WO2010029874A1 - Process for producing resin sheet with thickness unevenness - Google Patents

Process for producing resin sheet with thickness unevenness Download PDF

Info

Publication number
WO2010029874A1
WO2010029874A1 PCT/JP2009/065300 JP2009065300W WO2010029874A1 WO 2010029874 A1 WO2010029874 A1 WO 2010029874A1 JP 2009065300 W JP2009065300 W JP 2009065300W WO 2010029874 A1 WO2010029874 A1 WO 2010029874A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
sheet
roller
resin
temperature
Prior art date
Application number
PCT/JP2009/065300
Other languages
French (fr)
Japanese (ja)
Inventor
卓弘 林
芳彦 佐野
勝本 隆一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2010029874A1 publication Critical patent/WO2010029874A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9155Pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • B29C2071/022Annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/12Dielectric heating
    • B29C35/14Dielectric heating for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0063After-treatment of articles without altering their shape; Apparatus therefor for changing crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films

Definitions

  • the present invention relates to a method for manufacturing an uneven thickness resin sheet, and more particularly to a method for manufacturing an uneven thickness resin sheet suitable for use in a light guide plate and various optical elements disposed on the back surface of various display devices.
  • a molten resin sheet extruded from a T-die is cooled by a cooling roll, and then cooled and solidified by air cooling in a conveyance unit while being taken up by a transaction roll, and is then cut by a cutting machine. Cut in the direction and formed into a sheet.
  • the resin sheet molded in this way tends to have residual strain due to temperature changes such as heating for melting and cooling for solidification during molding. For this reason, there is a problem that the shape is not stable due to a change with time, or the physical properties are not sufficiently exhibited.
  • a so-called annealing treatment is performed for the purpose of correcting residual strain relaxation or deformation of the thermoplastic resin molded article or for increasing the strength by promoting crystallization of the crystalline thermoplastic resin molded article.
  • the annealing treatment has a larger effect in a shorter time.
  • the resin melts and a molded body having a desired shape cannot be obtained. Therefore, in the case of a thermoplastic resin, it is generally annealed at a temperature 20 to 40 ° C. lower than the glass transition temperature Tg of the resin, and in the case of a crystalline resin, it is annealed at a temperature 10 to 20 ° C. higher than the highest temperature actually used. .
  • the annealing process is mainly used for products whose shape and dimensional accuracy are not strict.
  • it has been performed with a molded product having an almost isotropic shape.
  • a sheet-like molded product or the like is prone to deformation such as warping and undulation because the volume change behavior in the thickness direction and the length / width direction is different.
  • the size of the sheet is large, it is difficult to uniformly heat the surface during the temperature increase, and therefore deformation is likely to occur even with a non-uniform temperature increase rate.
  • the rate of temperature increase locally varies depending on the thickness, and thus deformation is more likely to occur.
  • Patent Document 1 discloses a method of preventing deformation due to annealing by setting and fixing a fixed plate on the side and upper and lower surfaces in a state where flat plates are laminated.
  • this method when the object is a flat plate, deformation due to annealing can be suppressed, but it cannot be applied to a sheet having a thickness distribution.
  • lamination takes time to transfer heat to the inside, the annealing time becomes long, and it takes time to set the annealing, so that productivity is remarkably lowered.
  • Patent Documents 2 and 3 disclose a method of continuously annealing using far infrared rays as a heating means.
  • JP 2005-47126 A Japanese Patent Publication No.7-112715 JP-A-11-172026
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing an uneven thickness resin sheet that can further shorten the annealing process and improve the productivity.
  • a sheet forming process for forming a resin sheet by transferring to a resin sheet and solidifying by cooling, a peeling process for peeling the resin sheet from a peeling roller, and pulling and conveying with a take-up roller while heating the resin sheet with a heating device The transporting step and the glass transition temperature of the resin as Tg, the maximum temperature of the surface in the width direction of the resin sheet is (Tg ⁇ 40) ° C. to Tg ° C.
  • the step of cutting to a predetermined length and the resin sheet cut by the cutting means are continuously annealed at a temperature of (Tg-40) ° C. to Tg ° C. And annealing process of performing processing to provide a method for manufacturing uneven thickness resin sheet and having a.
  • the cutting step is performed in a state where the maximum temperature of the surface in the width direction of the resin sheet is (Tg ⁇ 40) ° C. or more and Tg ° C. or less, and the annealing step of the next step is also performed (Tg Since it is performed at a temperature of ⁇ 40) ° C. or more and Tg or less, there is no need to cool the resin sheet after the cutting step and before the annealing treatment step. For this reason, annealing treatment time can be reduced and productivity can be improved.
  • the second aspect of the present invention is characterized in that, in the first aspect, the annealing step is performed by supporting the resin sheet with a planar support member.
  • the resin sheet is supported by the flat support member and annealed, so that the resin sheet in a soft state at high temperature becomes flat due to its own weight, and the resin sheet is deformed. Can be easily corrected.
  • the difference in thickness between the thickest part and the thinnest part of the thickness distribution in the width direction of the resin sheet is 0.5 mm or more and 5 mm or less.
  • the temperature of the resin sheet can be easily adjusted in the transport process and the annealing process, Shape changes such as warping can be suppressed.
  • the manufacturing method of the uneven thickness resin sheet of the present invention since the temperature is maintained continuously from the cutting process to the annealing process, it is not necessary to cool the resin sheet. For this reason, the time of annealing treatment can be shortened and productivity can be improved.
  • FIG. 1 is a process diagram illustrating a flow of a method for producing a resin sheet to which the present invention is applied
  • FIG. 2 is a conceptual diagram of a resin sheet manufacturing apparatus to which the present invention is applied
  • FIG. 3 is a structural diagram showing the annealing process from the sheet forming process of the resin sheet manufacturing apparatus
  • FIG. 4A is a cross-sectional view showing an example of the shape of a resin sheet
  • FIG. 4B is a cross-sectional view showing another example of the shape of the resin sheet
  • FIG. 5 is a configuration diagram illustrating another aspect of the resin sheet manufacturing apparatus.
  • FIG. 1 is an overall process diagram of a method for producing a resin sheet according to the present invention
  • FIG. 2 is a conceptual diagram showing an apparatus configuration in each process.
  • the manufacturing method of the uneven thickness resin sheet of the present invention mainly includes a raw material process 100 for measuring and mixing raw materials and an extrusion process 112 for continuously extruding molten resin into a sheet (band). And a sheet forming step 114 for forming the resin sheet 14 by cooling and solidifying the extruded molten resin sheet 14a, a peeling step 115 for peeling the resin sheet 14, and a cutting step for cutting the peeled resin sheet 14 as the next step.
  • the raw material resin and the additive are respectively sent from the raw material silo 128 (or raw material tank) and the additive silo 130 (or additive tank) to the automatic weighing machine 132 and automatically metered.
  • the mixer 134 the raw material resin and the additive are mixed at a predetermined ratio.
  • thermoplastic resin can be used as the resin material of the raw material resin applied to the present invention.
  • PMMA polymethyl methacrylate resin
  • PC polycarbonate resin
  • PS polystyrene resin
  • MS resin AS resin
  • AS resin polypropylene resin
  • PE polyethylene resin
  • PET polyethylene terephthalate resin
  • PVC polyvinyl chloride
  • PVC resin
  • thermoplastic elastomer a copolymer thereof, and a cycloolefin polymer.
  • thermoplastic resins may contain light diffusing particles.
  • the light diffusing particles include inorganic materials such as silicone, silica, calcium carbonate, barium sulfate, aluminum hydroxide, titanium oxide, glass beads, and calcium silicate. Examples thereof include particles and polymethyl methacrylate particles.
  • the raw material resin appropriately weighed and mixed in the raw material process 100 is sent to the extrusion process 112.
  • the raw material resin mixed in the mixer 134 is charged into the extruder 138 through the hopper 136.
  • the raw material resin is melted while being kneaded by the extruder 138.
  • the extruder 138 may be either a single-screw extruder or a multi-screw extruder, and preferably includes a vent function that evacuates the interior of the extruder 138.
  • the raw material resin melted by the extruder 138 is sent to a die 12 (for example, a T die) through a supply pipe 142 by a metering pump 140 such as a screw pump or a gear pump.
  • the molten resin sheet 14 a extruded from the die 12 into a sheet is then sent to the sheet forming step 114.
  • the molten resin sheet 14 a extruded from the die 12 is sandwiched between the mold roller 16 and the nip roller 18.
  • the molten resin sheet 14a is cooled and solidified while being formed into a shape having a thickness distribution in the width direction.
  • the solidified resin sheet 14 is peeled off by the peeling roller 20 (peeling step).
  • the resin sheet 14 that has undergone the sheet forming step 114 is then sent to a conveying step 116.
  • the conveying step 116 is a step of conveying the resin sheet 14 peeled from the peeling roller 20 to the cutting step 124.
  • the conveyance is performed by the resin sheet being pulled by the take-up roll 24.
  • the resin sheet 14 is heated in the transport process, and the annealing process is performed using the remaining heat. Therefore, in the conveyance process, the temperature of the resin sheet is adjusted using a heating device.
  • the resin sheet 14 whose temperature is controlled and conveyed by the conveying step 116 is sent to the cutting step 124.
  • the cutting step 124 is a step of cutting the resin sheet 14 to a predetermined length. Moreover, it can also have the process of excising the width direction both ends (ear part) of the resin sheet 14.
  • a laser cutter, an electron beam cutting, an ultrasonic cutter, or the like can be used as the cutting means 174.
  • a guillotine-type cutting means composed of a receiving blade and a pressing blade can also be used.
  • the cutting step 124 can also include a step of cutting in the conveying direction at the joint of the shape.
  • the resin sheet 14 is formed into a predetermined shape in the sheet forming step 114, but both edge portions of the resin sheet 14 have a dimensional accuracy worse than that of the central portion in the shape, and a large residual distortion. Therefore, it is preferable to cut.
  • the cut portion is preferably cut at 20 to 30 mm at both ends of the resin sheet 14. As shown in FIG. 2, both edges of the resin sheet can be cut before cutting the resin sheet in a direction perpendicular to the conveying direction, or before cutting the sheet into a predetermined shape and performing an annealing treatment. It can also be cut.
