WO2010025606A1 - 安全防火电控装置 - Google Patents

安全防火电控装置 Download PDF

Info

Publication number
WO2010025606A1
WO2010025606A1 PCT/CN2009/000396 CN2009000396W WO2010025606A1 WO 2010025606 A1 WO2010025606 A1 WO 2010025606A1 CN 2009000396 W CN2009000396 W CN 2009000396W WO 2010025606 A1 WO2010025606 A1 WO 2010025606A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
phase
detection
signal
relay
Prior art date
Application number
PCT/CN2009/000396
Other languages
English (en)
French (fr)
Inventor
郭龙云
严文交
Original Assignee
湖南紫光道然电器有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南紫光道然电器有限责任公司 filed Critical 湖南紫光道然电器有限责任公司
Publication of WO2010025606A1 publication Critical patent/WO2010025606A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • H02H3/17Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass by means of an auxiliary voltage injected into the installation to be protected

Definitions

  • the present invention relates to a safety fire prevention electronic control device.
  • a safety fireproof electronic control device with low-voltage leakage and short-circuit protection and leakage and short-circuit pre-inspection.
  • the device is capable of pre-detecting electrical short-circuit and leakage faults across the high-power and weak-power multi-function, preventing electrical fire hazards and electric shock casualties.
  • the intelligent electronic control device also has a safety fireproof electronic control device that detects faults, locks, displays, alarms and parameter adjustments online.
  • the existing switchgear generally has no intelligent control function, and has no fault pre-check function. It is still a traditional structure that has been used for decades, such as manual, electromagnetic and mechanical switches. Its function is single and the cutting speed is slow (150ms). ), can not effectively protect the circuit.
  • the invention name is a smart contactless switch, an intelligent non-contact switch is disclosed, which has voltage sampling detection and overvoltage, undervoltage protection circuit, phase loss sampling protection circuit, current sampling detection Functions such as overcurrent phase protection circuit.
  • the invention name is intelligent fireproof electronic control system, an electronic control system is disclosed, which can have voltage sampling detection and overvoltage, undervoltage protection circuit, phase loss protection circuit, Simultaneously, the current sampling detection function and the overcurrent phase-break protection circuit also have a short-circuit pre-check function.
  • the short-circuit fault it is easy to cause fire.
  • the leakage fault will not only cause equipment damage and power waste, but also endanger personal safety. Therefore, in practical applications, the solution of short-circuit fault and leakage fault still needs further improvement.
  • the technical problem to be solved by the present invention is to provide a safety fireproof electronic control device for the above technical defects.
  • the short-circuit pre-check function and the leakage pre-check function are introduced.
  • the load end ie, the output end
  • the load terminal short-circuit and leakage fault are pre-detected, and the short-circuit and leakage faults are eliminated.
  • the rear can be closed to achieve normal and safe power supply.
  • the safety fireproof electric control device can be realized simply and conveniently used.
  • a safety fireproof electronic control device in which an air circuit breaker or a non-contact switch is connected in a three-phase load circuit
  • the inventive idea is that it also includes a microcomputer master
  • the control unit and the signal sample end are connected to the short-circuit sampling pre-detection protection unit of the three-phase circuit, and the signal output end of the short-circuit sampling pre-test protection unit is connected to the air compressor main control unit and the air circuit breaker trip coil or no contact
  • the control terminal of the switch is connected.
  • the above-mentioned safety fireproof electronic control device further comprises a leakage sampling pre-detection protection unit of the signal sampling end connected to the three-phase load circuit, the leakage sampling The signal output end of the pre-test protection unit is connected to the control unit of the air circuit breaker trip coil or the non-contact switch.
  • the short-circuit sampling pre-test protection unit and the leakage sampling pre-test protection unit are both connected to the signal source on the three-phase circuit and the pre-detection signal detecting circuit connected on the three-phase load circuit through the three-phase load circuit between the phases, and
  • the short-circuit point between the neutral lines and the leakage point connection between the opposite grounds are composed of loops.
  • the signal source in the detection loop of the short-circuit sampling pre-test protection unit includes a Darlington transistor chip ULN2003 and a start-up relay K0 connected to an output thereof, drive relays ⁇ 1 ⁇ 3, and a switching drive relay ⁇ 4,
  • the pre-detection signal detection circuit is composed of a V/F converter chip AD654, a high-speed optical isolation 6N137 and a resistor-capacitor connection.
  • the input end of the Darlington transistor chip ULN2003 is connected to the pre-detection drive signal output end of the microcomputer main control unit, and its output is common.
  • the terminal H/L is connected to the power supply Vcc, and the other end of the starting relay K0 coil is connected to the driving power supply QD5V, and the driving power supply QD5V is also connected to one end of the starting relay K0 contact, the driving relay K1 K3 coil and the other end of the switching driving relay K4 coil. Connected to the other end of the start relay K0.
  • the 5V power supply is connected to the Al, Bl, CI three-phase of the pre-detection signal resistor R201 and the drive relays K1 ⁇ K3, and the pre-detection signal detection circuit is connected to the pre-check.
  • Signal resistor R201 is connected to the drive relay, K1 ⁇ K3 contact, drive relay ⁇ 1 ⁇ 3, another contact is connected to the load Between the Bl, Cl, A1 three-phase and 5V power ground terminals, the contact of the switching drive relay K4 is connected between the load terminal Un and the 5V power supply ground.
  • the signal source in the short-circuit sampling pre-test protection unit is a high-frequency square wave generator on the Al, Bl, CI three-phase and zero line Un connected to the load end through a resistor and a capacitor in series, and the pre-detection signal
  • the detection circuit includes three comparators LM393 connected to the three-phase load power supply, three high-speed optical isolations 6N137 and capacitor resistors; each of the sets of comparators LM393, the high-speed optical isolation 6N137 series connected circuit through the capacitor connected to the load end Bl On the three-phase of Cl, A1, the output of high-speed optical 6N137 is connected to the main control unit of the microcomputer.
  • the leakage sampling pre-test protection unit includes a signal source and a pre-detection signal detection circuit, wherein the signal source includes a Darlington transistor chip ULN2003, a start relay K0, and drive relays K1 to K3;
  • the circuit is composed of an A/D converter chip AD654, a high-speed optical isolation 6N137 and a resistor-capacitor connection.
  • the input end of the Darlington transistor chip ULN2003 is connected to the pre-detection signal output end of the microcomputer main control unit, and the output common terminal and the power supply are connected.
  • Vcc is connected, its output terminal and start relay K0 and drive relay respectively
  • One end of the coil of K1 ⁇ K3 is connected, the other end of the starting relay ⁇ 0 coil is connected to the driving power supply QD5V, and the driving power supply QD5V is also connected to the end of the starting relay ⁇ 0 contact, and the other end of the driving relay ⁇ 1 ⁇ 3 coil is connected to the starting relay ⁇ 0
  • the other end of the contact, the 5V power supply through the pre-detection signal resistor R201 and the contacts of the drive relays ⁇ 1 ⁇ 3 are connected to the three phases of the load terminals Al, Bl, CI
  • the pre-detection signal detection circuit is connected to the pre-detection signal resistor R201 and the drive relay
  • the drive relays ⁇ 1 ⁇ 3 and the other contacts are connected between the ground end of the load end and the ground of the 5V power supply.
