WO2010028547A1 - 加快吹填淤泥排水固结速度的立体网络状排水装置 - Google Patents
加快吹填淤泥排水固结速度的立体网络状排水装置 Download PDFInfo
- Publication number
- WO2010028547A1 WO2010028547A1 PCT/CN2009/001020 CN2009001020W WO2010028547A1 WO 2010028547 A1 WO2010028547 A1 WO 2010028547A1 CN 2009001020 W CN2009001020 W CN 2009001020W WO 2010028547 A1 WO2010028547 A1 WO 2010028547A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drainage
- bellows
- pipe
- water pipe
- sludge
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 238000007596 consolidation process Methods 0.000 title claims abstract description 30
- 239000004576 sand Substances 0.000 claims abstract description 23
- 239000004744 fabric Substances 0.000 claims abstract description 16
- 238000005086 pumping Methods 0.000 claims abstract description 7
- 239000010802 sludge Substances 0.000 claims description 41
- 239000004746 geotextile Substances 0.000 claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 238000004891 communication Methods 0.000 claims description 2
- 230000011218 segmentation Effects 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 14
- 238000005429 filling process Methods 0.000 abstract description 4
- 239000002689 soil Substances 0.000 description 25
- 239000002245 particle Substances 0.000 description 22
- 239000002002 slurry Substances 0.000 description 8
- 238000004062 sedimentation Methods 0.000 description 5
- 239000013049 sediment Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005056 compaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
- E02D3/02—Improving by compacting
- E02D3/10—Improving by compacting by watering, draining, de-aerating or blasting, e.g. by installing sand or wick drains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B1/00—Dumping solid waste
- B09B1/006—Shafts or wells in waste dumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B3/00—Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
- E02B3/18—Reclamation of land from water or marshes
Definitions
- Three-dimensional network drainage device for accelerating the consolidation speed of dredging silt drainage
- the invention relates to a vertical network drainage device for accelerating the consolidation speed of dredged silt drainage in soil mechanics engineering, so that the drainage consolidation speed of the sludge is accelerated, so as to accelerate the sedimentation and consolidation of the deposited sludge.
- silt when silt is used for landfilling at home and abroad, it is generally used to build cofferdams first, and then the muddy water slurry is blown into the cofferdam by the dredging equipment, so that the soil particles are deposited in the cofferdam under the action of self-weight, to ensure When enough soil particles are deposited into the cofferdam, it is necessary to continuously fill the cofferdam with mud slurry.
- the reinforcing treatment can be performed after the surface is formed into a hard shell.
- the current method is to insert a plastic drainage board, or set up a sand well, and then cooperate with vacuum preloading. Stacking preloading, stacking and vacuum preloading combined with vacuum precipitation plus vibration or dynamic compaction method.
- the object of the present invention is to provide a three-dimensional network-like drainage device for accelerating the consolidation speed of the dredged silt drainage; since the drainage pipe network of the device is installed before the sludge is filled, the conventional method is avoided when the drainage body is disposed later.
- the smear effect makes the drainage channel smoother, and the drainage pipe network can make the flow rate of the dredged slurry uniform, accelerate the settlement of the soil particles, reduce the loss of soil particles, and realize the whole process drainage of the dredged mud slurry; With vertical and horizontal orientation, the unit can greatly improve drainage efficiency and speed.
- the three-dimensional network drainage device provided by the invention for accelerating the consolidation speed of the dredged silt drainage comprises a bellows 1, a vertical drainage pipe 6, a longitudinal water pipe 9, a horizontal water pipe 10, a total water pipe 12, Pumping and drainage device 13, plastic draining plate 5 and geotextile cloth 4; characterized by:
- the bellows 1 is vertically inserted into the coarse sand 19 having a thickness of 20 cm to 30 cm laid on the bottom surface 18 of the cofferdam; the pipe wall of the bellows 1 is provided with a spacing of 2 cm to 4 cm. a bellows drain hole 3 having a diameter of 2 mm to 4 mm; a geotextile cloth 4 is wrapped on the bottom and bottom of the bellows 1; the bottom of the bellows 1 is filled with medium coarse sand 8 having a height of 50 cm to 60 cm;
- the spacing between two adjacent bellows 1 is 2m ⁇ 3m; the length of the bellows 1 is equal, and is 20cm ⁇ 30cm larger than the thickness of the sludge to be blown in the cofferdam ; the plastic drainage board 5 is leveled by the geotextile 4
- the grounding is fixed on the bellows 1; the spacing of the plastic drainage board 5 in the vertical direction is 60cm ⁇ 120cm ;
- the knurled tube 7 processed into the lower portion of the vertical drain pipe 6 is inserted into the middle coarse sand 8 at the bottom of the bellows 1; the upper portion of the vertical drain pipe 6 passes through the pipe joint 11 and the longitudinal water
- the pipe 9 and the lateral water pipe 10 are in communication; the bellows 1 is connected to the vertical drain pipe 6 through the drain pipe connecting member 14; the longitudinal water pipe 9 and the water pipe 10 are respectively separated
- the main water pipe 12 is connected to the pumping and drainage device 13 to form a three-dimensional network drainage channel.
