WO2010025658A1 - 中继网络的路由方法、装置及系统 - Google Patents

中继网络的路由方法、装置及系统 Download PDF

Info

Publication number
WO2010025658A1
WO2010025658A1 PCT/CN2009/073617 CN2009073617W WO2010025658A1 WO 2010025658 A1 WO2010025658 A1 WO 2010025658A1 CN 2009073617 W CN2009073617 W CN 2009073617W WO 2010025658 A1 WO2010025658 A1 WO 2010025658A1
Authority
WO
WIPO (PCT)
Prior art keywords
identifier
path
routing
data packet
next hop
Prior art date
Application number
PCT/CN2009/073617
Other languages
English (en)
French (fr)
Inventor
王可
刘菁
彭炎
张建伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010025658A1 publication Critical patent/WO2010025658A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device and system for routing a relay network. Background technique
  • the 3rd Generation Partnership Program (3GPP) organized a long-term evolution (LTE) in the mobile access network.
  • the scheme is the Evolved Universal Mobile Telecommunication System Territorial Radio Access Network (E-UTRAN), and the System Architecture Evolution (SAE) is proposed in the mobile core network.
  • the scheme is the Evolved Packet Core (EPC).
  • E-UTRAN uses a single-layer structure consisting of only evolved Node Bs (eNBs) to simplify the network and reduce the delay. This structure has actually approached the typical IP broadband network structure, and there is no routing in the network. problem. After the introduction of the relay station (RS), there is a multi-hop access between the terminal and the eNB, so it is necessary to study the routing problem in the scenario. The routing method under the LTE relay system is not given in the prior art. Summary of the invention
  • Embodiments of the present invention provide a routing method, device, and system for a relay network.
  • the embodiment of the invention provides a routing method for a relay network, including:
  • next hop site identifier is matched according to the path identifier, the next hop site identifier pair is The site should forward the packet.
  • the embodiment of the invention further provides a routing device of a relay network, including:
  • An obtaining module configured to acquire a data packet carrying the identification information
  • a routing module configured to match the path identifier according to the identifier information, and if the next hop site identifier is matched according to the path identifier, forward the data packet to a site corresponding to the next hop site identifier.
  • the embodiment of the invention further provides a routing system of a relay network, including:
  • a relay station configured to acquire a data packet that is sent by the base station and that carries the identifier information, and the path identifier is matched according to the identifier information, and if the next hop site identifier is matched according to the path identifier, the next hop site identifier is corresponding to the The site forwards the packet.
  • the RS may match the path identifier according to the acquired identifier information of the data packet, and then continue to match the next hop RS identifier according to the path identifier, and according to the next hop RS The identifier forwards the acquired data packet to the next hop RS, thereby implementing routing under the LTE relay system.
  • FIG. 1 is a schematic diagram of a network architecture of an LTE system after introducing an RS;
  • FIG. 2 is a schematic flowchart of a method for routing a relay network according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for routing a relay network according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of FIG. Schematic diagram of the format of a tunnel data packet in a routing method of a relay network
  • FIG. 5 is a schematic flowchart of a method for routing a relay network according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for routing a relay network according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a relay network according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a routing system of a relay network according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a network architecture of an LTE system after an RS is introduced.
  • the LTE system is composed of a plurality of eNBs and RSs.
  • the eNB is connected to the EPC through the S1 port, and a tree topology is between the RS and the eNB.
  • a user equipment (UE) can access the eNB in multiple hops through the RS.
  • the eNB can support Frequency Division Duplex (FDD), Time Division Duplex (TDD), and dual mode operation.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the eNBs can interact with each other through X2, and both S1 and X2 are logical interfaces.
  • the multi-hop relay is introduced in the system. Therefore, the physical layer and high-level processing mechanism of the relay link need to be modified to adapt to the new application scenario. For routing, it is necessary to introduce a new routing identifier and redesign the packet structure.
  • the RS may match the path identifier according to the identifier information of the obtained data packet, and then continue to match the next hop RS identifier according to the path identifier, and according to the next The hop RS identity forwards the obtained data packet to the next hop RS.
  • the identification information may be a U E identifier or a tunnel identifier.
  • the RS may match the next hop RS identifier in the routing table and the path table according to the identifier information, and forward the received data packet to the next hop RS according to the next hop RS identifier.
  • the identifier information may include a UE identifier, for example, a Cell-Radio Network Temporary Identity (C-RNTI) and a tunnel identifier, for example: a tunnel-wireless network temporary identifier (Tunnel-Radio Network)
  • C-RNTI Cell-Radio Network Temporary Identity
  • T-RNTI tunnel-wireless network temporary identifier
  • the routing method of the relay network provided in this embodiment can implement the UE-based routing in the LTE relay system and the tunnel-based routing in the LTE relay system.
  • each RS needs to have a unique identifier, which is called a relay station identifier RSJD.
  • the identifier may be automatically allocated by the eNB after the RS access, or may be allocated by the operation administrator of the system.
  • the RS receives the data packet sent by the previous hop node, it needs to forward it to the next hop node.
  • each RS needs to maintain a routing table and a path table to ensure that the data packets can be correctly routed. For security reasons, all routing management messages can be encrypted and integrity protected.
  • the information of the two domains may be used for each route, where the identifier information is RNTI and the other is the path identifier Path_ID, that is, the entry of the routing table includes at least two domains.
  • the identification information and the path identifier are respectively shown in Table 1.
  • the identification information RNTI may include the UE identifier C-RNTI and the tunnel identifier T-RNTI, and the tunnel identifier T-RNTI is taken as an example.
  • the routing table may simply and intuitively indicate the binding relationship between the tunnel and the path, and may implement the routing table when implemented. Compression and optimization.
  • the difference between a path and a tunnel is as follows: A tunnel is a logical concept and is associated with a service flow. Multiple tunnels can be bound to the same path.
  • the information of two domains is used for each path, and the path identifier is Path_ID, and the other is path information Pathjnfo, that is, the path table entry includes at least two
  • the domain identifier is the path identifier and the path information, that is, the RS identifier of the RS on the path.
  • the format of the path table is shown in Table 2.
  • the path table records the mapping relationship between the path identifier and the RS identifier.
  • the RS identifier may be further divided into an uplink next hop RS identifier and a downlink next hop RS identifier.
  • the uplink next hop identifier can be applied to the case of a non-tree network topology.
  • the path identifier Path_ID is a value, and the role is to uniquely distinguish different paths under one eNB.
  • the path identifier Path-ID is related to the access RS, and the access RS is not If the change occurs (network retreat, cross-eNB handover, etc.), then the path identifier Path_ID will not change; the path information Path_info records the relay station identifier RSJD from the eNB to the intermediate RS experienced by the access RS. If the RS changes (backoff, handover, etc.), or the RS in the middle of the path changes, the eNB needs to update the information in the path information Path_info.
  • the path information Path_info includes at least two fields, that is, the set of the relay station identifier RSJD and the number of RSs num, which may be in the following form:
  • the num field indicates the number of RS stations in the middle of the path; the set of the identification station, that is, the relay station identifier RSJD is the relay station identifier RSJD of the intermediate RS in sequence. If Path_info corresponding to the path identifier PathJD is empty, it means that the RS is directly attached to the eNB.
  • FIG. 2 is a schematic flowchart of a method for routing a relay network according to an embodiment of the present invention.
  • This embodiment is applicable to a UE-based routing mechanism, that is, the identifier information in this embodiment is a UE identifier C-RNTI. As shown in FIG. 2, this embodiment may include the following steps:
  • Step 201 The RS acquires a data packet carrying the UE identifier C-RNTI.
  • the RS may receive a data packet according to the UE identifier C-RNTI indicated on the control channel, where the data packet is identified by using the UE identifier C-RNTI;
  • Step 202 The RS matches the path identifier PathJD in the routing table according to the UE identifier C-RNTI.
  • Step 203 The RS determines, according to the path identifier PathJD, whether the next hop RS identifier RSJD is matched in the path table. If yes, step 204 is performed; otherwise, step 205 is performed.
  • the RS is an intermediate RS. If the RS cannot match the next hop RS identifier RSJD according to the UE identifier C-RNTI, the RS is an access RS. ;
  • Step 204 The RS forwards the data packet to the next hop RS corresponding to the next hop RS identifier RSJD.
  • Step 205 The RS accesses the RS, and directly sends the data packet to the UE corresponding to the UE identifier C-RNTI.
  • the identification information in this embodiment is the UE identifier C-RNTI, and the routing method of the relay network provided in this embodiment is used in the routing method of the UE, and the UE-based routing in the LTE relay system is implemented.
  • FIG. 3 is a schematic flowchart of a method for routing a relay network according to an embodiment of the present invention. This embodiment is applicable to a tunnel-based routing mechanism, that is, the identifier information in this embodiment is a tunnel identifier T-RNTL. In this embodiment, a tunnel is used.
  • the eNB and the access RS need to support the aggregation and de-aggregation of the MAC layer Protocol Data Unit (PDU) in the Media Access Control (MAC) layer.