  • the input end of the pre-detection signal detecting circuit is provided with a rectifying and filtering circuit.
  • the leakage pre-test protection unit includes a signal source and a pre-detection signal detection circuit, wherein the signal source is three high-frequency square wave generators, and the pre-detection signal detection circuit is composed of three comparators LM393, 3 A high-speed optical isolation 6N137 and a capacitor resistor are connected and connected to the main circuit, and the three high-frequency square wave generators are connected in series with the resistors RA5, RB5, RC5 and capacitors CA5, CB5, CC5 to the ground end PE of the load end.
  • the circuit composed of the comparator LM393 and the high-speed optical isolation 6N137 connected in series is connected to the Al, Bl, CI three-phase of the load through the capacitor, and the signal output end of the high-speed optical 6N137de is connected to the microcomputer main control unit counter.
  • the three-phase power supply is also connected with a signal sampling end connected to the three-phase load power supply, and the signal output end is connected to the reverse power sampling pre-test protection unit of the microcomputer main control unit, overvoltage, undervoltage, and lack of Phase and reverse phase pre-detection unit, voltage sampling detection and overvoltage, undervoltage, phase loss, reverse phase, zero-break protection unit, current sampling detection and short circuit, overcurrent, phase failure, zero sequence overload, harmonic overload protection unit .
  • the microcomputer main control unit is further connected with an alarm circuit, a display circuit and a combined reset circuit, and the microcomputer main control unit is tripped with the air circuit breaker directly or through the fault locking unit after accessing the control gate circuit.
  • the control terminal of the coil or contactless switch is connected.
  • the safety fireproof electronic control device of the present invention uses a short circuit point between each phase of the three-phase circuit, between the relatively zero lines and between the opposite grounds to form a detection loop, which is generated by transmitting a weak electric signal to the three-phase circuit access signal source.
  • the feedback signal is used to determine a short circuit and a leakage fault of the three-phase circuit according to the pre-detection signal detection circuit connected to the three-phase circuit.
  • the safety fireproof electronic control device introduces a short circuit and leakage pre-check function in the existing switch, and can pre-detect the short-circuit and leakage of the load end when the switch is not closed and the load end (ie, the output end) is not powered. malfunction, And the locking device can not be closed. Only after the leakage fault is eliminated, it can be closed and the power is supplied normally.
  • the intelligent electronic control device also adds conventional voltage, current protection, parameter detection display function, tuning function, fault lock alarm and display function.
  • the intelligent electronic control device can effectively eliminate short-circuit and leakage hazards and prevent electrical fires and electric shocks.
  • Figure 1 is a block diagram showing the electrical principle of a safety fireproof electronic control device
  • FIG. 2 is a circuit diagram of a short-circuit pre-detection unit circuit using a DC pre-detection method
  • Figure 3 is a circuit diagram of the short-circuit pre-detection unit circuit of the AC pre-test method
  • FIG. 4 is a circuit diagram of a short-circuit pre-detection unit that reflects a phase-to-phase short-circuit fault using a high-frequency superposition method
  • FIG. 5 is a circuit diagram of a short-circuit pre-detection unit that reflects a phase-zero short-circuit fault using a high-frequency superposition method
  • Figure 7 is a circuit diagram of the leakage pre-detection unit circuit using the AC pre-detection method
  • FIG. 8 is a circuit diagram of a leakage pre-detection unit circuit using a high frequency superposition method
  • Figure 9 is a circuit diagram of the reverse power sampling pre-test protection unit circuit
  • Figure 10 is a connection diagram of an AC voltage analog circuit
  • Figure 11 is a connection diagram of an alternating current analog quantity circuit
  • Figure 12 is a connection diagram of the alarm circuit
  • Figure 13 is a connection diagram of the control gate circuit
  • Figure 14 is a diagram showing the communication circuit connection.
  • FIG. 1 it is a block diagram of the electrical principle of the safety fireproof electronic control device of the present invention.
  • the main circuit is an air circuit breaker or a non-contact switch
  • the control circuit is an intelligent control protection unit.
  • the control terminal of the air circuit breaker or the non-contact switch is controlled by the microcomputer main control unit to control the combination, fault and fault cut through the control gate output signal.
  • Intelligent control protection list The unit includes a microcomputer main control unit, a leakage pre-test protection unit, a short-circuit pre-test protection unit, a reverse power sampling pre-test protection unit, an over-voltage under-voltage phase-reverse phase pre-detection unit, and a voltage sample detection and overvoltage.
  • Each of the above protection units is terminated to a three-phase circuit, and the output end thereof is connected to the microcomputer main control unit.
  • the voltage sampling detection and overvoltage undervoltage phase loss protection unit, current sampling detection and overcurrent phase failure protection unit output are connected to the A/D conversion unit, and then connected to the microcomputer main control unit through the A/D conversion unit.
  • the microcomputer main control unit judges the circuit breaker or the non-contact switch.
  • the microcomputer main control unit sends a pre-detection signal, and the pre-detection signal is sent.
  • each pre-test unit receives the pre-test command and collects the power supply ( Input) terminal and load (output) electrical parameters and send them to the microcomputer main control unit for judgment.
  • the fault-locking unit and the control gate circuit locking device can make the circuit breaker or the non-contact switch fail to close and display an alarm.
  • the circuit breaker or the non-contact switch is in the same position, the voltage is sampled and the overvoltage, undervoltage, phase loss, reverse phase, and zero-break protection unit collects the power (input) terminal voltage analog signal, which is sampled by the current.
  • Detection and short circuit over current, phase failure, zero sequence overload, harmonic overload protection unit acquisition load (output) terminal current analog quantity, are sent to the A / D conversion unit, sent to the microcomputer main control unit by the A / D conversion unit Judgment, if there is no fault, it will operate normally, receive the control signals of the combined, divided and reset circuits, realize the operation of the circuit breaker or the non-contact switch through the control gate circuit; if there is a fault, the microcomputer main control unit goes to the control gate circuit A trip command is issued, and an alarm signal is sent to the alarm circuit to send corresponding fault protection information to the display communication circuit.
  • the microcomputer main control unit sends a control signal to the control gate circuit to control the switching operation of the circuit breaker or the non-contact switch by receiving the control signals from the combining, dividing and resetting circuits.
  • the microcomputer main control unit receives and modifies protection and control settings and casts back through the display communication unit.
  • the short-circuit sampling pre-test protection unit can be composed of three detection methods, namely DC pre-detection method, AC pre-detection method and high-frequency superposition method.
  • the short-circuit sampling pre-test protection unit is used for the DC pre-detection method.
  • the protection unit is composed of Darlington transistor chip ULN2003, starter relay K0, drive relay ⁇ 1 ⁇ 3, switching drive relay ⁇ 4, pre-detection signal detection circuit i V/F converter chip AD654, high-speed optical isolation 6N137 and resistor-capacitor connection.