- the vertical drain pipe 6, the longitudinal water pipe 9, the lateral water pipe 10 and the total water pipe 12 are all made of steel pipes or high-strength PVC pipes.
- the three-dimensional network drainage device for accelerating the consolidation speed of the dredged silt drainage can be The erection of the drainage pipe network is carried out in layers and sections according to the thickness of the sludge filling.
- the slurry is drained and drained by the three-dimensional network-shaped drainage channel formed by the horizontal and vertical drainage channels of the device, so that the mud is made.
- the water discharge channel in the middle is more and even, so the separation speed of the mud water can be greatly accelerated, and the sedimentation speed of the soil particles is also accelerated accordingly.
- the vertical drainage channel of the three-dimensional network drainage device which accelerates the consolidation speed of the dredged sludge drainage is a bellows wrapped with a geotextile cloth
- the bellows can be expanded and contracted in the axial direction thereof, and is used as a horizontal drainage channel.
- the plastic drainage board is wrapped with the geotextile cloth on the outer wall of the bellows. Therefore, the restraining effect of the vertical settlement on the consolidation of the dredged silt is small, and the corrugated pipe can be filled in the middle of the corrugated pipe after the vertical drainage pipe is taken out. Sand, forming a composite sand well, so that the vertical drainage channel continues to be unobstructed.
- the horizontal drainage channel of the three-dimensional network drainage device for accelerating the drainage consolidation speed of the dredged silt of the invention forms an effective connection with the vertical drainage channel before the filling, and the structure is simple to process and the drainage effect is easily ensured.
- the drainage pipe rack can be vibrated during the sludge filling process to remove excess soil particles attached to the outer wall of the drainage pipe network. Settled into the cofferdam.
- the conventional method is avoided to apply the drainage body at the later stage.
- the invention adopts a three-dimensional drainage and drainage net frame combined with horizontal and vertical drainage channels, on the one hand, the flow velocity of the dredged silt slurry is uniformized, on the other hand, the sedimentation of the soil particles is accelerated, and the drainage through the drainage pipe network is accelerated.
- the function also accelerates the discharge of water and reduces the loss of soil particles. Achieve full process drainage to increase drainage efficiency and speed.
- the invention can also be extended and lengthened in the vertical direction according to the condition of sludge dredging, and the erection and installation of the drainage pipe network can be carried out by layering and segmentation.
- Figure 1 is a plan view of a three-dimensional network-like drainage device for accelerating the consolidation speed of dredged silt drainage according to the present invention
- Figure 2 is a three-dimensional network drainage of the present invention for accelerating the consolidation speed of the dredged silt drainage A cross-sectional view of the device.
- bellows 1, corrugated pipe wall 2, bellows drainage hole 3, geotextile cloth 4, plastic drainage board 5, vertical drainage pipe 6, flower tube 7, medium coarse sand 8, longitudinal water supply pipe 9, Horizontal water pipe 10, pipe joint 11, total water pipe 12, drainage device 13, bellows and drain pipe joint 14, mud slurry 15, soil particles 16, water 17, cofferdam bottom 18, coarse sand 19, Deposition of sludge 20.
- FIG. 1 is a plan view of a three-dimensional network-like drainage device for accelerating the consolidation speed of a dredged silt drainage according to the present invention
- FIG. 2 is a cross-sectional view of a three-dimensional network-like drainage device for accelerating the consolidation speed of a dredged silt drainage according to the present invention
- the cloth 4 is wrapped, and the medium coarse sand 8 of 50 cm to 60 cm is filled at the bottom of the bellows 1.
- the bellows 1 is arranged in a square with a spacing of 2 m to 3 m, and is positioned and arranged in the filling and filling area of the cofferdam.
- the bottom of the pipe 1 is in good contact with the coarse sand 19 laid in advance by the bottom 18 of the cofferdam, and the plastic drainage plate 5 is wrapped on the bellows 1 in the horizontal direction by the geotextile cloth 4 in both the longitudinal and transverse directions, and is ensured.
- plastic The drain plate 5 is in good contact with the side wall of the bellows 1, and the distance between the plastic drain plates 5 in the vertical direction is 60 cm to 120 cm, and then the vertical draw with the knurled tube 7 is inserted into the medium coarse sand 8 in the bellows 1.
- the drain pipe 6 the upper portion of the vertical drain pipe 6 is connected to the longitudinal water pipe 9 and the lateral water pipe 10 through the pipe joint 11, and the longitudinal water pipe 9 and the lateral water pipe 10 are respectively connected to the water pipe 12
- the total water supply pipe 12 is connected to the pumping and draining device 13, and the bellows 1 is connected to the vertical drain pipe 6 through the bellows and the drain pipe connecting member 14.
- the sludge 15 is blown into the cofferdam, and the larger diameter soil particles 16 of the sludge 15 settle faster to the bottom 18 of the cofferdam, while the smaller diameter soil particles 16 settle. Slower, still mixed with water 17, in the form of silt 15 Exist. Since the plastic draining plate 5 and the bellows 1 enclosing the geotextile cloth 4 and having the bellows drain hole 3 on the bellows pipe wall 2 are all good water permeable materials, the water 17 in the sludge 15 is easy. The plastic drainage plate 5 and the bellows 1 are entered, and the soil particles 16 cannot enter the plastic drainage plate 5 and the bellows 1.
