WO2010026881A1 - 横筋発生の判別装置と判別方法 - Google Patents

横筋発生の判別装置と判別方法 Download PDF

Info

Publication number
WO2010026881A1
WO2010026881A1 PCT/JP2009/064565 JP2009064565W WO2010026881A1 WO 2010026881 A1 WO2010026881 A1 WO 2010026881A1 JP 2009064565 W JP2009064565 W JP 2009064565W WO 2010026881 A1 WO2010026881 A1 WO 2010026881A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
friction
data
variation
friction data
Prior art date
Application number
PCT/JP2009/064565
Other languages
English (en)
French (fr)
Inventor
圭三 古金谷
泰孝 神徳
浩孝 藤崎
紘規 奥野
Original Assignee
株式会社島精機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島精機製作所 filed Critical 株式会社島精機製作所
Priority to JP2010527750A priority Critical patent/JPWO2010026881A1/ja
Publication of WO2010026881A1 publication Critical patent/WO2010026881A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/10Indicating, warning, or safety devices, e.g. stop motions
    • D04B35/20Indicating, warning, or safety devices, e.g. stop motions responsive to defects, e.g. holes, in knitted products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials

Definitions

  • This invention relates to discriminating whether or not the yarn has a transverse stripe when knitting with a knitting machine.
  • the horizontal streaks may be the texture of the knitted fabric. Whether or not a horizontal streak is generated depends on the yarn used. Generally, a knitting machine with a coarse gauge (number of needles per inch) hardly generates a horizontal streak. If the gauge becomes finer, for example, 12 gauge or more, a horizontal streak is generated. It is said that it becomes easy to do. Further, in the case of wool, it is considered that the horizontal streak is not conspicuous with the spun yarn having a non-uniform shape of the yarn itself, and the streak is conspicuous with the worsted yarn having the uniform shape of the yarn.
  • FIG. 18 An example of the horizontal streak of the knitted fabric knitted by the flat knitting machine is shown in FIG. Note that X is the direction in which the carriage travels during knitting in the wale direction, and Y is the course direction and the vertical direction of the knitted fabric. From FIG. 18, it can be seen that the change in the state of the yarn over a long period is related to the transverse stripe.
  • Patent Document 1 JP3520159B discloses that a yarn weight distribution is measured and Fourier-transformed and output as a spectrogram.
  • Patent Document 2 JPH03-229106A discloses that the yarn unevenness is obtained by optically measuring the yarn diameter and the like. The spectrogram when the weight distribution of the yarn is measured and Fourier transformed is shown in FIGS.
  • FIG. 14 corresponds to a thread (No. 1 in Table 1) where no horizontal stripe occurs
  • FIGS. 15, 16, and 17 correspond to a thread (No. 5, 7, 8 in Table 1) where a horizontal stripe occurs. It is only in FIG. 16 corresponding to the No. 7 yarn that there is mass unevenness, and it cannot be discriminated whether or not horizontal stripes are generated on the spectrogram of the weight distribution.
  • Table 1 shows the degree of yarn unevenness measured optically and the coefficient of variation CV of the friction data for 11 types of yarns.
  • Table 1 shows the degree of yarn unevenness measured optically and the coefficient of variation CV of the friction data for 11 types of yarns.
  • the column of CV in Table 1 shows the coefficient of variation of the friction data, that is, the value obtained by dividing the standard deviation of the friction data by the average value. It can be seen that if the CV is large, the horizontal stripes are likely to occur, but it is difficult to explain that the horizontal stripes do not occur with the 4th yarn and the horizontal stripes occur with the 5th and 6th yarns. Therefore, it is necessary to find a parameter that can predict whether or not a horizontal stripe occurs. *
  • An object of the present invention to make it possible to determine whether or not the yarn has a transverse line when the knitted fabric is knitted.
  • An auxiliary problem of the present invention is to make it possible to accurately measure the signal on the long period side when the friction data of the yarn is Fourier transformed.
  • an apparatus for discriminating the occurrence of lateral stripes a measurement unit for the friction data of a yarn, a calculation means for data representing a coefficient of variation comprising a ratio between a standard deviation and an average value of the friction data, and the friction data as a cycle of friction fluctuation.
  • a conversion unit for breaking down into components When the coefficient of variation is greater than or equal to a first predetermined value, the coefficient of variation is less than the first predetermined value and greater than or equal to a second predetermined value, and the friction data is further decomposed into periodic components by the conversion unit, Discriminating means for discriminating that a yarn having a long-period component strength of a predetermined condition or more is a yarn in which a transverse streak is generated when a knitted fabric is knitted by a knitting machine.
  • the friction data of the yarn is measured, data representing a coefficient of variation consisting of the ratio between the standard deviation and the average value of the measured friction data is calculated, and the friction data is converted into the cycle of the friction variation. Breaks down into ingredients, The length when the variation coefficient is less than the first predetermined value and the variation coefficient is less than the first predetermined value and greater than or equal to the second predetermined value, and the friction data is further decomposed into periodic components by the conversion unit It is determined that a yarn having a periodic component strength equal to or greater than a predetermined condition is a yarn in which a transverse stripe is generated when a knitted fabric is knitted by a knitting machine.
  • the description relating to the discriminating apparatus also applies to the discriminating method as it is, and conversely, the description relating to the discriminating method also applies to the discriminating apparatus as it is.
  • the determination is not to reliably predict, but to determine whether the probability of occurrence of a horizontal stripe is high or low.
  • the first predetermined value of the coefficient of variation is selected from the range of 2.8 to 3.2%, for example, and more narrowly from 2.9 to 3.1%. In the embodiment, it is 3%, and the second predetermined value is, for example, 1 It is selected from the range of 0.8% to 2.2%, more narrowly 1.95% to 2.1%, and 2% in the embodiment.
  • the variation coefficient is the ratio between the standard deviation and the average value, and it is not necessary to literally obtain the variation coefficient.
  • the square of the standard deviation that is, the ratio between the variance and the square of the average value may be used. . That is, it is important to discriminate from the variation coefficient, and it is arbitrary whether the variation coefficient is obtained directly or indirectly from other values.
