を設定できる。例えば、本発明の製造方法を用いて、目開き0.5mmのふるいを通過させることで、粒径0.5mm以下の廃プラスチック粉砕物である微粉を得ることができる。 By crushing the produced waste plastic solidified body, waste plastic pulverized product can be produced, and ore reducing material and solid fuel can be produced. The solidified product cooled and solidified after heating and melting has improved pulverization properties, and a fine powder having a particle size of 2 mm or less can be easily produced using a normal pulverizer. The crushed solidified body is preferably passed through a sieve to adjust the particle size. The particle size after pulverization can be set by appropriately changing the sieve mesh. For example, fine powder which is a waste plastic pulverized product having a particle size of 0.5 mm or less can be obtained by passing through a sieve having an aperture of 0.5 mm using the production method of the present invention.
 以下に、本発明の一実施形態を、I.プラスチック、II.溶融・混練工程、III.冷却固化工程、IV.粉砕工程の順に、さらに詳細に説明する。 Hereinafter, an embodiment of the present invention will be described as I.D. Plastic, II. Melting / kneading step, III. Cooling and solidifying step, IV. This will be described in more detail in the order of the pulverization step.
 〔I.プラスチック〕本発明の対象とする廃プラスチック、すなわち本発明における原料プラスチックとしては、都市ゴミ、産業廃棄物、一般廃棄物などに含まれる廃プラスチックや容器包装材料、および電気製品、自動車などの解体の過程で発生する廃プラスチックなどが例示される。 [I. Plastics] Waste plastics subject to the present invention, that is, raw material plastics in the present invention include waste plastics and container packaging materials contained in municipal waste, industrial waste, general waste, etc., and dismantling of electrical products, automobiles, etc. Examples include waste plastic generated in the process.
 具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリカーボネートおよびナイロンやその他の熱可塑性樹脂や熱硬化性樹脂など全てのものが適用可能であり、上記プラスチックの内のいずれか2種以上が混合された状態のものを用いることになる。廃棄物である廃プラスチックの性質上、通常であればある程度の塩素含有プラスチックを含むものであるが、塩素含有プラスチックを含有していない廃プラスチックであっても、本発明を用いることは可能である。 Specifically, polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, polystyrene, polyethylene terephthalate, polycarbonate, nylon, and other thermoplastic resins and thermosetting resins are all applicable. In this case, a plastic material in which any two or more of the plastics are mixed is used. Normally, it contains some chlorine-containing plastic due to the nature of waste plastic, which is waste, but the present invention can be used even with waste plastic that does not contain chlorine-containing plastic.
 加熱処理すべきプラスチックの形状寸法は、粗く粉砕したものでよく、10cm角程度の大きさで十分であり、一般的な廃プラスチックでは、改めて粉砕する必要がなく、回収されたままの状態で処理可能であり、フィルム状、シート状、繊維状のプラスチックもそのままの形で処理できる。もちろん、細かく粉砕してもかまわないがその分処理コストが高くなる。 The shape of the plastic to be heat-treated may be roughly pulverized, and a size of about 10 cm square is sufficient. For general waste plastic, it is not necessary to pulverize again, and it is processed in the recovered state. Yes, film, sheet, and fiber plastics can be processed as they are. Of course, it may be finely pulverized, but the processing cost increases accordingly.
 〔II.溶融・混練工程〕溶融・混練工程としては、下記の工程が例示される。すなわち、廃プラスチックを反応器内や押出し機内等で160℃以上、可燃性分解ガスが生成しない温度で溶融する。可燃性分解ガスが生成しない温度は、廃プラスチックの組成により異なるが、通常の場合、上限を270℃とする。可燃性分解ガスが生成しない温度範囲では、より高温で溶融することが好ましく、好ましくは200℃以上、より好ましくは230℃以上の温度範囲内で溶融・混練する。 [II. Melting / kneading step] Examples of the melting / kneading step include the following steps. That is, the waste plastic is melted at 160 ° C. or higher at a temperature at which combustible decomposition gas is not generated in a reactor or an extruder. The temperature at which the combustible decomposition gas is not generated varies depending on the composition of the waste plastic, but the upper limit is usually 270 ° C. In the temperature range where the combustible decomposition gas is not generated, it is preferable to melt at a higher temperature, preferably 200 ° C. or higher, more preferably 230 ° C. or higher.