  • PDU MAC layer Protocol Data Unit
  • MAC Media Access Control
  • the tunnel from the eNB to the accessing RS is already established.
  • the mapping relationship between the tunnel identifier T-RNTI and its corresponding path identifier has been recorded in the routing table.
  • the tunnel identifier can be transmitted on the relevant control channel, and the RS obtains the tunnel identifier by listening.
  • the tunnel ID needs to be described by its profile, such as: delay, supported services, supported quality of service (QoS), etc. Data of different services should be in the corresponding tunnel. transmission.
  • this embodiment may include the following steps:
  • Step 301 The eNB encapsulates the payload of the MAC layer PDU in the pre-transmitted data packet to be transmitted into the tunnel data packet together with the UE identity of the UE corresponding to the MAC layer PDU, and identifies the tunnel data packet by using the tunnel identifier T-RNTI.
  • the aggregated PDU may be a pre-transmitted data packet from the same UE, or may be a pre-transmitted data packet from different UEs.
  • the pre-transmitted data packet may be understood as follows: If the UE-based routing mechanism, the pre-sent data packet may be directly sent. If it is a tunnel-based routing mechanism, the pre-sent packet needs to be processed to form a tunnel packet that can be transmitted. After the aggregation, a tunnel packet is formed.
  • Figure 4a and Figure 4b show the format of the tunnel data packet. As shown in Figure 4, the tunnel data packet can be divided into two parts, namely the tunnel packet header and the tunnel packet payload. .
  • the load part of the tunnel data packet includes a plurality of (1 ...... ⁇ ) load parts of the MAC layer PDU in the legacy LTE, and an identification area storing the UE identity. Since the tunnel data packet may be aggregated by the load of the MAC layer PDUs from multiple UEs, it is necessary to add the UE identity to the load of the tunnel data packet to indicate the attribution of the load of these MAC layer protocol data units.
  • the header portion of the tunnel packet can be divided into sub-headers, each subheader and the UE identifier in the payload of the tunnel packet, the load and gap of the MAC layer protocol data unit. (padding) corresponds.
  • the area of the subheader is followed by an identification area consisting of a number of identification blocks that store the identity of the UE.
  • Each identification block is used to describe which UE the load of the MAC layer protocol data unit in the payload of the tunnel data packet belongs to.
  • the identification block is composed of two parts, one part is the accessing RS used to distinguish the UE identity of the UE, and the other part is the number (Num) of the load of the MAC layer protocol data unit belonging to the UE.
  • Step 302 The eNB sends a tunnel data packet carrying a tunnel identifier T-RNTI.
  • Step 303 The RS receives, according to the tunnel identifier T-RNTI indicated on the control channel, a tunnel data packet sent by the eNB.
  • Step 304 The RS matches the path identifier Path_ID in the routing table according to the tunnel identifier T-RNTI.
  • Step 305 The RS determines, according to the path identifier PathJD, whether the next hop RS identifier RSJD is matched in the path table. If yes, step 306 is performed; otherwise, step 307 is performed.
  • the RS is an intermediate RS. If the RS cannot match the next hop RS identifier RSJD according to the tunnel identifier T-RNTI, the RS is an access RS. ;
  • Step 306 The RS forwards the tunnel data packet to the next hop RS corresponding to the next hop RS identifier RSJD.
  • Step 307 The RS accesses the RS, and extracts, according to the UE identifier in the tunnel data packet, the load of the MAC layer protocol data unit belonging to the same UE from the tunnel data packet.
  • Step 308 The access RS encapsulates the load of the MAC layer protocol data unit that belongs to the same U E, and distributes the payload to the UE corresponding to the UE identifier.
  • the RS does not decapsulate the tunnel data packet, and only the tunnel data packet is directly forwarded according to the routing table; if the RS is the terminal station of the tunnel (ie, accessing the RS) Then, it decapsulates the tunnel data packet at the AC layer, extracts the load of the MAC layer protocol data unit belonging to different UEs in the tunnel data packet, and then repackages and distributes it on the access link.
  • the identification information in this embodiment is a tunnel identifier T-RNTI
  • the routing method of the relay network provided in this embodiment is a tunnel routing method, which implements tunnel-based routing under the LTE relay system.
  • FIG. 5 is a schematic flowchart of a method for routing a relay network according to an embodiment of the present invention, where the implementation is implemented
  • the example may further include a process of managing a routing table.
  • the routing table of this embodiment includes the information of the UE and the path.
  • the change of the UE is more frequent than the change of the path, that is, the network access/return/switch. Therefore, in the management of the routing table, the UE pair is mainly considered.
  • the process of managing the routing table in this embodiment may include the following steps:
  • Step 501 The RS updates the routing table according to the received routing update message carrying the identifier information (the UE identifier C-RNTI or the tunnel identifier T-RNTI).
  • the routing update message includes a routing table adding message and a routing table deleting message.
  • Step 502 The RS determines, according to the identifier information (the UE identifier C-RNTI or the tunnel identifier T-RNTI), whether the next hop RS identifier RS_ID can be matched. If yes, go to step 503.
  • the identifier information the UE identifier C-RNTI or the tunnel identifier T-RNTI
  • the RS can match the next hop RS identifier RS_ID according to the UE identifier C-RNTI or the tunnel identifier T-RNTI, the RS is an intermediate RS; if the RS cannot match the next one according to the UE identifier C-RNTI or the tunnel identifier T-RNTI
  • the RS identifier RS-ID indicates that the RS is an access RS.
  • Step 503 The RS forwards the route update message to the RS corresponding to the next hop RS identifier RSJD.
  • the routing table management message that is, the route update message
  • the routing table management message is generated by the eNB according to the situation of the UE attachment station (eNB or RS), and the eNB needs to generate a routing table management message, that is, a route update message, in the following cases:
  • the UE accesses the network, and after the radio resource control (RRC) connection is established, after the UE completes the network access authentication, the eNB generates a routing table adding message, and transmits the UE's UE identifier C-RNTI to the path through which the UE data passes.
  • the path identifier PathJD is bound, and all RSs on the path are notified to add the corresponding routing entry to the routing table of all RSs on the path.
  • the initial access signaling route and the accessed data/signaling route may be different. of;
  • the eNB After the tunnel is established, after the tunnel is established between the eNB and the accessing RS, the eNB also generates a routing table adding message, binding the tunnel identifier T-RNTI of the tunnel and the path identifier Path_ID of the path, and notifying the tunnel. Add routing entries to all RSs;
  • the eNB After the UE exits the network, after the UE exits the network, the eNB generates a routing table deletion message to notify the RS on the path to delete the corresponding routing entry.
  • the tunnel is canceled. If the tunnel is cancelled by the eNB, the eNB generates a routing table deletion message to inform the RS on the path to delete the corresponding routing entry.
  • the eNB needs to establish a path on the new path first. Update the routing table on the path by adding a message to the routing table, and then delete the corresponding routing entry on the original path of the UE by using the routing table deletion message after the end of the handover.
  • the addition of the routing entry may be completed by using an RNTI routing Add Indication (RAI_REQ) message, where the RAI_REQ message is a layer 3 (L3) message, its load (
  • the payload includes at least two domains, that is, the set of the identifier information RNTI and the corresponding path identifier PathJ D, which may be in the following form:
  • the RNTI may be a UE identifier C-RNTI or a tunnel identifier T-RNTI, and the entire RAI_REQ message indicates that the identifier of the identifier domain is added to the routing table of the RS corresponding to the PathJD/indicated path.
  • the RAI-REQ message needs to use the Security Zone Key (SZK) on the trunk link for encryption and integrity protection, and then transmit on the relay link, and the RS on all paths can be solved. The content of the message, and update the routing table accordingly.
  • SZK Security Zone Key
  • the deletion of the routing entry may be completed by using an RNTI routing Delete Indication (RDI_REQ) message, where the RDI-REQ message is also an L3 message, and its load is at least
  • RDI_REQ RNTI routing Delete Indication
  • the content of the two domains that is, the set of the identifier information RNTI and the corresponding path identifier PathJD, may be in the following form:
  • the RNTI may be a UE identifier C-RNTI or a tunnel identifier T-RNTI, and the whole
  • the role of the RDI-REQ message is to tell the RS on the path to delete the routing table entry associated with the identity of the identified domain.
  • the addition of the routing entry may be completed by the RNTI route addition indication message in the case of (1), (2), and the deletion of the routing entry may be in the case of (3), (4).
  • the RNTI route delete indication message is completed.
  • the RS in the path After receiving the RAI_REQ/RDI_REQ message, the RS in the path will process it according to the content of the message, and then forward the message to the next hop until the end of the path (ie access RS)acy If When the intermediate RS (including the access RS) receives the message and finds that the message is wrong, the RS will directly send an RAI-RSP/RDI-RSP (error) message to the eNB; otherwise, the intermediate RS will forward the message along the path indicated in the message. Until access to the RS. Finally, after the access RS acknowledgement message is correct and the routing table is updated, an RAI_RSP/RDI_RSP is fed back to the eNB (the route is correct) Update) Message.
  • FIG. 6 is a schematic flowchart of a method for routing a relay network according to an embodiment of the present invention.
  • the embodiment may further include a process of managing a path table.
  • the role of the path table is mainly for facilitating the maintenance and management of the route between the eNB and the RS, and the change of the path table does not change the routing table frequently.
  • a path can be understood as a route from the eNB to the accessing RS.
  • the path identifier Path_ID and these routes are the corresponding relationships.