  • a part of the cut resin sheet 14 is collected in a collection box 176, and the collected resin is discarded or reused.
  • the cut resin sheet 14 is conveyed to the annealing process 126 by the conveyor belt 196 driven by the roller 194.
  • the annealing process is provided to prevent a rapid temperature change of the resin sheet 14.
  • a sudden temperature change occurs in the resin sheet 14
  • the inside of the resin sheet 14 is in an elastic state while the vicinity of the surface of the resin sheet 14 is in a plastic state.
  • the surface shape of the sheet 14 is deteriorated. Further, there is a problem that a temperature difference occurs between the front and back surfaces of the resin sheet 14 and the resin sheet 14 is warped.
  • the resin sheet production line 10 includes a die 12 for shaping the raw material resin melted by the extruder 138 into a sheet shape, a mold roller 16 having an uneven thickness formed on the surface, and a mold roller 16 facing the mold roller 16.
  • the nip roller 18 is formed, the peeling roller 20 is disposed opposite to the mold roller 16, and the heating device 22 that controls the temperature of the resin sheet 14.
  • the sheet-shaped molten resin sheet 14 a extruded from the die 12 is pressed between the mold roller 16 and a nip roller disposed opposite to the mold roller 16, and the uneven shape inverted mold on the surface of the mold roller 16 is transferred to the resin sheet 14. Then, the resin sheet 14 is gradually cooled by being wound around a peeling roller 20 disposed opposite to the mold roller 16, and is transported in a state where distortion is removed.
  • the extrusion speed of the resin sheet 14 of the die 12 can be 0.1 to 50 m / min, preferably 0.3 to 30 m / min. Accordingly, the peripheral speed of the mold roller 16 is also substantially matched with this. In addition, it is preferable to control the speed unevenness of each roller within 1% with respect to the set value.
  • the pressing pressure of the nip roller 18 against the mold roller 16 should be 0 to 200 kN / m (kgf / cm) in terms of linear pressure (value converted assuming that the surface contact due to elastic deformation of each nip roller is linear contact). It is preferably 0 to 100 kN / m (kgf / cm).
  • a reverse shape for forming the uneven thickness resin sheet shown in FIGS. 4A and 4B is formed on the surface of the mold roller 16, for example.
  • 4A and 4B are cross-sectional views of the resin sheet 14 after molding. That is, the back surface of the resin sheet 14 is a flat surface, and a linear uneven shape surface parallel to the traveling direction is formed on the surface of the resin sheet 14. Therefore, an endless groove having a shape obtained by inverting the formed resin sheet 14 shown in FIGS. 4A and 4B may be formed on the surface of the mold roller 16.
  • the thickness of the uneven thickness resin sheet produced by the method for producing a resin sheet of the present invention is such that the thickness of the thickest part of the resin sheet is Dmax and the thickness of the thinnest part is Dmin.
  • the thickness difference Dmax ⁇ Dmin is preferably 0.5 mm or more and 5 mm or less, more preferably 0.5 mm or more and 3 mm or less. Further, as shown in FIG. 4B, the pitch L when there are two or more thick portions is preferably 200 mm or more, and more preferably 400 mm or more.
  • the material of the mold roller 16 includes various steel members, stainless steel, copper, zinc, brass, and a metal lining of these metal materials, and a rubber lining on the surface. These metal materials are HCr plated, Cu plated, Ni plated. Those plated with ceramics, ceramics, and various composite materials can be used.
  • the formation of the inverted saddle shape on the surface of the mold roller depends on the material of the roller surface, but generally a combination of cutting with an NC lathe and finishing buffing can be preferably employed. Also, other known processing methods (cutting, ultrasonic processing, electric discharge processing, etc.) can be employed.
  • the surface roughness of the mold roller surface is preferably 0.5 ⁇ m or less, and more preferably 0.2 ⁇ m or less, in terms of the center line average roughness Ra.
  • the mold roller 16 is rotationally driven at a predetermined peripheral speed by driving means (not shown).
  • the nip roller 18 is a roller that is disposed opposite to the mold roller 16 and clamps the resin sheet 14 with the mold roller 16.
  • the material of the nip roller 18 is a variety of steel members, stainless steel, copper, zinc, brass, a metal lining of these metal materials, a rubber lining on the surface, HCr plating, Cu plating, Ni plating, etc. on these metal materials These materials, ceramics, and various composite materials can be used.
  • the surface of the nip roller 18 is preferably processed into a mirror surface, and the center line average roughness Ra is preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the nip roller 18 is rotationally driven at a predetermined peripheral speed by a driving means (not shown).
  • a driving means not shown.
  • the structure which does not provide a drive means in the nip roller 18 is also possible, when the point which can make the back surface of the resin sheet 14 a favorable state is provided, it is preferable to provide a drive means.
  • the nip roller 18 is provided with a pressing means (not shown) so that the resin sheet 14 between the nip roller 18 and the mold roller 16 can be pressed with a predetermined pressure.
  • Each of the pressurizing means is configured to apply pressure in the normal direction at the contact point between the nip roller 18 and the mold roller 16, and various known means such as a motor driving means, an air cylinder, and a hydraulic cylinder are employed. it can.
  • the nip roller 18 may be configured to be less likely to bend due to the reaction force of the clamping pressure.
  • a back-up roller (not shown) is provided on the back side of the nip roller 18 (opposite side of the mold roller 16), and a roller configuration is provided with a strength distribution that increases the rigidity of the central portion in the axial direction of the roller. , And combinations of these can be employed.
  • the peeling roller 20 is disposed opposite to the mold roller 16 and is a roller for peeling the resin sheet 14 from the mold roller 16 by winding the resin sheet 14, and is disposed 180 degrees downstream of the mold roller 16. .
  • the surface of the peeling roller 20 is preferably processed into a mirror surface. By setting it as such a surface, the back surface of the resin sheet 14 after a shaping
  • the surface roughness of the surface of the peeling roller is preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less in terms of the center line average roughness Ra.
  • the material of the peeling roller 20 includes various steel members, stainless steel, copper, zinc, brass, and a metal lining of these metal materials, and a rubber lining on the surface.
  • the peeling roller 20 is rotationally driven in the direction of the arrow at a predetermined peripheral speed by a driving means (not shown).
  • a driving means not shown
  • the heating device 22 is installed in the vicinity of the mold roll, in the vicinity of the peeling roller, and on the lower surface side and the upper surface side of the resin sheet 14 in the conveying step.
  • the heating device 22 is not particularly limited as long as it is a non-contact type such as warm air, a far infrared heater, or a near infrared heater, but a far infrared heater is preferably used from the viewpoint of heating efficiency.
  • the heating by the heating device 22 is such that the maximum temperature of the surface in the width direction of the resin sheet 14 can be cut at a temperature of (Tg ⁇ 40) ° C. or higher when the glass temperature of the resin is Tg in the cutting in the cutting step 124.
  • Heat More preferably, it is (Tg-30) ° C. or higher.
  • the upper limit of the temperature during the cutting step is preferably Tg ° C. or lower, more preferably (Tg ⁇ 10) ° C. or lower.
  • the heating in the transporting process is first performed by the heating device 22c from the lower surface side (the surface side not having the mold) of the resin sheet 14 after being peeled off by the peeling roller 20. This is because if the resin sheet 14 is heated too much from the upper surface side (the surface side where the mold is attached), the resin sheet 14 is deformed by the subsequent heat shrinkage, and a resin sheet having a desired shape may not be obtained.
  • the surface temperature of the resin sheet 14 is equal to or higher than Tg, it is preferable to heat from the lower surface side of the resin sheet.
  • the resin sheet 14 is sent to the annealing process 126 after the cutting process 124.
  • the resin sheet 14 is placed on a flat surface with the flat side of the resin sheet facing down, and heat treatment is performed to correct deformation / warping of the resin sheet using its own weight, and to reduce residual distortion. It is a process of slow cooperation.
  • a configuration is adopted in which a horizontal tunnel shape is provided, temperature adjusting means is provided inside the tunnel, and the cooling temperature profile of the resin sheet can be controlled.
  • the temperature adjustment means a structure in which air (hot air or cold air) whose temperature is controlled from a plurality of nozzles is jetted toward the resin sheet 14, and a resin sheet by a heating means (nichrome wire heater, infrared heater, dielectric heating means, etc.)
  • a heating means such as the structure which heats the front and back surfaces of 14, respectively, can be adopted.
  • the support member for supporting the resin sheet 14 in the annealing treatment step a steel belt 198 as shown in FIG. 3 can be used, and a belt of heat-resistant fluororesin-impregnated fibers or a stainless chain can also be used. Since the direction in which the support member has flatness is reflected in the flatness of the resin sheet after the annealing treatment, the flatness of the support member may be 0.5 mm or less in the region where the resin sheet is supported. Preferably, it is 0.3 mm or less.
  • the ambient temperature (annealing temperature) in the annealing process 126 is preferably (Tg-40) ° C. or higher and (Tg-10) ° C. or lower, more preferably (Tg-30) ° C. or higher and (Tg-10) ° C. or lower.
  • the humidity is preferably in a dry state.
  • the temperature of the resin sheet is heated in the conveying step 116 so as to maintain (Tg ⁇ 40) ° C. or higher which is the temperature of the resin sheet in the cutting step 124. More preferably, it is (Tg-30) ° C. or higher.
  • the upper limit is preferably Tg ° C. or lower, more preferably (Tg ⁇ 10) ° C. or lower.
  • the resin sheet 14 is moved in the horizontal direction and the annealing treatment step 126 is performed. As shown in FIG. It is also possible to perform the annealing process by moving up and down one by one. By setting it as the said structure, even when the size of the resin sheet 14 becomes large, an installation can be reduced in size and an enlargement of an installation can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A process for producing a resin sheet with thickness unevenness, characterized by comprising: an extrusion step in which a molten resin is extruded from a die into a sheet form; a sheet forming step in which the molten resin sheet extruded is sandwiched between a die roller and a nipping roller to transfer a surface shape of the die roller to the molten resin sheet, and this sheet is cooled and solidified to form a resin sheet; a stripping step in which the resin sheet is stripped from a release roller; a conveyance step in which the resin sheet is drawn and conveyed with take-off rollers while heating the sheet with a heater; a cutting step in which the resin sheet is cut into a given length with a cutter when the resin sheet has a width-direction maximum surface temperature of (Tg-40) ºC to Tg ºC, provided that Tg is the glass transition temperature of the resin; and an annealing step in which the resin sheet cut with the cutter is successively annealed at a temperature of (Tg-40) ºC to Tg ºC.