- the drainage device 13 is opened, and the water 17 entering the bellows 1 enters the vertical suction pipe 6 through the medium coarse sand 8 and the flower tube 7, and the water 17 entering the vertical suction pipe 6 is ready for the drainage and drainage device 13. Under the action of the negative pressure, it is collected upward into the longitudinal water supply pipe 9 and the horizontal water supply pipe 10, and is collected into the total water storage pipe 12, and discharged to the outside of the cofferdam by the drainage and drainage device 13.
- the pumping and draining device 13 continuously draws the water 17 out of the cofferdam during the sludge filling process, the water surface of the water 17 entering the bellows 1 can be maintained at a surface not exceeding the surface of the medium coarse sand 8, so that the sludge in the cofferdam
- the head 15 and the bellows 1 form a head difference, and the water 17 in the sludge 15 is introduced into the bellows 1 through the plastic drain plate 5 and the bellows drain hole 3 provided on the bellows wall 2, and then collected into the bellows 1
- the soil particles 16 in the mud 15 are further separated due to flocculation, the water 17 is continuously discharged, and the soil particles 16 are continuously settled into the cofferdam, so that the drainage speed of the sludge during the filling process is greatly accelerated.
- the water 17 deposited in the sediment sludge 20 on the coarse sand 19 at the bottom 18 of the cofferdam is also introduced into the bellows 1 through the plastic drainage plate 5 and the bellows drainage hole 3 provided on the bellows wall 2 during the consolidation process.
- the speed of soil drainage consolidation is greatly accelerated.
- the thickness of the sludge to be filled is large, it can be divided into multiple layers for filling. After a layer of filling is completed, the surface is simply treated to enable the constructor to enter the interior of the cofferdam, and the longitudinal water pipe 9 and the lateral
- the water supply pipe 10 is disassembled from the pipe joint 11 of the vertical suction pipe 6, and the pipe 6 is vertically extended to a predetermined length, the bellows 1 is lengthened in the vertical direction, and the joint is wrapped with the geotextile cloth 4,
- the plastic drainage board 5 is wrapped on the bellows 1 in the horizontal direction by the geotextile cloth 4 in the longitudinal and transverse directions, and then the drainage consolidation method is repeated to perform preliminary drainage consolidation on the dredged sludge, which is to be filled.
- the deposited sludge 20 can be further reinforced by vacuum preloading, stacking, stacking and vacuum preloading combined with vacuum precipitation plus vibration or dynamic compaction.