  • the process of managing the path table in this embodiment may include the following steps:
  • Step 601 The RS updates the path table according to the received path update message carrying the identifier information (the UE identifier C-RNTI or the tunnel identifier T-RNTI).
  • Step 602 The RS updates the routing table according to the updated path table.
  • Step 603 The RS determines, according to the identifier information (the UE identifier C-RNTI or the tunnel identifier T-RNTI), whether the next hop RS identifier RSJD can be matched. If yes, step 604 is performed.
  • the identifier information the UE identifier C-RNTI or the tunnel identifier T-RNTI
  • the RS can match the next hop RS identifier RS_ID according to the UE identifier C-RNTI or the tunnel identifier T-RNTI, the RS is an intermediate RS; if the RSUE identifier C-RNTI or the tunnel identifier T-RNTI cannot match the next one
  • the RS identifier RSJD indicates that the RS is an access RS.
  • Step 604 The RS forwards the path update message to the RS corresponding to the next hop RS identifier RSJD.
  • the routing table management message that is, the path update message is generated by the eNB according to the change of the RS.
  • the eNB needs to generate a path table management message, that is, a route update message in the following cases: (1) RS accessing the network
  • the network access of the RS can be divided into two categories, the network access process may be different: one type has only one RS access network, and the other type has two RSs simultaneously accessing the network.
  • one RS is an auxiliary relay station of another RS, and the access network is connected with another RS, and the eNB allocates a new path identifier Path_ID to the path of the eNB to the RS, and then combines the path information on the path.
  • Pathjnfo generates a path table to add a message, and passes it to all RSs on the path;
  • the eNB After the RS exits the network, the eNB generates a path table delete message, deletes the corresponding entry in the RS path table on the path, and updates the content in the routing table accordingly.
  • the addition of the path entry may be completed by a Path Add Indication (PAI_REQ) message, where the PAI_REQ message is also an L3 message, and the load includes at least two domains.
  • the content that is, the path identifier PathJ D and the corresponding path information Path_i nf 0, may be in the following form:
  • the PAI_REQ message needs to be encrypted and integrity protected by SZK on the trunk link, and then transmitted on the relay link.
  • the RS on all paths must be able to solve the contents of the message and update the path table accordingly.
  • the intermediate RS After receiving the PAI_REQ message, the intermediate RS updates the path table according to the information indicated in the message, and then updates the routing table entry accordingly;
  • the deletion of the path entry may be completed by a Path Delete Indication (PDI_REQ) message.
  • the PDI-REQ message is also an L3 message. Its load also includes at least the contents of the two domains, namely the path identifier Path_ID and the corresponding path information Path_info, which can be of the form:
  • the path information Path_info is included in the PDI-REQ message.
  • the path update fails, for example, some RSs on the path have deleted the relevant path information according to the message. If there is no indication of the path information Path_info, When the message is deleted from the retransmission path, it cannot be forwarded. Optimization can be considered here, for example, when the PDI-REQ message is first transmitted without the path information Path_info, but when the retransmission is followed, the path information Path_info is taken.
  • the role of the RDI_REQ message is to tell the RS on the path to delete the path entry and routing entry related to the Path ID.
  • the intermediate RS updates the path table after receiving the RDI_REQ message. Item, and then update the routing table entry accordingly.
  • the RS in the path After receiving the PAI_REQ/PDI_REQ message, the RS in the path will process it according to the content of the message, and then forward the message to the next hop until the end of the path (ie access RS). If a message error is found when the intermediate RS (including the access RS) receives the message, the RS will directly send a PAI_RSP/PDI-RSP (Error Reporting) message to the eNB; otherwise the intermediate RS will forward the message along the path indicated in the message. Until access to the RS. Finally, after the access RS acknowledgment message is correct and the path table and routing table are updated, a PAI-RSP/PDI-RSP (Route Correct Update) message is fed back to the eNB.
  • PAI-RSP/PDI-RSP Rastere Correct Update
  • the priority of the path table update is higher than the routing table update, that is, if it is necessary to simultaneously update the routing table and the path table, such as group mobility, the eNB first sends a path update message and then sends a route update message.
  • FIG. 7 is a schematic structural diagram of a routing device of a relay network according to an embodiment of the present invention.
  • the embodiment may include an obtaining module 72 and a routing module 73.
  • the obtaining module 72 obtains the data packet carrying the identifier information, and the routing module 73 matches the path identifier according to the identifier information, and then continues to match the next hop site identifier according to the path identifier, and corresponding to the next hop site identifier.
  • the website forwards the data packet acquired by the acquisition module 72.
  • the embodiment may further include a maintenance module 71, configured to separately store the identifier information and the path identifier, and the mapping relationship between the path identifier and the site identifier, so that the routing module 73 routes the data packet acquired by the obtaining module 72. .
  • a maintenance module 71 configured to separately store the identifier information and the path identifier, and the mapping relationship between the path identifier and the site identifier, so that the routing module 73 routes the data packet acquired by the obtaining module 72.
  • the routing device of the relay network can be regarded as a relay station RS, and is disposed between the base station eNB and the UE.
  • the RS and the eNB are in a tree topology relationship, and the UE can use the RS to multi-hop.
  • the mode accesses the eNB.
  • the mapping relationship between the identifier information and the path identifier, the path identifier, and the site identifier stored in the maintenance module 71 can be implemented by using a routing table and a path table, respectively.
  • the routing table can describe each route with two domains, one for identification information. RNTI, the other is the path identifier Path_ID.
  • the identification information RNTI may include a UE identifier C-RNTI and a tunnel identifier T-RNTL.
  • the path table may be described by using two fields of information for each path, one for the path identifier Path_ID and the other for the path information Path_info.
  • the path identifier Path_ID is a value, which is to uniquely distinguish different paths under one eNB; the path information Path_info records the relay station identifier RSJD from the eNB to the intermediate RS experienced by the access RS.
  • the routing module may match the next hop site identifier according to the identifier information indicated on the control channel, and forward the data packet received by the acquiring module according to the next hop site identifier. Go to the next hop site.
  • the identification information may be a UE identifier or a tunnel identifier.
  • the routing module 73 may also be configured to send the data packet received by the obtaining module 72 when the path identifier that is matched by the identifier of the UE does not match the next hop site identifier. Go to the UE corresponding to the UE identity.
  • the tunnel data packet received by the obtaining module 72 is encapsulated by the payload of the MAC layer protocol data unit and the UE identifier of the UE corresponding to the MAC layer protocol data unit, and the route is encapsulated.
  • the module 73 may also be configured to obtain, according to the UE identifier in the tunnel data packet received by the obtaining module 72, the tunnel UE from the tunnel data packet.
  • the payload of the MAC layer protocol data unit encapsulates the payload of the MAC layer protocol data unit belonging to the same UE and distributes the payload to the UE corresponding to the UE identifier.
  • the maintenance module 71 may further update the stored according to the route update message or the path update message that is sent by the received eNB and carries the identifier information.
  • the mapping relationship that is, the update routing table and the path table.
  • the identifier information in this embodiment may include the UE identifier C-RNTI and the tunnel identifier T-RNTI.
  • the routing device of the relay network provided in this embodiment may be applicable to the UE-based routing method process, and may be applied to In the routing method of the tunnel, routing under the LTE relay system can be implemented.
  • FIG. 8 is a schematic structural diagram of a routing system of a relay network according to an embodiment of the present invention.
  • the embodiment may include a base station 80 and multiple relay stations 70.
  • the relay station 70 and the base station 80 are in a tree topology relationship, and the UE can access the base station 80 in a multi-hop manner through one or more relay stations 70.
  • the base station 80 sends the data packet carrying the identification information, and the relay station 70 can receive the data packet sent by the base station 80 according to the identification information indicated on the control channel, and obtain the data packet that is sent by the base station 80 and carries the identification information, according to the identification information.
  • the relay station 70 in this embodiment may be the routing device of the relay network provided by the embodiment of the present invention.
  • the identifier information in this embodiment is a tunnel identifier
  • the base station 80 further needs to encapsulate the payload of the MAC layer protocol data unit in the pre-transmitted data packet to be transmitted into the tunnel together with the UE identifier of the UE corresponding to the MAC layer protocol data unit.
  • the data packet identifies the tunnel data packet with a tunnel identifier and transmits the tunnel data packet to the relay station 70.
  • the base station 80 in this embodiment is further configured to generate and send a route update message according to the situation of the UE attaching the site, and generate and send a path update message according to the change of the relay station.
  • the identification information in this embodiment may include a UE identifier C-RNTI and a tunnel identifier T-RNTI.
  • the routing system of the relay network provided in this embodiment may perform a UE-based routing method flow or a tunnel-based routing. The method flow can implement routing under the LTE relay system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