  • the horizontal streaks occur in the 5th to 10th yarns. It is determined that the No. 7 to No. 10 yarns have a variation coefficient CV of the first predetermined value or more, for example, 3% or more, and are yarns in which a horizontal stripe is generated without using the strength of the long period component in the FFT value. it can. In fact, in Table 1, when CV is 3% or more, the FFT value is also large, and horizontal stripes occur in all samples. CV is a dimensionless quantity given by the following equation.
  • CV [Xavg] ⁇ 1 ⁇ ⁇ L ⁇ 1 [X ⁇ Xavg] 2 dl ⁇ 1/2 :
  • X friction data
  • Xavg is the average value of the friction data at the measurement length L
  • the integral variable is the length or time, or if the CV is less than 2%, the FFT value is small and no horizontal streak occurs in all samples. However, it can be predicted that no transverse stripes will occur.
  • the FFT value is indispensable when the CV is 2% or more and less than 3% (second predetermined value or more and less than the first predetermined value), in other words, a range that cannot be determined only by the CV.
  • FIG. 10 shows the FFT data of the yarn in which the horizontal stripe does not occur
  • FIGS. 11 and 13 show the FFT data of the yarn in which the horizontal stripe occurs.
  • FIG. 10 there is a peak at a wavelength of 1.16 m, but the FFT value of the peak is about 110 and is weak.
  • FIG. 11 there is a peak at a wavelength of 1.6 m, and the FFT value is strong at about 254.
  • FIG. 10 shows the FFT data of the yarn in which the horizontal stripe does not occur
  • FIGS. 11 and 13 show the FFT data of the yarn in which the horizontal stripe occurs.
  • FIG. 10 there is a peak at a wavelength of 1.16 m, but the FFT value of the peak is about 110 and is weak.
  • FIG. 11 there is a peak at a wavelength of 1.6 m, and the FFT value is strong at about 254.
  • FIG. 10 shows the FFT data of the yarn in which the horizontal stripe does not occur
  • FIGS. 11 and 13 show the
  • FIG. 2 shows a friction measuring unit known per se, in which friction is applied to the thread 23 by the friction body 20, the tension is measured by the front and rear tension measuring units 21 and 22, and the frictional force is obtained from the difference in tension. Further, the yarn 23 is wound up by the winding roller 24, and the tension is applied to the yarn 23 by the tension applying unit 30. If the distance between the members 20 to 22 and the roller 24 or the distance between the members 20 to 22 and the tension applying unit 30 is changed, the peak position on the long cycle side of the FFT value may change.
  • the peak position of the long period component of the FFT value may change.
  • the FFT value is friction data, for example, a Fourier transform value of the tension difference between the inlet side and the outlet side.
  • the FFT value depends on the tension and the like, and the applied tension is preferably changed depending on the thickness of the yarn. Therefore, the FFT value itself is not meaningful, but the relative magnitude of the FFT value is meaningful.
  • the yarn friction data measurement unit measures the yarn friction data at a plurality of yarn feed speeds using a yarn winding roller having a variable rotation speed, and determines the feed speed among the long period components. Even if it is changed, the strength of the long period component is obtained from the common peak and used to determine whether or not the thread has a transverse streak. If the peak generated, disappeared or moved by changing the feed rate is discarded as noise, The true peak on the period side can be obtained.
  • Block diagram of the discrimination device of the embodiment Block diagram of friction measuring instrument in the embodiment
  • a friction data is shown in the upper part of a figure, and the tension
  • yarn 1 of Table 1 The figure which shows the FFT value of the friction data of the thread
  • the figure which shows the FFT value of the friction data of the yarn 8 of Table 1 A diagram showing a spectrogram with respect to the weight fluctuation of the yarn 1 in Table 1 (conventional example)
  • yarn 5 of Table 1 (conventional example) The figure which shows the spectrogram with respect to the weight fluctuation of the thread
  • FIG. 1 shows a discriminating device 2 for generating horizontal stripes.
  • Reference numeral 4 denotes a friction measurement unit which outputs yarn friction data.
  • a memory 6 stores the output of the friction measurement unit 4.
  • the statistical processing unit 8 may output a coefficient of variation CV for the friction data of the yarn, and may output other statistical data such as an average value of friction, a standard deviation, a kurtosis degree, and a distortion degree.
  • the fast Fourier transform unit (FFT) 10 may perform fast Fourier transform on the friction data, particularly output a long period component thereof, and transform to an orthogonal function system other than a trigonometric function.
  • the wavelet transform unit 12 is a substitute for the FFT 10 and may not be provided.
  • the output unit 14 determines, based on the output of the statistical processing unit 8, for example, the output of the CV and the FFT 10, whether a horizontal streak is generated when the knitted fabric is knitted using the yarn.
  • the Fourier transform value (FFT value) is the square root of the sum of the square of the real component of the Fourier transform and the square of the imaginary component.
  • the Fourier transform is not limited to the literal Fourier transform, but includes a simplified Fourier transform such as a discrete cosine transform.
  • FIG. 2 shows the configuration of the friction measuring unit 4, and the friction measuring unit 4 is known per se.
  • Reference numeral 20 denotes a friction body, which is composed of a pin, a cylinder, or the like, and applies friction to the yarn 23.
  • a take-up roller 24 is driven by a motor 26, and the number of rotations is variable.
  • Reference numerals 27 to 29 denote guide rollers.
  • the tension measuring units 21 and 22 measure the tensions T1 and T2 of the yarn 23 in the vicinity of the guide rollers 27 and 28.
  • a tension applying unit 30 includes a plurality of rollers, and changes the tension between the cone 32 and cheese (not shown) and the guide roller 28.
  • the control unit 34 changes the number of rotations of the winding roller 24, that is, the feed speed of the yarn 23 in, for example, three stages, and outputs the difference between the tensions T1 and T2 measured by the tension measuring units 21 and 22 as friction data.
  • the long period component is the feed speed of the yarn 23, the distance between the elements 20-22 and the tension applying part 30, or the distance between the elements 20-22 and the take-up roller 24. May vary. These can be considered as a kind of natural vibration in the friction measuring unit 4 mixed in the friction data of the yarn 23. Therefore, in order to cut such noise, the winding speed of the winding roller 24 was changed to, for example, three types of 25 cm / second, 50 cm / second, and 75 cm / second, and the friction data was subjected to Fourier transform. Three types of Fourier transform values for the same yarn are shown in FIGS. *
  • FIGS. 3 to 5 the peak at a wavelength of 92 to 95 cm is common, and the two peaks in the range of 40 cm in FIG. 3 are not seen in FIG. 4, and the peak at a wavelength of 28 cm is not seen in FIG. Instead, FIG. 4 has peaks at a wavelength of 67 cm and a wavelength of 33 cm. 3 and 4, a peak with a wavelength of about 74 cm exists, but in FIG. 5, this peak disappears. Instead, a peak with a wavelength of 155 cm and a peak with a wavelength of about 21 cm appear, and a peak with a wavelength of about 47 cm is restored.