  • the input end of the Darlington transistor chip ULN2003 is connected to the pre-detection drive signal output end of the microcomputer main control unit, and the output common terminal H/L is connected to the power supply Vcc, and the output end thereof is respectively connected with the start relay K0 and the drive relay ⁇ 1 ⁇ 3.
  • the coil is connected to one end of the switching relay ⁇ 4, and the other end of the starting relay ⁇ 0 coil is connected to the driving power supply QD5V, and the driving power supply QD5V is also connected to one end of the starting relay K0 contact, driving the relay K1 K3 coil and switching the other end of the driving relay K4 coil Connected to the other end of the start relay K0 contact, the 5V DC power supply through the pre-detection signal resistor R201 and the drive relay K1 ⁇ K3 contacts and the load side of the Al, Bl, CI three-phase connected, the pre-detection signal detection circuit 1 is connected to the pre- Between the detection signal resistor R201 and the drive relay K1 ⁇ K3 contacts, the drive relay ⁇ 1 ⁇ 3 and the other contact are connected to the load terminals B1, C1. Between the A1 three-phase and 5V DC power supply ground, the contact of the switching drive relay K4 is connected between the load terminal Un and the 5V DC power supply ground.
  • the working principle of the short-circuit sampling pre-test protection unit is: When the circuit breaker is disconnected, the load terminal is not charged, and the drive signal output by the microcomputer main control unit is controlled by the Darlington transistor chip ULN2003 to activate the relay K0, and the control drive relay K1- K3 takes turns, 5V DC power is sent to the Al, Bl and CI three phases of the load terminal through the contacts of the drive relays K1 ⁇ K3.
  • the 5V ground ends correspond to the three phases of Bl, C1 and A1 respectively sent to the load end.
  • the potential across the step-down resistor is still 5V.
  • the analog-to-digital conversion chip AD654 is sent to the pre-detection signal detecting circuit 1, and the analog-to-digital conversion chip AD654 converts the magnitude of the voltage amplitude into a digital signal of a different frequency and sends it to the microcomputer main control unit through the high-speed photoelectric isolation chip, and the microcomputer main control unit passes Comparing the magnitude of the digital signal frequency with the short-circuit setting value determines the phase-to-phase short-circuit fault on the line.
  • the microcomputer main control unit starts the phase-zero short-circuit pre-test procedure, and the drive signal is controlled by the Darlington transistor chip ULN2003 to control the start-up relay K0 and the switch-drive relay K4 to control the start-up relay K0.
  • control drive relay K1 ⁇ K3 in turn, 5V DC power supply through the drive relay ⁇ 1 ⁇ ⁇ 3 contact to the load side of the Al, Bl, CI three-phase, 5V ground end to the load end of the neutral line Un, when the phase-to-phase short-circuit fault does not occur in the three phases of the load terminal, the potential across the step-down resistor is still 5V, and the voltage amplitude on the step-down resistor will decrease when there is a phase-zero short-circuit fault in one phase of the three phases.
  • the voltage amplitude is sent to the analog-to-digital conversion chip AD654 of the pre-detection signal detecting circuit, and the analog-to-digital conversion
  • the chip AD654 converts the magnitude of the voltage amplitude into a digital signal of different frequency and sends it to the main control unit of the microcomputer through the high-speed photoelectric isolation chip.
  • the microcomputer main control unit can determine the zero-phase short circuit of the line by comparing the frequency of the digital signal with the short-circuit setting value. malfunction.
  • the short-circuit sampling pre-detection protection unit adopting the AC pre-detection method has the same structure and working principle as the short-circuit pre-test protection unit adopting the DC pre-detection method, except that the superimposed 5V DC power supply is changed. 5V AC power supply, and the rectification filter circuit 2 is added before the pre-detection signal detection circuit.
  • the short-circuit sampling pre-detection protection unit for reflecting the phase-to-phase short-circuit fault using the high-frequency superposition method
  • the short-circuit sampling pre-detection protection unit consists of three high-frequency square wave generators, three comparators LM393, 3 A high-speed optical 6N137 and a capacitor resistor are connected and connected to the main circuit.
  • Three high-frequency square wave generators and resistors RA1, RB1, RC1 and capacitors CA1, CB1, CC1 are connected in series to the three phases of Al, Bl, CI at the load end, and the high-frequency square wave generator sequentially transmits high-frequency at different frequencies.
  • the signal is sent to the Al, Bl, CI three-phase of the load through the capacitor resistor.
  • the circuit composed of the comparator LM393 and the high-speed optical 6N137 series is connected to the three phases of the load, B1, Cl, and A1 through the capacitor.
  • the high-frequency square wave signal is sent to the capacitors CA2, CB2, CC2 via the short-circuit position, and then sent to the input terminal of the comparator LM393.
  • the short-circuit signal value is higher than the positive terminal voltage value, and the output potential of the output terminal is turned down (" 0"), high-speed optical isolation 6N137 - secondary side conduction, secondary side output square wave signal is sent to the counter of the microcomputer main control unit, the microcomputer main control unit compares the data in the counter and compares with the set value to determine the phase-to-phase short circuit of the load end malfunction.
  • the short-circuit sampling pre-detection protection unit that reflects the phase zero short circuit using the high-frequency superposition method has three short-frequency sampling pre-detection protection units, three high-frequency square wave generators, three comparators LM393, and three.
  • the high-speed optical isolation 6N137 and the capacitor resistor are connected and connected to the main circuit.
  • Three high-frequency square wave generators and resistors RA3, RB3, RC3 and capacitors CA3, CB3, CC3 are connected in series to the zero line Un of the load terminal.
  • the high-frequency square wave generator sequentially transmits high-frequency signals of different frequencies in sequence.
  • the capacitor resistance is sent to the neutral line Un of the load end.
  • the circuit composed of the comparator LM393 and the high-speed optical isolation 6N137 series is connected to the Al, Bl, CI three phases of the load through the capacitor.
  • the high The frequency square wave signal is sent to the capacitors CA4, CB4, CC4 via the short-circuit position, and the circuit composed of the comparator LM393 and the high-speed optical isolation 6N137 is connected to the fault high-frequency signal and sent to the microcomputer main control unit, and the microcomputer main control unit and The set value comparison determines the phase zero short circuit fault at the load end.
  • FIG. 6, FIG. 7, and FIG. 8, all are circuit schematic diagrams of the leakage sampling pre-test protection unit in the present invention.
  • the leakage sampling pre-test protection unit can be composed of three detection methods. As shown in Figure 6, for DC pre- Detecting the leakage sampling pre-test protection unit, its leakage ⁇ pre-test protection unit by Darlington transistor chip
  • the output of the pre-detection signal is connected, the output common terminal is connected to the power source Vcc, and the output end thereof is respectively connected to one end of the coil of the starting relay K0 and the driving relays K1 ⁇ K3, and the other end of the starting relay ⁇ 0 coil is connected to the driving power source QD5V,
  • the driving power supply QD5V is also connected to one end of the starting relay ⁇ 0 contact, the other end of the driving relay ⁇ 1 ⁇ 3 coil is connected to the other end of the starting relay ⁇ 0 contact, the 5V DC power supply is pre-detected signal resistor R601 and the driving relay ⁇ 1 ⁇ 3 The contact is connected to the three ends of the load terminals ⁇ 1, ⁇ 1 and C1.
