WO2010029918A1 - Behavior analysis system and computer program - Google Patents

Behavior analysis system and computer program Download PDF

Info

Publication number
WO2010029918A1
WO2010029918A1 PCT/JP2009/065668 JP2009065668W WO2010029918A1 WO 2010029918 A1 WO2010029918 A1 WO 2010029918A1 JP 2009065668 W JP2009065668 W JP 2009065668W WO 2010029918 A1 WO2010029918 A1 WO 2010029918A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
subject
movement
predetermined area
behavior analysis
Prior art date
Application number
PCT/JP2009/065668
Other languages
French (fr)
Japanese (ja)
Inventor
光雄 松本
博文 関根
Original Assignee
株式会社マクロウェア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マクロウェア filed Critical 株式会社マクロウェア
Priority to JP2010528721A priority Critical patent/JP5572093B2/en
Publication of WO2010029918A1 publication Critical patent/WO2010029918A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6828Leg

Definitions

  • the present invention relates to a technique for estimating a behavior and analyzing a behavior of a worker or a working vehicle working in a factory building or a store, or a movement of a customer in a store.
  • a method using ultrasonic waves has been proposed as a technique for tracking the working behavior of workers or working vehicles working in a factory building or store.
  • RFID Radio Frequency Identification
  • RFID used for management in electronic money and physical distribution to specify identification positions of workers, work wheels, and the like in a factory. It is used in the security field, such as entering and leaving a factory or office. For example, it is a technique described in Patent Document 1.
  • This technology is suitable for simple analysis such as passing through fixed points. In other words, it is a technique aimed at detecting the presence of an object or person, and its route cannot be estimated.
  • GPS global positioning system
  • INS Inertial Navigation System
  • the estimation of the movement route and the behavior analysis of the worker for the purpose of improving the work efficiency have been mainly performed by the accompanying of the observer or the video image.
  • the accompanying of the observer or the video image When accompanied by an observer, detailed information can be collected in real time.
  • the method using video shooting allows repeated observation and comparison with other results.
  • the problem to be solved by the present invention is to efficiently collect data necessary for behavioral analysis while minimizing the psychological and physical burden on the subject and analyze it without giving a burden to the observer. It is possible to provide a technique capable of responding quickly and flexibly to changes relating to the range in which a subject acts.
  • the object of the invention described in claims 1 to 4 is to efficiently collect data necessary for behavior analysis while minimizing the psychological and physical burden on the subject and to burden the observer. It is an object of the present invention to provide a behavior analysis system that can perform analysis without giving any change, and can respond quickly and flexibly to changes in the range in which a subject acts.
  • the object of the invention described in claims 5 to 8 is to efficiently collect data necessary for behavior analysis while minimizing psychological and physical burden on the subject, and to burden the observer.
  • a first invention in the present application relates to a behavior analysis system for a subject that calculates how a subject moves within a predetermined region. That is, a predetermined transmitter / receiver worn by the subject, a plurality of position specifying devices capable of specifying that the subject exists in the vicinity by wireless communication with the transmitter / receiver, map data regarding the predetermined region, and A storage device that pre-stores position data of the position specifying device in map data; a limb sensor that is worn on a subject and continuously detects the movement of a leg or arm; and a leg and / or that the limb sensor detects Motion for calculating motion estimation data for estimating where the subject moved over time in the region using motion data relating to body movement, subject specifying data by the location specifying device, the map data, and the location data A detection data processing device.
  • the “subject” is, for example, a worker who assembles a product in a factory, a worker who performs loading / unloading or inspection of goods in a distribution warehouse, a shopper who comes to shopping, and the like.
  • the subject works on a forklift, the subject and the forklift are integrated, and the “transceiver” may be attached to either the subject or the forklift.
  • Transmitter / receiver refers to a wireless communication device that has a function of receiving a signal transmitted from a position specifying device and returning a signal to the position specifying device. Those which do not require a power source are preferable because they are small and light. This is because the burden on the wearing subject is reduced.
  • the “signal” is a signal using radio waves, sound waves, ultrasonic waves, light, infrared rays, or the like, and may be a single signal or a combination of signals. It is desirable that the “transceiver” is built in or integrated with the “limb sensor”. For example, a mobile phone incorporating a short-range wireless communication module as a “transceiver” and also incorporating a “limb sensor” is preferable as a “transceiver” according to the behavior analysis system of the present application.
  • the “limb sensor” refers to the movement of the subject's leg or arm and / or the body movement by an acceleration sensor capable of measuring acceleration, a gyro sensor capable of measuring angular velocity, or a combination of these sensors. Detect.
  • the subject's attachment site is the “limb body” and either or both of acceleration and three-dimensional movement are detected.
  • the movement of the subject's “walk” (how fast is one step at a time) Etc.).
  • a technique of attaching to the waist is generally used, and a gyro sensor capable of measuring angular velocity is generally not included.
  • the limb body sensor is attached to the subject at the leg, such as the thigh and ankle, where the measurement error is higher than the arm, such as the upper arm or wrist. Hard to come out. This is because the arm part may move other than walking, and the acceleration and angular velocity (three-dimensional movement) measured in that case are irrelevant to the walking action.
  • the gyro sensor may be unnecessary. This is because it is not necessary to detect the movement of the vertical movement when the purpose is to grasp the movement of the forklift. However, it is better to equip the gyro sensor when the purpose is to grasp the movement of the subject including getting on and off the forklift.
  • the acceleration and gyro signal measured by the “limb body sensor” are recorded in association with the passage of time. Therefore, a timer for recording the passage of time from the start of measurement, or a clock for adding time data to the measured acceleration or gyro signal may be incorporated.
  • the storage device for recording may be stored in a detachable storage device provided inside the limb sensor, or when a predetermined amount of data is stored, it is transmitted to the means for arithmetic processing via the communication means. Also good. When the worker who walks without getting on the vehicle is the subject, either the acceleration sensor or the gyro sensor may be sufficient. However, even if it is a walking worker, if both the acceleration sensor and the gyro sensor are incorporated, and both data are acquired and processed, errors can be reduced or corrected in the detection of “steps” described later. It can be used and useful.
  • the “position specifying device” is based on bidirectional communication with the “transceiver” described above. If a transponder is used for the “transceiver”, the “transceiver” does not require a power source required for communication. This is effective for grasping the movement of the subject in a building where GPS (Global Positioning System) cannot be used.
  • GPS Global Positioning System
  • the position specifying device is not limited to be installed only in a place where GPS cannot be used. For example, it is naturally possible to install a position identifying device outside a factory (outdoors where GPS functions) for a subject who moves in and out of the factory.
  • Map data relating to a predetermined area and position data of the position specifying device in the map data are stored in advance in a storage device.
  • the subject wears a transceiver and a limb sensor and enters a predetermined area.
  • the position specifying device provided in the predetermined area detects the transmitter / receiver attached to the subject
  • the position specifying device and the transmitter / receiver communicate bidirectionally.
  • the transceiver or the location specifying device records the bidirectional communication in association with the passage of time.
  • the subject is equipped with a limb sensor that continuously detects the movement of the leg or arm, and acquires movement data regarding the movement of the leg and / or the body.
  • motion estimation data is estimated by the motion detection data processing device to estimate where the subject has moved over time in the region. calculate.
  • the second invention in the present application also relates to a behavior analysis system for a subject that calculates how the subject moves within a predetermined region. That is, using the movement data relating to leg and / or body movement detected by the limb sensor, the identification data of the subject by the position identification device, the map data, and the position data, the total distance that the subject has moved within the area is calculated.
  • the present invention relates to a behavior analysis system including a distance calculation device that calculates total distance data to be estimated.
  • the transmitter / receiver, the position specifying device, the storage device, and the limb body sensor worn by the subject are the same as in the configuration of claim 1.
  • the calculation algorithm for estimating the total distance is calculated from the total distance along the path between the position detection devices (MS) detected by the limb sensor and the position estimated from the relative stride. For example, when the path is such that the subject cannot move in a straight line within the predetermined area, it is desirable to be able to calculate the total distance along the path.
  • motion data relating to leg and / or body movement detected by a limb sensor, subject identification data by the location identification device, map data, and location data are used.
  • the total distance data for estimating the total distance that the subject moved within the region can be calculated.
  • the third invention is a subject behavior analysis system having both the motion detection data processing device according to the first invention and the distance calculation device according to the second invention.
  • the apparatus, the storage device, and the limb body sensor are the same as those in the first and second aspects.
  • the motion detection data processing device can calculate motion estimation data for estimating where the subject has moved over time in the region and total distance data for estimating the total distance the subject has moved in the region.
  • the first invention and the third invention can also provide the following variations. That is, the limb body sensor includes a gyro sensor, and the motion detection data processing device calculates using the maximum value of the angular velocity detected by the gyro sensor or a value in the vicinity including the maximum value, and uses the relative stride. It is also possible to provide a behavior analysis system that calculates a subject's movement.
  • a fourth invention according to the present application relates to a behavior analysis program for a subject in which a computer calculates how the subject moves within a predetermined region.
  • the program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject.
  • a storage procedure for calculating motion estimation data for estimating where the subject has moved over time in the region using the motion data, the map data, and the position data.
  • a fifth invention according to the present application relates to a behavior analysis program for a subject that uses a computer to calculate how the subject moves within a predetermined region.
  • the program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject.
  • a sixth invention according to the present application relates to a behavior analysis program for a subject that uses a computer to calculate how the subject moves within a predetermined region.
  • the program is a behavior analysis program for a subject that uses a computer to calculate how the subject moves within a predetermined area.
  • the program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject.
  • Data input procedure for inputting motion data from a limb sensor that continuously detects motion, map data relating to the predetermined area, and data in which the position specifying device in the map data is stored in a storage device in advance
  • Motion detection data processing for calculating motion estimation data for estimating where the subject moved over time in the region using the storage procedure, the motion data, the subject specific data, the map data, and the position data Using the procedure, motion data, the map data, and the position data, the subject moves in the area.
  • a computer program for causing a computer to execute a distance calculation procedure for calculating total distance data for estimating a total distance.
  • the invention which limited the computer program concerning the 4th or 6th invention can also be provided. That is, the invention according to the variation is that the motion detection data processing procedure is calculated using a maximum value of an angular velocity detected by a gyro sensor or a value in the vicinity including a maximum value, and from the position specifying device and the transceiver The computer program according to claim 5, wherein the calculation is performed using the calculated position data and the relative stride.
  • the computer program according to the fourth to sixth inventions and the computer program according to the above-described variations can be stored and distributed on a recording medium. It is also possible to download via a communication line such as the Internet.
  • the recording medium include a semiconductor memory, a hard disk, a CD-R, an MO (magneto-optical disk), and a DVD-R.
  • data necessary for behavior analysis is efficiently collected while minimizing the psychological and physical burden on the subject without giving the observer a burden. It was possible to provide a behavior analysis system that can be analyzed and that can quickly and flexibly cope with changes related to the range in which the subject behaves. According to the fourth to sixth inventions, it is possible to efficiently collect data necessary for behavioral analysis while minimizing the psychological and physical burden on the subject and without burdening the observer. It was possible to provide a behavior analysis program that can be analyzed and that can quickly and flexibly cope with changes related to the range in which the subject behaves.
  • FIG. 14 is a partially enlarged view of 4 to 10 seconds in FIG. It is a figure which shows the position where the test subject walked and how the test subject's left and right legs advanced. It is a figure which shows a gyro signal when a test subject stops in the middle of a passage with time.
  • FIG. It is prepared as map data in a predetermined area such as a factory building or a store, and is stored in advance in a predetermined storage means (not shown).
  • a position specifying device (milestone, abbreviated as “MS” or “# ⁇ ” in the figure) is provided at a predetermined point such as a passage.
  • the subject wears motion detection means (sensor device) including a position specifying signal detection device and a walking detection device.
  • the position specifying signal detection device is a device that receives a position specifying signal by transmitting and receiving signals (single or multiple use of radio waves, sound waves, ultrasonic waves, light, and infrared rays) with the position specifying device.
  • the walking detection device is a device that detects the walking state of the subject by incorporating a gyro sensor, an acceleration sensor, and the like. In this embodiment, it is fixed to the subject's ankle or upper knee by a device in which the position specifying signal detection device and the walking detection device are integrated.
  • the storage device is generally a recording medium that is detachable from the sensor device.
  • a “movement detection device” is adopted instead of the “walking detection device”. Since this movement detection device does not require detection of the “walk” provided in the walk detection device, a mechanism (such as a sensor) and software processing for that purpose can be omitted.
  • the sensor device and the predetermined computer have a communication function
  • data detected by the sensor device may be appropriately transmitted to the computer by communication. In that case, processing close to real time is possible.
  • FIG. 2 shows a state where a position specifying device (milestone) is installed at a predetermined location in a predetermined area related to the prepared map data, modeled together with a passage.
  • a position specifying device milestone
  • the path j forms a T-shape with the path i. positioned.
  • the passage k is located from the vicinity of the center of the passage j so as to form a T-shape with the passage j.
  • the length of the passage i is L1
  • the length of the passage j is L2
  • the length of the passage k is L3.
  • the position specifying device is indicated by #m and #n. That is, #m is located at one end in the passage i, and the coordinates are (x7, y7).
  • #N is located on the side of the passage j at the intersection of the passage i and the passage j, and the coordinates are (x8, y8).
  • the position of #m is the starting point of the passage i and is represented by (x0, y0).
  • the end point of the passage i is (x1, y1).
  • the intersection of the passage i and the passage j that is, the starting point of the passage j is (x2, y2).
  • the end point of the passage j is (x3, y3).
  • the intersection of the passage j and the passage k that is, the starting point of the passage k is (x4, y4).
  • the end point of the passage k is (x5, y5).
  • the motion detection means includes a position specifying signal detection device, a walking detection device, a movement detection device, and a storage device.
  • the position specifying signal detecting device includes a receiving unit that receives a signal (single or multiple use of radio waves, sound waves, ultrasonic waves, light, and infrared rays) transmitted from the position specifying device (milestone), and the position specifying device.
  • An ID detection unit that detects solid identification data (ID). The ID detected by the ID detection unit is stored in association with the reception time data. It may be stored in a storage device in the motion detection means, or may be sequentially transmitted to the information input means described above.
  • the walking detection device in the motion detection means is used by being mounted on the subject's ankle, near the knee, or somewhere on the leg, and is equipped with an acceleration sensor and a gyro sensor.
  • the acceleration sensor detects “the subject's horizontal movement (front / back / left / right) and up / down” and the gyro sensor detects “the subject's front / back / left / right swing and leg twist”.
  • the position specifying data and the motion data stored in the storage device in the motion detection means are input to the behavior estimation means via the information input means.
  • the behavior estimation means includes a motion data processing unit and an estimation unit.
  • the motion data processing unit includes a specific position detection unit, a “walk” detection unit, and a movement distance detection unit.
  • the specific position detection unit extracts the solid identification data (ID) from the position specific signal detected by the position specific signal detection device in the motion detection means. Based on the individual identification data, the position where the subject is is obtained.
  • An example of the time change of the position specifying signal is shown in FIG.
  • the horizontal axis indicates the elapsed time (seconds) from the reference time when the measurement is started, and the vertical axis indicates the solid identification data.
  • FIG. 4 shows the gyro signal detected by the above gyro sensor.
  • the horizontal axis indicates the elapsed time (seconds) from the reference time when the measurement is started, and the vertical axis indicates the instantaneous value of the gyro signal.
  • FIG. 4 shows a state in which the subject stops once after having advanced six steps, and then stops at the seventh step after having advanced six steps again.
  • a signal having periodicity is output.
  • the local maximum in the time axis direction of the instantaneous value coincides with the “one step” of the subject. Therefore, in order to detect the “walk”, preprocessing such as noise removal for extracting the maximum point is executed, and it is possible to accurately grasp how many steps the subject has moved.
  • FIG. 5 shows an acceleration sensor signal (vertical axis is an instantaneous value) acquired under the same conditions as in FIG. Similar to the gyro sensor signal, regularity is seen in the signal, so that it is possible to extract the “walk” using the acceleration signal.
  • the movement distance is estimated from the movement data in the movement distance detection unit. For example, an integral value is obtained using a signal from an acceleration sensor installed on the moving body, and a change over time of the moving distance is calculated.
  • FIG. 6 shows an example in which the movement distance is calculated from the acceleration signal.
  • the horizontal axis in FIG. 6 represents the elapsed time from the start of measurement, and the vertical axis represents the relative distance.
  • the estimation unit includes a walking estimation unit and a movement estimation unit.
  • the walking estimation unit and the movement estimation unit use position specifying data and motion data input to the behavior estimation unit via the information input unit.
  • FIG. 7A shows a passage as a region where a subject is inspected, and an arrangement position of the position specifying device in the passage.
  • the passage is L-shaped on the back, and the position specifying device (# 1) is arranged in the middle of the x-axis direction and the position specifying device (# 2) is arranged in the middle of the y-axis direction in FIG. Yes.
  • FIG. 7B shows the position of the subject position P at time T, using the position specifying devices (# 1, # 2) and time as axes. It is a figure for calculating
  • ⁇ T-T1 ⁇ : ⁇ T-T2 ⁇ m: n Can be calculated. According to FIG. 7B, it can be seen that the subject was at the position P1 at time T1 and P2 at time T2.
  • FIG. 7C shows the detection result of the detected “walk” using the motion detection data measured when the subject walks along this passage.
  • a “walk” at times T1 to T2 is detected.
  • the position P (T) of this worker at time T is expressed as follows. be able to.
  • P (T) (nP1 + mP2) / (m + n)
  • this calculation is a calculation for obtaining a so-called internal division, it may be calculated by calculating the distance between P1 and P2 along a path that is not necessarily a straight line (forms a reverse L shape in FIG. 7).
  • FIG. 9 illustrates details of the principle and variations of the position specifying device.
  • two types of radio waves are transmitted from one position specifying device, one reaches only a narrow range, and the other reaches the other side of the passage. If the transmitter / receiver worn by the subject receives both of the two types, it has passed near the position specifying device in the passage. If only one radio wave can be received, it means that it has passed far away from the position specifying device in the passage.
  • FIG. 10 and 11 are diagrams illustrating the above-described configuration from the viewpoint of data input / output.
  • FIG. 11 is a variation of FIG. 10, in which a sensor attached to a subject does not collect and transmit all data, but the location specifying device directly transmits data such as subject passage obtained by the location specifying device. It is said.
  • FIG. 12 shows a state in which a subject walks through an L-shaped passage and walks from the installation position P1 of the position specifying device to the next installation position P2.
  • FIG. 13 shows the gyro signal of the gyro sensor mounted on the subject's left foot, with the X axis being time (seconds) and the Y axis being angular velocity ⁇ (t). The subject at this time has confirmed that he / she walked for about 12 seconds without getting faster or slower.
  • a periodic signal having a clear local maximum value appears.
  • the gyro signal output from the gyro sensor attached to the left foot of the subject indicates the “walking” of the subject because it detects the “speed of swinging the foot” of the pedestrian.
  • a value obtained by integrating this signal with respect to time may correspond to the magnitude of “swing” of the subject's foot, that is, “step length”.
  • FIG. 14 is a partially enlarged view of FIG.
  • the subject kicks up the foot at the time tk1 in FIG. 14 from the correspondence between the movement of the leg of the subject and the signal, and the subject moves the foot at the time tk1. It is known that it has landed.
  • Equation 1 The calculation process according to the above (Equation 1) is executed for the vicinity of all local maximum points k (1 to 11), and the value obtained by normalizing the calculated stride with the value of the first step is redefined as a new Ik. Table 1 shows. Hereinafter, this Ik is referred to as “relative stride”.
  • the calculation according to (Expression 2) is a calculation for obtaining a so-called internal division, but is not limited to a straight line in the walking direction of the subject, and may be an operation for performing internal division along the passage.
  • FIG. 15 a case where the subject stops in the middle of P1 to P2 (P3) in the inverted L-shaped passage will be described.
  • the gyro signal of the gyro sensor attached to the subject's left foot at this time is shown in FIG. P3 has no position detection device.
  • the position specifying device is installed at a predetermined point such as a passage, and the walking detection device is fixed to the subject's ankle.
  • the walking detection device is fixed to the subject's ankle.
  • a walking detection device ( ⁇ ) including a position detection signal detection device is attached to the upper arm or wrist of the subject, and separately from the walking detection device, the walking detection device ( ⁇ ) is also applied to the ankle or upper knee of the subject.
  • the position specifying device is installed at points A and B in the passage as in the above-described embodiment.
  • both the walking detection devices ( ⁇ ) and ( ⁇ ) detect the angular velocity.
  • the foot of the subject should have stopped, so the gait detector ( ⁇ ) does not detect the angular velocity, but the gait detector ( ⁇ ) Detects the angular velocity.
  • the walking velocity detection devices ( ⁇ ) and ( ⁇ ) have the angular velocity.
  • the walking place can be estimated from the data of the position specifying device and the position specifying signal detection device.
  • the walking detection device worn by the subject is a walking including the position specifying signal detection device worn on the upper arm or the wrist. Only the detection device ( ⁇ ) is sufficient. That is, the walking detection device ( ⁇ ) detects the angular velocity even when the subject is walking to carry the parts before assembly or when the parts are assembled at the point C.
  • the position specifying device and the position specifying signal detection device can grasp that the subject is at the point C, it can be estimated that the subject is assembling the parts. If the subject is not at the point C, it can be estimated that the subject is walking toward the point A, B, or C, and information from the position specifying device and the position specifying signal detecting device is obtained. It is possible to estimate which point the person is walking toward.
  • the present invention relates to the manufacturing industry of measuring devices such as sensors, the service industry that performs data collection and analysis using the measuring instrument, the software development industry that creates data collection and analysis programs using the measuring instrument, and the personnel in factories, etc. It can be used in the consulting industry that deals with the efficient placement of services and the service industry that collects and analyzes marketing data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Educational Technology (AREA)
  • Developmental Disabilities (AREA)
  • Social Psychology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Psychology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Navigation (AREA)