- the above-mentioned three-dimensional network-like drainage device for accelerating the drainage and consolidation of the dredged sludge can form a passage for accelerating the discharge of the water 17 from the sludge 15 without additional processing of special materials, thereby realizing the water with a very simple structure.
- both the horizontal and vertical drainage channels are installed before the sludge is filled, which solves the problem of providing a horizontal drainage channel inside the blown mud, and avoids the vertical setting of the drainage body.
- the smear effect causes the sedimentation coefficient of the sedimentary soil layer to further decrease.
- the vertical drainage channel adopts the bellows 1, and the plastic drainage plate 5 used as the horizontal drainage channel is wrapped with the geotextile cloth 4 on the outer wall of the bellows 1.
- the corrugated pipe 1 can be filled with a material with strong water permeability such as sand and gravel to form a composite sand well, which is convenient for vacuum preloading, stacking, stacking and vacuuming.
- the combination of pre-compression, or vacuum precipitation plus vibration or strong tamping method, etc., is matched to achieve the purpose of accelerating the sedimentation of sediment.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Soil Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Agronomy & Crop Science (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Treatment Of Sludge (AREA)
Description
加快吹填淤泥排水固结速度的立体网络状排水装置 技术领域
本发明涉及土力学工程中一种加快吹填淤泥排水固结速度的立 体网络状排水装置, 使淤泥的排水固结速度加快, 以达到加快沉积淤 泥排水固结的目的。 背景技术
目前国内外采用淤泥进行吹填造地时, 一般都是采用先建围堰, 然后用吹填设备向围堰中吹填泥水浆液,让土颗粒在自重作用下沉积 在围堰中, 为保证有足够的土颗粒沉积到围堰中, 就需要不断向围堰 中吹填泥水浆液。为了加快土颗粒的沉积速度、增加土颗粒的沉积数 量,一般是采用在围堰的入口一端吹填泥水浆, 在围堰的另一端开一 个泥水出逸口,这样使泥浆中的土颗粒从入口流向出逸口的过程中沿 程逐步沉积, 有一部分未沉积的土颗粒在出逸口随泥水流失, 在围堰 大小相同的情况下, 土颗粒平均粒径越小、 流速越大, 土颗粒流失的 比例也越大。这种淤泥吹填方法存在土颗粒流失量大, 吹填效率低的 缺点。
在吹填完成后, 由于吹填的淤泥固结性能差出, 吹填以后要经过 很长时间才能自然沉积固结, 待表面形成硬壳后方可进行加固处理。 为使沉积下来的淤泥尽快固结以达到使用要求,就需要采取一定的技 术措施对沉积下来的淤泥进行处理, 目前采用的方法有插塑料排水 板、 或设置砂井, 再配合真空预压、 堆载预压、 堆载与真空预压联合 及真空降水加振动或强夯方法。这些加速固结的方法都是在吹填完成 后再在沉积下来的淤泥中进行排水通道的设置,而且增设在淤泥内部 的排水通道都是垂直向的, 在淤泥内部没有水平向排水通道, 水平方 排水通道主要集中在淤泥的表面, 由于淤泥的渗透系数较小, 单纯的 垂直向排水通道往往使沉积淤泥的排水固结时间较长,使得排水效率 较低。
发明内容
本发明的目的是提供一种加快吹填淤泥排水固结速度的立体网 络状排水装置; 由于该装置的排水管网是在淤泥吹填前安设好, 避免 了常规方法在后期设置排水体时涂抹作用, 使排水通道更顺畅, 而且 排水管网可以使吹填的淤泥浆流速均匀化, 加速土颗粒的沉降, 减少 土颗粒的流失, 并实现吹填的淤泥浆全过程排水; 排水通道既有垂直 方向的, 也有水平方向的, 该装置可以使排水效率和速度大为提 高。
本发明的技术方案如下:
本发明提供的加快吹填淤泥排水固结速度的立体网络状排水装 置, 其包括波紋管 1、 垂直向抽排水管 6、 纵向积水管 9、 横向积水 管 10、 总积水管 12、 抽排水设备 13、 塑料排水板 5和土工滤布 4; 其特征在于:
所述波纹管 1呈正方格状垂向插于铺设在围堰底面 18上的厚度 为 20cm〜30cm 的粗砂 19 中; 所述波纹管 1 的管壁上设有间距在 2cm〜4cm范围内的直径为 2mm〜4mm的波纹管排水孔 3 ;所述波纹 管 1的管壁上及底部包裹有土工滤布 4; 所述波纹管 1底部填装高度 为 50cm〜60cm的中粗砂 8;两相邻的波纹管 1之间的间距 2m〜3m; 所述波纹管 1长度相等,且比围堰中待吹填淤泥厚度大 20cm〜30cm; 所述塑料排水板 5用土工滤布 4水平地包扎固定在所述波纹管 1 上; 所述塑料排水板 5在垂直方向上的间距为 60cm〜120cm;