  • the pre-detection signal detection circuit is connected between the pre-detection signal resistor R601 and the drive relay ⁇ 1 ⁇ 3 contacts, and the drive relay ⁇ 1 ⁇ 3 is connected to the load end. Between the ground end and the 5V power supply ground.
  • the working principle of the leakage sampling pre-test protection unit is:
  • the driving signal outputted by the microcomputer main control unit driving output terminal is controlled by the Darlington transistor chip ULN2003 to start the relay ⁇ 0 and the driving relay ⁇ 1 ⁇ 3, and the 5V DC power supply drives the relay ⁇ 1 ⁇
  • the contact of ⁇ 3 is sent to the Ai, Bl and CI three phases of the load end, and the 5V ground end is correspondingly connected to the ground end PE of the load end.
  • the 5V DC power supply passes the drive relay K1 ⁇
  • the contacts of K3 are input to the three phases of C, A and A of the load terminal.
  • the potential across the buck resistor is still 5V.
  • the load terminals are randomly leaked, the Al, Bl and CI phases are randomly present.
  • the voltage amplitude is sent to the analog-to-digital conversion chip AD654, and the analog-to-digital conversion chip AD654 converts the magnitude of the voltage into a digital signal and sends it to the digital signal through the high-speed optical isolation chip.
  • the microcomputer main control unit and the microcomputer main control unit can determine the leakage fault of the line by converting the digital signal and comparing with the leakage setting value.
  • the leakage pre-detection protection unit of the AC pre-detection method is similar to the leakage pre-detection protection unit adopting the DC pre-detection method, and the difference is that the superimposed 5V DC power supply is changed.
  • a rectification filter circuit 2 is added in front of the signal detection circuit.
  • the leakage pre-detection protection unit has three high-frequency square wave generators, three comparators LM393, and three high-speed optical isolations. 6N137 and capacitor resistors are connected and connected to the main circuit. Three high-frequency square wave generators are connected in series with resistors RA5, RB5, RC5 and capacitors CA5, CB5, CC5 to the ground PE of the load end. The high-frequency square wave generator sequentially transmits high-frequency signals of different frequencies in sequence.
  • the capacitor resistor is sent to the ground PE of the load terminal, by the comparator LM393, high
  • the loop formed by the 6N137 series of speed light is connected to the three phases of Al, Bl and CI through the capacitor.
  • the high frequency square wave signal is sent to the capacitors CA6, CB6 and CC6 via the short-circuit position.
  • Comparator LM393, high-speed optical isolation 6N137 series connected circuit collects the fault high-frequency signal and sends it to the microcomputer main control unit.
  • the microcomputer main control unit compares with the set value to determine the leakage fault of the load end.
  • the pre-detection protection unit for the reverse power sampling consists of four forward diodes, three voltage regulators, and a resistor, an optical isolation chip TLP181, and a Schmitt inverter 74LVC14. And the switching transistor BD676 and the resistor and capacitor are connected to each other.
  • the three diodes are connected in series with the resistor and the Zener diode, connected to the Al, Bl, and CI three phases of the load terminal.
  • Three sets of circuits connected in series by diodes, resistors, and Zener diodes are connected in parallel, and then connected in series to the optical isolation chip TLP181.
  • the secondary side of the optical isolation chip TLP181 is connected in series with the Schmitt inverter 74LVC14, and the other end of the Schmitt inverter 74LVC14 is sent to the microcomputer main control unit via a resistor and connected to the switching transistor BD676.
  • the working principle of the reverse power sampling pre-test protection unit is: When the load terminals Al, Bl, CI three phases are normally dead, the 5V power supply is sent to the optical isolation chip TLP181 and the Schmitt inverter 74LVC14, 5V through the step-down resistor R901.
  • the signal is low after being inverted by the Schmitt inverter 74LVC14, and is sent to the microcomputer main control unit is low level, the switching transistor BD676 is turned on, the power supply Vcc is sent to the driving power source QD5V, and the driving power source QD5V is powered;
  • the voltage is sent to the optical isolation chip TLP181 through the forward diode, the resistor and the voltage regulator, and the optical isolation chip TLP181 - the secondary side
  • the secondary side of the optical isolation chip TLP181 is lowered to a low level, and the input end of the Schmitt inverter 74LVC14 connected thereto is also lowered to a low level, and the output terminal outputs a high level, and is sent to the microcomputer.
  • the main control unit, the switching transistor BD676 is turned off, and the driving power supply QD5 V is de-energized
  • the voltage sampling detection and the overvoltage and undervoltage phase-inversion phase-break protection unit consist of three AC voltage analog circuits.
  • the AC voltage analog circuit consists of a transformer PT, an operational amplifier TL084, a resistor, and a capacitor.
  • the 0-400V AC signal from the outside is sent to the AC transformer through the step-down resistor to convert to a low-current signal of 0-2.5mA.
  • the low-current signal is sent to the operational amplifier TL084, which is amplified by the operational amplifier, and then sent to the AD conversion circuit. After A/D conversion, it is sent to the microcomputer main control unit.
  • the harmonic overload protection unit consists of three AC current analog circuits. As shown in FIG. 11, the AC current analog circuit is composed of a current transformer CT, a diode, an operational amplifier TL084, a resistor, a capacitor, and the like. 0-500A AC signal from the outside through current transformer and step-down resistor 0-2.5mA low current signal, low current signal is sent to the operational amplifier TL084, after being converted by the operational amplifier current and voltage, it is sent to the AD conversion circuit, and then sent to the microcomputer main control unit through A/D conversion.
  • the alarm circuit consists of Darlington transistor chip ULN2003, starter relay K1201, alarm relay ⁇ 1202, horn W and resistor capacitor.
  • the input terminal of the Darlington transistor chip ULN2003 is connected to the microcomputer main control unit, the output terminal ⁇ 5 is connected to the start relay K1201 coil, the output terminal 04 is connected to the alarm relay K1202 coil, and the output common terminal of the Darlington transistor chip ULN2003 is connected to 12V DC.
  • the other end of the coil of the starter relay K1201 is connected to the DC 12V power supply, and is connected to one end of the normally open contact of the starter relay K1201.
  • the other end of the contact of the starter relay K1201 is connected to the other end of the coil of the alarm relay K1202, and the alarm relay K1102 is normally open.
  • One end of the contact is connected to the 12V power supply, the other end is connected to the speaker W, and the other end of the speaker W is connected to the ground end of the 12V power supply.
  • the starter relay K1201 coil is electrically attracted at both ends, its normally open contact is closed, and the 12V power supply is sent to the alarm relay K1202 through the closed normally open contact.
  • the coil of the alarm relay K1202 is electrically connected, and its normally open contact is turned on.
  • the 12V power supply at the other end of the normally open contact is sent to the horn W through the resistor R1201, and the horn W is electrically audible.