  • the winding speed is changed to three types, but may be changed to two types.
  • the worsted yarn is a yarn in which transverse stripes are more likely to occur than the spun yarn.
  • the yarns obtained by spinning No. 8 to No. 10 hemp are yarns in which the horizontal stripes are particularly likely to occur, but the horizontal stripes may have a texture. Therefore, when the problem is simplified, it will be explained that the horizontal stripes are generated in the No. 5 to No. 7 eyelash yarns even though the No. 3 and No. 4 eyelash yarns do not generate the horizontal stripes.
  • the 4th eyelash yarn is larger than the 6th eyelash yarn, but there is no reason why the horizontal streak does not occur.
  • a count such as 2/48 means a twin yarn of 48 m / g.
  • the No. 11 yarn in Table 1 has no horizontal streak even though the FFT peak value (period: 106.7 cm) is large. This indicates that complete discrimination cannot be made only with the FFT value.
  • 6 to 9 show the friction data of No. 1 yarn in Table 1 and the friction data of No. 5, 7, and 8 yarns.
  • 6 has a coefficient of variation of 1.52% and no horizontal streak
  • the number 5 thread of FIG. 7 has a coefficient of variation of 2.83% and has a horizontal line
  • the number 7 yarn of FIG. A horizontal stripe occurs when the coefficient is 3.17%
  • the variation coefficient is 4.13% as large as the eighth thread in FIG.
  • the lower line is the tension measured by the tension measuring unit 22 on the inlet side.
  • FIGS. 10 to 13 show the FFT values for No. 1 yarn, No. 5 yarn, No. 7 yarn and No. 8 yarn in Table 1.
  • 10 to 13 show the results when the yarn feed speed is 50 cm / second, and the portions found to be noise are marked as compared with the measurement results of 25 cm / second and 75 cm / second.
  • the measured yarn length is about 200 m.
  • the strong peak marked in the figure is the peak on the long period side, and the numbers indicate the period (wavelength) in cm.
  • the horizontal axis indicates the period, and the frequency obtained by FFT is converted to the period, so the component on the long period side is biased to the right side of the figure.
  • the vertical axis is the FFT value and the peak height.
  • the FFT value is about 110 at the maximum and is not large.
  • FIG. 11 corresponds to the No. 5 yarn, a yarn in which a horizontal stripe occurs, has a single strong peak at a wavelength of 160 cm, and has a high FFT value of about 254.
  • FIG. 12 corresponds to the No. 7 yarn, a horizontal stripe occurs, has a peak at a wavelength of 119.1 cm, etc., and the peak value of FFT is slightly high at 157.6.
  • FIG. 13 shows the result of No. 8 yarn in which the horizontal streak occurs.
  • the three peaks at 122 cm, 255 cm, and 512 cm are in a relationship of the fourth harmonic, the second harmonic, and the fundamental wave, and the peak of the fundamental wave is extremely high at 491. .
  • the presence or absence of transverse stripes can be almost predicted by the CV value, and when the CV is 3% or more, it can be predicted that the transverse stripes are surely generated regardless of the FFT value. Moreover, when CV is less than 2%, it can be predicted that no horizontal streak occurs regardless of the FFT value. In CV, it is difficult to predict the presence or absence of lateral stripes in the case of 2 to 3%. In this case, the FFT value is particularly significant.
  • the FFT value it is determined whether there is a strong peak having a large FFT value for a long-period component, particularly a component having a wavelength of 50 cm to 10 m, more specifically, a component having a wavelength of 50 cm to 5 m.
  • the peak of the FFT value in the period of the wavelength of 50 cm to 5 m is 110 or less when the horizontal stripe does not occur, and 160 or more when the horizontal stripe occurs, so the CV is 2 to 3%. If the peak FFT value for the yarn is determined to be 140 or less and less than 140, it is possible to determine the occurrence of a horizontal stripe.
  • the peak height is used here as the FFT value, but it may be the peak area above the baseline. Further, as shown in FIG. 13, when both the fundamental wave and the harmonic wave appear, the values of these peaks may be added without weighting or multiplied by an appropriate weighting factor.
  • the cause of the peak in the FFT value with a period of about 50 cm to 5 m is due to the twisting process in the process of spinning the yarn. That is, when the degree of twist of the yarn is periodically changed, the frictional property of the yarn is periodically changed, which is considered to cause the data in Table 1.
  • the degree of twist affects the friction between the yarn and the needle and the degree to which the yarn is stretched when knitting with a needle, and it can be estimated that a transverse streak occurs when the degree of twist changes over a long period. Next, the frictional characteristics of the yarn repeatedly fluctuate with a period of about 100 cm. It seems that it is getting bigger.
  • wavelet transform may be more suitable than fast Fourier transform.
  • friction data is converted into data on a two-dimensional plane of time and frequency.
  • the wavelet transform unit 12 is provided so as to output data having a wavelength of about 50 cm to 5 m, the FFT 10 can be substituted.
  • FIGS. 14 to 17 show the measurement results of the yarn unevenness tester for No. 1 yarn, No. 5 yarn, No. 7 yarn and No. 8 yarn in Table 1.
  • the yarn unevenness tester measures the weight distribution of the yarn and outputs, for example, a portion that is 50% thinner or thicker than the average value as a yarn unevenness.
  • the yarn unevenness tester can predict that the horizontal streak will occur with the 8th to 10th yarns, but these yarns vary greatly.
  • the yarn unevenness tester can fast Fourier transform the yarn weight change and output the wavelength component as a spectrogram.
  • FIGS. 14 to 17 show such data, and the peak around the wavelength of 1 m shown in FIGS. 10 to 13 is not found. Further, it is difficult to explain that the horizontal streak does not occur in the yarn of FIG. 14, and the horizontal streak occurs in the yarn of FIGS.
  • the following effects can be obtained. (1) When a yarn is knitted using a flat knitting machine or a circular knitting machine, it can be determined whether or not a horizontal line is generated. Therefore, the knitting of useless knitted fabric is reduced. (2) With the coefficient of variation CV, it is difficult to determine the presence or absence of lateral stripes, and it is possible to accurately determine the presence or absence of lateral stripes in an area where the CV is 2 to 3%. (3) By changing the yarn feed speed when measuring friction data, noise generated in the FFT data on the long cycle side can be eliminated.
  • Friction measuring unit 2 Discriminating device 4 Friction measuring unit 6 Memory 8 Statistical processing unit 10 Fast Fourier transform unit (FFT) DESCRIPTION OF SYMBOLS 12 Wavelet conversion part 14 Output part 20 Friction body 21,22 Tension measurement part 23 Yarn 24 Winding roller 26 Motor 27-29 Guide roller 30 Tension provision part 32 Cone 34 Control part
  • FFT Fast Fourier transform unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Knitting Machines (AREA)