中继网络的路由方法、 装置及系统 本申请要求于 2008 年 9 月 4 日提交中国专利局、 申请号为 200810119654.0、 发明名称为 "中继网络的路由方法、 装置及系统" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其是一种中继网络的路由方法、 装置及系统。 背景技术
在网络向宽带化、 移动化发展的过程中, 第三代合作伙伴计划 (3rd Generation Partnership Program , 简称 3GPP )组织分另' J在移动接入网提出 了长期演进( Long Term Evolution , 简称 LTE ) 方案即演进通用移动通信系 统 ( UMTS )陆地无线接入网( Evolved Universal Mobile Telecommunication System Territorial Radio Access Network, 简称 E-UTRAN )、 以及在移动核 心网提出了系统架构演进( System Architecture Evolution , 简称 SAE )方案 即演进分组核心网 ( Evolved Packet Core, 简称 EPC )。
E-UTRAN釆用只有演进型 Node B ( eNB )构成的单层结构, 以便简化 网络和减少时延, 这种结构实际上已经趋近于典型的 IP宽带网结构, 该网络 中不存在路由的问题。 在引入中继站 ( Relay Station , 简称 RS )之后, 终端 和 eNB之间就存在了多跳接入的情况, 这样就有必要对该场景下的路由问题 进行研究。 现有技术中并未给出 LTE中继系统下的路由方法。 发明内容
本发明实施例提供一种中继网络的路由方法、 装置及系统。
本发明实施例提供了一种中继网络的路由方法, 包括:
获取携带有标识信息的数据包;
根据所述标识信息匹配出路径标识;
若才艮据所述路径标识匹配出下一跳站点标识, 向所述下一跳站点标识对 应的站点转发所述数据包。
本发明实施例还提供了一种中继网络的路由装置, 包括:
获取模块, 用于获取携带有标识信息的数据包;
路由模块, 用于根据所述标识信息匹配出路径标识, 若根据所述路径标 识匹配出下一跳站点标识, 向所述下一跳站点标识对应的站点转发所述数据 包。
本发明实施例还提供了一种中继网络的路由系统, 包括:
中继站, 用于获取基站发送的携带有标识信息的数据包, 根据所述标识 信息匹配出路径标识, 若根据所述路径标识匹配出下一跳站点标识, 向所述 下一跳站点标识对应的站点转发所述数据包。
由上述技术方案可知, 本发明实施例中, RS 根据所获取的数据包的标 识信息可以匹配出路径标识,再继续根据所述路径标识可以匹配出下一跳 RS 标识, 并根据下一跳 RS标识将所获取到的数据包转发到下一跳 RS, 从而实 现了在 LTE中继系统下的路由。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为引入 RS后的 LTE系统的网络架构示意图;
图 2为本发明实施例提供的中继网络的路由方法的流程示意图; 图 3为本发明实施例提供的中继网络的路由方法的流程示意图; 图 4a和图 4b为本发明实施例提供的中继网络的路由方法中隧道数据包的 格式示意图;
图 5为本发明实施例提供的中继网络的路由方法的流程示意图; 图 6为本发明实施例提供的中继网络的路由方法的流程示意图; 图 7为本发明实施例提供的中继网络的路由装置的结构示意图; 图 8为本发明实施例提供的中继网络的路由系统的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为引入 RS后的 LTE系统的网络架构示意图, 如图 1所示, 该 LTE 系统由若干 eNB和 RS组成的, eNB通过 S1 口连接到 EPC, RS和 eNB之 间是树型的拓朴关系, 终端 (User Equipment, 简称 UE )可以通过 RS, 以 多跳的方式接入 eNB。 eNB可以支持频分双工( Frequency Division Duplex, 简称 FDD )、时分双工( Time Division Duplex,简称 TDD )和双模( dual mode ) 操作。 eNB之间可以通过 X2实现交互, S1和 X2都是逻辑接口。
由于系统中引入了多跳中继, 因此, 需要对中继链路的物理层和高层的 处理机制进行修改, 以适应新的应用场景。 对路由而言, 就需要引入新的路 由标识, 并对数据包结构进行重新设计。
本发明实施例提供的中继网络的路由方法中, RS根据所获取的数据包的 标识信息可以匹配出路径标识, 再继续根据所述路径标识可以匹配出下一跳 RS标识, 并根据下一跳 RS标识将所获取到的数据包转发到下一跳 RS。 其 中的标识信息可以为 U E标识, 还可以为隧道标识。 RS可以根据该标识信息 在路由表和路径表中匹配出下一跳 RS标识, 根据下一跳 RS标识将所接收 到的数据包转发给下一跳 RS。
本发明实施例中, 标识信息可以包括 UE标识例如: 小区 -无线网络临时 标识 ( Cell-Radio Network Temporary Identity, 简称 C- RNTI ) 和隧道标识 例如: 隧道-无线网洛临时标识 ( Tunnel-Radio Network Temporary Identity, 简称 T-RNTI ), 本实施例所提供的中继网络的路由方法既能够实现在 LTE中 继系统下基于 UE的路由, 又能够实现在 LTE中继系统下基于隧道的路由。
本发明实施例中, 每个 RS都需要具有一个唯一的标识, 称为中继站标识 RSJD, 该标识可以在 RS接入之后由 eNB自动分配, 也可以由系统的操作管 理员进行分配。 当 RS收到上一跳节点发来的数据包后需要转发给下一跳节点, 此时, 各个 RS需要维护一个路由表和路径表, 以保证数据包能被正确的路由。 出于安全性的考虑, 所有的路由管理消息都可以进行加密和完整性保护。
本发明实施例中, 为了便于路由管理, 对每条路由可以使用两个域的信 息来进行描述, 个为标识信息 RNTI , 另一个为路径标识 Path_ID, 即路由 表的表项至少包含两个域, 分别为标识信息和路径标识, 路由表的构成形式 如表 1所示。标识信息 RNTI可以包括 UE标识 C-RNTI和隧道标识 T-RNTI 以隧道标识 T-RNTI 为例, 路由表可以简单直观地表示出隧道和路径的绑定 关系, 实现的时候可以对该路由表进行压缩和优化。 路径和隧道的区别是: 隧道是逻辑概念, 与业务流相关, 同一条路径上可以绑定多条隧道。
表 1
Figure imgf000006_0001
本发明实施例中, 为了便于路径管理, 对每条路径都使用两个域的信息 来进行描述, 个为路径标识 Path— ID, 另一个为路径信息 Pathjnfo, 即路 径表的表项至少包含两个域, 分别为路径标识和路径信息即该路径上的 RS 的 RS标识, 路径表的构成形式如表 2所示。 路径表记录了路径标识与 RS 标识的映射关系。 其中的 RS标识还可以进一步分为上行下一跳 RS标识和 下行下一跳 RS标识。 上行下一跳标识可以应用于非树型网络拓朴的情况。
表 2
Figure imgf000006_0002
其中, 路径标识 Path—ID为一数值, 作用是在一个 eNB下唯一区别不同 的路径。 在同一 eNB下, 该路径标识 Path—ID和接入 RS有关, 接入 RS不 发生变化(退网、 跨 eNB切换等), 那么该路径标识 Path—ID就不会改变; 路径信息 Path— info记录了从 eNB到接入 RS所经历的中间 RS的中继站标 识 RSJD。 如果 RS发生了变化 (退网、 切换等), 或者路径中间的 RS发生 变化, eNB 就需要更新路径信息 Path— info 中的信息。 路径信息 Path— info 中至少包括两个域的内容, 即中继站标识 RSJD的集合和 RS的数量 num, 可以为如下形式:
{{ num}, { RS ID1, RS ID2, RS ID n}}
其中 num域表示路径中间 RS站点的个数;标识域即中继站标识 RSJD 的集合就是依序的中间 RS的中继站标识 RSJD。 如果路径标识 PathJD对 应的路径信息 Path— info为空, 那么表示该 RS是直接附着在 eNB上的。
图 2为本发明实施例提供的中继网络的路由方法的流程示意图, 本实施 例适用于基于 UE的路由机制,即本实施例中的标识信息为 UE标识 C-RNTI。 如图 2所示, 本实施例可以包括以下步骤:
步驟 201、 RS获取携带有 UE标识 C-RNTI的数据包。
RS可以根据控制信道上指示的 UE标识 C-RNTI接收数据包, 该数据包 使用 UE标识 C-RNTI来标识;
步骤 202、 RS 根据 UE 标识 C-RNTI 在路由表中匹配出路径标识 PathJD;