  • the control gate circuit is composed of a Darlington transistor chip ULN2003, a start relay K1301, a closing relay ⁇ 1302, a relay relay ⁇ 1303, and a trip relay K1304.
  • the input terminals 10, II, 12 and 15 of the Darlington transistor chip ULN2003 are connected to the output signal terminal of the microcomputer main control unit, and the output terminals ⁇ 0, ⁇ 1, ⁇ 2 and 05 respectively are connected to the closing relay ⁇ 1302, the opening relay ⁇ 1303, and the tripping
  • the relay K1304 is connected to the coil of the starter relay K1301.
  • the output common terminal of the Darlington transistor chip ULN2003 is connected to a 12V DC power supply, and the other end of the starter relay K1301 is connected to a 12V DC power supply, and is connected to one end of the normally open contact of the start relay K1301.
  • the other end of the contact of the starter relay K1301 is connected to the other end of the coil of the closing relay ⁇ 1202, the opening relay ⁇ 1303, and the tripping relay K1304.
  • the normally open contact of the closing relay K1302 is connected to the external closing mechanism, and the opening relay K1303 is normally open.
  • the contact is connected to the external brake mechanism, and the trip relay K1304 is often connected to the external trip mechanism.
  • the working principle of the closing control is: When the input terminals 10 and 15 of the Darlington transistor chip ULN2003 receive the closing signal of the microcomputer main control unit, the output terminal 01 and the output terminal 05 are turned on, and the 12V DC power source passes through the output terminal 01. And the output terminal 05 is sent to the starter One end of the coil of the electric appliance K1301 and one end of the coil of the closing relay K1302, since the other end of the coil of the starting relay K1301 is connected with the 12V power supply, the two ends of the coil of the starting relay K1301 are electrically connected, and the normally open contact is closed, and the normally open contact is closed.
  • the 12V power supply is sent to the other end of the K1302 coil of the closing relay.
  • the coil of the closing relay K1302 is electrically connected, and its normally open contact is turned on to drive the external closing mechanism to operate.
  • the principle of the opening control and the tripping control are the same, and will not be described here.
  • the display communication circuit consists of two forward high voltage drivers 74LVC1G07 and resistors.
  • the microcomputer main control unit displays the communication data signal and sends it through the TXDIS port. After the forward high voltage driver, the signal is raised from the original 3.3V to 5.0V and then sent to the display unit through the current limiting resistor. The data signal of the display is sent to the forward high voltage driver through the current limiting resistor. The signal is pulled from 5V to 3.3V and sent to the RXDIS port of the microcomputer main control unit.
  • the pre-check function includes: short-circuit pre-check alarm, leakage pre-check alarm, over-voltage pre-check alarm, under-voltage pre-check alarm, phase-deficient pre-check alarm, and reverse-phase pre-check alarm.
  • Protection functions include: short circuit protection, overload protection, leakage protection, over voltage protection, under voltage protection, phase loss protection, reverse phase protection, phase failure protection, zero protection, zero sequence overload protection, harmonic overload protection, lightning protection Protection and so on.
  • the control functions include: caller automatic closing control, manual closing control, remote closing control, manual opening control, remote opening control, protection trip control, fire linkage trip.