Abstract

 糸の摩擦データを測定し、測定した摩擦データを摩擦変動の周期成分に分解した際の、長周期成分の強さを求める。この強さが所定の条件以上で、編機で編地を編成した際に横筋が生じる糸であると判別する。編地を編成した際に横筋が生じる糸かどうかを判別できる。

Description

横筋発生の判別装置と判別方法
 この発明は、編機で編成した際に横筋が生じる糸かどうかを判別することに関する。
 編地には横筋が生じることがあり、横筋は編地の商品価値を著しく低下させることがある。しかしこの一方で、糸によっては横筋が編地の風合いとなることもある。横筋が生じるか否かは、用いる糸に依存すると考えられ、一般にゲージ(1インチ当たりの針数)が粗い編機では横筋が発生しにくく、ゲージが例えば12ゲージ以上と細かくなると、横筋が発生しやすくなるとされている。また羊毛の場合、糸自体の形状が不均一な紡毛糸では横筋は目立ちにくく、糸の形状が均一な梳毛糸では横筋が目立ちやすいとされている。横編機で編成した編地の横筋の例を図18に示し、矢印の箇所等に横筋がある。なおXはウェール方向で編成時にキャリッジが走行する方向であり、Yはコース方向で編地の上下方向である。図18から、長い周期での糸の状態の変化が横筋と関係していることが伺える。
 横筋の生じやすい糸かどうかを判別する必要がある。紡績での品質管理のために、糸ムラを測定することが知られている。例えば特許文献1:JP3520159Bは糸の重量分布を測定し、これをフーリエ変換してスペクトログラムとして出力することを開示している。特許文献2:JPH03-229106Aは、光学的に糸径などを測定し、糸ムラを求めることを開示している。糸の重量分布を測定しフーリエ変換した際の、スペクトログラムを図14~図17に示す。図14は横筋が生じない糸(表1の番号1)に対応し、図15,図16,図17は横筋が生じる糸(表1の番号5,7,8)に対応する。質量ムラが有るのは7番の糸に対応する図16のみで、重量分布のスペクトログラム上では、横筋が発生するかどうかは見分けが付かない。
 11種類の糸に対する、光学的に測定した糸ムラの程度と、摩擦データの変動係数CVとを表1に示す。この内5~10番の糸を用いて、横編機で編地を編成すると、横筋が発生した。100mの糸に対して、平均に比べ50%以上細い箇所と太い箇所の数をピックアップしたものが、表1の右欄のデータである。8番~10番の麻を紡績した糸で糸ムラが著しく、いずれも横筋が生じたが、極めてムラの激しい糸では横筋が生じるのは当たり前である。実際には、5~7番のように横筋が生じる糸を、1番や3番のように糸の太さムラがあるが横筋が生じない糸と、区別して判別する必要があるが、この判別は難しい。
 表1のCVの欄は、摩擦データの変動係数、即ち摩擦データの標準偏差を平均値で割った値を示す。CVが大きいと横筋が生じやすいことが分かるが、4番の糸では横筋が生じず、5番,6番の糸で横筋が生じることを説明するのは難しい。そこで横筋が発生するかどうかを予測できるパラメータを見つけ出す必要がある。 
JP3520159B JPH03-229106A
 この発明は、編地を編成した際に横筋が生じる糸かどうかを判別できるようにすることを課題とする。
 この発明の補助的な課題は、糸の摩擦データをフーリエ変換した際の、長周期側の信号を正確に測定できるようにすることにある。
 この発明の横筋発生の判別装置は、糸の摩擦データの測定部と、前記摩擦データの標準偏差と平均値との比からなる変動係数を表すデータの算出手段と、摩擦データを摩擦変動の周期成分に分解するための変換部と、
 前記変動係数が第1の所定値以上の糸と、前記変動係数が第1の所定値未満でかつ第2の所定値以上であり、さらに摩擦データを変換部で周期成分に分解した際の、長周期成分の強さが所定の条件以上の糸とを、編機で編地を編成した際に横筋が生じる糸である、と判別する判別手段、とを備えている。
 またこの発明の横筋発生の判別方法では、糸の摩擦データを測定し、測定した摩擦データの標準偏差と平均値との比からなる変動係数を表すデータ算出すると共に、摩擦データを摩擦変動の周期成分に分解し、
 前記変動係数が第1の所定値以上の糸と、前記変動係数が第1の所定値未満でかつ第2の所定値以上であり、さらに摩擦データを変換部で周期成分に分解した際の長周期成分の強さが所定の条件以上の糸とを、編機で編地を編成した際に横筋が生じる糸である、と判別する。
 この明細書において、判別装置に関する記載はそのまま判別方法にも当てはまり、また逆に判別方法に関する記載はそのまま判別装置にも当てはまる。
 判別は確実に予測することではなく、横筋が生じる確率は高いか低いかを判定することである。
 変動係数の第1の所定値は例えば2.8~3.2%、より狭くは2.9~3.1%の範囲から選び、実施例では3%で、第2の所定値は例えば1.8%~2.2%、より狭くは1.95%~2.1%の範囲から選び、実施例では2%である。しかしこれらの値自体よりも、
・ 変動係数の大小により横筋が生じるか否かを大雑把に判別でき、
・ 第1の所定値と第2の所定値との間では、変動係数からは判別が難しいが、長周期成分の強さにより判別できることが重要である。従って、特定の変動係数の値を所定値として限定する必要はなく、第1及び第2の所定値の値は適宜に決定すればよい。また変動係数とは標準偏差と平均値との比であり、文字通りに変動係数を求める必要はなく、例えば標準偏差の2乗、即ち分散と、平均値の2乗との比を用いてもよい。即ち変動係数から判別することが重要で、直接変動係数を求めるか、他の値から間接的に変動係数を求めるかは任意である。
 表1において、横筋が生じるのは5番~10番の糸である。7番~10番の糸では、変動係数CVが第1の所定値以上、例えば3%以上で、FFT値での長周期成分の強さを用いなくても横筋が生じる糸である、と判別できる。事実、表1において、CVが3%以上の場合、FFT値も大きく、全サンプルで横筋が生じている。なおCVは下式で与えられる無次元の量である。
 CV=[Xavg]-1・{∫L-1[X-Xavg]dl}1/2 :Xは摩擦データ、
 Xavgは測定長Lでの摩擦データの平均値、積分変数は長さあるいは時間
 またCVが2%未満の場合、FFT値は小さく、全サンプルで横筋が生じないので、FFT値を考慮しなくても、横筋は発生しないと予測できる。即ちFFT値が不可欠なのは、CVが2%以上で3%未満(第2の所定値以上で第1の所定値未満)の場合で、言い換えるとCVのみでは判別できない範囲である。
