WO2010026678A1 - Hydraulic control system in working machine - Google Patents

Hydraulic control system in working machine Download PDF

Info

Publication number
WO2010026678A1
WO2010026678A1 PCT/JP2009/002412 JP2009002412W WO2010026678A1 WO 2010026678 A1 WO2010026678 A1 WO 2010026678A1 JP 2009002412 W JP2009002412 W JP 2009002412W WO 2010026678 A1 WO2010026678 A1 WO 2010026678A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pressure
head side
accumulator
valve
Prior art date
Application number
PCT/JP2009/002412
Other languages
French (fr)
Japanese (ja)
Inventor
守屋直行
和田篤志
白仁啓介
井口高志
Original Assignee
キャタピラージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キャタピラージャパン株式会社 filed Critical キャタピラージャパン株式会社
Publication of WO2010026678A1 publication Critical patent/WO2010026678A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means

Definitions

  • the present invention belongs to the technical field of a hydraulic control system in a working machine capable of recovering and reusing potential energy of the working unit in a working machine provided with a vertically movable working unit.
  • a working machine such as a hydraulic shovel or a crane is provided with a vertically movable working unit, and the working unit is configured to move up and down based on the expansion and contraction operation of a hydraulic cylinder supplied with pressure oil from a hydraulic pump
  • oil discharged from the head-side oil chamber of the hydraulic cylinder to the oil tank during descent of the working unit is conventionally discharged to supply oil to the hydraulic cylinder in order to prevent it from falling sharply due to its own weight.
  • Metering out control is configured by a throttle provided on a control valve that performs control.
  • Patent Document 1 discloses a technology in which pressure is accumulated in an accumulator and pressure oil accumulated in the accumulator is supplied to a head-side oil chamber of an assist cylinder when the working unit ascends (see, for example, Patent Document 1).
  • the discharge oil from the assist cylinder is accumulated in the accumulator at the time of descent of the working part in the Patent Document 1
  • the discharged oil from the hydraulic cylinder conventionally provided for raising and lowering the working part is The oil is discharged to the oil tank via the control valve, and only a part of the potential energy of the working machine is recovered.
  • a part of the pressure oil supplied from the hydraulic pump to the hydraulic cylinder via the control valve is supplied to the assist cylinder when the accumulator is not sufficiently accumulated in the accumulator and for accumulator accumulator pressure As a result, the rising speed of the working unit is slowed and the working efficiency is reduced.
  • Patent Document 2 a dedicated pump for increasing the pressure accumulated in the accumulator to a high pressure, and a power transmission device (gear device etc.) for transmitting the engine power to the pump become necessary, resulting in an increase in cost.
  • energy loss such as torque reduction in power transmission equipment and idling torque due to inertia mass of the pump itself, so that further energy saving is required, and the present invention is intended to solve the problem. There is a problem.
  • the hydraulic control system includes an openable and closable unload oil passage for flowing pressure oil in a head side oil chamber of the first hydraulic cylinder to an oil tank
  • a controller for controlling the opening and closing of the unloading oil passage, and holding the weight of the working part by the pressure of the head side oil chamber of the first and second hydraulic cylinders in a state where the unloading oil passage is closed;
  • the first and second embodiments are configured to hold the weight of the working unit by the pressure of the head side oil chamber of the second hydraulic cylinder when the unloading oil passage is open, and to hold the weight when the working unit is lowered.
  • a hydraulic control system in a working machine characterized in that a accumulator for accumulating oil discharged from the head-side oil chamber of Sunda.
  • the hydraulic control system is controlled by the control device to open and close the head side communication oil path connecting the head side oil chambers of the first and second hydraulic cylinders and the head side communication oil path.
  • the control device opens the head side communication oil passage in the state where the unloading oil passage is closed, while the control device is configured to open the head communication passage.
  • the invention according to claim 3 is characterized in that the control device controls to open the unloading oil passage when the working unit is lowered, and close the unloading oil passage when the elevation of the working unit is stopped and when the work unit is lifted.
  • It is a hydraulic control system in the working machine according to or 2.
  • the invention according to claim 4 is that the hydraulic control system includes an accumulator pressure detection means for detecting the pressure of the accumulator, and a first and a second head side pressure for detecting the pressures of the head side oil chambers of the first and second hydraulic cylinders, respectively. While the detection means is provided, the control device sets in advance the differential pressure between the average pressure of the head side oil chambers of the first and second hydraulic cylinders and the pressure of the accumulator even when the working unit is lowered.
  • the invention according to claim 5 is that the second head side pressure detecting means for detecting the pressure in the head side oil chamber of the second hydraulic cylinder and the second relief for setting the head side relief pressure of the second hydraulic cylinder in the hydraulic control system.
  • the control device sets in advance the differential pressure between the head-side relief pressure of the second hydraulic cylinder and the pressure of the head-side oil chamber of the second hydraulic cylinder even when the working unit is lowered.
  • the hydraulic control system in a working machine according to claim 3 or 4 characterized in that the unloading oil passage is controlled to be closed when the pressure value is less than the set value.
  • the invention according to claim 6 is that the hydraulic control system is provided with first and second flow control valves for controlling the discharge flow from the head-side oil chamber of the first and second hydraulic cylinders when the working unit is lowered. It is a hydraulic control system in a working machine according to any one of claims 1 to 5 characterized by the above.
  • the invention according to claim 7 relates to the hydraulic control system, the flow of oil from the head side oil chamber of the first and second hydraulic cylinders to the accumulator, and the oil from the accumulator to the head side oil chamber of the first and second hydraulic cylinders
  • the invention according to claim 8 relates to the hydraulic control system, accumulator pressure detection means for detecting the pressure of the accumulator, and first and second head side pressures for detecting the pressures of the head side oil chambers of the first and second hydraulic cylinders, respectively.
  • a detection means an openable / closable tank oil passage for flowing oil discharged from the head side oil chamber of the first and second hydraulic cylinders to the oil tank via the first and second flow rate control valves, and the first and second oil passages
  • a control means is provided with a valve means capable of blocking the flow of oil from the head side oil chamber of the hydraulic cylinder to the accumulator and the flow of oil from the accumulator to the head side oil chamber of the first and second hydraulic cylinders.
  • the valve means When the pressure of the head side oil chamber of the first and second or second hydraulic cylinder holding weight is smaller than the pressure of the accumulator when the working part is lowered, the valve means The oil flow from the head side oil chamber of the pressure cylinder to the accumulator and the oil flow from the accumulator to the head side oil chambers of the first and second hydraulic cylinders are blocked, and the tank oil passage is opened.
  • the unloading oil passage is opened and the pressure oil in the head side oil chamber of the first hydraulic cylinder flows to the oil tank so that the weight of the working part is the second
  • the pressure is maintained at the pressure of the head side oil chamber of the hydraulic cylinder, and the oil discharged from the head side oil chamber of the second hydraulic cylinder is accumulated in the accumulator.
  • the head side of the second hydraulic cylinder Since the pressure in the oil chamber, that is, the holding pressure for holding the weight of the working unit is doubled with respect to the holding pressure when holding the weight of the working unit with both the first and second hydraulic cylinders, A high pressure hydraulic oil which can cope with high load operation is accumulated, and therefore, the accumulator oil of the accumulator can be used for various operations without using additional pressure increase. Furthermore, as in the case of increasing the pressure-accumulating oil of the accumulator using a pump driven by the engine power, there is no loss of torque in the power transmission path from the engine to the pump or loss of idling torque due to inertial mass of the pump itself.
  • the potential energy of the working unit collected in the accumulator can be used with as little loss as possible, and can greatly contribute to cost reduction.
  • the head-side oil chambers of the second hydraulic cylinder are in communication with each other, and the first and second hydraulic cylinders can support the working unit in a well-balanced manner, while the unloading oil passage is open, that is, the second hydraulic cylinder.
  • the unloading oil passage is opened, that is, the weight of the working unit is held by the second hydraulic cylinder at the time of lowering of the working unit for accumulating pressure in the accumulator.
  • the unloading oil passage is closed, that is, the weight of the working unit is held by the first and second hydraulic cylinders, so except during the descent of the working unit for accumulating pressure in the accumulator.
  • the loss of flowing pressure oil from the head side oil chamber of the first hydraulic cylinder to the oil tank can be eliminated at the same time, and when the working part is raised, the power will be insufficient or the balance will be lost. There is no excuse.
  • unloading is performed when the pressure on the head side oil chamber of the first and second hydraulic cylinders is high relative to the pressure of the accumulator even when the working unit is lowered.
  • the oil passage is closed, and the pressure of the head side oil chamber of the first and second hydraulic cylinders holds the weight of the working part, and the oil discharged from the head side oil chamber of the first and second hydraulic cylinders serves as an accumulator. It is possible to reduce the loss of flowing pressure oil in the head side oil chamber of the first hydraulic cylinder to the oil tank by opening the unloading oil passage.
  • the unloading oil is used when the differential pressure between the head side relief pressure of the second hydraulic cylinder and the pressure of the head side oil chamber becomes equal to or less than the set value.
  • the passage is closed, and the weight of the working unit is held by the first and second hydraulic cylinders, whereby the pressure in the head-side oil chamber of the second hydraulic cylinder rises excessively and the second head-side relief valve It can prevent that it operates.
  • the lowering speed of the working unit can be controlled by the first and second flow control valves.
  • the pressure oil in the head side oil chambers of the first and second hydraulic cylinders may flow out to the accumulator, or the pressure accumulation oil in the accumulator may become the first and second oil pressure, by blocking the flow of oil into the head side oil chamber of the It is possible to reliably avoid such a problem that the oil is supplied to the head side oil chamber of the cylinder.
  • the valve means can prevent oil from flowing backward from the accumulator to the head side oil chambers of the first and second hydraulic cylinders, and even in this case, the speed control by the first and second flow control valves In the closed state, the working unit can be lowered.
  • FIG. 2 is a hydraulic circuit diagram of a hydraulic control system. It is a block diagram which shows the input-output of a control apparatus. It is a flowchart figure which shows judgment of cantilever control and both-ends control.
  • reference numeral 1 denotes a hydraulic shovel, which is an example of a working machine
  • the hydraulic shovel 1 is a crawler type lower traveling body 2 and an upper revolving structure 3 rotatably supported above the lower traveling body 2.
  • the boom 5 includes a working unit 4 and the like attached to the front of the upper swing body 3, and the working unit 4 further includes a boom 5 whose base end portion is supported by the upper swing body 3 so as to be vertically pivotable.
  • the arm 6 is supported at the front end of the boom 5 so as to be pivotable back and forth, and the bucket 7 and the like attached to the front end of the arm 6.
  • 8 and 9 are a pair of left and right first and second boom cylinders (corresponding to the first and second hydraulic cylinders of the present invention) for swinging the boom 5 up and down.
  • the two boom cylinders 8, 9 hold the weight of the working unit 4 by the pressure of the head side oil chambers 8a, 9a, and supply pressure oil to the head side oil chambers 8a, 9a and from rod side oil chambers 8b, 9b. Discharge the oil by moving the boom 5 upward, and supply the pressure oil to the rod side oil chambers 8b, 9b and the oil discharge from the head side oil chambers 8a, 9a reduce the boom 5 so as to lower it. It is configured.
  • the entire working unit 4 ascends and descends as the boom 5 ascends and descends, and the potential energy of the working unit 4 increases as the boom 5 ascends, but the potential energy is recovered by a hydraulic control system described later.
  • the first boom cylinder 8 is one of the boom cylinders 8 and 9, and the second boom cylinder 9 is the other boom cylinder 9, and in FIG. Although one boom cylinder 8 is used and the right side is used as the second boom cylinder 9, it may be of course reversed.
  • FIG. 2 8 and 9 indicate the first and second boom cylinders
  • 10 indicates the engine E mounted on the hydraulic shovel 1.
  • a variable displacement main pump to be driven 11 a pilot pump serving as a pilot hydraulic pressure source
  • 12 an oil tank.
  • the main pump 10 is not only the first and second boom cylinders 8 and 9 but also a plurality of other hydraulic actuators (not shown in FIG. 2 but traveling motors, swing motors, arms) provided in the hydraulic shovel 1 It is a hydraulic pump which becomes an oil pressure supply source of a cylinder, a bucket cylinder, etc.).
  • reference numeral 13 denotes a regulator for controlling the discharge flow rate of the main pump 10.
  • the regulator 13 receives the control signal pressure from the main pump output control electromagnetic proportional pressure reducing valve 14 and controls the engine speed and the work load. While operating to obtain a corresponding pump output, constant horsepower control is performed by receiving the discharge pressure of the main pump 10. Furthermore, although the regulator 13 also performs flow control based on the negative control signal pressure Pn or the flow control signal pressure Pc, the flow control will be described later.
  • 15 is a discharge line of the main pump 10, and the discharge line 15 merges with a joining oil passage 16 described later and reaches a pressure oil supply oil passage 17, and the pressure oil supply oil passage 17
  • a boom cylinder control valve 18 is connected to perform oil supply and discharge control to the first and second boom cylinders 8 and 9.
  • a hydraulic actuator control valve (traveling motor (hydraulic motor control valve) performing oil supply and discharge control not only to the boom cylinder control valve 18 but also to a plurality of other hydraulic actuators provided in the hydraulic shovel 1 in the pressure oil supply oil passage 17
  • Control valves, a control valve for the swing motor, a control valve for the arm cylinder, a control valve for the bucket cylinder, etc. are also connected, but are omitted in FIG.
  • the boom cylinder control valve 18 is constituted by a spool valve provided with rising side and lowering side pilot ports 18a and 18b, and the first, second, and third pilot valves 18a and 18b are not used. It is located at the neutral position N where the oil supply and discharge to the second boom cylinders 8 and 9 is not performed, but when the pilot pressure is input to the rising side pilot port 18a, the pressure oil in the pressure oil supply oil passage 17 is First, the head side oil chambers 8a and 9a of the second boom cylinders 8 and 9 are switched to the rising side position X in which the oil discharged from the rod side oil chambers 8b and 9b is supplied to the oil tank 12 The pressure oil in the pressure oil supply oil passage 17 is set to the rod side oil of the first and second boom cylinders 8 and 9 by the pilot pressure being input to the lowering side pilot port 18b. 8b, and is configured to Setsu ⁇ Ru so the descending side position Y to be supplied to 9b.
  • the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 and the control valve 18 for the boom cylinder are the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9, respectively.
  • 9a are connected with each other via a head side communication oil passage 21 which communicates with each other, and a head side main oil passage 22 which connects the head side communication oil passage 21 and the boom cylinder control valve 18 with each other.
  • the rod side oil chambers 8b and 9b of the first and second boom cylinders 8 and 9 and the boom cylinder control valve 18 communicate with rod side communication oil passages 23 communicating the rod side oil chambers 8b and 9b with each other, and It is connected via a rod-side main oil passage 24 connecting the rod-side communication oil passage 23 and the boom cylinder control valve 18.
  • oil is supplied and discharged between the first and second boom cylinders 8 and 9 and the boom cylinder control valve 18 through these oil passages.
  • 25 and 26 are rising side and falling side electromagnetic proportional pressure reducing valves, and these electromagnetic proportional pressure reducing valves 25 and 26 are the boom cylinder control valve 18 based on a control signal from the control device 27 described later.
  • the pilot pressure is operated to output the pilot pressure to the rising side pilot port 18a and the lowering side pilot port 18b, respectively.
  • the pilot pressures output from the rising side and the lowering side electromagnetic proportional pressure reducing valves 25 and 26 are controlled to increase or decrease according to the operation amount of the boom control lever (not shown), and the pilot pressure is increased or decreased.
  • the opening area of the boom cylinder control valve 18 is controlled to be increased or decreased by increasing or decreasing the moving stroke of the spool correspondingly to the first and second boom cylinders from the boom cylinder control valve 18. It is comprised so that increase / decrease control of the supply-and-discharge flow rate to 8,9 may be made
  • the boom cylinder control valve 18 is formed with a center bypass valve passage 18 c for flowing the pressure oil of the pressure oil supply oil passage 17 to the oil tank 12 via the negative control valve 28.
  • the passage flow rate of the center bypass valve passage 18c is largest when the boom cylinder control valve 18 is at the neutral position N, and becomes smaller as the movement stroke of the spool becomes larger, that is, the operation amount of the boom control lever increases.
  • the flow rate of the center bypass valve 18 c is controlled to decrease. Then, the passing flow rate of the center bypass valve passage 18c is output to one input port 29a of a shuttle valve 29 described later as a negative control signal pressure Pn.
  • Reference numeral 30 denotes a main pump flow control electromagnetic proportional pressure reducing valve that outputs a flow control signal pressure Pc based on a control signal from the control device 27, and is output from the main pump flow control electromagnetic proportional pressure reducing valve 30.
  • the flow control signal pressure Pc is input to the other input port 29 b of the shuttle valve 29.
  • the shuttle valve 29 selects the high pressure side out of the negative control signal pressure Pn and the flow control signal pressure Pc input from the input ports 29a and 29b, and outputs the same to the regulator 13 of the main pump 10. Then, the regulator 13 controls the flow rate of the main pump 10 so as to decrease the pump flow rate as the input signal pressure is higher. That is, of the negative control signal pressure Pn and the flow control signal pressure Pc, the signal pressure for reducing the discharge flow rate of the main pump 10 is selected by the shuttle valve 29 and is input to the regulator 13.
  • the pump flow rate is increased or decreased according to the increase or decrease of the operation amount of the boom control lever, while when the flow control signal pressure Pc is input, the flow rate control Although flow control based on the signal pressure Pc is performed, this flow control signal pressure Pc will be described later.
  • the first and second head side oil passages 19, 20 are oil passages connected to the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 as described above,
  • the first and second head side oil passages 19 and 20 allow oil supply to the head side oil chambers 8a and 9a but prevent oil discharge from the head side oil chambers 8a and 9a.
  • the check valves 31, 32 and first and second flow control valves 33, 34 for controlling the flow rate of discharge from the head side oil chambers 8a, 9a are arranged in parallel.
  • the oil supply to the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 is performed via the first and second check valves 31, 32, while the head side oil chamber 8a is , 9a are discharged via the first and second flow control valves 33, 34.
  • the first and second flow control valves 33, 34 are spool valves provided with pilot ports 33a, 34a, and in a state where pilot pressure is not input to the pilot ports 33a, 34a, the first and second heads It is located at the closed position N for closing the side oil passages 19 and 20. However, when the pilot pressure is input to the pilot ports 33a and 34a, the open position X for opening the first and second head side oil passages 19 and 20 It is comprised so that it may switch.
  • Reference numerals 35 and 36 denote first and second electromagnetic proportional pressure reducing valves, and the electromagnetic proportional pressure reducing valves 35 and 36 are controlled by the first and second flow rate control valves based on control signals from the controller 27. It operates to output pilot pressure to the pilot ports 33a, 34a of 33, 34. Then, the opening areas of the first and second flow control valves 33 and 34 are controlled to increase or decrease in response to the increase or decrease of the pilot pressure output from the first and second electromagnetic proportional pressure reducing valves 35 and 36. ing.
  • 37 and 38 are first and second relief valves connected to the first and second head side oil passages 19 and 20, respectively.
  • the first and second relief valves 37 and 38 The head-side relief pressure of the second boom cylinders 8 and 9 is set.
  • the head side communication oil passage 21 is connected between the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 via the first and second head side oil passages 19 and 20, respectively.
  • the head side communication oil path 21 is provided with a head side communication oil path opening / closing valve 39 for opening and closing the head side communication oil path 21 based on a control signal from the control device 27. ing.
  • the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are located at the open position X where the head side communication oil path opening / closing valve 39 opens the head side communication oil path 21.
  • the communication is made via the first and second head side oil passages 19 and 20, but the head side communication oil passage on-off valve 39 is located at the closed position N closing the head side communication oil passage 21. Is configured to be in a blocked state.
  • the on-off valve such as the head-side communication oil passage on-off valve 39 is not disposed in the rod-side communication fluid passage 23, and the rod-side oil chambers 8b and 9b of the first and second boom cylinders 8 and 9 Is always in communication.
  • reference numeral 40 denotes a head-side discharge oil passage extending from the first head-side oil passage 19 to the oil tank 12, and an unload valve 41 is disposed in the head-side discharge oil passage 40.
  • the second head-side oil passage 20 is connected to the head-side discharge oil passage 40 via the head-side communication oil passage 21, and the head-side communication oil passage on-off valve 39 is closed at the closed position N.
  • the head side communication oil passage on-off valve 39 is positioned at the open position X.
  • the oil of the second head side oil passage 20 can be made to flow to the head side discharge oil passage 40.
  • the unload valve 41 is configured using a poppet valve 42 and an electromagnetic switching valve 43 for unload valve that switches from the OFF position N to the ON position X based on a control signal output from the control device 27. .
  • the unloading valve 41 blocks the flow of oil from the first head side oil passage 19 to the oil tank 12 when the unloading valve electromagnetic switching valve 43 is at the OFF position N, that is, the head It is held in the closed state to close the side discharge oil passage 40, but when the unload valve electromagnetic switching valve 43 is switched to the ON position X, the flow of oil from the first head side oil passage 19 to the oil tank 12 is That is, the head side discharge oil passage 40 is opened.
  • the pressure oil in the head-side oil chamber 8a of the first boom cylinder 8 is set to the first position by setting the unload valve electromagnetic switching valve 43 to the ON position X and opening the unload valve 41. It can be made to flow to the oil tank 12 via the one flow control valve 33 and the head side discharge oil passage 40.
  • the head side communication oil passage on-off valve 39 is at the open position X.
  • the unloading valve 41 is open, the pressure oil of the head side oil chamber 9a of the second boom cylinder 9 is transferred to the oil tank via the second flow control valve 34 and the head side discharge oil passage 40. It is designed to be able to flow to twelve.
  • the unload valve 41 when the unload valve 41 is in the open state, the pressure oil of the head side oil chamber 8 a of the first boom cylinder 8 is passed through the first flow control valve 33 and the head side discharge oil passage 40.
  • the first head side oil passage 19, the first flow control valve 33, the head side discharge oil passage 40, and the unloading valve 41 constitute an openable / closable unload oil passage of the present invention.
  • the state in which the unloading oil passage of the present invention is open means that the opening area of the first flow control valve 33 is the largest and the unloading valve 41 is in the open state, otherwise The unloading oil passage is closed.
  • 44 is a recovery oil passage connected to the second head side oil passage 20, and in the recovery oil passage 44, the head side oil of the second boom cylinder 8 passing through the second head side oil passage 20. Exhaust oil from the chamber 8a and exhaust oil from the head oil chamber 8a of the first boom cylinder 8 passing through the first head oil passage 19 and the head communication oil passage 21 are supplied.
  • the passage 44 is connected to the accumulator oil passage 45 via a cylinder side check valve 46 and an accumulator side check valve 49 which will be described later.
  • the accumulator oil passage 45 is an oil passage connected to the accumulator 59 in order to supply and discharge pressure oil to the accumulator 59.
  • the cylinder side check valve 46 is configured by using a poppet valve 47 and a cylinder side check valve electromagnetic switching valve 48 that switches from the OFF position N to the ON position X based on a control signal output from the control device 27. ing.
  • the cylinder side check valve electromagnetic switching valve 48 When the cylinder side check valve electromagnetic switching valve 48 is positioned at the OFF position N, the cylinder side check valve 46 is closed so as to block the flow of oil from the recovery oil passage 44 to the accumulator oil passage 45.
  • the cylinder side check valve electromagnetic switching valve 48 is switched to the ON position X, an open state allowing bidirectional flow between the recovery oil passage 44 and the accumulator oil passage 45 is established.
  • the accumulator side check valve 49 uses the poppet valve 50 and the accumulator side check valve electromagnetic switching valve 51 that switches from the OFF position N to the ON position X based on the control signal output from the control device 27. It is configured.
  • the accumulator side check valve 49 is in a closed state that prevents the flow of oil from the accumulator oil passage 45 to the recovery oil passage 44 when the accumulator side check valve electromagnetic switching valve 51 is in the OFF position N.
  • an open state allowing bidirectional flow between the recovery oil passage 44 and the accumulator oil passage 45 is established.
  • the accumulator side check valve 49 allows the flow of oil from the recovery oil passage 44 to the accumulator oil passage 45 even when the accumulator side check valve electromagnetic switching valve 51 is in the OFF position N. However, when the accumulator side check valve electromagnetic switching valve 51 is at the ON position X, the pressure in the accumulator oil passage 45 is not introduced into the spring chamber 50a of the poppet valve 50, so recovery is performed with almost no pressure loss. Oil can flow from the oil passage 44 to the accumulator oil passage 45.
  • the cylinder side check valve 46 and the accumulator side check valve 49 are the oil flow from the head side oil chamber of the first and second hydraulic cylinders to the accumulator and the first and second hydraulic cylinders of the accumulator.
  • a valve means capable of blocking the flow of oil to the head side oil chamber is constituted.
  • the accumulator 59 is a bladder type that is optimal for storing hydraulic energy.
  • the accumulator 59 is not limited to this, and may be, for example, a piston type.
  • 16 is a combined oil passage formed from the accumulator oil passage 45 to the discharge line 15 of the main pump 10, and a combined valve 52 is disposed in the combined oil passage 16.
  • the merging valve 52 is an on-off valve that moves a spool based on the operation of a merging valve electro-hydraulic conversion valve 53 to which a control signal from the control device 27 is input.
  • the merging valve electro-hydraulic conversion valve 53 is not In the state of operation, it is located at the closed position N where the merging oil passage 16 is closed, but the spool moves by the operation of the merging valve electrical oil conversion valve 53 to open the merging oil passage 16 to the open position X It is configured to switch.
  • the merging valve 52 incorporates a check valve 54 that allows the flow of oil from the accumulator oil passage 45 to the discharge line 15 but blocks the flow in the reverse direction.
  • the opening area of the merging valve 52 is controlled to increase or decrease according to the signal value of the control signal input from the control device 27 to the merging valve electric oil conversion valve 53, and the opening area of the merging valve 52
  • the control of increasing and decreasing the flow rate of the flow joining the discharge line 15 of the main pump 10 from the accumulator 59 via the merging oil passage 16 is performed by the increase and decrease control of
  • 55 is a discharge oil passage for the accumulator which is branched from the accumulator oil passage 45 and reaches the oil tank 12, and a tank check valve 56 is disposed in the discharge oil passage 55 for the accumulator.
  • the tank check valve 56 is configured using a poppet valve 57 and a tank check valve electromagnetic switching valve 58 that switches from the OFF position N to the ON position X based on a control signal output from the control device 27. .
  • the tank check valve 56 blocks the flow of oil from the accumulator oil passage 45 to the oil tank 12 when the tank check valve electromagnetic switching valve 58 is at the OFF position N, that is, the accumulator discharge oil
  • the tank check valve electromagnetic switching valve 58 is switched to the ON position X to allow the flow of oil from the accumulator oil passage 45 to the oil tank 12, that is, the accumulator The discharge oil passage 55 is opened. Then, by positioning the tank check valve electromagnetic switching valve 58 at the ON position X and opening the tank check valve 56, the accumulated oil of the accumulator 59 is oil via the accumulator discharge oil passage 55. It can be discharged into the tank 12.
  • the control device 27 is constituted by using a microcomputer or the like, and as shown in the block diagram of FIG. 3, a boom operation detection means 60 for detecting the operation direction and operation amount of the boom control lever;
  • a pump pressure sensor 61 for detecting the discharge pressure of the main pump 10, and a first head pressure sensor for detecting the pressure of the head oil chamber 8a of the first boom cylinder 8 (equivalent to the first head pressure detection means of the present invention 62, a second head side pressure sensor (corresponding to the second head side pressure detecting means of the present invention) 63 for detecting the pressure of the head side oil chamber 9a of the second boom cylinder 9;
  • a signal from an accumulator pressure sensor (corresponding to the accumulator pressure detection means of the present invention) 64 or the like is input, and based on these input signals, the above-mentioned Side electromagnetic proportional pressure reducing valve 25, Lower side electromagnetic proportional pressure reducing valve 26, Main pump flow rate controlling electromagnetic proportional pressure reducing valve 30, First electromagnetic proportional pressure reducing valve 35, Second electromagnetic proportional pressure
  • the control unit 27 operates the boom control lever input from the boom operation detection means 60, and the first head side pressure
  • the weight of the working unit 4 is held by the pressure of the head side oil chambers 8a and 9a of both the first and second boom cylinders 8 and 9 based on the pressure Pa of the accumulator 59 input from the pressure sensor 64 Control the weight of the working unit 4 or the pressure of the head side oil chamber 9 a of the second boom cylinder 9 of one of the first and second boom cylinders 8 and 9. In determining whether to cantilever control to maintain.
  • the control device 27 determines whether the boom control lever is operated to the boom lowering side (step S1), the head side oil chambers of the first and second boom cylinders 8, 9 Whether the differential pressure between the average value ((Ph1 + Ph2) / 2) of the pressures Ph1 and Ph2 of 8a and 9a and the pressure Pa of the accumulator 59 is smaller than the preset value C1 ( ⁇ (Ph1 + Ph2) / 2 ⁇ (Step S2), the difference between the head-side relief pressure Pr2 of the second boom cylinder 9 set by the second relief valve 38 and the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 It is determined whether the pressure is larger than the preset value C2 set in advance (Pr2-Ph2> C2?) (Step S3), and all the determinations in steps S1, S2, and S3 are “Y In the case of S "it determines that performs control cantilevered, if even one of the" NO "is
  • the control device 27 sets the control signal to the OFF position N with respect to the unload valve electromagnetic switching valve 43. Then, the unloading valve 41 is closed (closing the unloading oil passage). Further, the control device 27 outputs a control signal so as to be positioned at the open position X with respect to the head side communication oil passage open / close valve 39. As a result, the head side oil chambers 8 a and 9 a of the first and second boom cylinders 8 and 9 are in communication with each other via the first and second head side oil passages 19 and 20.
  • both the first and second boom cylinders 8, 9 will be responsible for holding the weight of the working unit 4, so that the head side of both the first and second boom cylinders 8, 9
  • Both-end control for holding the weight of the working unit 4 is executed by the pressure of the oil chambers 8a and 9a.
  • the control device 27 sets the control signal to be located at the closed position N with respect to the head side communication oil passage open / close valve 39. Output. As a result, the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are shut off. Furthermore, the control device 27 outputs a control signal of the maximum pilot pressure output to the first electromagnetic proportional pressure reducing valve 35 to maximize the opening area of the first flow control valve 33, and the electromagnetic switching valve 43 for unloading valve. Is output to the ON position X to open the unloading valve 41 (open the unloading oil passage).
  • the oil in the head side oil chamber 8a of the first boom cylinder 8 flows to the oil tank 12 via the first head side oil passage 19 and the head side discharge oil passage 40, and the first boom cylinder
  • the pressure of the head side oil chamber 8a of 8 decreases to substantially the tank pressure.
  • weight retention of the working unit 4 by the first boom cylinder 8 is not performed, and only the second boom cylinder 9 is responsible for weight retention of the working unit 4, and thus, the first and second boom cylinders
  • the cantilever control for holding the weight of the working unit 4 is executed by the pressure of the head-side oil chamber 9 a of one of the second boom cylinders 9 among 8 and 9.
  • the pressure of the head-side oil chamber 9a of the second boom cylinder 9 is controlled by the above-mentioned cantilever control so that the head-side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 at the time of the double control. Pressurize about twice the pressure of.
  • the determination of the cantilever control and the both-ports control is performed based on the determinations of steps S1 to S3 as described above, but the cantilever control is performed according to the determination of step S1 is a boom
  • the control lever for the boom is operated to the boom lowering side, that is, when the working unit 4 is lowered and the boom control lever is not operated to the boom lowering side, that is, when the working unit 4 is stopped moving up and down At the time of ascent, dual control is performed.
  • the cantilever control is executed according to the determination in step S2 based on the pressure Ph1 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 ,
  • the difference between the average value of Ph2 and the pressure Pa of the accumulator 59 is smaller than the set value C1 ( ⁇ (Ph1 + Ph2) / 2 ⁇ -Pa ⁇ C1), and the set value C1 or more ( ⁇ (Ph1 + Ph2) In (2)-Pa ⁇ ⁇ C1), double-end control is executed.
  • the set value C1 is a value set in advance as a differential pressure necessary to cause the pressure oil to flow from the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 to the accumulator 59. If the set value C1 is too small, the lowering speed of the working unit 4 may be slowed, so the heads of the first and second boom cylinders 8 and 9 can be maintained in a state where the lowering speed of the working unit 4 can be secured.
  • the differential pressure necessary for flowing the pressure oil from the side oil chambers 8a and 9a to the accumulator 59 is set as the set value C1.
  • the differential pressure between the pressure Ph1 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 and the average value of the pressure Ph2 and the pressure Pa of the accumulator 59 is the set value C1 or more, both Even in the holding control, since the discharge oil of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 can be accumulated in the accumulator 59, the cantilever control is not executed. .
  • the value of the set value C1 is set to be slightly different between when shifting from the double control to the cantilever control and when changing from the cantilever control to the dual control.
  • the head side relief pressure Pr2 of the second boom cylinder 9 and the head side oil of the second boom cylinder 9 are subjected to cantilever control according to the determination of step S3. If the differential pressure with the pressure Ph2 of the chamber 9a is larger than the set value C2 (Pr2-Ph2> C2), and if it is less than the set value C2 (Pr2-Ph2 ⁇ C2), the both-hand control is executed. Ru.
  • the set value C2 is a value of differential pressure which is set in advance to prevent the inadvertent operation of the second relief valve 38.
  • the second relief valve 38 is not prepared. Since the possibility that the oil in the head side oil chamber 9a of the second boom cylinder 9 flows to the oil tank 12 increases, the cantilever control is not executed.
  • control of the control device 27 based on the operation of the boom control lever will be described.
  • the control device 27 controls the rising side electromagnetic proportional pressure reducing valve 25 and the falling side electromagnetic proportional
  • the control signal of the pilot pressure output is not output to the pressure reducing valve 26, the first electromagnetic proportional pressure reducing valve 35, and the second electromagnetic proportional pressure reducing valve 36, whereby the boom cylinder control valve 18 is positioned at the neutral position N.
  • the first and second flow control valves 33 and 34 are located at the closed position N.
  • control signal of the flow control signal pressure Pc output is not output to the main pump flow control electromagnetic proportional pressure reducing valve 30, and the negative control signal pressure Pn is input to the regulator 13 of the main pump 10.
  • the cylinder side check valve electromagnetic switching valve 48, the accumulator side check valve electromagnetic switching valve 51, and the tank check valve electromagnetic switching valve 58 are all controlled to be at the OFF position N, whereby the cylinder side check valve 46, the accumulator side check valve 49, and the tank check valve 56 are all kept closed.
  • no operation signal is output to the merging valve electro-hydraulic conversion valve 53, whereby the merging valve 52 is located at the closed position N.
  • the head side communication oil passage open / close valve 39 is located at the open position X, and the unload valve 41 is controlled to be in a closed state.
  • the head side communication oil passage open / close valve 39 is located at the closed position N, and the opening area of the first flow control valve 33 is maximized, and furthermore, the unload valve 41 is controlled to be in an open state.
  • the control device 27 corresponds to the operation amount of the boom control lever at the lowering side pilot port 18b of the boom cylinder control valve 18 with respect to the lowering side electromagnetic proportional pressure reducing valve 26.
  • the control signal is output to output the pilot pressure.
  • the boom cylinder control valve 18 is switched to the lowering side position Y, so that the pressure oil in the pressure oil supply oil passage 17 becomes the boom cylinder control valve 18 at the lowering position Y and the rod side main oil passage. 24 are supplied to the rod side oil chambers 8b and 9b of the first and second boom cylinders 8 and 9 via the rod side communication oil passage 23.
  • the boom control lever is operated to the boom lowering side, only the discharge oil of the main pump 10 is supplied to the pressure oil supply oil passage 17.
  • the control device 27 when operated to the boom lowering side, the control device 27 does not output a control signal of the flow control signal pressure Pc output to the main pump flow control electromagnetic proportional pressure reducing valve 30.
  • the pressure input to the other port 29 a of the shuttle valve 29 becomes the tank pressure, and the shuttle valve 29 selects the negative control signal pressure Pn and inputs it to the regulator 13 of the main pump 10.
  • the main pump 10 is controlled to increase or decrease the discharge flow rate in accordance with the increase or decrease of the operation amount of the boom control lever.
  • the control device 27 outputs a control signal to the first and second electromagnetic proportional pressure reducing valves 35, 36.
  • the control is different from when cantilever control is performed.
  • the controller 27 controls the pilot ports 33a and 34a of the first and second flow control valves 33 and 34 with respect to the first and second electromagnetic proportional pressure reducing valves 35 and 36, respectively.
  • a control signal is output so as to output a pilot pressure corresponding to the operation amount of the boom control lever.
  • the first and second flow control valves 33 and 34 switch to the open position X where the first and second head side oil passages 19 and 20 are opened, and the opening area thereof is the operation amount of the boom control lever It is controlled to correspond to
  • the pressure oil discharged from the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is recovered via the first and second flow control valves 33 and 34 at the open position X.
  • the flow rate is controlled by the opening area of the first and second flow control valves 33, 34.
  • the head side communication oil passage open / close valve 39 is positioned at the open position X, and the unload valve 41 is controlled to be closed.
  • the oil discharged from the head-side oil chamber 8a of the boom cylinder 8 and having passed through the first flow control valve 33 does not flow to the oil tank 12 via the head-side discharge oil passage 40, and the head-side communication oil passage 21 Are supplied to the recovery oil passage 44 via the.
  • the control device 27 controls the pilot pressure corresponding to the operation amount of the boom control lever to the pilot port 34a of the second flow control valve 34 with respect to the second electromagnetic proportional pressure reducing valve 36. Output the control signal.
  • the second flow control valve 34 is switched to the open position X where the second head side oil passage 20 is opened.
  • the pressure oil discharged from the head side oil chamber 9a of the second boom cylinder 9 is supplied to the recovery oil passage 44 via the second flow control valve 34 at the open position X, but the flow rate is , And the opening area of the second flow control valve 34.
  • the head side communication oil passage open / close valve 39 is located at the closed position N, and the opening area of the first flow control valve 33 is maximized.
  • the load valve 41 is controlled to be in an open state, whereby the discharge oil from the head side oil chamber 8 a of the first boom cylinder 8 flows to the oil tank 12 via the head side discharge oil passage 40.
  • the oil discharged from the head side oil chamber 9a of the second boom cylinder 9 has a high pressure which is about twice that in the case of dual control, and the high pressure oil is supplied to the recovery oil passage 44. Ru.
  • the control device 27 when operated to the boom lowering side, the control device 27 outputs a control signal to switch to the ON position X to the cylinder side check valve electromagnetic switching valve 48 and the accumulator side check valve electromagnetic switching valve 51 Do.
  • the cylinder side check valve 46 and the accumulator side check valve 49 both open, and the flow of oil from the recovery oil passage 44 to the accumulator oil passage 45 is permitted.
  • the pressure oil discharged from the head-side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 and supplied to the recovery oil passage 44 is also controlled to be cantilevered.
  • the oil discharged from the head-side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is accumulated in the accumulator 59 in the both-end control, and cantilevered In the control, oil discharged from the head side oil chamber 9a of the second boom cylinder 9 is accumulated in the accumulator 59.
  • the oil discharged from the head side oil chambers 8a and 9a is the working portion 4
  • the dual-arm control that holds the weight of the working unit 4 in both the first and second boom cylinders 8 and 9 by high potential energy of the first and second boom cylinders 8 and 9 is high pressure, and the weight of the working unit 4 in one second boom cylinder 9
  • the high pressure (about twice) is higher than that in the double control, so that the accumulator 59 stores pressure oil of high pressure that can cope with high load operation.
  • the control device 27 does not output an operation signal to the merging valve electro-hydraulic conversion valve 53, whereby the merging valve 52 is positioned at the closed position N closing the merging oil passage 16. To be controlled.
  • the discharge oil of the main pump 10 is supplied to the pressure oil supply oil passage 17 without the pressure oil being supplied from the accumulator oil passage 45 to the pressure oil supply oil passage 17 via the merging oil passage 16. It has become so.
  • the control device 27 controls the tank check valve electromagnetic switching valve 58 to be positioned at the OFF position N.
  • the tank check valve 56 is held in a closed state in which the accumulator discharge oil passage 55 is closed.
  • the control device 27 controls the first and second head side pressure sensors 62 and 63.
  • Backflow prevention control based on the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 input from the second embodiment and the pressure Pa of the accumulator 59 input from the accumulator pressure sensor 64 Is configured to perform.
  • the backflow prevention control is executed when the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are smaller than the pressure Pa of the accumulator 59 at the time of double-end control, and At the time of cantilever control, it is executed when the pressure Ph2 of the head side oil chamber 9a of the second boom cylinder 9 is smaller than the pressure Pa of the accumulator 59.
  • the control of each valve in the backflow prevention control is as described above. Priority is given to the control of each valve in the dual control and the cantilever control.
  • the control device 27 When the backflow prevention control is performed, the control device 27 outputs a control signal to switch to the OFF position N to the cylinder side check valve electromagnetic switching valve 48 and the accumulator side check valve electromagnetic switching valve 51. As a result, both the cylinder side check valve 46 and the accumulator side check valve 49 are closed, and the flow of oil from the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 to the accumulator 59, and The flow of oil from the accumulator 59 to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is both blocked.
  • a control signal is output to the first and second electromagnetic proportional pressure reducing valves 35 and 36 so as to output a pilot pressure corresponding to the operation amount of the boom control lever, whereby the first and second flow rate control are performed.
  • the valves 33 and 34 are controlled to have an opening area corresponding to the amount of operation of the boom control lever.
  • a control signal is output to the head side communication oil path on-off valve 39 so that the head side communication oil path 21 is positioned at the open position X, and the unload valve electromagnetic switching valve 43 is turned on.
  • a control signal is output so as to be located at the position X, whereby the unload valve 41 is in an open state in which the head side discharge oil passage 40 is opened.
  • the head side oil of the first and second boom cylinders 8 and 9 is detected by the cylinder side check valve 46 and the accumulator side check valve 49 in the closed state.
  • the flow of oil from the chambers 8a, 9a to the accumulator 59 and the flow of oil from the accumulator 59 to the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 are blocked,
  • the pressure oil in the head side oil chambers 8a and 9a of the two boom cylinders 8 and 9 is discharged to the oil tank 12 in a state where the flow rate is controlled by the first and second flow control valves 33 and 24.
  • the head-side relief pressure Pr2 of the second boom cylinder 9 and the second boom cylinder 9 are determined by the determination of the both-end control and the cantilever control described above.
  • the differential pressure between the average value of Ph2 and the pressure Pa of the accumulator 59 becomes smaller than the set value C1 ( ⁇ (Ph1 + Ph2) / 2 ⁇ -Pa ⁇ C1), the control shifts from the dual control to the cantilever control.
  • the backflow prevention control may be executed at the time of double-end control, the head-side relief pressure Pr2 of the second boom cylinder 9 and the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 Only when the differential pressure is less than the set value C2.
  • the head side communication oil passage 21, the head side communication oil passage on-off valve 39, the head side discharge oil passage 40, and the unloading valve 41 used when performing double-end control and cantilever control are used as they are.
  • a freely openable and closable tank oil passage is formed when backflow prevention control is performed, thereby simplifying the circuit.
  • the control device 27 when operated to the boom rising side, corresponds to the operation amount of the boom control lever at the upper and lower pilot ports 18 a of the boom cylinder control valve 18 with respect to the rising electromagnetic proportional pressure reducing valve 25.
  • the control signal is output to output the pilot pressure.
  • the boom cylinder control valve 18 is switched to the rising side position X, and the pressure oil in the pressure oil supply oil passage 17 is firstly transmitted via the boom cylinder control valve 18 at the rising side position X.
  • the oil is supplied to the head side oil chambers 8 a and 9 a of the second boom cylinder 8 and the discharge oil from the rod side oil chambers 8 b and 9 b is discharged to the oil tank 12.
  • the pressure-accumulated oil of the accumulator 59 is supplied to the pressure oil supply oil passage 17 when operated to the boom upward side.
  • the control device 27 does not output the control signal of the pilot pressure output to the first and second electromagnetic proportional pressure reducing valves 35, 36, whereby the first and second flow control valves 33, 34 It is controlled to be located at the closed position N. Further, as described above, the head side communication oil passage open / close valve 39 is located at the open position X, and the unload valve 41 is in the closed state.
  • the pressure oil supplied to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 via the boom cylinder control valve 18 at the rising side position X is the head side discharge oil.
  • control device 27 controls the cylinder side check valve electromagnetic switching valve 48 and the accumulator side check valve electromagnetic switching valve 51 to be positioned at the OFF position N.
  • the cylinder side check valve 46 and the accumulator side check valve 49 are held in the closed state, and thus the state between the collection oil passage 44 and the accumulator oil passage 45 is shut off.
  • the control device 27 when operated to the boom rising side, the control device 27 outputs an operation signal to the merging valve electro-hydraulic conversion valve 53 so as to switch the merging valve 52 to the open position X.
  • the merging valve 52 opens the merging oil passage 16 from the accumulator oil passage 45 to the discharge line 15 of the main pump 10, but the opening area thereof is the operation amount of the boom control lever and the pressure Pa of the accumulator 59 and the main It is controlled according to the differential pressure with the discharge pressure Pp of the pump 10.
  • the pressure oil accumulated in the accumulator 59 joins the discharge line 15 of the main pump 10 via the accumulator oil passage 45 and the joining oil passage 16 and, as described above, the pressure oil supply oil passage
  • the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are supplied via the boom cylinder control valve 18 at the rising position X17.
  • the control device 27 when operated to the boom rising side, the control device 27 outputs a control signal to the main pump flow control electromagnetic proportional pressure reducing valve 30 so as to output the flow control signal pressure Pc.
  • the control device 27 sets the discharge flow rate of the main pump 10 to a flow rate obtained by subtracting the merging amount from the accumulator 59 from the pump flow rate required according to the operation amount of the boom operation lever and the pump output. To control the value of the flow control signal pressure Pc.
  • the flow control signal pressure Pc output from the main pump flow control electromagnetic proportional pressure reducing valve 30 is input to the other input port 29 b of the shuttle valve 29.
  • the negative control signal pressure Pn is input to one input port 29a of the shuttle valve 29, but in the state where the supply pressure oil from the accumulator 59 joins the discharge line 15, the flow control signal pressure Pc is Is a signal pressure that makes the pump flow smaller than the negative control signal pressure Pn, that is, the flow control signal pressure Pc is higher than the negative control signal pressure Pn, so the flow control signal pressure Pc is selected by the shuttle valve 29 And is input to the regulator 13 of the main pump 10.
  • the discharge flow rate of the main pump 10 is controlled to be a flow rate reduced by the amount of merging from the accumulator 59.
  • the pressure-accumulated oil of the accumulator 59 joins with the discharge oil of the main pump 10 via the joining oil passage 16 and the joined pressure oil is the boom cylinder control valve at the rising position X It is supplied to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 via the line 18. Further, at this time, the discharge flow rate of the main pump 10 is controlled to be a flow rate reduced by the amount of merging from the accumulator 59.
  • the potential energy collected by the accumulator 59 when the working unit 4 is lowered can be reused when the working unit 4 is raised, and the discharge flow rate of the main pump 10 can be reduced accordingly. .
  • the control device 27 controls the tank check valve electromagnetic switching valve 58 to be positioned at the OFF position N.
  • the tank check valve 56 is held in a closed state in which the accumulator discharge oil passage 55 is closed.
  • the controller 27 switches the tank check valve electromagnetic switching valve 58 to the ON position X for a predetermined time when the operator operates an accumulator discharge operation switch (not shown) or when the engine E is stopped.
  • the tank check valve 56 is opened to open the accumulator discharge oil passage 55, and the accumulated oil of the accumulator 59 is discharged to the oil tank 12 via the accumulator discharge oil passage 55. . That is, when the accumulator discharging operation switch is operated or the engine E is stopped, the accumulated oil of the accumulator 59 is automatically drained to the oil tank 12 to be in a state suitable for long-term storage.
  • the controller 27 controls the cylinder side check valve electromagnetic switching valve 48, the accumulator side check valve electromagnetic switching valve 51, and the tank check valve electromagnetic switching valve 58 for a predetermined time.
  • the first and second proportional proportional pressure reductions are made so that the first and second flow control valves 33, 34 can be switched to the open position X based on the downward operation of the boom control lever while switching to the ON position X Control the valves 35, 36.
  • the oil of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is collected into the recovery oil passage 44, the accumulator oil passage 45, and the accumulator. It is possible to flow to the oil tank 12 via the discharge oil passage, whereby the working unit 4 is operated based on the descent side operation of the boom control lever for a predetermined time even after the stop operation of the engine E. Can be lowered.
  • the hydraulic control system of the hydraulic shovel 1 includes the first boom cylinder of one of the pair of first and second boom cylinders 8 and 9 although the expansion control of the second boom cylinders 8 and 9 is performed.
  • An open / close unload oil passage (first head side oil passage 19, first flow control valve 33, head side discharge oil passage 40, and unload valve) for flowing pressure oil of the head side oil chamber 8 a into the oil tank 12 41 and a controller 27 for controlling the opening and closing of the unloading oil passage, and in the state where the unloading oil passage is closed, the first and second boom cylinders 8 are provided.
  • the unloading oil passage is opened and the pressure oil of the head side oil chamber 8a of the first boom cylinder 8 flows to the oil tank 12, whereby the weight of the working unit 4 is the second boom
  • the oil is held by the pressure of the head side oil chamber 9a of the cylinder 9, and the oil discharged from the head side oil chamber 9a of the second boom cylinder 9 is accumulated in the accumulator 59.
  • the second boom The pressure of the head side oil chamber 9a of the cylinder 9, that is, the holding pressure for holding the weight of the working unit 4 is the holding pressure when the weight of the working unit 4 is held by both the first and second boom cylinders 8,9. Therefore, the accumulator 59 is charged with high pressure oil which can cope with high load operation.
  • the accumulator 59 can store high-pressure hydraulic oil that can cope with high-load operations such as digging work and lifting and turning, so that the pressure-accumulated oil of the accumulator 59 can be used as it is without separately boosting pressure. It will be available for work.
  • the potential energy of the working unit 4 collected in the accumulator 59 can be used with as little loss as possible, and can greatly contribute to cost reduction.
  • a head side communication oil passage 21 communicating the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 with each other, and the head side communication oil passage 21
  • a head side communication oil passage open / close valve 39 controlled by the control device 27 for opening and closing is provided, and the head side communication oil passage on / off valve 39 is in a state where the unloading oil passage is closed. While the oil passage 21 is opened, the head side communicating oil passage 21 is controlled to be closed when the unloading oil passage is open.
  • both-end control for holding the weight of the working unit 4 in the head side oil chambers 8a and 9a of both the first and second boom cylinders 8 and 9 is performed.
  • both head side oil chambers 8a and 9a are in communication with each other, and the work unit 4 can be supported in a well-balanced manner by the pair of first and second boom cylinders 8 and 9, while the unloading oil passage
  • the open state that is, in the state where cantilever control for holding the weight of the working unit 4 in the head side oil chamber 9a of the second boom cylinder 9 is performed
  • the head side oil chamber of the second boom cylinder 9 thus, it is possible to shut off the head oil chamber 8a of the first boom cylinder 8 from the head cylinder 9a.
  • the unloading oil passage is opened, that is, the cantilever control is executed when the working unit 4 for accumulating pressure in the accumulator 59 descends, and when the working unit 4 is stopped moving up and down, and when lifting Since the load oil passage is closed, that is, both-end control is executed, the pressure oil in the head side oil chamber 8a of the first boom cylinder 8 is used except when accumulating pressure in the accumulator 59.
  • the loss flowing to the oil tank 12 can be eliminated, and there is no fear that the power will be insufficient or the balance will be lost when the working unit 4 is raised.
  • the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are higher than the pressure Pa of the accumulator 59, and can be accumulated in the accumulator 59 even by double control.
  • the cantilever control will not be executed, which causes the pressure oil in the head side oil chamber 8a of the first boom cylinder 8 to flow to the oil tank 12 when the unloading oil passage is opened. It can be reduced.
  • the differential pressure between the head-side relief pressure Pr2 of the second boom cylinder 9 and the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 is a set value In the case of C2 or less (Pr2-Ph2 ⁇ C2), the unload oil passage is closed, that is, both-end control is performed.
  • the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 can be prevented from rising excessively and the second relief valve 38 can be prevented from inadvertently operating. It is possible to eliminate the loss that the oil discharged from the head side oil chamber 9 a of the second boom cylinder 9 flows to the oil tank 12 by operating the valve 38.
  • the first and second flow rate control for controlling the discharge flow rate from the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 when the working unit 4 descends.
  • Valves 33 and 34 are provided, and the lowering speed of the working unit 4 can be controlled by the first and second flow control valves 33 and 34 at the time of double control or cantilever control.
  • the hydraulic control system of the hydraulic shovel 1 includes a cylinder side check valve 46 capable of blocking the flow of oil from the head side oil chambers 8 a and 9 a of the first and second boom cylinders 8 and 9 to the accumulator 59. Because an accumulator side check valve 49 capable of blocking the flow of oil from the accumulator 59 to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is provided, these cylinder side checks The pressure oil of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 flows out to the accumulator 59 when the elevation of the working unit 4 is stopped by the valve 46 and the accumulator side check valve 49, or The problem is confirmed that 59 stored pressure oil is supplied to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9, respectively. It can be avoided.
  • the accumulator The pressure oil can be reliably prevented from backflowing from 59 to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9, and even in this case, the first, The working unit 4 can be lowered with the speed controlled by the two flow control valves 33 and 34.
  • the present invention is, of course, not limited to the above-described embodiment, and in the above-described embodiment, the pressure-accumulated oil of the accumulator 59 is merged with the discharge line 15 of the main pump 10 via the merging oil passage 16
  • the configuration is such that the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are supplied when the working unit 4 ascends, but the invention is not limited thereto.
  • the potential energy recovered when the working unit 4 is lowered can be used for the operation of other hydraulic actuators.
  • the present invention can be applied not only to hydraulic excavators, but also to hydraulic control systems of various working machines provided with a pair of hydraulic cylinders that raise and lower the working unit.
  • one main pump is shown as a hydraulic pump for supplying pressure oil to a plurality of hydraulic actuators, but it goes without saying that two or more main pumps may be provided.
  • the present invention relates to the technical field of a hydraulic control system in a working machine capable of recovering and reusing potential energy of the working unit in a working machine provided with a vertically movable working unit, and configured as in the present invention
  • the accumulator By opening the unloading oil passage and letting the pressure oil in the head-side oil chamber of the first hydraulic cylinder flow to the oil tank by lowering the working part, the accumulator can be used for high-load operations.
  • the pressure oil is accumulated, and the pressure accumulation oil of the accumulator can be used for various operations without using additional pressure increase.
  • the potential energy of the working unit collected in the accumulator can be used with as little loss as possible, and can greatly contribute to cost reduction.

