WO2010026663A1 - Nonvolatile storage element and nonvolatile storage device - Google Patents

Nonvolatile storage element and nonvolatile storage device Download PDF

Info

Publication number
WO2010026663A1
WO2010026663A1 PCT/JP2008/066192 JP2008066192W WO2010026663A1 WO 2010026663 A1 WO2010026663 A1 WO 2010026663A1 JP 2008066192 W JP2008066192 W JP 2008066192W WO 2010026663 A1 WO2010026663 A1 WO 2010026663A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonvolatile memory
memory element
layer
recording layer
noble metal
Prior art date
Application number
PCT/JP2008/066192
Other languages
French (fr)
Japanese (ja)
Inventor
豪 山口
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2008/066192 priority Critical patent/WO2010026663A1/en
Publication of WO2010026663A1 publication Critical patent/WO2010026663A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/35Material including carbon, e.g. graphite, grapheme
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/55Structure including two electrodes, a memory active layer and at least two other layers which can be a passive or source or reservoir layer or a less doped memory active layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/75Array having a NAND structure comprising, for example, memory cells in series or memory elements in series, a memory element being a memory cell in parallel with an access transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only

Definitions

  • the present invention relates to a nonvolatile memory element and a nonvolatile memory device.
  • NAND flash memory and small HDD hard disk drive
  • a memory using a resistance change material having a low resistance state and a high resistance state has been proposed.
  • the resistance change material is caused to repeat the transition between the low resistance state and the high resistance state, the characteristics of the low resistance state and the high resistance state may vary. For this reason, it is desired to improve the stability of repeated operations.
  • Patent Document 1 discloses a memory element in which an intermediate layer made of HfO, ZnO, InZnO or ITO is formed on a lower electrode, a NiO layer is formed thereon, and a variable resistance material is formed thereon.
  • Patent Document 2 discloses a memory device having two layers containing Cu between two electrodes made of Pt, Ru, Ir, Au, Ag, Ti, or the like.
  • the present invention provides a non-volatile memory element and a non-volatile memory device having good processability, high accuracy, and high repetitive operation stability.
  • the first layer having conductivity, the second layer having conductivity, the first layer and the second layer are provided between the high resistance state and the low resistance state.
  • a nonvolatile memory element comprising at least one of carbides and containing a first noble metal.
  • the non-volatile memory element at least one of application of a voltage to the recording layer of the non-volatile memory element and energization of a current to the recording layer.
  • a non-volatile memory device comprising: a drive unit that records information by causing the recording layer to transition between the high resistance state and the low resistance state.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a first embodiment of the invention.
  • 1 is a schematic view illustrating the configuration of a main part of a nonvolatile memory device to which a nonvolatile memory element according to a first embodiment of the invention is applied.
  • FIG. 6 is a graph illustrating characteristics of the nonvolatile memory element according to the first embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a modification according to the first embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a second embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a third embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the third embodiment of the invention.
  • FIG. 9 is a schematic perspective view illustrating the configuration of a nonvolatile memory device according to a fourth embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention.
  • FIG. 6 is a schematic cross
  • FIG. 6 is a schematic circuit diagram illustrating the configuration of a nonvolatile memory device according to a fourth embodiment of the invention.
  • FIG. 9 is a schematic perspective view illustrating the configuration of another nonvolatile memory device according to the fourth embodiment of the invention.
  • FIG. 9 is a schematic perspective view illustrating the configuration of another nonvolatile memory device according to the fourth embodiment of the invention.
  • FIG. 9 is a schematic perspective view illustrating the configuration of a nonvolatile memory device according to a fifth embodiment of the invention.
  • FIG. 9 is a schematic plan view illustrating the configuration of a nonvolatile memory device according to a fifth embodiment of the invention.
  • FIG. 9 is a schematic cross-sectional view illustrating the configuration of a main part of a nonvolatile memory device according to a sixth embodiment of the invention.
  • FIG. 10 is a schematic cross-sectional view illustrating the operation of a nonvolatile memory device according to a sixth embodiment of the invention. It is a schematic diagram which illustrates the structure of the principal part of another non-volatile memory device which concerns on the 6th Embodiment of this invention.
  • FIG. 10 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
  • FIG. 26 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention.
  • FIG. 26 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention. It is a schematic diagram which illustrates the structure of the principal part of another non-volatile memory device which concerns on the 6th Embodiment of this invention.
  • FIG. 10 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention. It is a schematic diagram which illustrates the structure of the principal part of another non-volatile memory device which concerns on the 6th Embodiment of this invention.
  • FIG. 10 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
  • FIG. 26 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention.
  • FIG. 1 is a schematic cross-sectional view illustrating the configuration of the nonvolatile memory element according to the first embodiment of the invention.
  • the nonvolatile memory element 310 according to the first embodiment of the present invention includes a conductive upper electrode 14 (first layer) and a conductive lower electrode 12 (second layer).
  • a recording layer 13 provided between the upper electrode 14 and the lower electrode 12 and capable of recording information by reversibly transitioning between a high resistance state and a low resistance state
  • At least one of the upper electrode 14 and the lower electrode 12 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contains the first noble metal 21.
  • the upper electrode 14 and the lower electrode 12 are made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contain the first noble metal 21.
  • the recording layer 13 exhibits a phase change between a high resistance state phase and a low resistance state phase depending on the voltage applied to the recording layer 13 or the current flowing through the recording layer 13. That is, for example, due to the potential difference applied to the recording layer 13 via the upper electrode 14 and the lower electrode 12 or the current passed through the recording layer 13 via the upper electrode 14 and the lower electrode 12, the recording layer 13 is It exhibits a plurality of phases with different resistivity.
  • the nonvolatile memory element 310 can be applied to, for example, a nonvolatile memory such as a cross point type, a probe memory type, and various flash memory types.
  • a configuration of the nonvolatile memory element 310 when the nonvolatile memory element 310 is used in a cross-point nonvolatile memory device will be described.
  • FIG. 2 is a schematic view illustrating the configuration of the main part of a nonvolatile memory device to which the nonvolatile memory element according to the first embodiment of the invention is applied.
  • 1A is a schematic perspective view
  • FIG. 1B is a schematic cross-sectional view.
  • the memory cell 33 and the rectifying element 34 are used in the cross-point type nonvolatile memory device 210. Is provided in the cross-point type nonvolatile memory device 210. Is provided.
  • the upper and lower arrangement relationship between the word line WL i and the bit line BL j is arbitrary.
  • the arrangement relationship between the memory cell 33 and the rectifying element 34 between the word line WL i and the bit line BL j is also arbitrary. That is, in the specific example illustrated in FIG. 2, the memory cell 33 is disposed on the bit line BL j side with respect to the rectifying element 34, but the memory cell 33 is disposed on the word line WL i side with respect to the rectifying element 34. May be.
  • the memory cell 33 includes the nonvolatile memory element 310 according to the present embodiment.
  • the nonvolatile memory element 310 includes a lower electrode 12, an upper electrode 14, and a recording layer 13 provided between the lower electrode 12 and the upper electrode 14.
  • the memory cell 33 includes the nonvolatile memory element 310.
  • the upper electrode 14 and the lower electrode 12 have convenient names and can be interchanged.
  • the memory cell 33 can include a protective layer 33B and a heater layer 35 provided between the nonvolatile semiconductor memory device 310 and the protective layer 33B.
  • the protective layer 33B is provided on the bit line BL j side of the nonvolatile memory element 310, but the protective layer 33B is provided on the word line WL i side of the nonvolatile memory element 310.
  • it may be provided between the rectifying element 34 and the word line WL i .
  • the heater layer 35 and the protective layer 33B are provided as necessary and can be omitted.
  • a plurality of these word lines WL i , rectifying elements 34, memory cells 33, and bit lines BL j are provided, and an insulating layer is provided between them to be insulated from each other.
  • At least one of the lower electrode 12 and the upper electrode 14 of the nonvolatile memory element 310 is adjacent to the nonvolatile memory element 310, for example, a word line WL i , a rectifier element 34, a heater layer 35, a protective layer 33B, a bit line. It may also be used as at least one of BL j . In this case, the layer that is also used as at least one of the lower electrode 12 and the upper electrode 14 is regarded as at least one of the lower electrode 12 and the upper electrode 14.
  • the upper electrode 14 and the lower electrode 12 are made of at least one of a metal oxide, a metal nitride, and a metal carbide, and the first noble metal. 21 is contained.
  • the first noble metal 21 can be at least one selected from the group consisting of Ag, Pt and Pd.
  • the recording layer 13 has a spinel structure represented by A x B y X 4 (0.1 ⁇ x ⁇ 2.2, 1.5 ⁇ y ⁇ 2), A x B y X 2 (0.1 ⁇ x ⁇ 1.1, 0.9 ⁇ y ⁇ 1.1), a delafossite structure, A x B y X 4 (0.5 ⁇ x ⁇ 1.1, 0. Any of a wolframite structure represented by 7 ⁇ y ⁇ 1.1 and an ilmenite structure represented by A x B y X 3 (0.5 ⁇ x ⁇ 1.1, 0.9 ⁇ y ⁇ 1) A material having the following can be used.
  • the element A is a typical element and can be at least one selected from the group consisting of Zn, Cd, and Hg.
  • the element B is a transition element and can be at least one selected from the group consisting of Cr and Mn. More specifically, the element A is at least one selected from the group consisting of Zn, Cd and Hg, and the element B is at least one selected from the group consisting of Cr and Mn. be able to.
  • the above “X” can be oxygen. That is, various oxides are used for the recording layer 13.
  • the material used for the upper electrode 14 and the lower electrode 12 in contact with the recording layer 13 greatly affects the electrical characteristics of the nonvolatile memory element 310. Specifically, as the recording layer 13 is repeatedly switched between the high resistance state and the low resistance state, the resistance in the high resistance state and the resistance in the low resistance state vary. Further, the applied voltage or energizing current that becomes a high resistance state and the applied voltage or energizing current that becomes a low resistance state vary. Such resistance fluctuations and voltage and current fluctuations greatly depend on the materials used for the upper electrode 14 and the lower electrode 12.
  • the workability of the noble metal is poor and the workability when forming the upper electrode 14 and the lower electrode 12 is poor.
  • the processing accuracy of the recording layer 12 is poor, and in some cases, the characteristics of the recording layer 13 sandwiched between them are deteriorated.
  • the upper electrode 14 and the lower electrode 12 are made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contain the first noble metal 21.
  • the upper electrode 14 and the lower electrode 12 can have good workability substantially similar to that of the metal oxide, metal nitride, and metal carbide.
  • a film to be the lower electrode 12 a film to be the recording layer 13, and a film to be the upper electrode 14 are stacked, and these films are then dried using a mask.
  • the lower electrode 12, the recording layer 13, and the upper electrode 14 are formed by processing such as etching.
  • the recording layer 13 is, for example, an oxide
  • the upper electrode 14 and the lower electrode 12 include a metal oxide, a metal nitride, and a metal carbide. Therefore, the recording layer 13, the upper electrode 14, the lower electrode 12, The processability is similar, and the processability is substantially the same. As a result, the nonvolatile memory element 310 is processed with high accuracy with good processability.
  • the upper electrode 14 and the lower electrode 12 have the first noble metal 21
  • fluctuations in the characteristics of the recording layer 13 can be suppressed, and repeated operational stability can be improved.
  • nonvolatile memory element 310 As described above, according to the nonvolatile memory element 310 according to the present embodiment, it is possible to provide a nonvolatile memory element with good processability, high accuracy, and high repetitive operation stability.
  • FIG. 3 is a graph illustrating characteristics of the nonvolatile memory element according to the first embodiment of the invention. That is, this figure illustrates the relationship between the first noble metal 21 in the upper electrode 14 and the lower electrode 12 and the repetitive operation stability and workability of the nonvolatile memory element.
  • the horizontal axes of FIGS. 9A and 9B show the concentration C1 of the first noble metal 21 in the upper electrode 14 and the lower electrode 12.
  • the vertical axis in FIG. 5A shows the stability of repeated operation of the nonvolatile memory element 310.
  • the vertical axis in FIG. 5B is the workability of the film that becomes the upper electrode 14 and the lower electrode 12.
  • the repetitive operation stability of the nonvolatile memory element 310 is improved.
  • the concentration C1 of the first noble metal 21 in the upper electrode 14 and the lower electrode 12 is good in the repetitive operation stability of the nonvolatile memory element 310 and the workability of the film that becomes the upper electrode 14 and the lower electrode 12 is good. A range is desirable.
  • the concentration C1 of the first noble metal 21 in the upper electrode 14 and the lower electrode 12 is desirably 2 atomic percent or more and 40 atomic percent or less. That is, when the concentration C1 is lower than 2 atomic percent, the effect of improving the repeated operation stability is lowered. On the other hand, when the concentration C1 is higher than 40 atomic percent, the workability deteriorates.
  • the first noble metal 21 is dispersed and contained in the upper electrode 14 and the lower electrode 12 in the upper electrode 14 and the lower electrode 12. That is, the first noble metal 21 is not contained as an alloy or a solid solution in the metal oxide, metal nitride, and metal carbide to be the upper electrode 14 and the lower electrode 12, but is dispersed as a region of only the first noble metal 21. It is desirable to be contained. As described above, the first noble metal 21 is dispersed and contained as a region of only the first noble metal 21, thereby providing a nonvolatile memory element with better workability, high accuracy, and high repeated operation stability. .
  • the first noble metal 21 may be deposited on the inside and / or the surface of the upper electrode 14 and the lower electrode 12. In particular, it may be deposited on the interface side of the upper electrode 14 and the lower electrode 12 with the recording layer 13. That is, the first noble metal 21 may be precipitated in at least one of the inside and the surface of the metal oxide, metal nitride, and metal carbide that become the upper electrode 14 and the lower electrode 12.
  • the first noble metal 21 can be precipitated as a plurality of first grains in at least one of the inside and the surface of the upper electrode 14 and the lower electrode 12.
  • the particle diameter of the first grains can be set to 0.5 nm to 10 nm, for example. That is, when it is smaller than 0.5 nm, the effect of improving the repeated operation stability is low, and when it is larger than 10 nm, the workability deteriorates.
  • the particle diameter of the first grain is more preferably 1.0 nm to 10 nm. By setting the thickness to 1.0 nm or more, it is easier to obtain the effect of improving the repeated operation stability.
  • the average of the interval between the first grains is preferably set larger than the diameter of the first grains.
  • interval of 1st grains becomes wide and workability improves.
  • interval of 1st grains spreads and workability improves.
  • the interval between the first grains is too wide, as a result, the content of the first noble metal 21 is reduced, and the effect of improving the repeated operation stability is lowered.
  • the first noble metal 21 is deposited, and more specifically, the first precious metal 21 is deposited as a plurality of first grains, so that the upper electrode 14 is maintained while maintaining the repetitive operation stability of the nonvolatile memory element 310. And the workability of the film to be the lower electrode 12 can be further improved.
  • the interval between the first grains that is, the metal oxide that becomes the upper electrode 14 and the lower electrode 12
  • the regions of metal nitride and metal carbide and the region of the first grains are solidified as individual regions, so that the workability is further improved.
  • the kind of noble metal to contain, content, concentration distribution, The dispersion state, the precipitation state, the diameter of the first grains, the interval between the first grains, and the like may be different.
  • FIG. 4 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a modification according to the first embodiment of the invention.
  • the upper electrode 14 and the lower electrode 12 are made of conductive metal oxide, metal nitride, and It consists of at least one of metal carbide. Only the upper electrode 14 contains the first noble metal 21. That is, the lower electrode 12 does not contain the first noble metal 21.
  • the upper electrode 14 is relatively less workable than the lower electrode, and on the contrary, the repeated operation stability is better.
  • a film to be the lower electrode 12, a film to be the recording layer 13, and a film to be the upper electrode 14 are laminated on the substrate, and then these laminated films are collectively processed by, for example, etching or the like.
  • the film to be the upper electrode 14 is exposed to etching longer than the film to be the lower electrode 12. For this reason, the upper electrode 14 can be set so as to be relatively less workable than the lower electrode.
  • either the upper electrode 14 or the lower electrode 12 may be made of at least one of a metal oxide, a metal nitride, and a metal carbide, and may contain the first noble metal 21.
  • only the lower electrode 12 may contain the first noble metal 21 and the upper electrode 14 may not contain the first noble metal 21.
  • the upper electrode 14 and the lower electrode 12 may be made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contain the first noble metal 21.
  • the upper electrode 14 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, contains the first noble metal 21, and the lower electrode 12 has a noble metal. You may comprise with the film
  • the lower electrode 12 may be made of at least one of a metal oxide, a metal nitride, and a metal carbide, contain the first noble metal 21, and the upper electrode 14 may be made of a film made of a noble metal. .
  • FIG. 5 is a schematic cross-sectional view illustrating the configuration of the nonvolatile memory element according to the second embodiment of the invention.
  • the upper electrode 14 and the lower electrode 12 are at least one of metal oxide, metal nitride, and metal carbide. It contains the first noble metal 21.
  • the concentration of the first noble metal 21 on the side closer to the recording layer 13 of the upper electrode 14 and the lower electrode 12 is the concentration of the first noble metal 21 on the side farther from the recording layer 13 than the closer side of the upper electrode 14 and lower electrode 12. Higher than.
  • the concentration of the first noble metal 21 is high in the region close to the first interface 14a that is the interface between the upper electrode 14 and the recording layer 13, and the concentration of the first noble metal 21 is high in the region far from the first interface 14a. Relatively low.
  • the concentration of the first noble metal 21 is high in the region close to the second interface 12a that is the interface between the lower electrode 12 and the recording layer 13, and the concentration of the first noble metal 21 is high in the region far from the second interface 12a. Relatively low.
  • the stability of the repetitive operation of the recording layer 13 can be ensured by increasing the concentration of the first noble metal 21 on the side closer to the recording layer 13.
  • the workability of the film to be the upper electrode 14 and the lower electrode 12 is improved as a whole by reducing the concentration of the first noble metal 21.
  • nonvolatile memory element 320 As described above, according to the nonvolatile memory element 320 according to the present embodiment, it is possible to provide a nonvolatile memory element that has better workability, higher accuracy, and higher repeated operation stability.
  • the upper electrode 14 is made of at least one of a metal oxide, a metal nitride, and a metal carbide.
  • the first noble metal 21 is contained, and the concentration of the first noble metal 21 on the side closer to the recording layer 13 of the upper electrode 14 is set to be higher on the side farther from the recording layer 13 than the closer side of the upper electrode 14. It is set higher than the concentration of one noble metal 21.
  • the concentration of the first noble metal 21 is contained in at least one of the upper electrode 14 and the lower electrode 12 and the concentration of the first noble metal 21 is provided with a gradient, both the repeated operation stability and the workability are further improved. Highly compatible.
  • At least one of the upper electrode 14 and the lower electrode 12 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, contains the first noble metal 21, and the at least one of the records
  • concentration of the first noble metal 21 on the side close to the layer 13 higher than the concentration of the first noble metal 21 on the side farther from the recording layer 13 than the at least any one of the close sides, Both the workability and the workability can be made more compatible.
  • FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention.
  • the upper electrode 14 and the lower electrode 12 are made of metal oxide, metal nitride, and metal carbide. It consists of at least one and contains the first noble metal 21.
  • the first noble metal 21 is localized in a portion of the first interface 14 a with the recording layer 13 of the upper electrode 14 and a portion of the second interface 12 a with the recording layer 13 of the lower electrode 12. Also in this case, the concentration of the first noble metal 21 is an example of a state in which the side closer to the recording layer 13 of the upper electrode 14 and the lower electrode 12 is higher than the side farther from the recording layer 13.
  • the first noble metal 21 is localized at the portion of the first interface 14 a with the recording layer 13 of the upper electrode 14 and the portion of the second interface 12 a with the recording layer 13 of the lower electrode 12.
  • the stability of the repetitive operation of the recording layer 13 can be ensured.
  • the concentration of the first noble metal 21 is low on the side far from the recording layer 13, so that the workability of the film to be the upper electrode 14 and the lower electrode 12 is improved as a whole.
  • nonvolatile memory element 322 As described above, according to the nonvolatile memory element 322 according to the present embodiment, it is possible to provide a nonvolatile memory element with better workability, higher accuracy, and higher repeated operation stability.
  • the upper electrode 14 is at least one of metal oxide, metal nitride, and metal carbide.
  • the first noble metal 21 is contained in the first interface 14 a with the recording layer 13.
  • At least one of the upper electrode 14 and the lower electrode 12 is made of at least one of metal oxide, metal nitride, and metal carbide, and is localized at the interface between the at least one and the recording layer 13.
  • metal oxide metal oxide
  • metal nitride metal carbide
  • both repeated operation stability and workability can be made more highly compatible.
  • FIG. 7 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention.
  • the upper electrode 14 and the lower electrode 12 are made of metal oxide, metal nitride, and metal carbide. It consists of at least one and contains the first noble metal 21.
  • the first noble metal 21 is continuously formed as a thin film on the portion of the first interface 14a with the recording layer 13 of the upper electrode 14 and the portion of the second interface 12a with the recording layer 13 of the lower electrode 12.
  • this thin film is a thin film having a film thickness of 1.0 nm to 20 nm. If the film thickness is less than 1.0 nm, the effect of improving the repeated operation stability is low, and if the film thickness is more than 20 nm, the workability deteriorates.
  • the first noble metal 21 having a low workability as a material is formed in a portion of the first interface 14a with the recording layer 13 of the upper electrode 14 and a portion of the second interface 12a with the recording layer 13 of the lower electrode 12. Even when the thin film is provided continuously, the poor workability is not substantially a problem because the film thickness is thin.
  • the recording layer 13 Since the first noble metal 21 exists in the portion of the first interface 14a with the recording layer 13 of the upper electrode 14 and the portion of the second interface 12a with the recording layer 13 of the lower electrode 12, the recording layer 13 The stability of the repeated operation can be ensured.
  • the non-volatile memory element 324 can provide a non-volatile memory element with better workability, higher accuracy, and higher repeated operation stability.
  • the upper electrode 14 includes at least one of a metal oxide, a metal nitride, and a metal carbide.
  • the first interface 14a with the recording layer 13 contains the first noble metal 21 continuously localized as a thin film.
  • the upper electrode 14 and the lower electrode 12 includes the first noble metal 21 that is continuously localized as a thin film at the interface with the recording layer 13, repeated operation stability and processing are achieved. It is possible to achieve a higher degree of compatibility with both sex.
  • At least one of the upper electrode 14 and the lower electrode 12 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, and is continuously formed as a thin film at the interface between the at least one and the recording layer 13.
  • the first noble metal 21 that is localized, both repetitive operation stability and workability can be achieved at a higher level.
  • the method of including the first noble metal 21 in at least one of the upper electrode 14 and the lower electrode 12 is arbitrary.
  • the film to be at least one of the upper electrode 14 and the lower electrode 12 at least one of the metal oxide, metal nitride, and metal carbide to be the at least one of the upper electrode 14 and the lower electrode 12
  • a method of forming a film using a target including the first noble metal 21 can be used.
  • a method of forming a film using another target including at least one of a metal oxide, a metal nitride, and a metal carbide and the first noble metal 21 can be used.
  • any method can be used.
  • the concentration of the first noble metal 21 is provided with a gradient, or the first noble metal 21 is localized at the first interface 14a or the second interface 12a.
  • another target including at least one of a metal oxide, a metal nitride, and a metal carbide and the first noble metal 21 is used, and the amount formed from the target during film formation is changed.
  • a control method can be used.
  • a method of combination with the second film formation using the target can be used.
  • the first noble metal 21 can also be diffused by heat treatment or the like.
  • the first noble metal 21 can be dispersed in the metal oxide, the metal nitride, and the metal carbide, which are at least one of the upper electrode 14 and the lower electrode 12, depending on the film forming conditions and subsequent processing. .
  • the first noble metal 21 can be deposited on at least one of the inside and / or the surface of the upper electrode 14 and the lower electrode 12.
  • the first noble metal 21 can be precipitated as a plurality of first grains in at least one of the inside and / or the surface of the upper electrode 14 and the lower electrode 12. And the average of the space
  • FIG. 8 is a schematic cross-sectional view illustrating the configuration of the nonvolatile memory element according to the third embodiment of the invention.
  • the nonvolatile memory element 330 according to the third embodiment of the present invention includes the third layer 15 provided between the upper electrode 14, the lower electrode 12, and the recording layer 13. Further prepare. Except this, since it can be the same as the various nonvolatile memory elements 310 according to the first embodiment, the description thereof will be omitted.
  • the third layer 15 includes at least one of a metal, a metal oxide, a metal nitride, and a metal carbide, and includes a second noble metal 22 of a type different from the first noble metal 21.
  • the second noble metal is at least one selected from the group consisting of Ag, Pt, and Pd, and is a different type of metal from the first noble metal 21.
  • the third layer 15 provided between the electrode 14 and the recording layer 13 contains a second noble metal 22 of a type different from the first noble metal 21 contained in the upper electrode 14, and the lower electrode 12 and the recording layer 13.
  • the third layer 15 provided between the first and second layers contains a second noble metal 22 of a type different from the first noble metal 21 contained in the lower electrode 12.
  • the second noble metal 22 which is a metal different from the first noble metal 21, between the upper electrode 14, the lower electrode 12, and the recording layer 13, the repeated operation stability by the first noble metal 21 is compensated. Therefore, the stability of the repeated operation can be further improved as compared with the case where only the first noble metal 21 is used.
  • the concentration of the second noble metal 22 in the third layer 15 is desirably 2 atomic percent or more and 50 atomic percent or less. .
  • concentration of the second noble metal 22 is lower than 2 atomic percent, the degree of improvement in repeated operation stability is low, and when it is lower than 50 atomic percent, workability is low.
  • the thickness of the third layer 15 can be set to 0.5 nm or more and 10 nm or less. When the thickness of the third layer 15 is less than 0.5 nm, the effect of improving the repeated operation stability is low, and when it is thicker than 10 nm, the workability deteriorates.