Description

偏肉樹脂シートの製造方法Manufacturing method of uneven thickness resin sheet
 本発明は、偏肉樹脂シートの製造方法に係り、特に、各種表示装置の背面に配される導光版や各種光学素子に使用するのに好適な偏肉樹脂シートの製造方法に関する。 The present invention relates to a method for manufacturing an uneven thickness resin sheet, and more particularly to a method for manufacturing an uneven thickness resin sheet suitable for use in a light guide plate and various optical elements disposed on the back surface of various display devices.
 一般に、樹脂シートの押出成形においては、Tダイから押し出された溶融樹脂シートは、冷却ロールにより冷却され、その後、取引ロールにより引き取られながら搬送部での空冷により冷却・固化され、切断機で幅方向に切断されてシート状に成形される。 In general, in resin sheet extrusion molding, a molten resin sheet extruded from a T-die is cooled by a cooling roll, and then cooled and solidified by air cooling in a conveyance unit while being taken up by a transaction roll, and is then cut by a cutting machine. Cut in the direction and formed into a sheet.
 このようにして成形された樹脂シートは、成形時に、溶融させるための加熱や、固化させるための冷却などの温度変化により、残留歪みが残存し易い。そのため、経時変化により形状が安定しなかったり、物性が充分に発揮されなかったりするという問題があった。 The resin sheet molded in this way tends to have residual strain due to temperature changes such as heating for melting and cooling for solidification during molding. For this reason, there is a problem that the shape is not stable due to a change with time, or the physical properties are not sufficiently exhibited.
 そこで、熱可塑性樹脂成形体品の残留歪みの緩和や変形を矯正する目的で、あるいは、結晶性熱可塑性樹脂成形品の結晶化を進行させて強度を高める目的で、いわゆるアニール処理が施されている。アニール処理は温度が高いほど短時間で大きな効果が得られるが、温度が高すぎると樹脂が溶融して所望の形状の成形体を得られない。そこで熱可塑性樹脂の場合は樹脂のガラス転移温度Tgより20~40℃低い温度で、結晶性樹脂の場合は実使用する最高温度より10~20℃高い温度でアニールされるのが一般的である。 Therefore, a so-called annealing treatment is performed for the purpose of correcting residual strain relaxation or deformation of the thermoplastic resin molded article or for increasing the strength by promoting crystallization of the crystalline thermoplastic resin molded article. Yes. As the temperature is higher, the annealing treatment has a larger effect in a shorter time. However, if the temperature is too high, the resin melts and a molded body having a desired shape cannot be obtained. Therefore, in the case of a thermoplastic resin, it is generally annealed at a temperature 20 to 40 ° C. lower than the glass transition temperature Tg of the resin, and in the case of a crystalline resin, it is annealed at a temperature 10 to 20 ° C. higher than the highest temperature actually used. .
 残留歪みの緩和や結晶化の進行の際には、局部的な体積変化が起こり、成形品の形状や寸法が若干変化するため、アニール処理は主に形状や寸法精度が厳しくない用途の成形品や、ほぼ等方的な形状の成形品で行われていた。シート状の成形品などでは厚み方向と長さ・幅方向の体積変化の挙動が異なるため、反りや波打ちなどの変形が起こりやすい。また、シートのサイズが大きいときには、昇温時に面内を均一に加熱することが困難であるため、不均一な昇温速度によっても変形が起こりやすい。平板でなく厚み分布がある形状の場合は、昇温速度が厚みによって局所的に異なるため、さらに変形が起こりやすかった。 When the residual strain is relaxed or crystallization progresses, a local volume change occurs, and the shape and dimensions of the molded product change slightly. Therefore, the annealing process is mainly used for products whose shape and dimensional accuracy are not strict. In addition, it has been performed with a molded product having an almost isotropic shape. A sheet-like molded product or the like is prone to deformation such as warping and undulation because the volume change behavior in the thickness direction and the length / width direction is different. In addition, when the size of the sheet is large, it is difficult to uniformly heat the surface during the temperature increase, and therefore deformation is likely to occur even with a non-uniform temperature increase rate. In the case of a shape having a thickness distribution instead of a flat plate, the rate of temperature increase locally varies depending on the thickness, and thus deformation is more likely to occur.
 この対策として、例えば下記の特許文献1では、平板を積層した状態で側面および上下面に固定板を設置してアニールすることにより、アニールによる変形を防止する方法が開示されている。しかしながら、この方法では対象物が平板である場合は、アニールでの変形を抑制することができるが、厚み分布のあるシートには適用することができなかった。また積層することにより、内部まで伝熱するのに時間がかかってしまうためアニール時間が長くなり、また、アニールのセッティングにも時間がかかるため生産性が著しく低下するという問題があった。 As a countermeasure, for example, Patent Document 1 below discloses a method of preventing deformation due to annealing by setting and fixing a fixed plate on the side and upper and lower surfaces in a state where flat plates are laminated. However, in this method, when the object is a flat plate, deformation due to annealing can be suppressed, but it cannot be applied to a sheet having a thickness distribution. In addition, since lamination takes time to transfer heat to the inside, the annealing time becomes long, and it takes time to set the annealing, so that productivity is remarkably lowered.
 アニール時間を短くするために、例えば、下記の特許文献2、3には、加熱手段として遠赤外線を用いて連続的にアニールする方法が開示されている。
特開2005-47126号公報 特公平7-112715号公報 特開平11-172026号公報
In order to shorten the annealing time, for example, the following Patent Documents 2 and 3 disclose a method of continuously annealing using far infrared rays as a heating means.
JP 2005-47126 A Japanese Patent Publication No.7-112715 JP-A-11-172026
 特許文献2、3に記載されている方法および装置は、従来の温風加熱方式に比べて成形品の加熱時間が飛躍的に短くなり、アニール処理時間を短くすることが可能であった。しかしながら、大量にアニール処理を行う必要がある場合は、さらにアニール処理時間を短くする必要があった。 In the methods and apparatuses described in Patent Documents 2 and 3, the heating time of the molded product is remarkably shortened compared to the conventional hot air heating method, and the annealing time can be shortened. However, when it is necessary to perform a large amount of annealing treatment, it is necessary to further shorten the annealing treatment time.
 本発明はこのような事情に鑑みてなされたものであり、従来よりさらにアニール処理を短くして、生産性を向上させることができる偏肉樹脂シートの製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing an uneven thickness resin sheet that can further shorten the annealing process and improve the productivity.
 本発明の第一の態様によれば、溶融した樹脂をダイからシート状に押し出す押出工程と、押し出した溶融樹脂シートを型ローラとニップローラとで挟み、該型ローラの表面の加工形状を該溶融樹脂シートに転写し、冷却固化することにより樹脂シートを成形するシート成形工程と、前記樹脂シートを剥離ローラから剥離する剥離工程と、前記樹脂シートを加熱装置で加熱しながら、引取ローラで引っ張り搬送する搬送工程と、前記樹脂のガラス転移温度をTgとした時、前記樹脂シートの幅方向における表面の最高温度が(Tg-40)℃以上Tg℃以下の温度で、前記樹脂シートを切断手段により所定の長さに切断する切断工程と、前記切断手段により切断された樹脂シートを、(Tg-40)℃以上Tg℃以下の温度で連続的にアニール処理を行うアニール処理工程と、を有することを特徴とする偏肉樹脂シートの製造方法を提供する。 According to the first aspect of the present invention, an extruding step of extruding the molten resin from the die into a sheet shape, the extruded molten resin sheet is sandwiched between the mold roller and the nip roller, and the processing shape of the surface of the mold roller is melted. A sheet forming process for forming a resin sheet by transferring to a resin sheet and solidifying by cooling, a peeling process for peeling the resin sheet from a peeling roller, and pulling and conveying with a take-up roller while heating the resin sheet with a heating device The transporting step and the glass transition temperature of the resin as Tg, the maximum temperature of the surface in the width direction of the resin sheet is (Tg−40) ° C. to Tg ° C. The step of cutting to a predetermined length and the resin sheet cut by the cutting means are continuously annealed at a temperature of (Tg-40) ° C. to Tg ° C. And annealing process of performing processing to provide a method for manufacturing uneven thickness resin sheet and having a.
 第一の態様によれば、切断工程を樹脂シートの幅方向における表面の最高温度が(Tg-40)℃以上Tg℃以下の状態で切断を行い、さらに、次工程のアニール処理工程も(Tg-40)℃以上Tg以下の温度で行っているので、切断工程後からアニール処理工程までに樹脂シートを冷却する必要がない。このためアニール処理時間を減らすことができ、生産性を向上させることができる。 According to the first aspect, the cutting step is performed in a state where the maximum temperature of the surface in the width direction of the resin sheet is (Tg−40) ° C. or more and Tg ° C. or less, and the annealing step of the next step is also performed (Tg Since it is performed at a temperature of −40) ° C. or more and Tg or less, there is no need to cool the resin sheet after the cutting step and before the annealing treatment step. For this reason, annealing treatment time can be reduced and productivity can be improved.
 本発明の第二の態様は第一の態様において、前記アニール処理工程は、前記樹脂シートを平面状の支持部材で支持して行うことを特徴とする。 The second aspect of the present invention is characterized in that, in the first aspect, the annealing step is performed by supporting the resin sheet with a planar support member.
 第二の態様によれば、アニール処理工程時において、樹脂シートを平面状の支持部材で支持してアニール処理することで、高温で柔らかい状態の樹脂シートが自重により平らになり、樹脂シートの変形の矯正を容易に行うことができる。 According to the second aspect, during the annealing treatment step, the resin sheet is supported by the flat support member and annealed, so that the resin sheet in a soft state at high temperature becomes flat due to its own weight, and the resin sheet is deformed. Can be easily corrected.
 本発明の第三の態様は第一又は第二の態様において、前記樹脂シートの幅方向における厚み分布の、最厚部と最薄部の厚みの差が0.5mm以上5mm以下であることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect, the difference in thickness between the thickest part and the thinnest part of the thickness distribution in the width direction of the resin sheet is 0.5 mm or more and 5 mm or less. Features.
 第三の態様によれば、厚み分布の最厚部と最薄部の差を上記範囲とすることにより、搬送工程およびアニール処理工程において、樹脂シートの温度調節を容易に行うことができるので、反りなどの形状変化を抑えることができる。 According to the third aspect, by adjusting the difference between the thickest part and the thinnest part of the thickness distribution in the above range, the temperature of the resin sheet can be easily adjusted in the transport process and the annealing process, Shape changes such as warping can be suppressed.