所述垂直向抽排水管 6下部加工成的滚花状管 7插入所述波纹管 1底部的中粗砂 8中; 所述垂直向抽排水管 6上部通过管接头 11与 所述纵向积水管 9及所述横向积水管 10相连通; 所述波纹管 1通过 排水管连接件 14与垂直向抽排水管 6相连; 所述纵向积水管 9及所 述向积水管 10再分别与总积水管 12相连通; 所述总积水管 12与所 述抽排水设备 13相连, 形成立体网络状排水通道。
所述的垂直向抽排水管 6、纵向积水管 9、横向积水管 10和总积 水管 12均采用钢管或高强度 PVC管。
本发明的加快吹填淤泥排水固结速度的立体网络状排水装置,可
以根据淤泥吹填的厚度, 采用分层、 分段进行排水管网的架设安装。 在上述加快吹填淤泥排水固结速度的立体网络状排水装置中,由 于利用装置的水平向和垂直向排水通道形成的立体网络状排水通道 进行吹填过程及固结过程的抽排水,使得泥浆在中的水分排出渠道更 多, 且均匀, 因此可以使泥水分离速度大大加快, 土颗粒沉降速度也 相应加快。此外, 由于该加快吹填淤泥排水固结速度的立体网络状排 水装置的垂直向排水通道是采用包裹有土工滤布的波纹管,波紋管在 其轴向可以伸縮,用作水平向排水通道的塑料排水板采用土工滤布包 扎在波紋管外壁上, 因此, 在垂直向对吹填淤泥的固结沉降产生约束 作用较小,而且在垂直向抽排水管抽出后还可以向波纹管内装填中粗 砂, 形成复合砂井, 使垂直向排水通道继续保持畅通。
本发明的加快吹填淤泥排水固结速度的立体网络状排水装置的 水平向排水通道在吹填前与垂直向排水通道形成有效的连接,这种结 构加工简单, 排水效果容易保证。
为避免在排水管网的外壁在淤泥吹填过程中形成较厚的泥皮而 增大井阻, 在淤泥吹填过程中可以振动排水管架, 使附着在排水管网 外壁多余的土颗粒脱离而沉降到围堰中。
由于该装置的排水管网是在淤泥吹填前安设好,避免了常规方法 在后期设置排水体时涂抹作用。
本发明采用水平向与垂直向排水通道相结合的立体式抽排水网 架, 一方面会使吹填的淤泥浆流速均匀化, 另一方面还会加速土颗粒 的沉降, 通过排水管网的排水作用还加速了水分的排出, 减少土颗粒 的流失。 实现全过程排水, 使排水效率和速度提高。
本发明还可以根据淤泥吹填的情况在垂直方向不断延伸加长,可 以采用分层、 分段进行排水管网的架设安装。 附图说明
图 1 是本发明的加快吹填淤泥排水固结速度的立体网络状排水 装置的平面图;
图 2 是本发明的加快吹填淤泥排水固结速度的立体网络状排水
装置剖视图。
其中: 波紋管 1、 波紋管管壁 2、 波纹管排水孔 3、 土工滤布 4、 塑料排水板 5、垂直向抽排水管 6、花管 7、 中粗砂 8、纵向积水管 9、 横向积水管 10、 管接头 11、 总积水管 12、 抽排水设备 13、 波纹管与 排水管连接件 14、 淤泥浆 15、 土颗粒 16、 水 17、 围堰底部 18、 粗 砂 19、 沉积淤泥 20。 具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细的说明。图 1是本发明的加快吹填淤泥排水固结速度的立体网络状排水装置按正 方形方格布置的平面图,图 2是本发明的加快吹填淤泥排水固结速度 的立体网络状排水装置剖视图; 在淤泥吹填前, 在围堰的底部 18铺 设 5cm至 10cm的粗砂 19, 再根据预先定好的淤泥分层吹填厚度, 将波纹管 1的长度加工成比分层吹填淤泥厚度大 20cm至 30cm的规 格, 并在波纹管 1上按 2cm至 4cm的间距沿波纹管管壁 2在径向打 2mm至 4mm的波纹管排水孔 3, 然后将波纹管 1的底部和侧壁用土 工滤布 4包裹好, 并在波纹管 1的底部装填 50cm至 60cm的中粗砂 8,波纹管 1以间距 2m至 3m按正方格布置,在围堰的吹填区域内定 位、 布置好, 波纹管 1的底部与围堰的底部 18事先铺设好的粗砂 19 保持良好接触, 塑料排水板 5在水平方向上按纵、横两个方向通过土 工滤布 4包扎在波纹管 1上,并保证塑料排水板 5与波紋管 1的侧壁 接触良好, 塑料排水板 5在垂直方向的间距为 60cm至 120cm, 然后 在波紋管 1内的中粗砂 8中插入带滚花状管 7的垂直向抽排水管 6, 垂直向抽排水管 6的上部通过管接头 11与纵向积水管 9及横向积水 管 10连接好, 纵向积水管 9及横向积水管 10再分别与总积水管 12 连接, 总积水管 12与抽排水设备 13相连, 波紋管 1通过波纹管与排 水管连接件 14连接在垂直向抽排水管 6上。
在进行淤泥吹填时, 淤泥浆 15吹填到围堰中, 淤泥浆 15中直径 较大的土颗粒 16会较快地沉降到围堰底部 18处,而直径较小的土颗 粒 16则沉降速度较慢, 仍然和水 17混合在一起, 以淤泥浆 15的形
式存在。 由于塑料排水板 5和包裹有土工滤布 4、 并在波纹管管壁 2 上设有波纹管排水孔 3 的波纹管 1 都是较好的透水材料, 在淤泥浆 15中的水 17很容易进入塑料排水板 5和波纹管 1 中, 而土颗粒 16 则不能进入塑料排水板 5和波纹管 1中。 此时开启抽排水设备 13, 进入波纹管 1中的水 17通过中粗砂 8和花管 7进入垂直向抽水管 6 中,进入垂直向抽水管 6中的水 17在抽排水设备 13所现成的负压作 用下, 向上汇集到纵向积水管 9和横向积水管 10中, 再汇集到总积 水管 12中, 由抽排水设备 13排出到围堰外。 由于抽排水设备 13在 淤泥吹填过程中不断将水 17抽排出围堰,进入波紋管 1中的水 17的 水面就可以维持在不超过中粗砂 8 的表面, 这样就在围堰中淤泥浆 15和波紋管 1中形成水头差, 淤泥浆 15中的水 17就会通过塑料排 水板 5和设在波纹管管壁 2上的波紋管排水孔 3加入波紋管 1中,再 汇集到中粗砂 8内, 泥桨 15中的土颗粒 16由于絮凝作用, 泥水进一 步分离, 水 17不断排出, 而土颗粒 16则不断沉降到围堰中, 使得淤 泥在吹填过程中的排水速度大大加快。沉降到围堰底部 18粗砂 19上 的沉积淤泥 20中的水 17也会在固结过程中通过塑料排水板 5和设在 波纹管管壁 2上的波紋管排水孔 3加入波紋管 1内,使土体排水固结 的速度大大加快。