  • the thickness of the third layer 15 is more preferably 1.0 nm to 5 nm. By setting the thickness to 1.0 nm or more, it is easier to obtain the effect of improving the repetitive operation stability. By setting the thickness to 5 nm or less, the workability is improved, and the repetitive operation stability and the workability are more highly compatible. be able to.
  • the first noble metal 21 and the second noble metal 22 can be used for the first noble metal 21 and the second noble metal 22.
  • the second noble metal 22 on the memory layer 13 side has a more stable operation stability than the first noble metal 21. It is possible to select materials that are important.
  • the concentration of the second noble metal 22 in the third layer 15 may be made higher than the concentration of the first noble metal 21 in the upper electrode 14 and the lower electrode. By using these techniques as appropriate, higher repeated operation stability can be ensured. At this time, the thickness of the third layer 15 having the second noble metal 22 is made relatively thin to compensate for the low workability of the second noble metal 22, and the workability and the repeated operation stability are further enhanced. Can be compatible.
  • the third layer 15 can include at least one of metal, metal oxide, metal nitride, and metal carbide, and the second noble metal 22 includes these metal, metal oxide, metal nitride, and metal.
  • the second metal 22 may be contained in the third layer 15 as a solid body of these metals, metal oxides, metal nitrides and metal carbides, and the second metal 22. It may be contained.
  • the second noble metal 22 may be precipitated in at least one of the inside and the surface of the third layer 15.
  • the second noble metal 22 may be precipitated as a plurality of second grains in at least one of the inside and the surface of the third layer 15.
  • the particle size of the second grains can be set to 0.5 nm to 10 nm, for example. That is, when it is smaller than 0.5 nm, the effect of improving the repetitive operation stability is low, and when it is larger than 10 nm, the workability deteriorates.
  • the particle diameter of the second grains can be more preferably 1.0 nm to 10 nm. By setting the thickness to 1.0 nm or more, it is easier to obtain the effect of improving the repeated operation stability.
  • the average of the interval between the second grains can be set larger than the diameter of the second grains.
  • interval of 2nd grains spreads and workability improves.
  • the content of the second noble metal 22 is reduced, and the effect of improving the repeated operation stability is lowered.
  • the non-volatile memory element 330 can provide a non-volatile memory element with better workability, higher accuracy, and higher repeated operation stability.
  • FIG. 9 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the third embodiment of the invention.
  • both the upper electrode 14 and the lower electrode 12 contain the first noble metal 21, and the upper electrode A third layer 15 is provided between the recording layer 14 and the recording layer 13.
  • the third layer 15 can be provided between at least one of the upper electrode 14 and the lower electrode 12.
  • the upper electrode 14 contains the first noble metal 21, and the upper electrode 14, the recording layer 13, A third layer 15 is provided therebetween.
  • the upper electrode 14 contains the first noble metal 21, and the lower electrode 12, the recording layer 13, A third layer 15 is provided therebetween.
  • the third layer 15 can be provided between at least one of the upper electrode 14 and the lower electrode 12.
  • the third layer 15 is arbitrarily disposed between at least one of the upper electrode 14 and the lower electrode 12 independently of which of the upper electrode 14 and the lower electrode 12 contains the first noble metal 21. Can be provided.
  • a non-volatile memory device is a cross-point type non-volatile memory device, and uses the non-volatile memory element according to the first to third embodiments. It is.
  • FIG. 10 is a schematic perspective view illustrating the configuration of the nonvolatile memory device according to the fourth embodiment of the invention.
  • FIG. 11 is a schematic circuit diagram illustrating the configuration of the nonvolatile memory device according to the fourth embodiment of the invention.
  • a strip-shaped first wiring (word line WL) extending in the X-axis direction on the main surface of the substrate 30. i ⁇ 1 , WL i , WL i + 1 ).
  • the strip-like second wiring (bit lines BL j ⁇ 1 , BL j , BL j + 1 ) extending in the Y-axis direction orthogonal to the X-axis in a plane parallel to the substrate 30 is connected to the first wiring (word Lines WL i ⁇ 1 , WL i , WL i + 1 ).
  • the first wiring and the second wiring are orthogonal to each other.
  • the first wiring and the second wiring may be crossed (non-parallel).
  • the plane parallel to the main surface of the substrate 30 is the XY plane
  • the direction in which the first wiring extends is the X axis
  • the axis orthogonal to the X axis is in the XY plane.
  • the direction perpendicular to the X and Y axes is the Z axis.
  • the subscript i and the subscript j are arbitrary. That is, FIG. 10 and FIG. 11 show examples in which three each of the first wiring and the second wiring are provided, but the present invention is not limited to this, and the first wiring and the second wiring are not limited thereto.
  • the number of the two wirings is arbitrary.
  • the first wiring is a word and the second wiring is a bit line.
  • the first wiring may be a bit line and the second wiring may be a word line. In the following description, it is assumed that the first wiring is a word line and the second wiring is a bit.
  • the memory cell 33 is sandwiched between the first wiring and the second wiring. That is, in the nonvolatile memory device 210, the memory cell 33 is provided at an intersection formed by three-dimensionally intersecting a bit line and a word line.
  • each of the word lines WL i ⁇ 1 , WL i , WL i + 1 is connected to a word line driver 31 having a decoder function via a MOS transistor RSW as a selection switch
  • One end of each of the bit lines BL j ⁇ 1 , BL j , BL j + 1 is connected to a bit line driver 32 having a decoder and a read function via a MOS transistor CSW as a selection switch.
  • Selection signals R i ⁇ 1 , R i and R i + 1 for selecting one word line (row) are input to the gate of the MOS transistor RSW, and one bit line is input to the gate of the MOS transistor CSW.
  • Selection signals C i ⁇ 1 , C i , and C i + 1 for selecting (column) are input.
  • the memory cell 33 is arranged at the intersection of the word lines WL i ⁇ 1 , WL i , WL i + 1 and the bit lines BL j ⁇ 1 , BL j , BL j + 1 . This is a so-called cross-point cell array structure.
  • a rectifying element 34 for preventing a sneak current during recording / reproduction can be added to the memory cell 33.
  • cross-point cell array structure is that it is advantageous for high integration because it is not necessary to individually connect a MOS transistor to the memory cell 33.
  • the memory cell 33 and the rectifying element 34 are provided between the word line WL i and the bit line BL j .
  • the upper and lower arrangement relationship between the word line WL i and the bit line BL j is arbitrary.
  • the arrangement relationship between the memory cell 33 and the rectifying element 34 between the word line WL i and the bit line BL j is also arbitrary.
  • any one of the nonvolatile memory elements according to the first to third embodiments can be used as the memory cell 33.
  • the recording layer 13, the lower electrode 12, and the upper electrode 14 of the nonvolatile memory element of the memory cell 33 are respectively provided with the recording layer 13, the lower electrode 12, and the upper electrode 14 described in the first to third embodiments. Can be used.
  • the word line driver 31 and the bit line driver 32 serving as a driving unit are connected to the memory cell 33 via the word line WL i and the bit line BL j .
  • At least one of application of a voltage to the recording layer 13 of the nonvolatile memory element and energization of a current to the recording layer 13 is performed.
  • the drive unit records information by causing the recording layer 13 to transition between the high resistance state and the low resistance state.
  • the drive unit can read information recorded on the recording layer 13.
  • the nonvolatile memory device 210 applies any one of the nonvolatile memory elements according to the first to third embodiments, the application of voltage to the recording layer 13 of the nonvolatile memory element, and recording.
  • a drive unit that records information by causing the recording layer 13 to transition between a high-resistance state and a low-resistance state by at least one of supplying a current to the layer 13;
  • the non-volatile memory device 210 further includes a word line WL i and a bit line BL j provided so as to sandwich a non-volatile memory element, and the driving unit is configured to record the recording layer via the word line WL i and the bit line BL j. At least one of application of a voltage to 13 and current application to the recording layer 13 is performed.
  • the non-volatile memory device 210 according to this embodiment having such a configuration can provide a non-volatile memory device with good processability, high accuracy, and high repetitive operation stability.
  • FIG. 12 is a schematic perspective view illustrating the configuration of another nonvolatile memory device according to the fourth embodiment of the invention.
  • FIG. 13 is a schematic perspective view illustrating the configuration of another nonvolatile memory device according to the fourth embodiment of the invention.
  • a three-dimensional non-volatile memory device 211 can be configured by stacking two layers of a stacked structure including word lines, bit lines, and memory cells 33 sandwiched between them.
  • a three-dimensional stacked nonvolatile memory device 212 is configured by stacking three layers of stacked structures including word lines, bit lines, and memory cells 33 sandwiched between them. You can also.
  • a non-volatile memory device having a three-dimensional structure can be configured by stacking a plurality of stacked structures including word lines, bit lines, and memory cells 33 sandwiched between the word lines, bit lines, and the number of stacked layers. Is optional.
  • the fifth embodiment of the present invention is a probe memory type nonvolatile memory device.
  • FIG. 14 is a schematic perspective view illustrating the configuration of the nonvolatile memory device according to the fifth embodiment of the invention.
  • FIG. 15 is a schematic plan view illustrating the configuration of the nonvolatile memory device according to the fifth embodiment of the invention.
  • the recording layer 13 provided on the electrode 521 is disposed on the XY scanner 516. ing. Then, a probe array is disposed so as to face the recording layer 13.
  • a protective layer 521a (not shown) is provided on the recording layer 13.
  • the probe array includes a substrate 523 and a plurality of probes (heads) 524 arranged in an array on one surface side of the substrate 523.
  • Each of the plurality of probes 524 is composed of a cantilever, for example, and is driven by multiplex drivers 525 and 526.
  • Each of the plurality of probes 524 can be individually operated using the microactuator in the substrate 523. However, all the probes 524 are collectively operated to access the data area 531 of the storage medium (recording layer 13). It can also be done.
  • all the probes 524 are reciprocated in the X direction at a constant period, and the position information in the Y direction is read from the storage medium (recording layer 13) 532.
  • the position information in the Y direction is transferred to the driver 515.
  • the driver 515 drives the XY scanner 516 based on the position information, moves the storage medium (recording layer 13) in the Y direction, and positions the storage medium (recording layer 13) and the probe.
  • data reading or writing is performed simultaneously and continuously on all the probes 524 on the data area 531. Data reading and writing are continuously performed because the probe 524 reciprocates in the X direction.
  • Data reading and writing are performed line by line in the data area 531 by sequentially changing the position of the recording layer 13 in the Y direction.
  • the recording layer 13 may be reciprocated in the X direction at a constant period to read position information from the storage medium (recording layer 13), and the probe 524 may be moved in the Y direction.
  • the recording layer 13 has a plurality of data areas 531 and servo areas 532 arranged at both ends of the plurality of data areas 531 in the X direction.
  • the plurality of data areas 531 occupy the main part of the recording layer 13.
  • a servo burst signal is stored in the servo area 532.
  • the servo burst signal indicates position information in the Y direction within the data area 531.
  • an address area for storing address data and a preamble area for synchronization are arranged in the recording layer 13.
  • the data and servo burst signal are stored in the recording layer 13 as storage bits (electrical resistance fluctuation).
  • the “1” and “0” information of the storage bit is read by detecting the electrical resistance of the recording layer 13.
  • one probe is provided corresponding to one data area 531, and one probe is provided for one servo area 532.
  • the data area 531 is composed of a plurality of tracks.
  • the track of the data area 531 is specified by the address signal read from the address area.
  • the servo burst signal read from the servo area 532 is for moving the probe 524 to the center of the track and eliminating the reading error of the stored bits.
  • the X direction correspond to the down-track direction and the Y direction correspond to the track direction, for example, it is possible to use the head position control technology of the HDD.
  • Each probe 524 is connected to the drive unit 600 via, for example, multiplex drivers 525 and 526.
  • the drive unit 600 supplies each probe 524 with at least one of voltage and current for information recording. Then, the recording layer 13 transitions between the high resistance state and the low resistance state by the voltage and current applied via the probe 524.
  • the drive unit 600 detects the high resistance state and the low resistance state recorded on the recording layer 13 and reads the recorded information.
  • any of the recording layers 13 of the nonvolatile memory elements described in the first to third embodiments can be used as the recording layer 13.
  • the electrode 521, the upper electrode 14 or the lower electrode 12 of any of the nonvolatile memory elements described in the first to third embodiments can be used.
  • the protective layer on the probe 524 side has been described in the first to third embodiments. It can be regarded as any upper electrode 14 of the nonvolatile memory element.
  • the electrode 521 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contains the first noble metal.
  • a layer of any material can be used for the protective layer regarded as the upper electrode 14.
  • the nonvolatile memory device 250 includes any one of the nonvolatile memory elements described in the first to third embodiments, the application of a voltage to the recording layer 13 of the nonvolatile memory element, and And a drive unit 600 that records information by causing the recording layer 13 to transition between a high resistance state and a low resistance state by at least one of energization of a current to the recording layer 13.
  • the nonvolatile memory device 250 further includes a probe 524 provided alongside the nonvolatile memory element including the recording layer 13 and the electrode 521, and the drive unit 600 passes through the probe 524 and the recording layer 13 of the nonvolatile memory element. At least one of application of the voltage and energization of the current is performed for each recording unit.
  • the driving unit 600 may include the driver 515 and the XY scanner 516, and conversely, the driving unit may be included in the driver 515 and the XY scanner 516.
  • the workability is high and the precision is high due to the effects described with respect to the nonvolatile memory elements according to the first to third embodiments already described.
  • the sixth embodiment of the present invention is a flash memory type nonvolatile memory device.
  • FIG. 16 is a schematic cross-sectional view illustrating the configuration of the main part of the nonvolatile memory device according to the sixth embodiment of the invention.
  • FIG. 17 is a schematic cross-sectional view illustrating the operation of the nonvolatile memory device according to the sixth embodiment of the invention.
  • the nonvolatile memory device 260 according to the present embodiment has a flash memory type memory cell, and this memory cell is configured by a MIS (metal-insulator-semiconductor) transistor.
  • MIS metal-insulator-semiconductor
  • the diffusion layer 42 is formed in the surface region of the semiconductor substrate 41.
  • a gate insulating layer 43 is formed on the channel region between the diffusion layers 42.
  • the nonvolatile memory element 44 according to the embodiment of the present invention is formed.
  • a control gate electrode 45 is formed on the nonvolatile memory element 44.
  • any one of the nonvolatile memory elements according to the first to third embodiments can be used as the nonvolatile memory element 44. That is, although not shown in FIG. 16, the nonvolatile memory element 44 includes the recording layer 13, the upper electrode 14, and the lower electrode 12 described in the nonvolatile memory elements according to the first to third embodiments.
  • the nonvolatile memory device 260 applies a voltage to at least one of the nonvolatile memory elements described in the first to third embodiments and the recording layer 13 of the nonvolatile memory element, or A drive unit (not shown) that records information by energizing a current to cause the recording layer 13 to transition between the high resistance state and the low resistance state.
  • the driving unit is connected to the control gate electrode 45, and the driving unit is at least one of applying a voltage to the recording layer 13 and supplying a current to the recording layer 13 via the control gate electrode 45. Do something.
  • the nonvolatile memory device 260 further includes a MIS transistor having a gate electrode (control gate electrode 45) and a gate insulating film (gate insulating layer 43).
  • the nonvolatile memory element 44 is provided between the gate electrode of the MIS transistor and the gate insulating layer.
  • any one of the upper electrode 14 and the lower electrode 12 of the nonvolatile memory element 44 may be used as the control gate electrode 45, for example.
  • the semiconductor substrate 41 may be a well region, and the semiconductor substrate 41 and the diffusion layer 42 have opposite conductivity types.
  • the control gate electrode 45 becomes a word line and is made of, for example, conductive polysilicon.
  • the potential V ⁇ b> 1 is applied to the control gate electrode 45 and the potential V ⁇ b> 2 is applied to the semiconductor substrate 41.
  • the difference between the potential V1 and the potential V2 is large enough for the recording layer 13 of the nonvolatile memory element 44 to transition between the high resistance state and the low resistance state.
  • the polarity of the potential difference is not particularly limited. That is, either V1> V2 or V1 ⁇ V2 may be used.
  • the gate insulating layer 43 is substantially thickened, so the threshold value of the memory cell (MIS transistor) is , Get higher.
  • the threshold value of the memory cell is Lower.
  • the potential V2 may be transferred from the diffusion layer 42 to the channel region of the memory cell instead.
  • arrow Ae represents the movement of electrons
  • arrow Ai represents the movement of ions.
  • the potential V1 ′ is applied to the control gate electrode 45, the potential V3 is applied to one of the diffusion layers 42, and the potential V4 ( ⁇ V3) is applied to the other of the diffusion layers 42.
  • the potential V1 ′ is set to a value exceeding the threshold value of the memory cell in the set state.
  • the memory cell is turned on, electrons flow from one side of the diffusion layer 42 to the other side, and hot electrons are generated. Since the hot electrons are injected into the recording layer 13 through the gate insulating layer 43, the temperature of the recording layer 13 rises.
  • the gate insulating layer 43 is substantially thickened, and the threshold value of the memory cell (MIS transistor) is increased. .
  • the threshold value of the memory cell can be changed based on a principle similar to that of the flash memory, which can be used as a nonvolatile memory device.
  • the nonvolatile memory device 260 since any one of the nonvolatile memory elements described in the first to third embodiments is used as the nonvolatile memory element 44, the workability is good.
  • a nonvolatile memory device with high accuracy and high repetitive operation stability can be provided.
  • FIG. 18 is a schematic view illustrating the configuration of the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
  • FIG. 19 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention. That is, another nonvolatile memory device 261 according to the present embodiment is a NAND flash memory.
  • FIG. 18 illustrates the NAND cell unit 261c and the driving unit 600 connected thereto, and FIG. The structure of the cell unit 261c is illustrated.
  • an N-type well region 41b and a P-type well region 41c are formed in the P-type semiconductor substrate 41a.
  • a NAND cell unit 261c is formed in the P-type well region 41c.
  • the NAND cell unit 261c includes a NAND string composed of a plurality of memory cells MC connected in series, and a total of two select gate transistors ST connected to both ends of the NAND string unit 261c.
  • the memory cell MC and the select gate transistor ST have the same structure. Specifically, these include an N-type diffusion layer 42, a gate insulating layer 43 on a channel region between the N-type diffusion layers 42, a nonvolatile memory element 44 on the gate insulating layer 43, and a nonvolatile memory element 44 and a control gate electrode 45 (CG) on 44.
  • Each control gate electrode 45 is electrically connected to the drive unit 600.
  • the driving unit 600 may be provided on a substrate on which the NAND cell unit 261c is provided, or may be provided on a different substrate.
  • the nonvolatile memory element 44 is used for the nonvolatile memory element 44. That is, although not shown in these drawings, the nonvolatile memory element 44 is provided with the recording layer 13, the upper electrode 14, and the lower electrode 12 described in the first to third embodiments.
  • the state (high resistance state phase HR and low resistance state phase LR) of the recording layer 13 of the nonvolatile memory element 44 that is the memory cell MC can be changed by the above-described basic operation.
  • the recording layer 13 of the select gate transistor ST is fixed to the set state, that is, the low resistance state phase LR.
  • One of the select gate transistors ST is connected to the source line SL, and the other one is connected to the bit line BL. It is assumed that all memory cells in the NAND cell unit 261c are in a reset state (resistance is large) before the set (write) operation SO.
  • the set (write) operation SO is sequentially performed one by one from the memory cell MC on the source line SL side toward the memory cell on the bit line BL side. Giving V1 (positive potential) to the selected word line (control gate electrode) WL as a write voltage, gives a V pass as a transfer potential to the unselected word lines WL (potential memory cell MC is turned on).
  • the select gate transistor ST on the source line SL side is turned off, the select gate transistor ST on the bit line BL side is turned on, and program data is transferred from the bit line BL to the channel region of the selected memory cell MC.
  • a write inhibit potential (for example, the same potential as V1) is transferred to the channel region of the selected memory cell MC, and the recording layer 13 of the selected memory cell MC is transferred.
  • the resistance value should not change from a high state to a low state.
  • V2 ( ⁇ V1) is transferred to the channel region of the selected memory cell MC, and the resistance value of the recording layer 13 of the selected memory cell MC is changed from a high state to a low state. To change.
  • V1 ' is applied to all the word lines (control gate electrodes) WL, and all the memory cells MC in the NAND cell unit 261c are turned on. Further, the two select gate transistors ST are turned on, V3 is applied to the bit line BL, and V4 ( ⁇ V3) is applied to the source line SL.
  • a read potential (positive potential) is applied to the selected word line (control gate electrode) WL, and the memory cell MC receives data “0”, “1” on the unselected word line (control gate electrode) WL.
  • a potential to be turned on without fail is given.
  • the two select gate transistors ST are turned on to supply a read current to the NAND string.
  • the read potential is applied, the selected memory cell MC is turned on or off according to the value of the data stored in the selected memory cell MC. For example, data can be read by detecting a change in the read current. it can.
  • FIG. 20 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention. As shown in FIG. 20, in the nonvolatile memory device 262 of the modification according to this embodiment, the select gate transistor ST can be a normal MIS transistor without forming a recording layer.
  • FIG. 21 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention. As shown in FIG. 21, in the nonvolatile memory device 263 of the modification according to this embodiment, the gate insulating layers of the plurality of memory cells MC configuring the NAND string are replaced with the P-type semiconductor layer 47.
  • the P-type semiconductor layer 47 is filled with a depletion layer without applying a voltage.
  • a positive write potential for example, 3.5 V
  • Transfer potential for example, 1 V
  • the set operation can be performed by turning on the select gate transistor ST on the bit line BL side and transferring the program data “0” from the bit line BL to the channel region of the selected memory cell MC. it can.
  • a negative erase potential for example, ⁇ 3.5 V
  • the ground potential P-type well region 41c and P-type semiconductor layer 47 are grounded.
  • a positive read potential for example, 0.5 V
  • the memory cell MC receives the data “ A transfer potential (for example, 1 V) that always turns on regardless of 0 ”or“ 1 ”is applied.
  • the threshold voltage Vth “1” of the memory cell MC in the “1” state is in the range of 0V ⁇ Vth “1” ⁇ 0.5 V
  • the threshold voltage Vth of the memory cell MC in the “0” state “0” is assumed to be in the range of 0.5 V ⁇ Vth “0” ⁇ 1 V.
  • the two select gate transistors ST are turned on to supply a read current to the NAND string. In such a state, since the amount of current flowing through the NAND string changes according to the value of the data stored in the selected memory cell MC, data can be read by detecting this change.
  • the hole doping amount of the P-type semiconductor layer 47 is larger than that of the P-type well region 41c, and the Fermi level of the P-type semiconductor layer 47 is 0 than that of the P-type well region 41c. It is desirable that the depth is about 5V. This is because when a positive potential is applied to the control gate electrode 45, inversion from the P-type to N-type starts from the surface portion of the P-type well region 41c between the N-type diffusion layers 42, and a channel is formed. It is to make it.
  • the channel of the non-selected memory cell MC is formed only at the interface between the P-type well region 41c and the P-type semiconductor layer 47, and at the time of reading, a plurality of memories in the NAND string is formed.
  • the channel of the cell MC is formed only at the interface between the P-type well region 41 c and the P-type semiconductor layer 47. That is, even if the recording layer 13 of the nonvolatile memory element 44 used in the memory cell MC is in the low resistance state phase LR, the diffusion layer 42 and the control gate electrode 45 are not short-circuited.
  • FIG. 22 is a schematic view illustrating the configuration of the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
  • FIG. 23 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention. That is, another nonvolatile memory device 264 according to the present embodiment is a NOR flash memory.
  • FIG. 22 illustrates the NOR cell unit 264c and the drive unit 600 connected thereto, and FIG. The structure of the cell unit 264c is illustrated.
  • an N-type well region 41b and a P-type well region 41c are formed in the P-type semiconductor substrate 41a.
  • a NOR cell is formed in the P-type well region 41c.
  • the NOR cell is composed of one memory cell (MIS transistor) MC connected between the bit line BL and the source line SL.
  • the memory cell MC includes an N-type diffusion layer 42, a gate insulating layer 43 on a channel region between the N-type diffusion layers 42, a non-volatile storage element 44 on the gate insulating layer 43, and a non-volatile storage element 44. And the control gate electrode 45.
  • Each control gate electrode 45 is electrically connected to the drive unit 600.
  • the driving unit 600 may be provided on a substrate on which the NOR cell unit 264c is provided, or may be provided on a different substrate.
  • the state (high resistance state phase HR and low resistance state phase LR) of the recording layer 13 of the nonvolatile memory element 44 used in the memory cell MC can be changed by the above-described basic operation.
  • FIG. 24 is a schematic view illustrating the configuration of the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
  • FIG. 25 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention. That is, another nonvolatile memory device 265 according to the present embodiment is a two-tra type flash memory.
  • FIG. 24 illustrates a two-tracell unit 265c and a driving unit 600 connected thereto, and FIG. The structure of the 2 tracell unit 265c is illustrated.
  • the 2-tra cell unit 265c has a cell structure having both the characteristics of the NAND cell unit and the characteristics of the NOR cell.
  • an N-type well region 41b and a P-type well region 41c are formed in the P-type semiconductor substrate 41a.
  • a 2-tracell unit 265c is formed in the P-type semiconductor substrate 41a.
  • the 2-tra cell unit 265c includes one memory cell MC and one select gate transistor ST connected in series.
  • the memory cell MC and the select gate transistor ST have the same structure. Specifically, these include an N-type diffusion layer 42, a gate insulating layer 43 on a channel region between the N-type diffusion layers 42, a nonvolatile memory element 44 on the gate insulating layer 43, and a nonvolatile memory element And a control gate electrode 45 on the upper side 44.
  • Each control gate electrode 45 is electrically connected to the drive unit 600.
  • the drive part 600 may be provided in the board
  • the state (high resistance state phase HR and low resistance state phase LR) of the recording layer 13 of the nonvolatile memory element 44 used in the memory cell MC can be changed by the above-described basic operation.
  • the recording layer 13 of the select gate transistor ST is fixed to the set state, that is, the low resistance state phase LR.
  • the select gate transistor ST is connected to the source line SL, and the memory cell MC is connected to the bit line BL.
  • the recording layer 13 state (high resistance state phase HR and low resistance state phase LR) of the nonvolatile memory element 44 used in the memory cell MC can be changed by the basic operation described above.
  • FIG. 26 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention.
  • the select gate transistor ST can be a normal MIS transistor without forming the nonvolatile memory element 44. It is.
  • nonvolatile memory elements and nonvolatile memory devices that can be implemented by those skilled in the art based on the nonvolatile memory elements and nonvolatile memory devices described above as embodiments of the present invention are also included As long as the gist of the invention is included, it belongs to the scope of the present invention.
  • a non-volatile memory element and a non-volatile memory device having good processability, high accuracy, and high repetitive operation stability are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