Abstract

A behavior analysis system for efficiently collecting data required for behavior analysis while psychological and physical burdens on the subject are reduced to a minimum, and making an analysis without exerting a burden on the observer, and quickly and flexibly coping with a change about the area in which the subject moves. The behavior analysis system includes a predetermined transmitter/receiver worn by the subject, position determining devices capable of determining that the subject is present near by means of radio communication with the transmitter/receiver, a storage device storing map data about a predetermined area and position data about the position determining devices the positions of which are shown on the map, a limb sensor worn by the subject for continuously detecting the movement of a leg or an arm of the subject, and a movement detection data processing device for calculating movement estimation data used for estimating where the subject moves within the area with the lapse of time using data about the movement of the leg or the arm detected by the limb sensor, the data about the subject position determination by the position determining devices, the map data, and the position data.

Description

行動解析システムおよびコンピュータプログラムBehavior analysis system and computer program
 本発明は、工場建屋内または店舗内で活動している作業者や作業車輌の作業行動、もしくは店舗内での顧客の移動についての経路の推定、行動解析の技術に関する。 The present invention relates to a technique for estimating a behavior and analyzing a behavior of a worker or a working vehicle working in a factory building or a store, or a movement of a customer in a store.
 工場建屋内または店舗内で活動している作業者や作業車輌の作業行動を追跡する技術として、たとえば、超音波を用いる方法が提案されている。また、電子マネー、物流での管理に用いられるRFID(Radio Frequency Identification)を、工場内での作業者や作業車輪等の識別位置特定に応用する技術が存在する。工場もしくはオフィス内における入退室など、セキュリティの分野で用いられている。
 例えば、特許文献1に記載されている技術である。
For example, a method using ultrasonic waves has been proposed as a technique for tracking the working behavior of workers or working vehicles working in a factory building or store. Further, there is a technology that applies RFID (Radio Frequency Identification) used for management in electronic money and physical distribution to specify identification positions of workers, work wheels, and the like in a factory. It is used in the security field, such as entering and leaving a factory or office.
For example, it is a technique described in Patent Document 1.
 この技術では、定点の通過など、単純な解析には向いている。すなわち、物や人の存在検知を目的とした技術であり、その経路の推定はできない。 This technology is suitable for simple analysis such as passing through fixed points. In other words, it is a technique aimed at detecting the presence of an object or person, and its route cannot be estimated.
特開2002-128277号公報JP 2002-128277 A
 位置推定もしくは経路推定には、全方位地球システム(Global Positioning System, GPS)が広く用いられている。最近では、携帯電話にも搭載されており、安価かつ軽量であることから人への適用が可能である。
 しかしながら、衛星からの信号を受信することが必要であるため、屋内での使用は難しい。
A global positioning system (GPS) is widely used for position estimation or path estimation. Recently, it is also installed in mobile phones, and it can be applied to humans because it is inexpensive and lightweight.
However, since it is necessary to receive a signal from a satellite, it is difficult to use indoors.
 慣性航法装置(Inertial Navigation System, INS)という技術も存在する。この技術は、飛行機の自動操縦など、高精度な位置特定や行動推定が可能である。しかし、十分な精度を得ようとすれば装置が大きくなる。このため、非測定者となる人への装置の装着が可能なほどの大きさでは、十分な精度が得られない。さらに、移動距離とともに誤差が蓄積・増加するという原理的な問題を含んでいる。 There is also a technology called Inertial Navigation System (INS). This technology enables high-accuracy position identification and behavior estimation, such as airplane autopilot. However, the device becomes large if sufficient accuracy is to be obtained. For this reason, sufficient accuracy cannot be obtained with a size that allows the device to be worn by a person who is not to be measured. Furthermore, there is a principle problem that errors accumulate and increase with the moving distance.
 以上のことから、作業効率の向上を目的とした作業者の移動経路の推定および行動分析は、主に観察者の同伴もしくはビデオ映像によって行われてきた。観察者の同伴では、実時間での詳細な情報の収集が可能である。また、ビデオ撮影による方法では、繰り返しの観察および他の結果との比較が可能である。 From the above, the estimation of the movement route and the behavior analysis of the worker for the purpose of improving the work efficiency have been mainly performed by the accompanying of the observer or the video image. When accompanied by an observer, detailed information can be collected in real time. In addition, the method using video shooting allows repeated observation and comparison with other results.
 現状採用されている観察者の同伴は、被験者の行動へ影響を与えることが予想される。
さらに、これらの方法では観察者の負担が大きいだけでなく、主観の介入が避けられない。
 ビデオ撮影による記録では、観察者の負担を無くし、主観の介入を阻止することができるが、撮影されたビデオを再生しながら解析していくには膨大な時間を要するという問題がある。
It is expected that accompanying the observer currently employed will affect the behavior of the subject.
Furthermore, these methods not only impose a heavy burden on the observer, but also cannot avoid subjective intervention.
Recording by video shooting can eliminate the burden on the observer and prevent subjective intervention, but there is a problem that it takes a lot of time to analyze the video that has been shot.
 本願発明が解決しようとする課題は、被験者への心理的および肉体的な負担を最小限に抑えつつ、行動解析に必要なデータを効率的に収集し、観察者への負担も与えずに解析が可能であり、被験者が行動する範囲に関する変更にも迅速且つ柔軟に対応可能な技術を提供することにある。 The problem to be solved by the present invention is to efficiently collect data necessary for behavioral analysis while minimizing the psychological and physical burden on the subject and analyze it without giving a burden to the observer. It is possible to provide a technique capable of responding quickly and flexibly to changes relating to the range in which a subject acts.
 請求項1から請求項4に記載の発明の目的は、被験者への心理的および肉体的な負担を最小限に抑えつつ、行動解析に必要なデータを効率的に収集し、観察者への負担も与えずに解析が可能であり、被験者が行動する範囲に関する変更にも迅速且つ柔軟に対応可能な行動解析システムを提供することにある。
 請求項5から請求項8に記載の発明の目的は、被験者への心理的および肉体的な負担を最小限に抑えつつ、行動解析に必要なデータを効率的に収集し、観察者への負担も与えずに解析が可能であり、被験者が行動する範囲に関する変更にも迅速且つ柔軟に対応可能な行動解析プログラムを提供することにある。
The object of the invention described in claims 1 to 4 is to efficiently collect data necessary for behavior analysis while minimizing the psychological and physical burden on the subject and to burden the observer. It is an object of the present invention to provide a behavior analysis system that can perform analysis without giving any change, and can respond quickly and flexibly to changes in the range in which a subject acts.
The object of the invention described in claims 5 to 8 is to efficiently collect data necessary for behavior analysis while minimizing psychological and physical burden on the subject, and to burden the observer. It is an object of the present invention to provide an action analysis program that can be analyzed without giving any change, and that can quickly and flexibly cope with changes related to the range in which the subject behaves.
 (第一の発明)
 本願における第一の発明は、ある被験者が所定の領域内でどのような動きをするかを算出する被験者の行動解析システムに係る。
 すなわち、 前記被験者に装着される所定の送受信機と、 前記送受信機との無線通信によって前記被験者が近傍に存在する旨を特定可能な複数の位置特定装置と、 前記所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを予め蓄積している記憶装置と、 被験者に装着して脚または腕の動きを継続的に検知する肢体センサと、 その肢体センサが検知する脚および/または身体の動きに関する動きデータ、前記位置特定装置による被験者の特定データ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が時間経過とともにどこへ動いたか推定する動き推定データを算出する動き検出データ処理装置と、 を備える。
(First invention)
A first invention in the present application relates to a behavior analysis system for a subject that calculates how a subject moves within a predetermined region.
That is, a predetermined transmitter / receiver worn by the subject, a plurality of position specifying devices capable of specifying that the subject exists in the vicinity by wireless communication with the transmitter / receiver, map data regarding the predetermined region, and A storage device that pre-stores position data of the position specifying device in map data; a limb sensor that is worn on a subject and continuously detects the movement of a leg or arm; and a leg and / or that the limb sensor detects Motion for calculating motion estimation data for estimating where the subject moved over time in the region using motion data relating to body movement, subject specifying data by the location specifying device, the map data, and the location data A detection data processing device.
 (用語説明)
 「被験者」とは、たとえば、工場の中で製品の組み立て作業をする作業者、物流倉庫において荷物の積み卸しや点検などを実行する作業者、買い物に来た買い物客などである。被験者がたとえば、フォークリフトに乗って作業するような場合には、被験者と当該フォークリフトは一体であり、被験者、フォークリフトのいずれに「送受信機」を装着しても良い。
(Glossary)
The “subject” is, for example, a worker who assembles a product in a factory, a worker who performs loading / unloading or inspection of goods in a distribution warehouse, a shopper who comes to shopping, and the like. For example, when the subject works on a forklift, the subject and the forklift are integrated, and the “transceiver” may be attached to either the subject or the forklift.
 「送受信機」とは、位置特定装置が発信する信号を受信し、受信した旨をその位置特定装置へ返信することができる機能をなす無線通信機器をいう。電源が不要なものが、小型軽量で好ましい。装着する被験者への負担が軽減するからである。なお、「信号」とは、電波、音波、超音波、光、赤外線などによる信号であり、それらの単独による信号または複数の組み合わせによる信号があり得る。
 「送受信機」は、「肢体センサ」に内蔵、または一体化することが望ましい。たとえば、「送受信機」としての近距離無線通信モジュールを内蔵し、「肢体センサ」をも内蔵した携帯電話は、本願の行動解析システムに係る「送受信機」として好ましい。
“Transmitter / receiver” refers to a wireless communication device that has a function of receiving a signal transmitted from a position specifying device and returning a signal to the position specifying device. Those which do not require a power source are preferable because they are small and light. This is because the burden on the wearing subject is reduced. Note that the “signal” is a signal using radio waves, sound waves, ultrasonic waves, light, infrared rays, or the like, and may be a single signal or a combination of signals.
It is desirable that the “transceiver” is built in or integrated with the “limb sensor”. For example, a mobile phone incorporating a short-range wireless communication module as a “transceiver” and also incorporating a “limb sensor” is preferable as a “transceiver” according to the behavior analysis system of the present application.
 「肢体センサ」とは、加速度を測定可能な加速度センサ、角速度を測定可能なジャイロセンサ、あるいはそれらセンサの組み合わせなどによって、被験者の脚または腕の動きおよび身体の動きの両方、またはいずれか一方を検知する。 被験者への装着部位を「肢体」とし、且つ加速度または三次元の動きのいずれか一方または双方を検知するとしているのは、被験者の「歩」の動き(一歩一歩がどのような速度であるか、など)を検出するためである。 従来は、被験者の重心付近を測定するため、腰部に装着する技術が一般的であり、角速度を測定可能なジャイロセンサは含まれていないことが一般的であった。
 行動軌跡のみを測定することを目的としている場合には、被験者に対する肢体センサの装着部位は、大腿部、足首部など脚部の方が、上腕部や手首部など腕部よりも測定誤差が出にくい。腕部は歩くこと以外の動作をする場合があり、その場合に測定した加速度や角速度(三次元の動き)は、歩くという動作とは無関係であるためである。
The “limb sensor” refers to the movement of the subject's leg or arm and / or the body movement by an acceleration sensor capable of measuring acceleration, a gyro sensor capable of measuring angular velocity, or a combination of these sensors. Detect. The subject's attachment site is the “limb body” and either or both of acceleration and three-dimensional movement are detected. The movement of the subject's “walk” (how fast is one step at a time) , Etc.). Conventionally, in order to measure the vicinity of the center of gravity of the subject, a technique of attaching to the waist is generally used, and a gyro sensor capable of measuring angular velocity is generally not included.
If the goal is to measure only the action trajectory, the limb body sensor is attached to the subject at the leg, such as the thigh and ankle, where the measurement error is higher than the arm, such as the upper arm or wrist. Hard to come out. This is because the arm part may move other than walking, and the acceleration and angular velocity (three-dimensional movement) measured in that case are irrelevant to the walking action.
 さて、たとえば被験者がフォークリフト乗務員である場合には、ジャイロセンサは不要とすることができる場合もある。フォークリフトの動きを把握することが目的である場合、上下動の動きを検知する必要がないからである。ただし、フォークリフトの乗降を含めた被験者の動きを把握することが目的の場合には、ジャイロセンサを装備している方が良い。