Abstract

A hydraulic control system in a working machine, configured such that the potential energy of a vertically moving working section is recovered and stored as pressure into an accumulator, wherein the accumulator is adapted to be able to store pressurized oil having a high pressure capable of coping with work under a high load. A hydraulic control system in a working machine is provided with an openable and closable unload oil path (first head-side oil path (19), first flow rate control valve (33), head-side oil discharge path (40), and unload valve (41)) for allowing pressurized oil in a head-side oil chamber of a first boom cylinder, among a pair of first and second boom cylinders (8, 9) for lifting and lowering a working section (4), to flow to an oil tank (12).  The hydraulic control system is configured such that, when lifting and lowering motion of the working section is being stopped and when the working section is lifted, the unload oil path is closed to cause the pressure in head-side oil chambers of the first and second boom cylinder to hold the weight of the working section and such that, when the working section is lowered, the unload oil path is opened to cause the pressure in the head-side oil chamber of the second boom cylinder to hold the weight of the working section.  The hydraulic control system is also provided with an accumulator (59) which, when the working section is lowered, stores the pressure of oil discharged from the head-side oil chamber of the second boom cylinder.

Description

作業機械における油圧制御システムHydraulic control system in work machine
 本発明は、昇降自在な作業部を備えた作業機械において、作業部の有する位置エネルギーを回収、再利用することができる作業機械における油圧制御システムの技術分野に属するものである。 The present invention belongs to the technical field of a hydraulic control system in a working machine capable of recovering and reusing potential energy of the working unit in a working machine provided with a vertically movable working unit.
 一般に、油圧ショベルやクレーン等の作業機械は、昇降自在な作業部を備えると共に、該作業部の昇降は、油圧ポンプから圧油供給される油圧シリンダの伸縮作動に基づいて行うように構成されているが、このものにおいて、従来、作業部の下降時に油圧シリンダのヘッド側油室から油タンクに排出される油は、作業部の自重による急激な落下を防止するため、油圧シリンダの油供給排出制御を行うコントロールバルブに設けられた絞りによってメータアウト制御されるように構成されている。つまり、地面より上方に位置している作業部は位置エネルギーを有しているが、該位置エネルギーは、前記コントロールバルブの絞りを通過するときに熱エネルギーに変換され、さらに該熱エネルギーはオイルクーラーによって大気中に放出されることになって、無駄なエネルギー損失となる。
 そこで、作業部の有する位置エネルギーを回収、再利用するために、従来設けられている油圧シリンダに加えてアシストシリンダを設け、作業部の下降時に、アシストシリンダのヘッド側油室から排出される油をアキュムレータに蓄圧すると共に、作業部の上昇時に、アキュムレータに蓄圧された圧油をアシストシリンダのヘッド側油室に供給するようにした技術が開示されている(例えば、特許文献1参照。)。
 しかるに、前記特許文献1のものは、作業部の下降時に、アシストシリンダからの排出油はアキュムレータに蓄圧されるものの、作業部を昇降するために従来から設けられている油圧シリンダからの排出油は、コントロールバルブを経由して油タンクに排出されるようになっており、作業機の有する位置エネルギーのうちの一部しか回収されていないことになる。しかも、作業部の上昇時にアキュムレータに充分に蓄圧されていない場合には、油圧ポンプからコントロールバルブを介して油圧シリンダに供給される圧油の一部が、アシストシリンダに供給されると共にアキュムレータ蓄圧用に用いられるように構成されているため、作業部の上昇速度が遅くなって、作業効率が低下するという問題がある。
 これに対し、アシストシリンダを設けることなく、作業部の下降時に油圧シリンダから排出された油をアキュムレータに蓄圧すると共に、作業部の上昇時に該アキュムレータに蓄圧された圧油を油圧シリンダに供給するように構成すれば、作業機の有する位置エネルギーを確実に回収できることになるが、この場合、アキュムレータの蓄圧油の圧力は、油圧シリンダが作業部の重量を保持する保持圧よりは高圧にならないため、高負荷作業時に用いる圧油の圧力としては不足する場合がある。そこでアキュムレータの蓄圧油を、エンジン動力で駆動する専用のポンプで高圧にして、油圧シリンダに供給する技術が提唱されている(例えば、特許文献2参照。)。
Generally, a working machine such as a hydraulic shovel or a crane is provided with a vertically movable working unit, and the working unit is configured to move up and down based on the expansion and contraction operation of a hydraulic cylinder supplied with pressure oil from a hydraulic pump In this case, oil discharged from the head-side oil chamber of the hydraulic cylinder to the oil tank during descent of the working unit is conventionally discharged to supply oil to the hydraulic cylinder in order to prevent it from falling sharply due to its own weight. Metering out control is configured by a throttle provided on a control valve that performs control. That is, although the working unit located above the ground has potential energy, the potential energy is converted into heat energy when passing through the throttle of the control valve, and the heat energy is an oil cooler Will be released to the atmosphere, resulting in unnecessary energy loss.
Therefore, in order to recover and reuse potential energy of the working unit, an assist cylinder is provided in addition to the conventionally provided hydraulic cylinder, and the oil discharged from the head-side oil chamber of the assist cylinder when the working unit descends. Patent Document 1 discloses a technology in which pressure is accumulated in an accumulator and pressure oil accumulated in the accumulator is supplied to a head-side oil chamber of an assist cylinder when the working unit ascends (see, for example, Patent Document 1).
However, although the discharge oil from the assist cylinder is accumulated in the accumulator at the time of descent of the working part in the Patent Document 1, the discharged oil from the hydraulic cylinder conventionally provided for raising and lowering the working part is The oil is discharged to the oil tank via the control valve, and only a part of the potential energy of the working machine is recovered. Moreover, when the working part is elevated, a part of the pressure oil supplied from the hydraulic pump to the hydraulic cylinder via the control valve is supplied to the assist cylinder when the accumulator is not sufficiently accumulated in the accumulator and for accumulator accumulator pressure As a result, the rising speed of the working unit is slowed and the working efficiency is reduced.
On the other hand, without providing the assist cylinder, while accumulating the oil discharged from the hydraulic cylinder at the time of descent of the working unit in the accumulator, at the same time of supplying the pressure oil accumulated in the accumulator at the time of ascending the working unit to the hydraulic cylinder In this case, the potential energy of the working machine can be recovered with certainty, but in this case, the pressure of the accumulator oil is not higher than the holding pressure at which the hydraulic cylinder holds the weight of the working part. The pressure of the hydraulic oil used during high load operation may be insufficient. Therefore, a technology has been proposed in which the pressure-accumulated oil of the accumulator is increased to a high pressure by a dedicated pump driven by engine power and supplied to a hydraulic cylinder (see, for example, Patent Document 2).
特許第2582310号公報Patent No. 2582310 特開2008-14468号公報JP 2008-14468 A
 しかるに、特許文献2のものでは、アキュムレータの蓄圧油を高圧にするための専用のポンプや、該ポンプにエンジン動力を伝達するための動力伝達機器(ギア装置等)が必要になって、コストアップの要因となるうえ、動力伝達機器におけるトルク低下や、ポンプ自体の慣性質量などによる空転トルク等のエネルギー損失の問題があって、更なる省エネルギー化が求められ、ここに本発明が解決しようとする課題がある。 However, in the case of Patent Document 2, a dedicated pump for increasing the pressure accumulated in the accumulator to a high pressure, and a power transmission device (gear device etc.) for transmitting the engine power to the pump become necessary, resulting in an increase in cost. In addition, there is a problem of energy loss such as torque reduction in power transmission equipment and idling torque due to inertia mass of the pump itself, so that further energy saving is required, and the present invention is intended to solve the problem. There is a problem.
 本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、昇降自在な作業部と、該作業部を昇降せしめる一対の第一、第二油圧シリンダを備えてなる作業機械の油圧制御システムにおいて、該油圧制御システムに、第一油圧シリンダのヘッド側油室の圧油を油タンクに流す開閉自在なアンロード油路と、該アンロード油路の開閉制御を行なう制御装置とを設け、アンロード油路が閉じている状態では第一および第二油圧シリンダのヘッド側油室の圧力で作業部の重量を保持する一方、アンロード油路が開いている状態では第二油圧シリンダのヘッド側油室の圧力で作業部の重量を保持する構成にすると共に、作業部の下降時に重量を保持する第一および第二、或いは第二油圧シリンダのヘッド側油室からの排出油を蓄圧するアキュムレータを設けたことを特徴とする作業機械における油圧制御システムである。
 請求項2の発明は、油圧制御システムに、第一、第二油圧シリンダのヘッド側油室同士を連通するヘッド側連通油路と、該ヘッド側連通油路を開閉するべく制御装置により制御されるヘッド側連通油路開閉弁とを設けると共に、制御装置は、前記ヘッド側連通油路開閉弁を、アンロード油路が閉じている状態ではヘッド側連通油路を開く一方、アンロード油路が開いている状態ではヘッド側連通油路を閉じるように制御することを特徴とする請求項1に記載の作業機械における油圧制御システムである。
 請求項3の発明は、制御装置は、作業部の下降時にはアンロード油路を開き、作業部の昇降停止時および上昇時にはアンロード油路を閉じるように制御することを特徴とする請求項1または2に記載の作業機械における油圧制御システムである。
 請求項4の発明は、油圧制御システムに、アキュムレータの圧力を検出するアキュムレータ圧力検出手段と、第一、第二油圧シリンダのヘッド側油室の圧力をそれぞれ検出する第一、第二ヘッド側圧力検出手段とを設けると共に、制御装置は、作業部の下降時であっても、第一、第二油圧シリンダのヘッド側油室の圧力の平均値とアキュムレータの圧力との差圧が予め設定される設定値以上の場合には、アンロード油路を閉じるように制御することを特徴とする請求項3に記載の作業機械における油圧制御システムである。
 請求項5の発明は、油圧制御システムに、第二油圧シリンダのヘッド側油室の圧力を検出する第二ヘッド側圧力検出手段と、第二油圧シリンダのヘッド側リリーフ圧を設定する第二リリーフ弁とを設けると共に、制御装置は、作業部の下降時であっても、第二油圧シリンダのヘッド側リリーフ圧と第二油圧シリンダのヘッド側油室の圧力との差圧が予め設定される設定値以下の場合には、アンロード油路を閉じるように制御することを特徴とする請求項3または4に記載の作業機械における油圧制御システムである。
 請求項6の発明は、油圧制御システムに、作業部の下降時に第一、第二油圧シリンダのヘッド側油室からの排出流量をそれぞれ制御する第一、第二流量制御弁を設けたことを特徴とする請求項1乃至5の何れか一項に記載の作業機械における油圧制御システムである。
 請求項7の発明は、油圧制御システムに、第一、第二油圧シリンダのヘッド側油室からアキュムレータへの油の流れ、およびアキュムレータから第一、第二油圧シリンダのヘッド側油室への油の流れを阻止することができる弁手段を設けたことを特徴とする請求項1乃至6の何れか一項に記載の作業機械における油圧制御システムである。
 請求項8の発明は、油圧制御システムに、アキュムレータの圧力を検出するアキュムレータ圧力検出手段と、第一、第二油圧シリンダのヘッド側油室の圧力をそれぞれ検出する第一、第二ヘッド側圧力検出手段と、第一、第二油圧シリンダのヘッド側油室からの排出油を第一、第二流量制御弁を経由して油タンクに流す開閉自在なタンク油路と、第一、第二油圧シリンダのヘッド側油室からアキュムレータへの油の流れ、およびアキュムレータから第一、第二油圧シリンダのヘッド側油室への油の流れを阻止することができる弁手段とを設けると共に、制御装置は、作業部の下降時に、重量を保持する第一および第二、或いは第二油圧シリンダのヘッド側油室の圧力がアキュムレータの圧力よりも小さい場合に、前記弁手段により第一、第二油圧シリンダのヘッド側油室からアキュムレータへの油の流れ、およびアキュムレータから第一、第二油圧シリンダのヘッド側油室への油の流れを阻止すると共に、前記タンク油路を開いて、第一、第二油圧シリンダのヘッド側油室の圧油を第一、第二流量制御弁を経由して油タンクに流すことを特徴とする請求項6に記載の作業機械における油圧制御システムである。
The present invention has been made to solve these problems in view of the above situation, and the invention according to claim 1 comprises a vertically movable work unit, and a pair of vertically movable work units. In a hydraulic control system of a working machine comprising a first and a second hydraulic cylinder, the hydraulic control system includes an openable and closable unload oil passage for flowing pressure oil in a head side oil chamber of the first hydraulic cylinder to an oil tank A controller for controlling the opening and closing of the unloading oil passage, and holding the weight of the working part by the pressure of the head side oil chamber of the first and second hydraulic cylinders in a state where the unloading oil passage is closed; The first and second embodiments are configured to hold the weight of the working unit by the pressure of the head side oil chamber of the second hydraulic cylinder when the unloading oil passage is open, and to hold the weight when the working unit is lowered. Or second hydraulic system A hydraulic control system in a working machine, characterized in that a accumulator for accumulating oil discharged from the head-side oil chamber of Sunda.
According to the second aspect of the present invention, the hydraulic control system is controlled by the control device to open and close the head side communication oil path connecting the head side oil chambers of the first and second hydraulic cylinders and the head side communication oil path. And the control device opens the head side communication oil passage in the state where the unloading oil passage is closed, while the control device is configured to open the head communication passage. The hydraulic control system in a working machine according to claim 1, characterized in that control is performed so as to close the head side communication oil passage in a state in which the valve is open.
The invention according to claim 3 is characterized in that the control device controls to open the unloading oil passage when the working unit is lowered, and close the unloading oil passage when the elevation of the working unit is stopped and when the work unit is lifted. It is a hydraulic control system in the working machine according to or 2.
The invention according to claim 4 is that the hydraulic control system includes an accumulator pressure detection means for detecting the pressure of the accumulator, and a first and a second head side pressure for detecting the pressures of the head side oil chambers of the first and second hydraulic cylinders, respectively. While the detection means is provided, the control device sets in advance the differential pressure between the average pressure of the head side oil chambers of the first and second hydraulic cylinders and the pressure of the accumulator even when the working unit is lowered. The hydraulic control system in a working machine according to claim 3, wherein the unloading oil passage is controlled to be closed when the set value or more.
The invention according to claim 5 is that the second head side pressure detecting means for detecting the pressure in the head side oil chamber of the second hydraulic cylinder and the second relief for setting the head side relief pressure of the second hydraulic cylinder in the hydraulic control system. In addition to providing a valve, the control device sets in advance the differential pressure between the head-side relief pressure of the second hydraulic cylinder and the pressure of the head-side oil chamber of the second hydraulic cylinder even when the working unit is lowered. The hydraulic control system in a working machine according to claim 3 or 4, characterized in that the unloading oil passage is controlled to be closed when the pressure value is less than the set value.
The invention according to claim 6 is that the hydraulic control system is provided with first and second flow control valves for controlling the discharge flow from the head-side oil chamber of the first and second hydraulic cylinders when the working unit is lowered. It is a hydraulic control system in a working machine according to any one of claims 1 to 5 characterized by the above.
The invention according to claim 7 relates to the hydraulic control system, the flow of oil from the head side oil chamber of the first and second hydraulic cylinders to the accumulator, and the oil from the accumulator to the head side oil chamber of the first and second hydraulic cylinders The hydraulic control system in a working machine according to any one of claims 1 to 6, further comprising: valve means capable of blocking the flow of water.
The invention according to claim 8 relates to the hydraulic control system, accumulator pressure detection means for detecting the pressure of the accumulator, and first and second head side pressures for detecting the pressures of the head side oil chambers of the first and second hydraulic cylinders, respectively. A detection means, an openable / closable tank oil passage for flowing oil discharged from the head side oil chamber of the first and second hydraulic cylinders to the oil tank via the first and second flow rate control valves, and the first and second oil passages A control means is provided with a valve means capable of blocking the flow of oil from the head side oil chamber of the hydraulic cylinder to the accumulator and the flow of oil from the accumulator to the head side oil chamber of the first and second hydraulic cylinders. When the pressure of the head side oil chamber of the first and second or second hydraulic cylinder holding weight is smaller than the pressure of the accumulator when the working part is lowered, the valve means The oil flow from the head side oil chamber of the pressure cylinder to the accumulator and the oil flow from the accumulator to the head side oil chambers of the first and second hydraulic cylinders are blocked, and the tank oil passage is opened. The hydraulic control system according to claim 6, wherein the pressure oil in the head side oil chamber of the second hydraulic cylinder is caused to flow to the oil tank via the first and second flow control valves.
 請求項1の発明とすることにより、作業部の下降時に、アンロード油路を開いて第一油圧シリンダのヘッド側油室の圧油を油タンクに流すことで、作業部の重量は第二油圧シリンダのヘッド側油室の圧力で保持されると共に、該第二油圧シリンダのヘッド側油室からの排出油がアキュムレータに蓄圧されることになるが、この場合、第二油圧シリンダのヘッド側油室の圧力、つまり作業部の重量を保持する保持圧は、第一および第二の両方の油圧シリンダで作業部の重量を保持する場合の保持圧に対して倍増するから、アキュムレータには、高負荷作業にも対応できる高圧の圧油が蓄圧されることになり、而して、アキュムレータの蓄圧油を、別途増圧することなくそのまま用いて様々な作業に利用できることになる。しかも、エンジン動力で駆動するポンプを用いてアキュムレータの蓄圧油を増圧する場合のように、エンジンからポンプへの動力伝達経路におけるトルク低下やポンプ自体の慣性質量などによる空転トルクの損失等がなく、アキュムレータに回収した作業部の位置エネルギーを可及的に損失の少ない状態で利用できると共に、コスト削減にも大きく貢献できる。
 請求項2の発明とすることにより、アンロード油路が閉じている状態、つまり、第一および第二油圧シリンダのヘッド側油室で作業部の重量を保持している状態では、第一および第二油圧シリンダのヘッド側油室同士が連通状態になって、第一および第二油圧シリンダでバランス良く作業部を支持できる一方、アンロード油路が開いている状態、つまり、第二油圧シリンダのヘッド側油室で作業部の重量を保持している状態では、該第二油圧シリンダのヘッド側油室と第一油圧シリンダのヘッド側油室とを遮断することができる。
 請求項3の発明とすることにより、アンロード油路を開く、つまり、第二油圧シリンダで作業部の重量を保持するのは、アキュムレータへの蓄圧を行なう作業部の下降時であって、作業部の昇降停止時および上昇時には、アンロード油路を閉じる、つまり、第一および第二油圧シリンダで作業部の重量を保持することになるから、アキュムレータへの蓄圧を行なう作業部の下降時以外のときに、第一油圧シリンダのヘッド側油室の圧油を油タンクに流してしまう損失をなくすことができると共に、作業部を上昇させる場合に力不足になったりバランスが損なわれたりする惧れもない。
 請求項4の発明とすることにより、作業部の下降時であっても、第一および第二油圧シリンダのヘッド側油室の圧力がアキュムレータの圧力に対して高圧である場合には、アンロード油路を閉じて、第一および第二油圧シリンダのヘッド側油室の圧力で作業部の重量を保持すると共に、該第一および第二油圧シリンダのヘッド側油室からの排出油がアキュムレータに蓄圧されることになり、而して、アンロード油路が開くことで第一油圧シリンダのヘッド側油室の圧油を油タンクに流してしまう損失を、低減させることができる。
 請求項5の発明とすることにより、作業部の下降時であっても、第二油圧シリンダのヘッド側リリーフ圧とヘッド側油室の圧力との差圧が設定値以下になると、アンロード油路を閉じて、第一および第二油圧シリンダで作業部の重量を保持することになり、これにより、第二油圧シリンダのヘッド側油室の圧力が上昇しすぎて第二ヘッド側リリーフ弁が作動してしまうことを防止できる。
 請求項6の発明とすることにより、第一、第二流量制御弁によって、作業部の下降速度を制御することができる。
 請求項7の発明とすることにより、作業部の昇降停止時に、弁手段によって第一、第二油圧シリンダのヘッド側油室からアキュムレータへの油の流れ、およびアキュムレータから第一、第二油圧シリンダのヘッド側油室への油の流れを阻止することにより、第一、第二油圧シリンダのヘッド側油室の圧油がアキュムレータに流出したり、或いはアキュムレータの蓄圧油が第一、第二油圧シリンダのヘッド側油室に供給されてしまうような不具合を、確実に回避することができる。
 請求項8の発明とすることにより、作業部の下降時に、作業部の重量を保持する第一および第二、或いは第二油圧シリンダのヘッド側油室の圧力がアキュムレータの圧力よりも小さい場合には、弁手段によってアキュムレータから第一、第二油圧シリンダのヘッド側油室へ油が逆流してしまうことを防止できると共に、この場合であっても、第一、第二流量制御弁によって速度制御された状態で、作業部を下降させることができる。
According to the invention of claim 1, when the working part is lowered, the unloading oil passage is opened and the pressure oil in the head side oil chamber of the first hydraulic cylinder flows to the oil tank so that the weight of the working part is the second The pressure is maintained at the pressure of the head side oil chamber of the hydraulic cylinder, and the oil discharged from the head side oil chamber of the second hydraulic cylinder is accumulated in the accumulator. In this case, the head side of the second hydraulic cylinder Since the pressure in the oil chamber, that is, the holding pressure for holding the weight of the working unit is doubled with respect to the holding pressure when holding the weight of the working unit with both the first and second hydraulic cylinders, A high pressure hydraulic oil which can cope with high load operation is accumulated, and therefore, the accumulator oil of the accumulator can be used for various operations without using additional pressure increase. Furthermore, as in the case of increasing the pressure-accumulating oil of the accumulator using a pump driven by the engine power, there is no loss of torque in the power transmission path from the engine to the pump or loss of idling torque due to inertial mass of the pump itself. The potential energy of the working unit collected in the accumulator can be used with as little loss as possible, and can greatly contribute to cost reduction.
According to the second aspect of the invention, in the state where the unloading oil passage is closed, that is, in the state where the weight of the working portion is held by the head side oil chambers of the first and second hydraulic cylinders, The head-side oil chambers of the second hydraulic cylinder are in communication with each other, and the first and second hydraulic cylinders can support the working unit in a well-balanced manner, while the unloading oil passage is open, that is, the second hydraulic cylinder In the state in which the weight of the working unit is held by the head side oil chamber of the above, it is possible to shut off the head side oil chamber of the second hydraulic cylinder and the head side oil chamber of the first hydraulic cylinder.
According to the invention of claim 3, the unloading oil passage is opened, that is, the weight of the working unit is held by the second hydraulic cylinder at the time of lowering of the working unit for accumulating pressure in the accumulator. At the time of lifting stop and lifting of the unit, the unloading oil passage is closed, that is, the weight of the working unit is held by the first and second hydraulic cylinders, so except during the descent of the working unit for accumulating pressure in the accumulator. The loss of flowing pressure oil from the head side oil chamber of the first hydraulic cylinder to the oil tank can be eliminated at the same time, and when the working part is raised, the power will be insufficient or the balance will be lost. There is no excuse.
According to the invention of claim 4, unloading is performed when the pressure on the head side oil chamber of the first and second hydraulic cylinders is high relative to the pressure of the accumulator even when the working unit is lowered. The oil passage is closed, and the pressure of the head side oil chamber of the first and second hydraulic cylinders holds the weight of the working part, and the oil discharged from the head side oil chamber of the first and second hydraulic cylinders serves as an accumulator. It is possible to reduce the loss of flowing pressure oil in the head side oil chamber of the first hydraulic cylinder to the oil tank by opening the unloading oil passage.
According to the fifth aspect of the present invention, even when the working unit descends, the unloading oil is used when the differential pressure between the head side relief pressure of the second hydraulic cylinder and the pressure of the head side oil chamber becomes equal to or less than the set value. The passage is closed, and the weight of the working unit is held by the first and second hydraulic cylinders, whereby the pressure in the head-side oil chamber of the second hydraulic cylinder rises excessively and the second head-side relief valve It can prevent that it operates.
According to the sixth aspect of the present invention, the lowering speed of the working unit can be controlled by the first and second flow control valves.
According to the invention of claim 7, the flow of oil from the head side oil chamber of the first and second hydraulic cylinders to the accumulator by the valve means, and the first and second hydraulic cylinders from the accumulator when the elevation of the working unit is stopped. The pressure oil in the head side oil chambers of the first and second hydraulic cylinders may flow out to the accumulator, or the pressure accumulation oil in the accumulator may become the first and second oil pressure, by blocking the flow of oil into the head side oil chamber of the It is possible to reliably avoid such a problem that the oil is supplied to the head side oil chamber of the cylinder.
According to the invention of claim 8, when the pressure of the head side oil chamber of the first and second or second hydraulic cylinder holding the weight of the working unit is lower than the pressure of the accumulator when the working unit is lowered. The valve means can prevent oil from flowing backward from the accumulator to the head side oil chambers of the first and second hydraulic cylinders, and even in this case, the speed control by the first and second flow control valves In the closed state, the working unit can be lowered.
油圧ショベルの斜視図である。It is a perspective view of a hydraulic shovel. 油圧制御システムの油圧回路図である。FIG. 2 is a hydraulic circuit diagram of a hydraulic control system. 制御装置の入出力を示すブロック図である。It is a block diagram which shows the input-output of a control apparatus. 片持ち制御、両持ち制御の判断を示すフローチャート図である。It is a flowchart figure which shows judgment of cantilever control and both-ends control.
 次に、本発明の実施の形態について、図面に基づいて説明する。図1において、1は作業機械の一例である油圧ショベルであって、該油圧ショベル1は、クローラ式の下部走行体2、該下部走行体2の上方に旋回自在に支持される上部旋回体3、該上部旋回体3のフロントに装着される作業部4等の各部から構成され、さらに該作業部4は、基端部が上部旋回体3に上下揺動自在に支持されるブーム5、該ブーム5の先端部に前後揺動自在に支持されるアーム6、該アーム6の先端部に取付けられるバケット7等から構成されている。 Next, embodiments of the present invention will be described based on the drawings. In FIG. 1, reference numeral 1 denotes a hydraulic shovel, which is an example of a working machine, and the hydraulic shovel 1 is a crawler type lower traveling body 2 and an upper revolving structure 3 rotatably supported above the lower traveling body 2. The boom 5 includes a working unit 4 and the like attached to the front of the upper swing body 3, and the working unit 4 further includes a boom 5 whose base end portion is supported by the upper swing body 3 so as to be vertically pivotable. The arm 6 is supported at the front end of the boom 5 so as to be pivotable back and forth, and the bucket 7 and the like attached to the front end of the arm 6.