A nonvolatile storage element is provided with a conductive first layer, a conductive second layer, and a recording layer arranged between the first layer and the second layer for recording information by reversibly transiting between a high resistance state and a low resistance state. At least the first layer or the second layer is composed of at least a metal oxide or a metal nitride or a metal carbide, and contains a first noble metal.

Description

不揮発性記憶素子及び不揮発性記憶装置Nonvolatile memory element and nonvolatile memory device
 本発明は、不揮発性記憶素子及び不揮発性記憶装置に関する。 The present invention relates to a nonvolatile memory element and a nonvolatile memory device.
 近年、小型携帯機器が世界的に普及し、同時に、高速情報伝送網の大幅な進展に伴い、小型大容量不揮発性メモリの需要が急速に拡大してきている。その中でも、NAND型フラッシュメモリ及び小型HDD(hard disk drive)は、特に、急速な記録密度の進化を遂げ、大きな市場を形成するに至っている。 In recent years, small portable devices have become widespread worldwide, and at the same time, with the rapid progress of high-speed information transmission networks, the demand for small-sized and large-capacity nonvolatile memories has been rapidly expanding. Among them, NAND flash memory and small HDD (hard disk drive) have achieved rapid development of recording density and formed a large market.
 このような状況の下、記録密度の限界を大幅に超えることを目指した新規メモリのアイデアがいくつか提案されている。 In this situation, several new memory ideas have been proposed aiming to greatly exceed the recording density limit.
 その中で、低抵抗状態と高抵抗状態とを有する抵抗変化材料を用いたメモリが提案されている。このような、抵抗変化材料に低抵抗状態と高抵抗状態との遷移を繰り返させた際に、低抵抗状態と高抵抗状態の特性が変動することがある。このため、繰り返し動作安定性を向上させることが望まれている。 Among them, a memory using a resistance change material having a low resistance state and a high resistance state has been proposed. When the resistance change material is caused to repeat the transition between the low resistance state and the high resistance state, the characteristics of the low resistance state and the high resistance state may vary. For this reason, it is desired to improve the stability of repeated operations.
 また、それと同時に、抵抗変化材料とそれに電圧を印加するための電極とを高い精度で加工する技術が望まれている。 At the same time, a technique for processing a variable resistance material and an electrode for applying a voltage thereto with high accuracy is desired.
 なお、特許文献1には、下部電極上に、HfO、ZnO、InZnOまたはITOからなる中間層を形成し、その上にNiO層を形成し、その上に可変抵抗物質を形成したメモリ素子が開示されている。 
 また、特許文献2には、Pt、Ru、Ir、Au、Ag、Ti等からなる2枚の電極の間に、Cuを含有する2つの層を有するメモリデバイスが開示されている。
米国特許出願公開第2008/0007988A1号明細書 米国特許出願公開第2008/0002458A1号明細書
Patent Document 1 discloses a memory element in which an intermediate layer made of HfO, ZnO, InZnO or ITO is formed on a lower electrode, a NiO layer is formed thereon, and a variable resistance material is formed thereon. Has been.
Patent Document 2 discloses a memory device having two layers containing Cu between two electrodes made of Pt, Ru, Ir, Au, Ag, Ti, or the like.
US Patent Application Publication No. 2008 / 0007988A1 US Patent Application Publication No. 2008 / 0002458A1
 本発明は、加工性が良く、高精度で、繰り返し動作安定性の高い不揮発性記憶素子及び不揮発性記憶装置を提供する。 The present invention provides a non-volatile memory element and a non-volatile memory device having good processability, high accuracy, and high repetitive operation stability.
 本発明の一態様によれば、導電性を有する第1層と、導電性を有する第2層と、前記第1層と前記第2層の間に設けられ、高抵抗状態と低抵抗状態との間を可逆的に遷移することによって情報を記録することが可能な記録層とを備え、前記第1層と前記第2層の少なくともいずれかの層は、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属を含有することを特徴とする不揮発性記憶素子が提供される。 According to one embodiment of the present invention, the first layer having conductivity, the second layer having conductivity, the first layer and the second layer are provided between the high resistance state and the low resistance state. A recording layer capable of recording information by reversibly transitioning between the first layer and the second layer, wherein at least one of the first layer and the second layer includes a metal oxide, a metal nitride, and a metal There is provided a nonvolatile memory element comprising at least one of carbides and containing a first noble metal.
 本発明の別の一態様によれば、上記の不揮発性記憶素子と、前記不揮発性記憶素子の前記記録層への電圧の印加、及び、前記記録層への電流の通電、の少なくともいずれかによって、前記記録層に前記高抵抗状態と前記低抵抗状態との間を遷移させて情報を記録する駆動部と、を備えたことを特徴とする不揮発性記憶装置が提供される。 According to another aspect of the present invention, the non-volatile memory element, at least one of application of a voltage to the recording layer of the non-volatile memory element and energization of a current to the recording layer. There is provided a non-volatile memory device comprising: a drive unit that records information by causing the recording layer to transition between the high resistance state and the low resistance state.
本発明の第1の実施形態に係る不揮発性記憶素子の構成を例示する模式的断面図である。1 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a first embodiment of the invention. 本発明の第1の実施形態に係る不揮発性記憶素子が応用される不揮発性記憶装置の要部の構成を例示する模式図である。1 is a schematic view illustrating the configuration of a main part of a nonvolatile memory device to which a nonvolatile memory element according to a first embodiment of the invention is applied. 本発明の第1の実施形態に係る不揮発性記憶素子の特性を例示するグラフ図である。FIG. 6 is a graph illustrating characteristics of the nonvolatile memory element according to the first embodiment of the invention. 本発明の第1の実施形態に係る変形例の不揮発性記憶素子の構成を例示する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a modification according to the first embodiment of the invention. 本発明の第2の実施形態に係る不揮発性記憶素子の構成を例示する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a second embodiment of the invention. 本発明の第2の実施形態に係る別の不揮発性記憶素子の構成を例示する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention. 本発明の第2の実施形態に係る別の不揮発性記憶素子の構成を例示する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention. 本発明の第3の実施形態に係る不揮発性記憶素子の構成を例示する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a third embodiment of the invention. 本発明の第3の実施形態に係る別の不揮発性記憶素子の構成を例示する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the third embodiment of the invention. 本発明の第4の実施形態に係る不揮発性記憶装置の構成を例示する模式的斜視図である。FIG. 9 is a schematic perspective view illustrating the configuration of a nonvolatile memory device according to a fourth embodiment of the invention. 本発明の第4の実施形態に係る不揮発性記憶装置の構成を例示する模式的回路図である。FIG. 6 is a schematic circuit diagram illustrating the configuration of a nonvolatile memory device according to a fourth embodiment of the invention. 本発明の第4の実施形態に係る別の不揮発性記憶装置の構成を例示する模式的斜視図である。FIG. 9 is a schematic perspective view illustrating the configuration of another nonvolatile memory device according to the fourth embodiment of the invention. 本発明の第4の実施形態に係る別の不揮発性記憶装置の構成を例示する模式的斜視図である。FIG. 9 is a schematic perspective view illustrating the configuration of another nonvolatile memory device according to the fourth embodiment of the invention. 本発明の第5の実施形態に係る不揮発性記憶装置の構成を例示する模式的斜視図である。FIG. 9 is a schematic perspective view illustrating the configuration of a nonvolatile memory device according to a fifth embodiment of the invention. 本発明の第5の実施形態に係る不揮発性記憶装置の構成を例示する模式的平面図である。FIG. 9 is a schematic plan view illustrating the configuration of a nonvolatile memory device according to a fifth embodiment of the invention. 本発明の第6の実施形態に係る不揮発性記憶装置の要部の構成を例示する模式的断面図である。FIG. 9 is a schematic cross-sectional view illustrating the configuration of a main part of a nonvolatile memory device according to a sixth embodiment of the invention. 本発明の第6の実施形態に係る不揮発性記憶装置の動作を例示する模式的断面図である。FIG. 10 is a schematic cross-sectional view illustrating the operation of a nonvolatile memory device according to a sixth embodiment of the invention. 本発明の第6の実施形態に係る別の不揮発性記憶装置の要部の構成を例示する模式図である。It is a schematic diagram which illustrates the structure of the principal part of another non-volatile memory device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る別の不揮発性記憶装置の要部を例示する模式的断面図である。FIG. 10 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention. 本発明の第6の実施形態に係る変形例の不揮発性記憶装置の要部を例示する模式的断面図である。FIG. 26 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention. 本発明の第6の実施形態に係る変形例の不揮発性記憶装置の要部を例示する模式的断面図である。FIG. 26 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention. 本発明の第6の実施形態に係る別の不揮発性記憶装置の要部の構成を例示する模式図である。It is a schematic diagram which illustrates the structure of the principal part of another non-volatile memory device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る別の不揮発性記憶装置の要部を例示する模式的断面図である。FIG. 10 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention. 本発明の第6の実施形態に係る別の不揮発性記憶装置の要部の構成を例示する模式図である。It is a schematic diagram which illustrates the structure of the principal part of another non-volatile memory device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係る別の不揮発性記憶装置の要部を例示する模式的断面図である。FIG. 10 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention. 本発明の第6の実施形態に係る変形例の不揮発性記憶装置の要部を例示する模式的断面図である。FIG. 26 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention.
符号の説明Explanation of symbols
 12 下部電極(第2層)
 12a 第2界面
 13 記録層
 14 上部電極(第1層)
 14a 第1界面
 15 第3層
 21 第1貴金属
 22 第2貴金属
 30 基板
 31 ワード線ドライバ
 32 ビット線ドライバ
 33 メモリセル
 33B 保護層
 34 整流素子
 35 ヒータ層
 41 半導体基板
 41a P型半導体基板
 41b N型ウェル領域
 41c P型ウェル領域
 42 N型拡散層(拡散層)
 43 ゲート絶縁層
 44 不揮発性記憶素子
 45 コントロールゲート電極
 47 P型半導体層
 210、211、212、250、260、261~266 不揮発性記憶装置
 261c NANDセルユニット
 264c NORセルユニット
 265c 2トラセルユニット
 310、311、320~325、330~333 不揮発性記憶素子
 515 ドライバ
 516 XYスキャナ
 520 基板
 521 電極
 523 基板
 524 プローブ
 525、526 マルチプレクスドライバ
 531 データエリア
 532 サーボエリア
 600 駆動部
12 Lower electrode (second layer)
12a Second interface 13 Recording layer 14 Upper electrode (first layer)
14a First interface 15 Third layer 21 First noble metal 22 Second noble metal 30 Substrate 31 Word line driver 32 Bit line driver 33 Memory cell 33B Protective layer 34 Rectifier 35 Heater layer 41 Semiconductor substrate 41a P-type semiconductor substrate 41b N-type well Region 41c P-type well region 42 N-type diffusion layer (diffusion layer)
43 Gate insulating layer 44 Nonvolatile memory element 45 Control gate electrode 47 P- type semiconductor layer 210, 211, 212, 250, 260, 261 to 266 Nonvolatile memory device 261c NAND cell unit 264c NOR cell unit 265c 2 tracell unit 310, 311, 320 to 325, 330 to 333 Non-volatile memory element 515 Driver 516 XY scanner 520 Substrate 521 Electrode 523 Substrate 524 Probe 525 526 Multiplex driver 531 Data area 532 Servo area 600 Drive unit
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。 
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
Note that, in the present specification and each drawing, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
 (第1の実施の形態)
 図1は、本発明の第1の実施形態に係る不揮発性記憶素子の構成を例示する模式的断面図である。 
 図1に表したように、本発明の第1の実施形態に係る不揮発性記憶素子310は、導電性を有する上部電極14(第1層)と、導電性を有する下部電極12(第2層)と、上部電極14と下部電極12との間に設けられ、高抵抗状態と低抵抗状態との間を可逆的に遷移することによって情報を記録することが可能な記録層13とを備え、上部電極14と下部電極12の少なくともいずれかは、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有する。
(First embodiment)
FIG. 1 is a schematic cross-sectional view illustrating the configuration of the nonvolatile memory element according to the first embodiment of the invention.
As shown in FIG. 1, the nonvolatile memory element 310 according to the first embodiment of the present invention includes a conductive upper electrode 14 (first layer) and a conductive lower electrode 12 (second layer). ) And a recording layer 13 provided between the upper electrode 14 and the lower electrode 12 and capable of recording information by reversibly transitioning between a high resistance state and a low resistance state, At least one of the upper electrode 14 and the lower electrode 12 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contains the first noble metal 21.
 本具体例においては、上部電極14及び下部電極12が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有する。 In this specific example, the upper electrode 14 and the lower electrode 12 are made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contain the first noble metal 21.
 記録層13は、記録層13に印加された電圧、または、記録層13を流れる電流によって、高抵抗状態の相と、低抵抗状態の相と、の相変化を呈する。すなわち、例えば、上部電極14及び下部電極12を介して記録層13に印加された電位差、または、上部電極14及び下部電極12を介して記録層13に通電された電流によって、記録層13は、抵抗率の異なる複数の状態の相を呈する。 The recording layer 13 exhibits a phase change between a high resistance state phase and a low resistance state phase depending on the voltage applied to the recording layer 13 or the current flowing through the recording layer 13. That is, for example, due to the potential difference applied to the recording layer 13 via the upper electrode 14 and the lower electrode 12 or the current passed through the recording layer 13 via the upper electrode 14 and the lower electrode 12, the recording layer 13 is It exhibits a plurality of phases with different resistivity.
 本実施形態に係る不揮発性記憶素子310は、例えば、クロスポイント型、プローブメモリ型、及び、各種のフラッシュメモリ型などの不揮発性記憶になどに応用することができる。一例として、不揮発性記憶素子310をクロスポイント型の不揮発性記憶装置に用いた場合の不揮発性記憶素子310の構成について説明する。 The nonvolatile memory element 310 according to this embodiment can be applied to, for example, a nonvolatile memory such as a cross point type, a probe memory type, and various flash memory types. As an example, a configuration of the nonvolatile memory element 310 when the nonvolatile memory element 310 is used in a cross-point nonvolatile memory device will be described.
 図2は、本発明の第1の実施形態に係る不揮発性記憶素子が応用される不揮発性記憶装置の要部の構成を例示する模式図である。 
 すなわち、同図(a)は模式的斜視図であり、同図(b)は模式的断面図である。 
 図2(a)、(b)に表したように、クロスポイント型の不揮発性記憶装置210においては、例えば、ワード線WLとビット線BLとの間に、メモリセル33及び整流素子34が設けられる。なお、ワード線WLとビット線BLとの上下の配置の関係は任意である。そして、ワード線WLとビット線BLとの間における、メモリセル33と整流素子34との配置の関係も任意である。すなわち、図2に例示した具体例では、メモリセル33は整流素子34よりもビット線BLの側に配置されているが、メモリセル33は整流素子34よりもワード線WLの側に配置されても良い。
FIG. 2 is a schematic view illustrating the configuration of the main part of a nonvolatile memory device to which the nonvolatile memory element according to the first embodiment of the invention is applied.
1A is a schematic perspective view, and FIG. 1B is a schematic cross-sectional view.
As shown in FIGS. 2A and 2B, in the cross-point type nonvolatile memory device 210, for example, between the word line WL i and the bit line BL j , the memory cell 33 and the rectifying element 34 are used. Is provided. The upper and lower arrangement relationship between the word line WL i and the bit line BL j is arbitrary. The arrangement relationship between the memory cell 33 and the rectifying element 34 between the word line WL i and the bit line BL j is also arbitrary. That is, in the specific example illustrated in FIG. 2, the memory cell 33 is disposed on the bit line BL j side with respect to the rectifying element 34, but the memory cell 33 is disposed on the word line WL i side with respect to the rectifying element 34. May be.
 そして、図2に表したように、メモリセル33は、本実施形態に係る不揮発性記憶素子310を有する。不揮発性記憶素子310は、下部電極12と、上部電極14と、下部電極12と上部電極14との間に設けられた記録層13を有する。このように、メモリセル33は不揮発性記憶素子310を含む。ここで、上部電極14と下部電極12とは、便宜的な名称であり、互いに入れ替えが可能である。 As shown in FIG. 2, the memory cell 33 includes the nonvolatile memory element 310 according to the present embodiment. The nonvolatile memory element 310 includes a lower electrode 12, an upper electrode 14, and a recording layer 13 provided between the lower electrode 12 and the upper electrode 14. As described above, the memory cell 33 includes the nonvolatile memory element 310. Here, the upper electrode 14 and the lower electrode 12 have convenient names and can be interchanged.
 また、メモリセル33は、不揮発性記憶素子310の他に、保護層33Bと、不揮発性半導体記憶装置310と保護層33Bとの間に設けられたヒータ層35を有することができる。なお、本具体例では、保護層33Bは、不揮発性記憶素子310のビット線BLの側に設けられているが、保護層33Bは、不揮発性記憶素子310のワード線WLの側に設けても良く、整流素子34とワード線WLとの間に設けても良い。さらに、これらヒータ層35と保護層33Bは必要に応じて設けられ、省略可能である。 In addition to the nonvolatile memory element 310, the memory cell 33 can include a protective layer 33B and a heater layer 35 provided between the nonvolatile semiconductor memory device 310 and the protective layer 33B. In this specific example, the protective layer 33B is provided on the bit line BL j side of the nonvolatile memory element 310, but the protective layer 33B is provided on the word line WL i side of the nonvolatile memory element 310. Alternatively, it may be provided between the rectifying element 34 and the word line WL i . Further, the heater layer 35 and the protective layer 33B are provided as necessary and can be omitted.
 これらワード線WL、整流素子34、メモリセル33及びビット線BLは、それぞれ複数設けられ、それらの間には、絶縁層が設けられ、互いに絶縁される。 A plurality of these word lines WL i , rectifying elements 34, memory cells 33, and bit lines BL j are provided, and an insulating layer is provided between them to be insulated from each other.
 なお、不揮発性記憶素子310の下部電極12及び上部電極14の少なくともいずれかは、不揮発性記憶素子310に隣接する例えば、ワード線WL、整流素子34、ヒータ層35、保護層33B、ビット線BLの少なくともいずれかと兼用されても良い。この場合は、下部電極12及び上部電極14の少なくともいずれかと兼用された層が、下部電極12及び上部電極14の少なくともいずれか、と見なされる。 Note that at least one of the lower electrode 12 and the upper electrode 14 of the nonvolatile memory element 310 is adjacent to the nonvolatile memory element 310, for example, a word line WL i , a rectifier element 34, a heater layer 35, a protective layer 33B, a bit line. It may also be used as at least one of BL j . In this case, the layer that is also used as at least one of the lower electrode 12 and the upper electrode 14 is regarded as at least one of the lower electrode 12 and the upper electrode 14.
 ここで、図1に戻り、本実施形態に係る不揮発性記憶素子310においては、上部電極14及び下部電極12は、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有する。 Here, referring back to FIG. 1, in the nonvolatile memory element 310 according to the present embodiment, the upper electrode 14 and the lower electrode 12 are made of at least one of a metal oxide, a metal nitride, and a metal carbide, and the first noble metal. 21 is contained.
 第1貴金属21には、Ag、Pt及びPdよりなる群から選択された少なくとも1種を用いることができる。 The first noble metal 21 can be at least one selected from the group consisting of Ag, Pt and Pd.
 一方、記録層13には、記録層13に印加された電圧、または、記録層13を流れる電流によって、高抵抗状態の相と、低抵抗状態の相と、の相変化を呈する全ての材料を用いることができる。 On the other hand, in the recording layer 13, all materials exhibiting a phase change between a high resistance state phase and a low resistance state phase due to a voltage applied to the recording layer 13 or a current flowing through the recording layer 13. Can be used.
 具体的には、例えば、記録層13には、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造、A(0.1≦x≦1.1、0.9≦y≦1.1)で表されるデラフォサイト構造、A(0.5≦x≦1.1、0.7≦y≦1.1)で表されるウルフラマイト構造、及びA(0.5≦x≦1.1、0.9≦y≦1)で表されるイルメナイト構造のいずれかを有する材料を用いることができる。 Specifically, for example, the recording layer 13 has a spinel structure represented by A x B y X 4 (0.1 ≦ x ≦ 2.2, 1.5 ≦ y ≦ 2), A x B y X 2 (0.1 ≦ x ≦ 1.1, 0.9 ≦ y ≦ 1.1), a delafossite structure, A x B y X 4 (0.5 ≦ x ≦ 1.1, 0. Any of a wolframite structure represented by 7 ≦ y ≦ 1.1 and an ilmenite structure represented by A x B y X 3 (0.5 ≦ x ≦ 1.1, 0.9 ≦ y ≦ 1) A material having the following can be used.
 元素Aは、典型元素であり、Zn、Cd及びHgよりなる群から選択された少なくとも1種とすることができる。 
 元素Bは、遷移元素であり、Cr及びMnよりなる群から選択された少なくとも1種とすることができる。 
 さらに、具体的には、元素Aは、Zn、Cd及びHgよりなる群から選択された少なくとも1種であり、かつ、元素Bは、Cr及びMnよりなる群から選択された少なくとも1種とすることができる。
The element A is a typical element and can be at least one selected from the group consisting of Zn, Cd, and Hg.
The element B is a transition element and can be at least one selected from the group consisting of Cr and Mn.
More specifically, the element A is at least one selected from the group consisting of Zn, Cd and Hg, and the element B is at least one selected from the group consisting of Cr and Mn. be able to.
 そして、例えば、上記の「X」は酸素とすることができる。すなわち、記録層13には各種の酸化物が用いられる。 And, for example, the above “X” can be oxygen. That is, various oxides are used for the recording layer 13.
 記録層13に接する上部電極14及び下部電極12に用いられる材料が、不揮発性記憶素子310の電気的特性に大きく影響を与える。具体的には、記録層13の高抵抗状態と低抵抗状態とのスイッチングを繰り返すうちに、高抵抗状態の抵抗や低抵抗状態の抵抗が変動する。また、高抵抗状態となる印加電圧または通電電流や、低抵抗状態となる印加電圧または通電電流が変動する。そして、このような抵抗の変動や、電圧や電流の変動は、上部電極14及び下部電極12に用いられる材料に大きく依存する。 The material used for the upper electrode 14 and the lower electrode 12 in contact with the recording layer 13 greatly affects the electrical characteristics of the nonvolatile memory element 310. Specifically, as the recording layer 13 is repeatedly switched between the high resistance state and the low resistance state, the resistance in the high resistance state and the resistance in the low resistance state vary. Further, the applied voltage or energizing current that becomes a high resistance state and the applied voltage or energizing current that becomes a low resistance state vary. Such resistance fluctuations and voltage and current fluctuations greatly depend on the materials used for the upper electrode 14 and the lower electrode 12.
 発明者の実験によると、上部電極14及び下部電極12に貴金属を用いた場合に、これらの抵抗の変動や、電圧や電流の変動が抑制され、繰り返し動作安定性を向上させることが判明した。 According to the inventors' experiment, it has been found that when noble metals are used for the upper electrode 14 and the lower electrode 12, fluctuations in resistance, fluctuations in voltage and current are suppressed, and repeated operational stability is improved.
 しかし、上部電極14及び下部電極12として貴金属を用いた場合は、貴金属の加工性が悪いために、上部電極14及び下部電極12を形成する際の加工性が悪いため、上部電極14及び下部電極12の加工精度が悪く、また、場合によっては、それらに挟持される記録層13の特性を劣化させる。 However, when a noble metal is used as the upper electrode 14 and the lower electrode 12, the workability of the noble metal is poor and the workability when forming the upper electrode 14 and the lower electrode 12 is poor. The processing accuracy of the recording layer 12 is poor, and in some cases, the characteristics of the recording layer 13 sandwiched between them are deteriorated.
 一方、上部電極14及び下部電極12として、金属酸化物、金属窒化物及び金属炭化物などの導電性材料を用いると加工性は良好であるが、記録層13スイッチングを繰り返した時の抵抗の変動や、電圧や電流の変動が大きくなる。すなわち、繰り返し動作安定性が悪い。 On the other hand, when a conductive material such as a metal oxide, a metal nitride, and a metal carbide is used as the upper electrode 14 and the lower electrode 12, the workability is good. However, when the recording layer 13 is repeatedly switched, , Fluctuations in voltage and current increase. That is, repeated operation stability is poor.
 この時、本実施形態に係る不揮発性記憶素子310においては、上部電極14及び下部電極12は、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有する。 At this time, in the nonvolatile memory element 310 according to the present embodiment, the upper electrode 14 and the lower electrode 12 are made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contain the first noble metal 21.
 このため、上部電極14及び下部電極12は、金属酸化物、金属窒化物及び金属炭化物と実質的に同様の良好な加工性を有することができる。 
 例えば、不揮発性記憶素子310を作製する際には、下部電極12となる膜、記録層13となる膜及び上部電極14となる膜を積層し、その後、これらの膜を、マスクを用いたドライエッチングなどの手法により加工して、下部電極12、記録層13及び上部電極14を形成する。この時、記録層13は例えば酸化物であり、上部電極14及び下部電極12は、金属酸化物、金属窒化物及び金属炭化物を含むので、記録層13と、上部電極14及び下部電極12と、の加工性が近い特性であり、実質的に同様の加工性となる。結果として、不揮発性記憶素子310は良好な加工性で高い精度で加工される。
For this reason, the upper electrode 14 and the lower electrode 12 can have good workability substantially similar to that of the metal oxide, metal nitride, and metal carbide.
For example, when the nonvolatile memory element 310 is manufactured, a film to be the lower electrode 12, a film to be the recording layer 13, and a film to be the upper electrode 14 are stacked, and these films are then dried using a mask. The lower electrode 12, the recording layer 13, and the upper electrode 14 are formed by processing such as etching. At this time, the recording layer 13 is, for example, an oxide, and the upper electrode 14 and the lower electrode 12 include a metal oxide, a metal nitride, and a metal carbide. Therefore, the recording layer 13, the upper electrode 14, the lower electrode 12, The processability is similar, and the processability is substantially the same. As a result, the nonvolatile memory element 310 is processed with high accuracy with good processability.
 そして、上部電極14及び下部電極12は、第1貴金属21を有しているので、記録層13の特性の変動を抑制でき、繰り返し動作安定性を向上させる。 Since the upper electrode 14 and the lower electrode 12 have the first noble metal 21, fluctuations in the characteristics of the recording layer 13 can be suppressed, and repeated operational stability can be improved.
 このように、本実施形態に係る不揮発性記憶素子310によれば、加工性が良く、高精度で、繰り返し動作安定性の高い不揮発性記憶素子が提供できる。 As described above, according to the nonvolatile memory element 310 according to the present embodiment, it is possible to provide a nonvolatile memory element with good processability, high accuracy, and high repetitive operation stability.
 図3は、本発明の第1の実施形態に係る不揮発性記憶素子の特性を例示するグラフ図である。 
 すなわち、同図は上部電極14及び下部電極12における第1貴金属21と、不揮発性記憶素子の繰り返し動作安定性及び加工性と、の関係を例示している。同図(a)、(b)の横軸は、上部電極14及び下部電極12における第1貴金属21の濃度C1を示す。同図(a)の縦軸は、不揮発性記憶素子310の繰り返し動作安定性を示す。同図(b)の縦軸は、上部電極14及び下部電極12となる膜の加工性である。
FIG. 3 is a graph illustrating characteristics of the nonvolatile memory element according to the first embodiment of the invention.
That is, this figure illustrates the relationship between the first noble metal 21 in the upper electrode 14 and the lower electrode 12 and the repetitive operation stability and workability of the nonvolatile memory element. The horizontal axes of FIGS. 9A and 9B show the concentration C1 of the first noble metal 21 in the upper electrode 14 and the lower electrode 12. The vertical axis in FIG. 5A shows the stability of repeated operation of the nonvolatile memory element 310. The vertical axis in FIG. 5B is the workability of the film that becomes the upper electrode 14 and the lower electrode 12.
 図3(a)に表したように、上部電極14及び下部電極12における第1貴金属21の濃度C1が増大するにつれて、不揮発性記憶素子310の繰り返し動作安定性は向上する。 As shown in FIG. 3A, as the concentration C1 of the first noble metal 21 in the upper electrode 14 and the lower electrode 12 increases, the repetitive operation stability of the nonvolatile memory element 310 is improved.
 一方、図3(b)に表したように、上部電極14及び下部電極12における第1貴金属21の濃度C1が増大するにつれて、上部電極14及び下部電極12となる膜の加工性は悪くなる。 On the other hand, as shown in FIG. 3B, as the concentration C1 of the first noble metal 21 in the upper electrode 14 and the lower electrode 12 increases, the workability of the film that becomes the upper electrode 14 and the lower electrode 12 deteriorates.
 従って、上部電極14及び下部電極12における第1貴金属21の濃度C1は、不揮発性記憶素子310の繰り返し動作安定性が良好、かつ、上部電極14及び下部電極12となる膜の加工性が良好な範囲とすることが望ましい。 Accordingly, the concentration C1 of the first noble metal 21 in the upper electrode 14 and the lower electrode 12 is good in the repetitive operation stability of the nonvolatile memory element 310 and the workability of the film that becomes the upper electrode 14 and the lower electrode 12 is good. A range is desirable.
 具体的には、上部電極14及び下部電極12における第1貴金属21の濃度C1は、2原子百分率以上、40原子百分率以下とすることが望ましい。 
 すなわち、濃度C1が2原子百分率よりも低いと、繰り返し動作安定性の向上の効果が低くなる。また、濃度C1が40原子百分率よりも高いと加工性が悪化する。
Specifically, the concentration C1 of the first noble metal 21 in the upper electrode 14 and the lower electrode 12 is desirably 2 atomic percent or more and 40 atomic percent or less.
That is, when the concentration C1 is lower than 2 atomic percent, the effect of improving the repeated operation stability is lowered. On the other hand, when the concentration C1 is higher than 40 atomic percent, the workability deteriorates.
 また、図1に例示したように、上部電極14及び下部電極12において、第1貴金属21は分散されて、上部電極14及び下部電極12に含有されることが望ましい。すなわち、第1貴金属21は、上部電極14及び下部電極12となる金属酸化物、金属窒化物及び金属炭化物の中に合金や固溶体として含有されるのではなく、第1貴金属21のみの領域として分散されて含有されることが望ましい。このように、第1貴金属21が、第1貴金属21のみの領域として分散されて含有されることによって、加工性がさらに良く、高精度で、繰り返し動作安定性の高い不揮発性記憶素子が提供できる。 Further, as illustrated in FIG. 1, it is desirable that the first noble metal 21 is dispersed and contained in the upper electrode 14 and the lower electrode 12 in the upper electrode 14 and the lower electrode 12. That is, the first noble metal 21 is not contained as an alloy or a solid solution in the metal oxide, metal nitride, and metal carbide to be the upper electrode 14 and the lower electrode 12, but is dispersed as a region of only the first noble metal 21. It is desirable to be contained. As described above, the first noble metal 21 is dispersed and contained as a region of only the first noble metal 21, thereby providing a nonvolatile memory element with better workability, high accuracy, and high repeated operation stability. .