 「肢体センサ」にて測定された加速度やジャイロ信号は、時間経過と紐づけて記録する。したがって、測定開始からの時間経過を記録するためのタイマー、または測定された加速度やジャイロ信号に時刻データを付加するための時計を内蔵していても良い。記録のための記憶装置は、肢体センサ内部に備えた着脱自在の記憶装置に蓄積しても良いし、所定量のデータを蓄積したら通信手段を介して演算処理のための手段に送信することとしても良い。
 乗り物に乗らずに歩く作業者が被験者である場合には、加速度センサ、ジャイロセンサのいずれか一方で良い場合もある。ただし、歩く作業者であっても加速度センサ、ジャイロセンサの両方を組み入れておき、両方のデータを取得して処理するようにすると、後述する「歩」の検出において誤差を軽減したり、補正したりすることに使用でき、有益である。
Now, for example, when the subject is a forklift crew, the gyro sensor may be unnecessary. This is because it is not necessary to detect the movement of the vertical movement when the purpose is to grasp the movement of the forklift. However, it is better to equip the gyro sensor when the purpose is to grasp the movement of the subject including getting on and off the forklift.
The acceleration and gyro signal measured by the “limb body sensor” are recorded in association with the passage of time. Therefore, a timer for recording the passage of time from the start of measurement, or a clock for adding time data to the measured acceleration or gyro signal may be incorporated. The storage device for recording may be stored in a detachable storage device provided inside the limb sensor, or when a predetermined amount of data is stored, it is transmitted to the means for arithmetic processing via the communication means. Also good.
When the worker who walks without getting on the vehicle is the subject, either the acceleration sensor or the gyro sensor may be sufficient. However, even if it is a walking worker, if both the acceleration sensor and the gyro sensor are incorporated, and both data are acquired and processed, errors can be reduced or corrected in the detection of “steps” described later. It can be used and useful.
 「位置特定装置」は、前述の「送受信機」との双方向通信による。「送受信機」にトランスポンダを用いるとすれば、「送受信機」には通信に要する電源が不要となる。 GPS(Global Positioning System)を用いることができない建物内部などにおいて、被験者の動きを把握するのに有効である。
 なお、位置特定装置は、GPSを用いることができない場所にのみ設置する、と限定するものではない。たとえば、工場の内外を行き来するような動きをする被験者に対して、工場の外(GPSが機能する屋外)にも位置特定装置を設置することは、当然可能である。
The “position specifying device” is based on bidirectional communication with the “transceiver” described above. If a transponder is used for the “transceiver”, the “transceiver” does not require a power source required for communication. This is effective for grasping the movement of the subject in a building where GPS (Global Positioning System) cannot be used.
The position specifying device is not limited to be installed only in a place where GPS cannot be used. For example, it is naturally possible to install a position identifying device outside a factory (outdoors where GPS functions) for a subject who moves in and out of the factory.
 (作用)
 所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データは、記憶装置に予め蓄積されている。
 被験者は、送受信機および肢体センサを装着し、所定領域内に入る。所定領域内に備えられた位置特定装置が、被験者に装着された送受信機を検知すると、その位置特定装置および送受信機は双方向で通信する。送受信機または位置特定装置は、その双方向通信の記録を時間経過と紐づけて記録する。
 被験者には、脚または腕の動きを継続的に検知する肢体センサが装着されており、脚および/または身体の動きに関する動きデータを取得する。 その動きデータ、前記位置特定装置による被験者の特定データ、前記地図データおよび前記位置データを用いて、動き検出データ処理装置が前記領域内で被験者が時間経過とともにどこへ動いたか推定する動き推定データを算出する。
(Function)
Map data relating to a predetermined area and position data of the position specifying device in the map data are stored in advance in a storage device.
The subject wears a transceiver and a limb sensor and enters a predetermined area. When the position specifying device provided in the predetermined area detects the transmitter / receiver attached to the subject, the position specifying device and the transmitter / receiver communicate bidirectionally. The transceiver or the location specifying device records the bidirectional communication in association with the passage of time.
The subject is equipped with a limb sensor that continuously detects the movement of the leg or arm, and acquires movement data regarding the movement of the leg and / or the body. Using the motion data, subject identification data by the location identification device, the map data, and the location data, motion estimation data is estimated by the motion detection data processing device to estimate where the subject has moved over time in the region. calculate.
 被験者を観察する観察者が存在しないので、被験者への心理的負担は抑えられ、観察者への負担も与えることはない。そのうえで、行動解析に必要なデータを効率的に収集して解析が可能である。また、被験者が行動する範囲に関する変更があったとしても、位置特定装置の設定および当該行動範囲に関する地図データを更新することで、迅速且つ柔軟に対応可能である。 Since there is no observer to observe the subject, the psychological burden on the subject can be suppressed, and the burden on the observer is not given. In addition, data necessary for behavior analysis can be efficiently collected and analyzed. Moreover, even if there is a change regarding the range in which the subject behaves, it is possible to respond quickly and flexibly by updating the setting of the position specifying device and the map data regarding the behavior range.
 (第二の発明)
 本願における第二の発明もまた、被験者が所定の領域内でどのような動きをするかを算出する被験者の行動解析システムに係る。
 すなわち、肢体センサが検知する脚および/または身体の動きに関する動きデータ、前記位置特定装置による被験者の特定データ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が動いた総距離を推定する総距離データを算出する距離演算装置を備えた行動解析システムに係る。 被験者が装着する送受信機、位置特定装置、記憶装置、および肢体センサについては請求項1の構成と同様である。
(Second invention)
The second invention in the present application also relates to a behavior analysis system for a subject that calculates how the subject moves within a predetermined region.
That is, using the movement data relating to leg and / or body movement detected by the limb sensor, the identification data of the subject by the position identification device, the map data, and the position data, the total distance that the subject has moved within the area is calculated. The present invention relates to a behavior analysis system including a distance calculation device that calculates total distance data to be estimated. The transmitter / receiver, the position specifying device, the storage device, and the limb body sensor worn by the subject are the same as in the configuration of claim 1.
 (用語説明)
 総距離の推定のための算出アルゴリズムとしては、肢体センサにより検知された位置検出装置(MS)間の通路に沿った距離の総和、および相対歩幅から推定された位置から算出される。たとえば、所定領域の中で被験者が直線では動けないような通路となっている場合には、その道のりに沿った総距離の算出ができるようにすることが望ましい。
(Glossary)
The calculation algorithm for estimating the total distance is calculated from the total distance along the path between the position detection devices (MS) detected by the limb sensor and the position estimated from the relative stride. For example, when the path is such that the subject cannot move in a straight line within the predetermined area, it is desirable to be able to calculate the total distance along the path.
 (作用)
 第二の発明における被験者の行動解析システムによれば、肢体センサが検知する脚および/または身体の動きに関する動きデータ、前記位置特定装置による被験者の特定データ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が動いた総距離を推定する総距離データを算出することができる。
(Function)
According to the subject behavior analysis system in the second aspect of the present invention, motion data relating to leg and / or body movement detected by a limb sensor, subject identification data by the location identification device, map data, and location data are used. The total distance data for estimating the total distance that the subject moved within the region can be calculated.
 (第三の発明)
 第三の発明は、第一の発明に係る動き検出データ処理装置と、第二の発明に係る距離演算装置との両方を併せ持つ被験者の行動解析システムであり、 被験者が装着する送受信機、位置特定装置、記憶装置、および肢体センサについては請求項1および請求項2の構成と同様である。
(Third invention)
The third invention is a subject behavior analysis system having both the motion detection data processing device according to the first invention and the distance calculation device according to the second invention. The apparatus, the storage device, and the limb body sensor are the same as those in the first and second aspects.
 (作用)
 第三の発明に係る行動解析システムによれば、肢体センサが検知する脚および/または身体の動きに関する動きデータ、前記位置特定装置による被験者の特定データ、前記地図データおよび前記位置データを用いて、動き検出データ処理装置が前記領域内で被験者が時間経過とともにどこへ動いたか推定する動き推定データ、および前記領域内で被験者が動いた総距離を推定する総距離データを算出することができる。
(Function)
According to the behavior analysis system according to the third aspect of the invention, using the movement data relating to the movement of the leg and / or the body detected by the limb sensor, the identification data of the subject by the position identification device, the map data, and the position data, The motion detection data processing device can calculate motion estimation data for estimating where the subject has moved over time in the region and total distance data for estimating the total distance the subject has moved in the region.
 (第一の発明および第三の発明のバリエーション)
 第一の発明および第三の発明は、以下のようなバリエーションを提供することもできる。
 すなわち、前記肢体センサは、ジャイロセンサを含み、 前記動き検出データ処理装置は、ジャイロセンサが検出する角速度の極大値もしくは極大値を含むその近傍の値を用いて算出し、その相対歩幅を用いて被験者の動きを演算することとした行動解析システムを提供することもできる。
(Variations of the first and third inventions)
The first invention and the third invention can also provide the following variations.
That is, the limb body sensor includes a gyro sensor, and the motion detection data processing device calculates using the maximum value of the angular velocity detected by the gyro sensor or a value in the vicinity including the maximum value, and uses the relative stride. It is also possible to provide a behavior analysis system that calculates a subject's movement.
 (作用)
 相対歩幅を算出すること、およびその相対歩幅を用いての推定アルゴリズムを備えることにより、被験者が時間経過とともにどこへ動いたかについて、より正確な推定が可能となる。
(Function)
By calculating the relative stride and providing an estimation algorithm using the relative stride, it is possible to more accurately estimate where the subject has moved over time.
 (第四の発明)
 本願に係る第四の発明は、被験者が所定の領域内でどのような動きをするかをコンピュータによって算出する被験者の行動解析プログラムに係る。
 そのプログラムは、 当該所定領域内に複数備えられることによって所定の送受信機を装着した被験者が近傍に存在する旨を特定可能な位置特定装置からの位置データ、および被験者に装着して脚または腕の動きを継続的に検知する肢体センサからの動きデータを入力するデータ入力手順と、 当該所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを記憶装置に予め蓄積しているデータ記憶手順と、 前記動きデータ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が時間経過とともにどこへ動いたか推定する動き推定データを算出する動き検出データ処理手順と、をコンピュータに実行させるためのコンピュータプログラムである。
(Fourth invention)
A fourth invention according to the present application relates to a behavior analysis program for a subject in which a computer calculates how the subject moves within a predetermined region.
The program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject. Data input procedure for inputting motion data from a limb sensor that continuously detects motion, map data relating to the predetermined area, and data in which the position specifying device in the map data is stored in a storage device in advance A storage procedure; and a motion detection data processing procedure for calculating motion estimation data for estimating where the subject has moved over time in the region using the motion data, the map data, and the position data. A computer program for execution.
 (第五の発明)
 本願に係る第五の発明は、被験者が所定の領域内でどのような動きをするかをコンピュータによって算出する被験者の行動解析プログラムに係る。
 そのプログラムは、 当該所定領域内に複数備えられることによって所定の送受信機を装着した被験者が近傍に存在する旨を特定可能な位置特定装置からの位置データ、および被験者に装着して脚または腕の動きを継続的に検知する肢体センサからの動きデータを入力するデータ入力手順と、 当該所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを記憶装置に予め蓄積しているデータ記憶手順と、 動きデータ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が動いた総距離を推定する総距離データを算出する距離演算手順と、をコンピュータに実行させるためのコンピュータプログラムである。
(Fifth invention)
A fifth invention according to the present application relates to a behavior analysis program for a subject that uses a computer to calculate how the subject moves within a predetermined region.
