WO2010028092A1 - Bidirectional wireless power transmission - Google Patents

Bidirectional wireless power transmission Download PDF

Info

Publication number
WO2010028092A1
WO2010028092A1 PCT/US2009/055790 US2009055790W WO2010028092A1 WO 2010028092 A1 WO2010028092 A1 WO 2010028092A1 US 2009055790 W US2009055790 W US 2009055790W WO 2010028092 A1 WO2010028092 A1 WO 2010028092A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
antenna
conversion circuit
power conversion
bidirectional
Prior art date
Application number
PCT/US2009/055790
Other languages
French (fr)
Other versions
WO2010028092A8 (en
Inventor
Nigel P. Cook
Lukas Sieber
Hanspeter Widmer
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to EP09792194.4A priority Critical patent/EP2332098B1/en
Priority to KR1020117007700A priority patent/KR101328209B1/en
Priority to CN200980134346.8A priority patent/CN102144239B/en
Priority to KR1020137020369A priority patent/KR101421400B1/en
Priority to JP2011526176A priority patent/JP2012502612A/en
Publication of WO2010028092A1 publication Critical patent/WO2010028092A1/en
Publication of WO2010028092A8 publication Critical patent/WO2010028092A8/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0723Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips the record carrier comprising an arrangement for non-contact communication, e.g. wireless communication circuits on transponder cards, non-contact smart cards or RFIDs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0702Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a battery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0715Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including means to regulate power transfer to the integrated circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10198Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves setting parameters for the interrogator, e.g. programming parameters and operating modes
    • G06K7/10207Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves setting parameters for the interrogator, e.g. programming parameters and operating modes parameter settings related to power consumption of the interrogator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates generally to wireless charging, and more specifically to devices, systems, and methods related to wireless charging systems.
  • each powered device such as a wireless electronic device requires its own wired charger and power source, which is usually an alternating current (AC) power outlet.
  • AC alternating current
  • Such a wired configuration becomes unwieldy when many devices need charging.
  • Approaches are being developed that use over-the-air or wireless power transmission between a transmitter and a receiver coupled to the electronic device to be charged.
  • the receive antenna collects the radiated power and rectifies it into usable power for powering the device or charging the battery of the device.
  • Situations may exist where, among several chargeable wireless devices, one wireless chargeable device is depleted of operational charge while another wireless chargeable device has sufficient operational charge. Accordingly, there is a need to allow wireless exchange of power from one wireless chargeable device to another wireless chargeable device.
  • FIG. 1 illustrates a simplified block diagram of a wireless power transmission system.
  • FIG. 2 illustrates a simplified schematic diagram of a wireless power transmission system.
  • FIG. 3 illustrates a schematic diagram of a loop antenna, in accordance with exemplary embodiments.
  • FIG. 4 illustrates a functional block diagram of a wireless power transmission system, in accordance with an exemplary embodiment.
  • FIG. 5A and FIG. 5B illustrate a bidirectional wireless power device, in accordance with an exemplary embodiment.
  • FIG. 6A and FIG. 6B illustrate various operational contexts for an electronic device configured for bidirectional wireless power transmission, in accordance with exemplary embodiments.
  • FIG. 7 illustrates a block diagram of an electronic device configured for bidirectional wireless power transmission, in accordance with an exemplary embodiment.
  • FIG. 8 illustrates a circuit diagram of a half bridge rectifier.
  • FIG. 9 illustrates a circuit diagram of a wireless power transmission system, in accordance with an exemplary embodiment.
  • FIG. 10 illustrates a circuit diagram of a wireless power transmission system, in accordance with another exemplary embodiment.
  • FIG. 11 illustrates a flowchart of a method for transceiving wireless power, in accordance with an exemplary embodiment.
  • wireless power is used herein to mean any form of energy associated with electric fields, magnetic fields, electromagnetic fields, or otherwise that is transmitted from a transmitter to a receiver without the use of physical electromagnetic conductors.
  • Power conversion in a system is described herein to wirelessly charge devices including, for example, mobile phones, cordless phones, iPod, MP3 players, headsets, etc..
  • one underlying principle of wireless energy transfer includes magnetic coupled resonance (i.e., resonant induction) using frequencies, for example, below 30 MHz.
  • frequencies may be employed including frequencies where license-exempt operation at relatively high radiation levels is permitted, for example, at either below 135 kHz (LF) or at 13.56 MHz (HF).
  • NFC may also include the functionality of RFID and the terms “NFC” and “RFID” may be interchanged where compatible functionality allows for such substitution.
  • RFID radio frequency
  • transceiver may also include the functionality of a transponder and the terms “transceiver” and “transponder” may be interchanged where compatible functionality allows for such substitution.
  • transceiver and “transponder” may be interchanged where compatible functionality allows for such substitution.
  • the use of one term over or the other is not to be considered limiting.
  • FIG. 1 illustrates wireless power transmission system 100, in accordance with various exemplary embodiments.
  • Input power 102 is provided to a transmitter 104 for generating a magnetic field 106 for providing energy transfer.
  • a receiver 108 couples to the magnetic field 106 and generates an output power 110 for storing or consumption by a device (not shown) coupled to the output power 110. Both the transmitter 104 and the receiver 108 are separated by a distance 112.
  • transmitter 104 and receiver 108 are configured according to a mutual resonant relationship and when the resonant frequency of receiver 108 and the resonant frequency of transmitter 104 are matched, transmission losses between the transmitter 104 and the receiver 108 are minimal when the receiver 108 is located in the "near-field" of the magnetic field 106.
  • Transmitter 104 further includes a transmit antenna 114 for providing a means for energy transmission and receiver 108 further includes a receive antenna 118 for providing a means for energy reception or coupling.
  • the transmit and receive antennas are sized according to applications and devices to be associated therewith. As stated, an efficient energy transfer occurs by coupling a large portion of the energy in the near-field of the transmitting antenna to a receiving antenna rather than propagating most of the energy in an electromagnetic wave to the far-field. In this near-field, a coupling may be established between the transmit antenna 114 and the receive antenna 118. The area around the antennas 114 and 118 where this near-field coupling may occur is referred to herein as a coupling-mode region.
  • FIG. 2 shows a simplified schematic diagram of a wireless power transmission system.
  • the transmitter 104 driven by input power 102, includes an oscillator 122, a power amplifier or power stage 124 and a filter and matching circuit 126.
  • the oscillator is configured to generate a desired frequency, which may be adjusted in response to adjustment signal 123.
  • the oscillator signal may be amplified by the power amplifier 124 with a power output responsive to control signal 125.
  • the filter and matching circuit 126 may be included to filter out harmonics or other unwanted frequencies and match the impedance of the transmitter 104 to the transmit antenna 114.
  • An electronic device 120 couples to or includes the receiver 108.
  • Receiver 108 may include a matching circuit 132 and a rectifier and switching circuit 134 to generate a DC power output to charge a battery 136 as shown in FIG. 2 or power host electronics in device 120 coupled to the receiver 108.
  • the matching circuit 132 may be included to match the impedance of the receiver 108 to the receive antenna 118.
  • a communication channel 119 may also exist between the transmitter 104 and the receiver 108.
  • the communication channel 119 may be of the form of Near-Field Communication (NFC).
  • NFC Near-Field Communication
  • communication channel 119 is implemented as a separate channel from magnetic field 106 and in another exemplary embodiment, communication channel 119 is combined with magnetic field 106.
  • antennas used in exemplary embodiments may be configured as a "loop" antenna 150, which may also be referred to herein as a "magnetic,” “resonant” or a “magnetic resonant” antenna.
  • Loop antennas may be configured to include an air core or a physical core such as a ferrite core.
  • an air core loop antenna allows the placement of other components within the core area.
  • an air core loop may more readily enable placement of the receive antenna 118 (FIG. 2) within a plane of the transmit antenna 114 (FIG. 2) where the coupled-mode region of the transmit antenna 114 (FIG. 2) may be more effective.
  • the resonant frequency of the loop antennas is based on the inductance and capacitance.
  • Inductance in a loop antenna is generally the inductance created by the loop, whereas, capacitance is generally added to the loop antenna's inductance to create a resonant structure at a desired resonant frequency.
  • capacitor 152 and capacitor 154 may be added to the antenna to create a resonant circuit that generates a sinusoidal or quasi-sinusoidal signal 156. Accordingly, for larger diameter loop antennas, the size of capacitance needed to induce resonance decreases as the diameter or inductance of the loop increases.
  • the efficient energy transfer area of the near-field increases for "vicinity" coupled devices.
  • other resonant circuits are possible.
  • a capacitor may be placed in parallel between the two terminals of the loop antenna.
  • the resonant signal 156 may be an input to the loop antenna 150.
  • Exemplary embodiments of the invention include coupling power between two antennas that are in the near-fields of each other.
  • the near-field is an area around the antenna in which electromagnetic fields exist but may not propagate or radiate away from the antenna. They are typically confined to a volume that is near the physical volume of the antenna.
  • antennas such as single and multi-turn loop antennas are used for both transmit (Tx) and receive (Rx) antenna systems since most of the environment possibly surrounding the antennas is dielectric and thus has less influence on a magnetic field compared to an electric field.
  • antennas dominantly configured as "electric" antennas e.g., dipoles and monopoles
  • a combination of magnetic and electric antennas is also contemplated.
  • the Tx antenna can be operated at a frequency that is low enough and with an antenna size that is large enough to achieve good coupling efficiency (e.g.,> 10%) to a small Rx antenna at significantly larger distances than allowed by far-field and inductive approaches mentioned earlier. If the Tx antenna is sized correctly, high coupling efficiencies (e.g., 30%) can be achieved when the Rx antenna on a host device is placed within a coupling-mode region (i.e., in the near-field or a strongly coupled regime) of the driven Tx loop antenna
  • wireless power transmission approaches may be affected by the transmission range including device positioning (e.g., close "proximity” coupling for charging solutions at virtually zero distance or “vicinity” coupling for short range wireless power solutions).
  • Close proximity coupling applications i.e., strongly coupled regime, coupling factor typically k > 0.1
  • Vicinity coupling applications i.e., loosely coupled regime, coupling factor typically k ⁇ 0.1
  • FIG. 4 illustrates a functional block diagram of a wireless power transmission system configured for direct field coupling between a transmitter and a receiver, in accordance with an exemplary embodiment.
  • Wireless power transmission system 200 includes a transmitter 204 and a receiver 208.
  • Input power P ⁇ m is provided to transmitter 204 at input port 202 for generating a predominantly non-radiative field with direct field coupling k 206 for providing energy transfer.
  • Receiver 208 directly couples to the non-radiative field 206 and generates an output power P R ⁇ ou t for storing or consumption by a battery or load 236 coupled to the output port 210. Both the transmitter 204 and the receiver 208 are separated by a distance.
  • transmitter 204 and receiver 208 are configured according to a mutual resonant relationship and when the resonant frequency, fo, of receiver 208 and the resonant frequency of transmitter 204 are matched, transmission losses between the transmitter 204 and the receiver 208 are minimal while the receiver 208 is located in the "near-field" of the radiated field generated by transmitter 204.
  • Transmitter 204 further includes a transmit antenna 214 for providing a means for energy transmission and receiver 208 further includes a receive antenna 218 for providing a means for energy reception.
  • Transmitter 204 further includes a transmit power conversion circuit 220 at least partially functioning as an AC-to-AC converter.
  • Receiver 208 further includes a receive power conversion circuit 222 at least partially functioning as an AC-to-DC converter.
  • Various transmit and receive antenna configurations described herein use capacitively loaded wire loops or multi-turn coils forming a resonant structure that is capable to efficiently couple energy from transmit antenna 214 to the receive antenna 218 via the magnetic field if both the transmit antenna 214 and receive antenna 218 are tuned to a common resonance frequency, f 0 . Accordingly, highly efficient wireless charging of electronic devices (e.g. mobile phones) in a strongly coupled regime is described where transmit antenna 214 and receive antenna 218 are in close proximity resulting in coupling factors typically above 30%. Accordingly, various transmitter and receiver power conversion concepts comprised of a wire loop/coil antenna and power conversion circuits are described herein.
  • wireless power transmission may occur when one device in a wireless power transmission system includes a transmitter and another device includes a receiver, a single device may include both a wireless power transmitter and a wireless power receiver. Accordingly, such an embodiment could be configured to include dedicated transmit circuitry (e.g., a transmit power conversion circuit and a transmit antenna) and dedicated receiver circuitry (e.g., a receive antenna and a receive power conversion circuit). Since a device is not concurrently configured as a wireless power transmitter and a wireless power receiver, reuse of common circuitry including antennas is desirable. Accordingly, the various exemplary embodiments disclosed herein identify bidirectional power transmission, namely, the capability for a device to both receive wireless power at the device and to transmit wireless power from the device.
  • dedicated transmit circuitry e.g., a transmit power conversion circuit and a transmit antenna
  • dedicated receiver circuitry e.g., a receive antenna and a receive power conversion circuit
  • Various benefits of such a configuration include the ability of a device receive and store wireless power and then to subsequently transmit or "donate" stored power to another receiving or “absorbing” device. Accordingly, such a configuration may also be considered as a “peer-to-peer” “charitable” charging configuration.
  • Such a device- charging arrangement provides considerable convenience in location under which charging occurs (i.e., the receiver or "absorbing” device need not necessarily receive a charge from an inconveniently located or unavailable charging pad).
  • FIG. 5A and FIG. 5B illustrate a bidirectional wireless power device, in accordance with an exemplary embodiment.
  • Bidirectional wireless powering and charging of electronic devices e.g. mobile phones, head sets, MP3 players, etc.
  • electrical energy can be wirelessly transferred, as illustrated in FIG. 5A, from a power conversion circuit 220 and transmit antenna 214 of a power base 302 (e.g. charging pad) to a bidirectional wireless power transceiver 318 including a transceiver antenna 306 and a bidirectional power conversion circuit 308 of an electronic device 300 as illustrated in FIG. 5B.
  • the wirelessly transmitted power is stored in a load illustrated as battery 310.
  • the stored power in battery 310 is then donated through the bidirectional power conversion circuit 308 and transceiver antenna 306 of electronic device 300 to a receive antenna 312 and a power conversion circuit 314 of another electronic device 304 for consumption or storage in load or battery 316.
  • wireless power transfer uses coupled resonance (e.g. capacitively loaded wire loop/coil) that is capable of efficiently coupling energy from a transmitter to a receiver via the magnetic or electric field if both transmitter and receiver are tuned to a common resonance frequency.
  • the various exemplary embodiments described herein include a wireless power transceiver including a resonant antenna 306 and a bidirectional power conversion circuit 308 that can be operated in at least two quadrants, meaning that bidirectional power conversion circuit 308 can either be used as power sink (i.e., positive power flow) or as a power source (i.e., negative power flow).
  • the wireless power transceiver 300 integrated into electronic devices enables wireless exchange of electrical energy among similarly configured electronic devices.
  • the bidirectional power conversion circuit 308 may include a synchronous rectifier as described herein.
  • electronic device 300 is configured for bidirectional wireless power transmission.
  • battery (e.g., power storage device) 310 may be wirelessly charged from an AC mains supplied power base (e.g. charging pad) 302.
  • electronic device 300 may be operated in reverse in a transmit or "donor" mode for transmission of wireless power to another electronic device 304 for operation and storage at a battery 316 that is used to power the electronic device 304.
  • FIG. 6A and FIG. 6B illustrate various operational contexts for an electronic device configured for bidirectional wireless power transmission, in accordance with exemplary embodiments.
  • an electronic device 300 configured for bidirectional wireless power transmission engages in wireless power transmission with a power base 302 wherein electronic device 300 receives wireless power and stores the received power in a battery. Subsequently electronic device 300 is solicited, volunteers or otherwise is enlisted as a donor of stored power. Accordingly, one or more electronic devices 304A, 304B receive power from electronic device 300 through a wireless power transmission process.
  • the wireless transmission process with electronic device 300 operating in donor mode may be to provide power replenishment e.g. in an urgency, or at least temporary charge, to another device 304B, or the charging of a micro-power device 304A, such as headsets, MP3 players, etc.
  • device A is set into donor mode via a user interface or responsive to allowed solicitations.
  • donor electronic device 300 may also perform energy management of its own available power to avoid excessive depletion of stored power within the battery of the donor electronic device 300. Accordingly, assuming a standardized wireless power interface, devices may be recharged or partially recharged almost everywhere from any wireless power device that can act as donor electronic device and that provides sufficient battery capacity.
  • FIG. 7 illustrates a block diagram of an electronic device configured for bidirectional wireless power transmission, in accordance with an exemplary embodiment.
  • the electronic device 300 includes an antenna 306, a bidirectional power conversion circuit 308 and a switch 326 for supplying power to the battery 310 or directly to the host device electronics 324.
  • Bidirectional power conversion circuit 308 includes an active rectifier, an example of which is a synchronous rectifier 320, and can be operated in at least two quadrants of the VI-plane.
  • Bidirectional power conversion circuit 308 further includes a frequency generation and control circuit 322 for generating the switch waveforms 328 required to operate synchronous rectifier 320 in the desired (transmit or receive) mode and to control the extent to which the electronic device shares its power stored in battery 310 while in donor mode.
  • Frequency generation and control circuit 322 is controlled by control within the host device electronics 324 which also performs battery management and provides a user interface for selection of donor mode.
  • synchronous rectifier 320 may also provide power to frequency generation and control circuit 322 during receive mode when power from battery 310 is depleted or otherwise unavailable.
  • the active rectifier in bidirectional power conversion circuit 306 may be configured as a synchronous rectifier.
  • FIG. 8 illustrates circuit diagrams of a half bridge rectifier topology 400 including a series resonant magnetic antenna and its dual topology 420 including a parallel resonant magnetic antenna where 'dual' refers to the dualism of electrical circuits that is well known in electrical engineering.
  • a synchronous rectifier circuit further described below is based upon a half bridge inverter (push-pull Class D amplifier) topology further arranged in a dual configuration.
  • the dual configuration provides performance benefits at higher frequencies (at HF, e.g. > 1 MHz) with respect to switching losses and soft switching and is applicable to transmit and receive power conversion.
  • circuit 400 conventional half bridge inverter designs include shortcomings relating to switching losses affecting the resonance of antenna 406 caused by junction capacitance of switch transistors. As illustrated in FIG. 8, even when soft switching at zero current control is applied, junction capacitance C, 402 needs to be charged and Cy 404 to be discharged or vice-versa at each switching event, causing significant losses at higher frequency. This in contrast to its dual counterpart (i.e., serial- to-parallel conversion) where junction capacitances C, 422 and Cy 424 may be considered merged into a total capacitance comprised of and junction capacitances C, 422 and Cy 424. The total capacitance is then adjusted to achieve resonance in the antenna 426 at the desired frequency.
  • FIG. 9 illustrates a circuit diagram of a wireless power transmission system, in accordance with an exemplary embodiment.
  • a wireless power transmission system 450 includes a bidirectional wireless power transceiver 318T (where "T" indicates a Transmitter configuration) with a half bridge active rectifier configured with the switching capacitance of switches Qi and Qr merged into the resonance capacitance Ci and a receiver 454.
  • Bidirectional wireless power transceiver 318T includes a bidirectional power conversion circuit 308T and an antenna 306T.
  • a half bridge active rectifier includes switches Qi and Qr , such as a pair of matched Field Effect Transistors (FETs) with adequate voltage and current ratings.
  • the FET switches Qi and Qr are driven and accurately controlled by a frequency generation and control circuit 322T as further monitored by sensors 470 for sensing voltage and current on both FET switches Qi and Qr.
  • low loss zero voltage switching also relies upon accurate tuning of the tank circuit of transmit antenna, Li and Ci, to eliminate any phase shift between tank voltage and the FETs rectangular current waveform. In an exemplary embodiment this tuning may be performed by adjusting the capacitor Ci.
  • odd harmonics filtering in form of a series resonant L-C circuits e.g. tuned to 3 rd harmonic may additionally be useful. This may be accomplished using additional series resonance, illustrated as harmonic filter 458T, tuned to harmonic frequencies across the tank circuit of transmit antenna, Li and Ci.
  • a half bridge passive diode rectifier 460 is particularly suitable with regard to low voltage/high current charging of a battery 462 (e.g. Li-Ion).
  • Battery 462 e.g. Li-Ion
  • Half bridge passive diode rectifier 460 transforms the low load resistance of battery 462 into higher impedance enabling an antenna tank circuit with a realizable L-C ratio for improving receiver efficiency.
  • FIG. 10 illustrates a circuit diagram of a wireless power transmission system, in accordance with another exemplary embodiment.
  • a wireless power transmission system 500 includes a bidirectional wireless power transceiver 318T (where "T” indicates a Transmitter configuration or transmit mode) and a bidirectional wireless power transceiver 318R (where "R” indicates a Receiver configuration or receive mode).
  • Bidirectional wireless power transceiver 318T includes a bidirectional power conversion circuit 308T and an antenna 306T.
  • a half bridge active rectifier includes switches Qi and Qr , such as a pair of matched Field Effect Transistors (FETs) with adequate voltage and current ratings.
  • the FET switches Qi and Qr are driven and accurately controlled by a frequency generation and control circuit 322T as further monitored by sensors 470 for sensing voltage and current on both FET switches Qi and Qr.
  • low loss zero voltage switching also relies upon accurate tuning of the tank circuit of transmit antenna 306T, Li and Ci, to eliminate any phase shift between tank voltage and the FETs rectangular current waveform. In an exemplary embodiment this tuning may be performed by adjusting capacitor Ci.
  • odd harmonics filtering in form of a series resonant L-C circuits e.g. tuned to 3 rd harmonic may additionally be useful. This may be accomplished using additional series resonance, illustrated as harmonic filter 458T, tuned to harmonic frequencies across the tank circuit of transmit antenna, L 1 and Ci.
  • Bidirectional wireless power transceiver 318R includes a bidirectional power conversion circuit 308R and an antenna 306R.
  • a half bridge active rectifier includes switches Q 2 and Qr , such as a pair of matched Field Effect Transistors (FETs) with adequate voltage and current ratings.
  • the FET switches Q 2 and Qr are driven and accurately controlled by a frequency generation and control circuit 322R as further monitored by sensors 470 for sensing voltage and current on both FET switches Q 2 and Qr.
  • the drive waveforms may be continuously adjusted in the manner of a phase-locked-loop to reach frequency and phase synchronization with the antenna induced current such to provide maximum or the desired DC power output.
  • L 2 and C 2 in receive mode is less critical and some offset from resonance may be tolerated. Thus adjustment e.g. of capacitor C 2 may be less accurate or not be used at all.
  • odd harmonics filtering in form of a series resonant L-C circuits e.g. tuned to 3 rd harmonic may additionally be useful. This may be accomplished using additional series resonance, illustrated as harmonic filter 458R, tuned to harmonic frequencies across the tank circuit of transmit antenna, Lj and Ci.
  • the bidirectional power conversion circuit 308 acts as a synchronous rectifier and switches are controlled based on sensed voltage.
  • the exemplary embodiments may also include shunt diodes (not shown) across switches Qi and Qr. These switches Qi and Qr ensure that the circuit is self recovering in the event the battery is depleted. Specifically, the circuit begins to rectify received high frequency power to provide power to the frequency generation and control circuit 322.
  • FIG. 11 illustrates a flowchart of a method for transceiving wireless power, in accordance with an exemplary embodiment.
  • Method 600 for transceiving wireless power is supported by the various structures and circuits described herein.
  • Method 600 includes step 602 for receiving an induced current from an antenna resonating in response to a magnetic near-field and rectifying the induced current into DC power through a bidirectional power conversion circuit when the bidirectional power conversion circuit is configured in receive mode.
  • Method 600 further includes step 604 for generating an induced current at a resonant frequency into the antenna from stored DC power through the bidirectional power conversion circuit and generating a magnetic near-field from the antenna when the bidirectional power conversion circuit is configured in transmit mode.
  • control information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the control steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two.
  • a software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • control functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Near-Field Transmission Systems (AREA)
  • Transceivers (AREA)