 例えば、第1貴金属21は、上部電極14及び下部電極12の内部及び表面の少なくともいずれかにおいて、析出しても良い。特に、上部電極14及び下部電極12の記録層13との界面側に析出していても良い。 
 すなわち、第1貴金属21は、上部電極14及び下部電極12となる金属酸化物、金属窒化物及び金属炭化物の内部及び表面の少なくともいずれかにおいて、析出していても良い。
For example, the first noble metal 21 may be deposited on the inside and / or the surface of the upper electrode 14 and the lower electrode 12. In particular, it may be deposited on the interface side of the upper electrode 14 and the lower electrode 12 with the recording layer 13.
That is, the first noble metal 21 may be precipitated in at least one of the inside and the surface of the metal oxide, metal nitride, and metal carbide that become the upper electrode 14 and the lower electrode 12.
 そして、第1貴金属21は、上部電極14及び下部電極12の内部及び表面の少なくともいずれかにおいて、複数の第1粒として析出していることができる。 
 第1粒の粒径は、例えば、0.5nm~10nmとすることができる。 
 すなわち、0.5nmよりも小さいときは繰り返し動作安定性の向上の効果が低く、また10nmよりも大きいときは加工性が悪化する。 
 そして、第1粒の粒径は、より好ましくは、1.0nm~10nmとすることができる。1.0nm以上とすることで、繰り返し動作安定性の向上効果がより得易い。
The first noble metal 21 can be precipitated as a plurality of first grains in at least one of the inside and the surface of the upper electrode 14 and the lower electrode 12.
The particle diameter of the first grains can be set to 0.5 nm to 10 nm, for example.
That is, when it is smaller than 0.5 nm, the effect of improving the repeated operation stability is low, and when it is larger than 10 nm, the workability deteriorates.
The particle diameter of the first grain is more preferably 1.0 nm to 10 nm. By setting the thickness to 1.0 nm or more, it is easier to obtain the effect of improving the repeated operation stability.
 その時、上記の第1粒どうしの間隔の平均は、第1粒の径よりも大きく設定されることが望ましい。 
 これにより、第1粒どうしの間隔が広くなり、加工性が向上する。これにより、第1粒どうしの間隔が広がり加工性が向上する。ただし、第1粒どうしの間隔が広がり過ぎると、結果として、第1貴金属21の含有量が減り、繰り返し動作安定性の向上の効果が低くなる。
At that time, the average of the interval between the first grains is preferably set larger than the diameter of the first grains.
Thereby, the space | interval of 1st grains becomes wide and workability improves. Thereby, the space | interval of 1st grains spreads and workability improves. However, when the interval between the first grains is too wide, as a result, the content of the first noble metal 21 is reduced, and the effect of improving the repeated operation stability is lowered.
 このように、第1貴金属21が、析出し、より具体的には、複数の第1粒として析出していることで、不揮発性記憶素子310の繰り返し動作安定性を維持しつつ、上部電極14及び下部電極12となる膜の加工性がより向上できる。 As described above, the first noble metal 21 is deposited, and more specifically, the first precious metal 21 is deposited as a plurality of first grains, so that the upper electrode 14 is maintained while maintaining the repetitive operation stability of the nonvolatile memory element 310. And the workability of the film to be the lower electrode 12 can be further improved.
 そして、上記の第1粒どうしの間隔の平均を、第1粒の径よりも大きく設定することで、上記の第1粒どうしの間隔、すなわち、上部電極14及び下部電極12となる金属酸化物、金属窒化物及び金属炭化物の領域と、上記の第1粒どうしの領域とが、それぞれ個別の領域として固まり、より加工性が向上する。 Then, by setting the average of the interval between the first grains larger than the diameter of the first grains, the interval between the first grains, that is, the metal oxide that becomes the upper electrode 14 and the lower electrode 12 The regions of metal nitride and metal carbide and the region of the first grains are solidified as individual regions, so that the workability is further improved.
 なお、本具体例のように、上部電極14と下部電極12の両方が、第1貴金属21を有する場合、上部電極14と下部電極12とで、含有する貴金属の種類、含有量、濃度分布、分散状態、析出状態、第1粒の径、第1粒どうしの間隔などが異なっていても良い。 In addition, when both the upper electrode 14 and the lower electrode 12 have the 1st noble metal 21 like this specific example, with the upper electrode 14 and the lower electrode 12, the kind of noble metal to contain, content, concentration distribution, The dispersion state, the precipitation state, the diameter of the first grains, the interval between the first grains, and the like may be different.
 図4は、本発明の第1の実施形態に係る変形例の不揮発性記憶素子の構成を例示する模式的断面図である。 
 図4に表したように、本発明の第1の実施形態に係る変形例の不揮発性記憶素子311においては、上部電極14と下部電極12が、導電性を有する金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなる。そして、上部電極14のみが、第1貴金属21を含有する。すなわち、下部電極12は、第1貴金属21を含有していない。
FIG. 4 is a schematic cross-sectional view illustrating the configuration of a nonvolatile memory element according to a modification according to the first embodiment of the invention.
As shown in FIG. 4, in the nonvolatile memory element 311 of the modification according to the first embodiment of the present invention, the upper electrode 14 and the lower electrode 12 are made of conductive metal oxide, metal nitride, and It consists of at least one of metal carbide. Only the upper electrode 14 contains the first noble metal 21. That is, the lower electrode 12 does not contain the first noble metal 21.
 この場合は、上部電極14の方が、下部電極よりも相対的に加工性が低く、逆に、繰り返し動作安定性は良好となる。 In this case, the upper electrode 14 is relatively less workable than the lower electrode, and on the contrary, the repeated operation stability is better.
 例えば、基板の上に、下部電極12となる膜、記録層13となる膜、及び、上部電極14となる膜を積層し、その後、これらの積層膜を一括して、例えばエッチングなどによって加工する場合には、上部電極14となる膜の方が、下部電極12となる膜よりもエッチングにさらされる時間が長くなる。このため、上部電極14の方が、下部電極よりも相対的に加工性が低くなるように設定することができる。 For example, a film to be the lower electrode 12, a film to be the recording layer 13, and a film to be the upper electrode 14 are laminated on the substrate, and then these laminated films are collectively processed by, for example, etching or the like. In some cases, the film to be the upper electrode 14 is exposed to etching longer than the film to be the lower electrode 12. For this reason, the upper electrode 14 can be set so as to be relatively less workable than the lower electrode.
 このように、上部電極14と下部電極12のいずれかが、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有しても良い。 As described above, either the upper electrode 14 or the lower electrode 12 may be made of at least one of a metal oxide, a metal nitride, and a metal carbide, and may contain the first noble metal 21.
 なお、加工方法によっては、逆に、下部電極12のみが第1貴金属21を含有し、上部電極14が第1貴金属21を含有していないようにしても良い。 Depending on the processing method, on the contrary, only the lower electrode 12 may contain the first noble metal 21 and the upper electrode 14 may not contain the first noble metal 21.
 また、本実施形態に係る不揮発性記憶素子においては、上部電極14及び下部電極12が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有すれば良く、これらの膜の材料構成及び加工方法によっては、例えば、上部電極14が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有し、下部電極12が、貴金属からなる膜で構成されても良い。また、逆に、下部電極12が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有し、上部電極14が、貴金属からなる膜で構成されても良い。 In the nonvolatile memory element according to this embodiment, the upper electrode 14 and the lower electrode 12 may be made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contain the first noble metal 21. Depending on the material configuration and processing method of these films, for example, the upper electrode 14 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, contains the first noble metal 21, and the lower electrode 12 has a noble metal. You may comprise with the film | membrane which consists of. Conversely, the lower electrode 12 may be made of at least one of a metal oxide, a metal nitride, and a metal carbide, contain the first noble metal 21, and the upper electrode 14 may be made of a film made of a noble metal. .
 (第2の実施の形態)
 図5は、本発明の第2の実施形態に係る不揮発性記憶素子の構成を例示する模式的断面図である。 
 図5(a)に表したように、本発明の第2の実施形態に係る不揮発性記憶素子320は、上部電極14及び下部電極12が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有する。
(Second Embodiment)
FIG. 5 is a schematic cross-sectional view illustrating the configuration of the nonvolatile memory element according to the second embodiment of the invention.
As shown in FIG. 5A, in the nonvolatile memory element 320 according to the second embodiment of the present invention, the upper electrode 14 and the lower electrode 12 are at least one of metal oxide, metal nitride, and metal carbide. It contains the first noble metal 21.
 上部電極14及び下部電極12の前記記録層13に近い側における第1貴金属21の濃度は、上部電極14及び下部電極12の前記近い側よりも記録層13から遠い側における第1貴金属21の濃度よりも高い。 The concentration of the first noble metal 21 on the side closer to the recording layer 13 of the upper electrode 14 and the lower electrode 12 is the concentration of the first noble metal 21 on the side farther from the recording layer 13 than the closer side of the upper electrode 14 and lower electrode 12. Higher than.
 すなわち、上部電極14と記録層13との間の界面である第1界面14aに近い領域では、第1貴金属21の濃度は高く、第1界面14aから遠い領域では、第1貴金属21の濃度は相対的に低い。一方、下部電極12と記録層13との間の界面である第2界面12aに近い領域では、第1貴金属21の濃度は高く、第2界面12aから遠い領域では、第1貴金属21の濃度は相対的に低い。 That is, the concentration of the first noble metal 21 is high in the region close to the first interface 14a that is the interface between the upper electrode 14 and the recording layer 13, and the concentration of the first noble metal 21 is high in the region far from the first interface 14a. Relatively low. On the other hand, the concentration of the first noble metal 21 is high in the region close to the second interface 12a that is the interface between the lower electrode 12 and the recording layer 13, and the concentration of the first noble metal 21 is high in the region far from the second interface 12a. Relatively low.
 上部電極14及び下部電極12において、記録層13に近い側において、第1貴金属21の濃度を高くすることにより、記録層13の繰り返し動作の安定性は確保できる。 In the upper electrode 14 and the lower electrode 12, the stability of the repetitive operation of the recording layer 13 can be ensured by increasing the concentration of the first noble metal 21 on the side closer to the recording layer 13.
 一方、上部電極14及び下部電極12において、記録層13から遠い側においては、第1貴金属21の濃度を低くすることにより、上部電極14及び下部電極12となる膜の加工性が全体として改善される。 On the other hand, in the upper electrode 14 and the lower electrode 12, on the side far from the recording layer 13, the workability of the film to be the upper electrode 14 and the lower electrode 12 is improved as a whole by reducing the concentration of the first noble metal 21. The
 このように、本実施形態に係る不揮発性記憶素子320によれば、さらに加工性が良く、さらに高精度で、さらに繰り返し動作安定性の高い不揮発性記憶素子が提供できる。 As described above, according to the nonvolatile memory element 320 according to the present embodiment, it is possible to provide a nonvolatile memory element that has better workability, higher accuracy, and higher repeated operation stability.
 また、図5(b)に表したように、本発明の第2の実施形態に係る別の不揮発性記憶素子321では、上部電極14が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有し、そして、上部電極14の記録層13に近い側における第1貴金属21の濃度を、上部電極14の前記近い側よりも記録層13から遠い側における第1貴金属21の濃度よりも高く設定している。このように、上部電極14と下部電極12の少なくともいずれかに第1貴金属21を含有させ、その第1貴金属21の濃度に勾配を設けても、繰り返し動作安定性と加工性との両方をより高度に両立させることができる。 Further, as shown in FIG. 5B, in another nonvolatile memory element 321 according to the second embodiment of the present invention, the upper electrode 14 is made of at least one of a metal oxide, a metal nitride, and a metal carbide. The first noble metal 21 is contained, and the concentration of the first noble metal 21 on the side closer to the recording layer 13 of the upper electrode 14 is set to be higher on the side farther from the recording layer 13 than the closer side of the upper electrode 14. It is set higher than the concentration of one noble metal 21. As described above, even when the first noble metal 21 is contained in at least one of the upper electrode 14 and the lower electrode 12 and the concentration of the first noble metal 21 is provided with a gradient, both the repeated operation stability and the workability are further improved. Highly compatible.
 このように、上部電極14と下部電極12の少なくともいずれかが、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有し、そして、前記少なくともいずれかの記録層13に近い側における第1貴金属21の濃度を、前記少なくともいずれかの前記近い側よりも記録層13から遠い側における第1貴金属21の濃度よりも高く設定することで、繰り返し動作安定性と加工性との両方をより高度に両立させることができる。 Thus, at least one of the upper electrode 14 and the lower electrode 12 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, contains the first noble metal 21, and the at least one of the records By setting the concentration of the first noble metal 21 on the side close to the layer 13 higher than the concentration of the first noble metal 21 on the side farther from the recording layer 13 than the at least any one of the close sides, Both the workability and the workability can be made more compatible.
 図6は、本発明の第2の実施形態に係る別の不揮発性記憶素子の構成を例示する模式的断面図である。 
 図6(a)に表したように、本発明の第2の実施形態に係る別の不揮発性記憶素子322は、上部電極14及び下部電極12が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有する。
FIG. 6 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention.
As shown in FIG. 6A, in another nonvolatile memory element 322 according to the second embodiment of the present invention, the upper electrode 14 and the lower electrode 12 are made of metal oxide, metal nitride, and metal carbide. It consists of at least one and contains the first noble metal 21.
 そして、上部電極14の記録層13との第1界面14aの部分と、下部電極12の記録層13との第2界面12aに部分に、第1貴金属21が局在している。 
 なお、この場合も、第1貴金属21の濃度は、上部電極14及び下部電極12の記録層13に近い側は、記録層13から遠い側よりも高い状態の一例である。
The first noble metal 21 is localized in a portion of the first interface 14 a with the recording layer 13 of the upper electrode 14 and a portion of the second interface 12 a with the recording layer 13 of the lower electrode 12.
Also in this case, the concentration of the first noble metal 21 is an example of a state in which the side closer to the recording layer 13 of the upper electrode 14 and the lower electrode 12 is higher than the side farther from the recording layer 13.
 このように、上部電極14の記録層13との第1界面14aの部分と、下部電極12の記録層13との第2界面12aに部分に、第1貴金属21を局在させた場合においても、記録層13の繰り返し動作の安定性は確保できる。 As described above, even when the first noble metal 21 is localized at the portion of the first interface 14 a with the recording layer 13 of the upper electrode 14 and the portion of the second interface 12 a with the recording layer 13 of the lower electrode 12. The stability of the repetitive operation of the recording layer 13 can be ensured.
 一方、上部電極14及び下部電極12において、記録層13から遠い側においては、第1貴金属21の濃度が低いので、上部電極14及び下部電極12となる膜の加工性が全体として改善される。 On the other hand, in the upper electrode 14 and the lower electrode 12, the concentration of the first noble metal 21 is low on the side far from the recording layer 13, so that the workability of the film to be the upper electrode 14 and the lower electrode 12 is improved as a whole.
 このように、本実施形態に係る不揮発性記憶素子322によれば、さらに加工性が良く、さらに高精度で、さらに繰り返し動作安定性の高い不揮発性記憶素子が提供できる。 As described above, according to the nonvolatile memory element 322 according to the present embodiment, it is possible to provide a nonvolatile memory element with better workability, higher accuracy, and higher repeated operation stability.
 また、図6(b)に表したように、本発明の第2の実施形態に係る別の不揮発性記憶素子323では、上部電極14が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、記録層13との第1界面14aに局在して第1貴金属21を含有している。このように、上部電極14と下部電極12の少なくともいずれかに、記録層13との界面に局在して第1貴金属21を含有させても、繰り返し動作安定性と加工性との両方をより高度に両立させることができる。 In addition, as illustrated in FIG. 6B, in another nonvolatile memory element 323 according to the second embodiment of the present invention, the upper electrode 14 is at least one of metal oxide, metal nitride, and metal carbide. The first noble metal 21 is contained in the first interface 14 a with the recording layer 13. Thus, even when at least one of the upper electrode 14 and the lower electrode 12 is localized at the interface with the recording layer 13 and contains the first noble metal 21, both repeated operation stability and workability are further improved. Highly compatible.
 このように、上部電極14と下部電極12の少なくともいずれかが、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、前記少なくともいずれかと記録層13との界面に局在して第1貴金属21を含有することで、繰り返し動作安定性と加工性との両方をより高度に両立させることができる。 As described above, at least one of the upper electrode 14 and the lower electrode 12 is made of at least one of metal oxide, metal nitride, and metal carbide, and is localized at the interface between the at least one and the recording layer 13. By including one noble metal 21, both repeated operation stability and workability can be made more highly compatible.
 図7は、本発明の第2の実施形態に係る別の不揮発性記憶素子の構成を例示する模式的断面図である。 
 図7(a)に表したように、本発明の第2の実施形態に係る別の不揮発性記憶素子324は、上部電極14及び下部電極12が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21を含有する。
FIG. 7 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the second embodiment of the invention.
As shown in FIG. 7A, in another nonvolatile memory element 324 according to the second embodiment of the present invention, the upper electrode 14 and the lower electrode 12 are made of metal oxide, metal nitride, and metal carbide. It consists of at least one and contains the first noble metal 21.
 そして、上部電極14の記録層13との第1界面14aの部分と、下部電極12の記録層13との第2界面12aに部分に、第1貴金属21が、膜厚の薄い膜として連続して局在している。例えば、この薄い膜は、膜厚が1.0nm以上20nm以下の薄い膜である。膜厚が1.0nmよりも薄いと繰り返し動作安定性の向上の効果が低く、膜厚が20nmよりも厚いと加工性が悪化する。 
 このように、材料としての加工性が低い第1貴金属21が、上部電極14の記録層13との第1界面14aの部分と、下部電極12の記録層13との第2界面12aに部分に、薄い膜として連続して設けられた場合も、膜厚が薄いために、加工性の悪さは実質的に問題とはならない。
The first noble metal 21 is continuously formed as a thin film on the portion of the first interface 14a with the recording layer 13 of the upper electrode 14 and the portion of the second interface 12a with the recording layer 13 of the lower electrode 12. Are localized. For example, this thin film is a thin film having a film thickness of 1.0 nm to 20 nm. If the film thickness is less than 1.0 nm, the effect of improving the repeated operation stability is low, and if the film thickness is more than 20 nm, the workability deteriorates.
As described above, the first noble metal 21 having a low workability as a material is formed in a portion of the first interface 14a with the recording layer 13 of the upper electrode 14 and a portion of the second interface 12a with the recording layer 13 of the lower electrode 12. Even when the thin film is provided continuously, the poor workability is not substantially a problem because the film thickness is thin.
 そして、上部電極14の記録層13との第1界面14aの部分と、下部電極12の記録層13との第2界面12aに部分に、第1貴金属21が存在しているので、記録層13の繰り返し動作の安定性は確保できる。 Since the first noble metal 21 exists in the portion of the first interface 14a with the recording layer 13 of the upper electrode 14 and the portion of the second interface 12a with the recording layer 13 of the lower electrode 12, the recording layer 13 The stability of the repeated operation can be ensured.
 このように、本実施形態に係る別の不揮発性記憶素子324によっても、さらに加工性が良く、さらに高精度で、さらに繰り返し動作安定性の高い不揮発性記憶素子が提供できる。 As described above, the non-volatile memory element 324 according to this embodiment can provide a non-volatile memory element with better workability, higher accuracy, and higher repeated operation stability.
 また、図7(b)に表したように、本発明の第2の実施形態に係る別の不揮発性記憶素子325では、上部電極14が、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、記録層13との第1界面14aに、膜厚の薄い膜として連続して局在する第1貴金属21を含有している。このように、上部電極14と下部電極12の少なくともいずれかに、記録層13との界面に、薄い膜として連続して局在する第1貴金属21を含有させても、繰り返し動作安定性と加工性との両方をより高度に両立させることができる。 Further, as shown in FIG. 7B, in another nonvolatile memory element 325 according to the second embodiment of the present invention, the upper electrode 14 includes at least one of a metal oxide, a metal nitride, and a metal carbide. Thus, the first interface 14a with the recording layer 13 contains the first noble metal 21 continuously localized as a thin film. Thus, even if at least one of the upper electrode 14 and the lower electrode 12 includes the first noble metal 21 that is continuously localized as a thin film at the interface with the recording layer 13, repeated operation stability and processing are achieved. It is possible to achieve a higher degree of compatibility with both sex.
 このように、上部電極14と下部電極12の少なくともいずれかが、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、前記少なくともいずれかと記録層13との界面に、薄い膜として連続して局在する第1貴金属21を含有することで、繰り返し動作安定性と加工性との両方をより高度に両立させることができる。 As described above, at least one of the upper electrode 14 and the lower electrode 12 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, and is continuously formed as a thin film at the interface between the at least one and the recording layer 13. By including the first noble metal 21 that is localized, both repetitive operation stability and workability can be achieved at a higher level.
 上記の第1及び第2の実施形態に係る不揮発性記憶素子において、上部電極14及び下部電極12の少なくともいずれかに第1貴金属21を含有させる方法は、任意である。 In the nonvolatile memory elements according to the first and second embodiments described above, the method of including the first noble metal 21 in at least one of the upper electrode 14 and the lower electrode 12 is arbitrary.
 例えば、上部電極14及び下部電極12の前記少なくともいずれかとなる膜を成膜する際に、上部電極14及び下部電極12の前記少なくともいずれかとなる金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかと、第1貴金属21とを含むターゲットを用いて成膜する方法を用いることができる。また、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかのターゲットと、第1貴金属21とを含む別のターゲットを用いて成膜する方法を用いることができる。この他、任意の方法を用いることができる。 For example, when forming the film to be at least one of the upper electrode 14 and the lower electrode 12, at least one of the metal oxide, metal nitride, and metal carbide to be the at least one of the upper electrode 14 and the lower electrode 12 A method of forming a film using a target including the first noble metal 21 can be used. Alternatively, a method of forming a film using another target including at least one of a metal oxide, a metal nitride, and a metal carbide and the first noble metal 21 can be used. In addition, any method can be used.
 また、上部電極14及び下部電極12の前記少なくともいずれかにおいて、第1貴金属21の濃度に勾配を設けたり、第1界面14aや第2界面12aに第1貴金属21を局在させたりする方法には、例えば、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかのターゲットと、第1貴金属21とを含む別のターゲットを用い、成膜中にそれらのターゲットから成膜される量を変えるように制御する方法を用いることができる。また、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかと、第1貴金属21と、を含むターゲットを用いた第1の成膜と、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかのターゲットを用いた第2の成膜と、の組み合わせの方法を用いることができる。なお、この際、成膜の後に、熱処理等によって、第1貴金属21を拡散させることもできる。 Further, in at least one of the upper electrode 14 and the lower electrode 12, the concentration of the first noble metal 21 is provided with a gradient, or the first noble metal 21 is localized at the first interface 14a or the second interface 12a. For example, another target including at least one of a metal oxide, a metal nitride, and a metal carbide and the first noble metal 21 is used, and the amount formed from the target during film formation is changed. A control method can be used. Further, a first film formation using a target including at least one of a metal oxide, a metal nitride, and a metal carbide, and the first noble metal 21, and at least one of a metal oxide, a metal nitride, and a metal carbide A method of combination with the second film formation using the target can be used. At this time, after the film formation, the first noble metal 21 can also be diffused by heat treatment or the like.
 このように、成膜条件やその後の処理によって、第1貴金属21を、上部電極14及び下部電極12の少なくともいずれかとなる前記金属酸化物、前記金属窒化物及び前記金属炭化物に分散させることができる。 As described above, the first noble metal 21 can be dispersed in the metal oxide, the metal nitride, and the metal carbide, which are at least one of the upper electrode 14 and the lower electrode 12, depending on the film forming conditions and subsequent processing. .
 また、第1貴金属21を、上部電極14及び下部電極12の少なくともいずれかの内部及び表面の少なくともいずれかに析出させることができる。 Further, the first noble metal 21 can be deposited on at least one of the inside and / or the surface of the upper electrode 14 and the lower electrode 12.
 この時、第1貴金属21を、上部電極14及び下部電極12の少なくともいずれかの内部及び表面の少なくともいずれかにおいて、複数の第1粒として析出させることができる。 
 そして、第1粒どうしの間隔の平均を、上記の第1粒の径よりも大きくすることができる。
At this time, the first noble metal 21 can be precipitated as a plurality of first grains in at least one of the inside and / or the surface of the upper electrode 14 and the lower electrode 12.
And the average of the space | interval of 1st grains can be made larger than the diameter of said 1st grain.
 (第3の実施の形態)
 図8は、本発明の第3の実施形態に係る不揮発性記憶素子の構成を例示する模式的断面図である。 
 図8に表したように、本発明の第3の実施形態に係る不揮発性記憶素子330は、上部電極14及び下部電極12と、記録層13との間にそれぞれ設けられた第3層15をさらに備える。これ以外は、第1実施形態に係る各種の不揮発性記憶素子310と同様とすることができるので説明を省略する。
(Third embodiment)
FIG. 8 is a schematic cross-sectional view illustrating the configuration of the nonvolatile memory element according to the third embodiment of the invention.
As shown in FIG. 8, the nonvolatile memory element 330 according to the third embodiment of the present invention includes the third layer 15 provided between the upper electrode 14, the lower electrode 12, and the recording layer 13. Further prepare. Except this, since it can be the same as the various nonvolatile memory elements 310 according to the first embodiment, the description thereof will be omitted.
 第3層15は、金属、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属21とは異なる種類の第2貴金属22を含む。 
 第2貴金属は、Ag、Pt及びPdよりなる群から選択された少なくとも1種であり、第1貴金属21とは異なる種類の金属である。
The third layer 15 includes at least one of a metal, a metal oxide, a metal nitride, and a metal carbide, and includes a second noble metal 22 of a type different from the first noble metal 21.
The second noble metal is at least one selected from the group consisting of Ag, Pt, and Pd, and is a different type of metal from the first noble metal 21.
 この時、本具体例のように、上部電極14と下部電極12の両方が、第1貴金属21を有し、その第1貴金属として含有している貴金属の種類が異なっている場合には、上部電極14と記録層13との間に設けられた第3層15は、上部電極14に含有される第1貴金属21とは異なる種類の第2貴金属22を含有し、下部電極12と記録層13との間に設けられた第3層15は、下部電極12に含有される第1貴金属21とは異なる種類の第2貴金属22を含有する。 At this time, as in this specific example, when both the upper electrode 14 and the lower electrode 12 have the first noble metal 21 and the kinds of noble metals contained as the first noble metal are different, The third layer 15 provided between the electrode 14 and the recording layer 13 contains a second noble metal 22 of a type different from the first noble metal 21 contained in the upper electrode 14, and the lower electrode 12 and the recording layer 13. The third layer 15 provided between the first and second layers contains a second noble metal 22 of a type different from the first noble metal 21 contained in the lower electrode 12.
 このように、第1貴金属21とは異なる金属なる第2貴金属22を、上部電極14及び下部電極12と、記録層13と、の間に設けることで、第1貴金属21による繰り返し動作安定を補うことができるので、第1貴金属21だけの場合よりも繰り返し動作の安定性をさらに向上させることができる。 As described above, by providing the second noble metal 22, which is a metal different from the first noble metal 21, between the upper electrode 14, the lower electrode 12, and the recording layer 13, the repeated operation stability by the first noble metal 21 is compensated. Therefore, the stability of the repeated operation can be further improved as compared with the case where only the first noble metal 21 is used.
 なお、この第3層15には、一般に加工性が低い第2貴金属22を含むので、第3層15における第2貴金属22の濃度は、2原子百分率以上、50原子百分率以下であることが望ましい。 
 第2貴金属22の濃度が2原子百分率よりも低いときは、繰り返し動作安定性の向上の程度が低く、50原子百分率よりも小さいときは、加工性が低くなる。
Since the third layer 15 includes the second noble metal 22 that is generally low in workability, the concentration of the second noble metal 22 in the third layer 15 is desirably 2 atomic percent or more and 50 atomic percent or less. .
When the concentration of the second noble metal 22 is lower than 2 atomic percent, the degree of improvement in repeated operation stability is low, and when it is lower than 50 atomic percent, workability is low.
 また、第3層15の厚さは、0.5nm以上10nm以下とすることができる。 
 第3層15の厚さが0.5nmよりも薄い時は、繰り返し動作安定性の向上の効果が低く、10nmよりも厚い時は、加工性が悪化する。 