 CVが第2の所定値以上で第1の所定値未満の場合、発明者は、摩擦変動の長周期成分、例えば波長50cm~10m、特に波長50cm~5mの成分の強弱により、横筋の発生を判別し得ることを見出した。図10は横筋の発生しない糸のFFTデータで、図11,図13は横筋の発生する糸のFFTデータである。図10では波長1.16mにピークがあるが、ピークのFFT値は約110で弱い。図11では波長1.6mにピークがあり、FFT値は約254で強い。図13では波長1.22m、2.55m、5.12mにピークがあり、5.12mのピークのFFT値は約491と強い。また波長1.22m、2.55mのピークは、5.12mのピークの4倍波及び2倍波である。そこで長周期側に強いピークがあるか否かを判別すれば、横筋の発生を予測できる。そして横筋が発生するか否かを予測できれば、無駄な編地を編成することを減らすことができる。
 発明者は、糸の摩擦データの長周期成分を測定すると、測定装置でのユニット間の間隔などにより、結果が異なることを発見した。図2はそれ自体として公知の摩擦測定部で、糸23に摩擦体20で摩擦を加え、前後の張力測定部21,22で張力を測定し、張力の差から摩擦力を求める。また巻き取りローラ24で糸23を巻き取り、張力付与部30で糸23に張力を付与する。ここで部材20~22とローラ24との間隔や、部材20~22と張力付与部30との間隔を変えると、FFT値の長周期側のピーク位置が変化することがあった。さらにローラ24での巻き取り速度を変えても、FFT値の長周期成分のピーク位置が変化することがあった。しかし長周期側のFFT値のピークには、部材の間隔を変えてもあるいは巻き取り速度(糸の送り速度)を変えても位置が変化しないものがあり、このピークが真のピークで、送り速度や部材の間隔で出現、消滅、あるいは移動するピークはノイズと推定できる。FFT値は摩擦データ、例えば入口側と出口側との張力差のフーリエ変換値で、FFT値は張力等に依存し、加える張力は糸の太さ等により変化させることが好ましい。従ってFFT値自体に意味があるのではなく、FFT値の相対的な大小に意味がある。
 そこで糸の摩擦データの測定部は、回転数が可変の糸の巻き取りローラを用いて、複数の糸の送り速度で糸の摩擦データを測定し、前記長周期成分の内で、送り速度を変えても共通のピークから前記長周期成分の強さを求めて、横筋が生じる糸かどうかの判別に利用し、送り速度を変えることによって発生、消滅、移動するピークをノイズとして捨てると、長周期側での真のピークを求めることができる。
実施例の判別装置のブロック図 実施例での摩擦測定器のブロック図 糸送り速度25cm/秒で糸を送った際のFFT値を示す図 糸送り速度50cm/秒で糸を送った際のFFT値を示す図 糸送り速度75cm/秒で糸を送った際のFFT値を示す図 表1の糸1の摩擦データを示す図で、図の上部に摩擦データを、下部に入口側の張力データを示す 表1の糸5の摩擦データを示す図で、図の上部に摩擦データを、下部に入口側の張力データを示す 表1の糸7の摩擦データを示す図で、図の上部に摩擦データを、下部に入口側の張力データを示す 表1の糸8の摩擦データを示す図で、図の上部に摩擦データを、下部に入口側の張力データを示す 表1の糸1の摩擦データのFFT値を示す図 表1の糸5の摩擦データのFFT値を示す図 表1の糸7の摩擦データのFFT値を示す図 表1の糸8の摩擦データのFFT値を示す図 表1の糸1の重量変動に対するスペクトログラムを示す図(従来例) 表1の糸5の重量変動に対するスペクトログラムを示す図(従来例) 表1の糸7の重量変動に対するスペクトログラムを示す図(従来例) 表1の糸8の重量変動に対するスペクトログラムを示す図(従来例) 従来例での横筋のある編地の写真
 以下に本発明を実施するための最適実施例を示す。
 図1~図13に、実施例を示す。図1に横筋発生の判別装置2を示すと、4は摩擦測定部で、糸の摩擦データを出力し、メモリ6は摩擦測定部4の出力を記憶し、統計処理部8、FFT10並びにウェーブレット変換部12に出力する。統計処理部8は糸の摩擦データに対する変動係数CVを出力し、これ以外に摩擦の平均値や標準偏差、尖り度、歪み度などの他の統計データを出力しても良い。高速フーリエ変換部(FFT)10は摩擦データを高速フーリエ変換し、特にその長周期成分を出力し、三角関数以外の直交関数系への変換でも良い。ウェーブレット変換部12はFFT10の代用で、設けなくても良い。出力部14は統計処理部8の出力、例えばCVとFFT10の出力とにより、糸を用いて編地を編成した際に横筋が発生するかどうかを判別する。なお以下フーリエ変換値(FFT値)は、フーリエ変換の実数成分の2乗と虚数成分の2乗の和の平方根である。またフーリエ変換は文字通りのフーリエ変換に限らず、離散コサイン変換などのフーリエ変換を簡略化したものを含むものとする。
 図2に摩擦測定部4の構成を示し、摩擦測定部4はそれ自体としては公知である。20は摩擦体で、ピンや円筒などから成り、糸23に対し摩擦を付与する。24は巻き取りローラで、モータ26により駆動され、回転数は可変である。27~29はガイドローラで、ガイドローラ27,28の付近で、張力測定部21,22により糸23の張力T1,T2を測定する。30は張力付与部で、複数の数のローラから成り、コーン32や図示しないチーズなどとガイドローラ28との間で張力を変化させる。制御部34は、巻き取りローラ24の回転数、即ち糸23の送り速度を例えば3段階に変化させ、張力測定部21,22で測定した張力T1とT2との差を摩擦データとして出力する。
 摩擦測定部4での摩擦データをフーリエ変換すると、長周期成分が糸23の送り速度や、要素20~22と張力付与部30との間隔、あるいは要素20~22と巻き取りローラ24との間隔により変化することがある。これらは摩擦測定部4での一種の固有振動が、糸23の摩擦データに混入したものと考えることができる。そこでこのようなノイズをカットするため、巻き取りローラ24の巻き取り速度を例えば25cm/秒、50cm/秒、75cm/秒の3種類に変化させ、摩擦データをフーリエ変換した。同じ糸に対する3種類のフーリエ変換値を図3,図4,図5に示す。 
 図3~図5で波長92~95cmのピークは共通で、図3での波長40cm台の2つのピークは図4には見られず、波長28cmのピークも図4には見られない。代わって図4には、波長67cmと波長33cmのピークがある。図3,図4では波長約74cmのピークが存在するが、図5ではこのピークは消失している。代わって波長155cmのピークと波長約21cmのピークが出現し、波長約47cmのピークが復活している。