 混練は少なくとも、100(1/秒)以上の剪断速度で行なうものとする。図2にキャピラリーレオメーターにより測定した各種低密度ポリエチレン(MI:Melt Index=7、50、200)の150℃における剪断速度に対する溶融粘度の変化を測定した結果を示す。溶融プラスチックは非ニュートン流体であり、図2に示すように、剪断速度が小さい領域では低密度ポリエチレン(LDPE)の溶融粘度はほぼ一定である。しかし、どのMIを有するLDPEであっても剪断速度が100(1/秒)以上の領域では、剪断速度の増加とともに粘度は低下する。すなわち、混練性の観点からは剪断速度が100(1/秒)以上の領域で混練することが混練動力の低下や混練効率の向上のために極めて有効である。 Kneading is performed at a shear rate of at least 100 (1 / second). FIG. 2 shows the results of measuring the change in melt viscosity with respect to the shear rate at 150 ° C. of various low-density polyethylenes (MI: Melt Index = 7, 50, 200) measured with a capillary rheometer. The molten plastic is a non-Newtonian fluid, and as shown in FIG. 2, the melt viscosity of low density polyethylene (LDPE) is substantially constant in the region where the shear rate is low. However, in any LDPE having any MI, in the region where the shear rate is 100 (1 / second) or more, the viscosity decreases as the shear rate increases. That is, from the viewpoint of kneadability, kneading in a region where the shear rate is 100 (1 / second) or more is extremely effective for lowering kneading power and improving kneading efficiency.
 溶融し、更に混練を行なうことで、プラスチック処理物の粉砕性を向上させることができる。このことにより廃プラスチック中の異種プラスチックがお互いに混ざり合うが、これらは溶け合うことはほとんど無く、お互いの相互作用が無いため、固化後にはわずかな衝撃でバラバラになりやすく、かつ、破壊の起点が発現するため、全体として耐衝撃性が失われる。溶融・混練処理はバッチ式でも良いし、連続式でも良い。また、バッチ切り替え等の中間型でもかまわない。連続式処理装置としては、押し出し機が好ましく、混練性の観点から、二軸押し出し機がより好ましい。 By melting and further kneading, the pulverizability of the plastic processed product can be improved. This makes it possible for dissimilar plastics in the waste plastic to mix with each other, but they hardly melt together and have no mutual interaction. As a result, the overall impact resistance is lost. The melting and kneading treatment may be a batch type or a continuous type. An intermediate type such as batch switching may also be used. As the continuous processing apparatus, an extruder is preferable, and a twin screw extruder is more preferable from the viewpoint of kneadability.
 処理時間は0.5分~30時間が適当である。処理時間が0.5分未満の場合、反応器内の温度制御が困難となると共に溶融した廃プラスチック処理物を十分混練することが困難である。また、処理時間が30時間を超える場合、処理効率が低下し経済的でない。 Processing time is suitably 0.5 minutes to 30 hours. When the treatment time is less than 0.5 minutes, it is difficult to control the temperature in the reactor, and it is difficult to sufficiently knead the molten waste plastic product. Moreover, when processing time exceeds 30 hours, processing efficiency falls and it is not economical.
 溶融・混練処理に際し、熱媒体を共存させることもできる。 In the melting / kneading process, a heat medium can be allowed to coexist.
 〔III.冷却固化工程〕溶融処理後の廃プラスチックを、溶融プラスチック搬送装置にて、溶融プラスチックをベルトクーラーに定量供給することにより、冷却固化を行なう。除熱量は加熱処理後の温度と十分に固化するまでの温度との間のエンタルピー量と、処理速度から計算され、例えば容器包装廃プラスチックを含む場合、冷却後の中心部温度が110℃程度になるように制御すれば十分である。 [III. Cooling and solidifying step] The waste plastic after the melting treatment is cooled and solidified by supplying a fixed amount of the molten plastic to a belt cooler by a molten plastic conveying device. The amount of heat removal is calculated from the amount of enthalpy between the temperature after heat treatment and the temperature until fully solidified, and the treatment speed. For example, when including container packaging waste plastic, the center temperature after cooling is about 110 ° C. It is sufficient to control so that
 また、連続式の加熱溶融処理装置を用いる場合、装置出口でカットし、あるいはカットしないまま、空冷あるいは水中投入等の冷却を施すことができる。 Also, when using a continuous heating and melting apparatus, it can be cooled at the outlet of the apparatus, or it can be cooled without being cut, such as air cooling or charging into water.