 さらに、8、9は前記ブーム5を上下揺動せしめるための左右一対の第一、第二ブームシリンダ(本発明の第一、第二油圧シリンダに相当する)であって、これら第一、第二ブームシリンダ8、9は、ヘッド側油室8a、9aの圧力によって作業部4の重量を保持すると共に、該ヘッド側油室8a、9aへの圧油供給およびロッド側油室8b、9bからの油排出により伸長してブーム5を上昇せしめ、また、ロッド側油室8b、9bへの圧油供給およびヘッド側油室8a、9aからの油排出により縮小してブーム5を下降せしめるように構成されている。そして、該ブーム5の昇降に伴って作業部4全体が昇降すると共に、ブーム5の上昇に伴い作業部4の有する位置エネルギーが増加するが、該位置エネルギーは、後述する油圧制御システムによって回収されて再利用されるようになっている。尚、前記第一ブームシリンダ8は、一対のブームシリンダ8、9のうちの何れか一方のブームシリンダ8、第二ブームシリンダ9は他方のブームシリンダ9であって、図1では、左側を第一ブームシリンダ8とし、右側を第二ブームシリンダ9としているが、左右逆であっても勿論良い。 Further, 8 and 9 are a pair of left and right first and second boom cylinders (corresponding to the first and second hydraulic cylinders of the present invention) for swinging the boom 5 up and down. The two boom cylinders 8, 9 hold the weight of the working unit 4 by the pressure of the head side oil chambers 8a, 9a, and supply pressure oil to the head side oil chambers 8a, 9a and from rod side oil chambers 8b, 9b. Discharge the oil by moving the boom 5 upward, and supply the pressure oil to the rod side oil chambers 8b, 9b and the oil discharge from the head side oil chambers 8a, 9a reduce the boom 5 so as to lower it. It is configured. The entire working unit 4 ascends and descends as the boom 5 ascends and descends, and the potential energy of the working unit 4 increases as the boom 5 ascends, but the potential energy is recovered by a hydraulic control system described later. Are to be reused. The first boom cylinder 8 is one of the boom cylinders 8 and 9, and the second boom cylinder 9 is the other boom cylinder 9, and in FIG. Although one boom cylinder 8 is used and the right side is used as the second boom cylinder 9, it may be of course reversed.
 次いで、前記油圧制御システムについて、図2の油圧回路図に基づいて説明するが、該図2において、8、9は前記第一、第二ブームシリンダ、10は油圧ショベル1に搭載のエンジンEにより駆動される可変容量型のメインポンプ、11はパイロット油圧源となるパイロットポンプ、12は油タンクである。尚、前記メインポンプ10は、第一、第二ブームシリンダ8、9だけでなく、油圧ショベル1に設けられる他の複数の油圧アクチュエータ(図2には図示しないが、走行モータ、旋回モータ、アームシリンダ、バケットシリンダ等)の油圧供給源になる油圧ポンプである。 Next, the hydraulic control system will be described based on the hydraulic circuit diagram of FIG. 2. In FIG. 2, 8 and 9 indicate the first and second boom cylinders, and 10 indicates the engine E mounted on the hydraulic shovel 1. A variable displacement main pump to be driven, 11 a pilot pump serving as a pilot hydraulic pressure source, and 12 an oil tank. The main pump 10 is not only the first and second boom cylinders 8 and 9 but also a plurality of other hydraulic actuators (not shown in FIG. 2 but traveling motors, swing motors, arms) provided in the hydraulic shovel 1 It is a hydraulic pump which becomes an oil pressure supply source of a cylinder, a bucket cylinder, etc.).
 さらに、13は前記メインポンプ10の吐出流量制御を行うレギュレータであって、該レギュレータ13は、メインポンプ出力制御用電磁比例減圧弁14からの制御信号圧を受けて、エンジン回転数と作業負荷に対応したポンプ出力にするべく作動すると共に、メインポンプ10の吐出圧を受けて定馬力制御を行う。さらにレギュレータ13は、ネガティブコントロール信号圧Pn或いは流量制御信号圧Pcに基づいた流量制御も行うが、該流量制御については後述する。 Further, reference numeral 13 denotes a regulator for controlling the discharge flow rate of the main pump 10. The regulator 13 receives the control signal pressure from the main pump output control electromagnetic proportional pressure reducing valve 14 and controls the engine speed and the work load. While operating to obtain a corresponding pump output, constant horsepower control is performed by receiving the discharge pressure of the main pump 10. Furthermore, although the regulator 13 also performs flow control based on the negative control signal pressure Pn or the flow control signal pressure Pc, the flow control will be described later.
 一方、15は前記メインポンプ10の吐出ラインであって、該吐出ライン15は、後述する合流油路16と合流して圧油供給油路17に至るが、該圧油供給油路17には、前記第一、第二ブームシリンダ8、9に対する油給排制御を行うブームシリンダ用コントロールバルブ18が接続されている。また、圧油供給油路17には、前記ブームシリンダ用コントロールバルブ18だけでなく、油圧ショベル1に設けられる他の複数の油圧アクチュエータに対する油給排制御をそれぞれ行なう油圧アクチュエータ用コントロールバルブ(走行モータ用コントロールバルブ、旋回モータ用コントロールバルブ、アームシリンダ用コントロールバルブ、バケットシリンダ用コントロールバルブ等)も接続されるが、図2においては省略する。 On the other hand, 15 is a discharge line of the main pump 10, and the discharge line 15 merges with a joining oil passage 16 described later and reaches a pressure oil supply oil passage 17, and the pressure oil supply oil passage 17 A boom cylinder control valve 18 is connected to perform oil supply and discharge control to the first and second boom cylinders 8 and 9. Further, a hydraulic actuator control valve (traveling motor (hydraulic motor control valve) performing oil supply and discharge control not only to the boom cylinder control valve 18 but also to a plurality of other hydraulic actuators provided in the hydraulic shovel 1 in the pressure oil supply oil passage 17 Control valves, a control valve for the swing motor, a control valve for the arm cylinder, a control valve for the bucket cylinder, etc. are also connected, but are omitted in FIG.
 前記ブームシリンダ用コントロールバルブ18は、上昇側、下降側パイロットポート18a、18bを備えたスプール弁で構成されており、両パイロットポート18a、18bにパイロット圧が入力されていない状態では、第一、第二ブームシリンダ8、9に対する油給排を行なわない中立位置Nに位置しているが、上昇側パイロットポート18aにパイロット圧が入力されることにより、圧油供給油路17の圧油を第一、第二ブームシリンダ8、9のヘッド側油室8a、9aに供給する一方、ロッド側油室8b、9bから排出された油を油タンク12に流す上昇側位置Xに切換わり、また、下降側パイロットポート18bにパイロット圧が入力されることにより、圧油供給油路17の圧油を第一、第二ブームシリンダ8、9のロッド側油室8b、9bに供給する下降側位置Yに切換るように構成されている。 The boom cylinder control valve 18 is constituted by a spool valve provided with rising side and lowering side pilot ports 18a and 18b, and the first, second, and third pilot valves 18a and 18b are not used. It is located at the neutral position N where the oil supply and discharge to the second boom cylinders 8 and 9 is not performed, but when the pilot pressure is input to the rising side pilot port 18a, the pressure oil in the pressure oil supply oil passage 17 is First, the head side oil chambers 8a and 9a of the second boom cylinders 8 and 9 are switched to the rising side position X in which the oil discharged from the rod side oil chambers 8b and 9b is supplied to the oil tank 12 The pressure oil in the pressure oil supply oil passage 17 is set to the rod side oil of the first and second boom cylinders 8 and 9 by the pilot pressure being input to the lowering side pilot port 18b. 8b, and is configured to Setsu換Ru so the descending side position Y to be supplied to 9b.
 ここで、前記第一、第二ブームシリンダ8、9のヘッド側油室8a、9aとブームシリンダ用コントロールバルブ18とは、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aにそれぞれ接続される第一、第二ヘッド側油路19、20、これら第一、第二ヘッド側油路19、20を介して第一、第二ブームシリンダ8、9のヘッド側油室8a、9a同士を連通するヘッド側連通油路21、該ヘッド側連通油路21とブームシリンダ用コントロールバルブ18とを接続するヘッド側メイン油路22を介して連結されている。また、第一、第二ブームシリンダ8、9のロッド側油室8b、9bとブームシリンダ用コントロールバルブ18とは、ロッド側油室8b、9b同士を連通するロッド側連通油路23、および該ロッド側連通油路23とブームシリンダ用コントロールバルブ18とを接続するロッド側メイン油路24を介して連結されている。而して、これらの油路を介して、第一、第二ブームシリンダ8、9とブームシリンダ用コントロールバルブ18とのあいだの油の給排が行なわれるようになっている。 Here, the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 and the control valve 18 for the boom cylinder are the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9, respectively. Through the first and second head side oil passages 19 and 20 respectively connected to the head side oil chambers 8a of the first and second boom cylinders 8 and 9 through the first and second head side oil passages 19 and 20, respectively. 9a are connected with each other via a head side communication oil passage 21 which communicates with each other, and a head side main oil passage 22 which connects the head side communication oil passage 21 and the boom cylinder control valve 18 with each other. The rod side oil chambers 8b and 9b of the first and second boom cylinders 8 and 9 and the boom cylinder control valve 18 communicate with rod side communication oil passages 23 communicating the rod side oil chambers 8b and 9b with each other, and It is connected via a rod-side main oil passage 24 connecting the rod-side communication oil passage 23 and the boom cylinder control valve 18. Thus, oil is supplied and discharged between the first and second boom cylinders 8 and 9 and the boom cylinder control valve 18 through these oil passages.
 一方、25、26は上昇側、下降側電磁比例減圧弁であって、これら各電磁比例減圧弁25、26は、後述する制御装置27からの制御信号に基づいて、前記ブームシリンダ用コントロールバルブ18の上昇側パイロットポート18a、下降側パイロットポート18bにそれぞれパイロット圧を出力するべく作動する。これら上昇側、下降側電磁比例減圧弁25、26から出力されるパイロット圧は、ブーム用操作レバー(図示せず)の操作量に応じて増減するように制御されると共に、該パイロット圧の増減に対応してスプールの移動ストロークが増減することでブームシリンダ用コントロールバルブ18の開口面積が増減制御されるようになっており、これによって、ブームシリンダ用コントロールバルブ18から第一、第二ブームシリンダ8、9への給排流量の増減制御がなされるように構成されている。 On the other hand, 25 and 26 are rising side and falling side electromagnetic proportional pressure reducing valves, and these electromagnetic proportional pressure reducing valves 25 and 26 are the boom cylinder control valve 18 based on a control signal from the control device 27 described later. The pilot pressure is operated to output the pilot pressure to the rising side pilot port 18a and the lowering side pilot port 18b, respectively. The pilot pressures output from the rising side and the lowering side electromagnetic proportional pressure reducing valves 25 and 26 are controlled to increase or decrease according to the operation amount of the boom control lever (not shown), and the pilot pressure is increased or decreased. The opening area of the boom cylinder control valve 18 is controlled to be increased or decreased by increasing or decreasing the moving stroke of the spool correspondingly to the first and second boom cylinders from the boom cylinder control valve 18. It is comprised so that increase / decrease control of the supply-and-discharge flow rate to 8,9 may be made | formed.
 さらに、前記ブームシリンダ用コントロールバルブ18には、圧油供給油路17の圧油をネガティブコントロールバルブ28を経由して油タンク12に流すセンタバイパス弁路18cが形成されている。該センタバイパス弁路18cの通過流量は、ブームシリンダ用コントロールバルブ18が中立位置Nのときに最も大きく、スプールの移動ストロークが大きくなるほど小さくなる、つまり、ブーム用操作レバーの操作量が増加するほどセンタバイパス弁路18cの通過流量が減少するように制御される。そして、該センタバイパス弁路18cの通過流量は、ネガティブコントロール信号圧Pnとして後述するシャトル弁29の一方の入力ポート29aに出力される。 Further, the boom cylinder control valve 18 is formed with a center bypass valve passage 18 c for flowing the pressure oil of the pressure oil supply oil passage 17 to the oil tank 12 via the negative control valve 28. The passage flow rate of the center bypass valve passage 18c is largest when the boom cylinder control valve 18 is at the neutral position N, and becomes smaller as the movement stroke of the spool becomes larger, that is, the operation amount of the boom control lever increases. The flow rate of the center bypass valve 18 c is controlled to decrease. Then, the passing flow rate of the center bypass valve passage 18c is output to one input port 29a of a shuttle valve 29 described later as a negative control signal pressure Pn.
 また、30は制御装置27からの制御信号に基づいて流量制御信号圧Pcを出力するメインポンプ流量制御用電磁比例減圧弁であって、該メインポンプ流量制御用電磁比例減圧弁30から出力された流量制御信号圧Pcは、前記シャトル弁29の他方の入力ポート29bに入力される。 Reference numeral 30 denotes a main pump flow control electromagnetic proportional pressure reducing valve that outputs a flow control signal pressure Pc based on a control signal from the control device 27, and is output from the main pump flow control electromagnetic proportional pressure reducing valve 30. The flow control signal pressure Pc is input to the other input port 29 b of the shuttle valve 29.
 前記シャトル弁29は、入力ポート29a、29bから入力されるネガティブコントロール信号圧Pnと流量制御信号圧Pcとのうち高圧側を選択して、前記メインポンプ10のレギュレータ13に出力する。そして、該レギュレータ13は、入力された信号圧が高いほどポンプ流量を減少せしめるように、メインポンプ10の流量を制御する。つまり、ネガティブコントロール信号圧Pnと流量制御信号圧Pcとのうち、メインポンプ10の吐出流量を少なくする方の信号圧がシャトル弁29により選択されてレギュレータ13に入力され、そして、該レギュレータ13は、ネガティブコントロール信号圧Pnが入力された場合には、ブーム用操作レバーの操作量の増減に対応してポンプ流量を増減せしめる一方、流量制御信号圧Pcが入力された場合には、該流量制御信号圧Pcに基づく流量制御を行なうが、この流量制御信号圧Pcについては後述する。 The shuttle valve 29 selects the high pressure side out of the negative control signal pressure Pn and the flow control signal pressure Pc input from the input ports 29a and 29b, and outputs the same to the regulator 13 of the main pump 10. Then, the regulator 13 controls the flow rate of the main pump 10 so as to decrease the pump flow rate as the input signal pressure is higher. That is, of the negative control signal pressure Pn and the flow control signal pressure Pc, the signal pressure for reducing the discharge flow rate of the main pump 10 is selected by the shuttle valve 29 and is input to the regulator 13. When the negative control signal pressure Pn is input, the pump flow rate is increased or decreased according to the increase or decrease of the operation amount of the boom control lever, while when the flow control signal pressure Pc is input, the flow rate control Although flow control based on the signal pressure Pc is performed, this flow control signal pressure Pc will be described later.
 一方、前記第一、第二ヘッド側油路19、20は、前述したように、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aに接続される油路であるが、該第一、第二ヘッド側油路19、20には、ヘッド側油室8a、9aへの油供給は許容するがヘッド側油室8a、9aからの油排出は阻止する第一、第二チェック弁31、32と、ヘッド側油室8a、9aからの排出流量を制御する第一、第二流量制御弁33、34とが並列状に配されている。而して、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aへの油供給は第一、第二チェック弁31、32を経由して行なわれる一方、ヘッド側油室8a、9aからの油排出は、第一、第二流量制御弁33、34を経由して行なわれるようになっている。 On the other hand, the first and second head side oil passages 19, 20 are oil passages connected to the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 as described above, The first and second head side oil passages 19 and 20 allow oil supply to the head side oil chambers 8a and 9a but prevent oil discharge from the head side oil chambers 8a and 9a. The check valves 31, 32 and first and second flow control valves 33, 34 for controlling the flow rate of discharge from the head side oil chambers 8a, 9a are arranged in parallel. Thus, the oil supply to the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 is performed via the first and second check valves 31, 32, while the head side oil chamber 8a is , 9a are discharged via the first and second flow control valves 33, 34.
 前記第一、第二流量制御弁33、34は、パイロットポート33a、34aを備えたスプール弁であって、パイロットポート33a、34aにパイロット圧が入力されていない状態では、第一、第二ヘッド側油路19、20を閉じる閉位置Nに位置しているが、パイロットポート33a、34aにパイロット圧が入力されることにより、第一、第二ヘッド側油路19、20を開く開位置Xに切換わるように構成されている。 The first and second flow control valves 33, 34 are spool valves provided with pilot ports 33a, 34a, and in a state where pilot pressure is not input to the pilot ports 33a, 34a, the first and second heads It is located at the closed position N for closing the side oil passages 19 and 20. However, when the pilot pressure is input to the pilot ports 33a and 34a, the open position X for opening the first and second head side oil passages 19 and 20 It is comprised so that it may switch.
 また、35、36は第一、第二電磁比例減圧弁であって、これら各電磁比例減圧弁35、36は、制御装置27からの制御信号に基づいて、前記第一、第二流量制御弁33、34のパイロットポート33a、34aにパイロット圧を出力するべく作動する。そして、これら第一、第二電磁比例減圧弁35、36から出力されるパイロット圧の増減に対応して、第一、第二流量制御弁33、34の開口面積が増減制御されるようになっている。 Reference numerals 35 and 36 denote first and second electromagnetic proportional pressure reducing valves, and the electromagnetic proportional pressure reducing valves 35 and 36 are controlled by the first and second flow rate control valves based on control signals from the controller 27. It operates to output pilot pressure to the pilot ports 33a, 34a of 33, 34. Then, the opening areas of the first and second flow control valves 33 and 34 are controlled to increase or decrease in response to the increase or decrease of the pilot pressure output from the first and second electromagnetic proportional pressure reducing valves 35 and 36. ing.
 さらに、37、38は前記第一、第二ヘッド側油路19、20にそれぞれ接続される第一、第二リリーフ弁であって、該第一、第二リリーフ弁37、38によって、第一、第二ブームシリンダ8、9のヘッド側リリーフ圧が設定されるように構成されている。 Furthermore, 37 and 38 are first and second relief valves connected to the first and second head side oil passages 19 and 20, respectively. The first and second relief valves 37 and 38 The head-side relief pressure of the second boom cylinders 8 and 9 is set.
 一方、前記ヘッド側連通油路21は、前述したように、第一、第二ヘッド側油路19、20を介して第一、第二ブームシリンダ8、9のヘッド側油室8a、9a同士を連通する油路であるが、該ヘッド側連通油路21には、制御装置27からの制御信号に基づいてヘッド側連通油路21を開閉するヘッド側連通油路開閉弁39が配設されている。而して、第一、第二ブームシリンダ8、9のヘッド側油室8a、9a同士は、ヘッド側連通油路開閉弁39がヘッド側連通油路21を開く開位置Xに位置している状態では、第一、第二ヘッド側油路19、20を介して連通する状態になっているが、ヘッド側連通油路開閉弁39がヘッド側連通油路21を閉じる閉位置Nに位置することにより、遮断された状態になるように構成されている。尚、ロッド側連通油路23には前記ヘッド側連通油路開閉弁39のような開閉弁は配されておらず、第一、第二ブームシリンダ8、9のロッド側油室8b、9b同士は常時連通状態になっている。 On the other hand, as described above, the head side communication oil passage 21 is connected between the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 via the first and second head side oil passages 19 and 20, respectively. The head side communication oil path 21 is provided with a head side communication oil path opening / closing valve 39 for opening and closing the head side communication oil path 21 based on a control signal from the control device 27. ing. Thus, the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are located at the open position X where the head side communication oil path opening / closing valve 39 opens the head side communication oil path 21. In the state, the communication is made via the first and second head side oil passages 19 and 20, but the head side communication oil passage on-off valve 39 is located at the closed position N closing the head side communication oil passage 21. Is configured to be in a blocked state. The on-off valve such as the head-side communication oil passage on-off valve 39 is not disposed in the rod-side communication fluid passage 23, and the rod- side oil chambers 8b and 9b of the first and second boom cylinders 8 and 9 Is always in communication.
 さらに、40は前記第一ヘッド側油路19から油タンク12に至るヘッド側排出油路であって、該ヘッド側排出油路40には、アンロード弁41が配されている。尚、前記第二ヘッド側油路20は、ヘッド側連通油路21を介して上記ヘッド側排出油路40に接続されており、而して、ヘッド側連通油路開閉弁39が閉位置Nに位置していている状態では、第二ヘッド側油路20とヘッド側排出油路40とは遮断されているが、ヘッド側連通油路開閉弁39が開位置Xに位置することによって、第二ヘッド側油路20の油をヘッド側排出油路40に流すことができるようになっている。 Further, reference numeral 40 denotes a head-side discharge oil passage extending from the first head-side oil passage 19 to the oil tank 12, and an unload valve 41 is disposed in the head-side discharge oil passage 40. The second head-side oil passage 20 is connected to the head-side discharge oil passage 40 via the head-side communication oil passage 21, and the head-side communication oil passage on-off valve 39 is closed at the closed position N. In the state where the second head side oil passage 20 and the head side discharge oil passage 40 are shut off, the head side communication oil passage on-off valve 39 is positioned at the open position X. The oil of the second head side oil passage 20 can be made to flow to the head side discharge oil passage 40.
 前記アンロード弁41は、ポペット弁42と、制御装置27から出力される制御信号に基づいてOFF位置NからON位置Xに切換わるアンロード弁用電磁切換弁43とを用いて構成されている。そして、該アンロード弁41は、アンロード弁用電磁切換弁43がOFF位置Nに位置しているときには、第一ヘッド側油路19から油タンク12への油の流れを阻止する、つまりヘッド側排出油路40を閉じる閉状態に保持されるが、アンロード弁用電磁切換弁43がON位置Xに切換わることにより、第一ヘッド側油路19から油タンク12への油の流れを許容する、つまり、ヘッド側排出油路40を開く開状態になる。而して、上記アンロード弁用電磁切換弁43をON位置Xに位置せしめてアンロード弁41を開状態にすることにより、第一ブームシリンダ8のヘッド側油室8aの圧油を、第一流量制御弁33およびヘッド側排出油路40を経由して油タンク12に流すことができるようになっている。尚、前述したように、第二ヘッド側油路20はヘッド側連通油路21を介してヘッド側排出油路40に接続されているため、ヘッド側連通油路開閉弁39が開位置Xに位置し、且つ、アンロード弁41が開状態のときには、第二ブームシリンダ9のヘッド側油室9aの圧油を、第二流量制御弁34およびヘッド側排出油路40を経由して油タンク12に流すことができるようになっている。 The unload valve 41 is configured using a poppet valve 42 and an electromagnetic switching valve 43 for unload valve that switches from the OFF position N to the ON position X based on a control signal output from the control device 27. . The unloading valve 41 blocks the flow of oil from the first head side oil passage 19 to the oil tank 12 when the unloading valve electromagnetic switching valve 43 is at the OFF position N, that is, the head It is held in the closed state to close the side discharge oil passage 40, but when the unload valve electromagnetic switching valve 43 is switched to the ON position X, the flow of oil from the first head side oil passage 19 to the oil tank 12 is That is, the head side discharge oil passage 40 is opened. Then, the pressure oil in the head-side oil chamber 8a of the first boom cylinder 8 is set to the first position by setting the unload valve electromagnetic switching valve 43 to the ON position X and opening the unload valve 41. It can be made to flow to the oil tank 12 via the one flow control valve 33 and the head side discharge oil passage 40. As described above, since the second head side oil passage 20 is connected to the head side discharge oil passage 40 via the head side communication oil passage 21, the head side communication oil passage on-off valve 39 is at the open position X. When the unloading valve 41 is open, the pressure oil of the head side oil chamber 9a of the second boom cylinder 9 is transferred to the oil tank via the second flow control valve 34 and the head side discharge oil passage 40. It is designed to be able to flow to twelve.
 ここで、前述したように、アンロード弁41が開状態のときには、第一ブームシリンダ8のヘッド側油室8aの圧油を、第一流量制御弁33およびヘッド側排出油路40を経由して油タンク12に流すことができるが、この場合、第一流量制御弁33の開口面積を最大にすることによって、第一ブームシリンダ8のヘッド側油室8aの圧油を、略アンロード状態で油タンク12に流すことができるようになっている。尚、本実施の形態において、前記第一ヘッド側油路19、第一流量制御弁33、ヘッド側排出油路40、およびアンロード弁41は、本発明の開閉自在なアンロード油路を構成するが、本発明のアンロード油路が開いている状態とは、第一流量制御弁33の開口面積が最大で、且つ、アンロード弁41が開状態のときであって、それ以外の場合には、アンロード油路が閉じている状態とする。 Here, as described above, when the unload valve 41 is in the open state, the pressure oil of the head side oil chamber 8 a of the first boom cylinder 8 is passed through the first flow control valve 33 and the head side discharge oil passage 40. In this case, by maximizing the opening area of the first flow control valve 33, the pressure oil in the head side oil chamber 8a of the first boom cylinder 8 is substantially unloaded. Can be flowed to the oil tank 12. In the present embodiment, the first head side oil passage 19, the first flow control valve 33, the head side discharge oil passage 40, and the unloading valve 41 constitute an openable / closable unload oil passage of the present invention. However, the state in which the unloading oil passage of the present invention is open means that the opening area of the first flow control valve 33 is the largest and the unloading valve 41 is in the open state, otherwise The unloading oil passage is closed.
 さらに、44は前記第二ヘッド側油路20に接続される回収油路であって、該回収油路44には、第二ヘッド側油路20を経由する第二ブームシリンダ8のヘッド側油室8aからの排出油、および、第一ヘッド側油路19およびヘッド側連通油路21を経由する第一ブームシリンダ8のヘッド側油室8aからの排出油が供給されるが、該回収油路44は、アキュムレータ油路45に対して、後述するシリンダ側チェック弁46およびアキュムレータ側チェック弁49を介して接続されている。ここで、上記アキュムレータ油路45は、アキュムレータ59に圧油を給排するべくアキュムレータ59に接続される油路である。 Furthermore, 44 is a recovery oil passage connected to the second head side oil passage 20, and in the recovery oil passage 44, the head side oil of the second boom cylinder 8 passing through the second head side oil passage 20. Exhaust oil from the chamber 8a and exhaust oil from the head oil chamber 8a of the first boom cylinder 8 passing through the first head oil passage 19 and the head communication oil passage 21 are supplied. The passage 44 is connected to the accumulator oil passage 45 via a cylinder side check valve 46 and an accumulator side check valve 49 which will be described later. Here, the accumulator oil passage 45 is an oil passage connected to the accumulator 59 in order to supply and discharge pressure oil to the accumulator 59.
 前記シリンダ側チェック弁46は、ポペット弁47と、制御装置27から出力される制御信号に基づいてOFF位置NからON位置Xに切換わるシリンダ側チェック弁用電磁切換弁48とを用いて構成されている。そして、該シリンダ側チェック弁46は、シリンダ側チェック弁用電磁切換弁48がOFF位置Nに位置している状態では、回収油路44からアキュムレータ油路45への油の流れを阻止する閉状態に保持されるが、シリンダ側チェック弁用電磁切換弁48がON位置Xに切換わることにより、回収油路44とアキュムレータ油路45との間の双方向の流れを許容する開状態になる。 The cylinder side check valve 46 is configured by using a poppet valve 47 and a cylinder side check valve electromagnetic switching valve 48 that switches from the OFF position N to the ON position X based on a control signal output from the control device 27. ing. When the cylinder side check valve electromagnetic switching valve 48 is positioned at the OFF position N, the cylinder side check valve 46 is closed so as to block the flow of oil from the recovery oil passage 44 to the accumulator oil passage 45. However, when the cylinder side check valve electromagnetic switching valve 48 is switched to the ON position X, an open state allowing bidirectional flow between the recovery oil passage 44 and the accumulator oil passage 45 is established.