Abstract

Exemplary embodiments are directed to wireless power transfer. A wireless power transceiver and device comprise an antenna including a parallel resonator configured to resonate in response to a substantially unmodulated carrier frequency. The wireless power transceiver further comprises a bidirectional power conversion circuit coupled to the parallel resonator. The bidirectional power conversion circuit is reconfigurable to rectify an induced current received at the antenna into DC power and to induce resonance at the antenna in response to DC power.

Description

BIDIRECTIONAL WIRELESS POWER TRANSMISSION
Claim of Priority Under 35 U.S.C. §119
[0001] This application claims priority under 35 U.S.C. § 119(e) to:
U.S. Provisional Patent Application 61/093,692 entitled "BIDIRECTIONAL WIRELESS ENERGY TRANSFER" filed on September 2, 2008, the disclosure of which is hereby incorporated by reference in its entirety.
U.S. Provisional Patent Application 61/097,859 entitled "HIGH EFFICIENCY TECHNIQUES AT HIGH FREQUENCY" filed on September 17, 2008, the disclosure of which is hereby incorporated by reference in its entirety.
U.S. Provisional Patent Application 61/104,218 entitled "DUAL HALF BRIDGE POWER CONVERTER" filed on October 9, 2008, the disclosure of which is hereby incorporated by reference in its entirety.
U.S. Provisional Patent Application 61/147,081 entitled "WIRELESS POWER ELECTRONIC CIRCUIT" filed on January 24, 2009, the disclosure of which is hereby incorporated by reference in its entirety.
U.S. Provisional Patent Application 61/218,838 entitled "DEVELOPMENT OF HF POWER CONVERSION ELECTRONICS" filed on June 19, 2009, the disclosure of which is hereby incorporated by reference in its entirety.
BACKGROUND Field
[0002] The present invention relates generally to wireless charging, and more specifically to devices, systems, and methods related to wireless charging systems.
Background
[0003] Typically, each powered device such as a wireless electronic device requires its own wired charger and power source, which is usually an alternating current (AC) power outlet. Such a wired configuration becomes unwieldy when many devices need charging. Approaches are being developed that use over-the-air or wireless power transmission between a transmitter and a receiver coupled to the electronic device to be charged. The receive antenna collects the radiated power and rectifies it into usable power for powering the device or charging the battery of the device. [0004] Situations may exist where, among several chargeable wireless devices, one wireless chargeable device is depleted of operational charge while another wireless chargeable device has sufficient operational charge. Accordingly, there is a need to allow wireless exchange of power from one wireless chargeable device to another wireless chargeable device.
BRIEF DESCRIPTION OF THE DRAWINGS
[0005] FIG. 1 illustrates a simplified block diagram of a wireless power transmission system.
[0006] FIG. 2 illustrates a simplified schematic diagram of a wireless power transmission system. [0007] FIG. 3 illustrates a schematic diagram of a loop antenna, in accordance with exemplary embodiments. [0008] FIG. 4 illustrates a functional block diagram of a wireless power transmission system, in accordance with an exemplary embodiment. [0009] FIG. 5A and FIG. 5B illustrate a bidirectional wireless power device, in accordance with an exemplary embodiment. [0010] FIG. 6A and FIG. 6B illustrate various operational contexts for an electronic device configured for bidirectional wireless power transmission, in accordance with exemplary embodiments. [0011] FIG. 7 illustrates a block diagram of an electronic device configured for bidirectional wireless power transmission, in accordance with an exemplary embodiment. [0012] FIG. 8 illustrates a circuit diagram of a half bridge rectifier.
[0013] FIG. 9 illustrates a circuit diagram of a wireless power transmission system, in accordance with an exemplary embodiment. [0014] FIG. 10 illustrates a circuit diagram of a wireless power transmission system, in accordance with another exemplary embodiment. [0015] FIG. 11 illustrates a flowchart of a method for transceiving wireless power, in accordance with an exemplary embodiment.
DETAILED DESCRIPTION
[0016] The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments. [0017] The detailed description set forth below in connection with the appended drawings is intended as a description of exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention can be practiced. The term "exemplary" used throughout this description means "serving as an example, instance, or illustration," and should not necessarily be construed as preferred or advantageous over other exemplary embodiments. The detailed description includes specific details for the purpose of providing a thorough understanding of the exemplary embodiments of the invention. It will be apparent to those skilled in the art that the exemplary embodiments of the invention may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the novelty of the exemplary embodiments presented herein.
[0018] The term "wireless power" is used herein to mean any form of energy associated with electric fields, magnetic fields, electromagnetic fields, or otherwise that is transmitted from a transmitter to a receiver without the use of physical electromagnetic conductors. Power conversion in a system is described herein to wirelessly charge devices including, for example, mobile phones, cordless phones, iPod, MP3 players, headsets, etc.. Generally, one underlying principle of wireless energy transfer includes magnetic coupled resonance (i.e., resonant induction) using frequencies, for example, below 30 MHz. However, various frequencies may be employed including frequencies where license-exempt operation at relatively high radiation levels is permitted, for example, at either below 135 kHz (LF) or at 13.56 MHz (HF). At these frequencies normally used by Radio Frequency Identification (RFID) systems, systems must comply with interference and safety standards such as EN 300330 in Europe or FCC Part 15 norm in the United States. By way of illustration and not limitation, the abbreviations LF and HF are used herein where "LF" refers to/0=135 kHz and "HF" to refers to/0=13.56 MHz.
[0019] The term "NFC" may also include the functionality of RFID and the terms "NFC" and "RFID" may be interchanged where compatible functionality allows for such substitution. The use of one term or the other is not to be considered limiting.
[0020] The term "transceiver" may also include the functionality of a transponder and the terms "transceiver" and "transponder" may be interchanged where compatible functionality allows for such substitution. The use of one term over or the other is not to be considered limiting.
[0021] FIG. 1 illustrates wireless power transmission system 100, in accordance with various exemplary embodiments. Input power 102 is provided to a transmitter 104 for generating a magnetic field 106 for providing energy transfer. A receiver 108 couples to the magnetic field 106 and generates an output power 110 for storing or consumption by a device (not shown) coupled to the output power 110. Both the transmitter 104 and the receiver 108 are separated by a distance 112. In one exemplary embodiment, transmitter 104 and receiver 108 are configured according to a mutual resonant relationship and when the resonant frequency of receiver 108 and the resonant frequency of transmitter 104 are matched, transmission losses between the transmitter 104 and the receiver 108 are minimal when the receiver 108 is located in the "near-field" of the magnetic field 106.
[0022] Transmitter 104 further includes a transmit antenna 114 for providing a means for energy transmission and receiver 108 further includes a receive antenna 118 for providing a means for energy reception or coupling. The transmit and receive antennas are sized according to applications and devices to be associated therewith. As stated, an efficient energy transfer occurs by coupling a large portion of the energy in the near-field of the transmitting antenna to a receiving antenna rather than propagating most of the energy in an electromagnetic wave to the far-field. In this near-field, a coupling may be established between the transmit antenna 114 and the receive antenna 118. The area around the antennas 114 and 118 where this near-field coupling may occur is referred to herein as a coupling-mode region.
[0023] FIG. 2 shows a simplified schematic diagram of a wireless power transmission system. The transmitter 104, driven by input power 102, includes an oscillator 122, a power amplifier or power stage 124 and a filter and matching circuit 126. The oscillator is configured to generate a desired frequency, which may be adjusted in response to adjustment signal 123. The oscillator signal may be amplified by the power amplifier 124 with a power output responsive to control signal 125. The filter and matching circuit 126 may be included to filter out harmonics or other unwanted frequencies and match the impedance of the transmitter 104 to the transmit antenna 114.
[0024] An electronic device 120 couples to or includes the receiver 108. Receiver 108 may include a matching circuit 132 and a rectifier and switching circuit 134 to generate a DC power output to charge a battery 136 as shown in FIG. 2 or power host electronics in device 120 coupled to the receiver 108. The matching circuit 132 may be included to match the impedance of the receiver 108 to the receive antenna 118.
[0025] A communication channel 119 may also exist between the transmitter 104 and the receiver 108. As described herein, the communication channel 119 may be of the form of Near-Field Communication (NFC). In one exemplary embodiment described herein, communication channel 119 is implemented as a separate channel from magnetic field 106 and in another exemplary embodiment, communication channel 119 is combined with magnetic field 106.
[0026] As illustrated in FIG. 3, antennas used in exemplary embodiments may be configured as a "loop" antenna 150, which may also be referred to herein as a "magnetic," "resonant" or a "magnetic resonant" antenna. Loop antennas may be configured to include an air core or a physical core such as a ferrite core. Furthermore, an air core loop antenna allows the placement of other components within the core area. In addition, an air core loop may more readily enable placement of the receive antenna 118 (FIG. 2) within a plane of the transmit antenna 114 (FIG. 2) where the coupled-mode region of the transmit antenna 114 (FIG. 2) may be more effective.
[0027] As stated, efficient transfer of energy between the transmitter 104 and receiver
108 occurs during matched or nearly matched resonance between the transmitter 104 and the receiver 108. However, even when resonance between the transmitter 104 and receiver 108 are not matched, energy may be transferred at a lower efficiency. Transfer of energy occurs by coupling energy from the near- field of the transmitting antenna to the receiving antenna residing in the neighborhood where this near-field is established rather than propagating the energy from the transmitting antenna into free space.
[0028] The resonant frequency of the loop antennas is based on the inductance and capacitance. Inductance in a loop antenna is generally the inductance created by the loop, whereas, capacitance is generally added to the loop antenna's inductance to create a resonant structure at a desired resonant frequency. As a non-limiting example, capacitor 152 and capacitor 154 may be added to the antenna to create a resonant circuit that generates a sinusoidal or quasi-sinusoidal signal 156. Accordingly, for larger diameter loop antennas, the size of capacitance needed to induce resonance decreases as the diameter or inductance of the loop increases. Furthermore, as the diameter of the loop antenna increases, the efficient energy transfer area of the near-field increases for "vicinity" coupled devices. Of course, other resonant circuits are possible. As another non-limiting example, a capacitor may be placed in parallel between the two terminals of the loop antenna. In addition, those of ordinary skill in the art will recognize that for transmit antennas the resonant signal 156 may be an input to the loop antenna 150.
[0029] Exemplary embodiments of the invention include coupling power between two antennas that are in the near-fields of each other. As stated, the near-field is an area around the antenna in which electromagnetic fields exist but may not propagate or radiate away from the antenna. They are typically confined to a volume that is near the physical volume of the antenna. In the exemplary embodiments of the invention, antennas such as single and multi-turn loop antennas are used for both transmit (Tx) and receive (Rx) antenna systems since most of the environment possibly surrounding the antennas is dielectric and thus has less influence on a magnetic field compared to an electric field. Furthermore, antennas dominantly configured as "electric" antennas (e.g., dipoles and monopoles) or a combination of magnetic and electric antennas is also contemplated.
[0030] The Tx antenna can be operated at a frequency that is low enough and with an antenna size that is large enough to achieve good coupling efficiency (e.g.,> 10%) to a small Rx antenna at significantly larger distances than allowed by far-field and inductive approaches mentioned earlier. If the Tx antenna is sized correctly, high coupling efficiencies (e.g., 30%) can be achieved when the Rx antenna on a host device is placed within a coupling-mode region (i.e., in the near-field or a strongly coupled regime) of the driven Tx loop antenna
[0031] Furthermore, wireless power transmission approaches may be affected by the transmission range including device positioning (e.g., close "proximity" coupling for charging solutions at virtually zero distance or "vicinity" coupling for short range wireless power solutions). Close proximity coupling applications (i.e., strongly coupled regime, coupling factor typically k > 0.1) provide energy transfer over short or very short distances typically in the order of millimeters or centimeters depending on the size of the antennas. Vicinity coupling applications (i.e., loosely coupled regime, coupling factor typically k < 0.1) provide energy transfer at relatively low efficiency over distances typically in the range from 10 cm to 2 m depending on the size of the antennas.
[0032] FIG. 4 illustrates a functional block diagram of a wireless power transmission system configured for direct field coupling between a transmitter and a receiver, in accordance with an exemplary embodiment. Wireless power transmission system 200 includes a transmitter 204 and a receiver 208. Input power Pτχm is provided to transmitter 204 at input port 202 for generating a predominantly non-radiative field with direct field coupling k 206 for providing energy transfer. Receiver 208 directly couples to the non-radiative field 206 and generates an output power PRχout for storing or consumption by a battery or load 236 coupled to the output port 210. Both the transmitter 204 and the receiver 208 are separated by a distance. In one exemplary embodiment, transmitter 204 and receiver 208 are configured according to a mutual resonant relationship and when the resonant frequency, fo, of receiver 208 and the resonant frequency of transmitter 204 are matched, transmission losses between the transmitter 204 and the receiver 208 are minimal while the receiver 208 is located in the "near-field" of the radiated field generated by transmitter 204.
[0033] Transmitter 204 further includes a transmit antenna 214 for providing a means for energy transmission and receiver 208 further includes a receive antenna 218 for providing a means for energy reception. Transmitter 204 further includes a transmit power conversion circuit 220 at least partially functioning as an AC-to-AC converter. Receiver 208 further includes a receive power conversion circuit 222 at least partially functioning as an AC-to-DC converter.
[0034] Various transmit and receive antenna configurations described herein use capacitively loaded wire loops or multi-turn coils forming a resonant structure that is capable to efficiently couple energy from transmit antenna 214 to the receive antenna 218 via the magnetic field if both the transmit antenna 214 and receive antenna 218 are tuned to a common resonance frequency, f0. Accordingly, highly efficient wireless charging of electronic devices (e.g. mobile phones) in a strongly coupled regime is described where transmit antenna 214 and receive antenna 218 are in close proximity resulting in coupling factors typically above 30%. Accordingly, various transmitter and receiver power conversion concepts comprised of a wire loop/coil antenna and power conversion circuits are described herein.
[0035] While wireless power transmission may occur when one device in a wireless power transmission system includes a transmitter and another device includes a receiver, a single device may include both a wireless power transmitter and a wireless power receiver. Accordingly, such an embodiment could be configured to include dedicated transmit circuitry (e.g., a transmit power conversion circuit and a transmit antenna) and dedicated receiver circuitry (e.g., a receive antenna and a receive power conversion circuit). Since a device is not concurrently configured as a wireless power transmitter and a wireless power receiver, reuse of common circuitry including antennas is desirable. Accordingly, the various exemplary embodiments disclosed herein identify bidirectional power transmission, namely, the capability for a device to both receive wireless power at the device and to transmit wireless power from the device.
[0036] Various benefits of such a configuration include the ability of a device receive and store wireless power and then to subsequently transmit or "donate" stored power to another receiving or "absorbing" device. Accordingly, such a configuration may also be considered as a "peer-to-peer" "charitable" charging configuration. Such a device- charging arrangement provides considerable convenience in location under which charging occurs (i.e., the receiver or "absorbing" device need not necessarily receive a charge from an inconveniently located or unavailable charging pad).
[0037] FIG. 5A and FIG. 5B illustrate a bidirectional wireless power device, in accordance with an exemplary embodiment. Bidirectional wireless powering and charging of electronic devices (e.g. mobile phones, head sets, MP3 players, etc.) is disclosed in which electrical energy can be wirelessly transferred, as illustrated in FIG. 5A, from a power conversion circuit 220 and transmit antenna 214 of a power base 302 (e.g. charging pad) to a bidirectional wireless power transceiver 318 including a transceiver antenna 306 and a bidirectional power conversion circuit 308 of an electronic device 300 as illustrated in FIG. 5B. Then, as illustrated with reference to FIG. 5B, the wirelessly transmitted power is stored in a load illustrated as battery 310. The stored power in battery 310 is then donated through the bidirectional power conversion circuit 308 and transceiver antenna 306 of electronic device 300 to a receive antenna 312 and a power conversion circuit 314 of another electronic device 304 for consumption or storage in load or battery 316.
[0038] As described herein, wireless power transfer uses coupled resonance (e.g. capacitively loaded wire loop/coil) that is capable of efficiently coupling energy from a transmitter to a receiver via the magnetic or electric field if both transmitter and receiver are tuned to a common resonance frequency. The various exemplary embodiments described herein include a wireless power transceiver including a resonant antenna 306 and a bidirectional power conversion circuit 308 that can be operated in at least two quadrants, meaning that bidirectional power conversion circuit 308 can either be used as power sink (i.e., positive power flow) or as a power source (i.e., negative power flow). The wireless power transceiver 300 integrated into electronic devices enables wireless exchange of electrical energy among similarly configured electronic devices. The bidirectional power conversion circuit 308 may include a synchronous rectifier as described herein.
[0039] As stated, electronic device 300 is configured for bidirectional wireless power transmission. With further reference to FIG. 5A, in a receiving or "absorbing" mode, battery (e.g., power storage device) 310 may be wirelessly charged from an AC mains supplied power base (e.g. charging pad) 302. With further reference to FIG. 5B, electronic device 300 may be operated in reverse in a transmit or "donor" mode for transmission of wireless power to another electronic device 304 for operation and storage at a battery 316 that is used to power the electronic device 304.
[0040] FIG. 6A and FIG. 6B illustrate various operational contexts for an electronic device configured for bidirectional wireless power transmission, in accordance with exemplary embodiments. Specifically, an electronic device 300 configured for bidirectional wireless power transmission engages in wireless power transmission with a power base 302 wherein electronic device 300 receives wireless power and stores the received power in a battery. Subsequently electronic device 300 is solicited, volunteers or otherwise is enlisted as a donor of stored power. Accordingly, one or more electronic devices 304A, 304B receive power from electronic device 300 through a wireless power transmission process.
[0041] It is contemplated that the wireless transmission process with electronic device 300 operating in donor mode, may be to provide power replenishment e.g. in an urgency, or at least temporary charge, to another device 304B, or the charging of a micro-power device 304A, such as headsets, MP3 players, etc. For this purpose, device A is set into donor mode via a user interface or responsive to allowed solicitations. Furthermore, donor electronic device 300 may also perform energy management of its own available power to avoid excessive depletion of stored power within the battery of the donor electronic device 300. Accordingly, assuming a standardized wireless power interface, devices may be recharged or partially recharged almost everywhere from any wireless power device that can act as donor electronic device and that provides sufficient battery capacity.
[0042] FIG. 7 illustrates a block diagram of an electronic device configured for bidirectional wireless power transmission, in accordance with an exemplary embodiment. The electronic device 300 includes an antenna 306, a bidirectional power conversion circuit 308 and a switch 326 for supplying power to the battery 310 or directly to the host device electronics 324. Bidirectional power conversion circuit 308 includes an active rectifier, an example of which is a synchronous rectifier 320, and can be operated in at least two quadrants of the VI-plane.
[0043] Bidirectional power conversion circuit 308 further includes a frequency generation and control circuit 322 for generating the switch waveforms 328 required to operate synchronous rectifier 320 in the desired (transmit or receive) mode and to control the extent to which the electronic device shares its power stored in battery 310 while in donor mode. Frequency generation and control circuit 322 is controlled by control within the host device electronics 324 which also performs battery management and provides a user interface for selection of donor mode. Furthermore, synchronous rectifier 320 may also provide power to frequency generation and control circuit 322 during receive mode when power from battery 310 is depleted or otherwise unavailable.
[0044] As described, the active rectifier in bidirectional power conversion circuit 306 may be configured as a synchronous rectifier. FIG. 8 illustrates circuit diagrams of a half bridge rectifier topology 400 including a series resonant magnetic antenna and its dual topology 420 including a parallel resonant magnetic antenna where 'dual' refers to the dualism of electrical circuits that is well known in electrical engineering. A synchronous rectifier circuit further described below is based upon a half bridge inverter (push-pull Class D amplifier) topology further arranged in a dual configuration. The dual configuration provides performance benefits at higher frequencies (at HF, e.g. > 1 MHz) with respect to switching losses and soft switching and is applicable to transmit and receive power conversion.
[0045] As illustrated in circuit 400, conventional half bridge inverter designs include shortcomings relating to switching losses affecting the resonance of antenna 406 caused by junction capacitance of switch transistors. As illustrated in FIG. 8, even when soft switching at zero current control is applied, junction capacitance C, 402 needs to be charged and Cy 404 to be discharged or vice-versa at each switching event, causing significant losses at higher frequency. This in contrast to its dual counterpart (i.e., serial- to-parallel conversion) where junction capacitances C, 422 and Cy 424 may be considered merged into a total capacitance comprised of
Figure imgf000011_0001
and junction capacitances C, 422 and Cy 424. The total capacitance is then adjusted to achieve resonance in the antenna 426 at the desired frequency.
[0046] The circuit topology of circuit 420 performs with low dVldt voltage across switches S1 , Sv and enables zero voltage switching, similar to Class E amplifier circuits. FIG. 9 illustrates a circuit diagram of a wireless power transmission system, in accordance with an exemplary embodiment. A wireless power transmission system 450 includes a bidirectional wireless power transceiver 318T (where "T" indicates a Transmitter configuration) with a half bridge active rectifier configured with the switching capacitance of switches Qi and Qr merged into the resonance capacitance Ci and a receiver 454.
[0047] Bidirectional wireless power transceiver 318T includes a bidirectional power conversion circuit 308T and an antenna 306T. In bidirectional power conversion circuit 308T, a half bridge active rectifier includes switches Qi and Qr , such as a pair of matched Field Effect Transistors (FETs) with adequate voltage and current ratings. The FET switches Qi and Qr are driven and accurately controlled by a frequency generation and control circuit 322T as further monitored by sensors 470 for sensing voltage and current on both FET switches Qi and Qr. Furthermore, low loss zero voltage switching, also relies upon accurate tuning of the tank circuit of transmit antenna, Li and Ci, to eliminate any phase shift between tank voltage and the FETs rectangular current waveform. In an exemplary embodiment this tuning may be performed by adjusting the capacitor Ci.
[0048] Though even harmonics are potentially suppressed by the symmetric topology
(push-pull), odd harmonics filtering in form of a series resonant L-C circuits e.g. tuned to 3rd harmonic may additionally be useful. This may be accomplished using additional series resonance, illustrated as harmonic filter 458T, tuned to harmonic frequencies across the tank circuit of transmit antenna, Li and Ci.
[0049] In a unidirectional device (receiver) 454 , a half bridge passive diode rectifier 460 is particularly suitable with regard to low voltage/high current charging of a battery 462 (e.g. Li-Ion). Half bridge passive diode rectifier 460 transforms the low load resistance of battery 462 into higher impedance enabling an antenna tank circuit with a realizable L-C ratio for improving receiver efficiency.
[0050] FIG. 10 illustrates a circuit diagram of a wireless power transmission system, in accordance with another exemplary embodiment. This exemplary embodiment enables exchange of energy from one battery operated device to another battery operated device equally in both directions. A wireless power transmission system 500 includes a bidirectional wireless power transceiver 318T (where "T" indicates a Transmitter configuration or transmit mode) and a bidirectional wireless power transceiver 318R (where "R" indicates a Receiver configuration or receive mode).
[0051] Bidirectional wireless power transceiver 318T includes a bidirectional power conversion circuit 308T and an antenna 306T. In bidirectional power conversion circuit 308T, a half bridge active rectifier includes switches Qi and Qr , such as a pair of matched Field Effect Transistors (FETs) with adequate voltage and current ratings. The FET switches Qi and Qr are driven and accurately controlled by a frequency generation and control circuit 322T as further monitored by sensors 470 for sensing voltage and current on both FET switches Qi and Qr. Furthermore, low loss zero voltage switching, also relies upon accurate tuning of the tank circuit of transmit antenna 306T, Li and Ci, to eliminate any phase shift between tank voltage and the FETs rectangular current waveform. In an exemplary embodiment this tuning may be performed by adjusting capacitor Ci. [0052] Though even harmonics are potentially suppressed by the symmetric topology
(push-pull), odd harmonics filtering in form of a series resonant L-C circuits e.g. tuned to 3rd harmonic may additionally be useful. This may be accomplished using additional series resonance, illustrated as harmonic filter 458T, tuned to harmonic frequencies across the tank circuit of transmit antenna, L1 and Ci.
[0053] Bidirectional wireless power transceiver 318R includes a bidirectional power conversion circuit 308R and an antenna 306R. In bidirectional power conversion circuit 308R, a half bridge active rectifier includes switches Q2 and Qr , such as a pair of matched Field Effect Transistors (FETs) with adequate voltage and current ratings. The FET switches Q2 and Qr are driven and accurately controlled by a frequency generation and control circuit 322R as further monitored by sensors 470 for sensing voltage and current on both FET switches Q2 and Qr. The drive waveforms may be continuously adjusted in the manner of a phase-locked-loop to reach frequency and phase synchronization with the antenna induced current such to provide maximum or the desired DC power output. As opposed to transmit mode requirements on tuning of the tank circuit of receive antenna, L2 and C2, in receive mode is less critical and some offset from resonance may be tolerated. Thus adjustment e.g. of capacitor C2 may be less accurate or not be used at all.
[0054] Though even harmonics are potentially suppressed by the symmetric topology
(push-pull), odd harmonics filtering in form of a series resonant L-C circuits e.g. tuned to 3rd harmonic may additionally be useful. This may be accomplished using additional series resonance, illustrated as harmonic filter 458R, tuned to harmonic frequencies across the tank circuit of transmit antenna, Lj and Ci.
[0055] In receive or absorbing mode, the bidirectional power conversion circuit 308 acts as a synchronous rectifier and switches are controlled based on sensed voltage. The exemplary embodiments may also include shunt diodes (not shown) across switches Qi and Qr. These switches Qi and Qr ensure that the circuit is self recovering in the event the battery is depleted. Specifically, the circuit begins to rectify received high frequency power to provide power to the frequency generation and control circuit 322.
[0056] FIG. 11 illustrates a flowchart of a method for transceiving wireless power, in accordance with an exemplary embodiment. Method 600 for transceiving wireless power is supported by the various structures and circuits described herein. Method 600 includes step 602 for receiving an induced current from an antenna resonating in response to a magnetic near-field and rectifying the induced current into DC power through a bidirectional power conversion circuit when the bidirectional power conversion circuit is configured in receive mode. Method 600 further includes step 604 for generating an induced current at a resonant frequency into the antenna from stored DC power through the bidirectional power conversion circuit and generating a magnetic near-field from the antenna when the bidirectional power conversion circuit is configured in transmit mode.
[0057] Those of skill in the art would understand that control information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
[0058] Those of skill would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, and controlled by computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented and controlled as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the exemplary embodiments of the invention.
[0059] The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be controlled with a general purpose processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. [0060] The control steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
[0061] In one or more exemplary embodiments, the control functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media. The previous description of the disclosed exemplary embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these exemplary embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims

1. A wireless power transceiver, comprising: an antenna including a resonator configured to resonate in response to a substantially unmodulated carrier frequency; and a bidirectional power conversion circuit coupled to the parallel resonator, the bidirectional power conversion circuit reconfigurable to rectify an induced current received at the antenna into DC power and to generate an induced current at a resonance frequency into the antenna from stored DC power.
2. The transceiver of claim 1, wherein the bidirectional power conversion circuit comprises a synchronous rectifier.
3. The transceiver of claim 2, wherein the synchronous rectifier includes at least two opposingly activated switches including shunt diodes thereacross to rectify received wireless power prior to activation of the switches.
4. The transceiver of claim 1, wherein the bidirectional power conversion circuit includes switching capacitance additive to capacitance in the parallel resonator.
5. The transceiver of claim 4, wherein a resonant frequency of the parallel resonator is determined at least in part on the switching capacitance.
6. The transceiver of claim 1, wherein the bidirectional power conversion circuit is configured to operate as a power source to the antenna and as a power sink from the antenna.
7. A device, comprising: a battery for storing and donating power; and a wireless power transceiver coupled to the battery and configured to store wirelessly received power in the battery received from a resonant magnetic near-field through a bidirectional power conversion circuit and to wirelessly transmit power from the battery through the bidirectional power conversion circuit to generate a resonant magnetic near-field.
8. The device of claim 7, wherein the bidirectional power conversion circuit comprises a synchronous rectifier.
9. The device of claim 8, wherein the synchronous rectifier includes at least one switch with switching capacitance associated therewith, the synchronous rectifier configured with the switching capacitance supplementing capacitance associated with an antenna configured to resonate in the magnetic near-field.
10. The device of claim 9, wherein a resonant frequency of the antenna is determined at least in part on the switching capacitance.
11. The device of claim 7, wherein the synchronous rectifier includes at least two opposingly activated switches including shunt diodes thereacross to rectify received wireless power prior to activation of the switches.
12. The device of claim 7, further comprising host device electronics configured to restrict donating excessive power from the battery.
13. A method for transceiving wireless power, comprising: receiving an induced current from an antenna resonating in response to a magnetic near- field and rectifying the induced current into DC power through a bidirectional power conversion circuit when the bidirectional power conversion circuit is configured in receive mode; and generating an induced current at a resonant frequency into the antenna from stored DC power through the bidirectional power conversion circuit and generating a magnetic near-field from the antenna when the bidirectional power conversion circuit is configured in transmit mode.
14. The method of claim 13, wherein the rectifying comprises actively switching the induced current into the DC power.
15. The method of claim 13, wherein the rectifying and the generating the induced current are synchronously timed based upon generated waveforms.
16. The method of claim 13, wherein generating the induced current further includes determining the resonant frequency based in part on additive switching capacitance in the bidirectional power conversion circuit.
17. The method of claim 13, further comprising restricting generating the magnetic near- field when the stored DC power is limited.
18. A wireless power transceiver, comprising: means for receiving an induced current from an antenna resonating in response to a magnetic near-field and means for rectifying the induced current into DC power through a bidirectional power conversion circuit when the bidirectional power conversion circuit is configured in receive mode; and means for generating an induced current at a resonant frequency into the antenna from stored DC power through the bidirectional power conversion circuit and means for generating a magnetic near-field from the antenna when the bidirectional power conversion circuit is configured in transmit mode.
19. The wireless power transceiver of claim 18, wherein the rectifying comprises actively switching the induced current into the DC power.
20. The wireless power transceiver of claim 18, wherein the rectifying and the generating the induced current are synchronously timed based upon generated waveforms.
21. The wireless power transceiver of claim 18, wherein generating the induced current further includes determining the resonant frequency based in part on additive switching capacitance in the bidirectional power conversion circuit.
PCT/US2009/055790 2008-09-02 2009-09-02 Bidirectional wireless power transmission WO2010028092A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09792194.4A EP2332098B1 (en) 2008-09-02 2009-09-02 Bidirectional wireless power transmission
KR1020117007700A KR101328209B1 (en) 2008-09-02 2009-09-02 Bidirectional wireless power transmission
CN200980134346.8A CN102144239B (en) 2008-09-02 2009-09-02 bidirectional wireless power transmission
KR1020137020369A KR101421400B1 (en) 2008-09-02 2009-09-02 Bidirectional wireless power transmission
JP2011526176A JP2012502612A (en) 2008-09-02 2009-09-02 Bidirectional wireless power transfer