 本発明の偏肉樹脂シートの製造方法によれば、切断工程からアニール処理工程において、温度を維持しながら連続的に行っているため、樹脂シートを冷却する必要がない。このためアニール処理の時間を短くすることができ、生産性を向上させることができる。 According to the manufacturing method of the uneven thickness resin sheet of the present invention, since the temperature is maintained continuously from the cutting process to the annealing process, it is not necessary to cool the resin sheet. For this reason, the time of annealing treatment can be shortened and productivity can be improved.
図1は、本発明が適用される樹脂シートの製造方法のフローを説明する工程図であり;FIG. 1 is a process diagram illustrating a flow of a method for producing a resin sheet to which the present invention is applied; 図2は、本発明が適用される樹脂シートの製造装置の概念図であり;FIG. 2 is a conceptual diagram of a resin sheet manufacturing apparatus to which the present invention is applied; 図3は、樹脂シートの製造装置のシート成形工程からアニール処理工程を示す構成図であり;FIG. 3 is a structural diagram showing the annealing process from the sheet forming process of the resin sheet manufacturing apparatus; 図4Aは、樹脂シートの形状の一例を示す断面図であり;FIG. 4A is a cross-sectional view showing an example of the shape of a resin sheet; 図4Bは、樹脂シートの形状の他の例を示す断面図であり;FIG. 4B is a cross-sectional view showing another example of the shape of the resin sheet; 図5は、樹脂シートの製造装置の別の態様を示す構成図である。FIG. 5 is a configuration diagram illustrating another aspect of the resin sheet manufacturing apparatus.
 以下、添付図面に従って、本発明に係る偏肉樹脂シートの製造方法の好ましい実施の形態ついて説明する。 Hereinafter, preferred embodiments of a method for producing an uneven thickness resin sheet according to the present invention will be described with reference to the accompanying drawings.
 図1は、本発明に係る樹脂シートの製造方法の全体工程図であり、図2は各工程における装置構成を示す概念図である。 FIG. 1 is an overall process diagram of a method for producing a resin sheet according to the present invention, and FIG. 2 is a conceptual diagram showing an apparatus configuration in each process.
 図1に示すように、本発明の偏肉樹脂シートの製造方法は、主として、原料の計量や混合を行う原料工程100と、溶融した樹脂を連続してシート状(帯状)に押し出す押出工程112と、押し出した溶融樹脂シート14aを冷却固化することにより樹脂シート14を成形するシート成形工程114と、樹脂シート14を剥離する剥離工程115と、剥離された樹脂シート14を次工程である切断工程124に搬送する搬送工程116と、樹脂シート14を所定サイズ(長さ・幅)に裁切断する切断工程124と、樹脂シート14を徐冷し、残留歪みの除去を行うアニール処理工程126と、で構成される。 As shown in FIG. 1, the manufacturing method of the uneven thickness resin sheet of the present invention mainly includes a raw material process 100 for measuring and mixing raw materials and an extrusion process 112 for continuously extruding molten resin into a sheet (band). And a sheet forming step 114 for forming the resin sheet 14 by cooling and solidifying the extruded molten resin sheet 14a, a peeling step 115 for peeling the resin sheet 14, and a cutting step for cutting the peeled resin sheet 14 as the next step. A conveying process 116 for conveying to 124, a cutting process 124 for cutting the resin sheet 14 into a predetermined size (length / width), an annealing process 126 for gradually cooling the resin sheet 14 and removing residual distortion, Consists of.
 以下、図2を参照して本発明が適用される樹脂シートの製造装置の主要な構成を説明する。 Hereinafter, the main configuration of the resin sheet manufacturing apparatus to which the present invention is applied will be described with reference to FIG.
 図2に示すように、原料工程100では、原料樹脂および添加物が、それぞれ原料サイロ128(又は原料タンク)及び添加物サイロ130(又は添加物タンク)から自動計量機132に送られて自動計量され、混合器134で原料樹脂と添加物が所定比率になるように混合される。 As shown in FIG. 2, in the raw material process 100, the raw material resin and the additive are respectively sent from the raw material silo 128 (or raw material tank) and the additive silo 130 (or additive tank) to the automatic weighing machine 132 and automatically metered. In the mixer 134, the raw material resin and the additive are mixed at a predetermined ratio.
 本発明に適用される原料樹脂の樹脂材料としては、熱可塑性樹脂を用いることができる。例えば、ポリメチルメタクリレート樹脂(PMMA)、ポリカーボネート樹脂(PC)、ポリスチレン樹脂(PS)、MS樹脂、AS樹脂、ポリプロピレン樹脂(PP)、ポリエチレン樹脂(PE)、ポリエチレンテレフタレート樹脂(PET)、ポリ塩化ビニル樹脂(PVC)、熱可塑性エラストマー、又はこれらの共重合体、シクロオレフィンポリマーなどが挙げられる。 A thermoplastic resin can be used as the resin material of the raw material resin applied to the present invention. For example, polymethyl methacrylate resin (PMMA), polycarbonate resin (PC), polystyrene resin (PS), MS resin, AS resin, polypropylene resin (PP), polyethylene resin (PE), polyethylene terephthalate resin (PET), polyvinyl chloride Examples thereof include a resin (PVC), a thermoplastic elastomer, a copolymer thereof, and a cycloolefin polymer.
 また、これらの熱可塑性樹脂に光拡散粒子を含んでもよく、光拡散粒子としては、例えば、シリコーンやシリカ、炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、酸化チタン、ガラスビーズ、ケイ酸カルシウムなどの無機粒子やポリメチルメタクリレート粒子などが挙げられる。散乱粒子を添加する場合、最初に、原料樹脂に散乱粒子を所定濃度よりも高濃度に添加されたマスターペレットが造粒機で製造される。次いで、マスターバッチ方式を好適に採用することで、散乱粒子を所定濃度よりも高濃度に添加されたマスターペレットと散乱粒子が添加されていないベースペレットとが混合器134で所定比率混合される。散乱粒子以外の添加物を添加する場合も同様である。 Further, these thermoplastic resins may contain light diffusing particles. Examples of the light diffusing particles include inorganic materials such as silicone, silica, calcium carbonate, barium sulfate, aluminum hydroxide, titanium oxide, glass beads, and calcium silicate. Examples thereof include particles and polymethyl methacrylate particles. When adding scattering particles, first, master pellets in which scattering particles are added to a raw material resin at a concentration higher than a predetermined concentration are manufactured by a granulator. Next, by suitably adopting the master batch method, the master pellets to which the scattering particles are added at a higher concentration than the predetermined concentration and the base pellets to which the scattering particles are not added are mixed at a predetermined ratio by the mixer 134. The same applies when additives other than the scattering particles are added.
 原料工程100で適切に計量・混合された原料樹脂は押出工程112に送られる。 The raw material resin appropriately weighed and mixed in the raw material process 100 is sent to the extrusion process 112.
 押出工程112では、混合器134で混合された原料樹脂がホッパー136を介して押出機138に投入される。原料樹脂が押出機138により混練されながら溶融される。押出機138は単軸式押出機及び多軸式押出機の何れでもよく、押出機138の内部を真空にするベント機能を含むものが好ましい。押出機138で溶融された原料樹脂は、スクリューポンプ又はギアポンプなどの定量ポンプ140により供給管142を介してダイ12(例えばTダイ)に送られる。ダイ12からシート状に押し出された溶融樹脂シート14aは次にシート成形工程114に送られる。 In the extrusion step 112, the raw material resin mixed in the mixer 134 is charged into the extruder 138 through the hopper 136. The raw material resin is melted while being kneaded by the extruder 138. The extruder 138 may be either a single-screw extruder or a multi-screw extruder, and preferably includes a vent function that evacuates the interior of the extruder 138. The raw material resin melted by the extruder 138 is sent to a die 12 (for example, a T die) through a supply pipe 142 by a metering pump 140 such as a screw pump or a gear pump. The molten resin sheet 14 a extruded from the die 12 into a sheet is then sent to the sheet forming step 114.
 シート成形工程114では、ダイ12から押し出された溶融樹脂シート14aが、型ローラ16とニップローラ18とで挟まれる。溶融樹脂シート14aが幅方向に厚み分布を持つ形状に成形されながら、冷却・固化される。固化した樹脂シート14は剥離ローラ20で剥離される(剥離工程)。シート成形工程114を経た樹脂シート14は次に搬送工程116に送られる。 In the sheet forming step 114, the molten resin sheet 14 a extruded from the die 12 is sandwiched between the mold roller 16 and the nip roller 18. The molten resin sheet 14a is cooled and solidified while being formed into a shape having a thickness distribution in the width direction. The solidified resin sheet 14 is peeled off by the peeling roller 20 (peeling step). The resin sheet 14 that has undergone the sheet forming step 114 is then sent to a conveying step 116.
 搬送工程116は、剥離ローラ20から剥離された樹脂シート14を切断工程124に搬送する工程である。搬送は引取ロール24により樹脂シートが引っ張れることにより行う。本発明は、搬送工程において樹脂シート14を加熱し、その余熱を利用してアニール処理工程を行っている。そのため、搬送工程において、加熱装置を用いて、樹脂シートの温度調節を行っている。 The conveying step 116 is a step of conveying the resin sheet 14 peeled from the peeling roller 20 to the cutting step 124. The conveyance is performed by the resin sheet being pulled by the take-up roll 24. In the present invention, the resin sheet 14 is heated in the transport process, and the annealing process is performed using the remaining heat. Therefore, in the conveyance process, the temperature of the resin sheet is adjusted using a heating device.
 搬送工程116により温度制御され搬送された樹脂シート14は、切断工程124に送られる。切断工程124は樹脂シート14を所定長さに切り揃える工程である。また、樹脂シート14の幅方向両端部分(耳部)を切除する工程を有することもできる。切断手段174としては、レーザーカッター、電子ビーム切断、超音波カッターなどを用いることができる。また、受け刃と押し当て刃とからなるギロチンタイプの切断手段を用いることもできる。 The resin sheet 14 whose temperature is controlled and conveyed by the conveying step 116 is sent to the cutting step 124. The cutting step 124 is a step of cutting the resin sheet 14 to a predetermined length. Moreover, it can also have the process of excising the width direction both ends (ear part) of the resin sheet 14. FIG. As the cutting means 174, a laser cutter, an electron beam cutting, an ultrasonic cutter, or the like can be used. A guillotine-type cutting means composed of a receiving blade and a pressing blade can also be used.
 また、樹脂シートに形成された形状が複数の厚肉部を有している場合には、切断工程124において、その形状の継ぎ目で搬送方向に切断する工程も有することができる。 Further, when the shape formed on the resin sheet has a plurality of thick portions, the cutting step 124 can also include a step of cutting in the conveying direction at the joint of the shape.
 また、樹脂シート14は、シート成形工程114で所定の形状に成形されるが、樹脂シート14の両縁部は、その形状において中央部に比較して寸法精度が悪くなり、また残留歪みも大きくなるので、切断することが好ましい。切断部分は、樹脂シート14の両端部を各20~30mm切断することが好ましい。樹脂シートの両縁部は図2に示すように、樹脂シートを搬送方向と直交する方向に切断する前に切断することもできるし、所定の形状にシートを切断し、アニール処理を行う前に切断することもできる。 In addition, the resin sheet 14 is formed into a predetermined shape in the sheet forming step 114, but both edge portions of the resin sheet 14 have a dimensional accuracy worse than that of the central portion in the shape, and a large residual distortion. Therefore, it is preferable to cut. The cut portion is preferably cut at 20 to 30 mm at both ends of the resin sheet 14. As shown in FIG. 2, both edges of the resin sheet can be cut before cutting the resin sheet in a direction perpendicular to the conveying direction, or before cutting the sheet into a predetermined shape and performing an annealing treatment. It can also be cut.