 また、前記アキュムレータ側チェック弁49は、ポペット弁50と、制御装置27から出力される制御信号に基づいてOFF位置NからON位置Xに切換わるアキュムレータ側チェック弁用電磁切換弁51とを用いて構成されている。そして、該アキュムレータ側チェック弁49は、アキュムレータ側チェック弁用電磁切換弁51がOFF位置Nに位置している状態では、アキュムレータ油路45から回収油路44への油の流れを阻止する閉状態に保持されるが、アキュムレータ側チェック弁用電磁切換弁51がON位置Xに切換わることにより、回収油路44とアキュムレータ油路45との間の双方向の流れを許容する開状態になる。尚、アキュムレータ側チェック弁49は、アキュムレータ側チェック弁用電磁切換弁51がOFF位置Nに位置している状態であっても、回収油路44からアキュムレータ油路45への油の流れを許容するが、アキュムレータ側チェック弁用電磁切換弁51がON位置Xに位置している状態では、アキュムレータ油路45の圧力がポペット弁50のバネ室50aに導入されないため、殆ど圧力損失のない状態で回収油路44からアキュムレータ油路45に油を流すことができるようになっている。 Further, the accumulator side check valve 49 uses the poppet valve 50 and the accumulator side check valve electromagnetic switching valve 51 that switches from the OFF position N to the ON position X based on the control signal output from the control device 27. It is configured. The accumulator side check valve 49 is in a closed state that prevents the flow of oil from the accumulator oil passage 45 to the recovery oil passage 44 when the accumulator side check valve electromagnetic switching valve 51 is in the OFF position N. However, when the accumulator side check valve electromagnetic switching valve 51 is switched to the ON position X, an open state allowing bidirectional flow between the recovery oil passage 44 and the accumulator oil passage 45 is established. The accumulator side check valve 49 allows the flow of oil from the recovery oil passage 44 to the accumulator oil passage 45 even when the accumulator side check valve electromagnetic switching valve 51 is in the OFF position N. However, when the accumulator side check valve electromagnetic switching valve 51 is at the ON position X, the pressure in the accumulator oil passage 45 is not introduced into the spring chamber 50a of the poppet valve 50, so recovery is performed with almost no pressure loss. Oil can flow from the oil passage 44 to the accumulator oil passage 45.
 而して、前記シリンダ側チェック弁46およびアキュムレータ側チェック弁49が共に閉状態に保持されている状態では、回収油路44からアキュムレータ油路45への油の流れ、およびアキュムレータ油路45から回収油路44への油の流れは共に阻止される一方、シリンダ側チェック弁46およびアキュムレータ側チェック弁49が共に開状態になることにより、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aから排出油を、回収油路44およびアキュムレータ油路45を経由してアキュムレータ59に蓄圧することができるようになっている。尚、上記シリンダ側チェック弁46およびアキュムレータ側チェック弁49は、本発明の第一、第二油圧シリンダのヘッド側油室からアキュムレータへの油の流れ、およびアキュムレータから第一、第二油圧シリンダのヘッド側油室への油の流れを阻止することができる弁手段を構成する。また、本実施の形態において、アキュムレータ59は、油圧エネルギー蓄積用として最適なブラダ型のものが用いられているが、これに限定されることなく、例えばピストン型のものであっても良い。 Thus, when the cylinder side check valve 46 and the accumulator side check valve 49 are both kept closed, the flow of oil from the recovery oil passage 44 to the accumulator oil passage 45 and the recovery from the accumulator oil passage 45 While the flow of oil to the oil passage 44 is both blocked, the head side oil chambers of the first and second boom cylinders 8, 9 are brought about by the cylinder side check valve 46 and the accumulator side check valve 49 both being opened. The exhaust oil from 8a, 9a can be accumulated in the accumulator 59 via the recovery oil passage 44 and the accumulator oil passage 45. The cylinder side check valve 46 and the accumulator side check valve 49 are the oil flow from the head side oil chamber of the first and second hydraulic cylinders to the accumulator and the first and second hydraulic cylinders of the accumulator. A valve means capable of blocking the flow of oil to the head side oil chamber is constituted. In the present embodiment, the accumulator 59 is a bladder type that is optimal for storing hydraulic energy. However, the accumulator 59 is not limited to this, and may be, for example, a piston type.
 一方、16は前記アキュムレータ油路45からメインポンプ10の吐出ライン15に至るように形成される合流油路であって、該合流油路16には、合流バルブ52が配されている。 On the other hand, 16 is a combined oil passage formed from the accumulator oil passage 45 to the discharge line 15 of the main pump 10, and a combined valve 52 is disposed in the combined oil passage 16.
 前記合流バルブ52は、制御装置27からの制御信号が入力される合流バルブ用電油変換弁53の作動に基づいてスプールが移動する開閉弁であって、合流バルブ用電油変換弁53が非作動の状態では、合流油路16を閉じる閉位置Nに位置しているが、合流バルブ用電油変換弁53が作動することによりスプールが移動して、合流油路16を開く開位置Xに切換わるように構成されている。さらに、該合流バルブ52には、アキュムレータ油路45から吐出ライン15への油の流れは許容するが、逆方向の流れは阻止するチェック弁54が内蔵されている。而して、合流バルブ52が開位置Xに切換わることによって、アキュムレータ59に蓄圧された圧油を、アキュムレータ油路45および合流油路16を経由して、メインポンプ10の吐出ライン15に合流させることができるようになっている。 The merging valve 52 is an on-off valve that moves a spool based on the operation of a merging valve electro-hydraulic conversion valve 53 to which a control signal from the control device 27 is input. The merging valve electro-hydraulic conversion valve 53 is not In the state of operation, it is located at the closed position N where the merging oil passage 16 is closed, but the spool moves by the operation of the merging valve electrical oil conversion valve 53 to open the merging oil passage 16 to the open position X It is configured to switch. Furthermore, the merging valve 52 incorporates a check valve 54 that allows the flow of oil from the accumulator oil passage 45 to the discharge line 15 but blocks the flow in the reverse direction. Thus, by switching the joining valve 52 to the open position X, the pressure oil accumulated in the accumulator 59 is joined to the discharge line 15 of the main pump 10 via the accumulator oil passage 45 and the joining oil passage 16. It can be made to
 前記合流バルブ52の開口面積は、制御装置27から合流バルブ用電油変換弁53に入力される制御信号の信号値によって増減制御されるようになっており、そして、該合流バルブ52の開口面積の増減制御によって、アキュムレータ59から合流油路16を経由してメインポンプ10の吐出ライン15に合流する流量の増減制御がなされるように構成されている。 The opening area of the merging valve 52 is controlled to increase or decrease according to the signal value of the control signal input from the control device 27 to the merging valve electric oil conversion valve 53, and the opening area of the merging valve 52 The control of increasing and decreasing the flow rate of the flow joining the discharge line 15 of the main pump 10 from the accumulator 59 via the merging oil passage 16 is performed by the increase and decrease control of
 さらに、55は前記アキュムレータ油路45から分岐形成されて油タンク12に至るアキュムレータ用排出油路であって、該アキュムレータ用排出油路55にはタンクチェック弁56が配されている。 Further, 55 is a discharge oil passage for the accumulator which is branched from the accumulator oil passage 45 and reaches the oil tank 12, and a tank check valve 56 is disposed in the discharge oil passage 55 for the accumulator.
 前記タンクチェック弁56は、ポペット弁57と、制御装置27から出力される制御信号に基づいてOFF位置NからON位置Xに切換わるタンクチェック弁用電磁切換弁58とを用いて構成されている。そして、該タンクチェック弁56は、タンクチェック弁用電磁切換弁58がOFF位置Nに位置しているときには、アキュムレータ油路45から油タンク12への油の流れを阻止する、つまりアキュムレータ用排出油路55を閉じる閉状態に保持されるが、タンクチェック弁用電磁切換弁58がON位置Xに切換わることにより、アキュムレータ油路45から油タンク12への油の流れを許容する、つまり、アキュムレータ用排出油路55を開く開状態になる。而して、上記タンクチェック弁用電磁切換弁58をON位置Xに位置せしめてタンクチェック弁56を開状態にすることにより、アキュムレータ59の蓄圧油をアキュムレータ用排出油路55を経由して油タンク12に排出することができるようになっている。 The tank check valve 56 is configured using a poppet valve 57 and a tank check valve electromagnetic switching valve 58 that switches from the OFF position N to the ON position X based on a control signal output from the control device 27. . The tank check valve 56 blocks the flow of oil from the accumulator oil passage 45 to the oil tank 12 when the tank check valve electromagnetic switching valve 58 is at the OFF position N, that is, the accumulator discharge oil Although the passage 55 is closed in a closed state, the tank check valve electromagnetic switching valve 58 is switched to the ON position X to allow the flow of oil from the accumulator oil passage 45 to the oil tank 12, that is, the accumulator The discharge oil passage 55 is opened. Then, by positioning the tank check valve electromagnetic switching valve 58 at the ON position X and opening the tank check valve 56, the accumulated oil of the accumulator 59 is oil via the accumulator discharge oil passage 55. It can be discharged into the tank 12.
 一方、前記制御装置27は、マイクロコンピュータ等を用いて構成されるものであって、図3のブロック図に示すごとく、ブーム用操作レバーの操作方向および操作量を検出するブーム操作検出手段60、メインポンプ10の吐出圧を検出するポンプ用圧力センサ61、第一ブームシリンダ8のヘッド側油室8aの圧力を検出する第一ヘッド側圧力センサ(本発明の第一ヘッド側圧力検出手段に相当する)62、第二ブームシリンダ9のヘッド側油室9aの圧力を検出する第二ヘッド側圧力センサ(本発明の第二ヘッド側圧力検出手段に相当する)63、アキュムレータ59の圧力を検出するアキュムレータ圧力センサ(本発明のアキュムレータ圧力検出手段に相当する)64等からの信号を入力し、これら入力信号に基づいて、前述の上昇側電磁比例減圧弁25、下降側電磁比例減圧弁26、メインポンプ流量制御用電磁比例減圧弁30、第一電磁比例減圧弁35、第二電磁比例減圧弁36、ヘッド側連通油路開閉弁39、アンロード弁用電磁切換弁43、シリンダ側チェック弁用電磁切換弁48、アキュムレータ側チェック弁用電磁切換弁51、合流バルブ用電油変換弁53、タンクチェック弁用電磁切換弁58等に制御信号を出力する。 On the other hand, the control device 27 is constituted by using a microcomputer or the like, and as shown in the block diagram of FIG. 3, a boom operation detection means 60 for detecting the operation direction and operation amount of the boom control lever; A pump pressure sensor 61 for detecting the discharge pressure of the main pump 10, and a first head pressure sensor for detecting the pressure of the head oil chamber 8a of the first boom cylinder 8 (equivalent to the first head pressure detection means of the present invention 62, a second head side pressure sensor (corresponding to the second head side pressure detecting means of the present invention) 63 for detecting the pressure of the head side oil chamber 9a of the second boom cylinder 9; A signal from an accumulator pressure sensor (corresponding to the accumulator pressure detection means of the present invention) 64 or the like is input, and based on these input signals, the above-mentioned Side electromagnetic proportional pressure reducing valve 25, Lower side electromagnetic proportional pressure reducing valve 26, Main pump flow rate controlling electromagnetic proportional pressure reducing valve 30, First electromagnetic proportional pressure reducing valve 35, Second electromagnetic proportional pressure reducing valve 36, Head side communication oil passage open / close valve 39 Control for unloading valve solenoid switching valve 43, cylinder side check valve solenoid switching valve 48, accumulator side check valve solenoid switching valve 51, merging valve electro-hydraulic conversion valve 53, tank check valve solenoid switching valve 58, etc. Output a signal.
 前記制御装置27の行なう制御のうち、まず、片持ち制御、両持ち制御について説明すると、制御装置27は、ブーム操作検出手段60から入力されるブーム用操作レバーの操作と、第一ヘッド側圧力センサ62から入力される第一ブームシリンダ8のヘッド側油室8aの圧力Ph1と、第二ヘッド側圧力センサ63から入力される第二ブームシリンダ9のヘッド側油室9aの圧力Ph2と、アキュムレータ圧力センサ64から入力されるアキュムレータ59の圧力Paとに基づいて、作業部4の重量を第一および第二の両方のブームシリンダ8、9のヘッド側油室8a、9aの圧力で保持する両持ち制御を行なうか、或いは、作業部4の重量を第一、第二ブームシリンダ8、9のうち片方の第二ブームシリンダ9のヘッド側油室9aの圧力で保持する片持ち制御を行なうかを判断する。 Among the controls performed by the control unit 27, first, the cantilever control and the double-end control will be described. The control unit 27 operates the boom control lever input from the boom operation detection means 60, and the first head side pressure The pressure Ph1 of the head side oil chamber 8a of the first boom cylinder 8 input from the sensor 62, the pressure Ph2 of the head side oil chamber 9a of the second boom cylinder 9 input from the second head side pressure sensor 63, and an accumulator The weight of the working unit 4 is held by the pressure of the head side oil chambers 8a and 9a of both the first and second boom cylinders 8 and 9 based on the pressure Pa of the accumulator 59 input from the pressure sensor 64 Control the weight of the working unit 4 or the pressure of the head side oil chamber 9 a of the second boom cylinder 9 of one of the first and second boom cylinders 8 and 9. In determining whether to cantilever control to maintain.
 つまり、制御装置27は、図4のフローチャート図に示す如く、ブーム用操作レバーがブーム下降側に操作されか否か(ステップS1)、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2の平均値((Ph1+Ph2)/2)とアキュムレータ59の圧力Paとの差圧が、予め設定される設定値C1よりも小さいか否か({(Ph1+Ph2)/2}-Pa<C1?)(ステップS2)、第二リリーフ弁38によって設定される第二ブームシリンダ9のヘッド側リリーフ圧Pr2と第二ブームシリンダ9のヘッド側油室9aの圧力Ph2との差圧が、予め設定される設定値C2よりも大きいか否か(Pr2-Ph2>C2?)(ステップS3)を判断し、上記ステップS1、S2、S3の判断の全てが「YES」の場合には片持ち制御を行なうと判断し、一つでも「NO」の場合には両持ち制御を行なうと判断する。 That is, as shown in the flow chart of FIG. 4, the control device 27 determines whether the boom control lever is operated to the boom lowering side (step S1), the head side oil chambers of the first and second boom cylinders 8, 9 Whether the differential pressure between the average value ((Ph1 + Ph2) / 2) of the pressures Ph1 and Ph2 of 8a and 9a and the pressure Pa of the accumulator 59 is smaller than the preset value C1 ({(Ph1 + Ph2) / 2 } (Step S2), the difference between the head-side relief pressure Pr2 of the second boom cylinder 9 set by the second relief valve 38 and the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 It is determined whether the pressure is larger than the preset value C2 set in advance (Pr2-Ph2> C2?) (Step S3), and all the determinations in steps S1, S2, and S3 are “Y In the case of S "it determines that performs control cantilevered, if even one of the" NO "is determined to perform the inboard control.
 そして、前記ステップS1、S2、S3の判断により両持ち制御を行なうと判断された場合、制御装置27は、アンロード弁用電磁切換弁43に対してOFF位置Nに位置するように制御信号を出力して、アンロード弁41を閉状態にする(アンロード油路を閉じる)。さらに制御装置27は、ヘッド側連通油路開閉弁39に対して開位置Xに位置するように制御信号を出力する。これにより、第一、第二ブームシリンダ8、9のヘッド側油室8a、9a同士は、第一、第二ヘッド側油路19、20を介して連通状態になる。この状態では、第一および第二の両方のブームシリンダ8、9が作業部4の重量保持を担うことになり、而して、第一および第二の両方のブームシリンダ8、9のヘッド側油室8a、9aの圧力で作業部4の重量を保持する両持ち制御が実行される。 Then, when it is determined that the both-end control is to be performed in the determinations of the steps S1, S2 and S3, the control device 27 sets the control signal to the OFF position N with respect to the unload valve electromagnetic switching valve 43. Then, the unloading valve 41 is closed (closing the unloading oil passage). Further, the control device 27 outputs a control signal so as to be positioned at the open position X with respect to the head side communication oil passage open / close valve 39. As a result, the head side oil chambers 8 a and 9 a of the first and second boom cylinders 8 and 9 are in communication with each other via the first and second head side oil passages 19 and 20. In this state, both the first and second boom cylinders 8, 9 will be responsible for holding the weight of the working unit 4, so that the head side of both the first and second boom cylinders 8, 9 Both-end control for holding the weight of the working unit 4 is executed by the pressure of the oil chambers 8a and 9a.
 一方、前記ステップS1、S2、S3の判断により片持ち制御を行なうと判断された場合、制御装置27は、ヘッド側連通油路開閉弁39に対して閉位置Nに位置するように制御信号を出力する。これにより、第一、第二ブームシリンダ8、9のヘッド側油室8a、9a同士は遮断された状態になる。さらに制御装置27は、第一電磁比例減圧弁35に対して最大パイロット圧出力の制御信号を出力して第一流量制御弁33の開口面積を最大にすると共に、アンロード弁用電磁切換弁43に対してON位置Xに位置するように制御信号を出力してアンロード弁41を開状態にする(アンロード油路を開く)。これにより、第一ブームシリンダ8のヘッド側油室8aの油は、第一ヘッド側油路19およびヘッド側排出油路40を経由して油タンク12に流れることになって、第一ブームシリンダ8のヘッド側油室8aの圧力は略タンク圧まで低下する。この状態では、第一ブームシリンダ8による作業部4の重量保持はなされず、第二ブームシリンダ9のみが作業部4の重量保持を担うことになり、而して、第一、第二ブームシリンダ8、9のうち片方の第二ブームシリンダ9のヘッド側油室9aの圧力で作業部4の重量を保持する片持ち制御が実行される。そして、該片持ち制御にすることにより、第二ブームシリンダ9のヘッド側油室9aの圧力は、前記両持ち制御時における第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力に対して約二倍に昇圧する。 On the other hand, when it is determined that the cantilever control is to be performed in the determinations of the steps S1, S2 and S3, the control device 27 sets the control signal to be located at the closed position N with respect to the head side communication oil passage open / close valve 39. Output. As a result, the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are shut off. Furthermore, the control device 27 outputs a control signal of the maximum pilot pressure output to the first electromagnetic proportional pressure reducing valve 35 to maximize the opening area of the first flow control valve 33, and the electromagnetic switching valve 43 for unloading valve. Is output to the ON position X to open the unloading valve 41 (open the unloading oil passage). As a result, the oil in the head side oil chamber 8a of the first boom cylinder 8 flows to the oil tank 12 via the first head side oil passage 19 and the head side discharge oil passage 40, and the first boom cylinder The pressure of the head side oil chamber 8a of 8 decreases to substantially the tank pressure. In this state, weight retention of the working unit 4 by the first boom cylinder 8 is not performed, and only the second boom cylinder 9 is responsible for weight retention of the working unit 4, and thus, the first and second boom cylinders The cantilever control for holding the weight of the working unit 4 is executed by the pressure of the head-side oil chamber 9 a of one of the second boom cylinders 9 among 8 and 9. The pressure of the head-side oil chamber 9a of the second boom cylinder 9 is controlled by the above-mentioned cantilever control so that the head- side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 at the time of the double control. Pressurize about twice the pressure of.
 ここで、前記片持ち制御、両持ち制御の判断は、前述したように、ステップS1~S3の判断に基づいて行なわれるが、該ステップS1の判断により、片持ち制御が実行されるのはブーム用操作レバーがブーム下降側に操作された場合、つまり、作業部4の下降時であって、ブーム用操作レバーがブーム下降側に操作されていない場合、つまり、作業部4の昇降停止時および上昇時には、両持ち制御が実行される。 Here, the determination of the cantilever control and the both-ports control is performed based on the determinations of steps S1 to S3 as described above, but the cantilever control is performed according to the determination of step S1 is a boom When the control lever for the boom is operated to the boom lowering side, that is, when the working unit 4 is lowered and the boom control lever is not operated to the boom lowering side, that is, when the working unit 4 is stopped moving up and down At the time of ascent, dual control is performed.
 また、作業部4の下降時であっても、ステップS2に判断により、片持ち制御が実行されるのは、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2の平均値とアキュムレータ59の圧力Paとの差圧が設定値C1よりも小さい場合({(Ph1+Ph2)/2}-Pa<C1)であって、設定値C1以上の場合({(Ph1+Ph2)/2}-Pa≧C1)には、両持ち制御が実行される。ここで、上記設定値C1は、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからアキュムレータ59に圧油を流すために必要な差圧として予め設定される値であるが、該設定値C1が小さすぎると、作業部4の下降速度が遅くなってしまう場合があるため、作業部4の下降速度を確保できる状態で、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからアキュムレータ59に圧油を流すために必要な差圧が、設定値C1として設定される。つまり、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、圧力Ph2の平均値とアキュムレータ59の圧力Paとの差圧が設定値C1以上の場合には、両持ち制御であっても、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの排出油をアキュムレータ59に蓄圧することができるため、片持ち制御は実行されないようになっている。尚、ハンチング防止のため、上記設定値C1の値は、両持ち制御から片持ち制御に移行する場合と、片持ち制御から両持ち制御に移行する場合とでは若干異なるように設定されている。 In addition, even when the working unit 4 is lowered, the cantilever control is executed according to the determination in step S2 based on the pressure Ph1 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 , The difference between the average value of Ph2 and the pressure Pa of the accumulator 59 is smaller than the set value C1 ({(Ph1 + Ph2) / 2} -Pa <C1), and the set value C1 or more ({(Ph1 + Ph2) In (2)-Pa に は C1), double-end control is executed. Here, the set value C1 is a value set in advance as a differential pressure necessary to cause the pressure oil to flow from the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 to the accumulator 59. If the set value C1 is too small, the lowering speed of the working unit 4 may be slowed, so the heads of the first and second boom cylinders 8 and 9 can be maintained in a state where the lowering speed of the working unit 4 can be secured. The differential pressure necessary for flowing the pressure oil from the side oil chambers 8a and 9a to the accumulator 59 is set as the set value C1. That is, when the differential pressure between the pressure Ph1 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 and the average value of the pressure Ph2 and the pressure Pa of the accumulator 59 is the set value C1 or more, both Even in the holding control, since the discharge oil of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 can be accumulated in the accumulator 59, the cantilever control is not executed. . Incidentally, in order to prevent hunting, the value of the set value C1 is set to be slightly different between when shifting from the double control to the cantilever control and when changing from the cantilever control to the dual control.
 さらに、作業部4の下降時であっても、ステップS3の判断により、片持ち制御が実行されるのは、第二ブームシリンダ9のヘッド側リリーフ圧Pr2と第二ブームシリンダ9のヘッド側油室9aの圧力Ph2との差圧が設定値C2よりも大きい場合(Pr2-Ph2>C2)であって、設定値C2以下の場合(Pr2-Ph2≦C2)には、両持ち制御が実行される。ここで、前記設定値C2は、第二リリーフ弁38の不用意な作動を防止するために予め設定される差圧の値である。つまり、第二ブームシリンダ9のヘッド側リリーフ圧Pr2と第二ブームシリンダ9のヘッド側油室9aの圧力Ph2との差圧が設定値C2以下の場合には、第二リリーフ弁38が不用意に作動して第二ブームシリンダ9のヘッド側油室9aの油が油タンク12に流れてしまう惧れが大きくなるため、片持ち制御は実行されないようになっている。 Furthermore, even at the time of lowering of the working unit 4, the head side relief pressure Pr2 of the second boom cylinder 9 and the head side oil of the second boom cylinder 9 are subjected to cantilever control according to the determination of step S3. If the differential pressure with the pressure Ph2 of the chamber 9a is larger than the set value C2 (Pr2-Ph2> C2), and if it is less than the set value C2 (Pr2-Ph2 ≦ C2), the both-hand control is executed. Ru. Here, the set value C2 is a value of differential pressure which is set in advance to prevent the inadvertent operation of the second relief valve 38. That is, when the differential pressure between the head-side relief pressure Pr2 of the second boom cylinder 9 and the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 is less than the set value C2, the second relief valve 38 is not prepared. Since the possibility that the oil in the head side oil chamber 9a of the second boom cylinder 9 flows to the oil tank 12 increases, the cantilever control is not executed.
 次いで、ブーム用操作レバーの操作に基づく制御装置27の制御について説明する。
 まず、ブーム用操作レバーがブーム下降側、上昇側の何れにも操作されていない場合、つまり、作業部4の昇降停止時には、制御装置27は、上昇側電磁比例減圧弁25、下降側電磁比例減圧弁26、第一電磁比例減圧弁35、第二電磁比例減圧弁36に対してパイロット圧出力の制御信号を出力せず、これによりブームシリンダ用コントロールバルブ18は中立位置Nに位置し、第一、第二流量制御弁33、34は閉位置Nに位置している。また、メインポンプ流量制御用電磁比例減圧弁30に対して流量制御信号圧Pc出力の制御信号は出力されず、メインポンプ10のレギュレータ13にはネガティブコントロール信号圧Pnが入力される。さらに、シリンダ側チェック弁用電磁切換弁48、アキュムレータ側チェック弁用電磁切換弁51、タンクチェック弁用電磁切換弁58は何れもOFF位置Nに位置するように制御され、これによりシリンダ側チェック弁46、アキュムレータ側チェック弁49、タンクチェック弁56は何れも閉状態に保持される。さらに、合流バルブ用電油変換弁53に作動信号は出力されず、これにより合流バルブ52は閉位置Nに位置している。さらに、作業部4の昇降停止時には、前述したように、両持ち制御が実行されるようになっているため、ヘッド側連通油路開閉弁39は開位置Xに位置し、また、アンロード弁41は閉状態になるように制御される。
Next, control of the control device 27 based on the operation of the boom control lever will be described.
First, when the boom control lever is not operated by either the boom lowering side or the raising side, that is, when the working unit 4 is stopped moving up and down, the control device 27 controls the rising side electromagnetic proportional pressure reducing valve 25 and the falling side electromagnetic proportional The control signal of the pilot pressure output is not output to the pressure reducing valve 26, the first electromagnetic proportional pressure reducing valve 35, and the second electromagnetic proportional pressure reducing valve 36, whereby the boom cylinder control valve 18 is positioned at the neutral position N. The first and second flow control valves 33 and 34 are located at the closed position N. Further, the control signal of the flow control signal pressure Pc output is not output to the main pump flow control electromagnetic proportional pressure reducing valve 30, and the negative control signal pressure Pn is input to the regulator 13 of the main pump 10. Further, the cylinder side check valve electromagnetic switching valve 48, the accumulator side check valve electromagnetic switching valve 51, and the tank check valve electromagnetic switching valve 58 are all controlled to be at the OFF position N, whereby the cylinder side check valve 46, the accumulator side check valve 49, and the tank check valve 56 are all kept closed. Furthermore, no operation signal is output to the merging valve electro-hydraulic conversion valve 53, whereby the merging valve 52 is located at the closed position N. Further, when the working unit 4 is stopped moving up and down, as described above, since the both-end control is executed, the head side communication oil passage open / close valve 39 is located at the open position X, and the unload valve 41 is controlled to be in a closed state.
 一方、ブーム用操作レバーがブーム下降側に操作された場合、つまり、作業部4の下降時には、前述したように、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2、およびアキュムレータ59の圧力Paに応じて、両持ち制御が実行される場合と片持ち制御が実行される場合とがある。そして、両持ち制御が実行される場合には、ヘッド側連通油路開閉弁39は開位置Xに位置し、また、アンロード弁41は閉状態になるように制御される。一方、片持ち制御が実行される場合には、ヘッド側連通油路開閉弁39は閉位置Nに位置し、また、第一流量制御弁33の開口面積は最大になり、さらに、アンロード弁41は開状態になるように制御される。 On the other hand, when the boom control lever is operated to the boom lowering side, that is, when the working unit 4 is lowered, as described above, the pressures of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 Depending on Ph1 and Ph2 and the pressure Pa of the accumulator 59, there are cases in which both-port control is performed and in which cantilever control is performed. Then, when the both-ends control is executed, the head side communication oil passage open / close valve 39 is positioned at the open position X, and the unload valve 41 is controlled to be in the closed state. On the other hand, when the cantilever control is executed, the head side communication oil passage open / close valve 39 is located at the closed position N, and the opening area of the first flow control valve 33 is maximized, and furthermore, the unload valve 41 is controlled to be in an open state.