如果需要吹填的淤泥厚度较大, 还可以分多层进行吹填, 一层吹 填完成后, 对表面进行简单的处理, 使施工人员能够进入围堰内部, 将纵向积水管 9和横向积水管 10与垂直向抽水管 6的管接头 11拆开, 再将垂直向抽水管 6加长到预定长度, 将波紋管 1在垂直向加长, 并 将接头处用土工滤布 4包裹好, 塑料排水板 5在水平方向上按纵、横 两个方向通过土工滤布 4包扎在波纹管 1上,然后再重复前述的吹填 加固方法对吹填淤泥进行初步排水固结, 待吹填到预定的高度后, 即 可进行采用真空预压、堆载、堆载与真空预压联合及真空降水加振动 或强夯方法, 对沉积淤泥 20进行进一步的加固处理。
采用上述加快吹填淤泥排水固结的立体网络状排水装置,一方面 不需要额外加工特殊的材料就可以形成加快水 17从淤泥浆 15中排出 的通道,从而以十分简单的结构实现了水 17迅速从淤泥桨 15中排出;
另一方面由于水平向和垂直向的排水通道都是在淤泥吹填前安设好, 解决了在吹填好的淤泥内部设置水平向排水通道的难题,并避免了后 期设置垂直向排水体时涂抹作用造成已沉积土层渗透系数进一步下 降的情况出现; 再者, 垂直向积排水通道采用波纹管 1, 用作水平向 排水通道的塑料排水板 5采用土工滤布 4包扎在波纹管 1外壁上,不 但可以减小对土层固结沉降的约束作用,还可以在波纹管 1内装填砂 石等透水性强的材料形成复合砂井, 便于和真空预压、堆载、 堆载与 真空预压联合使用,或真空降水加振动或强夯方法等进一步的加固处 理方法相配, 以达到加快沉积淤泥排水固结的目的。
Claims
1、 一种加快吹填淤泥排水固结速度的立体网络状排水装置, 其 包括波纹管 (1) 、 垂直向抽排水管 (6) 、 纵向积水管 (9) 、 横向 积水管(10)、 总积水管(12)、抽排水设备(13)、 塑料排水板(5) 和土工滤布 (4) ; 其特征在于:
所述波紋管 (1) 呈正方格状垂向插于铺设在围堰底面 (18) 上 的厚度为 20cm〜30cm的粗砂 (19) 中; 所述波紋管 (1) 的管壁上 设有间距在 2cm〜4cm范围内的直径为 2mm〜4mm的波纹管排水孔 (3) ; 所述波紋管 (1) 的管壁上及底部包裹有土工滤布 (4) ; 所 述波紋管 (1)底部填装高度为 50cm〜60cm的中粗砂(8) ; 两相邻 的波纹管 (1) 之间的间距 2m〜3m; 所述波纹管 (1) 长度相等, 且 比围堰中待吹填淤泥厚度大 20cm〜30cm;
所述塑料排水板(5)用土工滤布(4)水平地包扎固定在所述波 紋管 (1) 上; 所述塑料排水板 (5) 在垂直方向上的间距为 60cm〜 120cm?
所述垂直向抽排水管(6)下部加工成的滚花状管(7)插入所述 波紋管 (1) 底部的中粗砂 (8) 中; 所述垂直向抽排水管 (6) 上部 通过管接头 (11) 与所述纵向积水管 (9) 及所述横向积水管 (10) 相连通; 所述波紋管 (1) 通过排水管连接件 (14) 与垂直向抽排水 管(6)相连; 所述纵向积水管(9)及所述向积水管 (10) 再分别与 总积水管(12)相连通; 所述总积水管(12)与所述抽排水设备(13) 相连, 形成立体网络状排水通道。
2、 根据权利要求 1所述的加快吹填淤泥排水固结速度的立体网 络状排水装置,其特征在于:垂直向抽排水管(6)、纵向积水管(9)、 横向积水管 (10) 和总积水管 (12) 均采用钢管或高强度 PVC管。
3、 根据权利要求 1所述的加快吹填淤泥排水固结速度的立体网 络状排水装置, 其特征在于, 根据淤泥吹填的厚度, 采用分层、 分段 进行排水管网的架设安装。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008101969197A CN101357817B (zh) | 2008-09-11 | 2008-09-11 | 一种加快吹填淤泥排水固结速度的立体网络状排水装置 |
CN200810196919.7 | 2008-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010028547A1 true WO2010028547A1 (zh) | 2010-03-18 |
Family
ID=40330435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/001020 WO2010028547A1 (zh) | 2008-09-11 | 2009-09-10 | 加快吹填淤泥排水固结速度的立体网络状排水装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101357817B (zh) |
WO (1) | WO2010028547A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107436140A (zh) * | 2017-07-22 | 2017-12-05 | 浙江大学 | 真空预压和堆载预压相结合的沉降柱试验仪及试验方法 |
CN108411954A (zh) * | 2018-05-10 | 2018-08-17 | 中交四航工程研究院有限公司 | 测量土压力下排水板弯曲通水量的装置及基于该装置的软土地基处理方法 |
CN109944231A (zh) * | 2019-04-30 | 2019-06-28 | 交通运输部天津水运工程科学研究所 | 一种真空预压排水管 |
CN110451760A (zh) * | 2019-06-28 | 2019-11-15 | 湖南科技大学 | 一种带内芯的土工管袋及其联合真空进行泥浆脱水方法 |
CN113585308A (zh) * | 2021-07-24 | 2021-11-02 | 中交第四公路工程局有限公司 | 一种简易淤泥质土深基坑雨季快速排水装置及使用方法 |
CN114592482A (zh) * | 2022-03-04 | 2022-06-07 | 中交疏浚技术装备国家工程研究中心有限公司 | 一种移动式高精度水下分层吹填控制施工方法 |
CN114855763A (zh) * | 2022-06-09 | 2022-08-05 | 中交天津航道局有限公司 | 一种用于快速排出砂混淤泥质土中淤泥的倒换吹填方法 |