 切断された樹脂シート14の一部は回収ボックス176で回収され、回収された樹脂は廃棄又は再利用される。 A part of the cut resin sheet 14 is collected in a collection box 176, and the collected resin is discarded or reused.
 切断された樹脂シート14は、ローラ194により駆動されるコンベアベルト196で、アニール処理工程126に搬送される。アニール処理工程は、樹脂シート14の急激な温度変化を防止するために設けられたものである。樹脂シート14に急激な温度変化を生じた場合、たとえば、樹脂シート14の表面近傍が塑性状態になっているのに、樹脂シート14の内部が弾性状態であり、この部分の硬化による収縮で樹脂シート14の表面形状が悪化する。また、樹脂シート14の表裏面に温度差を生じ、樹脂シート14に反りを生じる不具合もある。 The cut resin sheet 14 is conveyed to the annealing process 126 by the conveyor belt 196 driven by the roller 194. The annealing process is provided to prevent a rapid temperature change of the resin sheet 14. When a sudden temperature change occurs in the resin sheet 14, for example, the inside of the resin sheet 14 is in an elastic state while the vicinity of the surface of the resin sheet 14 is in a plastic state. The surface shape of the sheet 14 is deteriorated. Further, there is a problem that a temperature difference occurs between the front and back surfaces of the resin sheet 14 and the resin sheet 14 is warped.
 次に上記各工程のうち、本発明の特徴をなすシート成形工程114からアニール処理工程126の詳細について図3および図4により説明する。 Next, among the above steps, details of the sheet forming step 114 to the annealing step 126 that characterize the present invention will be described with reference to FIGS.
 樹脂シートの製造ライン10は、押出機138によって溶融された原料樹脂をシート状に賦形するためのダイ12と、表面に偏肉形状が形成された型ローラ16と、型ローラ16に対向配置されるニップローラ18と、型ローラ16に対向配置される剥離ローラ20と、樹脂シート14の温度を制御する加熱装置22と、により構成される。 The resin sheet production line 10 includes a die 12 for shaping the raw material resin melted by the extruder 138 into a sheet shape, a mold roller 16 having an uneven thickness formed on the surface, and a mold roller 16 facing the mold roller 16. The nip roller 18 is formed, the peeling roller 20 is disposed opposite to the mold roller 16, and the heating device 22 that controls the temperature of the resin sheet 14.
 ダイ12より押し出したシート状の溶融樹脂シート14aを、型ローラ16と型ローラ16に対向配置されるニップローラとで挟圧し、型ローラ16表面の偏肉形状の反転型を樹脂シート14に転写して成形し、樹脂シート14を型ローラ16に対向配置される剥離ローラ20に巻き掛けることにより徐冷し、歪みが除去された状態で、搬送される。 The sheet-shaped molten resin sheet 14 a extruded from the die 12 is pressed between the mold roller 16 and a nip roller disposed opposite to the mold roller 16, and the uneven shape inverted mold on the surface of the mold roller 16 is transferred to the resin sheet 14. Then, the resin sheet 14 is gradually cooled by being wound around a peeling roller 20 disposed opposite to the mold roller 16, and is transported in a state where distortion is removed.
 この樹脂シートの製造において、ダイ12の樹脂シート14の押し出し速度は、0.1~50m/分、好ましくは0.3~30m/分の値が採用できる。したがって、型ローラ16の周速も略これに一致させる。なお、各ローラの速度ムラは、設定値に対して、1%以内に制御することが好ましい。 In the production of this resin sheet, the extrusion speed of the resin sheet 14 of the die 12 can be 0.1 to 50 m / min, preferably 0.3 to 30 m / min. Accordingly, the peripheral speed of the mold roller 16 is also substantially matched with this. In addition, it is preferable to control the speed unevenness of each roller within 1% with respect to the set value.
 ニップローラ18の型ローラ16への押し付け圧は、線圧換算(各ニップローラの弾性変形による面接触を線接触と仮定して換算した値)で、0~200kN/m(kgf/cm)とすることが好ましく、0~100kN/m(kgf/cm)とするのがより好ましい。 The pressing pressure of the nip roller 18 against the mold roller 16 should be 0 to 200 kN / m (kgf / cm) in terms of linear pressure (value converted assuming that the surface contact due to elastic deformation of each nip roller is linear contact). It is preferably 0 to 100 kN / m (kgf / cm).
 型ローラ16の表面には、例えば、図4A、図4Bに示される偏肉樹脂シートを成形するための反転形状が形成されている。図4A、図4Bは、成形後の樹脂シート14の断面図である。すなわち、樹脂シート14の裏面は平面であり、樹脂シート14の表面には、走行方向に平行な直線状の偏肉形状面が形成されている。したがって、型ローラ16の表面には、図4A、図4Bに示す形成後の樹脂シート14を反転した形状のエンドレス溝を形成すればよい。本発明の樹脂シートの製造方法により製造される偏肉樹脂シートの厚みは、樹脂シートの最厚部の厚みをDmax、最薄部の厚みをDminとしたとき、最厚部と最薄部の厚み差Dmax-Dminが0.5mm以上5mm以下であることが好ましく、より好ましくは0.5mm以上3mm以下であることがさらに好ましい。また、図4Bに示すように、厚肉の部分が2ヶ所以上ある場合のピッチLは200mm以上あることが好ましく、より好ましくは400mm以上である。 On the surface of the mold roller 16, for example, a reverse shape for forming the uneven thickness resin sheet shown in FIGS. 4A and 4B is formed. 4A and 4B are cross-sectional views of the resin sheet 14 after molding. That is, the back surface of the resin sheet 14 is a flat surface, and a linear uneven shape surface parallel to the traveling direction is formed on the surface of the resin sheet 14. Therefore, an endless groove having a shape obtained by inverting the formed resin sheet 14 shown in FIGS. 4A and 4B may be formed on the surface of the mold roller 16. The thickness of the uneven thickness resin sheet produced by the method for producing a resin sheet of the present invention is such that the thickness of the thickest part of the resin sheet is Dmax and the thickness of the thinnest part is Dmin. The thickness difference Dmax−Dmin is preferably 0.5 mm or more and 5 mm or less, more preferably 0.5 mm or more and 3 mm or less. Further, as shown in FIG. 4B, the pitch L when there are two or more thick portions is preferably 200 mm or more, and more preferably 400 mm or more.
 型ローラ16の材質としては、各種鉄鋼部材、ステンレス鋼、銅、亜鉛、真鍮、これらの金属材料を芯金として、表面にゴムライニングしたもの、これらの金属材料にHCrメッキ、Cuメッキ、Niメッキなどのメッキを施したもの、セラミックス、及び各種の複合材料が採用できる。 The material of the mold roller 16 includes various steel members, stainless steel, copper, zinc, brass, and a metal lining of these metal materials, and a rubber lining on the surface. These metal materials are HCr plated, Cu plated, Ni plated. Those plated with ceramics, ceramics, and various composite materials can be used.
 型ローラ表面の逆蒲鉾形状の形成は、ローラ表面の材質にもよるが、一般的にはNC旋盤による切削加工と仕上げバフ加工との組み合わせが好ましく採用できる。また、他の公知の加工方法(切削加工、超音波加工、放電加工、など)も採用できる。型ローラ表面の表面粗さは、中心線平均粗さRaで0.5μm以下とするのが好ましく、0.2μm以下とするのがより好ましい。型ローラ16は、図示しない駆動手段により、所定の周速度で回転駆動される。 The formation of the inverted saddle shape on the surface of the mold roller depends on the material of the roller surface, but generally a combination of cutting with an NC lathe and finishing buffing can be preferably employed. Also, other known processing methods (cutting, ultrasonic processing, electric discharge processing, etc.) can be employed. The surface roughness of the mold roller surface is preferably 0.5 μm or less, and more preferably 0.2 μm or less, in terms of the center line average roughness Ra. The mold roller 16 is rotationally driven at a predetermined peripheral speed by driving means (not shown).
 ニップローラ18は、型ローラ16に対向配置され、型ローラ16とで樹脂シート14を挟圧するためのローラである。ニップローラ18の材質としては、各種鉄鋼部材、ステンレス鋼、銅、亜鉛、真鍮、これらの金属材料を芯金として、表面にゴムライニングしたもの、これらの金属材料にHCrメッキ、Cuメッキ、Niメッキなどのメッキを施したもの、セラミックス、および各種の複合材料が採用できる。 The nip roller 18 is a roller that is disposed opposite to the mold roller 16 and clamps the resin sheet 14 with the mold roller 16. The material of the nip roller 18 is a variety of steel members, stainless steel, copper, zinc, brass, a metal lining of these metal materials, a rubber lining on the surface, HCr plating, Cu plating, Ni plating, etc. on these metal materials These materials, ceramics, and various composite materials can be used.
 ニップローラ18の表面は鏡面状に加工されていることが好ましく、中心線平均粗さRaで0.5μm以下とするのが好ましく、0.2μm以下とするのがより好ましい。このような平滑な表面とすることにより、成形後の樹脂シート14の裏面を良好な状態にできる。また、ニップローラ18は、図示しない駆動手段により、所定の周速度で回転駆動される。尚、ニップローラ18に駆動手段を設けない構成も可能であるが、樹脂シート14の裏面を良好な状態にできる点を考慮すると、駆動手段を設けることが好ましい。 The surface of the nip roller 18 is preferably processed into a mirror surface, and the center line average roughness Ra is preferably 0.5 μm or less, more preferably 0.2 μm or less. By setting it as such a smooth surface, the back surface of the resin sheet 14 after a shaping | molding can be made into a favorable state. The nip roller 18 is rotationally driven at a predetermined peripheral speed by a driving means (not shown). In addition, although the structure which does not provide a drive means in the nip roller 18 is also possible, when the point which can make the back surface of the resin sheet 14 a favorable state is provided, it is preferable to provide a drive means.
 ニップローラ18には、図示しない加圧手段が設けられており、型ローラ16との間の樹脂シート14を所定の圧力で挟圧できるようになっている。この加圧手段は、いずれも、ニップローラ18と型ローラ16との接触点における法線方向に圧力を印加する構成のもので、モータ駆動手段、エアシリンダ、油圧シリンダ等の公知の各種手段が採用できる。 The nip roller 18 is provided with a pressing means (not shown) so that the resin sheet 14 between the nip roller 18 and the mold roller 16 can be pressed with a predetermined pressure. Each of the pressurizing means is configured to apply pressure in the normal direction at the contact point between the nip roller 18 and the mold roller 16, and various known means such as a motor driving means, an air cylinder, and a hydraulic cylinder are employed. it can.
 ニップローラ18には、挟圧力の反力による撓みが生じにくくなるような構成を採用することもできる。このような構成としては、ニップローラ18の背面側(型ローラ16の反対側)に図示しないバックアップローラを設ける構成、ローラの軸方向中央部の剛性が大きくなるような強度分布を付けたローラの構成、及びこれらを組み合わせた構成などが採用できる。 The nip roller 18 may be configured to be less likely to bend due to the reaction force of the clamping pressure. As such a configuration, a back-up roller (not shown) is provided on the back side of the nip roller 18 (opposite side of the mold roller 16), and a roller configuration is provided with a strength distribution that increases the rigidity of the central portion in the axial direction of the roller. , And combinations of these can be employed.