The program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject. Data input procedure for inputting motion data from a limb sensor that continuously detects motion, map data relating to the predetermined area, and data in which the position specifying device in the map data is stored in a storage device in advance A computer for causing a computer to execute a storage procedure and a distance calculation procedure for calculating total distance data for estimating a total distance that the subject has moved in the region using the motion data, the map data, and the position data It is a program.
 (第六の発明)
 本願に係る第六の発明は、被験者が所定の領域内でどのような動きをするかをコンピュータによって算出する被験者の行動解析プログラムに係る。
 そのプログラムは 被験者が所定の領域内でどのような動きをするかをコンピュータによって算出する被験者の行動解析プログラムであって、
 そのプログラムは、 当該所定領域内に複数備えられることによって所定の送受信機を装着した被験者が近傍に存在する旨を特定可能な位置特定装置からの位置データ、および被験者に装着して脚または腕の動きを継続的に検知する肢体センサからの動きデータを入力するデータ入力手順と、 当該所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを記憶装置に予め蓄積しているデータ記憶手順と、 前記動きデータ、前記被験者の特定データ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が時間経過とともにどこへ動いたか推定する動き推定データを算出する動き検出データ処理手順と、 動きデータ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が動いた総距離を推定する総距離データを算出する距離演算手順と、をコンピュータに実行させるためのコンピュータプログラムである。
(Sixth invention)
A sixth invention according to the present application relates to a behavior analysis program for a subject that uses a computer to calculate how the subject moves within a predetermined region.
The program is a behavior analysis program for a subject that uses a computer to calculate how the subject moves within a predetermined area.
The program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject. Data input procedure for inputting motion data from a limb sensor that continuously detects motion, map data relating to the predetermined area, and data in which the position specifying device in the map data is stored in a storage device in advance Motion detection data processing for calculating motion estimation data for estimating where the subject moved over time in the region using the storage procedure, the motion data, the subject specific data, the map data, and the position data Using the procedure, motion data, the map data, and the position data, the subject moves in the area. A computer program for causing a computer to execute a distance calculation procedure for calculating total distance data for estimating a total distance.
 (第四および第六の発明のバリエーション)
 第四または第六の発明に係るコンピュータプログラムを限定した発明を提供することもできる。
 すなわち、そのバリエーションに係る発明は、 前記動き検出データ処理手順は、ジャイロセンサが検出する角速度の極大値もしくは極大値を含むその近傍の値を用いて算出し、前記位置特定装置および前記送受信機から算出される前記位置データと前記相対歩幅とを用いて演算することとした請求項5または請求項7のいずれかに記載のコンピュータプログラムに係る。
(Variations of the fourth and sixth inventions)
The invention which limited the computer program concerning the 4th or 6th invention can also be provided.
That is, the invention according to the variation is that the motion detection data processing procedure is calculated using a maximum value of an angular velocity detected by a gyro sensor or a value in the vicinity including a maximum value, and from the position specifying device and the transceiver The computer program according to claim 5, wherein the calculation is performed using the calculated position data and the relative stride.
 第四から第六の発明に係るコンピュータプログラムおよび前述のバリエーションに係るコンピュータプログラムは、記録媒体に保存して配布することができる。また、インターネットなど通信回線を介してダウンロードさせることも可能である。なお、記録媒体としては、半導体メモリ、ハードディスク、CD-R、MO(光磁気ディスク)、DVD-Rなどがある。 The computer program according to the fourth to sixth inventions and the computer program according to the above-described variations can be stored and distributed on a recording medium. It is also possible to download via a communication line such as the Internet. Examples of the recording medium include a semiconductor memory, a hard disk, a CD-R, an MO (magneto-optical disk), and a DVD-R.
 第一から第三の発明によれば、被験者への心理的および肉体的な負担を最小限に抑えつつ、行動解析に必要なデータを効率的に収集し、観察者への負担も与えずに解析が可能であり、被験者が行動する範囲に関する変更にも迅速且つ柔軟に対応可能な行動解析システムを提供することができた。
 第四から第六の発明によれば、被験者への心理的および肉体的な負担を最小限に抑えつつ、行動解析に必要なデータを効率的に収集し、観察者への負担も与えずに解析が可能であり、被験者が行動する範囲に関する変更にも迅速且つ柔軟に対応可能な行動解析プログラムを提供することができた。
According to the first to third inventions, data necessary for behavior analysis is efficiently collected while minimizing the psychological and physical burden on the subject without giving the observer a burden. It was possible to provide a behavior analysis system that can be analyzed and that can quickly and flexibly cope with changes related to the range in which the subject behaves.
According to the fourth to sixth inventions, it is possible to efficiently collect data necessary for behavioral analysis while minimizing the psychological and physical burden on the subject and without burdening the observer. It was possible to provide a behavior analysis program that can be analyzed and that can quickly and flexibly cope with changes related to the range in which the subject behaves.
本願発明の全体を示すブロック図である。It is a block diagram which shows the whole this invention. 通路、特定位置信号検出装置の表現方法を示す概念図である。It is a conceptual diagram which shows the expression method of a channel | path and a specific position signal detection apparatus. 位置特定信号の時間経過を示すグラフである。It is a graph which shows the time passage of a position specific signal. ジャイロ信号と時間経過を示すことによる「歩」の検出のためのグラフである。It is a graph for the detection of "walk" by showing a gyro signal and time passage. 加速度センサからの瞬時値と時刻との関係を示すグラフである。It is a graph which shows the relationship between the instantaneous value from an acceleration sensor, and time. 加速度からの相対距離を算出したグラフである。It is the graph which computed the relative distance from acceleration. 被験者が通路を歩いた場合の位置推定の手順を説明するための図である。It is a figure for demonstrating the procedure of a position estimation when a test subject walks the passage. 移動距離に基づく位置を推定する手順を説明するための図である。It is a figure for demonstrating the procedure which estimates the position based on a movement distance. 位置特定装置の原理に関するバリエーションを示す図である。It is a figure which shows the variation regarding the principle of a position specification apparatus. 本発明をデータの入出力の面から捉えたブロック図である。It is the block diagram which caught this invention from the surface of the input / output of data. 本発明をデータの入出力の面から捉えたブロック図である。It is the block diagram which caught this invention from the surface of the input / output of data. 被験者が歩く通路、位置特定装置設置位置および着地位置を示す概念図である。It is a conceptual diagram which shows the channel | path where a test subject walks, a position specific apparatus installation position, and a landing position. ジャイロ信号と時間経過を示すことによる「歩」の速度検出のためのグラフである。It is a graph for speed detection of "walk" by showing a gyro signal and time passage. 図13における4~10秒の部分拡大図である。FIG. 14 is a partially enlarged view of 4 to 10 seconds in FIG. 被験者が歩く通路と、被験者の左右の足がどのように進んだかの位置を示す図である。It is a figure which shows the position where the test subject walked and how the test subject's left and right legs advanced. 被験者が通路の途中で立ち止まった場合のジャイロ信号を時間経過とともに示す図である。It is a figure which shows a gyro signal when a test subject stops in the middle of a passage with time.
 本システムの構成を図1に示す。
 工場建屋内、店舗などの所定領域内の地図データとして準備され、予め所定の記憶手段(図示せず)に記憶してある。
 また、準備された地図データに係る所定領域においては、通路などの所定のポイントに位置特定装置(マイルストーン、図中では「MS」や「#~」と略記される)が備えられている。
The configuration of this system is shown in FIG.
It is prepared as map data in a predetermined area such as a factory building or a store, and is stored in advance in a predetermined storage means (not shown).
In the predetermined area related to the prepared map data, a position specifying device (milestone, abbreviated as “MS” or “# ˜” in the figure) is provided at a predetermined point such as a passage.
 被験者は、位置特定信号検知装置と歩行検知装置とを備えた動き検出手段(センサ装置)を身に付ける。
 ここで、位置特定信号検知装置とは、前記の位置特定装置との信号(電波、音波、超音波、光、赤外線の単独もしくは複数利用)の送受信によって位置特定信号を受信する装置である。
 また、歩行検知装置とは、ジャイロセンサおよび加速度センサなどを組み込むことによって被験者の歩行状態を検知する装置である。この実施形態では、前記の位置特定信号検知装置と歩行検知装置とを一体化した装置にて、被験者の足首または膝上部に固定される。
 位置特定信号検知装置および歩行検知装置が取得したデータは、デジタル化し、センサ装置に内蔵された記憶装置に蓄積される。そして、測定が終了したら、その記憶装置から情報入力手段を介して行動推定手段に入力される。記憶装置は、センサ装置に対して着脱自在な記録媒体が一般的である。
The subject wears motion detection means (sensor device) including a position specifying signal detection device and a walking detection device.
Here, the position specifying signal detection device is a device that receives a position specifying signal by transmitting and receiving signals (single or multiple use of radio waves, sound waves, ultrasonic waves, light, and infrared rays) with the position specifying device.
The walking detection device is a device that detects the walking state of the subject by incorporating a gyro sensor, an acceleration sensor, and the like. In this embodiment, it is fixed to the subject's ankle or upper knee by a device in which the position specifying signal detection device and the walking detection device are integrated.
Data acquired by the position specifying signal detection device and the gait detection device is digitized and stored in a storage device built in the sensor device. When the measurement is completed, the information is input from the storage device to the behavior estimation unit. The storage device is generally a recording medium that is detachable from the sensor device.
 被験者の代わりに、買い物カートやフォークリフトなどの移動体が計測対象となる場合には、「歩行検知装置」の代わりに「移動検知装置」が採用される。この移動検知装置は、歩行検知装置に備えられている「歩」の検出が不要であるので、そのための機構(センサ等)やソフトウェア処理が省略できる。 When a moving object such as a shopping cart or a forklift is to be measured instead of the subject, a “movement detection device” is adopted instead of the “walking detection device”. Since this movement detection device does not require detection of the “walk” provided in the walk detection device, a mechanism (such as a sensor) and software processing for that purpose can be omitted.
 なお、センサ装置および前記の所定のコンピュータに通信機能があれば、センサ装置が検知したデータを適宜、通信によって当該コンピュータに送信してもよい。その場合、リアルタイムに近い処理が可能となる。 If the sensor device and the predetermined computer have a communication function, data detected by the sensor device may be appropriately transmitted to the computer by communication. In that case, processing close to real time is possible.
 図2には、準備された地図データに係る所定領域について、所定箇所に位置特定装置(マイルストーン)を設置した様子を、通路とともにモデル化して描いている。
 所定領域には、ID=iとなる通路、ID=jとなる通路、ID=kとなる通路が存在しており、通路iの中央付近から、通路iとT字形をなすように通路jが位置している。また、通路jの中央付近から、通路jとT字形をなすように通路kが位置している。
 通路iの長さはL1、通路jの長さはL2、通路kの長さはL3である。
FIG. 2 shows a state where a position specifying device (milestone) is installed at a predetermined location in a predetermined area related to the prepared map data, modeled together with a passage.
In the predetermined area, there are a path with ID = i, a path with ID = j, and a path with ID = k. From the vicinity of the center of the path i, the path j forms a T-shape with the path i. positioned. Further, the passage k is located from the vicinity of the center of the passage j so as to form a T-shape with the passage j.
The length of the passage i is L1, the length of the passage j is L2, and the length of the passage k is L3.
 位置特定装置は、#mおよび#nで示している。すなわち、#mは、通路iにおける一端に位置しており、座標は(x7,y7)である。また、#nは、通路iと通路jとの交差点における通路j側に位置しており、座標は(x8,y8)である。
 #mの位置は、通路iの始点であり、(x0,y0)で表している。通路iの終点は(x1,y1)である。
 通路iと通路jとの交点、すなわち通路jの始点は、(x2,y2)である。通路jの終点は、(x3,y3)である。
 通路jと通路kとの交点、すなわち通路kの始点は(x4,y4)である。通路kの終点は、(x5,y5)である。
The position specifying device is indicated by #m and #n. That is, #m is located at one end in the passage i, and the coordinates are (x7, y7). #N is located on the side of the passage j at the intersection of the passage i and the passage j, and the coordinates are (x8, y8).
The position of #m is the starting point of the passage i and is represented by (x0, y0). The end point of the passage i is (x1, y1).
The intersection of the passage i and the passage j, that is, the starting point of the passage j is (x2, y2). The end point of the passage j is (x3, y3).
The intersection of the passage j and the passage k, that is, the starting point of the passage k is (x4, y4). The end point of the passage k is (x5, y5).
 (動き検出手段)