  • the lock function includes: fault status closing lock function, alarm status closing lock function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

安全防火电控装置
技术领域- 本发明涉及一种安全防火电控装置。 特别涉及一种具有低压漏电与短路保护及 漏电与短路预检的安全防火电控装置, 该装置为跨强电与弱电的多功能具有预检电 气短路及漏电故障, 防止电气火灾隐患与触电伤亡的智能电控装置, 同时兼有在线 检测故障、 锁定、 显示、 报警及参数调节等功能的安全防火电控装置。
背景技术:
现有开关装置一般没有智能控制功能, 更无故障预检功能, 仍是沿用几十年一 贯制的传统结构, 如手动式、 电磁式和机械式开关, 其功能单一, 且切断速度慢( 150ms), 不能有效保护电路。
在申请号为 03227850.0, 发明名称为智能无触点开关的专利中公开了一种智能 无触点开关, 其具有电压采样检测与过压、 欠压保护电路、 缺相采样保护电路、 电 流采样检测与过流断相保护电路等功能。 同时在申请号为 200510031262.5, 发明名 称为智能防火电控系统的发明申请中也公开了一种电控系统, 能够在具有电压采样 检测与过压、 欠压保护电路、 缺相釆样保护电路、 电流采样检测与过流断相保护电 路等功能的同时, 还具有短路预检功能。 但由于短路故障极易引起火灾, 漏电故障 不仅会造成设备损害和电能浪费, 更危及人身安全, 因此在实际运用中, 短路故障 和漏电故障的解决方案仍然需要进一步完善。
发明内容:
本发明所要解决的技术问题是针对上述技术缺陷, 提出一种安全防火电控装置。 在现有开关中引入短路预检功能和漏电预检功能, 在开关未合闸, 负载端 (即输出 端) 无电情况下, 预检出负载端短路和漏电故障, 在排除短路和漏电故障后方可合 闸, 实现正常安全供电。 并且所述安全防火电控装置能够实现简单, 便于推广运用。
为解决上述技术问题, 本发明提出的解决方案为: 一种安全防火电控装置, 有 空气断路器或无触点开关接在三相负载电路中, 本发明的创造性在于其还包含有微 机主控单元和信号釆样端接入三相电路的短路采样预检保护单元, 所述短路采样预 检保护单元的信号输出端通过接入微机主控单元与空气断路器脱扣线圈或无触点开 关的控制端连接。 确认本 在实现上述短路预检功能的基础之上, 为了进一步实现漏电预检功能, 上述安 全防火电控装置还包括信号采样端接入三相负载电路的漏电釆样预检保护单元, 所 述漏电采样预检保护单元的信号输出端接入微机主控单元与空气断路器脱扣线圈或 无触点开关的控制端连接。
所述短路采样预检保护单元和漏电采样预检保护单元均由接入三相电路上的信 号源和三相负载电路上连接的预检信号检测电路通过三相负载电路各相之间、 相对 零线之间的短路点及各相对地之间的漏电点连接为回路组成。
根据实施例方案, 所述短路采样预检保护单元的检测回路中的信号源包括达林 顿晶体管芯片 ULN2003和其输出端连接的启动继电器 K0、驱动继电器 Κ1~Κ3及切 换驱动继电器 Κ4,所述预检信号检测电路由 V/F转换器芯片 AD654、高速光隔 6N137 及电阻电容连接组成,达林顿晶体管芯片 ULN2003的输入端与微机主控单元的预检 驱动信号输出端相连, 其输出公共端 H/L与电源 Vcc相连, 启动继电器 K0线圈的 另一端接驱动电源 QD5V, 同时驱动电源 QD5V亦接至启动继电器 K0触点的一端, 驱动继电器 K1 K3线圈及切换驱动继电器 K4线圈的另一端接至启动继电器 K0触. 点的另一端, 5V电源经预检信号电阻 R201及驱动继电器 K1〜K3的触点与负载端的 Al、 Bl、 CI 三相相连, 预检信号检测电路接于预检信号电阻 R201 与驱动继电器, K1~K3触点之间, 驱动继电器 Κ1~Κ3另一触点连接在负载端的 Bl、 Cl、 A1三相及 5V电源地端之间, 切换驱动继电器 K4的触点接在负载端 Un及 5V电源地端之间。
根据实施例方案, 所述短路采样预检保护单元中的信号源为通过电阻及电容串联 接入负载端的 Al、 Bl、 CI三相和零线 Un上的高频方波发生器, 预检信号检测电路 包括并接至三相负载电源的 3个比较器 LM393、 3个高速光隔 6N137及电容电阻; 其中每一组比较器 LM393、 高速光隔 6N137串联构成的回路通过电容接于负载端的 Bl、 Cl、 A1三相上, 高速光隔 6N137的输出端分别接入微机主控单元。
根据实施例方案, 所述漏电采样预检保护单元包括信号源和预检信号检测电路, 其中信号源包括达林顿晶体管芯片 ULN2003、启动继电器 K0和驱动继电器 K1〜K3 ; 所述预检信号检测电路由 A/D转换器芯片 AD654、高速光隔 6N137及电阻电容连接 组成,所述达林顿晶体管芯片 ULN2003的输入端与微机主控单元的预检信号输出端 相连,其输出公共端与电源 Vcc相连,其输出端分别与启动继电器 K0及驱动继电器 K1~K3 的线圈的一端相连, 启动继电器 Κ0线圈的另一端接驱动电源 QD5V, 同时 驱动电源 QD5V亦接至启动继电器 Κ0触点的一端, 驱动继电器 Κ1~Κ3线圈的另一 端接至启动继电器 Κ0触点的另一端, 5V电源经预检信号电阻 R201及驱动继电器 Κ1〜Κ3的触点与负载端的 Al、 Bl、 CI三相相连, 预检信号检测电路接于预检信号 电阻 R201与驱动继电器 K1~K3触点之间,驱动继电器 Κ1〜Κ3另一触点连接在负载 端的地端 ΡΕ及 5V电源地端之间。
所述接入预检信号电阻的 5V电源为 5V交流电源时, 所述预检信号检测电路的 输入端设置有整流滤波电路。
根据实施例方案, 所述漏电釆样预检保护单元包括信号源和预检信号检测电路, 其中信号源为 3个高频方波发生器, 预检信号检测电路由 3个比较器 LM393、 3个 高速光隔 6N137及电容电阻相连并接至主回路而组成, 所述 3个高频方波发生器与 电阻 RA5、 RB5、 RC5及电容 CA5、 CB5、 CC5串联接入负载端的地端 PE上, 由比 较器 LM393、 高速光隔 6N137串联构成的回路通过电容接于负载端的 Al、 Bl、 CI 三相上, 高速光隔 6N137de 的信号输出端接入微机主控单元计数器。 : 根据实施例方案, 所述三相电源还挂接有信号采样端接入三相负载电源、 信号输 出端接入微机主控单元的逆功采样预检保护单元、 过压、 欠压、 缺相和逆相预检单 元, 电压采样检测与过压、 欠压、 缺相、 逆相、 断零保护单元, 电流采样检测与短 路、 过流、 断相、 零序过载、 谐波过载保护单元。
根据实施例方案, 所述微机主控单元上还连接有报警电路, 显示电路和合分复 位电路, 所述微机主控单元直接或通过故障锁定单元接入控制门电路后, 与空气断 路器脱扣线圈或无触点开关的控制端连接。
本发明所述安全防火电控装置利用三相电路各相之间、 相对零线之间及各相对 地之间的短路点构成检测回路, 通过向三相电路接入信号源发送弱电信号后产生反 馈信号, 并根据三相电路上连接的预检信号检测电路接收反馈信号判断三相电路的 短路及漏电故障。
本发明所述的安全防火电控装置优点在于:
( 1 ) 所述安全防火电控装置在现有幵关中引入短路和漏电预检功能, 能在开关 未合闸, 负载端(即输出端)无电情况下, 预检出负载端短路及漏电故障, 并锁定装置不能合闸, 只有排除漏电故障后方可合闸, 正常供电。
(2) 所述智能电控装置除了短路及漏电预检保护功能以外, 还增加了常规的电 压、 电流保护功能、 参数检测显示功能、 整定功能、 故障锁定报警与显示 功能。
(3 ) 所述智能电控装置能有效的消除短路及漏电隐患, 防止电气火灾和触电伤 亡事故的发生。
附图说明:
图 1是安全防火电控装置电气原理方框图;
图 2是采用直流预检法的短路预检单元电路联接图;
图 3是釆用交流预检法的短路预检单元电路联接图;
图 4是采用高频叠加法的反映相间短路故障的短路预检单元电路联接图; 图 5是釆用高频叠加法的反映相零短路故障的短路预检单元电路联接图; 图 6是采用直流预检法的漏电预检单元电路联接图;
图 7是釆用交流预检法的漏电预检单元电路联接图;
图 8是釆用高频叠加法的漏电预检单元电路联接图;
图 9是逆功采样预检保护单元电路联接图;
图 10是交流电压模拟量电路联接图;
图 11是交流电流模拟量电路联接图;
图 12是报警电路联接图;
图 13是控制门电路联接图;
图 14是显示通讯电路联接图.