 〔IV.粉砕工程〕冷却固加工程を経た固化体は、所定の粒径となるように粉砕することが好ましい。前記した本発明の方法で得られた冷却固化体であるプラスチック処理物の粉砕は、未処理のプラスチックの粉砕に比較して極めて容易に行なうことができる。すなわち、本発明の方法で得られたプラスチック処理物は、あらゆるタイプの粉砕機で粉砕可能であり、粉砕機として、例えばジョークラッシャー、ロールクラッシャー、ボールミル、遠心ミルなどを用いることができる。 [IV. Pulverization step] The solidified body that has undergone the cooling and solidification step is preferably pulverized so as to have a predetermined particle size. The pulverization of the plastic treated product, which is a cooled solidified body obtained by the above-described method of the present invention, can be performed very easily as compared with the pulverization of untreated plastic. That is, the processed plastic product obtained by the method of the present invention can be pulverized by any type of pulverizer, and for example, a jaw crusher, a roll crusher, a ball mill, a centrifugal mill, or the like can be used.
 粉砕後の粒径は、プラスチック処理物の使用目的に応じて決めればよく、所定の粒径となるように粒度調整を行えば、例えば、鉄鉱石などの鉱石還元材、すなわち高炉など銑鉄を製造する竪型炉の還元材などの原燃料や、転炉の還元材、ボイラ、キルンなどの燃焼用燃料、キュポラの燃料、コークス炉の原料として使用できる。また、上記した用途以外にも固体燃料として使用できる。 The particle size after pulverization may be determined according to the purpose of use of the processed plastic. If the particle size is adjusted to a predetermined particle size, for example, ore reducing material such as iron ore, that is, pig iron such as blast furnace is produced. It can be used as raw fuel such as reducing material for vertical furnaces, reducing material for converters, combustion fuel such as boilers and kilns, cupola fuel, and raw materials for coke ovens. Moreover, it can be used as a solid fuel other than the above-mentioned use.
 以下、本発明を実施例に基づいてさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically based on examples.
 〔本発明例1〕一般廃棄物系容器包装廃プラスチックを1cm程度に粉砕した後、二軸押し出し機にて180℃で溶融して、混練した。混練時の剪断速度は243(1/秒)であった(スクリュー径31mm、スクリューとバレルの隙間0.2mm、スクリュー回転数30rpm、剪断速度π×31×30/60/0.2=243)。押し出し機のベントからは水分(水蒸気)の発生が認められたが、可燃性分解ガスは確認されなかった。これをそのまま空冷し、約30mm程度の塊(固化体)を得た。 [Invention Example 1] General waste container packaging waste plastic was pulverized to about 1 cm, melted at 180 ° C. with a twin screw extruder, and kneaded. The shear rate at the time of kneading was 243 (1 / second) (screw diameter 31 mm, screw-barrel gap 0.2 mm, screw rotation speed 30 rpm, shear rate π × 31 × 30/60 / 0.2 = 243) . Generation of moisture (water vapor) was observed from the vent of the extruder, but no combustible decomposition gas was confirmed. This was air-cooled as it was to obtain a mass (solidified body) of about 30 mm.
 このときの原料の仕込み量と固化体の回収量とから固化体収率を計算した。また、この固化体中の塩素濃度(固化体残存塩素濃度)と、固化体の発熱量を測定した。結果を表1に示す。 The solidified body yield was calculated from the raw material charge amount and the solidified body recovered amount at this time. Further, the chlorine concentration in this solidified body (solidified body residual chlorine concentration) and the calorific value of the solidified body were measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 この固化体を(株)ホーライ製小型粉砕機(カッターミル)にて粗粉砕して、9mmのスクリーンを通過させた。
Figure JPOXMLDOC01-appb-T000001
This solidified body was coarsely pulverized by a small pulverizer (cutter mill) manufactured by Horai Co., Ltd., and passed through a 9 mm screen.
 この粗粉砕物をホソカワミクロン(株)製ACMパルベライザー(ハンマーミル)にて微粉砕した後、試験篩で分級試験を施し、粒度分布を測定した。結果を表2に示す。 The coarsely pulverized product was finely pulverized with an ACM pulverizer (hammer mill) manufactured by Hosokawa Micron Corporation, and then subjected to a classification test with a test sieve to measure the particle size distribution. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 粒度分布から平均粒径を算出した。まず、下記(1)式(Rosin−Rammler−Bennetの式)を変形して得られる下記(2)式に、分級試験で得られた4つのフラクションそれぞれの質量分率と篩い目の径を代入し、最小二乗法で下記式(2)の比例定数n、bを求めた。
R(Dp)=100・exp{−(Dp/De)n}・・・(1)
log{log[100/R(Dp)]}=n・logDp+log(b)・・・(2)
上記式(1)、(2)中、R(Dp)は篩い目Dpの積算篩い上質量%、Deは粒度特性数〔R(Dp)は質量%に対応する数〕、nは均等数(粉粒体の粒度分布の均一性を評価する指数)、bは定数であり、粉粒体の微細性を評価する指数を示す。