 そして、第3層15の厚さは、より好ましくは、1.0nm~5nmである。1.0nm以上とすることで、繰り返し動作安定性の向上効果がより得易く、また、5nm以下とすることでより加工性が良くなり、繰り返し動作安定性と加工性とをより高度に両立させることができる。
Further, the thickness of the third layer 15 can be set to 0.5 nm or more and 10 nm or less.
When the thickness of the third layer 15 is less than 0.5 nm, the effect of improving the repeated operation stability is low, and when it is thicker than 10 nm, the workability deteriorates.
The thickness of the third layer 15 is more preferably 1.0 nm to 5 nm. By setting the thickness to 1.0 nm or more, it is easier to obtain the effect of improving the repetitive operation stability. By setting the thickness to 5 nm or less, the workability is improved, and the repetitive operation stability and the workability are more highly compatible. be able to.
 第1貴金属21と第2貴金属22とには、種々の組み合わせの材料を用いることができるが、例えば、記憶層13の側の第2貴金属22は、第1貴金属21よりも繰り返し動作安定性を重視した材料を選択することができる。また、第3層15における第2貴金属22の濃度を、上部電極14及び下部電極における第1貴金属21の濃度よりも高くする構成にしても良い。これらの手法を適宜用い、より高い繰り返し動作安定性を確保することができる。その際、第2貴金属22を有する第3層15の厚さは、比較的薄くすることによって、第2貴金属22の加工性が低いことを補償し、加工性と繰り返し動作安定性とをより高度に両立させることができる。 Various combinations of materials can be used for the first noble metal 21 and the second noble metal 22. For example, the second noble metal 22 on the memory layer 13 side has a more stable operation stability than the first noble metal 21. It is possible to select materials that are important. Further, the concentration of the second noble metal 22 in the third layer 15 may be made higher than the concentration of the first noble metal 21 in the upper electrode 14 and the lower electrode. By using these techniques as appropriate, higher repeated operation stability can be ensured. At this time, the thickness of the third layer 15 having the second noble metal 22 is made relatively thin to compensate for the low workability of the second noble metal 22, and the workability and the repeated operation stability are further enhanced. Can be compatible.
 なお、第3層15には、金属、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかを含むことができ、第2貴金属22は、これらの金属、金属酸化物、金属窒化物及び金属炭化物に分散された状態で含有されても良く、これらの金属、金属酸化物、金属窒化物及び金属炭化物と、第2金属22と、の固容体として、第2金属22が第3層15に含有されても良い。 The third layer 15 can include at least one of metal, metal oxide, metal nitride, and metal carbide, and the second noble metal 22 includes these metal, metal oxide, metal nitride, and metal. The second metal 22 may be contained in the third layer 15 as a solid body of these metals, metal oxides, metal nitrides and metal carbides, and the second metal 22. It may be contained.
 そして、第2貴金属22は、第3層15の内部及び表面の少なくともいずれかにおいて析出していても良い。 Further, the second noble metal 22 may be precipitated in at least one of the inside and the surface of the third layer 15.
 例えば、第2貴金属22は、第3層15の内部及び表面の少なくともいずれかにおいて、複数の第2粒として析出していても良い。 
 第2粒の粒径は、例えば、0.5nm~10nmとすることができる。 
 すなわち、0.5nmよりも小さいときは繰り返し動作安定性の向上の効果が低く、また10nmよりも大きいときは加工性が悪化する。 
 そして、第2粒の粒径は、より好ましくは、1.0nm~10nmとすることができる。1.0nm以上とすることで、繰り返し動作安定性の向上効果がより得易い。
For example, the second noble metal 22 may be precipitated as a plurality of second grains in at least one of the inside and the surface of the third layer 15.
The particle size of the second grains can be set to 0.5 nm to 10 nm, for example.
That is, when it is smaller than 0.5 nm, the effect of improving the repetitive operation stability is low, and when it is larger than 10 nm, the workability deteriorates.
The particle diameter of the second grains can be more preferably 1.0 nm to 10 nm. By setting the thickness to 1.0 nm or more, it is easier to obtain the effect of improving the repeated operation stability.
 この時、この第2粒どうしの間隔の平均は、第2粒の径よりも大きく設定することができる。 
 これにより、第2粒どうしの間隔が広がり加工性が向上する。ただし、第2粒どうしの間隔が広がり過ぎると、結果として、第2貴金属22の含有量が減り、繰り返し動作安定性の向上の効果が低くなる。
At this time, the average of the interval between the second grains can be set larger than the diameter of the second grains.
Thereby, the space | interval of 2nd grains spreads and workability improves. However, if the interval between the second grains is too wide, as a result, the content of the second noble metal 22 is reduced, and the effect of improving the repeated operation stability is lowered.
 これにより、加工性と繰り返し動作安定性をより高度に両立させることができる。 This makes it possible to achieve both higher workability and stability of repeated operation.
 本実施形態に係る不揮発性記憶素子330によって、より加工性が良く、より高精度で、より繰り返し動作安定性の高い不揮発性記憶素子が提供できる。 The non-volatile memory element 330 according to this embodiment can provide a non-volatile memory element with better workability, higher accuracy, and higher repeated operation stability.
 図9は、本発明の第3の実施形態に係る別の不揮発性記憶素子の構成を例示する模式的断面図である。 
 図9(a)に表したように、本発明の第3の実施形態に係る別の不揮発性記憶素子331では、上部電極14及び下部電極12の両方が第1貴金属21を含有し、上部電極14と記録層13との間に第3層15が設けられる。
FIG. 9 is a schematic cross-sectional view illustrating the configuration of another nonvolatile memory element according to the third embodiment of the invention.
As shown in FIG. 9A, in another nonvolatile memory element 331 according to the third embodiment of the present invention, both the upper electrode 14 and the lower electrode 12 contain the first noble metal 21, and the upper electrode A third layer 15 is provided between the recording layer 14 and the recording layer 13.
 このように、第3層15は、上部電極14及び下部電極12の少なくともいずれかの間に設けることができる。 Thus, the third layer 15 can be provided between at least one of the upper electrode 14 and the lower electrode 12.
 図9(b)に表したように、本発明の第3の実施形態に係る別の不揮発性記憶素子332では、上部電極14が第1貴金属21を含有し、上部電極14と記録層13との間に第3層15が設けられる。 As shown in FIG. 9B, in another nonvolatile memory element 332 according to the third embodiment of the present invention, the upper electrode 14 contains the first noble metal 21, and the upper electrode 14, the recording layer 13, A third layer 15 is provided therebetween.
 図9(c)に表したように、本発明の第3の実施形態に係る別の不揮発性記憶素子333では、上部電極14が第1貴金属21を含有し、下部電極12と記録層13との間に第3層15が設けられる。 As shown in FIG. 9C, in another nonvolatile memory element 333 according to the third embodiment of the present invention, the upper electrode 14 contains the first noble metal 21, and the lower electrode 12, the recording layer 13, A third layer 15 is provided therebetween.
 このように、第3層15は、上部電極14及び下部電極12の少なくともいずれかの間に設けることができる。そして、この時、上部電極14及び下部電極12のどちらに第1貴金属21が含有されているかと独立して、第3層15は、上部電極14及び下部電極12の少なくともいずれかの間に任意に設けることができる。 Thus, the third layer 15 can be provided between at least one of the upper electrode 14 and the lower electrode 12. At this time, the third layer 15 is arbitrarily disposed between at least one of the upper electrode 14 and the lower electrode 12 independently of which of the upper electrode 14 and the lower electrode 12 contains the first noble metal 21. Can be provided.
 (第4の実施の形態)
 本発明の第4の実施形態に係る不揮発性記憶装置は、クロスポイント型の不揮発性記憶装置であり、上記の第1~第3の実施形態に係る不揮発性記憶素子を用いた不揮発性記憶装置である。
(Fourth embodiment)
A non-volatile memory device according to a fourth embodiment of the present invention is a cross-point type non-volatile memory device, and uses the non-volatile memory element according to the first to third embodiments. It is.
 図10は、本発明の第4の実施形態に係る不揮発性記憶装置の構成を例示する模式的斜視図である。 
 図11は、本発明の第4の実施形態に係る不揮発性記憶装置の構成を例示する模式的回路図である。 
 図10及び図11に表したように、本実施形態に係る不揮発性記憶装置210においては、基板30の主面の上に、X軸方向に延在する帯状の第1の配線(ワード線WLi-1、WL、WLi+1)が設けられている。そして、基板30に平行な面内でX軸と直交するY軸方向に延在する帯状の第2の配線(ビット線BLj-1、BL、BLj+1)が、第1の配線(ワード線WLi-1、WL、WLi+1)に対向して設けられている。 
 なお、上記では、第1の配線と第2の配線とが直交する例であるが、第1の配線と第2の配線とは交差(非平行)であれば良い。 
 なお、このように、基板30の主面に対して並行な平面をX-Y平面とし、第1の配線の延在する方向をX軸とし、X-Y平面内においてX軸と直交する軸をY軸とし、X軸及びY軸に対して垂直方向をZ軸とする。
FIG. 10 is a schematic perspective view illustrating the configuration of the nonvolatile memory device according to the fourth embodiment of the invention.
FIG. 11 is a schematic circuit diagram illustrating the configuration of the nonvolatile memory device according to the fourth embodiment of the invention.
As shown in FIGS. 10 and 11, in the nonvolatile memory device 210 according to the present embodiment, a strip-shaped first wiring (word line WL) extending in the X-axis direction on the main surface of the substrate 30. i−1 , WL i , WL i + 1 ). Then, the strip-like second wiring (bit lines BL j−1 , BL j , BL j + 1 ) extending in the Y-axis direction orthogonal to the X-axis in a plane parallel to the substrate 30 is connected to the first wiring (word Lines WL i−1 , WL i , WL i + 1 ).
In the above example, the first wiring and the second wiring are orthogonal to each other. However, the first wiring and the second wiring may be crossed (non-parallel).
As described above, the plane parallel to the main surface of the substrate 30 is the XY plane, the direction in which the first wiring extends is the X axis, and the axis orthogonal to the X axis is in the XY plane. Is the Y axis, and the direction perpendicular to the X and Y axes is the Z axis.
 なお、上記において添え字i及び添え字jは任意である。すなわち、図10及び図11においては、第1の配線と第2の配線とは、それぞれ3本ずつ設けられている例が示されているが、これには限らず、第1の配線と第2の配線の数は任意である。そして、本具体例では、第1の配線がワードとなり、第2の配線がビット線となる。ただし、第1の配線をビット線とし、第2の配線をワード線としても良い。以下では、第1の配線がワード線であり、第2の配線がビットであるとして説明する。 In the above, the subscript i and the subscript j are arbitrary. That is, FIG. 10 and FIG. 11 show examples in which three each of the first wiring and the second wiring are provided, but the present invention is not limited to this, and the first wiring and the second wiring are not limited thereto. The number of the two wirings is arbitrary. In this specific example, the first wiring is a word and the second wiring is a bit line. However, the first wiring may be a bit line and the second wiring may be a word line. In the following description, it is assumed that the first wiring is a word line and the second wiring is a bit.
 そして、図10及び図11に表したように、第1の配線と第2の配線との間にメモリセル33が挟まれている。すなわち、不揮発性記憶装置210においては、ビット配線とワード配線が3次元的に交差して形成される交差部にメモリセル33が設けられている。 As shown in FIGS. 10 and 11, the memory cell 33 is sandwiched between the first wiring and the second wiring. That is, in the nonvolatile memory device 210, the memory cell 33 is provided at an intersection formed by three-dimensionally intersecting a bit line and a word line.
 図11に表したように、例えば、ワード線WLi-1、WL、WLi+1の一端は、選択スイッチとしてのMOSトランジスタRSWを経由して、デコーダ機能を有するワード線ドライバ31に接続され、ビット線BLj-1、BL、BLj+1の一端は、選択スイッチとしてのMOSトランジスタCSWを経由して、デコーダ及び読み出し機能を有するビット線ドライバ32に接続される。 As shown in FIG. 11, for example, one end of each of the word lines WL i−1 , WL i , WL i + 1 is connected to a word line driver 31 having a decoder function via a MOS transistor RSW as a selection switch, One end of each of the bit lines BL j−1 , BL j , BL j + 1 is connected to a bit line driver 32 having a decoder and a read function via a MOS transistor CSW as a selection switch.
 MOSトランジスタRSWのゲートには、1本のワード線(ロウ)を選択するための選択信号Ri-1、R、Ri+1が入力され、MOSトランジスタCSWのゲートには、1本のビット線(カラム)を選択するための選択信号Ci-1、C、Ci+1が入力される。 Selection signals R i−1 , R i and R i + 1 for selecting one word line (row) are input to the gate of the MOS transistor RSW, and one bit line is input to the gate of the MOS transistor CSW. Selection signals C i−1 , C i , and C i + 1 for selecting (column) are input.
 メモリセル33は、ワード線WLi-1、WL、WLi+1と、ビット線BLj-1、BL、BLj+1と、の交差部に配置される。いわゆるクロスポイント型セルアレイ構造である。 The memory cell 33 is arranged at the intersection of the word lines WL i−1 , WL i , WL i + 1 and the bit lines BL j−1 , BL j , BL j + 1 . This is a so-called cross-point cell array structure.
 メモリセル33には、記録/再生時における回り込み電流(sneak current)を防止するための整流素子34を付加することができる。 A rectifying element 34 for preventing a sneak current during recording / reproduction can be added to the memory cell 33.
 なお、このようなクロスポイント型セルアレイ構造の特長は、メモリセル33に個別にMOSトランジスタを接続する必要がないため、高集積化に有利な点にある。 It should be noted that the feature of such a cross-point cell array structure is that it is advantageous for high integration because it is not necessary to individually connect a MOS transistor to the memory cell 33.
 既に図2によって説明したように、ワード線WLとビット線BLとの間には、メモリセル33及び整流素子34が設けられる。なお、ワード線WLとビット線BLとの上下の配置の関係は任意である。そして、ワード線WLとビット線BLとの間における、メモリセル33と整流素子34との配置の関係も任意である。 As already described with reference to FIG. 2, the memory cell 33 and the rectifying element 34 are provided between the word line WL i and the bit line BL j . The upper and lower arrangement relationship between the word line WL i and the bit line BL j is arbitrary. The arrangement relationship between the memory cell 33 and the rectifying element 34 between the word line WL i and the bit line BL j is also arbitrary.
 そして、既に説明したように、メモリセル33として、第1~第3の実施形態に係る不揮発性記憶素子のいずれかを用いることができる。 As described above, any one of the nonvolatile memory elements according to the first to third embodiments can be used as the memory cell 33.
 すなわち、メモリセル33の不揮発性記憶素子の記録層13、下部電極12及び上部電極14には、第1~第3の実施形態で説明した記録層13、下部電極12及び上部電極14のそれぞれを用いることができる。 That is, the recording layer 13, the lower electrode 12, and the upper electrode 14 of the nonvolatile memory element of the memory cell 33 are respectively provided with the recording layer 13, the lower electrode 12, and the upper electrode 14 described in the first to third embodiments. Can be used.
 このような構成を有する本実施形態に係る不揮発性記憶装置210において、駆動部となるワード線ドライバ31及びビット線ドライバ32は、ワード線WL及びビット線BLを介して、メモリセル33の不揮発性記憶素子の記録層13への電圧の印加、及び、前記記録層13への電流の通電、の少なくともいずれかを行う。これにより、駆動部は、記録層13に高抵抗状態と低抵抗状態との間を遷移させて情報を記録する。なお、駆動部は、記録層13に記録された情報を読み出すことができる。 In the nonvolatile memory device 210 according to the present embodiment having such a configuration, the word line driver 31 and the bit line driver 32 serving as a driving unit are connected to the memory cell 33 via the word line WL i and the bit line BL j . At least one of application of a voltage to the recording layer 13 of the nonvolatile memory element and energization of a current to the recording layer 13 is performed. Accordingly, the drive unit records information by causing the recording layer 13 to transition between the high resistance state and the low resistance state. The drive unit can read information recorded on the recording layer 13.
 すなわち、本実施形態に係る不揮発性記憶装置210は、第1~第3の実施形態に係る不揮発性記憶素子のいずれかと、前記不揮発性記憶素子の記録層13への電圧の印加、及び、記録層13への電流の通電、の少なくともいずれかによって、記録層13に高抵抗状態と低抵抗状態との間を遷移させて情報を記録する駆動部と、を備える。 That is, the nonvolatile memory device 210 according to the present embodiment applies any one of the nonvolatile memory elements according to the first to third embodiments, the application of voltage to the recording layer 13 of the nonvolatile memory element, and recording. A drive unit that records information by causing the recording layer 13 to transition between a high-resistance state and a low-resistance state by at least one of supplying a current to the layer 13;
 不揮発性記憶装置210は、不揮発性記憶素子を挟むようにして設けられたワード線WL及びビット線BLをさらに備え、前記駆動部は、ワード線WL及びビット線BLを介して、記録層13への電圧の印加、及び、前記記録層13への電流の通電、の少なくともいずれかを行う。 The non-volatile memory device 210 further includes a word line WL i and a bit line BL j provided so as to sandwich a non-volatile memory element, and the driving unit is configured to record the recording layer via the word line WL i and the bit line BL j. At least one of application of a voltage to 13 and current application to the recording layer 13 is performed.
 このような構成を有する本実施形態に係る不揮発性記憶装置210によって、加工性が良く、高精度で、繰り返し動作安定性の高い不揮発性記憶装置が提供できる。 The non-volatile memory device 210 according to this embodiment having such a configuration can provide a non-volatile memory device with good processability, high accuracy, and high repetitive operation stability.
 図12は、本発明の第4の実施形態に係る別の不揮発性記憶装置の構成を例示する模式的斜視図である。 
 図13は、本発明の第4の実施形態に係る別の不揮発性記憶装置の構成を例示する模式的斜視図である。 
 図12に表したように、ワード線、ビット線、及び、それらに挟まれたメモリセル33からなる積層構造体を2層積み重ねて、3次元構造の不揮発性記憶装置211を構成することもできる。 
 さらに、図13に表したように、ワード線、ビット線、及び、それらに挟まれたメモリセル33からなる積層構造体を3層積み重ねて、3次元構造の不揮発性記憶装置212を構成することもできる。
FIG. 12 is a schematic perspective view illustrating the configuration of another nonvolatile memory device according to the fourth embodiment of the invention.
FIG. 13 is a schematic perspective view illustrating the configuration of another nonvolatile memory device according to the fourth embodiment of the invention.
As shown in FIG. 12, a three-dimensional non-volatile memory device 211 can be configured by stacking two layers of a stacked structure including word lines, bit lines, and memory cells 33 sandwiched between them. .
Furthermore, as shown in FIG. 13, a three-dimensional stacked nonvolatile memory device 212 is configured by stacking three layers of stacked structures including word lines, bit lines, and memory cells 33 sandwiched between them. You can also.
 このように、ワード線、ビット線、及び、それらに挟まれたメモリセル33からなる積層構造体を複数層積み重ねて、3次元構造の不揮発性記憶装置を構成することもでき、積み重ねる積層数は任意である。 As described above, a non-volatile memory device having a three-dimensional structure can be configured by stacking a plurality of stacked structures including word lines, bit lines, and memory cells 33 sandwiched between the word lines, bit lines, and the number of stacked layers. Is optional.
 (第5の実施の形態)
 本発明の第5の実施の形態は、プローブメモリ型の不揮発性記憶装置である。 
 図14は、本発明の第5の実施形態に係る不揮発性記憶装置の構成を例示する模式的斜視図である。 
 図15は、本発明の第5の実施形態に係る不揮発性記憶装置の構成を例示する模式的平面図である。 
 図14及び図15に表したように、本発明の第5の実施形態に係る不揮発性記憶装置250では、XYスキャナ516の上には、電極521の上に設けられた記録層13が配置されている。そして、この記録層13に対向する形で、プローブアレイが配置される。なお、記録層13の上には保護層521a(図示しない)が設けられる。
(Fifth embodiment)
The fifth embodiment of the present invention is a probe memory type nonvolatile memory device.
FIG. 14 is a schematic perspective view illustrating the configuration of the nonvolatile memory device according to the fifth embodiment of the invention.
FIG. 15 is a schematic plan view illustrating the configuration of the nonvolatile memory device according to the fifth embodiment of the invention.
As shown in FIGS. 14 and 15, in the nonvolatile memory device 250 according to the fifth embodiment of the present invention, the recording layer 13 provided on the electrode 521 is disposed on the XY scanner 516. ing. Then, a probe array is disposed so as to face the recording layer 13. A protective layer 521a (not shown) is provided on the recording layer 13.
 プローブアレイは、基板523と、基板523の一面側にアレイ状に配置される複数のプローブ(ヘッド)524と、を有する。複数のプローブ524の各々は、例えば、カンチレバーから構成され、マルチプレクスドライバ525、526により駆動される。 
 複数のプローブ524は、それぞれ、基板523内のマイクロアクチュエータを用いて個別に動作可能であるが、全てをまとめて同じ動作をさせて記憶媒体(記録層13)のデータエリア531に対してアクセスを行うこともできる。
The probe array includes a substrate 523 and a plurality of probes (heads) 524 arranged in an array on one surface side of the substrate 523. Each of the plurality of probes 524 is composed of a cantilever, for example, and is driven by multiplex drivers 525 and 526.
Each of the plurality of probes 524 can be individually operated using the microactuator in the substrate 523. However, all the probes 524 are collectively operated to access the data area 531 of the storage medium (recording layer 13). It can also be done.
 まず、マルチプレクスドライバ525、526を用いて、全てのプローブ524をX方向に一定周期で往復動作させ、記憶媒体(記録層13)の532からY方向の位置情報を読み出す。Y方向の位置情報は、ドライバ515に転送される。 
 ドライバ515は、この位置情報に基づいてXYスキャナ516を駆動し、記憶媒体(記録層13)をY方向に移動させ、記憶媒体(記録層13)とプローブとの位置決めを行う。 
 両者の位置決めが完了したら、データエリア531上のプローブ524の全てに対して、同時、かつ、連続的に、データの読み出しまたは書き込みを行う。 
 データの読み出し及び書き込みは、プローブ524がX方向に往復動作していることから連続的に行われる。また、データの読み出し及び書き込みは、記録層13のY方向の位置を順次変えることにより、データエリア531に対して、一行ずつ、実施される。 
 なお、記録層13をX方向に一定周期で往復運動させて記憶媒体(記録層13)から位置情報を読み出し、プローブ524をY方向に移動させるようにしても良い。
First, by using the multiplex drivers 525 and 526, all the probes 524 are reciprocated in the X direction at a constant period, and the position information in the Y direction is read from the storage medium (recording layer 13) 532. The position information in the Y direction is transferred to the driver 515.
The driver 515 drives the XY scanner 516 based on the position information, moves the storage medium (recording layer 13) in the Y direction, and positions the storage medium (recording layer 13) and the probe.
When the positioning of both is completed, data reading or writing is performed simultaneously and continuously on all the probes 524 on the data area 531.
Data reading and writing are continuously performed because the probe 524 reciprocates in the X direction. Data reading and writing are performed line by line in the data area 531 by sequentially changing the position of the recording layer 13 in the Y direction.
Note that the recording layer 13 may be reciprocated in the X direction at a constant period to read position information from the storage medium (recording layer 13), and the probe 524 may be moved in the Y direction.
 記録層13は、複数のデータエリア531、並びに、複数のデータエリア531のX方向の両端にそれぞれ配置されるサーボエリア532を有する。複数のデータエリア531は、記録層13の主要部を占める。 The recording layer 13 has a plurality of data areas 531 and servo areas 532 arranged at both ends of the plurality of data areas 531 in the X direction. The plurality of data areas 531 occupy the main part of the recording layer 13.
 サーボエリア532内には、サーボバースト信号が記憶される。サーボバースト信号は、データエリア531内のY方向の位置情報を示している。 A servo burst signal is stored in the servo area 532. The servo burst signal indicates position information in the Y direction within the data area 531.
 記録層13内には、これらの情報の他に、さらに、アドレスデータが記憶されるアドレスエリア及び同期をとるためのプリアンブルエリアが配置される。 
 データ及びサーボバースト信号は、記憶ビット(電気抵抗変動)として記録層13に記憶される。記憶ビットの“1”及び“0”情報は、記録層13の電気抵抗を検出することにより読み出す。
In addition to these pieces of information, an address area for storing address data and a preamble area for synchronization are arranged in the recording layer 13.
The data and servo burst signal are stored in the recording layer 13 as storage bits (electrical resistance fluctuation). The “1” and “0” information of the storage bit is read by detecting the electrical resistance of the recording layer 13.
 本具体例では、1つのデータエリア531に対応して1つのプローブ(ヘッド)が設けられ、1つのサーボエリア532に対して1つのプローブが設けられる。 
 データエリア531は、複数のトラックから構成される。アドレスエリアから読み出されるアドレス信号によりデータエリア531のトラックが特定される。また、サーボエリア532から読み出されるサーボバースト信号は、プローブ524をトラックの中心に移動させ、記憶ビットの読み取り誤差をなくすためのものである。 
 ここで、X方向をダウントラック方向、Y方向をトラック方向に対応させることにより、例えば、HDDのヘッド位置制御技術を利用することが可能になる。
In this specific example, one probe (head) is provided corresponding to one data area 531, and one probe is provided for one servo area 532.
The data area 531 is composed of a plurality of tracks. The track of the data area 531 is specified by the address signal read from the address area. The servo burst signal read from the servo area 532 is for moving the probe 524 to the center of the track and eliminating the reading error of the stored bits.
Here, by making the X direction correspond to the down-track direction and the Y direction correspond to the track direction, for example, it is possible to use the head position control technology of the HDD.
 そして、各プローブ524は、例えばマルチプレクスドライバ525、526を介して、駆動部600に接続される。駆動部600は、それぞれのプローブ524に、情報記録のための、電圧及び電流の少なくともいずれかを供給する。そして、記録層13は、プローブ524を介して与えられた電圧及び電流によって、高抵抗状態と低抵抗状態との間を遷移する。また、駆動部600は、記録層13に記録された高抵抗状態と低抵抗状態とを検出し、記録された情報を読み出す。 Each probe 524 is connected to the drive unit 600 via, for example, multiplex drivers 525 and 526. The drive unit 600 supplies each probe 524 with at least one of voltage and current for information recording. Then, the recording layer 13 transitions between the high resistance state and the low resistance state by the voltage and current applied via the probe 524. The drive unit 600 detects the high resistance state and the low resistance state recorded on the recording layer 13 and reads the recorded information.
 このような構成の不揮発性記憶装置250においては、記録層13として、第1~第3の実施形態で説明した不揮発性記憶素子のいずれかの記録層13を用いることができる。また、電極521として、第1~第3の実施形態で説明した不揮発性記憶素子のいずれかの上部電極14または下部電極12を用いることができる。 In the nonvolatile memory device 250 having such a configuration, any of the recording layers 13 of the nonvolatile memory elements described in the first to third embodiments can be used as the recording layer 13. As the electrode 521, the upper electrode 14 or the lower electrode 12 of any of the nonvolatile memory elements described in the first to third embodiments can be used.
 なお、電極521を第1~第3の実施形態で説明した不揮発性記憶素子のいずれかの下部電極12とした場合、プローブ524側の保護層は、第1~第3の実施形態で説明した不揮発性記憶素子のいずれかの上部電極14と見なすことができる。 
 そして、この場合、電極521は、第1~第3の実施形態で説明したように、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属を含有する。 一方、上部電極14とみなされる保護層には任意の材料の層を用いることができる。
When the electrode 521 is the lower electrode 12 of any of the nonvolatile memory elements described in the first to third embodiments, the protective layer on the probe 524 side has been described in the first to third embodiments. It can be regarded as any upper electrode 14 of the nonvolatile memory element.
In this case, as described in the first to third embodiments, the electrode 521 is made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contains the first noble metal. On the other hand, a layer of any material can be used for the protective layer regarded as the upper electrode 14.
 すなわち、本実施形態に係る不揮発性記憶装置250は、第1~第3の実施形態で説明した不揮発性記憶素子のいずれかと、前記不揮発性記憶素子の記録層13への電圧の印加、及び、記録層13への電流の通電、の少なくともいずれかによって、記録層13に高抵抗状態と低抵抗状態との間を遷移させて情報を記録する駆動部600と、を備える。 That is, the nonvolatile memory device 250 according to this embodiment includes any one of the nonvolatile memory elements described in the first to third embodiments, the application of a voltage to the recording layer 13 of the nonvolatile memory element, and And a drive unit 600 that records information by causing the recording layer 13 to transition between a high resistance state and a low resistance state by at least one of energization of a current to the recording layer 13.
 そして、不揮発性記憶装置250は、記録層13及び電極521を含む不揮発性記憶素子に併設されたプローブ524をさらに備え、駆動部600は、プローブ524を介して、不揮発性記憶素子の記録層13の記録単位に対して前記電圧の印加及び前記電流の通電の少なくともいずれかを行う。 The nonvolatile memory device 250 further includes a probe 524 provided alongside the nonvolatile memory element including the recording layer 13 and the electrode 521, and the drive unit 600 passes through the probe 524 and the recording layer 13 of the nonvolatile memory element. At least one of application of the voltage and energization of the current is performed for each recording unit.
 なお、駆動部600は、上記のドライバ515及びXYスキャナ516を含むこともでき、逆に、駆動部は、上記のドライバ515及びXYスキャナ516に含まれても良い。 Note that the driving unit 600 may include the driver 515 and the XY scanner 516, and conversely, the driving unit may be included in the driver 515 and the XY scanner 516.
 これにより、本実施形態に係るプローブメモリ型の不揮発性記憶装置250においても、既に説明した第1~第3の実施形態に係る不揮発性記憶素子に関して説明した効果により、加工性が良く、高精度で、繰り返し動作安定性の高い不揮発性記憶装置が提供できる。 Thereby, also in the probe memory type nonvolatile memory device 250 according to the present embodiment, the workability is high and the precision is high due to the effects described with respect to the nonvolatile memory elements according to the first to third embodiments already described. Thus, it is possible to provide a non-volatile memory device having high repeated operation stability.
 (第6の実施の形態)
 本発明の第6の実施の形態は、フラッシュメモリ型の不揮発性記憶装置である。 
 図16は、本発明の第6の実施形態に係る不揮発性記憶装置の要部の構成を例示する模式的断面図である。 
 図17は、本発明の第6の実施形態に係る不揮発性記憶装置の動作を例示する模式的断面図である。 
 図16に表したように、本実施形態に係る不揮発性記憶装置260においては、フラッシュメモリ型のメモリセルを有し、このメモリセルは、MIS(metal-insulator-semiconductor)トランジスタから構成される。
(Sixth embodiment)
The sixth embodiment of the present invention is a flash memory type nonvolatile memory device.
FIG. 16 is a schematic cross-sectional view illustrating the configuration of the main part of the nonvolatile memory device according to the sixth embodiment of the invention.
FIG. 17 is a schematic cross-sectional view illustrating the operation of the nonvolatile memory device according to the sixth embodiment of the invention.
As shown in FIG. 16, the nonvolatile memory device 260 according to the present embodiment has a flash memory type memory cell, and this memory cell is configured by a MIS (metal-insulator-semiconductor) transistor.