 さらに、ブーム下降側に操作された場合、制御装置27は、下降側電磁比例減圧弁26に対し、ブームシリンダ用コントロールバルブ18の下降側パイロットポート18bに、ブーム用操作レバーの操作量に対応したパイロット圧を出力するように制御信号を出力する。これによりブームシリンダ用コントロールバルブ18が下降側位置Yに切換わり、而して、圧油供給油路17の圧油が、上記下降側位置Yのブームシリンダ用コントロールバルブ18、ロッド側メイン油路24、ロッド側連通油路23を経由して、第一、第二ブームシリンダ8、9のロッド側油室8b、9bに供給される。尚、後述するように、ブーム用操作レバーがブーム下降側に操作された場合、圧油供給油路17にはメインポンプ10の吐出油のみが供給されるようになっている。 Furthermore, when operated to the boom lowering side, the control device 27 corresponds to the operation amount of the boom control lever at the lowering side pilot port 18b of the boom cylinder control valve 18 with respect to the lowering side electromagnetic proportional pressure reducing valve 26. The control signal is output to output the pilot pressure. As a result, the boom cylinder control valve 18 is switched to the lowering side position Y, so that the pressure oil in the pressure oil supply oil passage 17 becomes the boom cylinder control valve 18 at the lowering position Y and the rod side main oil passage. 24 are supplied to the rod side oil chambers 8b and 9b of the first and second boom cylinders 8 and 9 via the rod side communication oil passage 23. As described later, when the boom control lever is operated to the boom lowering side, only the discharge oil of the main pump 10 is supplied to the pressure oil supply oil passage 17.
 さらに、ブーム下降側に操作された場合、制御装置27は、メインポンプ流量制御用電磁比例減圧弁30に対して、流量制御信号圧Pc出力の制御信号を出力しない。これにより、シャトル弁29の他方のポート29aに入力される圧力はタンク圧となり、而して、シャトル弁29はネガティブコントロール信号圧Pnを選択して、メインポンプ10のレギュレータ13に入力する。これによりメインポンプ10は、ブーム用操作レバーの操作量の増減に対応して吐出流量が増減するように制御される。 Furthermore, when operated to the boom lowering side, the control device 27 does not output a control signal of the flow control signal pressure Pc output to the main pump flow control electromagnetic proportional pressure reducing valve 30. As a result, the pressure input to the other port 29 a of the shuttle valve 29 becomes the tank pressure, and the shuttle valve 29 selects the negative control signal pressure Pn and inputs it to the regulator 13 of the main pump 10. As a result, the main pump 10 is controlled to increase or decrease the discharge flow rate in accordance with the increase or decrease of the operation amount of the boom control lever.
 さらに、ブーム下降側に操作された場合、制御装置27は、第一、第二電磁比例減圧弁35、36に対して制御信号を出力するが、この場合、両持ち制御が実行される場合と片持ち制御が実行される場合とでは制御が異なる。まず、両持ち制御の場合について説明すると、制御装置27は、第一、第二電磁比例減圧弁35、36に対し、第一、第二流量制御弁33、34のパイロットポート33a、34aに、ブーム用操作レバーの操作量に対応したパイロット圧を出力するように制御信号を出力する。これにより、第一、第二流量制御弁33、34は、第一、第二ヘッド側油路19、20を開く開位置Xに切換わると共に、その開口面積は、ブーム用操作レバーの操作量に対応するように制御される。而して、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aから排出された圧油が、開位置Xの第一、第二流量制御弁33、34を経由して回収油路44に供給されるが、その流量は、第一、第二流量制御弁33、34の開口面積により制御される。尚、両持ち制御の場合には、前述したように、ヘッド側連通油路開閉弁39は開位置Xに位置し、また、アンロード弁41は閉状態になるように制御されるため、第一ブームシリンダ8のヘッド側油室8aから排出されて第一流量制御弁33を通過した油は、ヘッド側排出油路40を経由して油タンク12に流れることなく、ヘッド側連通油路21を経由して回収油路44に供給されるようになっている。 Furthermore, when the boom lowering side is operated, the control device 27 outputs a control signal to the first and second electromagnetic proportional pressure reducing valves 35, 36. The control is different from when cantilever control is performed. First, in the case of dual control, the controller 27 controls the pilot ports 33a and 34a of the first and second flow control valves 33 and 34 with respect to the first and second electromagnetic proportional pressure reducing valves 35 and 36, respectively. A control signal is output so as to output a pilot pressure corresponding to the operation amount of the boom control lever. As a result, the first and second flow control valves 33 and 34 switch to the open position X where the first and second head side oil passages 19 and 20 are opened, and the opening area thereof is the operation amount of the boom control lever It is controlled to correspond to The pressure oil discharged from the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is recovered via the first and second flow control valves 33 and 34 at the open position X. Although supplied to the oil passage 44, the flow rate is controlled by the opening area of the first and second flow control valves 33, 34. Incidentally, in the case of the both-end control, as described above, the head side communication oil passage open / close valve 39 is positioned at the open position X, and the unload valve 41 is controlled to be closed. The oil discharged from the head-side oil chamber 8a of the boom cylinder 8 and having passed through the first flow control valve 33 does not flow to the oil tank 12 via the head-side discharge oil passage 40, and the head-side communication oil passage 21 Are supplied to the recovery oil passage 44 via the.
 次いで、片持ち制御の場合について説明すると、制御装置27は、第二電磁比例減圧弁36に対し、第二流量制御弁34のパイロットポート34aに、ブーム用操作レバーの操作量に対応したパイロット圧を出力するように制御信号を出力する。これにより、第二流量制御弁34は、第二ヘッド側油路20を開く開位置Xに切換わる。而して、第二ブームシリンダ9のヘッド側油室9aから排出された圧油が、開位置Xの第二流量制御弁34を経由して回収油路44に供給されるが、その流量は、第二流量制御弁34の開口面積により制御される。尚、片持ち制御の場合には、前述したように、ヘッド側連通油路開閉弁39は閉位置Nに位置し、また、第一流量制御弁33の開口面積は最大になり、さらに、アンロード弁41は開状態になるように制御され、これにより、第一ブームシリンダ8のヘッド側油室8aからの排出油は、ヘッド側排出油路40を経由して油タンク12に流れる。一方、第二ブームシリンダ9のヘッド側油室9aからの排出油は、両持ち制御の場合と比して約二倍の高圧になっており、該高圧の油が回収油路44に供給される。 Next, the control device 27 controls the pilot pressure corresponding to the operation amount of the boom control lever to the pilot port 34a of the second flow control valve 34 with respect to the second electromagnetic proportional pressure reducing valve 36. Output the control signal. Thereby, the second flow control valve 34 is switched to the open position X where the second head side oil passage 20 is opened. The pressure oil discharged from the head side oil chamber 9a of the second boom cylinder 9 is supplied to the recovery oil passage 44 via the second flow control valve 34 at the open position X, but the flow rate is , And the opening area of the second flow control valve 34. In the case of the cantilever control, as described above, the head side communication oil passage open / close valve 39 is located at the closed position N, and the opening area of the first flow control valve 33 is maximized. The load valve 41 is controlled to be in an open state, whereby the discharge oil from the head side oil chamber 8 a of the first boom cylinder 8 flows to the oil tank 12 via the head side discharge oil passage 40. On the other hand, the oil discharged from the head side oil chamber 9a of the second boom cylinder 9 has a high pressure which is about twice that in the case of dual control, and the high pressure oil is supplied to the recovery oil passage 44. Ru.
 さらに、ブーム下降側に操作された場合、制御装置27は、シリンダ側チェック弁用電磁切換弁48およびアキュムレータ側チェック弁用電磁切換弁51に対し、ON位置Xに切換わるように制御信号を出力する。これにより、シリンダ側チェック弁46およびアキュムレータ側チェック弁49は共に開状態になって、回収油路44からアキュムレータ油路45への油の流れが許容される。而して、両持ち制御の場合には第一、第二ブームシリンダ8、9のヘッド側油室8a、9aから排出されて回収油路44に供給された圧油が、また、片持ち制御の場合には第二ブームシリンダ9のヘッド側油室9aから排出されて回収油路44に供給された油がアキュムレータ油路45に流れ、該アキュムレータ油路45を経由してアキュムレータ59に蓄圧されるようになっている。 Furthermore, when operated to the boom lowering side, the control device 27 outputs a control signal to switch to the ON position X to the cylinder side check valve electromagnetic switching valve 48 and the accumulator side check valve electromagnetic switching valve 51 Do. As a result, the cylinder side check valve 46 and the accumulator side check valve 49 both open, and the flow of oil from the recovery oil passage 44 to the accumulator oil passage 45 is permitted. Thus, in the case of both-end control, the pressure oil discharged from the head- side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 and supplied to the recovery oil passage 44 is also controlled to be cantilevered. In this case, the oil discharged from the head side oil chamber 9a of the second boom cylinder 9 and supplied to the recovery oil passage 44 flows into the accumulator oil passage 45 and is accumulated in the accumulator 59 via the accumulator oil passage 45. It has become so.
 而して、作業部4の下降時に、両持ち制御では、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aから排出された油がアキュムレータ59に蓄圧され、また、片持ち制御では、第二ブームシリンダ9のヘッド側油室9aから排出された油がアキュムレータ59に蓄圧されることになるが、この場合、ヘッド側油室8a、9aからの排出油は、作業部4の有する位置エネルギーによって、第一、第二の両方のブームシリンダ8、9で作業部4の重量を保持する両持ち制御でも高圧で、さらに、片方の第二ブームシリンダ9で作業部4の重量保持を担う片持ち制御では両持ち制御よりもさらに高圧(約二倍)になるから、アキュムレータ59には、高負荷作業にも対応できる高圧の圧油が蓄圧されることになる。 Thus, at the time of lowering of the working unit 4, the oil discharged from the head- side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is accumulated in the accumulator 59 in the both-end control, and cantilevered In the control, oil discharged from the head side oil chamber 9a of the second boom cylinder 9 is accumulated in the accumulator 59. In this case, the oil discharged from the head side oil chambers 8a and 9a is the working portion 4 The dual-arm control that holds the weight of the working unit 4 in both the first and second boom cylinders 8 and 9 by high potential energy of the first and second boom cylinders 8 and 9 is high pressure, and the weight of the working unit 4 in one second boom cylinder 9 In the cantilever control for holding the pressure, the high pressure (about twice) is higher than that in the double control, so that the accumulator 59 stores pressure oil of high pressure that can cope with high load operation.
 さらに、ブーム下降側に操作された場合、制御装置27は、合流バルブ用電油変換弁53に作動信号を出力せず、これにより合流バルブ52は、合流油路16を閉じる閉位置Nに位置するように制御される。而して、アキュムレータ油路45から合流油路16を経由して圧油供給油路17に圧油供給されることなく、圧油供給油路17にはメインポンプ10の吐出油のみが供給されるようになっている。 Furthermore, when the boom lowering side is operated, the control device 27 does not output an operation signal to the merging valve electro-hydraulic conversion valve 53, whereby the merging valve 52 is positioned at the closed position N closing the merging oil passage 16. To be controlled. Thus, only the discharge oil of the main pump 10 is supplied to the pressure oil supply oil passage 17 without the pressure oil being supplied from the accumulator oil passage 45 to the pressure oil supply oil passage 17 via the merging oil passage 16. It has become so.
 さらに、ブーム下降側に操作された場合、制御装置27は、タンクチェック弁用電磁切換弁58に対し、OFF位置Nに位置するように制御する。これにより、タンクチェック弁56は、アキュムレータ用排出油路55を閉じる閉状態に保持されるようになっている。 Further, when the boom lowering side is operated, the control device 27 controls the tank check valve electromagnetic switching valve 58 to be positioned at the OFF position N. Thus, the tank check valve 56 is held in a closed state in which the accumulator discharge oil passage 55 is closed.
 ここで、作業部4の下降時には、前述したように、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aから排出された油がアキュムレータ59に蓄圧されることになるが、この場合に、アキュムレータ59から第一、第二ブームシリンダ8、9のヘッド側油室8a、9aへの逆流を防止するため、制御装置27は、第一、第二ヘッド側圧力センサ62、63から入力される第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2と、アキュムレータ圧力センサ64から入力されるアキュムレータ59の圧力Paとに基づいて、逆流防止制御を実行するように構成されている。該逆流防止制御は、両持ち制御時には、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2がアキュムレータ59の圧力Paよりも小さい場合に実行され、また、片持ち制御時には、第二ブームシリンダ9のヘッド側油室9aの圧力Ph2がアキュムレータ59の圧力Paよりも小さい場合に実行されるが、この場合、逆流防止制御における各弁の制御は、前述した両持ち制御および片持ち制御における各弁の制御に優先される。 Here, when the working unit 4 is lowered, as described above, the oil discharged from the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is accumulated in the accumulator 59. In this case, in order to prevent the backflow from the accumulator 59 to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9, the control device 27 controls the first and second head side pressure sensors 62 and 63. Backflow prevention control based on the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 input from the second embodiment and the pressure Pa of the accumulator 59 input from the accumulator pressure sensor 64 Is configured to perform. The backflow prevention control is executed when the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are smaller than the pressure Pa of the accumulator 59 at the time of double-end control, and At the time of cantilever control, it is executed when the pressure Ph2 of the head side oil chamber 9a of the second boom cylinder 9 is smaller than the pressure Pa of the accumulator 59. In this case, the control of each valve in the backflow prevention control is as described above. Priority is given to the control of each valve in the dual control and the cantilever control.
 前記逆流防止制御を実行する場合、制御装置27は、シリンダ側チェック弁用電磁切換弁48およびアキュムレータ側チェック弁用電磁切換弁51に対し、OFF位置Nに切換わるように制御信号を出力する。これにより、シリンダ側チェック弁46およびアキュムレータ側チェック弁49は共に閉状態になって、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからアキュムレータ59への油の流れ、およびアキュムレータ59から第一、第二ブームシリンダ8、9のヘッド側油室8a、9aへの油の流れが共に阻止される。また、第一、第二電磁比例減圧弁35、36に対して、ブーム用操作レバーの操作量に対応したパイロット圧を出力するように制御信号が出力され、これにより第一、第二流量制御弁33、34は、ブーム用操作レバーの操作量に対応した開口面積になるように制御される。さらに、ヘッド側連通油路開閉弁39に対して、ヘッド側連通油路21を開く開位置Xに位置するように制御信号が出力されると共に、アンロード弁用電磁切換弁43に対してON位置Xに位置するように制御信号が出力され、これによりアンロード弁41は、ヘッド側排出油路40を開く開状態になる。そして、前記第一、第二流量制御弁33、34が開くと共に、ヘッド側連通油路21が開き、さらにヘッド側排出油路40が開くことによって、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからの排出油が、第一、第二流量弁33、34によって流量制御された状態で、油タンク12に流れるようになっている。 When the backflow prevention control is performed, the control device 27 outputs a control signal to switch to the OFF position N to the cylinder side check valve electromagnetic switching valve 48 and the accumulator side check valve electromagnetic switching valve 51. As a result, both the cylinder side check valve 46 and the accumulator side check valve 49 are closed, and the flow of oil from the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 to the accumulator 59, and The flow of oil from the accumulator 59 to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is both blocked. Also, a control signal is output to the first and second electromagnetic proportional pressure reducing valves 35 and 36 so as to output a pilot pressure corresponding to the operation amount of the boom control lever, whereby the first and second flow rate control are performed. The valves 33 and 34 are controlled to have an opening area corresponding to the amount of operation of the boom control lever. Further, a control signal is output to the head side communication oil path on-off valve 39 so that the head side communication oil path 21 is positioned at the open position X, and the unload valve electromagnetic switching valve 43 is turned on. A control signal is output so as to be located at the position X, whereby the unload valve 41 is in an open state in which the head side discharge oil passage 40 is opened. Then, the first and second flow control valves 33 and 34 are opened, the head side communication oil passage 21 is opened, and the head side discharge oil passage 40 is further opened. Exhaust oil from the head side oil chambers 8a and 9a flows to the oil tank 12 in a state where the flow rate is controlled by the first and second flow rate valves 33 and 34.
 つまり、作業部4の下降時において逆流防止制御が実行された場合には、閉状態のシリンダ側チェック弁46およびアキュムレータ側チェック弁49によって、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからアキュムレータ59への油の流れ、およびアキュムレータ59から第一、第二ブームシリンダ8、9のヘッド側油室8a、9aへの油の流れが阻止されると共に、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧油が、第一、第二流量制御弁33、24によって流量制御された状態で油タンク12に排出されるようになっている。
 尚、作業部4の下降時において両持ち制御が実行されているとき、前述した両持ち制御、片持ち制御の判断によって、第二ブームシリンダ9のヘッド側リリーフ圧Pr2と第二ブームシリンダ9のヘッド側油室9aの圧力Ph2との差圧が設定値C2以下の場合(Pr2-Ph2≦C2)を除き、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2の平均値とアキュムレータ59の圧力Paとの差圧が設定値C1よりも小さくなる({(Ph1+Ph2)/2}-Pa<C1)と、両持ち制御から片持ち制御に移行する。このため、両持ち制御時において前記逆流防止制御が実行される可能性があるのは、第二ブームシリンダ9のヘッド側リリーフ圧Pr2と第二ブームシリンダ9のヘッド側油室9aの圧力Ph2との差圧が設定値C2以下の場合だけとなる。
 また、本実施の形態において、第一、第二流量制御弁33、34が配される第一、第二ヘッド側油路19、20、ヘッド側連通油路21、ヘッド側連通油路開閉弁39、ヘッド側排出油路40、およびアンロード弁41は、本発明の第一、第二油圧シリンダのヘッド側油室からの排出油を第一、第二流量制御弁を経由して油タンクに流す開閉自在なタンク油路を構成する。つまり、本実施の形態では、両持ち制御、片持ち制御を行なう場合に用いるヘッド側連通油路21、ヘッド側連通油路開閉弁39、ヘッド側排出油路40、およびアンロード弁41をそのまま用いて、逆流防止制御を行なうときの開閉自在なタンク油路を形成しており、これによって、回路の簡略化が図られている。
That is, when the backflow prevention control is executed when the working unit 4 is lowered, the head side oil of the first and second boom cylinders 8 and 9 is detected by the cylinder side check valve 46 and the accumulator side check valve 49 in the closed state. The flow of oil from the chambers 8a, 9a to the accumulator 59 and the flow of oil from the accumulator 59 to the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 are blocked, The pressure oil in the head side oil chambers 8a and 9a of the two boom cylinders 8 and 9 is discharged to the oil tank 12 in a state where the flow rate is controlled by the first and second flow control valves 33 and 24.
When the both-end control is performed when the working unit 4 is lowered, the head-side relief pressure Pr2 of the second boom cylinder 9 and the second boom cylinder 9 are determined by the determination of the both-end control and the cantilever control described above. The pressure Ph1 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 except when the differential pressure with the pressure Ph2 of the head side oil chamber 9a is less than or equal to the set value C2 (Pr2-Ph2 ≦ C2) When the differential pressure between the average value of Ph2 and the pressure Pa of the accumulator 59 becomes smaller than the set value C1 ({(Ph1 + Ph2) / 2} -Pa <C1), the control shifts from the dual control to the cantilever control. Therefore, there is a possibility that the backflow prevention control may be executed at the time of double-end control, the head-side relief pressure Pr2 of the second boom cylinder 9 and the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 Only when the differential pressure is less than the set value C2.
Further, in the present embodiment, the first and second head side oil passages 19 and 20, the head side communication oil passage 21, the head side communication oil passage on-off valve in which the first and second flow control valves 33 and 34 are disposed. 39, the head side discharge oil passage 40, and the unload valve 41, oil discharged from the head side oil chamber of the first and second hydraulic cylinders of the present invention through the first and second flow control valves Constitute a freely openable and closable tank oil passage. That is, in the present embodiment, the head side communication oil passage 21, the head side communication oil passage on-off valve 39, the head side discharge oil passage 40, and the unloading valve 41 used when performing double-end control and cantilever control are used as they are. By using this, a freely openable and closable tank oil passage is formed when backflow prevention control is performed, thereby simplifying the circuit.
 次に、ブーム用操作レバーがブーム上昇側に操作された場合、つまり作業部4の上昇時における制御について説明すると、作業部4の上昇時には、前述したように、両持ち制御が実行されるようになっているため、ヘッド側連通油路開閉弁39は開位置Xに位置し、また、アンロード弁41は閉状態になるように制御される。 Next, when the boom control lever is operated to the boom raising side, that is, the control when the working unit 4 is lifted, as described above, when the working unit 4 is lifted, the both-end control is performed Therefore, the head side communication oil passage open / close valve 39 is positioned at the open position X, and the unload valve 41 is controlled to be in the closed state.
 さらに、ブーム上昇側に操作された場合、制御装置27は、上昇側電磁比例減圧弁25に対し、ブームシリンダ用コントロールバルブ18の上降側パイロットポート18aに、ブーム用操作レバーの操作量に対応したパイロット圧を出力するように制御信号を出力する。これによりブームシリンダ用コントロールバルブ18が上昇側位置Xに切換わり、而して、該上昇側位置Xのブームシリンダ用コントロールバルブ18を経由して、圧油供給油路17の圧油が第一、第二ブームシリンダ8のヘッド側油室8a、9aに供給されると共に、ロッド側油室8b、9bからの排出油が油タンク12に排出される。尚、後述するように、ブーム上昇側に操作された場合、圧油供給油路17には、メインポンプ10の吐出油だけでなく、アキュムレータ59の蓄圧油も供給されるようになっている。 Furthermore, when operated to the boom rising side, the control device 27 corresponds to the operation amount of the boom control lever at the upper and lower pilot ports 18 a of the boom cylinder control valve 18 with respect to the rising electromagnetic proportional pressure reducing valve 25. The control signal is output to output the pilot pressure. As a result, the boom cylinder control valve 18 is switched to the rising side position X, and the pressure oil in the pressure oil supply oil passage 17 is firstly transmitted via the boom cylinder control valve 18 at the rising side position X. The oil is supplied to the head side oil chambers 8 a and 9 a of the second boom cylinder 8 and the discharge oil from the rod side oil chambers 8 b and 9 b is discharged to the oil tank 12. As described later, not only the discharge oil of the main pump 10 but also the pressure-accumulated oil of the accumulator 59 is supplied to the pressure oil supply oil passage 17 when operated to the boom upward side.
 さらにこのとき、制御装置27は、第一、第二電磁比例減圧弁35、36に対してパイロット圧出力の制御信号を出力せず、これにより、第一、第二流量制御弁33、34は閉位置Nに位置するように制御される。また、前述したように、ヘッド側連通油路開閉弁39は開位置Xに位置し、また、アンロード弁41は閉状態になっている。而して、前記上昇側位置Xのブームシリンダ用コントロールバルブ18を経由して第一、第二ブームシリンダ8、9のヘッド側油室8a、9aに供給される圧油は、ヘッド側排出油路40を経由して油タンク12に流れることなく、ヘッド側メイン油路22、ヘッド側連通油路21、および第一、第二ヘッド側油路19、20の第一、第二チェック弁31、32を経由して、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aに至るようになっている。 Furthermore, at this time, the control device 27 does not output the control signal of the pilot pressure output to the first and second electromagnetic proportional pressure reducing valves 35, 36, whereby the first and second flow control valves 33, 34 It is controlled to be located at the closed position N. Further, as described above, the head side communication oil passage open / close valve 39 is located at the open position X, and the unload valve 41 is in the closed state. The pressure oil supplied to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 via the boom cylinder control valve 18 at the rising side position X is the head side discharge oil. The head side main oil passage 22, the head side communication oil passage 21, and the first and second check valves 31 of the first and second head side oil passages 19 and 20 without flowing into the oil tank 12 via the passage 40. , 32 to reach the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 respectively.
 さらに、ブーム上昇側に操作された場合、制御装置27は、シリンダ側チェック弁用電磁切換弁48およびアキュムレータ側チェック弁用電磁切換弁51を、OFF位置Nに位置するように制御する。これにより、シリンダ側チェック弁46およびアキュムレータ側チェック弁49は閉状態に保持され、而して、回収油路44とアキュムレータ油路45との間は遮断された状態になる。 Furthermore, when operated to the boom rising side, the control device 27 controls the cylinder side check valve electromagnetic switching valve 48 and the accumulator side check valve electromagnetic switching valve 51 to be positioned at the OFF position N. As a result, the cylinder side check valve 46 and the accumulator side check valve 49 are held in the closed state, and thus the state between the collection oil passage 44 and the accumulator oil passage 45 is shut off.
 さらに、ブーム上昇側に操作された場合、制御装置27は、合流バルブ用電油変換弁53に対して、合流バルブ52を開位置Xに切換えるよう作動信号を出力する。これにより合流バルブ52は、アキュムレータ油路45からメインポンプ10の吐出ライン15に至る合流油路16を開くが、その開口面積は、ブーム用操作レバーの操作量、およびアキュムレータ59の圧力Paとメインポンプ10の吐出圧Ppとの差圧に応じて制御される。而して、アキュムレータ59に蓄圧された圧油が、アキュムレータ油路45、合流油路16を経由してメインポンプ10の吐出ライン15に合流し、そして、前述したように、圧油供給油路17、上昇側位置Xのブームシリンダ用コントロールバルブ18を経由して、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aに供給されるようになっている。 Furthermore, when operated to the boom rising side, the control device 27 outputs an operation signal to the merging valve electro-hydraulic conversion valve 53 so as to switch the merging valve 52 to the open position X. Thereby, the merging valve 52 opens the merging oil passage 16 from the accumulator oil passage 45 to the discharge line 15 of the main pump 10, but the opening area thereof is the operation amount of the boom control lever and the pressure Pa of the accumulator 59 and the main It is controlled according to the differential pressure with the discharge pressure Pp of the pump 10. Then, the pressure oil accumulated in the accumulator 59 joins the discharge line 15 of the main pump 10 via the accumulator oil passage 45 and the joining oil passage 16 and, as described above, the pressure oil supply oil passage The head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are supplied via the boom cylinder control valve 18 at the rising position X17.