Figure JPOXMLDOC01-appb-T000002
The average particle size was calculated from the particle size distribution. First, substituting the mass fraction and sieve diameter of each of the four fractions obtained in the classification test into the following equation (2) obtained by modifying the following equation (1) (Rosin-Rammeler-Bennet equation) Then, the proportionality constants n and b of the following formula (2) were obtained by the least square method.
R (Dp) = 100 · exp {− (Dp / De) n} (1)
log {log [100 / R (Dp)]} = n · logDp + log (b) (2)
In the above formulas (1) and (2), R (Dp) is the mass% on the integrated sieve of the sieve mesh Dp, De is the particle size characteristic number [R (Dp) is the number corresponding to mass%], and n is an equal number ( Index for evaluating the uniformity of the particle size distribution of the granular material), b is a constant and indicates an index for evaluating the fineness of the granular material.
 求めたn、bから、D50(50%通過篩径)を計算し、平均粒径を算出した。平均粒径を表1に併せて示す。180℃で溶融処理を行なった本発明例1の廃プラスチック粉砕物の平均粒径は500μm未満であり、充分に微細なものであった。 D50 (50% passing sieve diameter) was calculated from the obtained n and b, and the average particle diameter was calculated. The average particle size is also shown in Table 1. The average particle size of the waste plastic pulverized product of Example 1 of the present invention that was melt-treated at 180 ° C. was less than 500 μm and was sufficiently fine.
 〔本発明例2〕1cm程度に粉砕した一般廃棄物系容器包装廃プラスチック70質量部と、籾殻30質量部を混合し、二軸押出機に供給した以外は本発明例1と同様の操作を行い、固化体、およびその粉砕物を製造した。固化体収率、固化体中残存塩素濃度、固化体発熱量の測定結果、平均粒径の計算結果と、微粉砕後の粒度分布の測定結果を表1、表2に併せて示す。 [Invention Example 2] The same operation as in Invention Example 1 was conducted except that 70 parts by mass of general waste container packaging waste plastic pulverized to about 1 cm and 30 parts by mass of rice husk were mixed and supplied to the twin screw extruder. The solidified product and the pulverized product thereof were manufactured. Tables 1 and 2 show the results of measurement of the solidified body yield, the residual chlorine concentration in the solidified body, the calorific value of the solidified body, the calculation result of the average particle size, and the measurement result of the particle size distribution after pulverization.
 本発明例1と比較して固化体収率が増加し、固化体中残存塩素濃度は低下し、固化体発熱量は幾分低下した。これは、灰分を約20mass%含む籾殻が処理後にも大部分が固化体中にとどまっていることを示している。また、粉砕後の平均粒径は小さくなり、籾殻添加による粉砕性向上効果が認められた。 The solidified body yield increased, the residual chlorine concentration in the solidified body decreased, and the calorific value of the solidified body decreased somewhat compared with Example 1 of the present invention. This shows that most of the rice husk containing about 20 mass% of ash remains in the solidified body after the treatment. Moreover, the average particle diameter after grinding | pulverization became small, and the grindability improvement effect by rice husk addition was recognized.
 〔本発明例3〕1cm程度に粉砕した一般廃棄物系容器包装廃プラスチック70質量部と、石炭(銘柄:興隆庄)30質量部を混合し、二軸押出機に供給した以外は本発明例1と同様の操作を行い、固化体、およびその粉砕物を製造した。固化体収率、固化体中残存塩素濃度、固化体発熱量の測定結果、平均粒径の計算結果と、微粉砕後の粒度分布の測定結果を表1、表2に併せて示す。 [Invention Example 3] Invention Example except that 70 parts by mass of general waste container packaging waste plastic pulverized to about 1 cm and 30 parts by mass of coal (brand: Xinglongzhuang) were mixed and supplied to a twin screw extruder. The same operation as in No. 1 was performed to produce a solidified product and a pulverized product thereof. Tables 1 and 2 show the results of measurement of the solidified body yield, the residual chlorine concentration in the solidified body, the calorific value of the solidified body, the calculation result of the average particle size, and the measurement result of the particle size distribution after pulverization.