在上述附图中:
1-预检信号检测电路 2-整流滤波回路
具体实施方式:
以下结合附图和具体实施例对本发明做进一步说明:
参见图 1所示, 为本发明安全防火电控装置电气原理方框图, 主回路为空气断路 器或无触点开关, 控制回路为智能控制保护单元。 空气断路器或无触点幵关的控制 端由微机主控单元通过控制门输出信号控制其合、 分与故障切断。 智能控制保护单 元包括微机主控单元, 漏电釆样预检保护单元, 短路釆样预检保护单元, 逆功采样 预检保护单元, 过压欠压缺相逆相预检单元, 电压釆样检测与过压、 欠压、 缺相、 逆相、 断零保护单元, 电流釆样检测与过流、 断相、 零序过载、 谐波过载保护单元, 故障锁定单元, A/D 转换单元, 控制门电路、 合分复位整定电路、 报警电路、 显示 通讯电路。 上述各保护单元釆样端接至三相电路, 其输出端则与微机主控单元相连 接。 电压采样检测与过压欠压缺相保护单元、 电流釆样检测与过流断相保护单元的 输出端均接至 A/D转换单元, 通过 A/D转换单元再接至微机主控单元。
本装置在使用时, 由微机主控单元判断断路器或无触点开关分合情况, 当断路 器或无触点开关处于分位时, 由微机主控单元发出预检信号, 预检信号发送至漏电 采样预检保护单元、 短路釆样预检保护单元、 逆功采样预检保护单元、 过压欠压缺 相逆相预检单元, 各预检单元接收到预检指令后釆集电源 (输入) 端及负载(输出) 端电气参数并将其送至微机主控单元进行判断, 如无故障则可投入正常运行, 接收 合、 分、 复位电路的控制信号, 通过控制门电路实现对断路器或无触点开关的操作; 如有故障则通过故障锁定单元及控制门电路锁定装置, 使断路器或无触点开关不能 合闸, 并显示报警。 当断路器或无触点幵关处于合位时, 由电压釆样检测与过压、 欠压、 缺相、 逆相、 断零保护单元采集电源 (输入) 端电压模拟量信号, 由电流采 样检测与短路、 过流、 断相、 零序过载、 谐波过载保护单元采集负载 (输出) 端电 流模拟量, 均送至 A/D转换单元, 由 A/D转换单元送至微机主控单元进行判断, 如 无故障则正常运行, 接收合、 分、 复位电路的控制信号, 通过控制门电路实现对断 路器或无触点开关的操作; 如有故障则由微机主控单元向控制门电路发出脱扣指令, 并向报警电路发报警信号, 向显示通讯电路发相应故障保护信息。 微机主控单元通 过接收来自合、 分、 复位电路的控制信号向控制门电路发送控制信号控制断路器或 无触点幵关的分、 合操作。 微机主控单元通过显示通讯单元接收及修改保护及控制 定值及投退。
如图 2、 图 3、 图 4、 图 5所示, 均为本发明中短路釆样预检保护单元的电路原 理示意图。 短路采样预检保护单元可由三种检测方式构成, 即直流预检法、 交流预 检法和高频叠加法。
如图 2所示, 为釆用直流预检法的短路采样预检保护单元。 其短路采样预检保 护单元由达林顿晶体管芯片 ULN2003、 启动继电器 K0、 驱动继电器 Κ1~Κ3、 切换 驱动继电器 Κ4、 预检信号检测电路 i 的 V/F转换器芯片 AD654、 高速光隔 6N137 及电阻电容连接组成,达林顿晶体管芯片 ULN2003的输入端与微机主控单元的预检 驱动信号输出端相连, 其输出公共端 H/L与电源 Vcc相连, 其输出端分别与启动继 电器 K0、 驱动继电器 Κ1~Κ3的线圈及切换继电器 Κ4的一端相连, 启动继电器 Κ0 线圈的另一端接驱动电源 QD5V,同时驱动电源 QD5V亦接至启动继电器 K0触点的 一端, 驱动继电器 K1 K3线圈及切换驱动继电器 K4线圈的另一端接至启动继电器 K0触点的另一端, 5V直流电源经预检信号电阻 R201及驱动继电器 K1~K3的触点 与负载端的 Al、 Bl、 CI三相相连, 预检信号检测电路 1接于预检信号电阻 R201与 驱动继电器 K1~K3触点之间,驱动继电器 Κ1~Κ3另一触点连接在负载端的 B1、C1、 A1三相及 5V直流电源地端之间, 切换驱动继电器 K4的触点接在负载端 Un及 5V 直流电源地端之间。
短路采样预检保护单元的工作原理是: 在断路器断开情况下负载端不带电, 由微 机主控单元输出的驱动信号经达林顿晶体管芯片 ULN2003控制启动继电器 K0动作, 控制驱动继电器 K1-K3轮流动作, 5V直流电源通过驱动继电器 K1〜K3的触点送至 负载端的 Al、 Bl、 CI三相, 5V地端分别对应送至负载端的 Bl、 C 1、 A1三相, 当 负载端均未发生相间短路故障时, 降压电阻两端的电位仍为 5V, 当负载端的 Al、 Bl、 CI三相任意有相间短路情况时, 降压电阻上的电压幅值将减小, 该电压幅值送 至预检信号检测电路 1的模数转换芯片 AD654, 模数转换芯片 AD654将电压幅值的 大小转换成不同频率的数字信号通过高速光电隔离芯片送至微机主控单元, 微机主 控单元通过比较数字信号频率的大小与短路设置值可以确定线路发生相间短路故 障。 当负载端未发生相间短路故障时, 再由微机主控单元启动相零短路预检程序, 其驱动信号经达林顿晶体管芯片 ULN2003控制启动继电器 K0及切换驱动继电器 K4 动作,控制当启动继电器 K0及切换驱动继电器 K4线圈动作,控制驱动继电器 K1〜K3 轮流动作, 5V直流电源通过驱动继电器 Κ1〜Κ3 的触点送至负载端的 Al、 Bl、 CI 三相, 5V地端送至负载端的零线 Un上, 当负载端三相均未发生相零短路故障时, 降压电阻两端的电位仍为 5V, 三相任有一相发生相零短路故障时, 降压电阻上的电 压幅值将减小, 该电压幅值送至预检信号检测电路的模数转换芯片 AD654, 模数转 换芯片 AD654将电压幅值的大小转换成不同频率的数字信号通过高速光电隔离芯片 送至微机主控单元, 微机主控单元通过比较数字信号频率的大小与短路设置值可以 确定线路发生相零短路故障。
如图 3所示, 为采用交流预检法的短路采样预检保护单元, 其结构及工作原理与 采用直流预检法的短路釆样预检保护单元类似,区别在于叠加的 5V直流电源改为了 5V交流电源, 并在预检信号检测电路前增加了整流滤波电路 2。
参见图 4所示,为釆用高频叠加法的反映相间短路故障的短路采样预检保护单元, 其短路采样预检保护单元由 3个高频方波发生器、 3个比较器 LM393、 3个高速光隔 6N137及电容电阻相连并接至主回路而组成。 3个高频方波发生器与电阻 RA1、RB1、 RC1及电容 CA1、 CB1、 CC1串联接入负载端的 Al、 Bl、 CI三相, 高频方波发生 器依次按顺序发送不同频率的高频信号, 通过电容电阻送至负载端的 Al、 Bl、 CI 三相上, 由比较器 LM393、 高速光隔 6N137串联构成的回路通过电容接于负载端的 Bl、 Cl、 A1三相上, 当负载端发生相间短路故障时, 高频方波信号经短路位置送至 电容 CA2、 CB2、 CC2上, 再送至比较器 LM393输入端, 短路信号值高于正端电压 值, 其输出端电位翻低为 ("0")、 高速光隔 6N137—次侧导通, 二次侧输出方波信 号送至微机主控单元的计数器, 微机主控单元将计数器中数据转换后与设置值比较 判断出负载端的相间短路故障。