CN115075218A (zh) * | 2022-06-27 | 2022-09-20 | 紫金(长沙)工程技术有限公司 | 排土场联合排水系统及其方法 |
CN115947516A (zh) * | 2022-12-22 | 2023-04-11 | 江苏鸿基水源科技股份有限公司 | 一种真空预压处理流态泥的方法 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101357817B (zh) * | 2008-09-11 | 2010-06-09 | 中国科学院武汉岩土力学研究所 | 一种加快吹填淤泥排水固结速度的立体网络状排水装置 |
CN102226337B (zh) * | 2011-04-22 | 2012-07-04 | 河海大学 | 立体排水体及其施工方法 |
CN102322054B (zh) * | 2011-06-30 | 2013-05-08 | 中交四航工程研究院有限公司 | 超软土浅表层间歇性强抽排水结合短期晾晒的处理方法 |
CN103031834B (zh) * | 2011-10-09 | 2015-04-22 | 徐云童 | 一种吹填造陆软质地基的低位真空预压快速加固方法 |
CN103422467B (zh) * | 2012-05-17 | 2015-09-09 | 陈亚萍 | 淤泥质土充填袋筑堤方法 |
CN103091471B (zh) * | 2013-01-25 | 2016-08-03 | 同济大学 | 一种加速冲填土固结的模型及其试验方法 |
CN103215945B (zh) * | 2013-04-09 | 2016-06-08 | 武汉二航路桥特种工程有限责任公司 | 非均质场地软土地基立体式组合动力排水固结系统和方法 |
CN104110025A (zh) * | 2013-04-18 | 2014-10-22 | 中交上海航道勘察设计研究院有限公司 | 吹填软土水平排水固结法 |
CN103233455B (zh) * | 2013-04-26 | 2016-06-01 | 江苏鸿基水利建设工程有限公司 | 格栅水平排水板网 |
CN104674785A (zh) * | 2015-01-05 | 2015-06-03 | 王军 | 一种絮凝联合真空预压处理吹填土地基的方法 |
CN104878739B (zh) * | 2015-04-08 | 2017-05-10 | 河海大学 | 可横向连接塑料排水板的排水体组件及其施工方法 |
CN105386434B (zh) * | 2015-10-19 | 2017-03-22 | 河海大学 | 一种伞式排水装置及其排水方法 |
CN105672246B (zh) * | 2016-02-01 | 2017-08-29 | 上海勘测设计研究院有限公司 | 新近堆积土固结排水结构的预置方法 |
CN112694230A (zh) * | 2020-12-23 | 2021-04-23 | 四川正升环保科技有限公司 | 一种高含垃圾腐陈污泥塘综合治理方法 |
CN112499920B (zh) * | 2020-12-25 | 2022-06-28 | 中国电建集团华东勘测设计研究院有限公司 | 一种废弃泥浆脱水固化处理方法 |
CN112759208B (zh) * | 2020-12-31 | 2022-06-17 | 浙大城市学院 | 工程废弃泥浆分层脱水与固化处理装置及使用方法 |
CN113186898A (zh) * | 2021-04-12 | 2021-07-30 | 广州市市政工程设计研究总院有限公司 | 一种软土地基的加固处理方法 |
CN115559292A (zh) * | 2021-08-03 | 2023-01-03 | 河北地质大学 | 一种用于固结软地基的水平排水系统及其施工方法 |
CN115324143A (zh) * | 2022-10-17 | 2022-11-11 | 中交第一航务工程局有限公司 | 用于泥驳的淤泥排水系统及其排水方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1197927A (en) * | 1966-10-14 | 1970-07-08 | Moretrench Corp | Equipment for Removing Dispersed Liquids from the Ground |
JP2003055951A (ja) * | 2000-12-13 | 2003-02-26 | Maruyama Kogyo Kk | 軟弱地盤の改良工法及び改良装置 |
JP2003166233A (ja) * | 2001-11-29 | 2003-06-13 | Hazama Gumi Ltd | 真空圧密による地盤改良構造及び工法 |
CN1858361A (zh) * | 2006-06-09 | 2006-11-08 | 华南理工大学 | 超软弱土快速加固方法及其加固装置 |
CN101041961A (zh) * | 2007-04-16 | 2007-09-26 | 李�杰 | 一种软土地基的真空渗透吸附加固法 |
CN101357817A (zh) * | 2008-09-11 | 2009-02-04 | 中国科学院武汉岩土力学研究所 | 一种加快吹填淤泥排水固结速度的立体网络状排水装置 |
-
2008
- 2008-09-11 CN CN2008101969197A patent/CN101357817B/zh not_active Expired - Fee Related
-
2009
- 2009-09-10 WO PCT/CN2009/001020 patent/WO2010028547A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1197927A (en) * | 1966-10-14 | 1970-07-08 | Moretrench Corp | Equipment for Removing Dispersed Liquids from the Ground |
JP2003055951A (ja) * | 2000-12-13 | 2003-02-26 | Maruyama Kogyo Kk | 軟弱地盤の改良工法及び改良装置 |
JP2003166233A (ja) * | 2001-11-29 | 2003-06-13 | Hazama Gumi Ltd | 真空圧密による地盤改良構造及び工法 |