 本発明例1と比較して固化体収率が増加し、固化体中残存塩素濃度は減少し、固化体発熱量は幾分低下した。これは、灰分を約10mass%含む石炭が処理後にも大部分が固化体中にとどまっていることを示している。また、粉砕後の平均粒径は小さくなり、石炭添加による粉砕性向上効果が認められた。本発明例2と比較しても、粉砕後の平均粒径はより小さくなっているが、これは添加した石炭自身が籾殻よりも良好な粉砕性を有することが原因である。 The solidified body yield increased, the residual chlorine concentration in the solidified body decreased, and the calorific value of the solidified body somewhat decreased compared with Example 1 of the present invention. This indicates that most of the coal containing about 10 mass% of ash remains in the solidified body after treatment. Moreover, the average particle diameter after grinding | pulverization became small and the grindability improvement effect by coal addition was recognized. Compared to Example 2 of the present invention, the average particle size after pulverization is smaller, but this is because the added coal itself has better pulverizability than rice husk.
 〔比較例1〕二軸押し出し機による混練温度を335℃とした以外は上記の本発明例1と同様の操作を行い、固化体、およびその粉砕物を製造した。二軸押し出し機のベントからは水分のほか塩化水素ガスや有機物からなる排ガスが認められた。排ガスの成分にはテレフタル酸が検出された。固化体収率、固化体中残存塩素濃度、固化体発熱量の測定結果、平均粒径の計算結果と、微粉砕後の粒度分布の測定結果を表1、表2に併せて示す。 [Comparative Example 1] A solidified product and a pulverized product thereof were produced in the same manner as in the above-mentioned Invention Example 1 except that the kneading temperature by the twin screw extruder was 335 ° C. In addition to moisture, exhaust gas consisting of hydrogen chloride gas and organic substances was observed from the vent of the twin screw extruder. Terephthalic acid was detected as an exhaust gas component. Tables 1 and 2 show the results of measurement of the solidified body yield, the residual chlorine concentration in the solidified body, the calorific value of the solidified body, the calculation result of the average particle size, and the measurement result of the particle size distribution after pulverization.
 比較例1では固化体中残存塩素濃度が十分に低下した。また、平均粒径は小さく、微粉化されているが、この主な原因は75μm以下の超微粉の割合が高いことであった。なお、この75μm以下の超微粉は粉塵爆発性を有する等の安全上の問題点があり、窒素封入等の対策設備費用が必要になる。 In Comparative Example 1, the residual chlorine concentration in the solidified body was sufficiently reduced. Moreover, although the average particle diameter is small and pulverized, the main cause was a high ratio of ultrafine powder of 75 μm or less. The ultra fine powder of 75 μm or less has safety problems such as dust explosiveness, and costs for countermeasures such as nitrogen filling are required.
 〔比較例2〕二軸押し出し機による混練時の剪断速度を81(1/秒)(スクリュー回転数10rpm)とした以外は上記の本発明例1と同様の操作を行い、分級試験を施した。固化体収率、固化体中残存塩素濃度、固化体発熱量の測定結果、平均粒径の計算結果と、微粉砕後の粒度分布の測定結果とを表1、表2に併せて示す。 [Comparative Example 2] A classification test was performed in the same manner as in the above-mentioned Invention Example 1 except that the shear rate during kneading with the twin screw extruder was 81 (1 / second) (screw rotation speed: 10 rpm). . Tables 1 and 2 show the results of measurement of the solidified body yield, the residual chlorine concentration in the solidified body, the calorific value of the solidified body, the calculation result of the average particle size, and the measurement result of the particle size distribution after pulverization.
 本発明例1と比較して、混練時の剪断速度が本発明の範囲外である比較例2では、平均粒径が大きく、微粉化されていないことが明らかである。 In comparison example 2 where the shear rate during kneading is out of the range of the present invention as compared with example 1 of the present invention, it is clear that the average particle size is large and not pulverized.