 さらに、ブーム上昇側に操作された場合、制御装置27は、メインポンプ流量制御用電磁比例減圧弁30に対して、流量制御信号圧Pcを出力するように制御信号を出力する。この場合、制御装置27は、メインポンプ10の吐出流量を、ブーム用操作レバーの操作量やポンプ出力に応じて要求されるポンプ流量から、前記アキュムレータ59からの合流量分を減じた流量にするべく、流量制御信号圧Pcの値を制御する。 Furthermore, when operated to the boom rising side, the control device 27 outputs a control signal to the main pump flow control electromagnetic proportional pressure reducing valve 30 so as to output the flow control signal pressure Pc. In this case, the control device 27 sets the discharge flow rate of the main pump 10 to a flow rate obtained by subtracting the merging amount from the accumulator 59 from the pump flow rate required according to the operation amount of the boom operation lever and the pump output. To control the value of the flow control signal pressure Pc.
 前記メインポンプ流量制御用電磁比例減圧弁30から出力された流量制御信号圧Pcは、シャトル弁29の他方の入力ポート29bに入力される。一方、シャトル弁29の一方の入力ポート29aにはネガティブコントロール信号圧Pnが入力されるが、アキュムレータ59からの供給圧油が吐出ライン15に合流している状態では、流量制御信号圧Pcの方がネガティブコントロール信号圧Pnよりもポンプ流量を少なくする信号圧、つまり、流量制御信号圧Pcの方がネガティブコントロール信号圧Pnよりも高圧になるから、該流量制御信号圧Pcがシャトル弁29により選択されて、メインポンプ10のレギュレータ13に入力される。而して、メインポンプ10の吐出流量は、アキュムレータ59からの合流量分だけ低減した流量となるように制御されることになる。 The flow control signal pressure Pc output from the main pump flow control electromagnetic proportional pressure reducing valve 30 is input to the other input port 29 b of the shuttle valve 29. On the other hand, the negative control signal pressure Pn is input to one input port 29a of the shuttle valve 29, but in the state where the supply pressure oil from the accumulator 59 joins the discharge line 15, the flow control signal pressure Pc is Is a signal pressure that makes the pump flow smaller than the negative control signal pressure Pn, that is, the flow control signal pressure Pc is higher than the negative control signal pressure Pn, so the flow control signal pressure Pc is selected by the shuttle valve 29 And is input to the regulator 13 of the main pump 10. Thus, the discharge flow rate of the main pump 10 is controlled to be a flow rate reduced by the amount of merging from the accumulator 59.
 つまり、作業部4の上昇時には、アキュムレータ59の蓄圧油が、合流油路16を経由してメインポンプ10の吐出油に合流し、該合流した圧油が上昇側位置Xのブームシリンダ用コントロールバルブ18を経由して第一、第二ブームシリンダ8、9のヘッド側油室8a、9aに供給される。さらにこのとき、メインポンプ10の吐出流量は、アキュムレータ59からの合流量分低減した流量となるように制御される。而して、作業部4の下降時にアキュムレータ59に回収された位置エネルギーを、作業部4の上昇時に再利用できると共に、その分メインポンプ10の吐出流量を低減することができるようになっている。 That is, when the working unit 4 ascends, the pressure-accumulated oil of the accumulator 59 joins with the discharge oil of the main pump 10 via the joining oil passage 16 and the joined pressure oil is the boom cylinder control valve at the rising position X It is supplied to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 via the line 18. Further, at this time, the discharge flow rate of the main pump 10 is controlled to be a flow rate reduced by the amount of merging from the accumulator 59. Thus, the potential energy collected by the accumulator 59 when the working unit 4 is lowered can be reused when the working unit 4 is raised, and the discharge flow rate of the main pump 10 can be reduced accordingly. .
 さらに、ブーム上昇側に操作された場合、制御装置27は、タンクチェック弁用電磁切換弁58に対し、OFF位置Nに位置するように制御する。これにより、タンクチェック弁56は、アキュムレータ用排出油路55を閉じる閉状態に保持されるようになっている。 Furthermore, when the boom raising side is operated, the control device 27 controls the tank check valve electromagnetic switching valve 58 to be positioned at the OFF position N. Thus, the tank check valve 56 is held in a closed state in which the accumulator discharge oil passage 55 is closed.
 次いで、制御装置27の行なうアキュムレータ排出制御について説明する。
 制御装置27は、図示しないアキュムレータ排出用操作スイッチをオペレータが操作したとき、或いはエンジンEを停止操作したとき、所定時間のあいだ、タンクチェック弁用電磁切換弁58をON位置Xに切換える。これにより、タンクチェック弁56は、アキュムレータ用排出油路55を開く開状態になり、而して、アキュムレータ59の蓄圧油が、アキュムレータ用排出油路55を経由して油タンク12に排出される。つまり、アキュムレータ排出用操作スイッチを操作する、或いはエンジンEを停止操作すると、自動的にアキュムレータ59の蓄圧油が油タンク12に排出されて、長期保管に適した状態になり、而して、油圧ショベル1を長時間使用しない場合であっても、アキュムレータ59に油が蓄圧されたまま長期間放置されてアキュムレータ59のガス量が減少してしまうような不具合を、確実に回避できるようになっている。
Next, accumulator discharge control performed by the control device 27 will be described.
The controller 27 switches the tank check valve electromagnetic switching valve 58 to the ON position X for a predetermined time when the operator operates an accumulator discharge operation switch (not shown) or when the engine E is stopped. As a result, the tank check valve 56 is opened to open the accumulator discharge oil passage 55, and the accumulated oil of the accumulator 59 is discharged to the oil tank 12 via the accumulator discharge oil passage 55. . That is, when the accumulator discharging operation switch is operated or the engine E is stopped, the accumulated oil of the accumulator 59 is automatically drained to the oil tank 12 to be in a state suitable for long-term storage. Even when the shovel 1 is not used for a long time, it is possible to reliably avoid such a problem that the accumulator 59 is left for a long time with oil accumulated in the accumulator 59 for a long time and the gas amount of the accumulator 59 decreases. There is.
 さらに、制御装置27は、エンジンEを停止操作したとき、所定時間のあいだ、シリンダ側チェック弁用電磁切換弁48、アキュムレータ側チェック弁用電磁切換弁51、およびタンクチェック弁用電磁切換弁58をON位置Xに切換えると共に、ブーム用操作レバーの下降側操作に基づいて第一、第二流量制御弁33、34を開位置Xに切換ることができるように、第一、第二電磁比例減圧弁35、36を制御する。而して、ブーム用操作レバーの下降側操作に基づいて、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの油を、回収油路44、アキュムレータ油路45、アキュムレータ用排出油路を経由して油タンク12に流すことができ、これにより、エンジンEの停止操作後であっても、所定時間のあいだは、ブーム用操作レバーの下降側操作に基づいて作業部4を下降させることができるようになっている。 Further, when the engine E is stopped, the controller 27 controls the cylinder side check valve electromagnetic switching valve 48, the accumulator side check valve electromagnetic switching valve 51, and the tank check valve electromagnetic switching valve 58 for a predetermined time. The first and second proportional proportional pressure reductions are made so that the first and second flow control valves 33, 34 can be switched to the open position X based on the downward operation of the boom control lever while switching to the ON position X Control the valves 35, 36. Thus, based on the downward operation of the boom control lever, the oil of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is collected into the recovery oil passage 44, the accumulator oil passage 45, and the accumulator. It is possible to flow to the oil tank 12 via the discharge oil passage, whereby the working unit 4 is operated based on the descent side operation of the boom control lever for a predetermined time even after the stop operation of the engine E. Can be lowered.
 叙述の如く構成された本形態において、油圧ショベル1の作業部4は、該作業部4を構成するブーム5の昇降に伴って昇降すると共に、該ブーム5の昇降は、一対の第一、第二ブームシリンダ8、9の伸縮作動に基づいて行なわれることになるが、油圧ショベル1の油圧制御システムには、前記一対の第一、第二ブームシリンダ8、9のうち一方の第一ブームシリンダ8のヘッド側油室8aの圧油を油タンク12に流す開閉自在なアンロード油路(第一ヘッド側油路19、第一流量制御弁33、ヘッド側排出油路40、およびアンロード弁41によって構成される)と、該アンロード油路の開閉制御を行なう制御装置27とが設けられており、そして、該アンロード油路が閉じている状態では、第一および第二ブームシリンダ8、9のヘッド側室8a、9aの圧力で作業部4の重量を保持する一方、アンロード油路が開いている状態(第一流量制御弁33の開口面積が最大で、且つ、アンロード弁41が開状態のとき)では、第二ブームシリンダ9のヘッド側油室9aの圧力で作業部4の重量を保持することになると共に、作業部4の下降時に作業部4の重量を保持する第一および第二ブームシリンダ8、9のヘッド側油室8a、9a、或いは第二ブームシリンダ9のヘッド側油室9aから排出された油は、アキュムレータ59に蓄圧されることになる。 In the present embodiment configured as described above, the working unit 4 of the hydraulic shovel 1 ascends and descends as the boom 5 constituting the working unit 4 moves up and down. The hydraulic control system of the hydraulic shovel 1 includes the first boom cylinder of one of the pair of first and second boom cylinders 8 and 9 although the expansion control of the second boom cylinders 8 and 9 is performed. An open / close unload oil passage (first head side oil passage 19, first flow control valve 33, head side discharge oil passage 40, and unload valve) for flowing pressure oil of the head side oil chamber 8 a into the oil tank 12 41 and a controller 27 for controlling the opening and closing of the unloading oil passage, and in the state where the unloading oil passage is closed, the first and second boom cylinders 8 are provided. , 9 heads While the weight of the working unit 4 is held by the pressure of the side chambers 8a and 9a, the unloading oil passage is open (the opening area of the first flow control valve 33 is maximum and the unloading valve 41 is open) In this case, the pressure of the head side oil chamber 9a of the second boom cylinder 9 holds the weight of the working unit 4 and the first and second of holding the weight of the working unit 4 when the working unit 4 is lowered. The oil discharged from the head side oil chambers 8a, 9a of the boom cylinders 8, 9 or the head side oil chamber 9a of the second boom cylinder 9 is accumulated in the accumulator 59.
 而して、作業部4の下降時に、アンロード油路を開いて第一ブームシリンダ8のヘッド側油室8aの圧油を油タンク12に流すことで、作業部4の重量は第二ブームシリンダ9のヘッド側油室9aの圧力で保持されると共に、該第二ブームシリンダ9のヘッド側油室9aからの排出油がアキュムレータ59に蓄圧されることになるが、この場合、第二ブームシリンダ9のヘッド側油室9aの圧力、つまり作業部4の重量を保持する保持圧は、第一および第二の両方のブームシリンダ8、9で作業部4の重量を保持する場合の保持圧に対して倍増するから、アキュムレータ59には、高負荷作業にも対応できる高圧の圧油が蓄圧されることになる。 Thus, when the working unit 4 is lowered, the unloading oil passage is opened and the pressure oil of the head side oil chamber 8a of the first boom cylinder 8 flows to the oil tank 12, whereby the weight of the working unit 4 is the second boom The oil is held by the pressure of the head side oil chamber 9a of the cylinder 9, and the oil discharged from the head side oil chamber 9a of the second boom cylinder 9 is accumulated in the accumulator 59. In this case, the second boom The pressure of the head side oil chamber 9a of the cylinder 9, that is, the holding pressure for holding the weight of the working unit 4 is the holding pressure when the weight of the working unit 4 is held by both the first and second boom cylinders 8,9. Therefore, the accumulator 59 is charged with high pressure oil which can cope with high load operation.
 この結果、アキュムレータ59に、掘削作業や持上げ旋回等の高負荷作業時にも対応できる高圧の圧油を蓄圧できることになり、よって、アキュムレータ59の蓄圧油を、別途増圧することなくそのまま用いて様々な作業に利用できることになる。而して、エンジン動力で駆動するポンプを用いてアキュムレータの蓄圧油を増圧する場合のように、エンジンからポンプへの動力伝達経路におけるトルク低下やポンプ自体の慣性質量などによる空転トルクの損失等がなく、アキュムレータ59に回収した作業部4の位置エネルギーを可及的に損失の少ない状態で利用できると共に、コスト削減にも大きく貢献できる。 As a result, the accumulator 59 can store high-pressure hydraulic oil that can cope with high-load operations such as digging work and lifting and turning, so that the pressure-accumulated oil of the accumulator 59 can be used as it is without separately boosting pressure. It will be available for work. Thus, as in the case of increasing the pressure-accumulated oil of the accumulator using a pump driven by the engine power, the torque reduction in the power transmission path from the engine to the pump, the loss of idling torque due to the inertia mass of the pump itself, etc. In addition, the potential energy of the working unit 4 collected in the accumulator 59 can be used with as little loss as possible, and can greatly contribute to cost reduction.
 さらに、油圧ショベル1の油圧制御システムには、第一、第二ブームシリンダ8、9のヘッド側油室8a、9a同士を連通するヘッド側連通油路21と、該ヘッド側連通油路21を開閉するべく制御装置27により制御されるヘッド側連通油路開閉弁39とが設けられていると共に、該ヘッド側連通油路開閉弁39は、アンロード油路が閉じている状態ではヘッド側連通油路21を開く一方、アンロード油路が開いている状態ではヘッド側連通油路21を閉じるように制御されることになる。而して、アンロード油路が閉じている状態、つまり、第一および第二の両方のブームシリンダ8、9のヘッド側油室8a、9aで作業部4の重量を保持する両持ち制御が実行されている状態では、両ヘッド側油室8a、9a同士が連通状態になって、一対の第一および第二ブームシリンダ8、9でバランス良く作業部4を支持できる一方、アンロード油路が開いている状態、つまり、第二ブームシリンダ9のヘッド側油室9aで作業部4の重量を保持する片持ち制御が実施されている状態では、該第二ブームシリンダ9のヘッド側油室9aと第一ブームシリンダ8のヘッド側油室8aとを遮断できることになる。 Further, in the hydraulic control system of the hydraulic shovel 1, a head side communication oil passage 21 communicating the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 with each other, and the head side communication oil passage 21 A head side communication oil passage open / close valve 39 controlled by the control device 27 for opening and closing is provided, and the head side communication oil passage on / off valve 39 is in a state where the unloading oil passage is closed. While the oil passage 21 is opened, the head side communicating oil passage 21 is controlled to be closed when the unloading oil passage is open. Thus, in the state where the unloading oil passage is closed, that is, both-end control for holding the weight of the working unit 4 in the head side oil chambers 8a and 9a of both the first and second boom cylinders 8 and 9 is performed. In the state of being executed, both head side oil chambers 8a and 9a are in communication with each other, and the work unit 4 can be supported in a well-balanced manner by the pair of first and second boom cylinders 8 and 9, while the unloading oil passage In the open state, that is, in the state where cantilever control for holding the weight of the working unit 4 in the head side oil chamber 9a of the second boom cylinder 9 is performed, the head side oil chamber of the second boom cylinder 9 Thus, it is possible to shut off the head oil chamber 8a of the first boom cylinder 8 from the head cylinder 9a.
 また、アンロード油路を開く、つまり、片持ち制御が実行されるのは、アキュムレータ59への蓄圧を行なう作業部4の下降時であって、作業部4の昇降停止時および上昇時には、アンロード油路を閉じる、つまり、両持ち制御が実行される構成になっているから、アキュムレータ59への蓄圧を行なう場合以外のときに、第一ブームシリンダ8のヘッド側油室8aの圧油を油タンク12に流してしまう損失をなくすことができると共に、作業部4を上昇させる場合に力不足になったりバランスが損なわれたりする惧れもない。 Further, the unloading oil passage is opened, that is, the cantilever control is executed when the working unit 4 for accumulating pressure in the accumulator 59 descends, and when the working unit 4 is stopped moving up and down, and when lifting Since the load oil passage is closed, that is, both-end control is executed, the pressure oil in the head side oil chamber 8a of the first boom cylinder 8 is used except when accumulating pressure in the accumulator 59. The loss flowing to the oil tank 12 can be eliminated, and there is no fear that the power will be insufficient or the balance will be lost when the working unit 4 is raised.
 さらにこのものでは、作業部4の下降時であっても、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2の平均値とアキュムレータ59の圧力Paとの差圧が設定値C1以上の場合({(Ph1+Ph2)/2}-Pa≧C1)には、アンロード油路を閉じる、つまり、両持ち制御が実行されると共に、第一および第二ブームシリンダ8、9のヘッド側油室8a、9aからの排出油がアキュムレータ59に蓄圧されることになる。而して、第一および第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2がアキュムレータ59の圧力Paに対して高圧であって、両持ち制御でもアキュムレータ59に蓄圧できる場合には、片持ち制御は実行されないことになり、これにより、アンロード油路が開くことで第一ブームシリンダ8のヘッド側油室8aの圧油を油タンク12に流してしまう損失を、低減させることができる。 Furthermore, in this device, even when the working unit 4 is lowered, the average value of the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 and the pressure Pa of the accumulator 59 When the differential pressure is equal to or greater than the set value C1 ({(Ph1 + Ph2) / 2} -Pa ≧ C1), the unload oil passage is closed, that is, both-hand control is performed, and the first and second boom cylinders The oil discharged from the head side oil chambers 8 a and 9 a of 8 and 9 is accumulated in the accumulator 59. Thus, the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are higher than the pressure Pa of the accumulator 59, and can be accumulated in the accumulator 59 even by double control. In this case, the cantilever control will not be executed, which causes the pressure oil in the head side oil chamber 8a of the first boom cylinder 8 to flow to the oil tank 12 when the unloading oil passage is opened. It can be reduced.
 さらにまたこのものでは、作業部4の下降時であっても、第二ブームシリンダ9のヘッド側リリーフ圧Pr2と第二ブームシリンダ9のヘッド側油室9aの圧力Ph2との差圧が設定値C2以下の場合(Pr2-Ph2≦C2)には、アンロード油路を閉じる、つまり、両持ち制御が実行されることになる。これにより、第二ブームシリンダ9のヘッド側油室9aの圧力Ph2が上昇しすぎて第二リリーフ弁38が不用意に作動してしまうことを防止することができ、而して、第二リリーフ弁38が作動して第二ブームシリンダ9のヘッド側油室9aからの排出油が油タンク12に流れてしまう損失をなくすことができる。 Furthermore, in this case, even when the working unit 4 is lowered, the differential pressure between the head-side relief pressure Pr2 of the second boom cylinder 9 and the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 is a set value In the case of C2 or less (Pr2-Ph2 ≦ C2), the unload oil passage is closed, that is, both-end control is performed. As a result, the pressure Ph2 of the head-side oil chamber 9a of the second boom cylinder 9 can be prevented from rising excessively and the second relief valve 38 can be prevented from inadvertently operating. It is possible to eliminate the loss that the oil discharged from the head side oil chamber 9 a of the second boom cylinder 9 flows to the oil tank 12 by operating the valve 38.
 また、油圧ショベル1の油圧制御システムには、作業部4の下降時に第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからの排出流量を制御する第一、第二流量制御弁33、34が設けられており、該第一、第二流量制御弁33、34によって、両持ち制御時、或いは片持ち制御時における作業部4の下降速度を制御することができる。 Further, in the hydraulic control system of the hydraulic shovel 1, the first and second flow rate control for controlling the discharge flow rate from the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 when the working unit 4 descends. Valves 33 and 34 are provided, and the lowering speed of the working unit 4 can be controlled by the first and second flow control valves 33 and 34 at the time of double control or cantilever control.
 さらに、油圧ショベル1の油圧制御システムには、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからアキュムレータ59への油の流れを阻止することができるシリンダ側チェック弁46と、アキュムレータ59から第一、第二ブームシリンダ8、9のヘッド側油室8a、9aへの油の流れを阻止することができるアキュムレータ側チェック弁49とが設けられているから、これらシリンダ側チェック弁46とアキュムレータ側チェック弁49とによって、作業部4の昇降停止時に、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧油がアキュムレータ59に流出したり、或いはアキュムレータ59の蓄圧油が第一、第二ブームシリンダ8、9のヘッド側油室8a、9aに供給されてしまうような不具合を、確実に回避できる。 Further, the hydraulic control system of the hydraulic shovel 1 includes a cylinder side check valve 46 capable of blocking the flow of oil from the head side oil chambers 8 a and 9 a of the first and second boom cylinders 8 and 9 to the accumulator 59. Because an accumulator side check valve 49 capable of blocking the flow of oil from the accumulator 59 to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 is provided, these cylinder side checks The pressure oil of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 flows out to the accumulator 59 when the elevation of the working unit 4 is stopped by the valve 46 and the accumulator side check valve 49, or The problem is confirmed that 59 stored pressure oil is supplied to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9, respectively. It can be avoided.
 さらに、作業部4の下降時において、両持ち制御時には第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2がアキュムレータ59の圧力Paよりも小さい場合に、また、片持ち制御時には第二ブームシリンダ9のヘッド側油室9aの圧力Ph2がアキュムレータ59の圧力Paがよりも小さい場合には、逆流防止制御が実行される。つまり、前記シリンダ側チェック弁46とアキュムレータ側チェック弁49とによって、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからアキュムレータ59への油の流れ、およびアキュムレータ59から第一、第二ブームシリンダ8、9のヘッド側油室8a、9aへの油の流れが阻止されると共に、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aからの排出油が第一、第二流量制御弁33、34によって流量制御された状態で油タンク12に流れることになる。而して、作業部4の下降時に、第一、第二ブームシリンダ8、9のヘッド側油室8a、9aの圧力Ph1、Ph2が過渡的にアキュムレータ59の圧力Paより小さくなっても、アキュムレータ59から第一、第二ブームシリンダ8、9のヘッド側油室8a、9aへ圧油が逆流してしまうことを確実に防止することができると共に、この場合であっても、第一、第二流量制御弁33、34に速度制御された状態で、作業部4を下降させることができる。 Furthermore, when the working unit 4 descends, when the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are smaller than the pressure Pa of the accumulator 59 at the time of double control, When the pressure Ph2 of the head side oil chamber 9a of the second boom cylinder 9 is smaller than the pressure Pa of the accumulator 59 at the time of the cantilever control, the backflow prevention control is executed. That is, by the cylinder side check valve 46 and the accumulator side check valve 49, the flow of oil from the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 to the accumulator 59, and , The flow of oil to the head side oil chambers 8a, 9a of the second boom cylinders 8, 9 is blocked, and the oil discharged from the head side oil chambers 8a, 9a of the first and second boom cylinders 8, 9 is It flows to the oil tank 12 in a state in which the flow rate is controlled by the first and second flow control valves 33 and 34. Even when the pressures Ph1 and Ph2 of the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 transiently become smaller than the pressure Pa of the accumulator 59 when the working unit 4 is lowered, the accumulator The pressure oil can be reliably prevented from backflowing from 59 to the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9, and even in this case, the first, The working unit 4 can be lowered with the speed controlled by the two flow control valves 33 and 34.
 尚、本発明は上記実施の形態に限定されないことは勿論であって、上記実施の形態では、アキュムレータ59の蓄圧油を、合流油路16を介してメインポンプ10の吐出ライン15に合流させて、作業部4の上昇時に第一、第二ブームシリンダ8、9のヘッド側油室8a、9aに供給する構成になっているが、これに限定されることなく、例えば、アキュムレータ59の蓄圧油を、作業機械に設けられる他の複数の油圧アクチュエータ(作業機械が油圧ショベルの場合には、走行モータ、旋回モータ、アームシリンダ、バケットシリンダ等)への供給圧油として用いることもできる。この場合には、作業部4の下降時に回収された位置エネルギーを、他の油圧アクチュエータの動作にも利用できることになる。
 さらに、本発明は、油圧ショベルだけでなく、作業部を昇降せしめる一対の油圧シリンダが設けられた各種作業機械の油圧制御システムに実施することができる。
 また、図2の油圧回路図では、複数の油圧アクチュエータに圧油供給する油圧ポンプとして一つのメインポンプを示したが、二つ以上のメインポンプが設けられていても良いことは勿論である。
The present invention is, of course, not limited to the above-described embodiment, and in the above-described embodiment, the pressure-accumulated oil of the accumulator 59 is merged with the discharge line 15 of the main pump 10 via the merging oil passage 16 The configuration is such that the head side oil chambers 8a and 9a of the first and second boom cylinders 8 and 9 are supplied when the working unit 4 ascends, but the invention is not limited thereto. Can also be used as supply pressure oil to a plurality of other hydraulic actuators provided in the work machine (in the case where the work machine is a hydraulic shovel, a traveling motor, a swing motor, an arm cylinder, a bucket cylinder, etc.). In this case, the potential energy recovered when the working unit 4 is lowered can be used for the operation of other hydraulic actuators.
Furthermore, the present invention can be applied not only to hydraulic excavators, but also to hydraulic control systems of various working machines provided with a pair of hydraulic cylinders that raise and lower the working unit.
Further, in the hydraulic circuit diagram of FIG. 2, one main pump is shown as a hydraulic pump for supplying pressure oil to a plurality of hydraulic actuators, but it goes without saying that two or more main pumps may be provided.
本発明は、昇降自在な作業部を備えた作業機械において、作業部の有する位置エネルギーを回収、再利用することができる作業機械における油圧制御システムの技術分野に関するものであり、本発明のごとく構成することにより、作業部の下降時に、アンロード油路を開いて第一油圧シリンダのヘッド側油室の圧油を油タンクに流すことで、アキュムレータには、高負荷作業にも対応できる高圧の圧油が蓄圧されることになり、アキュムレータの蓄圧油を、別途増圧することなくそのまま用いて様々な作業に利用できることになる。しかも、アキュムレータに回収した作業部の位置エネルギーを可及的に損失の少ない状態で利用できると共に、コスト削減にも大きく貢献できる。また、アキュムレータへの蓄圧を行なう作業部の下降時以外のときに、第一油圧シリンダのヘッド側油室の圧油を油タンクに流してしまう損失をなくすことができ、作業部を上昇させる場合に力不足になったりバランスが損なわれたりする惧れもないという産業上の利用可能性がある。 The present invention relates to the technical field of a hydraulic control system in a working machine capable of recovering and reusing potential energy of the working unit in a working machine provided with a vertically movable working unit, and configured as in the present invention By opening the unloading oil passage and letting the pressure oil in the head-side oil chamber of the first hydraulic cylinder flow to the oil tank by lowering the working part, the accumulator can be used for high-load operations. The pressure oil is accumulated, and the pressure accumulation oil of the accumulator can be used for various operations without using additional pressure increase. In addition, the potential energy of the working unit collected in the accumulator can be used with as little loss as possible, and can greatly contribute to cost reduction. In addition, it is possible to eliminate the loss that the pressure oil in the head-side oil chamber of the first hydraulic cylinder flows to the oil tank except at the time of descent of the working unit for accumulating pressure in the accumulator. In the industry, there is a possibility that there is no fear of losing power or losing balance.
 4   作業部
 8   第一ブームシリンダ
 8a  第一ブームシリンダヘッド側油室
 9   第二ブームシリンダ
 9a  第二ブームシリンダヘッド側油室
 12  油タンク
 19  第一ヘッド側油路
 21  ヘッド側連通油路
 27  制御装置
 33  第一流量制御弁
 34  第二流量制御弁
 38  第二リリーフ弁
 39  ヘッド側連通油路開閉弁
 40  ヘッド側排出油路
 41  アンロード弁
 46  シリンダ側チェック弁
 49  アキュムレータ側チェック弁
 59  アキュムレータ
 62  第一ヘッド側圧力センサ
 63  第二ヘッド側圧力センサ
 64  アキュムレータ圧力センサ
4 Working part 8 First boom cylinder 8a First boom cylinder head side oil chamber 9 Second boom cylinder 9a Second boom cylinder head side oil chamber 12 Oil tank 19 First head side oil passage 21 Head side communicating oil passage 27 Control device 33 1st flow control valve 34 2nd flow control valve 38 2nd relief valve 39 head side communication oil path on-off valve 40 head side discharge oil path 41 unload valve 46 cylinder side check valve 49 accumulator side check valve 59 accumulator 62 first Head side pressure sensor 63 Second head side pressure sensor 64 Accumulator pressure sensor