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US9369208P 2008-09-02 2008-09-02
US61/093,692 2008-09-02
US9785908P 2008-09-17 2008-09-17
US61/097,859 2008-09-17
US10421808P 2008-10-09 2008-10-09
US61/104,218 2008-10-09
US14708109P 2009-01-24 2009-01-24
US61/147,081 2009-01-24
US21883809P 2009-06-19 2009-06-19
US61/218,838 2009-06-19
US12/552,110 2009-09-01
US12/552,110 US8947041B2 (en) 2008-09-02 2009-09-01 Bidirectional wireless power transmission

Publications (2)

Publication Number Publication Date
WO2010028092A1 true WO2010028092A1 (en) 2010-03-11
WO2010028092A8 WO2010028092A8 (en) 2010-11-04

Family

ID=41136763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/055790 WO2010028092A1 (en) 2008-09-02 2009-09-02 Bidirectional wireless power transmission

Country Status (6)

Country Link
US (1) US8947041B2 (en)
EP (2) EP2667328B1 (en)
JP (2) JP2012502612A (en)
KR (2) KR101421400B1 (en)
CN (1) CN102144239B (en)
WO (1) WO2010028092A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012030049A (en) * 2010-06-30 2012-02-16 Fujifilm Corp Radiation image photographing system and power supply method of radiographic apparatus
JP2012039674A (en) * 2010-08-03 2012-02-23 Equos Research Co Ltd Resonance coil
WO2012069218A1 (en) * 2010-08-13 2012-05-31 Sandeep Kumar Chintala Wireless power
JP2012170243A (en) * 2011-02-15 2012-09-06 Honda Motor Co Ltd Contactless charging system
EP2500840A1 (en) * 2011-03-15 2012-09-19 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Data-transfer system and related management method
CN102792553A (en) * 2010-03-12 2012-11-21 三星电子株式会社 Apparatus and method for performing wireless charging
JP2012239308A (en) * 2011-05-11 2012-12-06 Central Research Institute Of Electric Power Industry Contactless feed system
JP2012244635A (en) * 2011-05-13 2012-12-10 Central Research Institute Of Electric Power Industry Two-way non-contact power supply system
JP2012257395A (en) * 2011-06-09 2012-12-27 Toyota Motor Corp Non-contact power reception device, vehicle having the same, non-contact transmission device, and non-contact power transmission system
CN102884711A (en) * 2010-04-28 2013-01-16 三星电子株式会社 Method and apparatus for controlling resonance bandwidth in a wireless power transmission system
EP2555945A2 (en) * 2010-04-08 2013-02-13 QUALCOMM Incorporated Wireless power transmission in electric vehicles
WO2013054386A1 (en) * 2011-10-14 2013-04-18 Empire Technology Development Llc Mobile terminal, power transfer system and computer-readable storage medium
JP2013542700A (en) * 2010-09-02 2013-11-21 サムスン エレクトロニクス カンパニー リミテッド RESONANT POWER TRANSMITTING SYSTEM POWER CONVERTER AND RESONANT POWER TRANSMITTING DEVICE
WO2014039088A1 (en) * 2012-09-07 2014-03-13 Access Business Group International Llc System and method for bidirectional wireless power transfer
WO2013169558A3 (en) * 2012-05-07 2014-05-30 Qualcomm Incorporated Push-pull driver for generating a signal for wireless power transfer
WO2014093062A1 (en) 2012-12-12 2014-06-19 Oceaneering International Inc. Wireless power transmission via inductive-coupling using magnets
JP2014527793A (en) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation Tunable wireless power architecture
WO2014202818A1 (en) * 2013-06-17 2014-12-24 Nokia Corporation Method and apparatus for wireless power transfer
US8929510B2 (en) 2010-06-30 2015-01-06 Fujifilm Corporation Radiographic image capturing apparatus and radiographic image capturing system
WO2014139948A3 (en) * 2013-03-12 2015-09-03 Paul Vahle Gmbh & Co. Kg Increasing the phase tolerance of magnetic circuits during contactless energy transfer
JP2015534428A (en) * 2012-08-31 2015-11-26 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ Feedback control coil driver for inductive power transfer
US9680335B2 (en) 2013-12-20 2017-06-13 Samsung Electro-Mechanics Co., Ltd. Apparatus for transmitting and receiving wireless power
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles

Families Citing this family (387)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US8855554B2 (en) * 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
EP2277252A4 (en) 2008-04-21 2017-04-26 Qualcomm Incorporated Short range efficient wireless power transfer
KR101478269B1 (en) 2008-05-14 2014-12-31 메사추세츠 인스티튜트 오브 테크놀로지 Wireless energy transfer, including interference enhancement
US8278784B2 (en) 2008-07-28 2012-10-02 Qualcomm Incorporated Wireless power transmission for electronic devices
US8432070B2 (en) * 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
US8532724B2 (en) * 2008-09-17 2013-09-10 Qualcomm Incorporated Transmitters for wireless power transmission
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
CA2738654C (en) 2008-09-27 2019-02-26 Witricity Corporation Wireless energy transfer systems
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US20140361627A1 (en) * 2013-06-07 2014-12-11 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US20120091796A1 (en) * 2008-09-27 2012-04-19 Kesler Morris P Wireless powered projector
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
EP2345100B1 (en) 2008-10-01 2018-12-05 Massachusetts Institute of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8947042B2 (en) 2008-11-13 2015-02-03 Qualcomm Incorporated Wireless power and data transfer for electronic devices
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US20100225270A1 (en) 2009-03-08 2010-09-09 Qualcomm Incorporated Wireless power transfer for chargeable devices
US8954001B2 (en) * 2009-07-21 2015-02-10 Qualcomm Incorporated Power bridge circuit for bi-directional wireless power transmission
JP5609317B2 (en) * 2009-09-03 2014-10-22 Tdk株式会社 Wireless power supply apparatus and wireless power transmission system
US20110049997A1 (en) * 2009-09-03 2011-03-03 Tdk Corporation Wireless power feeder and wireless power transmission system
WO2011036702A1 (en) * 2009-09-24 2011-03-31 株式会社 東芝 Wireless power transmission system
US8237402B2 (en) * 2009-10-08 2012-08-07 Etymotic Research, Inc. Magnetically coupled battery charging system
EP2502124B1 (en) 2009-11-17 2020-02-19 Apple Inc. Wireless power utilization in a local computing environment
US8410637B2 (en) * 2009-11-30 2013-04-02 Broadcom Corporation Wireless power system with selectable control channel protocols
KR101730139B1 (en) * 2009-12-14 2017-05-11 삼성전자주식회사 Battery pack with wireless power transmission resonator
KR101104513B1 (en) * 2010-02-16 2012-01-12 서울대학교산학협력단 Method and system for multiple wireless power transmission using time division scheme
KR20110108596A (en) * 2010-03-29 2011-10-06 삼성전자주식회사 Power reciveing apparatus and wireless power transiver
KR101623838B1 (en) * 2010-03-29 2016-06-07 삼성전자주식회사 Power reciveing apparatus and wireless power transiver
KR101744162B1 (en) * 2010-05-03 2017-06-07 삼성전자주식회사 Apparatus and Method of control of matching of source-target structure
GB201010095D0 (en) * 2010-06-16 2010-07-21 Wfs Technologies Ltd Downhole communications and power transfer systems
NZ586526A (en) * 2010-06-30 2012-12-21 Auckland Uniservices Ltd Inductive power transfer system with ac-ac converter and two-way power transmission ability
TWM392484U (en) * 2010-06-30 2010-11-11 ming-xiang Ye Bidirectional wireless charge and discharge device
TWM393909U (en) * 2010-07-02 2010-12-01 ming-xiang Ye Double-sided wireless charger
TWM393923U (en) * 2010-07-19 2010-12-01 ming-xiang Ye Wrap-type bi-directional wireless charge/discharge device
TWM393922U (en) * 2010-07-19 2010-12-01 ming-xiang Ye Bidirectional wireless charge and discharge device
KR101142096B1 (en) * 2010-08-02 2012-05-03 주식회사 네오펄스 Harmonic emission prevented wireless power supply
JP5177187B2 (en) * 2010-08-10 2013-04-03 株式会社村田製作所 Power transmission system
GB201014384D0 (en) * 2010-08-27 2010-10-13 Imp Innovations Ltd Battery monitoring in electric vehicles, hybrid electric vehicles and other applications
KR101782354B1 (en) * 2010-08-30 2017-09-27 삼성전자주식회사 Apparatus and method for resonant power transmission and resonant power reception
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9071063B2 (en) * 2010-09-02 2015-06-30 Advantest Corporation Wireless power receiving apparatus
KR101730406B1 (en) * 2010-09-15 2017-04-26 삼성전자주식회사 Apparatus for wireless power transmission and reception
EP2617207A2 (en) * 2010-09-17 2013-07-24 Cascade Microtech, Inc. Systems and methods for non-contact power and data transfer in electronic devices
JP5844631B2 (en) * 2010-12-15 2016-01-20 東海旅客鉄道株式会社 Power receiving device and power receiving method
US9379780B2 (en) * 2010-12-16 2016-06-28 Qualcomm Incorporated Wireless energy transfer and continuous radio station signal coexistence
US20120169131A1 (en) * 2010-12-29 2012-07-05 Choudhary Vijay N Phase shift power transfer
WO2012090030A1 (en) * 2010-12-31 2012-07-05 Nokia Corporation Power transfer
EP2639932B1 (en) * 2011-01-30 2018-10-10 Haier Group Corporation Wireless electrical power transmission system and its control method
US9006935B2 (en) * 2011-03-30 2015-04-14 Tdk Corporation Wireless power feeder/receiver and wireless power transmission system
US9272630B2 (en) * 2011-05-27 2016-03-01 Samsung Electronics Co., Ltd. Electronic device and method for transmitting and receiving wireless power
CN103563213B (en) 2011-05-31 2016-08-17 苹果公司 Combining power from multiple resonant magnetic receivers in a resonant magnetic power system
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US20130007949A1 (en) * 2011-07-08 2013-01-10 Witricity Corporation Wireless energy transfer for person worn peripherals
CN102315698B (en) * 2011-08-30 2013-06-12 矽力杰半导体技术(杭州)有限公司 Magnetic field coupling-type non-contact electric energy transmission device
JP6219285B2 (en) * 2011-09-07 2017-10-25 ソラス パワー インコーポレイテッドSolace Power Inc. Wireless power transmission system and power transmission method using electric field
JP6185472B2 (en) 2011-09-09 2017-08-23 ワイトリシティ コーポレーションWitricity Corporation Foreign object detection in wireless energy transmission systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
KR101327049B1 (en) * 2011-09-22 2013-11-20 엘지이노텍 주식회사 A wireless power reception apparatus and a wireless charging system using the same
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9179492B2 (en) * 2011-10-26 2015-11-03 Texas Instruments Deutschland Gmbh Electronic device, method and system for half duplex data transmission
WO2013067484A1 (en) 2011-11-04 2013-05-10 Witricity Corporation Wireless energy transfer modeling tool
US20130127405A1 (en) * 2011-11-17 2013-05-23 Helmut Scherer Wireless charging system and apparatus, and control method thereof
JP5838768B2 (en) * 2011-11-30 2016-01-06 ソニー株式会社 Sensing device, power receiving device, non-contact power transmission system, and sensing method
JP6088234B2 (en) 2011-12-23 2017-03-01 株式会社半導体エネルギー研究所 Power receiving device, wireless power feeding system
US8594566B2 (en) 2012-01-06 2013-11-26 Blackberry Limited Mobile wireless communications device with NFC coupling circuit and related methods
WO2013103756A1 (en) * 2012-01-06 2013-07-11 Access Business Group International Llc Wireless power receiver system
JP2015508987A (en) 2012-01-26 2015-03-23 ワイトリシティ コーポレーションWitricity Corporation Wireless energy transmission with reduced field
US8933589B2 (en) 2012-02-07 2015-01-13 The Gillette Company Wireless power transfer using separately tunable resonators
US9148024B2 (en) * 2012-02-23 2015-09-29 Integrated Device Technology Inc. Apparatuses, systems, and methods for a monotonic transfer function in wireless power transfer systems
KR20130130160A (en) * 2012-02-24 2013-12-02 오연미 Apparatus for transmitting magnetic resonance power
US20130221911A1 (en) * 2012-02-28 2013-08-29 Qualcomm Incorporated Systems and methods for sensing reverse link signaling
JP5787027B2 (en) 2012-03-06 2015-09-30 株式会社村田製作所 Power transmission system
CN103326406A (en) * 2012-03-21 2013-09-25 东莞万士达液晶显示器有限公司 Portable electronic device
US10693525B2 (en) * 2012-03-27 2020-06-23 Triune Ip Llc Resonant circuit dynamic optimization system and method
US9837203B2 (en) * 2012-03-29 2017-12-05 Integrated Device Technology, Inc. Apparatuses having different modes of operation for inductive wireless power transfer and related method
US10756558B2 (en) 2012-03-29 2020-08-25 Integrated Device Technology, Inc. Establishing trusted relationships for multimodal wireless power transfer
KR101192665B1 (en) * 2012-04-03 2012-10-19 주식회사 맥스웨이브 Mobile device using a common antenna for near field communication and wireless charging
JP2013219899A (en) * 2012-04-06 2013-10-24 Toyota Industries Corp Contactless power transmission apparatus and contactless power transmission system
KR101925405B1 (en) * 2012-04-12 2018-12-05 삼성전자주식회사 Apparatus and method for wireless energy reception and apparatus wireless energy transmission
KR101844422B1 (en) 2012-04-19 2018-04-03 삼성전자주식회사 Apparatus and method for wireless energy transmission and apparatus wireless energy reception
WO2013168598A1 (en) * 2012-05-08 2013-11-14 株式会社村田製作所 Power source device for high-frequency electric power amplifying circuit, and high-frequency electric power amplifying device
EP2856608A4 (en) * 2012-06-04 2016-02-17 Byd Co Ltd Transmitting device, wireless charging system comprising transmitting device and method for controlling charging process thereof
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US12057715B2 (en) 2012-07-06 2024-08-06 Energous Corporation Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US9859755B2 (en) * 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
WO2014038265A1 (en) 2012-09-05 2014-03-13 ルネサスエレクトロニクス株式会社 Non-contact charging device, and non-contact power supply system using same
KR101985820B1 (en) 2012-09-07 2019-06-04 삼성전자주식회사 Method and apparatus for transmitting and receiving wireless power
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US8977197B2 (en) 2012-10-11 2015-03-10 Qualcomm Incorporated Circuit tuning for device detection in near-field communications
US9124302B2 (en) 2012-10-11 2015-09-01 Qualcomm Incorporated Carrier frequency variation for device detection in near-field communications
JP6397417B2 (en) 2012-10-19 2018-09-26 ワイトリシティ コーポレーションWitricity Corporation Foreign object detection in wireless energy transmission systems
KR101404013B1 (en) * 2012-10-26 2014-06-13 전자부품연구원 Mobile apparatus including wireless power transmission apparatus and wireless charging system
US10211720B2 (en) * 2012-11-09 2019-02-19 Integrated Device Technology, Inc. Wireless power transmitter having low noise and high efficiency, and related methods
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
KR102145903B1 (en) * 2012-11-26 2020-08-21 삼성전자주식회사 Method and apparatus for charging control in wireless charge system
JP5967374B2 (en) * 2013-01-31 2016-08-10 株式会社エクォス・リサーチ Noise canceling resonator
JP5772851B2 (en) * 2013-03-21 2015-09-02 株式会社デンソー Non-contact power feeding device
CN104782026B (en) 2013-04-22 2018-02-16 松下知识产权经营株式会社 Contactless power transmission device
DE102013008276B4 (en) * 2013-05-15 2019-08-22 Sew-Eurodrive Gmbh & Co Kg transponder system
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
JP6218272B2 (en) * 2013-06-14 2017-10-25 国立大学法人電気通信大学 Power transmission equipment
DE102013215820A1 (en) * 2013-06-28 2014-12-31 Robert Bosch Gmbh Hand tool battery with a bridge rectifier
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
KR102110824B1 (en) * 2013-07-17 2020-05-14 삼성전자주식회사 Method and apparatus for network communication in wireless power transfer system
US9490653B2 (en) 2013-07-23 2016-11-08 Qualcomm Incorporated Systems and methods for enabling a universal back-cover wireless charging solution
TWI506912B (en) * 2013-08-02 2015-11-01 Simplo Technology Co Ltd System of wireless power transmission and method thereof
KR20150018734A (en) 2013-08-09 2015-02-24 삼성전자주식회사 Apparatus and method for wireless power receiving system
TWI484385B (en) * 2013-09-09 2015-05-11 Henghao Technology Co Ltd Touch panel and method of using same
TWI509937B (en) 2013-09-16 2015-11-21 萬國商業機器公司 Method for a first device to wirelessly charge a second device, charging device, and charging system
US20150091496A1 (en) * 2013-10-01 2015-04-02 Blackberry Limited Bi-directional communication with a device under charge
CN103684320A (en) * 2013-11-28 2014-03-26 成都位时通科技有限公司 Filter used for wireless transmission
US10164472B2 (en) 2013-12-03 2018-12-25 Massachusetts Institute Of Technology Method and apparatus for wirelessly charging portable electronic devices
US10116230B2 (en) 2013-12-30 2018-10-30 Eaton Capital Unlimited Company Methods, circuits and articles of manufacture for configuring DC output filter circuits
KR102015095B1 (en) * 2014-01-30 2019-08-27 인테그레이티드 디바이스 테크놀로지, 인코포레이티드 Apparatuses and related methods for communication with a wireless power receiver
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
CN103795157B (en) 2014-02-08 2016-03-23 北京智谷睿拓技术服务有限公司 Wireless energy transfer method and wireless energy receiving equipment
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
CN103812195B (en) * 2014-02-25 2016-06-01 中国联合网络通信集团有限公司 A kind of wireless charging discharging circuit, terminating unit and wireless charging discharge means
EP3121932B1 (en) * 2014-03-18 2020-10-28 IHI Corporation Power supply device and non-contact power supply system
CN103872796B (en) 2014-03-21 2016-09-28 北京智谷睿拓技术服务有限公司 Wireless energy transfer method and detection equipment
WO2015148998A1 (en) * 2014-03-27 2015-10-01 Integrated Device Technology, Inc. Wireless power system