步骤 203、 RS根据路径标识 PathJD判断能否在路径表中匹配出下一跳 RS标识 RSJD, 如果是, 则执行步驟 204; 否则执行步骤 205。
若 RS根据 UE标识 C-RNTI能匹配出下一跳 RS标识 RSJD, 说明该 RS为中间 RS; 若 RS根据 UE标识 C-RNTI不能匹配出下一跳 RS标识 RSJD, 说明该 RS为接入 RS;
步骤 204、 RS将数据包转发到下一跳 RS标识 RSJD对应的下一跳 RS; 步骤 205、 该 RS即接入 RS, 将数据包直接发送到 UE标识 C-RNTI对 应的 UE。
本实施例中的标识信息为 UE标识 C-RNTI ,本实施例所提供的中继网络 的路由方法 ^^于 UE的路由方法, 实现了在 LTE中继系统下的基于 UE的 路由。 图 3为本发明实施例提供的中继网络的路由方法的流程示意图, 本实施 例适用于基于隧道的路由机制, 即本实施例中的标识信息为隧道标识 T-RNTL 本实施例中, 隧道可以釆用隧道标识 T-RNTI来标识, eNB和接入 RS都需要在媒体访问控制( Media Access Control ,简称 MAC )层支持 MAC 层协议数据单元( Protocol Data Unit, 简称 PDU )的聚合和解聚合。 eNB到 接入 RS的隧道是已经建立好的,路由表中已经记录了隧道标识 T-RNTI与其 对应的路径标识的映射关系。 隧道标识可以在相关控制信道上传输, RS通过 监听来获得隧道标识。 隧道标识作为一种连接标识, 还需要有其描述文件 ( Profile ) 来描述, 例如: 时延, 所支持的业务、 所支持的服务质量( QoS ) 等, 不同业务的数据应在相应的隧道中传输。 由于隧道是从 eNB到接入 RS 的概念, 该隧道标识 T-RNTI 只需要在中继链路上使用, 而且隧道的封装和 解封也只在 eNB和接入 RS上进行, 因此对接入链路没有任何影响。 如图 2 所示, 本实施例可以包括以下步驟:
步骤 301、 eNB将要发送的预发送数据包中的 MAC层 PDU的负载与所 述 MAC层 PDU对应 UE的 UE标识一起封装成隧道数据包, 并使用隧道标 识 T-RNTI来标识该隧道数据包。
其中聚合的 PDU可以是来自相同 UE的预发送数据包,也可以是来自不 同 UE的预发送数据包, 预发送数据包可以这样理解: 若是基于 UE的路由 机制, 则预发送数据包可以直接发送; 若是基于隧道的路由机制, 则需要将 预发送数据包进行处理, 使之形成能够传递的隧道数据包。 聚合后形成隧道 数据包(tunnel packet )。 图 4a和图 4b为隧道数据包的格式, 如图 4所示, 隧道数据包可以分为两个部分, 即隧道数据包的包头 ( tunnel packet header ) 和隧道数据包的负载 ( tunnel packet payload )。
其中, 隧道数据包的负载部分包括多个( 1 ...... η )传统 LTE中 MAC层 PDU的负载部分、 以及存储 UE标识的标识区。 由于隧道数据包可能是由来 自多个 UE的 MAC层 PDU的负载聚合而成的, 因此, 有必要在隧道数据包 的负载中加入 UE标识指示出这些 MAC层协议数据单元的负载的归属情况。 隧道数据包的包头部分可以分为若干子头(sub- header ), 每个子头分别和隧 道数据包的负载中的 UE 标识、 MAC 层协议数据单元的负载以及间隙 ( padding )相对应。 在子头的区域之后是由若干标识块组成的存储 UE标识 的标识区, 每个标识块用于描述隧道数据包的负载中的 MAC 层协议数据单 元的负载分别属于哪个 UE。 其中标识块又是由两部分组成, 一部分是接入 RS用于区分 UE的 UE标识, 另一部分则是说明属于该 UE的 MAC层协议 数据单元的负载的个数( Num )。
步驟 302、 eNB发送携带有隧道标识 T-RNTI的隧道数据包;
步驟 303、 RS根据控制信道上指示的隧道标识 T-RNTI接收 eNB所发 送的隧道数据包;
步骤 304、 RS 根据隧道标识 T-RNTI 在路由表中匹配出路径标识 Path—ID;
步驟 305、 RS根据路径标识 PathJD判断能否在路径表中匹配出下一跳 RS标识 RSJD, 如果是, 则执行步骤 306; 否则执行步骤 307。
若 RS根据隧道标识 T-RNTI能匹配出下一跳 RS标识 RSJD, 说明该 RS 为中间 RS; 若 RS根据隧道标识 T-RNTI 不能匹配出下一跳 RS标识 RSJD, 说明该 RS为接入 RS;
步骤 306、 RS将隧道数据包转发到下一跳 RS标识 RSJD对应的下一 跳 RS;
步骤 307、 该 RS即接入 RS, 根据隧道数据包中的 UE标识分别从隧道 数据包中提取出属于同一 UE的 MAC层协议数据单元的负载;
步骤 308、接入 RS分别对属于同一 U E的 MAC层协议数据单元的负载 进行封装, 并分发至该 UE标识对应的 UE。
本实施例中, 如果 RS只是隧道的中间 RS, 那么该 RS不会解封隧道数 据包, 只会根据路由表直接将隧道数据包进行转发; 如果该 RS是隧道的终 点站 (即接入 RS ), 那么它会在 AC层解封隧道数据包, 提取出隧道数据 包中属于不同 UE的 MAC层协议数据单元的负载,然后再在接入链路上进行 重新封装和分发。
本实施例中的标识信息为隧道标识 T-RNTI ,本实施例所提供的中继网络的 路由方法 于隧道的路由方法,实现了在 LTE中继系统下的基于隧道的路由。
图 5为本发明实施例提供的中继网络的路由方法的流程示意图, 本实施 例中还可以进一步包括管理路由表的流程。 本实施例的路由表中包括了 UE 和路径(Path ) 的信息, 相对于路径的变化, UE的变化即入网 /退网 /切换更 为频繁, 所以在路由表的管理中, 主要考虑 UE对路由表的影响。 如图 5所 示, 本实施例中管理路由表的流程可以包括以下步骤:
步驟 501、 RS根据接收到的携带有标识信息 ( UE标识 C-RNTI或隧道 标识 T-RNTI ) 的路由更新消息来更新所述路由表。
其中的路由更新消息具体包括路由表添加消息和路由表删除消息; 步驟 502、 RS根据标识信息( UE标识 C-RNTI或隧道标识 T-RNTI )判 断能否匹配出下一跳 RS标识 RS— ID, 如果是, 则执行步骤 503。
若 RS根据 UE标识 C-RNTI或隧道标识 T-RNTI能匹配出下一跳 RS标 识 RS_ID, 说明该 RS为中间 RS; 若 RS根据 UE标识 C-RNTI或隧道标识 T-RNTI不能匹配出下一跳 RS标识 RS— I D, 说明该 RS为接入 RS;
步骤 503、 RS将路由更新消息转发到下一跳 RS标识 RSJD对应的 RS。 本实施例中, 路由表管理消息即路由更新消息都是由 eNB根据 UE附着 站点 (eNB或 RS ) 的情况生成的, eNB在以下几种情况下需要生成路由表 管理消息即路由更新消息:
( 1 ) UE入网, 在无线资源控制( Radio Resource Control , 简称 RRC ) 连接建立, UE完成入网认证之后, eNB会生成路由表添加消息, 将 UE的 UE标识 C-RNTI同 UE数据传输经过的路径的路径标识 PathJD进行绑定, 并通知该路径上所有 RS将对应路由表项添加入该路径上所有 RS的路由表, 初始接入的信令路由和接入后的数据 /信令路由可以不同的;
( 2 ) 隧道建立, eNB和接入 RS之间建立隧道之后, eNB也会生成路 由表添加消息, 将隧道的隧道标识 T-RNTI和路径的路径标识 Path—ID进行 绑定 , 并通知该隧道中所有 RS添加路由表项;
( 3 ) UE退网, UE退出网络之后, eNB会生成路由表删除消息以告知 路径上的 RS删除对应的路由表项;
( 4 )隧道取消, 如果隧道被 eNB取消掉, 那么 eNB会生成路由表删除 消息以告知路径上的 RS删除对应的路由表项;
( 5 ) UE切换, 在 UE切换过程中, eNB需要先建立起在新路径上的路 由, 通过路由表添加消息更新该路径上的路由表, 然后等切换结束之后, 通 过路由表删除消息将 UE原来所在路径上的对应路由表项删除。
针对(1 )、 (2 ) 的情况, 路由表项的添加可以通过 RNTI路由添加指示 ( RNTI routing Add Indication,简称 RAI_REQ )消息来完成,其中 RAI_REQ 消息是层 3 ( L3 ) 消息, 它的负载 (payload ) 中至少包括两个域的内容, 即 标识信息 RNTI的集合和对应的路径标识 PathJ D, 可以为如下形式:
RAI EQ{{ RNTI1, RNTI2, ..., RNTI n}, { Path ID }}