 これらのように、糸の送り速度を変えると、発生、消滅もしくは移動するピークが摩擦測定部4での一種の固有振動によるノイズである。これに対して糸23自体の性質に起因するピークは、図3~図5で波長92~95cmにあり、位置が変化しない。さらに要素20~22と張力付与部30との間隔を変更しても、あるいは巻き取りローラ24との間隔を変更しても、図3~図5の波長90cm台のピークは移動しなかった。そこで巻き取り速度を変えても移動しないピークを真のピークとする。実施例では巻き取り速度を3種類に変更したが、2種類に変化させても良い。
 横編機で編成した際に横筋が生じるか否かを評価するため、表1の10種類の糸を用いた。これらのうちで、梳毛糸は紡毛糸に比べて横筋が発生しやすい糸である。8番~10番の麻を紡績した糸は、特に横筋が発生しやすい糸であるが、横筋が風合いとなることもある糸である。そこで問題を単純化すると、3番や4番の梳毛糸では横筋が発生しないにもかかわらず、5番~7番の梳毛糸で横筋が生じることを説明することとなる。特に変動係数CVでは、4番の梳毛糸は6番の梳毛糸よりも大きいのに、横筋が発生しないのは何故かという点にある。なお2/48などの番手は双糸で48m/gの糸などを意味する。また表1の11番の糸は、FFTのピーク値(周期106.7cm)が大きいにもかかわらず、横筋が生じない。このことはFFT値のみでは完全な判別はできないことを示している。
Figure JPOXMLDOC01-appb-T000001
 図6~図9は、表1の1番の糸の摩擦データと、5番、7番、8番の糸の摩擦データを示す。図6の1番の糸では変動係数が1.52%で横筋は生じず、図7の5番の糸では変動係数は2.83%で横筋が生じ、図8の7番の糸では変動係数が3.17%で横筋が生じ、図9の8番の糸では変動係数が4.13%と大きく、横筋が生じる。これらの図での、下側の線は入口側の張力測定部22で測定した張力である。
 図10~図13に、表1の1番の糸、5番の糸、7番の糸、8番の糸に対するFFT値を示す。なお図10~図13は糸の送り速度50cm/秒の結果を示し、25cm/秒や75cm/秒の測定結果と比較して、ノイズと判明した部分にはマークしてある。測定した糸の長さは約200mである。また図でマークした強いピークが長周期側のピークで、数字は周期(波長)をcm単位で示している。横軸は周期を示し、FFTで得られた周波数を周期に換算したので、長周期側の成分は図の右側に偏っている。縦軸はFFT値でピークの高さである。図10の1番の糸では横筋は生じず、ピークは116cmと320cmにあるが、これらは互いに基本波と高調波との関係にはない、ばらばらのピークである。またFFT値は最大でも110程度で、大きくはない。
 図11は5番の糸に対応し、横筋が生じる糸で、波長160cmに単一の強いピークがあり、FFT値が254程度と高い。図12は7番の糸に対応し、横筋が生じ、波長119.1cmなどにピークがあり、FFTのピーク値は157.6とやや高い。図13は横筋が生じる8番の糸の結果を示し、122cm、255cm、512cmの3つのピークは互いに4倍波、2倍波、基本波の関係にあり、基本波のピークは491と極めて高い。
 表1に示すように、横筋の有無はCV値によりほぼ予測でき、CVが3%以上の場合、FFT値によらず確実に横筋が生じるものと予測できる。またCVが2%未満の場合も、FFT値によらず横筋が生じないものと予測できる。CVでは横筋の有無を予測しがたいのは2~3%の場合で、この場合に特にFFT値に意味がある。
 FFT値では、長周期成分、特に波長50cm~10m、より具体的には波長50cm~5mの成分に対し、FFT値の大きな強いピークがあるか否かを判別する。表1に示すように、横筋が発生する糸では波長50cm~5mの周期でのFFT値のピークは、横筋が生じない場合110以下、横筋が生じる場合160以上なので、CVが2~3%の糸に対して、ピークのFFT値が140以上か140未満かで判別すると、横筋の発生を判別できる。
 なおFFT値としてはここではピークの高さを用いたが、ベースライン以上のピークの面積としても良い。また図13のように、基本波と高調波の双方が表れる場合、これらのピークの値を重み無しで、あるいは適宜の重み係数を乗算して加算しても良い。
 50cm~5m程度の周期でFFT値にピークが生じる原因は、糸を紡績する過程での撚り工程に原因があるものと推定できる。即ち糸の撚りの程度が周期的に変動すると、糸の摩擦特性が周期的に変化し、これが表1のデータの原因となっているものと思われる。また撚りの程度は、針で編成した際に糸と針との摩擦や糸が引き伸ばされる程度に影響し、長い周期で撚りの程度が変化すると横筋が生じるものと推定できる。次に糸の摩擦特性が100cm程度の周期で繰り返し変動するのは、糸の加工時にトラバースの影響を受けて摩擦係数が変動するためと考えられ、このような糸の加工条件が加わって変動が大きくなっているものと考えられる。
 所定の周期範囲で規則性が低い信号を検出するためには、高速フーリエ変換よりもウェーブレット変換の方が適している場合がある。ウェーブレット変換では、摩擦データを時間と周波数の2次元平面上のデータに変換する。そこで例えば波長50cm~5m程度のデータを出力するように、ウェーブレット変換部12を設けると、FFT10を代用できる。
 図14~図17は、表1の1番の糸、5番の糸、7番の糸、8番の糸に対する糸ムラ試験機での測定結果を示す。糸ムラ試験機では糸の重量分布を測定し、平均値に対して例えば50%以上細い場所、あるいは太い場所を、糸ムラとして出力する。糸ムラ試験機では8~10番の糸で横筋が生じることを予測できるが、これらは変動の激しい糸である。糸ムラ試験機はそれだけではなく、糸の重量変化を高速フーリエ変換し、その波長成分をスペクトログラムとして出力できる。図14~図17はこのようなデータで、図10~図13に示した波長1m付近のピークは見当たらない。また図14の糸では横筋は生じず、図15,図17の糸で横筋が生じることを説明することは困難である。
 実施例では以下の効果が得られる。
(1) 横編機や丸編機などを用いて糸を編成した際に、横筋が生じるか否かを判別できる。従って無駄な編地を編成することが少なくなる。
(2) 変動係数CVでは横筋の有無を判別しがたい、CVが2~3%の領域に対して、的確に横筋の有無を判別できる。
(3) 摩擦データ測定時に糸の送り速度を変えることにより、長周期側のFFTデータに生じるノイズを除くことができる。
2 判別装置  4 摩擦測定部  6 メモリ
8 統計処理部  10 高速フーリエ変換部(FFT)
12 ウェーブレット変換部  14 出力部  20 摩擦体
21,22 張力測定部  23 糸  24 巻き取りローラ
26 モータ  27~29 ガイドローラ
30 張力付与部  32 コーン  34 制御部 