 図1に示すように、動き検出手段は、位置特定信号検知装置、歩行検知装置、移動検知装置および記憶装置を備えている。
 位置特定信号検知装置は、前述の位置特定装置(マイルストーン)が発信する信号(電波、音波、超音波、光、赤外線の単独もしくは複数利用)を受信する受信部および、当該位置特定装置が備える固体識別データ(ID)を検知するID検知部と、を備えている。
 ID検知部において検知されたIDは、受信時刻データと紐づけて記憶される。動き検出手段における記憶装置に蓄えられることとしてもよいし、前述した情報入力手段に逐次送信されることとしても良い。
(Motion detection means)
As shown in FIG. 1, the motion detection means includes a position specifying signal detection device, a walking detection device, a movement detection device, and a storage device.
The position specifying signal detecting device includes a receiving unit that receives a signal (single or multiple use of radio waves, sound waves, ultrasonic waves, light, and infrared rays) transmitted from the position specifying device (milestone), and the position specifying device. An ID detection unit that detects solid identification data (ID).
The ID detected by the ID detection unit is stored in association with the reception time data. It may be stored in a storage device in the motion detection means, or may be sequentially transmitted to the information input means described above.
 動き検出手段における歩行検知装置は被験者の足首、膝付近または脚のどこかに装着されて用いられるものであり、加速度センサおよびジャイロセンサが搭載されている。加速度センサは「被験者の水平方向の動き(前後左右)および上下」の動きを、ジャイロセンサは「被験者の前後左右の振り、脚のひねり」を、それぞれ検知する。 The walking detection device in the motion detection means is used by being mounted on the subject's ankle, near the knee, or somewhere on the leg, and is equipped with an acceleration sensor and a gyro sensor. The acceleration sensor detects “the subject's horizontal movement (front / back / left / right) and up / down” and the gyro sensor detects “the subject's front / back / left / right swing and leg twist”.
 動き検出手段における記憶装置に記憶された位置特定データおよび動きデータは、情報入力手段を介して行動推定手段に入力される。行動推定手段は、動きデータ処理部と推定部とを備えている。
 動きデータ処理部は、特定位置検出部、「歩」検出部、および移動距離検出部を備えている。
The position specifying data and the motion data stored in the storage device in the motion detection means are input to the behavior estimation means via the information input means. The behavior estimation means includes a motion data processing unit and an estimation unit.
The motion data processing unit includes a specific position detection unit, a “walk” detection unit, and a movement distance detection unit.
 (特定位置検出部)
 特定位置検出部は、動き検出手段における位置特定信号検出装置にて検知された位置特定信号から固体識別データ(ID)を抽出する。その固体識別データに基づいて、被験者がどこにいるのか位置を求める。位置特定信号の時間変化の例について、図3に示す。横軸は、測定を開始した基準時刻からの経過時間(秒)を示し、縦軸は、固体識別データを示す。
(Specific position detector)
The specific position detection unit extracts the solid identification data (ID) from the position specific signal detected by the position specific signal detection device in the motion detection means. Based on the individual identification data, the position where the subject is is obtained. An example of the time change of the position specifying signal is shown in FIG. The horizontal axis indicates the elapsed time (seconds) from the reference time when the measurement is started, and the vertical axis indicates the solid identification data.
 (歩検出部)
 被験者が歩くと、脚を前後に振ることになり、その前後の振りがジャイロ信号として検知されることとなる。前述のジャイロセンサが検知したジャイロ信号を図示したものが図4である。横軸は、測定を開始した基準時刻からの経過時間(秒)を示し、縦軸は、ジャイロ信号の瞬時値を示す。
(Walk detection unit)
When the subject walks, his / her leg is swung back and forth, and the swing before and after that is detected as a gyro signal. FIG. 4 shows the gyro signal detected by the above gyro sensor. The horizontal axis indicates the elapsed time (seconds) from the reference time when the measurement is started, and the vertical axis indicates the instantaneous value of the gyro signal.
 この図4は、被験者が六歩進んでから一度停止し、再び六歩進んでから七歩目で止まった状態である。その状態と照らし合わせて図4を観察すると、周期性がある信号が出力されていることが分かる。また、瞬時値についての時間軸方向の局所的な極大点が、被験者の「一歩」に一致していると考えることが出来る。
 したがって、「歩」を検出するため、極大点を抽出するための雑音除去などの前処理を実行し、被験者が何歩移動したか、を正確に把握することが出来る。
FIG. 4 shows a state in which the subject stops once after having advanced six steps, and then stops at the seventh step after having advanced six steps again. When FIG. 4 is observed against the state, it can be seen that a signal having periodicity is output. Moreover, it can be considered that the local maximum in the time axis direction of the instantaneous value coincides with the “one step” of the subject.
Therefore, in order to detect the “walk”, preprocessing such as noise removal for extracting the maximum point is executed, and it is possible to accurately grasp how many steps the subject has moved.
 図5では、図4と同じ条件下で取得した加速度センサの信号(縦軸は瞬時値)を図示している。ジャイロセンサの信号と同様に信号に規則性が見られるので、加速度信号による「歩」の抽出も可能である。 FIG. 5 shows an acceleration sensor signal (vertical axis is an instantaneous value) acquired under the same conditions as in FIG. Similar to the gyro sensor signal, regularity is seen in the signal, so that it is possible to extract the “walk” using the acceleration signal.
 なお、買い物用カートや作業車輌(たとえばフォークリフト)のように「歩」の検出が不要な場合やできない場合には、移動距離検出部において動きデータより移動距離を推定する。たとえば、移動体に設置した加速度センサからの信号を用いて積分値を求め、移動距離の時間変化を算出する。 In addition, when it is not necessary or possible to detect “walk” as in a shopping cart or a work vehicle (for example, a forklift), the movement distance is estimated from the movement data in the movement distance detection unit. For example, an integral value is obtained using a signal from an acceleration sensor installed on the moving body, and a change over time of the moving distance is calculated.
 図6には、加速度信号から移動距離を算出した例を示している。図6の横軸は測定開始からの経過時間、縦軸は相対距離を示す。
 時刻t=6(s)のときに移動を開始し、その後、時刻t=11(s)まで概ね定速で移動している。11~14(s)間は停止し、その後t=14(s)で再度移動し、24(s)で停止している。縦軸に着目するとt=6~11において2.4の距離を移動し、さらにt=14~24(s)では距離4.8(7.2-2.4)を移動していることから、6~11(s)、14~24(s)間の移動距離の比率2.4/4.8が算出される。
 なお、相対距離がマイナスを表示しているのは測定誤差である。
FIG. 6 shows an example in which the movement distance is calculated from the acceleration signal. The horizontal axis in FIG. 6 represents the elapsed time from the start of measurement, and the vertical axis represents the relative distance.
The movement starts at time t = 6 (s), and then moves at a substantially constant speed until time t = 11 (s). It stops between 11 and 14 (s), then moves again at t = 14 (s), and stops at 24 (s). Focusing on the vertical axis, a distance of 2.4 is moved from t = 6 to 11, and a distance of 4.8 (7.2-2.4) is moved from t = 14 to 24 (s). , 6 to 11 (s) and 14 to 24 (s) are calculated as the ratio 2.4 / 4.8 of the moving distance.
In addition, it is a measurement error that the relative distance indicates minus.
 (推定部)
 推定部は、図1に示すように、歩行推定部と移動推定部とを備えている。歩行推定部および移動推定部は、情報入力手段を介して行動推定手段に入力された位置特定データおよび動きデータを用いる。
(Estimator)
As shown in FIG. 1, the estimation unit includes a walking estimation unit and a movement estimation unit. The walking estimation unit and the movement estimation unit use position specifying data and motion data input to the behavior estimation unit via the information input unit.
 (歩行推定部)
 図7を参照させながら、被験者が通路を歩いた場合の位置推定の手順を説明する。
 図7(a)は、被験者が検査される領域としての通路と、その通路における位置特定装置の配置位置を示している。通路は、裏L字形をなしており、図7の紙面におけるx軸方向の途中に位置特定装置(#1)を、y軸方向の途中に位置特定装置(#2)を、それぞれ配置している。
(Walking estimation unit)
With reference to FIG. 7, the procedure of position estimation when the subject walks along the passage will be described.
FIG. 7A shows a passage as a region where a subject is inspected, and an arrangement position of the position specifying device in the passage. The passage is L-shaped on the back, and the position specifying device (# 1) is arranged in the middle of the x-axis direction and the position specifying device (# 2) is arranged in the middle of the y-axis direction in FIG. Yes.
 図7(b)は、位置特定装置(#1、#2)と時間とを軸にして、時刻Tにおける被験者の位置Pがどの位置にあるのかを求めるため、│T-T1│と│T-T2│の比を求めるための図である。
  │T-T1│:│T-T2│ = m:n
であったと算出することができる。図7(b)によれば、被験者は、時刻T1にはP1、時刻T2にはP2の位置にいたことが分かる。
FIG. 7B shows the position of the subject position P at time T, using the position specifying devices (# 1, # 2) and time as axes. It is a figure for calculating | requiring the ratio of -T2 |.
│T-T1│: │T-T2│ = m: n
Can be calculated. According to FIG. 7B, it can be seen that the subject was at the position P1 at time T1 and P2 at time T2.
 図7(c)は、この通路を被験者が歩行した際に測定された動き検出データを用いて、検出された「歩」の検出結果を図示したものである。時間T1~T2における「歩」が検出されている。
 被験者による第二歩が発生した時刻をTとすると、図7(a)と図7(b)との対応から、時刻Tでのこの作業者の位置P(T)は、以下のように表すことができる。
    P(T)=(nP1+mP2)/(m+n)
 なお、この演算はいわゆる内分を求めるための演算であるが、直線とは限らない(図7では裏L字形をなす)通路に沿ったP1とP2との距離を演算したものとしてよい。
FIG. 7C shows the detection result of the detected “walk” using the motion detection data measured when the subject walks along this passage. A “walk” at times T1 to T2 is detected.
Assuming that the time when the second step by the subject occurs is T, from the correspondence between FIG. 7A and FIG. 7B, the position P (T) of this worker at time T is expressed as follows. be able to.
P (T) = (nP1 + mP2) / (m + n)
Although this calculation is a calculation for obtaining a so-called internal division, it may be calculated by calculating the distance between P1 and P2 along a path that is not necessarily a straight line (forms a reverse L shape in FIG. 7).
 (移動推定部)
 図8(必要に応じて図7も)を参照させながら、移動距離に基づく位置を推定する手順を説明する。
 図8(a)は、位置特定信号と時間とを軸にして「歩」を示すとともに、時刻Tにおける被験者の位置Pがどの位置にあるのかを求めるものであり、図7(b)と同じものである。
 図7(a)に示すように、被験者は、時刻T1では、位置特定装置ID=#1の位置、すなわちP1にいたことがわかる。一方、図8(b)により時間│t-t1│と│t-t2│の間での移動距離の比はL1/L2であることから、時刻Tにおける通路に沿ったP1からの距離L(T)は、以下のように表すことができる。
    L(T)=(P1L2+P2L1)/(L1+L2)
 なお、この演算もいわゆる内分を求めるための演算であるが、通路に沿った距離を演算したものとなる。
(Movement estimation part)
A procedure for estimating the position based on the movement distance will be described with reference to FIG. 8 (also FIG. 7 if necessary).
FIG. 8 (a) shows “walk” with the position specifying signal and time as axes, and obtains the position of the subject's position P at time T, which is the same as FIG. 7 (b). Is.
As shown in FIG. 7A, it can be seen that the subject was at the position of the position specifying device ID = # 1, that is, P1, at time T1. On the other hand, since the ratio of the moving distance between the time | t−t1 | and | t−t2 | is L1 / L2 according to FIG. 8B, the distance L ( T) can be expressed as:
L (T) = (P1L2 + P2L1) / (L1 + L2)
This calculation is also a calculation for obtaining a so-called internal division, and is a calculation of the distance along the passage.
 (位置特定装置の詳細)
 図9には、位置特定装置の原理およびバリエーションについて、詳細を説明している。図9(a)は、一つの位置特定装置から二種類の電波を発信し、ひとつは狭い範囲にしか到達せず、もうひとつは通路の反対側にまで到達する。被験者が装着した送受信機が、この二種類の両方を受信すれば、通路における位置特定装置の近くを通過したこととなる。一つの電波しか受信できなかったとすれば、通路において位置特定装置の遠くを通過したこととなる。
(Details of positioning device)
FIG. 9 illustrates details of the principle and variations of the position specifying device. In FIG. 9A, two types of radio waves are transmitted from one position specifying device, one reaches only a narrow range, and the other reaches the other side of the passage. If the transmitter / receiver worn by the subject receives both of the two types, it has passed near the position specifying device in the passage. If only one radio wave can be received, it means that it has passed far away from the position specifying device in the passage.
 図10および図11は、上述してきた構成を、データの入出力の面から捉えた図である。図11は、図10のバリエーションであり、被験者が装着したセンサが全てのデータを集約して送信するのではなく、位置特定装置が得た被験者通過などのデータは位置特定装置が直接送信することとしている。 10 and 11 are diagrams illustrating the above-described configuration from the viewpoint of data input / output. FIG. 11 is a variation of FIG. 10, in which a sensor attached to a subject does not collect and transmit all data, but the location specifying device directly transmits data such as subject passage obtained by the location specifying device. It is said.
 (歩幅の推定)
 図4,5,7を用いて算出する手段は、被験者がP1からP2の地点まで等速度で移動したことを前提としている。したがって、被験者がP1からP2の地点までの間で、歩く速度を変えたり、立ち止まったりしたことを反映させていない。