 すなわち、半導体基板41の表面領域には、拡散層42が形成される。拡散層42の間のチャネル領域上には、ゲート絶縁層43が形成される。ゲート絶縁層43上には、本発明の実施形態に係る不揮発性記憶素子44が形成される。不揮発性記憶素子44の上には、コントロールゲート電極45が形成される。 That is, the diffusion layer 42 is formed in the surface region of the semiconductor substrate 41. A gate insulating layer 43 is formed on the channel region between the diffusion layers 42. On the gate insulating layer 43, the nonvolatile memory element 44 according to the embodiment of the present invention is formed. A control gate electrode 45 is formed on the nonvolatile memory element 44.
 ここで、不揮発性記憶素子44には、第1~第3の実施形態に係る不揮発性記憶素子のいずれかを用いることができる。 
 すなわち、図16では図示しないが、不揮発性記憶素子44は、第1~第3の実施形態に係る不揮発性記憶素子において説明した記録層13と上部電極14と下部電極12とを有する。
Here, any one of the nonvolatile memory elements according to the first to third embodiments can be used as the nonvolatile memory element 44.
That is, although not shown in FIG. 16, the nonvolatile memory element 44 includes the recording layer 13, the upper electrode 14, and the lower electrode 12 described in the nonvolatile memory elements according to the first to third embodiments.
 すなわち、本実施形態に係る不揮発性記憶装置260は、第1~第3の実施形態で説明した不揮発性記憶素子の少なくともいずれかと、前記不揮発性記憶素子の記録層13に電圧を印加し、または、電流を通電して、記録層13に前記高抵抗状態と前記低抵抗状態との間を遷移させて情報を記録する駆動部(図示しない)と、を備える。 
 この場合の駆動部は、コントロールゲート電極45に接続され、駆動部は、コントロールゲート電極45を介して、記録層13への電圧の印加、及び、記録層13への電流の通電、の少なくともいずれかを行う。
That is, the nonvolatile memory device 260 according to this embodiment applies a voltage to at least one of the nonvolatile memory elements described in the first to third embodiments and the recording layer 13 of the nonvolatile memory element, or A drive unit (not shown) that records information by energizing a current to cause the recording layer 13 to transition between the high resistance state and the low resistance state.
In this case, the driving unit is connected to the control gate electrode 45, and the driving unit is at least one of applying a voltage to the recording layer 13 and supplying a current to the recording layer 13 via the control gate electrode 45. Do something.
 すなわち、本実施形態に係る不揮発性記憶装置260は、ゲート電極(コントロールゲート電極45)とゲート絶縁膜(ゲート絶縁層43)とを有するMISトランジスタをさらに備える。不揮発性記憶素子44は、前記MISトランジスタの前記ゲート電極と前記ゲート絶縁層との間に設けられる。 That is, the nonvolatile memory device 260 according to this embodiment further includes a MIS transistor having a gate electrode (control gate electrode 45) and a gate insulating film (gate insulating layer 43). The nonvolatile memory element 44 is provided between the gate electrode of the MIS transistor and the gate insulating layer.
 なお、上記において、不揮発性記憶素子44の上部電極14及び下部電極12のいずれかは、例えばコントロールゲート電極45と兼用されても良い。 In the above, any one of the upper electrode 14 and the lower electrode 12 of the nonvolatile memory element 44 may be used as the control gate electrode 45, for example.
 半導体基板41は、ウェル領域でも良く、また、半導体基板41と拡散層42とは、互いに逆の導電型を有する。コントロールゲート電極45は、ワード線となり、例えば、導電性ポリシリコンから構成される。 The semiconductor substrate 41 may be a well region, and the semiconductor substrate 41 and the diffusion layer 42 have opposite conductivity types. The control gate electrode 45 becomes a word line and is made of, for example, conductive polysilicon.
 図17に表したように、セット(書き込み)動作SOでは、コントロールゲート電極45に電位V1を与え、半導体基板41に電位V2を与える。 
 電位V1及び電位V2の差は、不揮発性記憶素子44の記録層13が高抵抗状態と低抵抗状態を遷移するのに十分な大きさである。ただし、電位の差の極性は、特に、限定されない。すなわち、V1>V2、及び、V1<V2のいずれでも良い。
As shown in FIG. 17, in the set (write) operation SO, the potential V <b> 1 is applied to the control gate electrode 45 and the potential V <b> 2 is applied to the semiconductor substrate 41.
The difference between the potential V1 and the potential V2 is large enough for the recording layer 13 of the nonvolatile memory element 44 to transition between the high resistance state and the low resistance state. However, the polarity of the potential difference is not particularly limited. That is, either V1> V2 or V1 <V2 may be used.
 例えば、初期状態(リセット状態)において、記録層13が高抵抗状態相HRであると仮定すると、実質的にゲート絶縁層43が厚くなったことになるため、メモリセル(MISトランジスタ)の閾値は、高くなる。 For example, assuming that the recording layer 13 is in the high resistance state phase HR in the initial state (reset state), the gate insulating layer 43 is substantially thickened, so the threshold value of the memory cell (MIS transistor) is , Get higher.
 この状態から電位V1、V2を与えて記録層13を低抵抗状態相LRに変化させると、実質的にゲート絶縁層43が薄くなったことになるため、メモリセル(MISトランジスタ)の閾値は、低くなる。 When the potentials V1 and V2 are applied from this state to change the recording layer 13 to the low resistance state phase LR, the gate insulating layer 43 is substantially thinned. Therefore, the threshold value of the memory cell (MIS transistor) is Lower.
 なお、電位V2は、半導体基板41に与えたが、これに代えて、メモリセルのチャネル領域に拡散層42から電位V2を転送するようにしても良い。 
 なお、同図において、矢印Aeは電子の移動を表し、矢印Aiはイオンの移動を表している。
Although the potential V2 is applied to the semiconductor substrate 41, the potential V2 may be transferred from the diffusion layer 42 to the channel region of the memory cell instead.
In the figure, arrow Ae represents the movement of electrons, and arrow Ai represents the movement of ions.
 一方、リセット(消去)動作ROでは、コントロールゲート電極45に電位V1’を与え、拡散層42の一方に電位V3を与え、拡散層42の他方に電位V4(<V3)を与える。 
 電位V1’は、セット状態のメモリセルの閾値を越える値にする。
On the other hand, in the reset (erase) operation RO, the potential V1 ′ is applied to the control gate electrode 45, the potential V3 is applied to one of the diffusion layers 42, and the potential V4 (<V3) is applied to the other of the diffusion layers 42.
The potential V1 ′ is set to a value exceeding the threshold value of the memory cell in the set state.
 この時、メモリセルは、オンになり、電子が拡散層42の他方から一方に向かって流れると共に、ホットエレクトロンが発生する。このホットエレクトロンは、ゲート絶縁層43を介して記録層13に注入されるため、記録層13の温度が上昇する。 At this time, the memory cell is turned on, electrons flow from one side of the diffusion layer 42 to the other side, and hot electrons are generated. Since the hot electrons are injected into the recording layer 13 through the gate insulating layer 43, the temperature of the recording layer 13 rises.
 これにより、記録層13は、低抵抗状態相LRから高抵抗状態相に変化するため、実質的にゲート絶縁層43が厚くなったことになり、メモリセル(MISトランジスタ)の閾値は、高くなる。 Accordingly, since the recording layer 13 changes from the low resistance state phase LR to the high resistance state phase, the gate insulating layer 43 is substantially thickened, and the threshold value of the memory cell (MIS transistor) is increased. .
 このように、フラッシュメモリと類似した原理により、メモリセルの閾値を変えることができ、不揮発性記憶装置として利用できる。 
 この時、本実施形態に係る不揮発性記憶装置260においては、不揮発性記憶素子44として第1~第3の実施形態で説明した不揮発性記憶素子のいずれかを用いているので、加工性が良く、高精度で、繰り返し動作安定性の高い不揮発性記憶装置を提供できる。
As described above, the threshold value of the memory cell can be changed based on a principle similar to that of the flash memory, which can be used as a nonvolatile memory device.
At this time, in the nonvolatile memory device 260 according to this embodiment, since any one of the nonvolatile memory elements described in the first to third embodiments is used as the nonvolatile memory element 44, the workability is good. A nonvolatile memory device with high accuracy and high repetitive operation stability can be provided.
 図18は、本発明の第6の実施形態に係る別の不揮発性記憶装置の要部の構成を例示する模式図である。 
 図19は、本発明の第6の実施形態に係る別の不揮発性記憶装置の要部を例示する模式的断面図である。 
 すなわち、本実施形態に係る別の不揮発性記憶装置261は、NAND型フラッシュメモリであり、図18は、NANDセルユニット261c及びそれに接続された駆動部600を例示しており、図19は、NANDセルユニット261cの構造を例示している。
FIG. 18 is a schematic view illustrating the configuration of the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
FIG. 19 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
That is, another nonvolatile memory device 261 according to the present embodiment is a NAND flash memory. FIG. 18 illustrates the NAND cell unit 261c and the driving unit 600 connected thereto, and FIG. The structure of the cell unit 261c is illustrated.
 図18及び図19に表したように、P型半導体基板41a内には、N型ウェル領域41b及びP型ウェル領域41cが形成される。P型ウェル領域41c内に、NANDセルユニット261cが形成される。 
 NANDセルユニット261cは、直列接続される複数のメモリセルMCからなるNANDストリングと、その両端に1つずつ接続される合計2つのセレクトゲートトランジスタSTとから構成される。
As shown in FIGS. 18 and 19, an N-type well region 41b and a P-type well region 41c are formed in the P-type semiconductor substrate 41a. A NAND cell unit 261c is formed in the P-type well region 41c.
The NAND cell unit 261c includes a NAND string composed of a plurality of memory cells MC connected in series, and a total of two select gate transistors ST connected to both ends of the NAND string unit 261c.
 メモリセルMC及びセレクトゲートトランジスタSTは、同じ構造を有する。具体的には、これらは、N型拡散層42と、N型拡散層42の間のチャネル領域上のゲート絶縁層43と、ゲート絶縁層43上の不揮発性記憶素子44と、不揮発性記憶素子44の上のコントロールゲート電極45(CG)とから構成される。 The memory cell MC and the select gate transistor ST have the same structure. Specifically, these include an N-type diffusion layer 42, a gate insulating layer 43 on a channel region between the N-type diffusion layers 42, a nonvolatile memory element 44 on the gate insulating layer 43, and a nonvolatile memory element 44 and a control gate electrode 45 (CG) on 44.
 そして、各コントロールゲート電極45(CG)は、駆動部600に電気的に接続される。なお、駆動部600は、NANDセルユニット261cが設けられる基板に設けられても良く、それとは別の基板に設けられても良い。 Each control gate electrode 45 (CG) is electrically connected to the drive unit 600. Note that the driving unit 600 may be provided on a substrate on which the NAND cell unit 261c is provided, or may be provided on a different substrate.
 そして、不揮発性記憶素子44には、第1~第3の実施形態に係る不揮発性記憶素子の少なくともいずれかが用いられる。すなわち、これらの図には図示しないが、不揮発性記憶素子44には、第1~第3の実施形態で説明した記録層13、上部電極14及び下部電極12が設けられている。 Further, at least one of the nonvolatile memory elements according to the first to third embodiments is used for the nonvolatile memory element 44. That is, although not shown in these drawings, the nonvolatile memory element 44 is provided with the recording layer 13, the upper electrode 14, and the lower electrode 12 described in the first to third embodiments.
 メモリセルMCである不揮発性記憶素子44の記録層13の状態(高抵抗状態相HR及び低抵抗状態相LR)は、上述の基本動作により変化させることが可能である。これに対し、セレクトゲートトランジスタSTの記録層13は、セット状態、すなわち、低抵抗状態相LRに固定される。 The state (high resistance state phase HR and low resistance state phase LR) of the recording layer 13 of the nonvolatile memory element 44 that is the memory cell MC can be changed by the above-described basic operation. On the other hand, the recording layer 13 of the select gate transistor ST is fixed to the set state, that is, the low resistance state phase LR.
 セレクトゲートトランジスタSTの1つは、ソース線SLに接続され、他の1つは、ビット線BLに接続される。 
 セット(書き込み)動作SOの前には、NANDセルユニット261c内の全てのメモリセルは、リセット状態(抵抗大)になっているものとする。 
 セット(書き込み)動作SOにおいては、ソース線SL側のメモリセルMCからビット線BL側のメモリセルに向かって1つずつ順番に行われる。 
 選択されたワード線(コントロールゲート電極)WLに書き込み電位としてV1(正電位)を与え、非選択のワード線WLに転送電位(メモリセルMCがオンになる電位)としてVpassを与える。 
 ソース線SL側のセレクトゲートトランジスタSTをオフ、ビット線BL側のセレクトゲートトランジスタSTをオンにし、ビット線BLから選択されたメモリセルMCのチャネル領域にプログラムデータを転送する。
One of the select gate transistors ST is connected to the source line SL, and the other one is connected to the bit line BL.
It is assumed that all memory cells in the NAND cell unit 261c are in a reset state (resistance is large) before the set (write) operation SO.
The set (write) operation SO is sequentially performed one by one from the memory cell MC on the source line SL side toward the memory cell on the bit line BL side.
Giving V1 (positive potential) to the selected word line (control gate electrode) WL as a write voltage, gives a V pass as a transfer potential to the unselected word lines WL (potential memory cell MC is turned on).
The select gate transistor ST on the source line SL side is turned off, the select gate transistor ST on the bit line BL side is turned on, and program data is transferred from the bit line BL to the channel region of the selected memory cell MC.
 例えば、プログラムデータが“1”の時は、選択されたメモリセルMCのチャネル領域に書き込み禁止電位(例えば、V1と同じ程度の電位)を転送し、選択されたメモリセルMCの記録層13の抵抗値が高い状態から低い状態に変化しないようにする。 For example, when the program data is “1”, a write inhibit potential (for example, the same potential as V1) is transferred to the channel region of the selected memory cell MC, and the recording layer 13 of the selected memory cell MC is transferred. The resistance value should not change from a high state to a low state.
 また、プログラムデータが“0”の時は、選択されたメモリセルMCのチャネル領域にV2(<V1)を転送し、選択されたメモリセルMCの記録層13の抵抗値を高い状態から低い状態に変化させる。 When the program data is “0”, V2 (<V1) is transferred to the channel region of the selected memory cell MC, and the resistance value of the recording layer 13 of the selected memory cell MC is changed from a high state to a low state. To change.
 一方、リセット(消去)動作ROでは、例えば、全てのワード線(コントロールゲート電極)WLにV1’を与え、NANDセルユニット261c内の全てのメモリセルMCをオンにする。また、2つのセレクトゲートトランジスタSTをオンにし、ビット線BLにV3を与え、ソース線SLにV4(<V3)を与える。 On the other hand, in the reset (erase) operation RO, for example, V1 'is applied to all the word lines (control gate electrodes) WL, and all the memory cells MC in the NAND cell unit 261c are turned on. Further, the two select gate transistors ST are turned on, V3 is applied to the bit line BL, and V4 (<V3) is applied to the source line SL.
 この時、ホットエレクトロンがNANDセルユニット261c内の全てのメモリセルMCの記録層13に注入されるため、NANDセルユニット261c内の全てのメモリセルMCに対して一括してリセット動作が実行される。 At this time, since hot electrons are injected into the recording layers 13 of all the memory cells MC in the NAND cell unit 261c, the reset operation is collectively executed for all the memory cells MC in the NAND cell unit 261c. .
 読み出し動作は、選択されたワード線(コントロールゲート電極)WLに読み出し電位(正電位)を与え、非選択のワード線(コントロールゲート電極)WLには、メモリセルMCがデータ“0”、“1”によらず必ずオンになる電位を与える。 
 また、2つのセレクトゲートトランジスタSTをオンにし、NANDストリングに読み出し電流を供給する。 
 選択されたメモリセルMCは、読み出し電位が印加されると、それに記憶されたデータの値に応じてオンまたはオフになるため、例えば、読み出し電流の変化を検出することにより、データを読み出すことができる。
In the read operation, a read potential (positive potential) is applied to the selected word line (control gate electrode) WL, and the memory cell MC receives data “0”, “1” on the unselected word line (control gate electrode) WL. A potential to be turned on without fail is given.
Further, the two select gate transistors ST are turned on to supply a read current to the NAND string.
When the read potential is applied, the selected memory cell MC is turned on or off according to the value of the data stored in the selected memory cell MC. For example, data can be read by detecting a change in the read current. it can.
 なお、図19に例示した構造では、セレクトゲートトランジスタSTは、メモリセルMCと同じ構造を有しているが、以下のように変形しても良い。 
 図20は、本発明の第6の実施形態に係る変形例の不揮発性記憶装置の要部を例示する模式的断面図である。 
 図20に表したように、本実施形態に係る変形例の不揮発性記憶装置262では、セレクトゲートトランジスタSTについては、記録層を形成せずに、通常のMISトランジスタとすることも可能である。
In the structure illustrated in FIG. 19, the select gate transistor ST has the same structure as the memory cell MC, but may be modified as follows.
FIG. 20 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention.
As shown in FIG. 20, in the nonvolatile memory device 262 of the modification according to this embodiment, the select gate transistor ST can be a normal MIS transistor without forming a recording layer.
 図21は、本発明の第6の実施形態に係る変形例の不揮発性記憶装置の要部を例示する模式的断面図である。 
 図21に表したように、本実施形態に係る変形例の不揮発性記憶装置263では、NANDストリングを構成する複数のメモリセルMCのゲート絶縁層がP型半導体層47に置き換えられている。
FIG. 21 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention.
As shown in FIG. 21, in the nonvolatile memory device 263 of the modification according to this embodiment, the gate insulating layers of the plurality of memory cells MC configuring the NAND string are replaced with the P-type semiconductor layer 47.
 高集積化が進み、メモリセルMCが微細化されると、電圧を与えていない状態で、P型半導体層47は、空乏層で満たされることになる。 
 セット(書き込み)動作SOにおいては、選択されたメモリセルMCのコントロールゲート電極45に正の書き込み電位(例えば、3.5V)を与え、かつ、非選択のメモリセルMCのコントロールゲート電極45に正の転送電位(例えば、1V)を与える。 
 この時、NANDストリング内の複数のメモリセルMCのP型ウェル領域41cの表面がP型からN型に反転し、チャネルが形成される。
When the high integration progresses and the memory cell MC is miniaturized, the P-type semiconductor layer 47 is filled with a depletion layer without applying a voltage.
In the set (write) operation SO, a positive write potential (for example, 3.5 V) is applied to the control gate electrode 45 of the selected memory cell MC, and the control gate electrode 45 of the non-selected memory cell MC is positive. Transfer potential (for example, 1 V).
At this time, the surface of the P-type well region 41c of the plurality of memory cells MC in the NAND string is inverted from P-type to N-type, and a channel is formed.
 そこで、上述したように、ビット線BL側のセレクトゲートトランジスタSTをオンにし、ビット線BLから選択されたメモリセルMCのチャネル領域にプログラムデータ“0”を転送すれば、セット動作を行うことができる。 Therefore, as described above, the set operation can be performed by turning on the select gate transistor ST on the bit line BL side and transferring the program data “0” from the bit line BL to the channel region of the selected memory cell MC. it can.
 一方、リセット(消去)動作ROにおいては、例えば、全てのコントロールゲート電極45に負の消去電位(例えば、-3.5V)を与え、P型ウェル領域41c及びP型半導体層47に接地電位(0V)を与えれば、NANDストリングを構成する全てのメモリセルMCに対して一括して行うことができる。 On the other hand, in the reset (erase) operation RO, for example, a negative erase potential (for example, −3.5 V) is applied to all control gate electrodes 45, and the ground potential (P-type well region 41c and P-type semiconductor layer 47 are grounded). 0V), all the memory cells MC constituting the NAND string can be collectively processed.
 読み出し時には、選択されたメモリセルMCのコントロールゲート電極45に正の読み出し電位(例えば、0.5V)を与え、かつ、非選択のメモリセルMCのコントロールゲート電極45に、メモリセルMCがデータ“0”、“1”によらず必ずオンになる転送電位(例えば、1V)を与える。 
 ただし、“1”状態のメモリセルMCの閾値電圧Vth“1”については、0V<Vth“1”<0.5Vの範囲内にあるものとし、“0”状態のメモリセルMCの閾値電圧Vth“0”は、0.5V<Vth“0”<1Vの範囲内にあるものとする。 
 また、2つのセレクトゲートトランジスタSTをオンにし、NANDストリングに読み出し電流を供給する。 
 このような状態にすれば、選択されたメモリセルMCに記憶されたデータの値に応じてNANDストリングに流れる電流量が変わるため、この変化を検出することにより、データを読み出すことができる。
At the time of reading, a positive read potential (for example, 0.5 V) is applied to the control gate electrode 45 of the selected memory cell MC, and the memory cell MC receives the data “ A transfer potential (for example, 1 V) that always turns on regardless of 0 ”or“ 1 ”is applied.
However, the threshold voltage Vth “1” of the memory cell MC in the “1” state is in the range of 0V <Vth “1” <0.5 V, and the threshold voltage Vth of the memory cell MC in the “0” state “0” is assumed to be in the range of 0.5 V <Vth “0” <1 V.
Further, the two select gate transistors ST are turned on to supply a read current to the NAND string.
In such a state, since the amount of current flowing through the NAND string changes according to the value of the data stored in the selected memory cell MC, data can be read by detecting this change.
 なお、この変形例においては、P型半導体層47のホールドープ量がP型ウェル領域41cのそれよりも多く、かつ、P型半導体層47のフェルミレベルがP型ウェル領域41cのそれよりも0.5V程度深くなっていることが望ましい。 
 これは、コントロールゲート電極45に正の電位を与えた時に、N型拡散層42間のP型ウェル領域41cの表面部分からP型からN型への反転が開始し、チャネルが形成されるようにするためである。 
 このようにすることで、例えば、書き込み時には、非選択のメモリセルMCのチャネルは、P型ウェル領域41cとP型半導体層47の界面のみに形成され、読み出し時には、NANDストリング内の複数のメモリセルMCのチャネルは、P型ウェル領域41cとP型半導体層47の界面のみに形成される。 
 つまり、メモリセルMCに用いられる不揮発性記憶素子44の記録層13が低抵抗状態相LRであっても、拡散層42とコントロールゲート電極45とが短絡することはない。
In this modification, the hole doping amount of the P-type semiconductor layer 47 is larger than that of the P-type well region 41c, and the Fermi level of the P-type semiconductor layer 47 is 0 than that of the P-type well region 41c. It is desirable that the depth is about 5V.
This is because when a positive potential is applied to the control gate electrode 45, inversion from the P-type to N-type starts from the surface portion of the P-type well region 41c between the N-type diffusion layers 42, and a channel is formed. It is to make it.
Thus, for example, at the time of writing, the channel of the non-selected memory cell MC is formed only at the interface between the P-type well region 41c and the P-type semiconductor layer 47, and at the time of reading, a plurality of memories in the NAND string is formed. The channel of the cell MC is formed only at the interface between the P-type well region 41 c and the P-type semiconductor layer 47.
That is, even if the recording layer 13 of the nonvolatile memory element 44 used in the memory cell MC is in the low resistance state phase LR, the diffusion layer 42 and the control gate electrode 45 are not short-circuited.
 図22は、本発明の第6の実施形態に係る別の不揮発性記憶装置の要部の構成を例示する模式図である。 
 図23は、本発明の第6の実施形態に係る別の不揮発性記憶装置の要部を例示する模式的断面図である。 
 すなわち、本実施形態に係る別の不揮発性記憶装置264は、NOR型フラッシュメモリであり、図22は、NORセルユニット264c及びそれに接続された駆動部600を例示しており、図23は、NORセルユニット264cの構造を例示している。
FIG. 22 is a schematic view illustrating the configuration of the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
FIG. 23 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
That is, another nonvolatile memory device 264 according to the present embodiment is a NOR flash memory. FIG. 22 illustrates the NOR cell unit 264c and the drive unit 600 connected thereto, and FIG. The structure of the cell unit 264c is illustrated.
 図22及び図23に表したように、P型半導体基板41a内には、N型ウェル領域41b及びP型ウェル領域41cが形成される。P型ウェル領域41c内に、NORセルが形成される。 
 NORセルは、ビット線BLとソース線SLとの間に接続される1つのメモリセル(MISトランジスタ)MCから構成される。 
 メモリセルMCは、N型拡散層42と、N型拡散層42の間のチャネル領域上のゲート絶縁層43と、ゲート絶縁層43上の不揮発性記憶素子44と、不揮発性記憶素子44の上のコントロールゲート電極45とから構成される。
As shown in FIGS. 22 and 23, an N-type well region 41b and a P-type well region 41c are formed in the P-type semiconductor substrate 41a. A NOR cell is formed in the P-type well region 41c.
The NOR cell is composed of one memory cell (MIS transistor) MC connected between the bit line BL and the source line SL.
The memory cell MC includes an N-type diffusion layer 42, a gate insulating layer 43 on a channel region between the N-type diffusion layers 42, a non-volatile storage element 44 on the gate insulating layer 43, and a non-volatile storage element 44. And the control gate electrode 45.
 そして、各コントロールゲート電極45(CG)は、駆動部600に電気的に接続される。なお、駆動部600は、NORセルユニット264cが設けられる基板に設けられても良く、それとは別の基板に設けられても良い。 Each control gate electrode 45 (CG) is electrically connected to the drive unit 600. Note that the driving unit 600 may be provided on a substrate on which the NOR cell unit 264c is provided, or may be provided on a different substrate.
 メモリセルMCに用いられる不揮発性記憶素子44の記録層13の状態(高抵抗状態相HR及び低抵抗状態相LR)は、上述の基本動作により変化させることが可能である。 The state (high resistance state phase HR and low resistance state phase LR) of the recording layer 13 of the nonvolatile memory element 44 used in the memory cell MC can be changed by the above-described basic operation.
 図24は、本発明の第6の実施形態に係る別の不揮発性記憶装置の要部の構成を例示する模式図である。 
 図25は、本発明の第6の実施形態に係る別の不揮発性記憶装置の要部を例示する模式的断面図である。 
 すなわち、本実施形態に係る別の不揮発性記憶装置265は、2トラ型フラッシュメモリであり、図24は、2トラセルユニット265c及びそれに接続された駆動部600を例示しており、図25は、2トラセルユニット265cの構造を例示している。
FIG. 24 is a schematic view illustrating the configuration of the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
FIG. 25 is a schematic cross-sectional view illustrating the main part of another nonvolatile memory device according to the sixth embodiment of the invention.
That is, another nonvolatile memory device 265 according to the present embodiment is a two-tra type flash memory. FIG. 24 illustrates a two-tracell unit 265c and a driving unit 600 connected thereto, and FIG. The structure of the 2 tracell unit 265c is illustrated.
 図24及び図25に表したように、2トラセルユニット265cは、NANDセルユニットの特徴とNORセルの特徴とを併せ持ったセル構造である。 As shown in FIG. 24 and FIG. 25, the 2-tra cell unit 265c has a cell structure having both the characteristics of the NAND cell unit and the characteristics of the NOR cell.
 P型半導体基板41a内には、N型ウェル領域41b及びP型ウェル領域41cが形成される。P型ウェル領域41c内に、2トラセルユニット265cが形成される。 In the P-type semiconductor substrate 41a, an N-type well region 41b and a P-type well region 41c are formed. In the P-type well region 41c, a 2-tracell unit 265c is formed.
 2トラセルユニット265cは、直列接続される1つのメモリセルMCと1つのセレクトゲートトランジスタSTとから構成される。 
 メモリセルMC及びセレクトゲートトランジスタSTは、同じ構造を有する。具体的には、これらは、N型拡散層42と、N型拡散層42の間のチャネル領域上のゲート絶縁層43と、ゲート絶縁層43上の不揮発性記憶素子44と、不揮発性記憶素子44の上のコントロールゲート電極45とから構成される。
The 2-tra cell unit 265c includes one memory cell MC and one select gate transistor ST connected in series.
The memory cell MC and the select gate transistor ST have the same structure. Specifically, these include an N-type diffusion layer 42, a gate insulating layer 43 on a channel region between the N-type diffusion layers 42, a nonvolatile memory element 44 on the gate insulating layer 43, and a nonvolatile memory element And a control gate electrode 45 on the upper side 44.
 そして、各コントロールゲート電極45(CG)は、駆動部600に電気的に接続される。なお、駆動部600は、2トラセルユニット265cが設けられる基板に設けられても良く、それとは別の基板に設けられても良い。 Each control gate electrode 45 (CG) is electrically connected to the drive unit 600. In addition, the drive part 600 may be provided in the board | substrate with which the 2 trcell unit 265c is provided, and may be provided in another board | substrate.
 メモリセルMCに用いられる不揮発性記憶素子44の記録層13の状態(高抵抗状態相HR及び低抵抗状態相LR)は、上述の基本動作により変化させることが可能である。これに対し、セレクトゲートトランジスタSTの記録層13は、セット状態、すなわち、低抵抗状態相LRに固定される。 The state (high resistance state phase HR and low resistance state phase LR) of the recording layer 13 of the nonvolatile memory element 44 used in the memory cell MC can be changed by the above-described basic operation. On the other hand, the recording layer 13 of the select gate transistor ST is fixed to the set state, that is, the low resistance state phase LR.
 セレクトゲートトランジスタSTは、ソース線SLに接続され、メモリセルMCは、ビット線BLに接続される。 The select gate transistor ST is connected to the source line SL, and the memory cell MC is connected to the bit line BL.
 メモリセルMCに用いられる不揮発性記憶素子44の記録層13状態(高抵抗状態相HR及び低抵抗状態相LR)は、上述の基本動作により変化させることが可能である。 The recording layer 13 state (high resistance state phase HR and low resistance state phase LR) of the nonvolatile memory element 44 used in the memory cell MC can be changed by the basic operation described above.
 なお、図25に例示した構造では、セレクトゲートトランジスタSTは、メモリセルMCと同じ構造を有しているが、以下のように変形しても良い。 
 図26は、本発明の第6の実施形態に係る変形例の不揮発性記憶装置の要部を例示する模式的断面図である。 
 図26に表したように、本実施形態に係る変形例の不揮発性記憶装置266では、セレクトゲートトランジスタSTについては、不揮発性記憶素子44を形成せずに、通常のMISトランジスタとすることも可能である。
In the structure illustrated in FIG. 25, the select gate transistor ST has the same structure as the memory cell MC, but may be modified as follows.
FIG. 26 is a schematic cross-sectional view illustrating the main part of a nonvolatile memory device according to a modification according to the sixth embodiment of the invention.
As shown in FIG. 26, in the nonvolatile memory device 266 of the modification according to the present embodiment, the select gate transistor ST can be a normal MIS transistor without forming the nonvolatile memory element 44. It is.
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、不揮発性記憶素子及び不揮発性記憶装置を構成する各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。 
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, regarding the specific configuration of each element constituting the nonvolatile memory element and the nonvolatile memory device, those skilled in the art can implement the present invention in the same manner by appropriately selecting from a known range, and obtain the same effect. Is included in the scope of the present invention as long as possible.
Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.
 その他、本発明の実施の形態として上述した不揮発性記憶素子及び不揮発性記憶装置を基にして、当業者が適宜設計変更して実施し得る全ての不揮発性記憶素子及び不揮発性記憶装置も、本発明の要旨を包含する限り、本発明の範囲に属する。 In addition, all nonvolatile memory elements and nonvolatile memory devices that can be implemented by those skilled in the art based on the nonvolatile memory elements and nonvolatile memory devices described above as embodiments of the present invention are also included As long as the gist of the invention is included, it belongs to the scope of the present invention.
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。 In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .
 本発明によれば、加工性が良く、高精度で、繰り返し動作安定性の高い不揮発性記憶素子及び不揮発性記憶装置が提供される。 According to the present invention, a non-volatile memory element and a non-volatile memory device having good processability, high accuracy, and high repetitive operation stability are provided.