Claims (4)

  1. 糸の摩擦データの測定部と、前記摩擦データの標準偏差と平均値との比からなる変動係数を表すデータの算出手段と、摩擦データを摩擦変動の周期成分に分解するための変換部と、
     前記変動係数が第1の所定値以上の糸と、前記変動係数が第1の所定値未満でかつ第2の所定値以上であり、さらに摩擦データを変換部で周期成分に分解した際の、長周期成分の強さが所定の条件以上の糸とを、編機で編地を編成した際に横筋が生じる糸である、と判別する判別手段、とを備えた横筋発生の判別装置。
  2. 糸の摩擦データの測定部は、回転数が可変の糸の巻き取りローラを備え、複数の糸の送り速度で糸の摩擦データを測定し、
     判別手段は、前記長周期成分の内で、送り速度を変えても共通のピークから前記長周期成分の強さを求めて、横筋が生じる糸かどうかの判別に利用し、送り速度を変えることによって発生、消滅、あるいは移動するピークをノイズとして捨てることを特徴とする、請求項1の横筋発生の判別装置。
  3. 糸の摩擦データを測定し、測定した摩擦データの標準偏差と平均値との比からなる変動係数を表すデータを算出すると共に、摩擦データを摩擦変動の周期成分に分解し、
     前記変動係数が第1の所定値以上の糸と、前記変動係数が第1の所定値未満でかつ第2の所定値以上であり、さらに摩擦データを変換部で周期成分に分解した際の長周期成分の強さが所定の条件以上の糸とを、編機で編地を編成した際に横筋が生じる糸である、と判別する、横筋発生の判別方法。
  4. 回転数が可変の糸の巻き取りローラを用いて、複数の糸の送り速度で糸の摩擦データを測定し、
     前記長周期成分の内で、送り速度を変えても共通のピークから前記長周期成分の強さを求めて、横筋が生じる糸かどうかの判別に利用し、送り速度を変えることによって発生、消滅あるいは移動するピークをノイズとして捨てることを特徴とする、請求項3の横筋発生の判別方法。
PCT/JP2009/064565 2008-09-02 2009-08-20 横筋発生の判別装置と判別方法 WO2010026881A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010527750A JPWO2010026881A1 (ja) 2008-09-02 2009-08-20 横筋発生の判別装置と判別方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-224436 2008-09-02
JP2008224436 2008-09-02