 また、剥離ローラ20は、型ローラ16に対向配置され、樹脂シート14を巻き掛けることにより樹脂シート14を型ローラ16より剥離するためのローラで、型ローラ16の180度下流側に配置される。剥離ローラ20の表面は鏡面状に加工されていることが好ましい。このような表面とすることにより、成形後の樹脂シート14の裏面を良好な状態にできる。そして、剥離ローラ表面の表面粗さは、中心線平均粗さRaで0.5μm以下とするのが好ましく、0.2μm以下とするのがより好ましい。剥離ローラ20の材質としては、各種鉄鋼部材、ステンレス鋼、銅、亜鉛、真鍮、これらの金属材料を芯金として、表面にゴムライニングしたもの、これらの金属材料にHCrメッキ、Cuメッキ、Niメッキ等のメッキを施したもの、セラミックス、及び各種の複合材料が採用できる。剥離ローラ20は、図示しない駆動手段により、所定の周速度で矢印方向に回転駆動される。尚、剥離ローラ20に駆動手段を設けない構成も可能であるが、樹脂シート14の裏面を良好な状態にできる点より、駆動手段を設けることが好ましい。 The peeling roller 20 is disposed opposite to the mold roller 16 and is a roller for peeling the resin sheet 14 from the mold roller 16 by winding the resin sheet 14, and is disposed 180 degrees downstream of the mold roller 16. . The surface of the peeling roller 20 is preferably processed into a mirror surface. By setting it as such a surface, the back surface of the resin sheet 14 after a shaping | molding can be made into a favorable state. The surface roughness of the surface of the peeling roller is preferably 0.5 μm or less, more preferably 0.2 μm or less in terms of the center line average roughness Ra. The material of the peeling roller 20 includes various steel members, stainless steel, copper, zinc, brass, and a metal lining of these metal materials, and a rubber lining on the surface. These metal materials are HCr plated, Cu plated, Ni plated. For example, ceramics and various composite materials can be used. The peeling roller 20 is rotationally driven in the direction of the arrow at a predetermined peripheral speed by a driving means (not shown). In addition, although the structure which does not provide a drive means in the peeling roller 20 is also possible, it is preferable to provide a drive means from the point which can make the back surface of the resin sheet 14 a favorable state.
 シート成形工程114および後の搬送工程116においては、加熱装置22を設けることが好ましい。加熱装置22は、図3に示すように、型ロール近傍、剥離ローラ近傍、搬送工程の樹脂シート14の下面側および上面側に設置する。加熱装置22としては、温風や遠赤外線ヒーター、近赤外線ヒーターなどの非接触のものであれば、特に限定されず用いることができるが、加熱効率の点から遠赤外線ヒーターを用いることが好ましい。 In the sheet forming step 114 and the subsequent conveying step 116, it is preferable to provide the heating device 22. As shown in FIG. 3, the heating device 22 is installed in the vicinity of the mold roll, in the vicinity of the peeling roller, and on the lower surface side and the upper surface side of the resin sheet 14 in the conveying step. The heating device 22 is not particularly limited as long as it is a non-contact type such as warm air, a far infrared heater, or a near infrared heater, but a far infrared heater is preferably used from the viewpoint of heating efficiency.
 加熱装置22による加熱は、切断工程124における切断において、樹脂のガラス温度をTgとしたとき、樹脂シート14の幅方向における表面の最高温度が(Tg-40)℃以上の温度で切断できるように加熱を行う。より好ましくは、(Tg-30)℃以上である。また、切断工程時の温度の上限は、Tg℃以下であることが好ましく、より好ましくは(Tg-10)℃以下である。上記温度で行うことにより、次のアニール処理工程126において、その余熱を利用してアニール処理を行うことができる。 The heating by the heating device 22 is such that the maximum temperature of the surface in the width direction of the resin sheet 14 can be cut at a temperature of (Tg−40) ° C. or higher when the glass temperature of the resin is Tg in the cutting in the cutting step 124. Heat. More preferably, it is (Tg-30) ° C. or higher. Further, the upper limit of the temperature during the cutting step is preferably Tg ° C. or lower, more preferably (Tg−10) ° C. or lower. By performing at the above temperature, the annealing process can be performed using the remaining heat in the next annealing process step 126.
 搬送工程における加熱は、剥離ローラ20による剥離後は、まず、樹脂シート14の下面側(型がついていない面側)から加熱装置22cにより加熱することが好ましい。樹脂シート14の上面側(型がついている面側)から加熱しすぎると、その後の熱収縮で変形してしまい、所望の形状の樹脂シートを得ることができない場合があるからである。少なくとも樹脂シート14の表面温度がTg以上の時は、樹脂シートの下面側から加熱することが好ましい。 It is preferable that the heating in the transporting process is first performed by the heating device 22c from the lower surface side (the surface side not having the mold) of the resin sheet 14 after being peeled off by the peeling roller 20. This is because if the resin sheet 14 is heated too much from the upper surface side (the surface side where the mold is attached), the resin sheet 14 is deformed by the subsequent heat shrinkage, and a resin sheet having a desired shape may not be obtained. When at least the surface temperature of the resin sheet 14 is equal to or higher than Tg, it is preferable to heat from the lower surface side of the resin sheet.
 樹脂シート14は切断工程124の後に、アニール処理工程126に送られる。アニール処理は、樹脂シート14を平らな面の上に、樹脂シートの平面側を下にして置き、熱処理を行うことにより、自重を利用して樹脂シートの変形・反りを矯正し、残留歪みを徐協する工程である。 The resin sheet 14 is sent to the annealing process 126 after the cutting process 124. In the annealing process, the resin sheet 14 is placed on a flat surface with the flat side of the resin sheet facing down, and heat treatment is performed to correct deformation / warping of the resin sheet using its own weight, and to reduce residual distortion. It is a process of slow cooperation.
 アニール処理工程126としては、水平方向のトンネル形状とし、トンネル内部に温度調節手段を設け、樹脂シートの冷却温度プロファイルを制御できる構成が採用できる。温度調節手段としては、複数のノズルより温度制御されたエア(温風または冷風)を樹脂シート14に向けて噴出させる構成、加熱手段(ニクロム線ヒーター、赤外線ヒーター、誘電加熱手段など)により樹脂シート14の表裏面をそれぞれ加熱する構成など、公知の各手段が採用できる。 As the annealing process 126, a configuration is adopted in which a horizontal tunnel shape is provided, temperature adjusting means is provided inside the tunnel, and the cooling temperature profile of the resin sheet can be controlled. As the temperature adjustment means, a structure in which air (hot air or cold air) whose temperature is controlled from a plurality of nozzles is jetted toward the resin sheet 14, and a resin sheet by a heating means (nichrome wire heater, infrared heater, dielectric heating means, etc.) Each well-known means, such as the structure which heats the front and back surfaces of 14, respectively, can be adopted.
 アニール処理工程における樹脂シート14を支持する支持部材としては、図3に示すようなスチールベルト198を用いることもでき、耐熱性の高いフッ素樹脂含浸繊維のベルトやステンレスチェーンなどを用いることもできる。支持部材が平面性を有している方が、アニール処理後の樹脂シートの平面度に反映されるため、支持部材の平面度としては樹脂シートを支持する領域において0.5mm以下であることが好ましく、より好ましくは0.3mm以下である。 As the support member for supporting the resin sheet 14 in the annealing treatment step, a steel belt 198 as shown in FIG. 3 can be used, and a belt of heat-resistant fluororesin-impregnated fibers or a stainless chain can also be used. Since the direction in which the support member has flatness is reflected in the flatness of the resin sheet after the annealing treatment, the flatness of the support member may be 0.5 mm or less in the region where the resin sheet is supported. Preferably, it is 0.3 mm or less.
 アニール処理工程126の雰囲気温度(アニール温度)は(Tg-40)℃以上(Tg-10)℃以下が好ましく、より好ましくは(Tg-30)℃以上(Tg-10)℃以下である。湿度は乾燥状態であることが好ましい。また、樹脂シートの温度は、切断工程124の樹脂シートの温度である(Tg-40)℃以上を維持するように搬送工程116において加熱を行う。より好ましくは(Tg-30)℃以上である。また、上限はTg℃以下が好ましく、より好ましくは(Tg-10)℃以下である。搬送工程116において加熱した後、その余熱でアニール処理工程126を行うことにより、途中で、冷却・加熱などの工程を行う必要がないため、装置を簡略化できるとともに、アニール処理の時間も短縮することができる。このため、生産性良く偏肉樹脂シートの製造をすることができる。 The ambient temperature (annealing temperature) in the annealing process 126 is preferably (Tg-40) ° C. or higher and (Tg-10) ° C. or lower, more preferably (Tg-30) ° C. or higher and (Tg-10) ° C. or lower. The humidity is preferably in a dry state. The temperature of the resin sheet is heated in the conveying step 116 so as to maintain (Tg−40) ° C. or higher which is the temperature of the resin sheet in the cutting step 124. More preferably, it is (Tg-30) ° C. or higher. The upper limit is preferably Tg ° C. or lower, more preferably (Tg−10) ° C. or lower. By performing the annealing process 126 with the remaining heat after heating in the transfer process 116, it is not necessary to perform processes such as cooling and heating in the middle, so that the apparatus can be simplified and the annealing process time is also shortened. be able to. For this reason, an uneven thickness resin sheet can be manufactured with high productivity.
 アニール処理後は5℃/min以下の速度で徐冷することが好ましく、2℃/min以下の速度で徐冷することが好ましい。 After the annealing treatment, it is preferable to slowly cool at a rate of 5 ° C./min or less, and it is preferable to slowly cool at a rate of 2 ° C./min or less.
 また、図2、図3においては、切断工程124の後、樹脂シート14を水平方向に移動し、アニール処理工程126を行っているが、図5に示すように、切断した樹脂シート14を1枚ずつ上下方向に移動させてアニール処理工程を行うこともできる。上記構成とすることにより、樹脂シート14のサイズが大きくなった場合においても、設備を小型化することができ、設備が大型化することを防止することができる。 2 and 3, after the cutting step 124, the resin sheet 14 is moved in the horizontal direction and the annealing treatment step 126 is performed. As shown in FIG. It is also possible to perform the annealing process by moving up and down one by one. By setting it as the said structure, even when the size of the resin sheet 14 becomes large, an installation can be reduced in size and an enlargement of an installation can be prevented.
12…ダイ
14…樹脂シート
14a…溶融樹脂シート
16…型ローラ
18…ニップローラ
20…剥離ローラ
22…加熱装置
24…引取ローラ
26…測定基盤
100…原料工程
112…押出工程
114…シート成形工程
115…剥離工程
116…搬送工程
124…切断工程
128…原料サイロ
130…添加物サイロ
132…自動計量機
134…混合器
136…ホッパー
138…押出機
140…定量ポンプ
142…供給管
174…切断手段
176…回収ボックス
194…ローラ
196…コンベアベルト
DESCRIPTION OF SYMBOLS 12 ... Die 14 ... Resin sheet 14a ... Molten resin sheet 16 ... Mold roller 18 ... Nip roller 20 ... Peeling roller 22 ... Heating device 24 ... Take-off roller 26 ... Measuring base 100 ... Raw material process 112 ... Extrusion process 114 ... Sheet forming process 115 ... Peeling process 116 ... Conveying process 124 ... Cutting process 128 ... Raw material silo 130 ... Additive silo 132 ... Automatic meter 134 ... Mixer 136 ... Hopper 138 ... Extruder 140 ... Metering pump 142 ... Supply pipe 174 ... Cutting means 176 ... Recovery Box 194 ... Roller 196 ... Conveyor belt