 そこで、被験者のより詳細な動きを把握するため、歩幅を推定する手段について、図12から図16とともに説明する。
(Estimation of stride)
The means for calculating using FIGS. 4, 5, and 7 is based on the premise that the subject has moved from P1 to P2 at a constant speed. Therefore, it does not reflect that the subject changed walking speed or stopped between P1 and P2.
Therefore, in order to grasp the detailed movement of the subject, a means for estimating the stride will be described with reference to FIGS.
 図12には、L字型の通路を被験者が歩行し、位置特定装置の設置位置P1から次の設置位置P2まで歩行した様子を示す。図12内で、「L」、「R」と示すのは、被験者の足が着地した位置(左足=L、右足=R)を示す。
 図13は、被験者の左足に装着したジャイロセンサのジャイロ信号を示すものであり、X軸は時間(秒)、Y軸は角速度ω(t)となっている。このときの被験者は早くなったり遅くなったりすることなく約12秒間、歩いたことを確認している。
FIG. 12 shows a state in which a subject walks through an L-shaped passage and walks from the installation position P1 of the position specifying device to the next installation position P2. In FIG. 12, “L” and “R” indicate positions where the subject's feet have landed (left foot = L, right foot = R).
FIG. 13 shows the gyro signal of the gyro sensor mounted on the subject's left foot, with the X axis being time (seconds) and the Y axis being angular velocity ω (t). The subject at this time has confirmed that he / she walked for about 12 seconds without getting faster or slower.
 図13によれば、明確な極大値(local peak)を持つ周期的信号が現れている。 一方、被験者の左足に装着したジャイロセンサが出力するジャイロ信号は、歩行者の「足の振りの速さ」を検出しているので、被験者の「歩」を示しているということになる。
 角速度の計測結果であることを踏まえると、この信号を時間に関して積分した値は、被験者の足の「振り」の大きさ、すなわち「歩幅」に対応するとしてよい。
According to FIG. 13, a periodic signal having a clear local maximum value appears. On the other hand, the gyro signal output from the gyro sensor attached to the left foot of the subject indicates the “walking” of the subject because it detects the “speed of swinging the foot” of the pedestrian.
In consideration of the measurement result of the angular velocity, a value obtained by integrating this signal with respect to time may correspond to the magnitude of “swing” of the subject's foot, that is, “step length”.
 図14は、図13における部分拡大図である。 被験者の動きを動画撮影して図14と見比べた結果、被験者の脚の動きと信号との対応から、図14中のtk1の時刻において被験者は足を蹴り上げ、tk1の時刻において被験者は足を着地させたことが判明している。
 歩幅に対応する長さIk(k=ジャイロ信号における極大点を時刻の順に付した番号)は、次の(数1)に示すように、時刻tk1からtk2の間のジャイロ信号を積分して算出する。
FIG. 14 is a partially enlarged view of FIG. As a result of taking a video of the movement of the subject and comparing it with FIG. 14, the subject kicks up the foot at the time tk1 in FIG. 14 from the correspondence between the movement of the leg of the subject and the signal, and the subject moves the foot at the time tk1. It is known that it has landed.
The length Ik corresponding to the stride (k = number obtained by assigning the maximum points in the gyro signal in order of time) is calculated by integrating the gyro signal between time tk1 and time tk2, as shown in the following (Equation 1). To do.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すべての極大点k(1~11)の近傍について、上記(数1)による算出処理を実行し、算出された歩幅を第一歩の値で正規化した値を新たなIkとして再定義し、表1に示す。以後、このIkを「相対歩幅」と称する。 The calculation process according to the above (Equation 1) is executed for the vicinity of all local maximum points k (1 to 11), and the value obtained by normalizing the calculated stride with the value of the first step is redefined as a new Ik. Table 1 shows. Hereinafter, this Ik is referred to as “relative stride”.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の(表1)を分析すると、被験者は、第1歩から第10歩までは概ね同じ歩幅で歩き、最後の一歩(第11歩)だけは、それまでの歩幅の約1/2(半歩)で歩いた、と算出されたこととなる。 この分析結果は、前述の被験者を撮影した動画データと見比べてみても一致していた。 Analyzing the above (Table 1), the subject walks with approximately the same stride from the first step to the tenth step, and only the last step (the eleventh step) is about ½ (half a step). It is calculated that the person walked in step). This analysis result was consistent even when compared with the above-mentioned moving image data of the subject.
 続いて、相対歩幅(Ik)を用いて、被験者がある時刻においてどの位置にいたのかを推定する手順を説明する。
 図13や(表1)により、被験者は、図12に示す逆L字形の通路におけるP1からP2までを、I1~I11という相対歩幅で歩いたこととなる。
 図12中におけるP1およびP2の座標は、位置特定装置の設置位置の座標を表すとすると、第n歩目の足の位置Pnは、以下の(数2)にて示す値であると推定できる。(この場合のnの最大値は「11」である)
Next, a procedure for estimating where the subject was at a certain time using the relative stride (Ik) will be described.
13 and (Table 1), the subject walked from P1 to P2 in the inverted L-shaped passage shown in FIG. 12 with a relative stride I1 to I11.
If the coordinates of P1 and P2 in FIG. 12 represent the coordinates of the installation position of the position specifying device, the foot position Pn of the nth step can be estimated to be a value represented by the following (Equation 2). . (The maximum value of n in this case is “11”)
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 (数2)による演算は、所謂内分を求めるための演算であるが、被験者の歩く方向直線に限定されず、通路に沿った内分を行う演算であるとしてよい。 The calculation according to (Expression 2) is a calculation for obtaining a so-called internal division, but is not limited to a straight line in the walking direction of the subject, and may be an operation for performing internal division along the passage.
 図15に示すように、被験者が逆L字形の通路におけるP1からP2までの途中(P3)で立ち止まった場合について説明する。 このときの被験者の左足に装着したジャイロセンサのジャイロ信号は、図16に示す。 P3には、位置検出装置が存在しない。 As shown in FIG. 15, a case where the subject stops in the middle of P1 to P2 (P3) in the inverted L-shaped passage will be described. The gyro signal of the gyro sensor attached to the subject's left foot at this time is shown in FIG. P3 has no position detection device.
 図16によれば、被験者は歩き初めてから約5秒後、第7歩目で立ち止まり、約6秒間立ち止まった後、更に4歩を歩いてから停止した、と読み取ることができる。これは、被験者を撮影した動画データと一致していることが分かっている。
 このように、被験者が立ち止まったことは、所定の時間帯でジャイロ信号の値がゼロとなることから把握できる。そのため、前述した(数1)によって相対歩幅(Ik)を把握しておき、(数2)による被験者の位置の推定は有効である。
According to FIG. 16, it can be read that the subject stopped at the seventh step after about 5 seconds from the start of walking, stopped for about 6 seconds, and then stopped after walking for another four steps. This is known to be consistent with the moving image data obtained by photographing the subject.
Thus, it can be grasped that the subject stopped because the value of the gyro signal becomes zero in a predetermined time zone. For this reason, it is effective to grasp the relative stride (Ik) according to (Equation 1) described above and estimate the position of the subject according to (Equation 2).
 位置検出装置を多数設置すれば、立ち止まったことが推定できる。たとえば、前述の図15,16に示したような場合、立ち止まった場所に、P1、P2とは別の位置検出装置が存在すれば、歩幅を推定する手段を使用しなくても、被験者の動きを推定することができる。
 しかし、位置検出装置を多数設置することは現実的ではないため、歩幅を推定する手段は有効である。
If a large number of position detection devices are installed, it can be estimated that the vehicle has stopped. For example, in the case shown in FIGS. 15 and 16 described above, if there is a position detection device other than P1 and P2 at a place where the vehicle has stopped, the movement of the subject can be obtained without using the means for estimating the stride. Can be estimated.
However, since it is not realistic to install a large number of position detection devices, means for estimating the stride is effective.
 (被験者の種類に応じた被験者の行動検出)
 前述の実施形態においては、位置特定装置を通路などの所定ポイントに設置し、歩行検知装置を被験者の足首に固定されるとして説明した。しかし、被験者の行動全般を把握したい場合には、色々なバリエーションがある。
 たとえば、通路内のA地点およびB地点に歩いていってそれぞれ部品をC地点に運んできて、C地点にてそれらの部品を手作業にて組み立てる、という被験者の行動を把握したい、という場合には、以下のようにする。
(Subject's behavior detection according to the type of subject)
In the above-described embodiment, the position specifying device is installed at a predetermined point such as a passage, and the walking detection device is fixed to the subject's ankle. However, there are various variations when it is desired to grasp the overall behavior of the subject.
For example, if you want to understand the behavior of the subject walking to point A and point B in the aisle, carrying parts to point C, and assembling those parts manually at point C. Is as follows.
 まず、被験者の上腕部または手首に位置特定信号検知装置を含んだ歩行検知装置(α)を装着し、その歩行検知装置とは別に、被験者の足首または膝上部にも歩行検知装置(β)を装着する。位置特定装置は、前述の実施形態と同じように、通路内のA地点およびB地点に設置する。
 被験者が通路内のA地点やB地点に向かって歩いていたり、C地点に向かって歩いている場合には、歩行検知装置(α)、(β)とも角速度を検出する。 被験者がC地点において組み立て作業をしている場合には、被験者の足は止まっているはずなので、歩行検知装置(β)は角速度を検出しないが、組み立て作業をしているので歩行検知装置(α)からは角速度が検出される。
 換言すれば、歩行検知装置(α)のみから角速度が検出される状態では、被験者はC地点において組み立て作業をしている、と推定できるし、歩行検知装置(α)、(β)とも角速度を検出されている状態では、組み立て前の部品を運ぶために歩いている、と推定できる。歩いている場所に関しては、位置特定装置と位置特定信号検知装置とのデータから推定できることとなる。
First, a walking detection device (α) including a position detection signal detection device is attached to the upper arm or wrist of the subject, and separately from the walking detection device, the walking detection device (β) is also applied to the ankle or upper knee of the subject. Installing. The position specifying device is installed at points A and B in the passage as in the above-described embodiment.
When the subject is walking toward point A or point B in the passage or walking toward point C, both the walking detection devices (α) and (β) detect the angular velocity. When the subject is assembling at point C, the foot of the subject should have stopped, so the gait detector (β) does not detect the angular velocity, but the gait detector (α ) Detects the angular velocity.
In other words, in a state where the angular velocity is detected only from the walking detection device (α), it can be estimated that the subject is assembling work at the point C, and the walking velocity detection devices (α) and (β) have the angular velocity. In the detected state, it can be estimated that he is walking to carry the parts before assembly. The walking place can be estimated from the data of the position specifying device and the position specifying signal detection device.
 位置特定装置を、通路内のA地点およびB地点に加えて、C地点にも設置すれば、被験者が装着する歩行検知装置は、上腕部または手首に装着する位置特定信号検知装置を含んだ歩行検知装置(α)のみで足りることとなる。
 すなわち、被験者が組み立て前の部品を運ぶために歩いている状態であっても、C地点にて部品を組み立てている場合であっても、歩行検知装置(α)は角速度を検出する。しかし、位置特定装置および位置特定信号検知装置によって、被験者がC地点にいるということを把握できれば、被験者は部品を組み立てていると推定できるであろう。また、被験者がC地点にはいないということであれば、被験者はA,B,Cのいずれかの地点に向かって歩いている、と推定でき、位置特定装置および位置特定信号検知装置からの情報によって、いずれの地点に向かって歩いているかも推定できることとなる。
If the position specifying device is installed at the point C in addition to the points A and B in the passage, the walking detection device worn by the subject is a walking including the position specifying signal detection device worn on the upper arm or the wrist. Only the detection device (α) is sufficient.
That is, the walking detection device (α) detects the angular velocity even when the subject is walking to carry the parts before assembly or when the parts are assembled at the point C. However, if the position specifying device and the position specifying signal detection device can grasp that the subject is at the point C, it can be estimated that the subject is assembling the parts. If the subject is not at the point C, it can be estimated that the subject is walking toward the point A, B, or C, and information from the position specifying device and the position specifying signal detecting device is obtained. It is possible to estimate which point the person is walking toward.
 本発明は、センサなどの計測装置の製造業、前記計測器を用いたデータ収集や解析を行うサービス業、前記計測器を用いたデータ収集や解析プログラムを作成するソフトウェア開発業、工場などにおける人員の効率配置などを手がけるコンサルティング業、マーケティングデータを収集および解析を行うサービス業などにおいて、利用可能性がある。 The present invention relates to the manufacturing industry of measuring devices such as sensors, the service industry that performs data collection and analysis using the measuring instrument, the software development industry that creates data collection and analysis programs using the measuring instrument, and the personnel in factories, etc. It can be used in the consulting industry that deals with the efficient placement of services and the service industry that collects and analyzes marketing data.