Publications (1)

Publication Number Publication Date
WO2010026881A1 true WO2010026881A1 (ja) 2010-03-11

Family

ID=41797051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064565 WO2010026881A1 (ja) 2008-09-02 2009-08-20 横筋発生の判別装置と判別方法

Country Status (2)

Country Link
JP (1) JPWO2010026881A1 (ja)
WO (1) WO2010026881A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137927A (ja) * 2018-02-06 2019-08-22 東レ株式会社 織物用原糸表面の擦過試験装置
CN113933199A (zh) * 2021-10-12 2022-01-14 泰山玻璃纤维邹城有限公司 一种电子级玻璃纤维耐磨性测试装置及测试方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832709A (en) * 1995-12-20 1998-11-10 W. Schlafhorst Ag & Co. Method of checking the yarn profile associated with a yarn piecing operation in an open-end spinning machine
JP2000045171A (ja) * 1998-07-30 2000-02-15 Fibrevision Ltd 糸条のモニタ―リング
JP2005120544A (ja) * 2003-10-20 2005-05-12 Toyobo Co Ltd 弾性繊維、カバリング弾性糸、布帛およびそれらからなる繊維製品、および弾性繊維の製造方法
JP2008523257A (ja) * 2004-12-03 2008-07-03 ダウ グローバル テクノロジーズ インコーポレイティド 減少摩擦係数を有する弾性繊維

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832709A (en) * 1995-12-20 1998-11-10 W. Schlafhorst Ag & Co. Method of checking the yarn profile associated with a yarn piecing operation in an open-end spinning machine
JP2000045171A (ja) * 1998-07-30 2000-02-15 Fibrevision Ltd 糸条のモニタ―リング
JP2005120544A (ja) * 2003-10-20 2005-05-12 Toyobo Co Ltd 弾性繊維、カバリング弾性糸、布帛およびそれらからなる繊維製品、および弾性繊維の製造方法
JP2008523257A (ja) * 2004-12-03 2008-07-03 ダウ グローバル テクノロジーズ インコーポレイティド 減少摩擦係数を有する弾性繊維

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN LANG ET AL.: "Changing Yarn Hairiness During Winding - Analyzing the Trailing Fiber Ends", TEXITILE RESEARCH JOURNAL, vol. 74, no. 10, 2004, pages 905 - 913 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019137927A (ja) * 2018-02-06 2019-08-22 東レ株式会社 織物用原糸表面の擦過試験装置
JP7062984B2 (ja) 2018-02-06 2022-05-09 東レ株式会社 織物用原糸表面の擦過試験装置
CN113933199A (zh) * 2021-10-12 2022-01-14 泰山玻璃纤维邹城有限公司 一种电子级玻璃纤维耐磨性测试装置及测试方法
CN113933199B (zh) * 2021-10-12 2024-05-24 泰山玻璃纤维邹城有限公司 一种电子级玻璃纤维耐磨性测试装置及测试方法

Also Published As

Publication number Publication date
JPWO2010026881A1 (ja) 2012-02-02

Similar Documents

Publication Publication Date Title
Cheng et al. JetRing spinning and its influence on yarn hairiness
Xu et al. Techniques for torque modification of singles ring spun yarns
CN1090144C (zh) 用于在纱线制作过程中监测纱线张力的方法
WO2010026881A1 (ja) 横筋発生の判別装置と判別方法
Ugli et al. Analysis of changes in the physical and mechanical properties of twisted yarns as a result of finishing
US4088016A (en) Method and apparatus for determining parameters of a staple length distribution of fibers in yarn slivers
CN108169052B (zh) 一种碳纤维应用工艺性测试装置及测试方法
Acar et al. 32—an analysis OF the air-jet yarn-texturing process part VII: the effects OF processing parameters ON yarn properties
Feng et al. Structural analysis of finer cotton yarns produced by conventional and modified ring spinning system
US6303938B1 (en) Method and device for detection of untextured yarn sections in textured filament yarns
CN105181457B (zh) Ptt/pet自卷曲丝弹性的工业化测试方法
EP4146854A1 (en) A method for detecting structural defects of fasciated yarn comprising a core from parallel fibers which is bound together by wrapper fibers and wild fibers, a device for performing the method, a computer program for the device and a computer readable medium with the computer program
Koo Correlation of yarn tension with parameters in the knitting process
Konda et al. Fiber speed and yarn tension in friction spinning
WO1997038306A1 (de) Verfahren und vorrichtung zum nachweis untexturierter garnabschnitte in texturierten filamentgarnen
Foster 20—THE INVESTIGATION OF PERIODICITIES IN THE PRODUCTS OF COTTON SPINNING THE DRAFTING WAVE
Lamb The effect of spinning draft on irregularity and faults part I: Theory and simulation
Matsumoto et al. A study of throstle-spun-silk/raw-silk core-spun yarn part III: yarn appearance
EP1024213B1 (en) Method for managing draw-false twisting
Das et al. Study on the static and dynamic strengths and weavability of spun yarns
Kumar et al. Impact of different stages of spinning process on fibre orientation and properties of ring, rotor and air-jet yarns: Part 1–Measurements of fibre orientation parameters and effect of preparatory processes on fibre orientation and properties
CN114262963B (zh) 一种纺织色织布用细纱吊锭张力快速检测方法
US5434003A (en) Entangled polyamide yarn
JP2000045171A (ja) 糸条のモニタ―リング
Korkmaz The effect of fine denier polyester fibre fineness on dynamic cohesion force

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811408

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527750

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811408

Country of ref document: EP

Kind code of ref document: A1