US9805864B2 (en) 2014-04-04 2017-10-31 Apple Inc. Inductive spring system
US10199865B2 (en) * 2014-04-16 2019-02-05 Integrated Device Technology, Inc. High efficiency wireless power system
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US10062492B2 (en) 2014-04-18 2018-08-28 Apple Inc. Induction coil having a conductive winding formed on a surface of a molded substrate
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
EP3140680B1 (en) 2014-05-07 2021-04-21 WiTricity Corporation Foreign object detection in wireless energy transfer systems
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US9626613B2 (en) * 2014-05-12 2017-04-18 Carestream Health, Inc. System and method for computed radiography using near field communication technology
KR102134430B1 (en) 2014-05-21 2020-07-15 삼성전자주식회사 Wireless power receiving device and method to receive power wirelessly based on switching
US9634514B2 (en) 2014-05-30 2017-04-25 Infineon Technologies Austria Ag Single stage rectification and regulation for wireless charging systems
US9641364B2 (en) 2014-05-30 2017-05-02 Nxp B.V. Communication circuit and approach with modulation
KR101731923B1 (en) * 2014-06-13 2017-05-02 엘지전자 주식회사 Ireless power transfer method, apparatus and system
WO2015196123A2 (en) 2014-06-20 2015-12-23 Witricity Corporation Wireless power transfer systems for surfaces
JP2017520231A (en) 2014-06-26 2017-07-20 ソレース・パワー・インコーポレイテッド Wireless electric field power transmission system, transmitter and receiver therefor, and method for wirelessly transmitting power
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
KR102208692B1 (en) * 2014-08-26 2021-01-28 한국전자통신연구원 Apparatus and method for charging energy
US20160064137A1 (en) 2014-09-02 2016-03-03 Apple Inc. Capacitively balanced inductive charging coil
CN107005092B (en) 2014-09-05 2020-03-10 索雷斯能源公司 Wireless electric field power transfer system, method, transmitter and receiver thereof
US10404089B2 (en) 2014-09-29 2019-09-03 Apple Inc. Inductive charging between electronic devices
US20160094078A1 (en) 2014-09-29 2016-03-31 Apple Inc. Inductive coupling assembly for an electronic device
US9762135B2 (en) 2014-11-05 2017-09-12 Infineon Technologies Austria Ag Secondary side control of resonant DC/DC converters
KR102332621B1 (en) * 2014-11-21 2021-12-01 삼성전자주식회사 Signal Receiving and Transmitting circuit and electronic device including the same
KR20170094290A (en) * 2014-12-09 2017-08-17 파워바이프록시 리미티드 Inductive power receiver
US9984815B2 (en) 2014-12-22 2018-05-29 Eaton Capital Unlimited Company Wireless power transfer apparatus and power supplies including overlapping magnetic cores
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10038324B2 (en) * 2015-01-06 2018-07-31 Eaton Intelligent Power Limited Methods, circuits and articles of manufacture for controlling wireless power transfer responsive to controller circuit states
TWI553995B (en) * 2015-01-19 2016-10-11 茂達電子股份有限公司 Bidirectional wireless charging device and bidirectional wireless charging system
KR101695457B1 (en) 2015-03-20 2017-01-12 주식회사 맵스 Wireless Power receiving unit
KR102353272B1 (en) 2015-06-10 2022-01-19 삼성전자주식회사 Wireless power transceiver
US9906067B1 (en) * 2015-06-30 2018-02-27 Garrity Power Services Llc Apparatus, system and method to wirelessly charge/discharge a battery
US10498160B2 (en) 2015-08-03 2019-12-03 Massachusetts Institute Of Technology Efficiency maximization for device-to-device wireless charging
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
WO2017047454A1 (en) * 2015-09-17 2017-03-23 株式会社Ihi Power transmission device, and contactless power supply system
KR101714593B1 (en) * 2015-09-21 2017-03-10 서울과학기술대학교 산학협력단 Bi-directional ev chartger for v2g and v2h application
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10284015B2 (en) * 2015-10-01 2019-05-07 Integrated Device Technology, Inc. Wireless power transmitter
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
CN105244943A (en) * 2015-10-08 2016-01-13 惠州Tcl移动通信有限公司 Wireless charging system of intelligent mobile terminal, and intelligent mobile terminal
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
DE112016004735T5 (en) 2015-10-14 2018-07-05 Intel Corporation Resonator control techniques for wireless power transmission units
EP3362804B1 (en) 2015-10-14 2024-01-17 WiTricity Corporation Phase and amplitude detection in wireless energy transfer systems
WO2017070227A1 (en) 2015-10-19 2017-04-27 Witricity Corporation Foreign object detection in wireless energy transfer systems
CN108781002B (en) 2015-10-22 2021-07-06 韦特里西提公司 Dynamic tuning in wireless energy transfer systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
KR101745554B1 (en) * 2015-11-09 2017-06-12 한국생산기술연구원 A bidirectional wireless power transmission apparatus and a method for controlling the same
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10116162B2 (en) * 2015-12-24 2018-10-30 Energous Corporation Near field transmitters with harmonic filters for wireless power charging
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10263476B2 (en) 2015-12-29 2019-04-16 Energous Corporation Transmitter board allowing for modular antenna configurations in wireless power transmission systems
US10971952B2 (en) 2016-01-21 2021-04-06 Maxell, Ltd. Wireless power transfer device
CN109075613B (en) 2016-02-02 2022-05-31 韦特里西提公司 Controlling a wireless power transfer system
JP6888017B2 (en) 2016-02-08 2021-06-16 ワイトリシティ コーポレーションWitricity Corporation PWM capacitor control
US10186907B2 (en) * 2016-05-31 2019-01-22 Stmicroelectronics, Inc. Wireless power transmitting/receiving devices and methods
US11129996B2 (en) * 2016-06-15 2021-09-28 Boston Scientific Neuromodulation Corporation External charger for an implantable medical device for determining position and optimizing power transmission using resonant frequency as determined from at least one sense coil
KR101842354B1 (en) 2016-07-07 2018-03-27 한국과학기술원 Method of generating a gate driving signal and devices operating the same
US9967001B2 (en) * 2016-07-25 2018-05-08 Verily Life Sciences Llc Systems and methods for passive radio enabled power gating for a body mountable device
DE102016114941A1 (en) 2016-08-11 2018-02-15 Technische Hochschule Ingolstadt System and method for inductive energy transmission
US10333352B2 (en) * 2016-08-19 2019-06-25 Qualcomm Incorporated Wireless power transfer control
US10250078B2 (en) 2016-10-18 2019-04-02 Robert A Moffatt Wireless power transfer to multiple receiver devices across a variable-sized area
US10892649B2 (en) * 2016-10-18 2021-01-12 Etherdyne Technologies Inc. Radio frequency (RF) power source and method for use with a wireless power transmitter of a wireless power transfer system
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
US10571487B2 (en) 2016-11-30 2020-02-25 Formfactor Beaverton, Inc. Contact engines, probe head assemblies, probe systems, and associated methods for on-wafer testing of the wireless operation of a device under test
KR102349607B1 (en) 2016-12-12 2022-01-12 에너저스 코포레이션 Methods of selectively activating antenna zones of a near-field charging pad to maximize wireless power delivered
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10315526B2 (en) * 2017-01-25 2019-06-11 Witricity Corporation Switched-capacitor power ramping for soft switching
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11418064B1 (en) * 2017-05-12 2022-08-16 Redwire Space, Inc. System and method for providing disjointed space-based power beaming
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
JP7187135B2 (en) * 2017-05-16 2022-12-12 ラピスセミコンダクタ株式会社 Wireless power receiving device, wireless power supply device, wireless power transmission system, and excessive magnetic field protection method for wireless power receiving device
US12074452B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Networked wireless charging system
US12074460B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Rechargeable wireless power bank and method of using
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
KR101937412B1 (en) 2017-10-30 2019-01-10 현대오트론 주식회사 An Apparatus And A Method For Controlling Slope For A Power MOSFET
CN107659000B (en) * 2017-10-30 2018-08-21 华南理工大学 It is a kind of can double-direction radio charging transmission circuit
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US10554796B2 (en) * 2017-11-01 2020-02-04 Western Digital Technologies, Inc. Memory station for automatically backing up data and charging mobile devices
US9987937B1 (en) * 2017-12-20 2018-06-05 The Florida International University Board Of Trustees Autonomous two-layer predictive controller for bidirectional inductive power transfer in EV applications
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US10651687B2 (en) 2018-02-08 2020-05-12 Massachusetts Institute Of Technology Detuning for a resonant wireless power transfer system including cryptography
US11018526B2 (en) 2018-02-08 2021-05-25 Massachusetts Institute Of Technology Detuning for a resonant wireless power transfer system including cooperative power sharing
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11165273B2 (en) 2018-05-25 2021-11-02 Apple Inc. Wireless charging systems for electronic devices
CN109088545B (en) * 2018-06-19 2019-09-13 华中科技大学 A kind of phase synchronization method of bidirectional radio energy Transmission system
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
EP3588736A1 (en) 2018-06-29 2020-01-01 Koninklijke Philips N.V. Wireless power transfer
US11426101B2 (en) 2018-07-09 2022-08-30 Verily Life Sciences Llc Systems and methods for sensors with multimode wireless communications and for enabling NFC communications with a wearable biosensor
US11038555B2 (en) 2018-08-06 2021-06-15 Verily Life Sciences Llc Systems and methods for enabling NFC communications with a wearable biosensor
KR102235490B1 (en) * 2018-08-20 2021-04-02 애플 인크. Wireless charging systems for electronic devices
CN109245536A (en) * 2018-08-24 2019-01-18 李建科 A kind of circuit topological structure suitable for the transmission of two-way near field electric energy
JP7356104B2 (en) * 2018-11-02 2023-10-04 ニチコン株式会社 Two-way wireless power supply device
WO2020091042A1 (en) * 2018-11-02 2020-05-07 ニチコン株式会社 Wireless electrical power supply device
CN113056858B (en) * 2018-11-02 2024-08-06 尼吉康株式会社 Wireless power supply device
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US10742222B2 (en) * 2018-12-12 2020-08-11 Shenzhen GOODIX Technology Co., Ltd. Peak-adaptive sampling demodulation for radiofrequency transceivers
CN109742863B (en) * 2018-12-27 2023-06-20 华为技术有限公司 Receiving end, transmitting end of wireless charging system and wireless charging system
KR20210117283A (en) 2019-01-28 2021-09-28 에너저스 코포레이션 Systems and methods for a small antenna for wireless power transmission
EP3921945A1 (en) 2019-02-06 2021-12-15 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
US20220178530A1 (en) * 2019-03-28 2022-06-09 Aoi Japan Co., Ltd. Wireless power feeding system having battery mounted device engaged with power receiving device with light unit mounted device
EP3736941B1 (en) * 2019-05-08 2022-11-30 Delta Electronics (Thailand) Public Co., Ltd. Wireless power transfer arrangement
US10997483B2 (en) 2019-06-12 2021-05-04 Stmicroelectronics, Inc NFC antenna switch
US11990766B2 (en) 2019-07-02 2024-05-21 Eaton Intelligent Power Limited Wireless power transfer apparatus with radially arrayed magnetic structures
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
CN115104234A (en) 2019-09-20 2022-09-23 艾诺格思公司 System and method for protecting a wireless power receiver using multiple rectifiers and establishing in-band communication using multiple rectifiers
KR102206796B1 (en) * 2019-10-10 2021-01-22 고려대학교 산학협력단 Device and method for low-power bidirectional wireless data telemetry
EP4073905A4 (en) 2019-12-13 2024-01-03 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
CN111641339B (en) * 2020-05-19 2021-09-28 河海大学 Bidirectional CLLLC resonant converter with variable capacitor and control method
US11626757B2 (en) * 2020-07-16 2023-04-11 Stmicroelectronics (Shenzhen) R&D Co. Ltd. Reverse wireless charging
JP2023535717A (en) * 2020-07-25 2023-08-21 キャメロン ディー.ケヴィン Robot electromagnetic induction type electric vehicle charging system
US11374440B2 (en) 2020-07-31 2022-06-28 Renesas Electronics America Inc. Wireless power charging
US11689162B2 (en) 2020-08-21 2023-06-27 Samsung Electronics Co., Ltd. 24 to 30GHz wide band CMOS power amplifier with turn-off mode high impedance
CN114597983A (en) * 2020-12-04 2022-06-07 华为技术有限公司 Wireless charging circuit and system, electronic equipment and control method
KR200497027Y1 (en) * 2021-04-13 2023-07-06 주식회사 리튬포어스 Wireless charging adapter
CN113224823A (en) * 2021-06-09 2021-08-06 澳门大学 Bidirectional wireless charging transceiver circuit and electronic equipment
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith
US11784578B2 (en) * 2022-01-28 2023-10-10 Nxp B.V. Electronic circuit with electromagnetic interference detection and suppression and method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400274B1 (en) * 1995-08-31 2002-06-04 Intermec Ip Corp. High-performance mobile power antennas
US20060187049A1 (en) * 2005-02-09 2006-08-24 Atmel Germany Gmbh Circuit arrangement and method for supplying power to a transponder
WO2007034421A2 (en) * 2005-09-23 2007-03-29 Ipico Innovation Inc. Radio frequency identification device systems