Claims (8)

  1.  昇降自在な作業部と、該作業部を昇降せしめる一対の第一、第二油圧シリンダを備えてなる作業機械の油圧制御システムにおいて、該油圧制御システムに、第一油圧シリンダのヘッド側油室の圧油を油タンクに流す開閉自在なアンロード油路と、該アンロード油路の開閉制御を行なう制御装置とを設け、アンロード油路が閉じている状態では第一および第二油圧シリンダのヘッド側油室の圧力で作業部の重量を保持する一方、アンロード油路が開いている状態では第二油圧シリンダのヘッド側油室の圧力で作業部の重量を保持する構成にすると共に、作業部の下降時に重量を保持する第一および第二、或いは第二油圧シリンダのヘッド側油室からの排出油を蓄圧するアキュムレータを設けたことを特徴とする作業機械における油圧制御システム。 In a hydraulic control system of a working machine comprising a vertically movable work unit and a pair of first and second hydraulic cylinders that raise and lower the work unit, the hydraulic control system includes a head side oil chamber of the first hydraulic cylinder. A unloadable oil passage that allows pressure oil to flow to the oil tank and a control device that controls the opening and closing of the unload oil passage are provided, and when the unload oil passage is closed, the first and second hydraulic cylinders While the weight of the working unit is held by the pressure of the head side oil chamber, the weight of the working unit is held by the pressure of the head side oil chamber of the second hydraulic cylinder while the unloading oil passage is open. An oil pressure control system in a working machine characterized by comprising an accumulator for accumulating oil discharged from a head side oil chamber of a first and second or second hydraulic cylinder for holding weight when the working part is lowered. Beam.
  2.  油圧制御システムに、第一、第二油圧シリンダのヘッド側油室同士を連通するヘッド側連通油路と、該ヘッド側連通油路を開閉するべく制御装置により制御されるヘッド側連通油路開閉弁とを設けると共に、制御装置は、前記ヘッド側連通油路開閉弁を、アンロード油路が閉じている状態ではヘッド側連通油路を開く一方、アンロード油路が開いている状態ではヘッド側連通油路を閉じるように制御することを特徴とする請求項1に記載の作業機械における油圧制御システム。 In the hydraulic control system, a head side communication oil passage communicating head side oil chambers of the first and second hydraulic cylinders, and a head side communication oil passage opened and closed by the control device to open and close the head communication passage. The control device is provided with a valve, and the controller opens the head side communication oil passage when the head side communication oil passage opening / closing valve is closed, and the head when the unloading oil passage is open. The hydraulic control system in a working machine according to claim 1, wherein control is performed to close the side communication oil passage.
  3.  制御装置は、作業部の下降時にはアンロード油路を開き、作業部の昇降停止時および上昇時にはアンロード油路を閉じるように制御することを特徴とする請求項1または2に記載の作業機械における油圧制御システム。 The work machine according to claim 1 or 2, wherein the control device controls to open the unloading oil passage when the working unit descends and close the unloading oil passage when the elevation of the working unit is stopped and rising. Hydraulic control system in the.
  4.  油圧制御システムに、アキュムレータの圧力を検出するアキュムレータ圧力検出手段と、第一、第二油圧シリンダのヘッド側油室の圧力をそれぞれ検出する第一、第二ヘッド側圧力検出手段とを設けると共に、制御装置は、作業部の下降時であっても、第一、第二油圧シリンダのヘッド側油室の圧力の平均値とアキュムレータの圧力との差圧が予め設定される設定値以上の場合には、アンロード油路を閉じるように制御することを特徴とする請求項3に記載の作業機械における油圧制御システム。 The hydraulic control system is provided with accumulator pressure detection means for detecting the pressure of the accumulator, and first and second head side pressure detection means for detecting the pressure of the head side oil chambers of the first and second hydraulic cylinders, respectively. Even when the working unit is lowered, the control device is configured to set the differential pressure between the average pressure of the head side oil chambers of the first and second hydraulic cylinders and the pressure of the accumulator to a preset value or more. The hydraulic control system in a working machine according to claim 3, wherein the control is performed to close the unloading oil passage.
  5.  油圧制御システムに、第二油圧シリンダのヘッド側油室の圧力を検出する第二ヘッド側圧力検出手段と、第二油圧シリンダのヘッド側リリーフ圧を設定する第二リリーフ弁とを設けると共に、制御装置は、作業部の下降時であっても、第二油圧シリンダのヘッド側リリーフ圧と第二油圧シリンダのヘッド側油室の圧力との差圧が予め設定される設定値以下の場合には、アンロード油路を閉じるように制御することを特徴とする請求項3または4に記載の作業機械における油圧制御システム。 The hydraulic control system is provided with second head pressure detection means for detecting the pressure in the head oil chamber of the second hydraulic cylinder, and a second relief valve for setting the head relief pressure of the second hydraulic cylinder, and control In the device, even when the working unit is lowered, the differential pressure between the head-side relief pressure of the second hydraulic cylinder and the pressure of the head-side oil chamber of the second hydraulic cylinder is equal to or less than a preset value set in advance. The hydraulic control system in a working machine according to claim 3 or 4, wherein control is performed to close the unloading oil passage.
  6.  油圧制御システムに、作業部の下降時に第一、第二油圧シリンダのヘッド側油室からの排出流量をそれぞれ制御する第一、第二流量制御弁を設けたことを特徴とする請求項1乃至5の何れか一項に記載の作業機械における油圧制御システム。 The hydraulic control system is provided with a first flow control valve and a second flow control valve for controlling the discharge flow rate from the head side oil chamber of the first and second hydraulic cylinders at the time of lowering of the working unit. The hydraulic control system in the working machine according to any one of 5.
  7.  油圧制御システムに、第一、第二油圧シリンダのヘッド側油室からアキュムレータへの油の流れ、およびアキュムレータから第一、第二油圧シリンダのヘッド側油室への油の流れを阻止することができる弁手段を設けたことを特徴とする請求項1乃至6の何れか一項に記載の作業機械における油圧制御システム。 In the hydraulic control system, blocking the flow of oil from the head side oil chamber of the first and second hydraulic cylinders to the accumulator and the flow of oil from the accumulator to the head side oil chamber of the first and second hydraulic cylinders A hydraulic control system in a working machine according to any one of claims 1 to 6, characterized in that a valve means is provided.
  8.  油圧制御システムに、アキュムレータの圧力を検出するアキュムレータ圧力検出手段と、第一、第二油圧シリンダのヘッド側油室の圧力をそれぞれ検出する第一、第二ヘッド側圧力検出手段と、第一、第二油圧シリンダのヘッド側油室からの排出油を第一、第二流量制御弁を経由して油タンクに流す開閉自在なタンク油路と、第一、第二油圧シリンダのヘッド側油室からアキュムレータへの油の流れ、およびアキュムレータから第一、第二油圧シリンダのヘッド側油室への油の流れを阻止することができる弁手段とを設けると共に、制御装置は、作業部の下降時に、重量を保持する第一および第二、或いは第二油圧シリンダのヘッド側油室の圧力がアキュムレータの圧力よりも小さい場合に、前記弁手段により第一、第二油圧シリンダのヘッド側油室からアキュムレータへの油の流れ、およびアキュムレータから第一、第二油圧シリンダのヘッド側油室への油の流れを阻止すると共に、前記タンク油路を開いて、第一、第二油圧シリンダのヘッド側油室の圧油を第一、第二流量制御弁を経由して油タンクに流すことを特徴とする請求項6に記載の作業機械における油圧制御システム。 The hydraulic control system includes: accumulator pressure detection means for detecting the pressure of the accumulator; first and second head side pressure detection means for respectively detecting the pressure of the head side oil chambers of the first and second hydraulic cylinders; An openable / closable tank oil passage for flowing oil discharged from the head side oil chamber of the second hydraulic cylinder to the oil tank via the first and second flow control valves, and the head side oil chamber of the first and second hydraulic cylinders And the valve means capable of blocking the flow of oil from the accumulator to the accumulator and the flow of oil from the accumulator to the head side oil chambers of the first and second hydraulic cylinders, and the control device , When the pressure in the head side oil chamber of the first and second or second hydraulic cylinders holding weight is smaller than the pressure of the accumulator, the valve means The oil flow from the fuel side oil chamber to the accumulator and the oil flow from the accumulator to the head side oil chambers of the first and second hydraulic cylinders are blocked, and the tank oil passage is opened to The hydraulic control system in a working machine according to claim 6, wherein the pressure oil in the head side oil chamber of the hydraulic cylinder is caused to flow to the oil tank via the first and second flow control valves.
PCT/JP2009/002412 2008-09-04 2009-06-01 Hydraulic control system in working machine WO2010026678A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008226653A JP2010060057A (en) 2008-09-04 2008-09-04 Hydraulic control system in working machine
JP2008-226653 2008-09-04