CN1858361A (zh) * | 2006-06-09 | 2006-11-08 | 华南理工大学 | 超软弱土快速加固方法及其加固装置 |
CN101041961A (zh) * | 2007-04-16 | 2007-09-26 | 李�杰 | 一种软土地基的真空渗透吸附加固法 |
CN101357817A (zh) * | 2008-09-11 | 2009-02-04 | 中国科学院武汉岩土力学研究所 | 一种加快吹填淤泥排水固结速度的立体网络状排水装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107436140A (zh) * | 2017-07-22 | 2017-12-05 | 浙江大学 | 真空预压和堆载预压相结合的沉降柱试验仪及试验方法 |
CN107436140B (zh) * | 2017-07-22 | 2023-04-11 | 浙江大学 | 真空预压和堆载预压相结合的沉降柱试验仪及试验方法 |
CN108411954A (zh) * | 2018-05-10 | 2018-08-17 | 中交四航工程研究院有限公司 | 测量土压力下排水板弯曲通水量的装置及基于该装置的软土地基处理方法 |
CN109944231A (zh) * | 2019-04-30 | 2019-06-28 | 交通运输部天津水运工程科学研究所 | 一种真空预压排水管 |
CN110451760A (zh) * | 2019-06-28 | 2019-11-15 | 湖南科技大学 | 一种带内芯的土工管袋及其联合真空进行泥浆脱水方法 |
CN113585308A (zh) * | 2021-07-24 | 2021-11-02 | 中交第四公路工程局有限公司 | 一种简易淤泥质土深基坑雨季快速排水装置及使用方法 |
CN114592482A (zh) * | 2022-03-04 | 2022-06-07 | 中交疏浚技术装备国家工程研究中心有限公司 | 一种移动式高精度水下分层吹填控制施工方法 |
CN114592482B (zh) * | 2022-03-04 | 2024-01-19 | 中交疏浚技术装备国家工程研究中心有限公司 | 一种移动式高精度水下分层吹填控制施工方法 |
CN114855763A (zh) * | 2022-06-09 | 2022-08-05 | 中交天津航道局有限公司 | 一种用于快速排出砂混淤泥质土中淤泥的倒换吹填方法 |
CN115075218A (zh) * | 2022-06-27 | 2022-09-20 | 紫金(长沙)工程技术有限公司 | 排土场联合排水系统及其方法 |
CN115075218B (zh) * | 2022-06-27 | 2023-08-22 | 紫金(长沙)工程技术有限公司 | 排土场联合排水系统及其方法 |
CN115947516A (zh) * | 2022-12-22 | 2023-04-11 | 江苏鸿基水源科技股份有限公司 | 一种真空预压处理流态泥的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101357817B (zh) | 2010-06-09 |
CN101357817A (zh) | 2009-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010028547A1 (zh) | 加快吹填淤泥排水固结速度的立体网络状排水装置 | |
CN103924576A (zh) | 一种细粒尾矿加筋堆积坝智能控制立体排渗真空预压法 | |
CN108385659A (zh) | 一种拼装结构的模块式土体施压成型装置 | |
CN101220589B (zh) | 土工袋与动力挤密综合加固软土地基的方法 | |
CN108532581A (zh) | 一种具有综合处理功能的模块式土体施压成型装置 | |
CN104030536A (zh) | 一种环保疏浚底泥一体化机械深度干化系统 | |
CN1821492A (zh) | 双控动力固结处理软地基的方法 | |
CN114477673A (zh) | 一种河道淤泥资源化利用处理方法 | |
CN104711968A (zh) | 一种负压立体导流扰动冲击固结吹填土方法 | |
CN108330949A (zh) | 一种具有快速排水功能的模块式土体施压成型装置 | |
CN205242378U (zh) | 高黏粒含量河湖疏浚底泥的快速排水固结装置 | |
CN203960024U (zh) | 一种环保疏浚底泥一体化机械深度干化系统 | |
CN214219623U (zh) | 一种立体扰动式真空预压地基处理系统 | |
CN102912787B (zh) | 粉细砂垫层滤管加密的真空预压方法 | |
CN113582364B (zh) | 一种零排放余泥渣土利用系统 | |
CN104790377A (zh) | 高黏粒含量河湖疏浚底泥的快速排水固结装置及方法 | |
CN212610197U (zh) | 一种真空式废弃泥浆处理装置 | |
CN102926375A (zh) | 一种加速疏浚底泥脱水固化稳定排泥场的构建方法 | |
CN114411688A (zh) | 一种管道加热真空联合电渗预压处理软基系统及方法 | |
CN112459043A (zh) | 一种立体扰动式真空预压地基处理系统 | |
CN110616704A (zh) | 一种结构填土侧的滤排水构造 | |
CN110863481A (zh) | 一种用于软弱下卧层排水排气固结处理的方法 | |
CN220377246U (zh) | 一种真空预压排水固结系统 | |
CN216130097U (zh) | 水利水电工程多地形地基处理结构 | |
CN215289556U (zh) | 一种在淤泥地形上修筑的临时便道及其施工装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09812614 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09812614 Country of ref document: EP Kind code of ref document: A1 |