Claims (3)

  1.  溶融した樹脂をダイからシート状に押し出す押出工程と、
     押し出した溶融樹脂シートを型ローラとニップローラで挟み、該型ローラの表面の加工形状を該溶融樹脂シートに転写し、冷却固化することにより樹脂シートを成形するシート成形工程と、
     前記樹脂シートを剥離ローラから剥離する剥離工程と、
     前記樹脂シートを加熱装置で加熱しながら、引取ローラで引っ張り搬送する搬送工程と、
     前記樹脂のガラス転移温度をTgとした時、前記樹脂シートの幅方向における表面の最高温度が(Tg-40)℃以上Tg℃以下の温度で、前記樹脂シートを切断手段により所定の長さに切断する切断工程と、
     前記切断手段により切断された樹脂シートを、(Tg-40)℃以上Tg℃以下の温度で連続的にアニール処理を行うアニール処理工程と、
     を有することを特徴とする偏肉樹脂シートの製造方法。
    An extrusion process of extruding the molten resin from the die into a sheet,
    Sandwiching the extruded molten resin sheet between the emboss roller and the nip roller, transferring the processed shape of the surface of the mold roller in the molten resin sheet, a sheet forming step of forming a resin sheet by cooling and solidifying,
    A peeling step of peeling the resin sheet from a peeling roller;
    A conveyance step of pulling and conveying the resin sheet with a take-up roller while heating the resin sheet with a heating device;
    When the glass transition temperature of the resin is Tg, the maximum temperature of the surface in the width direction of the resin sheet is (Tg−40) ° C. to Tg ° C. A cutting step for cutting;
    An annealing process step of continuously annealing the resin sheet cut by the cutting means at a temperature of (Tg-40) ° C. or higher and Tg ° C. or lower;
    The manufacturing method of the uneven thickness resin sheet characterized by having.
  2.  前記アニール処理工程は、前記樹脂シートを平面状の支持部材で支持して行うことを特徴とする請求項1に記載の偏肉樹脂シートの製造方法。 The method for producing an uneven thickness resin sheet according to claim 1, wherein the annealing step is performed by supporting the resin sheet with a planar support member.
  3.  前記樹脂シートの幅方向における厚み分布の、最厚部と最薄部の厚みの差が0.5mm以上5mm以下であることを特徴とする請求項1または2に記載の偏肉樹脂シートの製造方法。 The thickness difference of the thickness direction in the width direction of the said resin sheet WHEREIN: The difference of the thickness of the thickest part and the thinnest part is 0.5 mm or more and 5 mm or less, The manufacture of the uneven thickness resin sheet of Claim 1 or 2 characterized by the above-mentioned. Method.
PCT/JP2009/065300 2008-09-11 2009-09-02 Process for producing resin sheet with thickness unevenness WO2010029874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-233376 2008-09-11
JP2008233376A JP4995163B2 (en) 2008-09-11 2008-09-11 Manufacturing method of uneven thickness resin sheet