Claims (8)

  1.  被験者が所定の領域内でどのような動きをするかを算出する被験者の行動解析システムであって、
     前記被験者に装着される所定の送受信機と、
     前記送受信機との無線通信によって前記被験者が近傍に存在する旨を特定可能な複数の位置特定装置と、
     前記所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを予め蓄積している記憶装置と、
     前記被験者に装着して脚または腕の動きを継続的に検知する肢体センサと、
     その肢体センサが検知する脚または腕の動きに関する動きデータ、前記位置特定装置による被験者の特定データ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が時間経過とともにどこへ動いたか推定する動き推定データを算出する動き検出データ処理装置と、
     を備えた行動解析システム。
    A subject behavior analysis system that calculates how a subject moves within a predetermined area,
    A predetermined transceiver mounted on the subject;
    A plurality of position specifying devices capable of specifying that the subject exists in the vicinity by wireless communication with the transceiver; and
    A storage device that stores in advance map data related to the predetermined area and position data of the position specifying device in the map data;
    A limb sensor that is attached to the subject and continuously detects the movement of the leg or arm;
    Using the movement data relating to the movement of the leg or arm detected by the limb sensor, the identification data of the subject by the position identification device, the map data, and the position data, it is estimated where the subject moved with time in the area. A motion detection data processing device for calculating motion estimation data to be
    Behavior analysis system with
  2.  被験者が所定の領域内でどのような動きをするかを算出する被験者の行動解析システムであって、
     前記被験者に装着される所定の送受信機と、
     前記送受信機との無線通信によって前記被験者が近傍に存在する旨を特定可能な複数の位置特定装置と、
     前記所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを予め蓄積している記憶装置と、
     被験者に装着して脚または腕の動きを継続的に検知する肢体センサと、
     その肢体センサが検知する脚または腕の動きに関する動きデータ、前記位置特定装置による被験者の特定データ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が動いた総距離を推定する総距離データを算出する距離演算装置と、
     を備えた行動解析システム。
    A subject behavior analysis system that calculates how a subject moves within a predetermined area,
    A predetermined transceiver mounted on the subject;
    A plurality of position specifying devices capable of specifying that the subject exists in the vicinity by wireless communication with the transceiver; and
    A storage device that stores in advance map data related to the predetermined area and position data of the position specifying device in the map data;
    A limb sensor that is worn on the subject and continuously detects the movement of the leg or arm;
    Using the movement data relating to the movement of the leg or arm detected by the limb sensor, the identification data of the subject by the position identification device, the map data and the position data, the total distance for which the subject has moved within the area is estimated. A distance calculation device for calculating distance data;
    Behavior analysis system with
  3.  被験者が所定の領域内でどのような動きをするかを算出する被験者の行動解析システムであって、
     前記被験者に装着される所定の送受信機と、
     前記送受信機との無線通信によって前記被験者が近傍に存在する旨を特定可能な複数の位置特定装置と、
     前記所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを予め蓄積している記憶装置と、
     被験者に装着して脚または腕の動きを継続的に検知する肢体センサと、
     その肢体センサが検知する脚または腕の動きに関する動きデータ、前記位置特定装置による被験者の特定データ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が時間経過とともにどこへ動いたか推定する動き推定データを算出する動き検出データ処理装置と、
     前記肢体センサが検知する脚または腕の動きに関する動きデータを用いて、前記領域内で被験者が動いた総距離を推定する総距離データを算出する距離演算装置と、
     前記動き推定データおよび前記総距離データを用いて被験者の行動を解析する行動解析手段と、
     を備えた行動解析システム。
    A subject behavior analysis system that calculates how a subject moves within a predetermined area,
    A predetermined transceiver mounted on the subject;
    A plurality of position specifying devices capable of specifying that the subject exists in the vicinity by wireless communication with the transceiver; and
    A storage device that stores in advance map data related to the predetermined area and position data of the position specifying device in the map data;
    A limb sensor that is worn on the subject and continuously detects the movement of the leg or arm;
    Using the movement data relating to the movement of the leg or arm detected by the limb sensor, the identification data of the subject by the position identification device, the map data, and the position data, it is estimated where the subject moved with time in the area. A motion detection data processing device for calculating motion estimation data to be
    A distance calculation device that calculates total distance data for estimating a total distance that the subject has moved in the region, using movement data relating to movement of a leg or arm detected by the limb body sensor;
    Behavior analysis means for analyzing the behavior of the subject using the motion estimation data and the total distance data;
    Behavior analysis system with
  4.  前記肢体センサには、ジャイロセンサを含み、
     前記動き検出データ処理装置は、ジャイロセンサが検出する角速度の極大値もしくは極大値を含むその近傍の値を用いて算出し、前記位置特定装置および前記送受信機から算出される前記位置データと前記相対歩幅とを用いて演算することとした請求項1または請求項3のいずれかに記載の行動解析システム。
    The limb sensor includes a gyro sensor,
    The motion detection data processing device calculates a maximum value of an angular velocity detected by a gyro sensor or a value in the vicinity including a maximum value, and calculates the position data calculated from the position specifying device and the transceiver and the relative The behavior analysis system according to any one of claims 1 and 3, wherein the behavior is calculated using a stride.
  5.  被験者が所定の領域内でどのような動きをするかをコンピュータによって算出する被験者の行動解析プログラムであって、
     そのプログラムは、 当該所定領域内に複数備えられることによって所定の送受信機を装着した被験者が近傍に存在する旨を特定可能な位置特定装置からの位置データ、および被験者に装着して脚または腕の動きを継続的に検知する肢体センサからの動きデータを入力するデータ入力手順と、
     当該所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを記憶装置に予め蓄積しているデータ記憶手順と、
     前記動きデータ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が時間経過とともにどこへ動いたかを推定する動き推定データを算出する動き検出データ処理手順と、
    をコンピュータに実行させるためのコンピュータプログラム。
    A subject behavior analysis program for calculating by a computer how a subject moves within a predetermined area,
    The program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject. A data input procedure for inputting motion data from a limb sensor that continuously detects motion;
    A data storage procedure in which map data relating to the predetermined area and position data of the position specifying device in the map data are stored in a storage device in advance;
    Using the motion data, the map data, and the position data, a motion detection data processing procedure for calculating motion estimation data for estimating where the subject moved with time in the region;
    A computer program for causing a computer to execute.
  6.  被験者が所定の領域内でどのような動きをするかをコンピュータによって算出する被験者の行動解析プログラムであって、
     そのプログラムは、 当該所定領域内に複数備えられることによって所定の送受信機を装着した被験者が近傍に存在する旨を特定可能な位置特定装置からの位置データ、および被験者に装着して脚または腕の動きを継続的に検知する肢体センサからの動きデータを入力するデータ入力手順と、
     当該所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを記憶装置に予め蓄積しているデータ記憶手順と、
     動きデータ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が動いた総距離を推定する総距離データを算出する距離演算手順と、
    をコンピュータに実行させるためのコンピュータプログラム。
    A subject behavior analysis program for calculating by a computer how a subject moves within a predetermined area,
    The program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject. A data input procedure for inputting motion data from a limb sensor that continuously detects motion;
    A data storage procedure in which map data relating to the predetermined area and position data of the position specifying device in the map data are stored in a storage device in advance;
    Using the movement data, the map data, and the position data, a distance calculation procedure for calculating total distance data for estimating the total distance that the subject has moved in the region;
    A computer program for causing a computer to execute.
  7.  被験者が所定の領域内でどのような動きをするかをコンピュータによって算出する被験者の行動解析プログラムであって、
     そのプログラムは、 当該所定領域内に複数備えられることによって所定の送受信機を装着した被験者が近傍に存在する旨を特定可能な位置特定装置からの位置データ、および被験者に装着して脚または腕の動きを継続的に検知する肢体センサからの動きデータを入力するデータ入力手順と、
     当該所定の領域に関する地図データおよびその地図データにおける前記位置特定装置の位置データを記憶装置に予め蓄積しているデータ記憶手順と、
     前記動きデータ、前記被験者の特定データ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が時間経過とともにどこへ動いたか推定する動き推定データを算出する動き検出データ処理手順と、
     動きデータ、前記地図データおよび前記位置データを用いて、前記領域内で被験者が動いた総距離を推定する総距離データを算出する距離演算手順と、
    をコンピュータに実行させるためのコンピュータプログラム。
    A subject behavior analysis program for calculating by a computer how a subject moves within a predetermined area,
    The program includes a plurality of programs in the predetermined area, position data from a position specifying device that can specify that a subject wearing a predetermined transmitter / receiver is in the vicinity, and a leg or arm attached to the subject. A data input procedure for inputting motion data from a limb sensor that continuously detects motion;
    A data storage procedure in which map data relating to the predetermined area and position data of the position specifying device in the map data are stored in a storage device in advance;
    Using the motion data, the subject specific data, the map data, and the position data, a motion detection data processing procedure for calculating motion estimation data for estimating where the subject moved over time in the region;
    Using the movement data, the map data, and the position data, a distance calculation procedure for calculating total distance data for estimating the total distance that the subject has moved in the region;
    A computer program for causing a computer to execute.
  8.  前記動き検出データ処理手順は、ジャイロセンサが検出する角速度の極大値もしくは極大値を含むその近傍の値を用いて算出し、前記位置特定装置および前記送受信機から算出される前記位置データと前記相対歩幅とを用いて演算することとした請求項5または請求項7のいずれかに記載のコンピュータプログラム。 The motion detection data processing procedure is calculated by using a maximum value of angular velocity detected by the gyro sensor or a value in the vicinity including the maximum value, and the position data calculated from the position specifying device and the transceiver and the relative data 8. The computer program according to claim 5, wherein the calculation is performed using a stride.
PCT/JP2009/065668 2008-09-09 2009-09-08 Behavior analysis system and computer program WO2010029918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010528721A JP5572093B2 (en) 2008-09-09 2009-09-08 Behavior analysis system and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008230959 2008-09-09
JP2008-230959 2008-09-09