Claims (24)

  1.  導電性を有する第1層と、
     導電性を有する第2層と、
     前記第1層と前記第2層との間に設けられ、高抵抗状態と低抵抗状態との間を可逆的に遷移することによって情報を記録することが可能な記録層とを備え、
     前記第1層と前記第2層との少なくともいずれかの層は、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、第1貴金属を含有することを特徴とする不揮発性記憶素子。
    A first layer having electrical conductivity;
    A second layer having electrical conductivity;
    A recording layer provided between the first layer and the second layer and capable of recording information by reversibly transitioning between a high resistance state and a low resistance state;
    At least one of the first layer and the second layer is made of at least one of a metal oxide, a metal nitride, and a metal carbide, and contains a first noble metal. .
  2.  前記第1貴金属は、前記少なくともいずれかの層に分散されていることを特徴とする請求項1記載の不揮発性記憶素子。 2. The nonvolatile memory element according to claim 1, wherein the first noble metal is dispersed in at least one of the layers.
  3.  前記第1貴金属は、前記少なくともいずれかの層の前記記録層の側に含有されていることを特徴とする請求項1記載の不揮発性記憶素子。 2. The non-volatile memory element according to claim 1, wherein the first noble metal is contained on the recording layer side of the at least one of the layers.
  4.  前記少なくともいずれかの層の前記記録層に近い側における前記第1貴金属の濃度は、前記少なくともいずれかの層の前記近い側よりも前記記録層から遠い側における前記第1貴金属の濃度よりも高いことを特徴とする請求項1記載の不揮発性記憶素子。 The concentration of the first noble metal on the side close to the recording layer of the at least one layer is higher than the concentration of the first noble metal on the side farther from the recording layer than the near side of the at least one layer. The nonvolatile memory element according to claim 1.
  5.  前記少なくともいずれかの層における前記第1貴金属の濃度は、2原子百分率以上、40原子百分率以下であることを特徴とする請求項1記載の不揮発性記憶素子。 2. The nonvolatile memory element according to claim 1, wherein the concentration of the first noble metal in the at least one layer is 2 atomic percent or more and 40 atomic percent or less.
  6.  前記第1貴金属は、前記少なくともいずれかの層の内部及び表面の少なくともいずれかにおいて、析出していることを特徴とする請求項1記載の不揮発性記憶素子。 The non-volatile memory element according to claim 1, wherein the first noble metal is precipitated in at least one of the inside and the surface of the at least one layer.
  7.  前記第1貴金属は、前記少なくともいずれかの層の内部及び表面の少なくともいずれかにおいて、複数の第1粒として析出していることを特徴とする請求項1記載の不揮発性記憶素子。 2. The nonvolatile memory element according to claim 1, wherein the first noble metal is precipitated as a plurality of first grains in at least one of the inside and the surface of the at least one layer.
  8.  前記第1粒どうしの間隔の平均は、前記第1粒の径よりも大きいことを特徴とする請求項7記載の不揮発性記憶素子。 The nonvolatile memory element according to claim 7, wherein an average interval between the first grains is larger than a diameter of the first grains.
  9.  前記第1貴金属は、Ag、Pt及びPdよりなる群から選択された少なくとも1種であることを特徴とする請求項1記載の不揮発性記憶素子。 The non-volatile memory element according to claim 1, wherein the first noble metal is at least one selected from the group consisting of Ag, Pt, and Pd.
  10.  前記記録層は、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造、A(0.1≦x≦1.1、0.9≦y≦1.1)で表されるデラフォサイト構造、A(0.5≦x≦1.1、0.7≦y≦1.1)で表されるウルフラマイト構造、及びA(0.5≦x≦1.1、0.9≦y≦1)で表されるイルメナイト構造のいずれかを有することを特徴とする請求項1記載の不揮発性記憶素子。 The recording layer has a spinel structure represented by A x B y X 4 (0.1 ≦ x ≦ 2.2, 1.5 ≦ y ≦ 2), and A x B y X 2 (0.1 ≦ x ≦ 1.1, 0.9 ≦ y ≦ 1.1) Delafossite structure, A x B y X 4 (0.5 ≦ x ≦ 1.1, 0.7 ≦ y ≦ 1.1) And a ilmenite structure represented by A x B y X 3 (0.5 ≦ x ≦ 1.1, 0.9 ≦ y ≦ 1). Item 10. The nonvolatile memory element according to Item 1.
  11.  前記少なくともいずれかの層と前記記録層との間に設けられ、金属、金属酸化物、金属窒化物及び金属炭化物の少なくともいずれかからなり、前記第1貴金属とは異なる種類の第2貴金属を含む第3層をさらに備えたことを特徴とする請求項1記載の不揮発性記憶素子。 Provided between at least one of the layers and the recording layer, comprising at least one of metal, metal oxide, metal nitride, and metal carbide, and including a second noble metal of a type different from the first noble metal. The nonvolatile memory element according to claim 1, further comprising a third layer.
  12.  前記第3層における前記第2貴金属の濃度は、2原子百分率以上、50原子百分率以下であることを特徴とする請求項11記載の不揮発性記憶素子。 The nonvolatile memory element according to claim 11, wherein the concentration of the second noble metal in the third layer is not less than 2 atomic percent and not more than 50 atomic percent.
  13.  前記第3層の厚さは、0.5nm以上10nm以下であることを特徴とする請求項11記載の不揮発性記憶素子。 12. The nonvolatile memory element according to claim 11, wherein the thickness of the third layer is not less than 0.5 nm and not more than 10 nm.
  14.  前記第3層における前記第2貴金属の濃度は、2原子百分率以上、50原子百分率以下であることを特徴とする請求項13記載の不揮発性記憶素子。 14. The non-volatile memory element according to claim 13, wherein the concentration of the second noble metal in the third layer is not less than 2 atomic percent and not more than 50 atomic percent.
  15.  前記第2貴金属は、前記第3層の内部及び表面の少なくともいずれかにおいて析出していることを特徴とする請求項11記載の不揮発性記憶素子。 12. The nonvolatile memory element according to claim 11, wherein the second noble metal is precipitated in at least one of the inside and the surface of the third layer.
  16.  前記第2貴金属は、前記第3層の内部及び表面の少なくともいずれかにおいて、複数の第2粒として析出していることを特徴とする請求項11記載の不揮発性記憶素子。 12. The nonvolatile memory element according to claim 11, wherein the second noble metal is precipitated as a plurality of second grains in at least one of the inside and the surface of the third layer.
  17.  前記第2粒どうしの間隔の平均は、前記第2粒の径よりも大きいことを特徴とする請求項16記載の不揮発性記憶素子。 The nonvolatile memory element according to claim 16, wherein an average interval between the second grains is larger than a diameter of the second grains.
  18.  前記第2貴金属は、Ag、Pt及びPdよりなる群から選択された少なくとも1種であることを特徴とする請求項1記載の不揮発性記憶素子。 The non-volatile memory element according to claim 1, wherein the second noble metal is at least one selected from the group consisting of Ag, Pt, and Pd.
  19.  前記記録層は、A(0.1≦x≦2.2、1.5≦y≦2)で表されるスピネル構造、A(0.1≦x≦1.1、0.9≦y≦1.1)で表されるデラフォサイト構造、A(0.5≦x≦1.1、0.7≦y≦1.1)で表されるウルフラマイト構造、及びA(0.5≦x≦1.1、0.9≦y≦1)で表されるイルメナイト構造のいずれかを有することを特徴とする請求項11記載の不揮発性記憶素子。 The recording layer has a spinel structure represented by A x B y X 4 (0.1 ≦ x ≦ 2.2, 1.5 ≦ y ≦ 2), and A x B y X 2 (0.1 ≦ x ≦ 1.1, 0.9 ≦ y ≦ 1.1) Delafossite structure, A x B y X 4 (0.5 ≦ x ≦ 1.1, 0.7 ≦ y ≦ 1.1) And a ilmenite structure represented by A x B y X 3 (0.5 ≦ x ≦ 1.1, 0.9 ≦ y ≦ 1). Item 12. The nonvolatile memory element according to Item 11.
  20.  請求項1記載の不揮発性記憶素子と、
     前記不揮発性記憶素子の前記記録層への電圧の印加、及び、前記記録層への電流の通電、の少なくともいずれかによって、前記記録層に前記高抵抗状態と前記低抵抗状態との間を遷移させて情報を記録する駆動部と、
     を備えたことを特徴とする不揮発性記憶装置。
    The nonvolatile memory element according to claim 1,
    Transition between the high resistance state and the low resistance state in the recording layer by at least one of application of a voltage to the recording layer of the nonvolatile memory element and energization of current to the recording layer A drive unit for recording information,
    A non-volatile storage device comprising:
  21.  前記不揮発性記憶素子を挟むようにして設けられたワード線及びビット線をさらに備え、
     前記駆動部は、前記ワード線及び前記ビット線を介して、前記不揮発性記憶素子の前記記録層への電圧の印加、及び、前記記録層への電流の通電、の少なくともいずれかを行うことを特徴とする請求項20記載の不揮発性記憶装置。
    A word line and a bit line provided so as to sandwich the nonvolatile memory element;
    The driving unit performs at least one of application of a voltage to the recording layer of the nonvolatile memory element and energization of a current to the recording layer via the word line and the bit line. 21. The nonvolatile memory device according to claim 20, wherein:
  22.  前記不揮発性記憶素子に併設されたプローブをさらに備え、
     前記駆動部は、前記プローブを介して、前記不揮発性記憶素子の前記記録層の記録単位に対して前記電圧の印加及び前記電流の通電の少なくともいずれかを行うことを特徴とする請求項20記載の不揮発性記憶装置。
    A probe provided alongside the nonvolatile memory element;
    21. The drive unit performs at least one of application of the voltage and energization of the current to a recording unit of the recording layer of the nonvolatile memory element via the probe. Nonvolatile storage device.
  23.  前記不揮発性記憶素子を挟むゲート電極とゲート絶縁層とを含むMISトランジスタをさらに備え、
     前記駆動部は、前記ゲート電極を介して、前記不揮発性記憶素子の前記記録層への電圧の印加、及び、前記記録層への電流の通電、の少なくともいずれかを行うことを特徴とする請求項20記載の不揮発性記憶装置。
    A MIS transistor including a gate electrode sandwiching the nonvolatile memory element and a gate insulating layer;
    The drive unit performs at least one of application of a voltage to the recording layer of the nonvolatile memory element and energization of a current to the recording layer through the gate electrode. Item 20. The nonvolatile memory device according to Item 20.
  24.   第1導電型半導体基板内に設けられた第1及び第2の第2導電型半導体領域と、
      前記第1及び第2の第2導電型半導体領域の間の第1導電型半導体領域と、
      前記第1及び第2の第2導電型半導体領域間における導通/非導通を制御するゲート電極と、
     をさらに備え、
     前記不揮発性記憶素子は、前記ゲート電極と前記第1導電型半導体領域との間に配置され、
     前記駆動部は、前記ゲート電極を介して、前記不揮発性記憶素子の前記記録層への電圧の印加、及び、前記記録層への電流の通電、の少なくともいずれかを行うことを特徴とする請求項20記載の不揮発性記憶装置。
    First and second second conductivity type semiconductor regions provided in the first conductivity type semiconductor substrate;
    A first conductivity type semiconductor region between the first and second second conductivity type semiconductor regions;
    A gate electrode for controlling conduction / non-conduction between the first and second second conductivity type semiconductor regions;
    Further comprising
    The nonvolatile memory element is disposed between the gate electrode and the first conductivity type semiconductor region,
    The drive unit performs at least one of application of a voltage to the recording layer of the nonvolatile memory element and energization of a current to the recording layer through the gate electrode. Item 20. The nonvolatile memory device according to Item 20.
PCT/JP2008/066192 2008-09-08 2008-09-08 Nonvolatile storage element and nonvolatile storage device WO2010026663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/066192 WO2010026663A1 (en) 2008-09-08 2008-09-08 Nonvolatile storage element and nonvolatile storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/066192 WO2010026663A1 (en) 2008-09-08 2008-09-08 Nonvolatile storage element and nonvolatile storage device