其中 RNTI可以是 UE标识 C-RNTI, 也可以是隧道标识 T-RNTI , 整个 RAI_REQ消息是表示将标识域的标识添加到对应 PathJD /所指示的路径上 的 RS的路由表中去。 该 RAI— REQ消息需要利用中继链路上的安全域密钥 ( Security Zone Key, 简称 SZK )进行加密和完整性保护, 然后在中继链路 上传输, 所有路径上的 RS要能够解出该消息的内容, 并据此更新路由表。
针对(3 )、 (4 ) 的情况, 路由表项的删除可以通过 RNTI路由删除指示 ( RNTI routing Delete Indication , 简称 RDI_REQ ) 消息来完成, 其中 RDI— REQ消息也是个 L3消息, 它的负载也至少包括了两个域的内容, 即标 识信息 RNTI的集合和对应的路径标识 PathJD, 可以为如下形式:
RDI REQ{{ RNTI1, RNTI2, RNTI n}, { Path ID }}
其中 RNTI可以是 UE标识 C-RNTI, 也可以是隧道标识 T-RNTI , 整个
RDI— REQ消息的作用是告诉路径上的 RS删除和标识域的标识相关的路由表 项。
针对( 5 )的情况, 路由表项的添加可以通过( 1 )、 ( 2 )的情况中的 RNTI 路由添加指示消息来完成, 路由表项的删除可以通过(3 )、 (4 ) 的情况中的 RNTI路由删除指示消息来完成。
路径中的 RS收到 RAI— REQ/RDI— REQ消息之后,会根据消息中的内容 进行相应的处理,然后将该消息转发至下一跳,直至路径的终点(即接入 RS )„ 如果在中间 RS (包括接入 RS )接收消息的时候发现消息错误, 那么该 RS 会直接给 eNB发送一个 RAI— RSP/RDI— RSP (报错 )消息; 否则中间 RS会 沿消息中指示的路径转发该消息, 直至接入 RS。 最后, 接入 RS确认消息无 误并更新路由表之后, 就会向 eNB反馈一个 RAI_RSP/RDI— RSP (路由正确 更新) 消息。
图 6为本发明实施例提供的中继网络的路由方法的流程示意图, 本实施 例中还可以进一步包括管理路径表的流程。 本发明实施例中 ]入路径表的作 用主要是便于 eNB和 RS进行路由的维护和管理, 路径表的变化没有路由表 的变化频繁。路径可以理解为 eNB到接入 RS的一条路由,路径标识 Path—ID 和这些路由是——对应的关系。 如图 6所示, 本实施例中管理路径表的流程 可以包括以下步骤:
步驟 601、 RS根据接收到的携带有标识信息 (UE标识 C-RNTI或隧道 标识 T-RNTI ) 的路径更新消息来更新路径表;
步驟 602、 RS根据更新后的路径表来更新路由表;
步驟 603、 RS根据标识信息( UE标识 C-RNTI或隧道标识 T-RNTI )判 断能否匹配出下一跳 RS标识 RSJD, 如果是, 则执行步骤 604。
若 RS根据 UE标识 C-RNTI或隧道标识 T-RNTI能匹配出下一跳 RS标 识 RS— ID,说明该 RS为中间 RS;若 RSUE标识 C-RNTI或隧道标识 T-RNTI 不能匹配出下一跳 RS标识 RSJD, 说明该 RS为接入 RS;
步骤 604、 RS将路径更新消息转发到下一跳 RS标识 RSJD对应的 RS。 本实施例中, 路由表管理消息即路径更新消息都是由 eNB根据 RS的变 化生成的, eNB在以下几种情况下需要生成路径表管理消息即路由更新消息: ( 1 ) RS入网
在 RS完成入网流程之后 ( RS的入网可以分为两大类情况, 其入网流程 可能会有所区别: 一类是只有一个 RS接入网络, 另一类是有两个 RS 同时 接入网络,且一个 RS为另一个 RS的附属中继站, 并随另一个 RS—起接入 网络), eNB会为 eNB到该 RS的路径分配一个新的路径标识 Path— ID, 然 后结合该路径上的路径信息 Pathjnfo, 生成一个路径表添加消息, 传递给该 路径上的所有 RS;
( 2 ) RS退网
RS 退出网络后, eNB 会生成一个路径表删除消息, 删除该路径上 RS 路径表中的对应条目, 并相应更新路由表中的内容;
( 3 ) RS切换 ( a )跨小区切换, 此时路径的更新等价于在原小区删除一条路径, 并且 在新小区添加一条新的路径;
( b )小区内切换, 如果是因为 RS的移动发生了小区内切换, 那么同样 需要对路径进行更新。 但是区别于跨小区切换, eNB不会为切换后的 RS分 配一个新的路径标识 Path—ID, 而只需要对该路径标识 PathJD对应的路径 信息 Path— info 进行更新即可, 然后沿着新路径将路径更新消息告知路径上 的 RS。
针对 (1 ) 的情况, 路径表项的添加可以通过路径添加指示 (Path Add Indication , 简称 PAI— REQ ) 消息来完成, 其中 PAI_REQ消息也是个 L3的 消息, 它的负载中至少包括两个域的内容, 即路径标识 PathJ D和对应的路 径信息 Path— i nf 0, 可以为如下形式:
PAI_REQ{{ Path ID }, { Path— info i}}
该 PAI_REQ消息需要利用中继链路上的 SZK进行加密和完整性保护, 然后在中继链路上传输, 所有路径上的 RS要能够解出该消息的内容, 并据 此更新路径表。
中间 RS收到 PAI— REQ消息后会根据消息中指示的信息来更新路径表, 然后再相应地更新路由表项;
针对 ( 2 )的情况, 路径表项的删除可以通过路径删除指示( Path Delete Indication , 简称 PDI_REQ ) 消息来完成。 PDI— REQ消息也是 L3消息。 它 的负载也至少包括了两个域的内容, 即路径标识 Path—ID和对应的路径信息 Path— info, 可以为如下形式:
PDI REQ{{ Path ID }, { Path— info i}}
该 PDI— REQ消息中包含路径信息 Path— info的目的是在路径更新失败的 情况下, 譬如路径上某些 RS 已经根据消息删除了相关的路径信息, 如果没 有路径信息 Path— info 的指示, 可能在重传路径删除消息的时候就无法进行 转发了。 这里可以考虑优化, 譬如在初次传 PDI— REQ 消息的时候不带路径 信息 Path— info, 但是重传的时候再带路径信息 Path— info。
RDI_REQ 消息的作用是告诉路径上的 RS删除和该路径标识 Path—ID 相关的路径表项和路由表项。 中间 RS收到 RDI_REQ消息后会更新路径表 项, 然后再相应地更新路由表项。
路径中的 RS收到 PAI— REQ/PDI— REQ消息之后, 会根据消息中的内容 进行相应的处理,然后将该消息转发至下一跳,直至路径的终点(即接入 RS )。 如果在中间 RS (包括接入 RS )接收消息的时候发现消息错误, 那么该 RS 会直接给 eNB发送一个 PAI_RSP/PDI— RSP (报错) 消息; 否则中间 RS会 沿消息中指示的路径转发该消息, 直至接入 RS。 最后, 接入 RS确认消息无 误并更新路径表、路由表之后,就会向 eNB反馈一个 PAI— RSP/PDI— RSP(路 由正确更新) 消息。
本实施例中, 路径表更新的优先级要高于路由表更新, 即如果需要同时 更新路由表和路径表, 例如群移动, eNB则先发送路径更新消息, 再发送路 由更新消息。
需要说明的是: 对于前述的各方法实施例, 为了简单描述, 故将其都表 述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受所描 述的动作顺序的限制, 因为依据本发明, 某些步驟可以釆用其他顺序或者同 时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属 于优选实施例, 所涉及的动作和模块并不一定是本发明所必须的。
图 7为本发明实施例提供的中继网络的路由装置的结构示意图, 如图 7 所示, 本实施例可以包括获取模块 72和路由模块 73。 其中, 获取模块 72获 取携带有标识信息的数据包, 路由模块 73根据该标识信息匹配出路径标识, 再继续根据该路径标识匹配出下一跳站点标识, 并向该下一跳站点标识对应 的站点转发获取模块 72所获取到的数据包。
进一步地, 本实施例还可以包括维护模块 71 , 用于分别存储标识信息与 路径标识、 以及该路径标识与站点标识的映射关系, 以供路由模块 73对获取 模块 72所获取的数据包进行路由。