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1019714B (en) 1954-10-15 1957-11-21 Deutsche Elektronik Gmbh Charger for portable electronic devices
GB1573828A (en) 1977-06-09 1980-08-28 Communications Patents Ltd Fet power switching circuits
JPS6132394A (en) 1984-07-20 1986-02-15 日本電気ホームエレクトロニクス株式会社 Emergency illuminator
JPS63155826A (en) 1986-12-19 1988-06-29 Samutaku Kk Data transmission equipment
JP2853207B2 (en) * 1989-10-12 1999-02-03 三菱電機株式会社 Power supply system
US5675232A (en) * 1989-11-07 1997-10-07 Norand Corporation Battery pack including electronic power saver
US5239459A (en) * 1990-02-05 1993-08-24 General Research Corporation Automated assessment processor for physical security system
US5276912A (en) 1990-02-06 1994-01-04 Motorola, Inc. Radio frequency power amplifier having variable output power
JP2679355B2 (en) 1990-04-17 1997-11-19 富士電機株式会社 Thyristor converter firing angle controller
NL9101590A (en) 1991-09-20 1993-04-16 Ericsson Radio Systems Bv SYSTEM FOR CHARGING A RECHARGEABLE BATTERY FROM A PORTABLE UNIT IN A RACK.
JP2831252B2 (en) 1993-12-14 1998-12-02 松下電工株式会社 Class E push-pull power amplifier circuit
JP3063513B2 (en) 1994-02-10 2000-07-12 松下電器産業株式会社 Microwave detection feed circuit
US5955865A (en) * 1996-06-17 1999-09-21 Hino Jidosha Kogyo Kabushiki Kaisha Control system for a vehicle-mounted battery
US5757626A (en) * 1996-06-21 1998-05-26 Delta Electronics Inc. Single-stage, single-switch, islolated power-supply technique with input-current shaping and fast output-voltage regulation
JP3304777B2 (en) * 1996-08-22 2002-07-22 トヨタ自動車株式会社 Electric vehicle
JP3392016B2 (en) 1996-09-13 2003-03-31 株式会社日立製作所 Power transmission system and power transmission and information communication system
SG54559A1 (en) 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
US5713939A (en) 1996-09-16 1998-02-03 Sulzer Intermedics Inc. Data communication system for control of transcutaneous energy transmission to an implantable medical device
US5912552A (en) * 1997-02-12 1999-06-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC to DC converter with high efficiency for light loads
US6078794A (en) 1997-02-19 2000-06-20 Motorola, Inc. Impedance matching for a dual band power amplifier
JPH10256957A (en) 1997-03-13 1998-09-25 Nagano Japan Radio Co Device and system for transmitting power
US6275143B1 (en) * 1997-05-09 2001-08-14 Anatoli Stobbe Security device having wireless energy transmission
ES2278417T3 (en) 1997-08-08 2007-08-01 Jurgen G. Meins METHOD AND APPLIANCE TO SUPPLY ENERGY WITHOUT CONTACT.
JP3840765B2 (en) * 1997-11-21 2006-11-01 神鋼電機株式会社 Primary power supply side power supply device for contactless power transfer system
US6285251B1 (en) * 1998-04-02 2001-09-04 Ericsson Inc. Amplification systems and methods using fixed and modulated power supply voltages and buck-boost control
US6373790B1 (en) * 1998-05-18 2002-04-16 Seiko Epson Corporation Overcharge prevention method, changing circuit, electronic device and timepiece
ATE242517T1 (en) 1998-11-03 2003-06-15 Em Microelectronic Marin Sa RECHARGEABLE ACTIVE TRANSPONDER
JP3649374B2 (en) 1998-11-30 2005-05-18 ソニー株式会社 Antenna device and card-like storage medium
US6169389B1 (en) * 1999-04-05 2001-01-02 Marconi Communications, Inc. Pumped capacitive storage system
US7518267B2 (en) * 2003-02-04 2009-04-14 Access Business Group International Llc Power adapter for a remote device
US6646415B1 (en) * 1999-06-25 2003-11-11 The Board Of Trustees Of The University Of Illinois Dynamically-switched power converter
JP4491883B2 (en) * 2000-01-07 2010-06-30 シンフォニアテクノロジー株式会社 Non-contact power feeding device
US6301128B1 (en) 2000-02-09 2001-10-09 Delta Electronics, Inc. Contactless electrical energy transmission system
JP4140169B2 (en) 2000-04-25 2008-08-27 松下電工株式会社 Non-contact power transmission device
US6380801B1 (en) 2000-06-08 2002-04-30 Analog Devices, Inc. Operational amplifier
US6479970B2 (en) * 2001-04-03 2002-11-12 Anantha B. Reddy Un-interruptible power supply
DE10119283A1 (en) * 2001-04-20 2002-10-24 Philips Corp Intellectual Pty System for wireless transmission of electric power, item of clothing, a system of clothing items and method for transmission of signals and/or electric power
JP2002369415A (en) 2001-06-12 2002-12-20 Hitachi Kiden Kogyo Ltd Noncontact power feeding facility
US7071792B2 (en) 2001-08-29 2006-07-04 Tropian, Inc. Method and apparatus for impedance matching in an amplifier using lumped and distributed inductance
JP2005504500A (en) * 2001-09-26 2005-02-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Split topology power architecture
US6791298B2 (en) * 2001-11-05 2004-09-14 Shakti Systems, Inc. Monolithic battery charging device
JP2003299255A (en) 2002-04-02 2003-10-17 Nippon Telegr & Teleph Corp <Ntt> Portable battery charger
US6907231B2 (en) 2002-04-15 2005-06-14 Broadcom, Corp. On-chip impedance matching power amplifier and radio applications thereof
US6844702B2 (en) 2002-05-16 2005-01-18 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
GB0213023D0 (en) * 2002-06-07 2002-07-17 Zap Wireless Technologies Ltd Improvements relating to charging of devices
AU2002950973A0 (en) 2002-08-22 2002-09-12 Magellan Technology Pty Ltd A radio frequency identification ("rfid") device
JP3663397B2 (en) 2002-08-30 2005-06-22 株式会社東芝 High frequency power amplifier
JP2004194400A (en) 2002-12-10 2004-07-08 Aichi Electric Co Ltd Non-contact power supply unit
JP2004206245A (en) 2002-12-24 2004-07-22 Matsushita Electric Ind Co Ltd Contactless ic card reader/writer
JP4657574B2 (en) 2002-12-25 2011-03-23 パナソニック株式会社 Non-contact IC card reader / writer
JP2004206937A (en) * 2002-12-24 2004-07-22 Matsushita Electric Ind Co Ltd High frequency oscillator
US7372333B2 (en) 2003-02-03 2008-05-13 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Monolithic supply-modulated RF power amplifier and DC-DC power converter IC
JP2004308717A (en) 2003-04-03 2004-11-04 Asahi Organic Chem Ind Co Ltd Fluid actuation valve
NZ526109A (en) 2003-05-26 2006-09-29 Auckland Uniservices Ltd Parallel-tuned pick-up system with multiple voltage outputs
JP4216647B2 (en) 2003-05-29 2009-01-28 古野電気株式会社 Ultrasonic transmitter, ultrasonic transmitter / receiver, and detector
JP4380239B2 (en) 2003-06-30 2009-12-09 パナソニック株式会社 Non-contact IC card reader / writer
JP3931163B2 (en) 2003-08-14 2007-06-13 松下電器産業株式会社 Antenna matching device
JP4196100B2 (en) 2003-10-28 2008-12-17 パナソニック電工株式会社 Contactless power supply
US7705558B2 (en) * 2003-10-31 2010-04-27 Denovo Research, Llc In situ rechargeable battery and charging stand
JP2005143181A (en) * 2003-11-05 2005-06-02 Seiko Epson Corp Noncontact power transmitter
US7307475B2 (en) 2004-05-28 2007-12-11 Ixys Corporation RF generator with voltage regulator
US7248120B2 (en) 2004-06-23 2007-07-24 Peregrine Semiconductor Corporation Stacked transistor method and apparatus
JP2008506345A (en) 2004-07-08 2008-02-28 エルヴィー パワー (2003) リミテッド Bi-directional energy conversion system
US7782633B2 (en) 2004-08-27 2010-08-24 Hokushin Denki Co., Ltd. Non-contact power transmission device
EP1646122A1 (en) * 2004-10-06 2006-04-12 Nokia Corporation Multilayer printed circuit board comprising a battery charging circuitry and an induction coil
EP1891748A1 (en) 2005-06-14 2008-02-27 Nokia Corporation Tag multiplication
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
AU2006269374C1 (en) 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
JP2007155554A (en) 2005-12-06 2007-06-21 Fujitsu Ltd Position detector for detecting position of rfid tag
US7747228B2 (en) 2006-03-31 2010-06-29 Silicon Laboratories, Inc. Tuning circuitry in a communications device
KR101478810B1 (en) * 2006-07-28 2015-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power storage device
CA2672915A1 (en) 2006-10-11 2008-04-17 Kovio, Inc. Multi-mode tags and methods of making and using the same
EP1914669B1 (en) 2006-10-18 2011-04-20 Semiconductor Energy Laboratory Co., Ltd. RFID tag
US7612527B2 (en) * 2006-11-27 2009-11-03 Eveready Battery Co., Inc. Communicative and virtual battery chargers and methods
JP2008161045A (en) * 2006-11-28 2008-07-10 Semiconductor Energy Lab Co Ltd Semiconductor device, charging method thereof, and communication system using semiconductor device
US8378523B2 (en) * 2007-03-02 2013-02-19 Qualcomm Incorporated Transmitters and receivers for wireless energy transfer
US7667431B2 (en) * 2007-03-16 2010-02-23 Motorola, Inc. Mechanically featureless inductive charging using an alignment marking feature
US7917104B2 (en) 2007-04-23 2011-03-29 Paratek Microwave, Inc. Techniques for improved adaptive impedance matching
US9124120B2 (en) * 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US20090001930A1 (en) * 2007-06-29 2009-01-01 Nokia Corporation Electronic apparatus and associated methods
KR20130085439A (en) * 2007-09-13 2013-07-29 퀄컴 인코포레이티드 Antennas for wireless power applications
EP2188863A1 (en) * 2007-09-13 2010-05-26 QUALCOMM Incorporated Maximizing power yield from wireless power magnetic resonators
CN101849342B (en) * 2007-09-17 2014-10-29 高通股份有限公司 High efficiency and power transfer in wireless power magnetic resonators
WO2009070730A2 (en) 2007-11-27 2009-06-04 University Of Florida Research Foundation, Inc. Method and apparatus for high efficiency scalable near-field wireless power transfer
US8294300B2 (en) * 2008-01-14 2012-10-23 Qualcomm Incorporated Wireless powering and charging station
US8278784B2 (en) 2008-07-28 2012-10-02 Qualcomm Incorporated Wireless power transmission for electronic devices
US8432070B2 (en) 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
US8532724B2 (en) 2008-09-17 2013-09-10 Qualcomm Incorporated Transmitters for wireless power transmission
WO2010062198A1 (en) 2008-11-26 2010-06-03 Auckland Uniservices Limited Bi-directional inductive power transfer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400274B1 (en) * 1995-08-31 2002-06-04 Intermec Ip Corp. High-performance mobile power antennas
US20060187049A1 (en) * 2005-02-09 2006-08-24 Atmel Germany Gmbh Circuit arrangement and method for supplying power to a transponder
WO2007034421A2 (en) * 2005-09-23 2007-03-29 Ipico Innovation Inc. Radio frequency identification device systems