 〔比較例3〕二軸押し出し機による混練温度を335℃とした以外は上記の本発明例2と同様の操作を行い、分級試験を施した。二軸押し出し機のベントからは水分のほか塩化水素ガスや有機物からなる排ガスが認められた。排ガスの成分にはテレフタル酸が検出された。固化体収率、固化体中残存塩素濃度、固化体発熱量の測定結果、平均粒径の計算結果と、微粉砕後の粒度分布の測定結果とを表1、表2に併せて示す。 [Comparative Example 3] A classification test was performed in the same manner as in the above-mentioned Invention Example 2 except that the kneading temperature by the twin screw extruder was 335 ° C. In addition to moisture, exhaust gas consisting of hydrogen chloride gas and organic substances was observed from the vent of the twin screw extruder. Terephthalic acid was detected as an exhaust gas component. Tables 1 and 2 show the results of measurement of the solidified body yield, the residual chlorine concentration in the solidified body, the calorific value of the solidified body, the calculation result of the average particle size, and the measurement result of the particle size distribution after pulverization.
 比較例3では平均粒径は小さく、微粉化されているが、この主な原因は75μm以下の超微粉の割合が高いことであった。なお、この75μm以下の超微粉は粉塵爆発性を有する等の安全上の問題点があり、窒素封入等の対策設備費用が必要になる。 In Comparative Example 3, the average particle size was small and pulverized, but the main cause was a high proportion of ultrafine powder of 75 μm or less. The ultra fine powder of 75 μm or less has safety problems such as dust explosiveness, and costs for countermeasures such as nitrogen filling are required.
 〔比較例4〕二軸押出機による混練時の処理温度を140℃に設定した以外は、本発明例1と同様の処理を試みた。しかし、処理開始後約5分でスクリューモーターが過負荷で停止し、処理が継続できなかった。二軸押出機を冷却後、スクリューを抜き出したところ、内部に未溶融の廃プラスチック固体が閉塞していた。 [Comparative Example 4] The same processing as in Example 1 of the present invention was attempted except that the processing temperature at the time of kneading with a twin-screw extruder was set to 140 ° C. However, the screw motor stopped due to overload about 5 minutes after the start of the treatment, and the treatment could not be continued. When the screw was extracted after cooling the twin screw extruder, unmelted waste plastic solid was clogged inside.
 以上の結果より、本発明例1~3では、低温で溶融・混練を行ったにもかかわらず、いずれの粉砕物も平均粒計500μm以下に微粉砕することができたことが分かる。籾殻、石炭の添加により、粉砕性は一層向上している。本発明例1と比較例1とを比較すると、本発明例1では固化体中残存塩素濃度は低下しないが、固化体収率が増加すると共に、固化体発熱量も増加した。これにより粉砕物の生産性が向上したことが明らかである。これは、比較例1では脱塩素の過程で燃焼成分であるテレフタル酸も離脱するが、本発明例では燃焼成分が残留することが原因であると考えられる。 From the above results, it can be seen that in Examples 1 to 3 of the present invention, all the pulverized products could be finely pulverized to an average particle size of 500 μm or less, despite being melted and kneaded at a low temperature. By adding rice husk and coal, the grindability is further improved. When Example 1 of the present invention and Comparative Example 1 were compared, in Example 1 of the present invention, the residual chlorine concentration in the solidified body did not decrease, but the solidified body yield increased and the calorific value of the solidified body increased. This clearly improves the productivity of the pulverized product. In Comparative Example 1, this is thought to be due to the fact that terephthalic acid, which is a combustion component, is also removed during the dechlorination process, but the combustion component remains in the present invention example.
 一方で、比較例3を比較例1と比べると、籾殻の添加にもかかわらず平均粒径が大きくなっており、一見すると粉砕性が低下したようにも考えられる。しかし、比較例3では平均粒径は若干大きくなったものの、表2によれば比較例3は比較例1よりも150~500μm、75~150μmの粒径の割合が高く、粒度分布の幅は狭くなっており、粉砕性は向上している。したがって、籾殻を添加することによる、「破壊の起点を形成することでより良好な粉砕性が発現する」効果は認められた。 On the other hand, when Comparative Example 3 is compared with Comparative Example 1, the average particle size is increased despite the addition of rice husk, and at first glance, it seems that the grindability is lowered. However, although the average particle size in Comparative Example 3 was slightly larger, according to Table 2, Comparative Example 3 has a higher particle size ratio of 150 to 500 μm and 75 to 150 μm than Comparative Example 1, and the width of the particle size distribution is It is narrower and the grindability is improved. Therefore, the effect of “better crushability is exhibited by forming the starting point of fracture” by adding rice husk was recognized.