本实施例所提供的中继网络的路由装置可以认为是一个中继站 RS,设置 于基站 eNB与 UE之间, RS和 eNB之间是树型的拓朴关系, UE可以通过 RS, 以多跳的方式接入 eNB。 其中, 维护模块 71 中所存储的标识信息与路 径标识、 路径标识与站点标识的映射关系可以分别通过路由表和路径表来实 现。 路由表中可以对每条路由用两个域的信息来进行描述, 一个为标识信息 RNTI,另一个为路径标识 Path—ID。标识信息 RNTI可以包括 UE标识 C-RNTI 和隧道标识 T-RNTL 路径表可以对每条路径用两个域的信息来进行描述,一 个为路径标识 Path_ID, 另一个为路径信息 Path_info。 其中, 路径标识 Path—ID 为一数值, 作用是在一个 eNB 下唯一区别不同的路径; 路径信息 Path— info记录了从 eNB到接入 RS所经历的中间 RS的中继站标识 RSJD。
本发明实施例提供的中继网络的路由装置中, 路由模块可以根据控制信 道上指示的标识信息可以匹配出下一跳站点标识, 根据下一跳站点标识将获 取模块所接收到的数据包转发到下一跳站点。 其中的标识信息可以为 UE标 识, 还可以为隧道标识。 当路由装置收到上一跳发来的数据包后需要转发给 下一跳, 此时, 各个路由装置需要维护一个路由表和路径表, 以保证数据包 能被正确的路由。
当本实施例中的标识信息为 UE标识时, 路由模块 73根据由 UE标识匹 配出的路径标识未匹配出下一跳站点标识时,还可以用于将获取模块 72所接 收到的数据包发送到 UE标识对应的 UE。
当本实施例中的标识信息为隧道标识时,获取模块 72所接收的隧道数据 包是由 MAC层协议数据单元的负载与所述 MAC层协议数据单元对应 UE的 UE标识封装而成的, 路由模块 73根据由隧道标识匹配出的路径标识未匹配 出下一跳站点标识时,还可以用于根据获取模块 72所接收到的隧道数据包中 的 UE标识从隧道数据包中获取属于同一 UE的 MAC层协议数据单元的负 载, 对属于同一 UE的 MAC层协议数据单元的负载进行封装, 并分发至该 UE标识所对应的 UE。
进一步地, 考虑到 UE 以及中继站的变化会对路由产生影响, 本实施例 中维护模块 71还可以根据接收到的 eNB发送的携带有所述标识信息的路由 更新消息或路径更新消息来更新所存储的映射关系, 即更新路由表和路径表。
本实施例中的标识信息可以包括 UE标识 C-RNTI和隧道标识 T-RNTI , 本实施例所提供的中继网络的路由装置既可以适用于基于 UE 的路由方法流 程中, 又可以适用于基于隧道的路由方法流程中, 能够实现在 LTE中继系统 下的路由。
本实施例适用于本发明实施例中的方法实施例。 图 8为本发明实施例提供的中继网络的路由系统的结构示意图, 如图 8 所示, 本实施例可以包括基站 80和多个中继站 70。 中继站 70和基站 80之 间是树型的拓朴关系, UE可以通过一个或多个中继站 70, 以多跳的方式接 入基站 80。 其中, 基站 80发送携带有标识信息的数据包, 中继站 70可以根 据控制信道上指示的标识信息接收基站 80发送的数据包, 获取到了基站 80 所发送的携带有标识信息的数据包, 根据标识信息匹配出路径标识, 根据该 匹配出的路径标识匹配出下一跳站点标识, 并根据匹配出的下一跳站点标识 向该下一跳站点标识对应的中继站转发接收到的数据包。
本实施例中的中继站 70可以为本发明实施例提供的中继网络的路由装置。 当本实施例中的标识信息为隧道标识时,基站 80还需要将要发送的预发 送数据包中的 MAC层协议数据单元的负载与所述 MAC层协议数据单元对应 UE的 UE标识一起封装成隧道数据包, 以隧道标识来标识该隧道数据包, 并 向中继站 70发送该隧道数据包。
进一步地, 考虑到 UE 以及中继站的变化会对路由产生影响, 本实施例 中基站 80还用于根据 UE附着站点的情况生成并发送路由更新消息, 以及根 据中继站的变化生成并发送路径更新消息。
本实施例中的标识信息可以包括 UE标识 C-RNTI和隧道标识 T-RNTI , 本实施例所提供的中继网络的路由系统既可以执行基于 UE的路由方法流程, 又可以执行基于隧道的路由方法流程, 能够实现在 LTE中继系统下的路由。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利 要求
1、 一种中继网络的路由方法, 其特征在于, 包括:
获取携带有标识信息的数据包;
根据所述标识信息匹配出路径标识;
若才艮据所述路径标识匹配出下一跳站点标识, 向所述下一跳站点标识对 应的站点转发所述数据包。
2、 根据权利要求 1所述的方法, 其特征在于, 所述标识信息为终端 UE 标识或隧道标识。
3、根据权利要求 2所述的方法,其特征在于,所述标识信息为 UE标识, 所述方法还包括: 若根据所述路径标识未匹配出下一跳站点标识, 向所述 UE 标识对应的 UE转发所述数据包。
4、根据权利要求 2所述的方法,其特征在于,所述标识信息为隧道标识, 则所述数据包为隧道数据包, 所述隧道数据包由预发送数据包中的媒体访问 控制 MAC层协议数据单元的负载、 所述 MAC层协议数据单元对应 UE 的 UE标识 †装而成。
5、 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括: 若根据所述路径标识未匹配出下一跳站点标识, 根据所述隧道数据包中 的所述 UE标识从所述隧道数据包中获得属于同一 UE的 MAC层协议数据单 元的负载;
对属于同一 UE的所述 MAC层协议数据单元的负载进行封装,并分发至 所述 UE标识对应的 UE。
6、 根据权利要求 1所述的方法, 其特征在于,
根据所述标识信息匹配出路径标识具体为: 根据所述标识信息在路由表 中匹配出路径标识;
根据所述路径标识匹配出下一跳站点标识具体为: 根据所述路径标识在 路径表中匹配出下一跳站点标识。
7、 根据权利要求 6所述的方法, 其特征在于, 所述方法还包括: 根据接收到的携带有所述标识信息的路由更新消息更新所述路由表; 若才艮据所述标识信息匹配出下一跳站点标识, 向所述下一跳站点标识对 应的站点转发所述路由更新消息。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述方法还包括: 根据接收到的携带有所述标识信息的路径更新消息更新所述路径表; 根据更新后的路径表更新所述路由表;
当根据所述标识信息匹配出下一跳站点标识时, 向所述下一跳站点标识 对应的站点转发所述路径更新消息。
9、 一种中继网络的路由装置, 其特征在于, 包括:
获取模块, 用于获取携带有标识信息的数据包;
路由模块, 用于根据所述标识信息匹配出路径标识, 若根据所述路径标 识匹配出下一跳站点标识, 向所述下一跳站点标识对应的站点转发所述数据 包。
10、 根据权利要求 9所述的装置, 其特征在于, 还包括维护模块, 用于 分别存储标识信息与路径标识、 以及所述路径标识与站点标识的映射关系。
11、 根据权利要求 10所述的装置, 其特征在于, 所述标识信息为 UE标 识, 所述路由模块还用于若根据所述路径标识未匹配出下一跳站点标识, 向 所述 UE标识对应的 UE转发所述数据包。
12、 根据权利要求 10 所述的装置, 其特征在于, 所述标识信息为隧道 标识, 则所述数据包为隧道数据包, 所述获取模块所获取的隧道数据包由预 议数据单元对应 UE的 UE标识封装而成, 所述路由模块还用于当根据所述 路径标识未匹配出下一跳站点标识时, 根据所述隧道数据包中的所述 UE标 识从所述隧道数据包中获得属于同一 UE的 MAC层协议数据单元的负载,对 属于同一 UE 的所述 MAC层协议数据单元的负载进行封装, 并分发至所述 UE标识对应的 UE。
13、 根据权利要求 10、 11或 12所迷的装置, 其特征在于, 所述标识信 息与所述路径标识的映射关系以路由表存储于所述维护模块中, 以及所述路 径标识与所述站点标识的映射关系以路径表存储于所述维护模块中, 所述维 护模块还用于根据接收到的携带有所述标识信息的路由更新消息更新所存储 的路由表, 以及根据接收到的携带有所述标识信息的路径更新消息依次更新 所存储的路径表和路由表。
14、 一种中继网络的路由系统, 其特征在于, 包括:
中继站, 用于获取基站发送的携带有标识信息的数据包, 根据所述标识 信息匹配出路径标识, 若根据所述路径标识匹配出下一跳站点标识, 向所述 下一跳站点标识对应的站点转发所述数据包。
PCT/CN2009/073617 2008-09-04 2009-08-28 中继网络的路由方法、装置及系统 WO2010025658A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810119654.0 2008-09-04
CN200810119654A CN101668324A (zh) 2008-09-04 2008-09-04 中继网络的路由方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2010025658A1 true WO2010025658A1 (zh) 2010-03-11