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102792553A (en) * 2010-03-12 2012-11-21 三星电子株式会社 Apparatus and method for performing wireless charging
JP2013526240A (en) * 2010-03-12 2013-06-20 サムスン エレクトロニクス カンパニー リミテッド Apparatus and method for performing wireless charging
US9190849B2 (en) 2010-03-12 2015-11-17 Samsung Electronics Co., Ltd Apparatus and method for performing wireless charging
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US10493853B2 (en) 2010-04-08 2019-12-03 Witricity Corporation Wireless power transmission in electric vehicles
EP2555945A2 (en) * 2010-04-08 2013-02-13 QUALCOMM Incorporated Wireless power transmission in electric vehicles
US11938830B2 (en) 2010-04-08 2024-03-26 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US11491882B2 (en) 2010-04-08 2022-11-08 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
CN102884711A (en) * 2010-04-28 2013-01-16 三星电子株式会社 Method and apparatus for controlling resonance bandwidth in a wireless power transmission system
US8929510B2 (en) 2010-06-30 2015-01-06 Fujifilm Corporation Radiographic image capturing apparatus and radiographic image capturing system
JP2012030049A (en) * 2010-06-30 2012-02-16 Fujifilm Corp Radiation image photographing system and power supply method of radiographic apparatus
JP2012039674A (en) * 2010-08-03 2012-02-23 Equos Research Co Ltd Resonance coil
WO2012069218A1 (en) * 2010-08-13 2012-05-31 Sandeep Kumar Chintala Wireless power
US9472982B2 (en) 2010-08-13 2016-10-18 Sandeep Kumar Chintala Wireless power
US9553456B2 (en) 2010-09-02 2017-01-24 Samsung Electronics Co., Ltd. Power converter in resonance power transmission system, and resonance power transmission apparatus
JP2013542700A (en) * 2010-09-02 2013-11-21 サムスン エレクトロニクス カンパニー リミテッド RESONANT POWER TRANSMITTING SYSTEM POWER CONVERTER AND RESONANT POWER TRANSMITTING DEVICE
JP2012170243A (en) * 2011-02-15 2012-09-06 Honda Motor Co Ltd Contactless charging system
US9256820B2 (en) 2011-03-15 2016-02-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Data transfer system and associated management method
FR2972825A1 (en) * 2011-03-15 2012-09-21 Commissariat Energie Atomique DATA TRANSFER SYSTEM AND METHOD OF MANAGING THE SAME
EP2500840A1 (en) * 2011-03-15 2012-09-19 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Data-transfer system and related management method
JP2012239308A (en) * 2011-05-11 2012-12-06 Central Research Institute Of Electric Power Industry Contactless feed system
JP2012244635A (en) * 2011-05-13 2012-12-10 Central Research Institute Of Electric Power Industry Two-way non-contact power supply system
JP2012257395A (en) * 2011-06-09 2012-12-27 Toyota Motor Corp Non-contact power reception device, vehicle having the same, non-contact transmission device, and non-contact power transmission system
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
JP2014527793A (en) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation Tunable wireless power architecture
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US9037197B2 (en) 2011-10-14 2015-05-19 Empire Technology Development Llc Mobile terminal, power transfer system and computer-readable storage medium
CN103875157A (en) * 2011-10-14 2014-06-18 英派尔科技开发有限公司 Mobile terminal, power transfer system and computer-readable storage medium
JP2014532387A (en) * 2011-10-14 2014-12-04 エンパイア テクノロジー ディベロップメント エルエルシー Mobile terminal device, power transmission system, and computer-readable storage medium
WO2013054386A1 (en) * 2011-10-14 2013-04-18 Empire Technology Development Llc Mobile terminal, power transfer system and computer-readable storage medium
US9093215B2 (en) 2012-05-07 2015-07-28 Qualcomm Incorporated Push-pull driver for generating a signal for wireless power transfer
CN104604082A (en) * 2012-05-07 2015-05-06 高通股份有限公司 Push-pull driver for generating a signal for wireless power transfer
WO2013169558A3 (en) * 2012-05-07 2014-05-30 Qualcomm Incorporated Push-pull driver for generating a signal for wireless power transfer
JP2015534428A (en) * 2012-08-31 2015-11-26 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ Feedback control coil driver for inductive power transfer
US9748774B2 (en) 2012-09-07 2017-08-29 Access Business Group International Llc System and method for bidirectional wireless power transfer
WO2014039088A1 (en) * 2012-09-07 2014-03-13 Access Business Group International Llc System and method for bidirectional wireless power transfer
US10199877B2 (en) 2012-09-07 2019-02-05 Philips Ip Ventures B.V. System and method for bidirectional wireless power transfer
EP2987246A4 (en) * 2012-12-12 2017-04-12 Oceaneering International Inc. Wireless data transmission via inductive coupling using di/dt as the magnetic modulation scheme without hysteresis
EP2987174A4 (en) * 2012-12-12 2016-12-07 Oceaneering Int Inc Wireless power transmission via inductive-coupling using magnets
WO2014093062A1 (en) 2012-12-12 2014-06-19 Oceaneering International Inc. Wireless power transmission via inductive-coupling using magnets
WO2014139948A3 (en) * 2013-03-12 2015-09-03 Paul Vahle Gmbh & Co. Kg Increasing the phase tolerance of magnetic circuits during contactless energy transfer
US9859719B2 (en) 2013-06-17 2018-01-02 Nokia Technologies Oy Method and apparatus for wireless power transfer
WO2014202818A1 (en) * 2013-06-17 2014-12-24 Nokia Corporation Method and apparatus for wireless power transfer
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9680335B2 (en) 2013-12-20 2017-06-13 Samsung Electro-Mechanics Co., Ltd. Apparatus for transmitting and receiving wireless power

Also Published As

Publication number Publication date
KR20130094356A (en) 2013-08-23
CN102144239B (en) 2015-11-25
EP2667328B1 (en) 2015-10-21
JP2014239645A (en) 2014-12-18
KR101421400B1 (en) 2014-07-22
JP2012502612A (en) 2012-01-26
EP2332098B1 (en) 2014-11-19
EP2332098A1 (en) 2011-06-15
JP5855713B2 (en) 2016-02-09
US20100148723A1 (en) 2010-06-17
WO2010028092A8 (en) 2010-11-04
KR101328209B1 (en) 2013-11-14
CN102144239A (en) 2011-08-03
US8947041B2 (en) 2015-02-03
KR20110051272A (en) 2011-05-17
EP2667328A1 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
US8947041B2 (en) Bidirectional wireless power transmission
EP2332096B1 (en) Passive receivers for wireless power transmission
EP3127210B1 (en) Systems, apparatus, and methods for wireless power receiver coil configuration
KR101247436B1 (en) Concurrent wireless power transmission and near-field communication
US8278784B2 (en) Wireless power transmission for electronic devices
US9094055B2 (en) Wireless power transmitter tuning
EP2569869B1 (en) Resonance detection and control within a wireless power system
US20110198937A1 (en) Impedance neutral wireless power receivers
EP2636156A1 (en) Wireless charging device
EP2781033A1 (en) Multi-band transmit antenna

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134346.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09792194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011526176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1741/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117007700

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009792194

Country of ref document: EP