Publications (1)

Publication Number Publication Date
WO2010029874A1 true WO2010029874A1 (en) 2010-03-18

Family

ID=42005131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065300 WO2010029874A1 (en) 2008-09-11 2009-09-02 Process for producing resin sheet with thickness unevenness

Country Status (2)

Country Link
JP (1) JP4995163B2 (en)
WO (1) WO2010029874A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358557B (en) * 2013-06-28 2015-04-08 苏州市新广益电子有限公司 Production equipment and method of heat stripping polyethylene film adhesive tape

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256055A (en) * 2005-03-16 2006-09-28 Fuji Photo Film Co Ltd Manufacturing method of resin sheet
JP2007090859A (en) * 2005-09-05 2007-04-12 Sony Corp Manufacturing method of optical film
JP2007210161A (en) * 2006-02-08 2007-08-23 Fujifilm Corp Method and apparatus for producing resin sheet
JP2007210160A (en) * 2006-02-08 2007-08-23 Fujifilm Corp Method for producing resin sheet
JP2008080727A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Manufacturing process of resin sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256055A (en) * 2005-03-16 2006-09-28 Fuji Photo Film Co Ltd Manufacturing method of resin sheet
JP2007090859A (en) * 2005-09-05 2007-04-12 Sony Corp Manufacturing method of optical film
JP2007210161A (en) * 2006-02-08 2007-08-23 Fujifilm Corp Method and apparatus for producing resin sheet
JP2007210160A (en) * 2006-02-08 2007-08-23 Fujifilm Corp Method for producing resin sheet
JP2008080727A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Manufacturing process of resin sheet

Also Published As

Publication number Publication date
JP2010064386A (en) 2010-03-25
JP4995163B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2010024292A1 (en) Method for producing resin sheet
JP2010058437A (en) Method of manufacturing resin sheet
WO2010029875A1 (en) Process for producing resin sheet with thickness unevenness
KR20100014681A (en) Method and apparatus for manufacturing uneven thickness resin sheet
JP2009040009A (en) Manufacturing method and appratus for resin sheet with deviated thickness
US20080088052A1 (en) Method Of Producing A Resin Sheet
JP2008080727A (en) Manufacturing process of resin sheet
JP2008246866A (en) Method and apparatus for manufacturing particle-containing resin sheet
JP2006056214A (en) Resin sheet manufacturing method
WO2009116423A1 (en) Method for producing partially thick resin sheet
JP2008246865A (en) Method and apparatus for manufacture of thickness-deviated resin sheet
JP4995163B2 (en) Manufacturing method of uneven thickness resin sheet
JP2007216505A (en) Method and apparatus for manufacturing resin sheet
JP2008246867A (en) Method and apparatus for manufacturing thickness-deviated resin sheet
JP2007216481A (en) Method and apparatus for manufacturing resin sheet
JP2007210161A (en) Method and apparatus for producing resin sheet
JP2010179489A (en) Method and apparatus for producing uneven thickness resin sheet
JP2006256055A (en) Manufacturing method of resin sheet
JP2011161729A (en) Method of manufacturing uneven-thickness resin sheet
KR20110004375A (en) Method of manufacturing resin sheet with thickness deviation
JP2009226773A (en) Method for manufacturing uneven thickness resin sheet, stacking method and stacked article
JP2009274387A (en) Resin sheet with protective film, and method for manufacturing the same
JP2006056220A (en) Method and apparatus for manufacturing resin sheet
WO2010032613A1 (en) Process for producing resin sheet with thickness unevenness
JP2006056215A (en) Resin sheet manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813020

Country of ref document: EP

Kind code of ref document: A1