Family

ID=41796745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073617 WO2010025658A1 (zh) 2008-09-04 2009-08-28 中继网络的路由方法、装置及系统

Country Status (2)

Country Link
CN (1) CN101668324A (zh)
WO (1) WO2010025658A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9247479B2 (en) 2010-09-02 2016-01-26 Intel Deutschland Gmbh Resource allocation in a mobile communication system
EP4068704A4 (en) * 2020-01-08 2023-02-08 Huawei Technologies Co., Ltd. PACKET TRANSMISSION METHOD, ROUTING TABLE ENTRY GENERATION METHOD, DEVICE AND STORAGE MEDIA

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101938734B (zh) 2009-06-29 2013-11-06 华为技术有限公司 切换控制方法、装置和通信系统
CN102118812B (zh) 2009-12-31 2014-07-30 华为技术有限公司 中继网络中的切换方法和系统、中继站、控制基站及基站
CN102238059B (zh) * 2010-04-20 2015-05-13 中兴通讯股份有限公司 数据报文处理方法、系统及接入服务节点
US20140071885A1 (en) * 2012-09-10 2014-03-13 Qualcomm Incorporated Systems, apparatus, and methods for bridge learning in multi-hop networks
CN104158736B (zh) * 2013-05-15 2017-12-22 华为技术有限公司 一种确定下一跳、发布路由信息的方法和装置
CN104396309B (zh) * 2013-07-03 2019-03-26 华为技术有限公司 通信方法、支撑节点及通信系统
WO2017162191A1 (zh) * 2016-03-23 2017-09-28 中兴通讯股份有限公司 一种无线通信方法及装置
CN107231306B (zh) * 2016-03-23 2021-01-22 中兴通讯股份有限公司 一种路由表建立方法和装置
CN107231669B (zh) * 2016-03-23 2021-04-30 中兴通讯股份有限公司 一种数据传输装置方法和装置
CN106332217A (zh) * 2016-08-22 2017-01-11 维沃移动通信有限公司 一种无线路由的方法及移动终端
WO2019136607A1 (zh) * 2018-01-09 2019-07-18 Oppo广东移动通信有限公司 中继的路由方法和通信节点
KR102322381B1 (ko) * 2018-02-14 2021-11-10 주식회사 케이티 릴레이 노드에서 rrc 메시지를 처리하는 방법 및 그 장치
CN115088387A (zh) * 2020-02-24 2022-09-20 Oppo广东移动通信有限公司 中继方法、路由表的生成方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108124A1 (ja) * 2006-03-23 2007-09-27 Fujitsu Limited パケット中継装置
CN101083624A (zh) * 2007-07-10 2007-12-05 北京航空航天大学 基于树形结构的路由方法
CN101150498A (zh) * 2006-09-18 2008-03-26 华为技术有限公司 多跳无线中继通信系统及其下行数据传输方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108124A1 (ja) * 2006-03-23 2007-09-27 Fujitsu Limited パケット中継装置
CN101150498A (zh) * 2006-09-18 2008-03-26 华为技术有限公司 多跳无线中继通信系统及其下行数据传输方法
CN101083624A (zh) * 2007-07-10 2007-12-05 北京航空航天大学 基于树形结构的路由方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9247479B2 (en) 2010-09-02 2016-01-26 Intel Deutschland Gmbh Resource allocation in a mobile communication system
US9980200B2 (en) 2010-09-02 2018-05-22 Intel Deutschland Gmbh Resource allocation in a mobile communication system
EP4068704A4 (en) * 2020-01-08 2023-02-08 Huawei Technologies Co., Ltd. PACKET TRANSMISSION METHOD, ROUTING TABLE ENTRY GENERATION METHOD, DEVICE AND STORAGE MEDIA
JP7469479B2 (ja) 2020-01-08 2024-04-16 華為技術有限公司 パケット送信方法、ルーティング・エントリ生成方法、装置及び記憶媒体

Also Published As

Publication number Publication date
CN101668324A (zh) 2010-03-10

Similar Documents

Publication Publication Date Title
WO2010025658A1 (zh) 中继网络的路由方法、装置及系统
US10645671B2 (en) Light connection control method and apparatus
US8867428B2 (en) Split-cell relay application protocol
US10306596B2 (en) Method and system for connectionless transmission during uplink and downlink of data packets
JP4440300B2 (ja) 無線通信システムの分離型媒体アクセス制御プロトコル構造と、これを用いたデータ送受信方法並びにハンドオーバー方法及びそのシステム
TWI762684B (zh) 切換方法、存取網設備和終端設備
JP5436694B2 (ja) 端末が強化型utranに移動する時に強化キーを確立する方法及びシステム
EP2628330B1 (en) Lightweight data transmission mechanism
JP2019516265A (ja) シームレスのハンドオーバーをサポートする方法及びenb装置
EP2549826A1 (en) Relay node access to a network through a base station
JP2012114940A (ja) 無線装置とネットワーク間のデータユニットのシーケンスの送信のための無線通信方法
JP2013513988A (ja) 中継ハンドオーバ制御
JP2022553256A (ja) データ伝送方法、通信デバイス、及び通信システム
WO2013117128A1 (zh) 数据发送、接收方法、用户设备、基站及网关
US20150104019A1 (en) Direct Link Setup Method, Key Updating Method and Device
WO2019196656A1 (zh) 一种数据包分段方法、及装置
CN104602307A (zh) 切换方法及系统
WO2017209367A1 (ko) 무선통신 시스템에서 서비스 별로 단말의 인증을 수행하기 위한 방법 및 이를 위한 장치
CN113950079A (zh) 一种数据传输的方法和节点
US11546887B2 (en) Information transmission method and apparatus, and computer storage medium
WO2014082201A1 (zh) 数据传输方法和设备及系统
US20220095099A1 (en) Base station apparatus, mobile station apparatus, and communication method
CN107529156B (zh) 一种上行传输的方法、装置及网络架构
US20130065634A1 (en) Method for communication of terminal and method for communication of base station
WO2023125274A1 (zh) 一种通信方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811033

Country of ref document: EP

Kind code of ref document: A1