Claims (9)

  1.  廃プラスチックを軟化溶融温度以上、かつ可燃性分解ガスが生成しない温度で溶融し、更に100(1/秒)以上の剪断速度で混練した後、冷却・固化して固化体とし、該固化体を粉砕することを特徴とする、廃プラスチック粉砕物の製造方法。 The waste plastic is melted at a temperature not lower than the softening melting temperature and does not generate flammable decomposition gas, and further kneaded at a shear rate of 100 (1 / second) or more, and then cooled and solidified to obtain a solidified body. A method for producing a pulverized waste plastic, characterized by pulverizing.
  2.  軟化溶融温度が160℃、可燃性分解ガスが生成しない温度が270℃以下であることを特徴とする、請求項1に記載の廃プラスチック粉砕物の製造方法。 The method for producing a waste plastic pulverized product according to claim 1, wherein the softening and melting temperature is 160 ° C, and the temperature at which flammable decomposition gas is not generated is 270 ° C or less.
  3.  廃プラスチックを160℃~270℃で溶融し、更に100(1/秒)以上の剪断速度で混練した後、冷却・固化して固化体とし、該固化体を粉砕することを特徴とする、廃プラスチック粉砕物の製造方法。 Waste plastic characterized in that waste plastic is melted at 160 ° C. to 270 ° C., kneaded at a shear rate of 100 (1 / second) or more, then cooled and solidified to form a solidified body, and the solidified body is pulverized. Manufacturing method of plastic pulverized material.
  4.  溶融・混練を、押し出し機を用いて行なうことを特徴とする、請求項1ないし請求項3のいずれかに記載の廃プラスチック粉砕物の製造方法。 The method for producing a waste plastic pulverized product according to any one of claims 1 to 3, wherein melting and kneading are performed using an extruder.
  5.  押し出し機が、二軸押し出し機であることを特徴とする、請求項4に記載の廃プラスチック粉砕物の製造方法。 The method for producing a waste plastic pulverized product according to claim 4, wherein the extruder is a twin screw extruder.
  6.  廃プラスチックの溶融・混練の前および/または溶融・混練時に、廃プラスチック以外の固体粒状物を混合し、廃プラスチックと共に混練することを特徴とする、請求項1ないし請求項5のいずれかに記載の廃プラスチック粉砕物の製造方法。 The solid granular material other than the waste plastic is mixed and kneaded together with the waste plastic before and / or during the melting / kneading of the waste plastic. Of waste plastic crushed material.
  7.  篩を通過させて粉砕した固化体の粒度を調整することを特徴とする、請求項1ないし請求項6のいずれかに記載の廃プラスチック粉砕物の製造方法。 The method for producing a waste plastic pulverized product according to any one of claims 1 to 6, wherein the particle size of the solidified product pulverized by passing through a sieve is adjusted.
  8.  請求項1ないし請求項7のいずれかで製造される粉砕物である鉱石還元材または固体燃料。 An ore reducing material or a solid fuel which is a pulverized product produced according to any one of claims 1 to 7.
  9.  目開き0.5mmのふるいを通過することを特徴とする、請求項8に記載の鉱石還元材または固体燃料。 The ore reducing material or solid fuel according to claim 8, wherein the ore reducing material or the solid fuel passes through a sieve having an opening of 0.5 mm.
PCT/JP2009/066205 2008-09-12 2009-09-10 Method for producing pulverized waste plastic and solid fuel or mineral reduction material WO2010030038A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801351801A CN102149526B (en) 2008-09-12 2009-09-10 Method for producing pulverized waste plastic and solid fuel or mineral reduction material
KR1020117004950A KR101134809B1 (en) 2008-09-12 2009-09-10 Method for producing pulverized waste plastic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-234187 2008-09-12
JP2008234187 2008-09-12