Publications (1)

Publication Number Publication Date
WO2010026663A1 true WO2010026663A1 (en) 2010-03-11

Family

ID=41796850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066192 WO2010026663A1 (en) 2008-09-08 2008-09-08 Nonvolatile storage element and nonvolatile storage device

Country Status (1)

Country Link
WO (1) WO2010026663A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197523A (en) * 2012-03-22 2013-09-30 Toshiba Corp Memory device
WO2016157820A1 (en) * 2015-03-31 2016-10-06 日本電気株式会社 Switching element, semiconductor device, and method for manufacturing switching element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019444A (en) * 2004-06-30 2006-01-19 Sharp Corp Method for driving variable resistor element and storage device
JP2006147694A (en) * 2004-11-17 2006-06-08 Sharp Corp Structure and manufacturing method of semiconductor storage device
JP2007173412A (en) * 2005-12-20 2007-07-05 Toshiba Corp Semiconductor device
JP2008084512A (en) * 2005-12-13 2008-04-10 Toshiba Corp Information recording and reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019444A (en) * 2004-06-30 2006-01-19 Sharp Corp Method for driving variable resistor element and storage device
JP2006147694A (en) * 2004-11-17 2006-06-08 Sharp Corp Structure and manufacturing method of semiconductor storage device
JP2008084512A (en) * 2005-12-13 2008-04-10 Toshiba Corp Information recording and reproducing device
JP2007173412A (en) * 2005-12-20 2007-07-05 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197523A (en) * 2012-03-22 2013-09-30 Toshiba Corp Memory device
WO2016157820A1 (en) * 2015-03-31 2016-10-06 日本電気株式会社 Switching element, semiconductor device, and method for manufacturing switching element

Similar Documents

Publication Publication Date Title
JP4792107B2 (en) Information recording / reproducing device
US9040949B2 (en) Information recording device and method of manufacturing the same
JP4088324B1 (en) Nonvolatile semiconductor memory device
JP5512525B2 (en) Nonvolatile memory element and nonvolatile memory device
JP4792008B2 (en) Information recording / reproducing device
JP4791948B2 (en) Information recording / reproducing device
JP4792006B2 (en) Information recording / reproducing device
JP4792007B2 (en) Information recording / reproducing device
JP4908555B2 (en) Information recording / reproducing device
JP5216847B2 (en) Information recording / reproducing device
JP2015103271A (en) Memory device and method of controlling memory device
JP2013110279A (en) Nonvolatile memory device
JP2008251108A (en) Information recording and reproducing device
JP2006032867A (en) Storage element and drive method thereof
KR101120339B1 (en) Information recording/reproducing device
JP4792125B2 (en) Information recording / reproducing device
JP5318107B2 (en) Information recording / reproducing device
JP4792108B2 (en) Information recording / reproducing device
WO2009122571A1 (en) Information recording/reproducing device
WO2010026663A1 (en) Nonvolatile storage element and nonvolatile storage device
JP2008276904A (en) Information recording and reproducing apparatus
JP2012138512A (en) Information recording/reproducing apparatus
JP5306363B2 (en) Information recording / reproducing device
JP2008251107A (en) Information recording/reproducing device
JP2008251126A (en) Information recording and reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08810247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08810247

Country of ref document: EP

Kind code of ref document: A1