Publications (1)

Publication Number Publication Date
WO2010026678A1 true WO2010026678A1 (en) 2010-03-11

Family

ID=41796864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002412 WO2010026678A1 (en) 2008-09-04 2009-06-01 Hydraulic control system in working machine

Country Status (2)

Country Link
JP (1) JP2010060057A (en)
WO (1) WO2010026678A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092384A1 (en) * 2010-12-29 2012-07-05 Gravaton Energy Resources Ltd, Llc Thermal energy conversion system
CN103758805A (en) * 2013-12-27 2014-04-30 北京市三一重机有限公司 Main pushing hydraulic system and tube push bench
CN104033437A (en) * 2014-05-26 2014-09-10 浙江大学 Active proportional decompression valve
US9051944B2 (en) 2012-06-15 2015-06-09 Caterpillar Inc. Hydraulic system and control logic for collection and recovery of energy in a double actuator arrangement
WO2016169939A1 (en) * 2015-04-21 2016-10-27 Caterpillar Sarl Hydraulic circuit and working machine
CN110332163A (en) * 2019-07-25 2019-10-15 中国铁建重工集团股份有限公司 Hydraulic control system and scraper
WO2020119947A3 (en) * 2018-12-13 2020-07-23 Caterpillar Sarl Hydraulic control circuit for a construction machine
EP4224019A1 (en) * 2022-02-07 2023-08-09 Danfoss Scotland Limited Hydraulic apparatus and method for a vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6598292B2 (en) * 2015-07-08 2019-10-30 株式会社ササキコーポレーション Mower

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121893A (en) * 2006-11-14 2008-05-29 Husco Internatl Inc Energy recovery and reuse technique for hydraulic system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121893A (en) * 2006-11-14 2008-05-29 Husco Internatl Inc Energy recovery and reuse technique for hydraulic system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092384A1 (en) * 2010-12-29 2012-07-05 Gravaton Energy Resources Ltd, Llc Thermal energy conversion system
US9316125B2 (en) 2010-12-29 2016-04-19 Gravaton Energy Resources Ltd. LLC Thermal energy conversion system
US9051944B2 (en) 2012-06-15 2015-06-09 Caterpillar Inc. Hydraulic system and control logic for collection and recovery of energy in a double actuator arrangement
CN103758805A (en) * 2013-12-27 2014-04-30 北京市三一重机有限公司 Main pushing hydraulic system and tube push bench
CN103758805B (en) * 2013-12-27 2016-03-23 北京市三一重机有限公司 Main propulsion hydraulic system and push-bench
CN104033437A (en) * 2014-05-26 2014-09-10 浙江大学 Active proportional decompression valve
WO2016169939A1 (en) * 2015-04-21 2016-10-27 Caterpillar Sarl Hydraulic circuit and working machine
WO2020119947A3 (en) * 2018-12-13 2020-07-23 Caterpillar Sarl Hydraulic control circuit for a construction machine
CN113167056A (en) * 2018-12-13 2021-07-23 卡特彼勒Sarl Hydraulic control circuit for a work machine
CN113167056B (en) * 2018-12-13 2022-04-12 卡特彼勒Sarl Hydraulic control circuit for a work machine
DE112019005768B4 (en) 2018-12-13 2022-10-06 Caterpillar Sarl HYDRAULIC CONTROL CIRCUIT FOR A CONSTRUCTION MACHINE
US11629479B2 (en) 2018-12-13 2023-04-18 Caterpillar Sarl Hydraulic control circuit for a construction machine
CN110332163A (en) * 2019-07-25 2019-10-15 中国铁建重工集团股份有限公司 Hydraulic control system and scraper
CN110332163B (en) * 2019-07-25 2024-04-19 中国铁建重工集团股份有限公司 Hydraulic control system and scraper
EP4224019A1 (en) * 2022-02-07 2023-08-09 Danfoss Scotland Limited Hydraulic apparatus and method for a vehicle

Also Published As

Publication number Publication date
JP2010060057A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
WO2010026678A1 (en) Hydraulic control system in working machine
JP5354650B2 (en) Hydraulic control system for work machines
KR101879881B1 (en) Control circuit for energy regeneration and working machine
CN107949707B (en) Hydraulic drive device for working machine
JP2008014468A (en) Hydraulic control system in working machine
KR102258694B1 (en) construction machinery
US9932993B2 (en) System and method for hydraulic energy recovery
JP4291759B2 (en) Fluid pressure drive circuit
JP2011085198A (en) Hydraulic system for operating machine
US9290911B2 (en) Energy recovery system for hydraulic machine
US20140174069A1 (en) Hydraulic control system having swing motor energy recovery
JP2009150462A (en) Hydraulic control system for working machine
JP5246759B2 (en) Hydraulic control system for work machines
KR20170066074A (en) Hydraulic control apparatus and hydraulic control method for construction machine
WO2010026677A1 (en) Hydraulic control system in working machine
JP4753307B2 (en) Hydraulic control system for work machines
JP2008185182A (en) Hydraulic control system of working machine
JP2009270660A (en) Hydraulic control system for working machine
JP2008133914A (en) Hydraulic control system in working machine
JP4702894B2 (en) Hydraulic control system for hydraulic excavator
CN109963986B (en) Hydraulic drive device for working machine
JP2008185098A (en) Control system in working machine
JP4756600B2 (en) Hydraulic control system for work machines
JP2008185099A (en) Control system in working machine
JP4831679B2 (en) Hydraulic control system for work machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811208

Country of ref document: EP

Kind code of ref document: A1