Publications (1)

Publication Number Publication Date
WO2010030038A1 true WO2010030038A1 (en) 2010-03-18

Family

ID=42005285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066205 WO2010030038A1 (en) 2008-09-12 2009-09-10 Method for producing pulverized waste plastic and solid fuel or mineral reduction material

Country Status (4)

Country Link
JP (1) JP4775485B2 (en)
KR (1) KR101134809B1 (en)
CN (1) CN102149526B (en)
WO (1) WO2010030038A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500602B (en) * 2011-11-07 2014-07-16 英利集团有限公司 Equipment and method for recycling photovoltaic module
CN102416401B (en) * 2011-11-07 2015-05-27 英利集团有限公司 Process and equipment for recovering photovoltaic component through thermal high-speed centrifugal decomposition
KR101308153B1 (en) 2013-04-11 2013-09-12 이승환 Method of recylcing waste plastics containing natural fiber filler
CN104073630B (en) * 2014-07-21 2016-05-25 安徽工业大学 A kind of waste plastics is iron-based carbonaceous pelletizing of carbon source and preparation method thereof
TWI570164B (en) * 2014-08-29 2017-02-11 Shiung Fire Cremator Co Ltd Method of making environmentally friendly electronic board by recycling plastic waste
CN105647611A (en) * 2014-11-14 2016-06-08 何湘贤 Fuel extractive
JP7417852B2 (en) * 2018-10-19 2024-01-19 三菱マテリアル株式会社 How to treat covered wires
AU2019457152A1 (en) * 2019-07-12 2021-11-25 Technique Co., Ltd. Method for grinding plastic waste and method for manufacturing synthetic resin molded product using plastic waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118888A (en) * 1995-10-24 1997-05-06 Kawasaki Heavy Ind Ltd Method of converting waste plastic into granular fuel
JPH11140474A (en) * 1997-11-04 1999-05-25 Kawasaki Steel Corp Production of plastic solid fuel
JPH11147973A (en) * 1997-11-14 1999-06-02 Nkk Corp Method of treating thermosetting resin powder waste material and method of supplying the waste material to a furnace
JPH11197630A (en) * 1997-11-12 1999-07-27 Kawasaki Steel Corp Treating method for plastic, and solid fuel and reducing agent for ore each obtained by the method
JPH11209767A (en) * 1998-01-30 1999-08-03 Ube Ammonia Kogyo Kk How to use waste plastic

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2968855B2 (en) * 1991-05-08 1999-11-02 株式会社ネオス Plastics powder containing fuel
JPH07119922A (en) * 1993-09-01 1995-05-12 Mitsui Eng & Shipbuild Co Ltd Waste plastic combustion equipment and waste plastic powder fuel
JP2002067029A (en) * 2000-08-24 2002-03-05 Nkk Corp Method for recycling used plastics and molded articles for recycling
CN1162263C (en) * 2001-12-18 2004-08-18 上海交通大学 Method for recovering cross-linked polyethylene with twin-screw extruder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09118888A (en) * 1995-10-24 1997-05-06 Kawasaki Heavy Ind Ltd Method of converting waste plastic into granular fuel
JPH11140474A (en) * 1997-11-04 1999-05-25 Kawasaki Steel Corp Production of plastic solid fuel
JPH11197630A (en) * 1997-11-12 1999-07-27 Kawasaki Steel Corp Treating method for plastic, and solid fuel and reducing agent for ore each obtained by the method
JPH11147973A (en) * 1997-11-14 1999-06-02 Nkk Corp Method of treating thermosetting resin powder waste material and method of supplying the waste material to a furnace
JPH11209767A (en) * 1998-01-30 1999-08-03 Ube Ammonia Kogyo Kk How to use waste plastic

Also Published As

Publication number Publication date
KR101134809B1 (en) 2012-04-13
KR20110036771A (en) 2011-04-08
CN102149526A (en) 2011-08-10
JP2010089500A (en) 2010-04-22
CN102149526B (en) 2013-11-20
JP4775485B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4775485B2 (en) Method for producing waste plastic crushed material and solid fuel or ore reducing material
JP2014030824A (en) Mixed plastic powder and manufacturing method of the same
JP5446061B2 (en) Method for producing fine powder of mixed plastic, method for operating blast furnace, and method for treating waste plastic
JP5759097B2 (en) Solid fuel
JP2015189023A (en) Method for producing waste plastic crushed material
CN113891945A (en) Method for producing polymer products
JP5582685B2 (en) Solid fuel and method for producing solid fuel
JP5759099B2 (en) Solid fuel
JP2011056789A (en) Method for manufacturing waste plastics pulverized powder, and ore reducing agent or solid fuel
JP2006241442A (en) Process for treatment of waste plastics
JP5652441B2 (en) Blowing synthetic resin into blast furnace
JP5303855B2 (en) Method for producing coke for blast furnace using waste plastic
JP5135964B2 (en) Blowing synthetic resin into blast furnace
JP3359559B2 (en) Plastic processing method, solid fuel obtained by the processing method, ore reducing agent
JP4424054B2 (en) How to use plastic
JP4640014B2 (en) Method for producing ore reducing agent
JP4998657B2 (en) How to blow plastic into the furnace
JP4807112B2 (en) Blowing synthetic resin into blast furnace
JP6428137B2 (en) Recycling method of textile waste
JP5272362B2 (en) Waste plastic grinding method
JP3290630B2 (en) Plastic processing method, solid fuel obtained by the processing method, ore reducing agent
JP2953412B2 (en) Regeneration method of inorganic filler
JP4457753B2 (en) Coke production method using waste plastic
JP2001354982A (en) Fuel for cement production
JP2005314748A (en) Method for utilizing plastics

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135180.1

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117004950

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813180

Country of ref document: EP

Kind code of ref document: A1