Publications (1)

Publication Number Publication Date
WO2010029918A1 true WO2010029918A1 (en) 2010-03-18

Family

ID=42005171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065668 WO2010029918A1 (en) 2008-09-09 2009-09-08 Behavior analysis system and computer program

Country Status (2)

Country Link
JP (1) JP5572093B2 (en)
WO (1) WO2010029918A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9750447B2 (en) 2011-10-28 2017-09-05 Koninklijke Philips N.V. Lighting system with monitoring function
JP6469285B1 (en) * 2018-06-15 2019-02-13 株式会社キャッシュフローリノベーション Productivity improvement system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953957A (en) * 1995-08-10 1997-02-25 Matsushita Electric Works Ltd Method and system for analyzing daily life activity
JP2002139340A (en) * 2000-10-30 2002-05-17 Atr Media Integration & Communications Res Lab Walking navigation device and navigation system using the same
JP2006102156A (en) * 2004-10-05 2006-04-20 Rikogaku Shinkokai Walking assisting system
JP2007240206A (en) * 2006-03-06 2007-09-20 Ntt Comware Corp Mobile terminal, information management system, map information download system, and map information download method
JP2007279837A (en) * 2006-04-03 2007-10-25 Advance Alpha:Kk Portable activity monitoring device and activity monitoring system
JP2007309803A (en) * 2006-05-18 2007-11-29 National Institute Of Advanced Industrial & Technology Dead reckoning apparatus
JP2008122092A (en) * 2006-11-08 2008-05-29 Matsushita Electric Ind Co Ltd Navigation system and portable terminal apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953957A (en) * 1995-08-10 1997-02-25 Matsushita Electric Works Ltd Method and system for analyzing daily life activity
JP2002139340A (en) * 2000-10-30 2002-05-17 Atr Media Integration & Communications Res Lab Walking navigation device and navigation system using the same
JP2006102156A (en) * 2004-10-05 2006-04-20 Rikogaku Shinkokai Walking assisting system
JP2007240206A (en) * 2006-03-06 2007-09-20 Ntt Comware Corp Mobile terminal, information management system, map information download system, and map information download method
JP2007279837A (en) * 2006-04-03 2007-10-25 Advance Alpha:Kk Portable activity monitoring device and activity monitoring system
JP2007309803A (en) * 2006-05-18 2007-11-29 National Institute Of Advanced Industrial & Technology Dead reckoning apparatus
JP2008122092A (en) * 2006-11-08 2008-05-29 Matsushita Electric Ind Co Ltd Navigation system and portable terminal apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9750447B2 (en) 2011-10-28 2017-09-05 Koninklijke Philips N.V. Lighting system with monitoring function
JP6469285B1 (en) * 2018-06-15 2019-02-13 株式会社キャッシュフローリノベーション Productivity improvement system
JP2019219763A (en) * 2018-06-15 2019-12-26 株式会社キャッシュフローリノベーション Productivity improvement system

Also Published As

Publication number Publication date
JP5572093B2 (en) 2014-08-13
JPWO2010029918A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
Hou et al. Pedestrian dead reckoning with wearable sensors: A systematic review
US10126134B2 (en) Method and system for estimating uncertainty for offline map information aided enhanced portable navigation
US20180328753A1 (en) Local location mapping method and system
CN104296750B (en) Zero speed detecting method, zero speed detecting device, and pedestrian navigation method as well as pedestrian navigation system
Kourogi et al. Indoor/outdoor pedestrian navigation with an embedded GPS/RFID/self-contained sensor system
EP2740256B1 (en) Moving direction determination with noisy signals from inertial navigation systems on mobile devices
US10145707B2 (en) Hierarchical context detection method to determine location of a mobile device on a person's body
US20170176191A1 (en) Method and system for using offline map information aided enhanced portable navigation
US10547976B2 (en) Method and system for assigning point of sale information
US10584970B2 (en) Localization apparatus and localization method
US11162792B2 (en) Method and system for path-based point of sale ordering
KR20130059344A (en) Method and system for detection of a zero velocity state of an object
US8812225B2 (en) Electronic navigation device for a human and related methods
CN108139458A (en) For determining the method, apparatus and system in indoor orientation
US20180087903A1 (en) User-specific learning for improved pedestrian motion modeling in a mobile device
JP5572093B2 (en) Behavior analysis system and computer program
JP4714853B2 (en) Dead reckoning equipment
Ahmed et al. Performance comparison of wearable-based pedestrian navigation systems in large areas
US10914793B2 (en) Method and system for magnetometer calibration
Liu et al. Knee and waist attached gyroscopes for personal navigation: Comparison of knee, waist and foot attached inertial sensors
JP6069251B2 (en) Walking information complementing method and walking information management system
Elyasi et al. Step length is a more reliable measurement than walking speed for pedestrian dead-reckoning
Wu et al. A feasible model training for LSTM-based dual foot-mounted pedestrian INS
JP2013196221A (en) Tag position estimation system, tag position estimation method and tag position estimation program
Yuan et al. A Real-Time Factor-Graph-Optimized Pedestrian Navigation Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528721

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813064

Country of ref document: EP

Kind code of ref document: A1