参见图 5所示, 为采用高频叠加法的反映相零短路的短路采样预检保护单元, 其 短路采样预检保护单元由 3个高频方波发生器、 3个比较器 LM393、 3个高速光隔 6N137及电容电阻相连并接至主回路而组成。 3个高频方波发生器与电阻 RA3、RB3、 RC3及电容 CA3、 CB3、 CC3 串联接入负载端的零线 Un上, 高频方波发生器依次 按顺序发送不同频率的高频信号, 通过电容电阻送至负载端的零线 Un上, 由比较器 LM393, 高速光隔 6N137串联构成的回路通过电容接于负载端的 Al、 Bl、 CI三相 上, 当负载端发生相零短路故障时, 高频方波信号经短路位置送至电容 CA4、 CB4、 CC4上, 由比较器 LM393、 高速光隔 6N137串联构成的回路釆集到故障高频信号后 送至微机主控单元, 微机主控单元与设置值比较判断出负载端的相零短路故障。
参见图 6、 图 7、 图 8所示, 均为本发明中漏电采样预检保护单元的电路原理示 意图。 漏电采样预检保护单元可由三种检测方式构成。 如图 6所示, 为釆用直流预 检法的漏电采样预检保护单元, 其漏电釆样预检保护单元由达林顿晶体管芯片
ULN2003, 启动继电器 K0、 驱动继电器 Κ1~Κ3、 预检信号电路 201的 A/D转换器 芯片 AD654、 高速光隔 6N137及电阻电容连接组成, 达林顿晶体管芯片 ULN2003 的输入端与微机主控单元的预检信号输出端相连, 其输出公共端与电源 Vcc相连, 其输出端分别与启动继电器 K0及驱动继电器 K1~K3的线圈的一端相连, 启动继电 器 Κ0线圈的另一端接驱动电源 QD5V, 同时驱动电源 QD5V亦接至启动继电器 Κ0 触点的一端, 驱动继电器 Κ1〜Κ3线圈的另一端接至启动继电器 Κ0触点的另一端, 5V直流电源经预检信号电阻 R601及驱动继电器 Κ1〜Κ3的触点与负载端的 Α1、Β1、 C1三相相连,预检信号检测电路接于预检信号电阻 R601与驱动继电器 Κ1~Κ3触点 之间, 驱动继电器 Κ1〜Κ3另一触点连接在负载端的地端 ΡΕ及 5V电源地端之间。
漏电采样预检保护单元的工作原理是: 由微机主控单元驱动输出端输出的驱动信 号经达林顿晶体管芯片 ULN2003控制启动继电器 Κ0及驱动继电器 Κ1~Κ3动作, 5V 直流电源通过驱动继电器 Κ1〜Κ3的触点送至负载端的 Ai、 Bl、 CI三相, 5V地端 分别对应接至负载端的地端 PE上, 在断路器断开情况下负载端不带电, 5V直流电 源通过驱动继电器 K1〜K3的触点输入至负载端的 8、 C、 A三相, 当负载端均未发 生漏电故障时, 降压电阻两端的电位仍为 5V, 当负载端的 Al、 Bl、 CI三相任意有 漏电情况时, 预检信号电阻 R601上的电压幅值将减小, 该电压幅值送至模数转换芯 片 AD654, 模数转换芯片 AD654将电压幅值的大小转换成数字信号通过高速光电隔 离芯片送至微机主控单元, 微机主控单元将数字信号转换后与漏电设置值比较可以 判定线路发生漏电故障。
参见图 7所示, 为釆用交流预检法的漏电釆样预检保护单元, 其结构及工作原理 与采用直流预检法的漏电采样预检保护单元类似,区别在于叠加的 5V直流电源改为 了 5V交流电源, 并在信号检测电路前增加了整流滤波回路 2。
参见图 8所示, 为采用高频叠加法的漏电釆样预检保护单元, 其漏电釆样预检保 护单元由 3个高频方波发生器、 3个比较器 LM393、 3个高速光隔 6N137及电容电 阻相连并接至主回路而组成。 3 个高频方波发生器与电阻 RA5、 RB5、 RC5及电容 CA5、 CB5、 CC5串联接入负载端的地端 PE上, 高频方波发生器依次按顺序发送不 同频率的高频信号, 通过电容电阻送至负载端的地端 PE上, 由比较器 LM393、 高 速光隔 6N137串联构成的回路通过电容接于负载端的 Al、 Bl、 CI三相上, 当负载 端发生漏电故障时, 高频方波信号经短路位置送至电容 CA6、 CB6、 CC6上, 由比 较器 LM393、 高速光隔 6N137串联构成的回路采集到故障高频信号后送至微机主控 单元, 微机主控单元与设置值比较判断出负载端的漏电故障。
参见图 9所示, 为逆功采样预检保护单元, 其逆功采样预检保护单元由 4个正向 二极管、 3个稳压管及电阻、 光电隔离芯片 TLP181、 施密特反相器 74LVC14及开关 三极管 BD676及电阻电容相互连接组成。 3个二极管均与电阻及稳压管串联, 接于 负载端的 Al、 Bl、 CI三相上, 将三组由二极管、 电阻及稳压管串联的电路并联后, 再串联接至光电隔离芯片 TLP181的一次侧, 光电隔离芯片 TLP181的二次侧与施密 特反相器 74LVC14串联,施密特反相器 74LVC14另一端经过电阻送至微机主控单元 并与开关三极管 BD676相连。
逆功采样预检保护单元的工作原理是: 当负载端 Al、 Bl、 CI三相正常无电时, 5V电源经降压电阻 R901送至光电隔离芯片 TLP181及施密特反相器 74LVC14, 5V 信号经施密特反相器 74LVC14反向后为低电平, 此时送至微机主控单元为低电平, 开关三极管 BD676导通电源 Vcc送至驱动电源 QD5V, 驱动电源 QD5V得电; 当负 载端 Al、 Bl、 CI三相中任一相带有另一供电系统的相电压时, 该电压经正向二极 管、 电阻及稳压管送至光电隔离芯片 TLP181 , 光电隔离芯片 TLP181—次侧得电后 导通, 光电隔离芯片 TLP181 的二次侧降为低电平, 与之相连的施密特反相器 74LVC14输入端亦降为低电平, 输出端输出高电平, 送至微机主控单元, 开关三极 管 BD676截止, 驱动电源 QD5 V失电。
电压采样检测与过压欠压缺相逆相断零保护单元由 3 个交流电压模拟量电路组 成。 如图 10所示, 交流电压模拟量电路由互感器 PT、 运算放大器 TL084、 电阻及 电容组成。 来自外部的 0-400V交流信号经降压电阻送至交流互感器转换为 0-2.5mA 低电流信号, 低电流信号送至运算放大器 TL084, 经过运算放大器电流电压转换放 大后送至 AD转换电路, 通过 A/D转换后送至微机主控单元。
电流采样检测与过流断相零序过载谐波过载保护单元由 3个交流电流模拟量电路 组成。 如图 11所示, 交流电流模拟量电路由电流互感器 CT、 二极管、 运算放大器 TL084、 电阻、 电容等组成。 来自外部的 0-500A交流信号经电流互感器及降压电阻 0-2.5mA低电流信号,低电流信号送至运算放大器 TL084,经过运算放大器电流电压 转换放大后送至 AD转换电路, 通过 A/D转换后送至微机主控单元。
参见图 12所示, 为报警电路, 其报警电路由达林顿晶体管芯片 ULN2003、 启动 继电器 K1201、 报警继电器 Κ1202、 喇叭 W及电阻电容组成。 达林顿晶体管芯片 ULN2003的输入端与微机主控单元相连, 其输出端 Ο5与启动继电器 K1201线圈相 连, 输出端 04与报警继电器 K1202线圈相连, 达林顿晶体管芯片 ULN2003的输出 公共端接 12V直流电源, 启动继电器 K1201线圈的另一端接直流 12V电源, 并与启 动继电器 K1201常开触点的一端相连, 启动继电器 K1201触点的另一端与报警继电 器 K1202线圈的另一端相连, 报警继电器 K1102常开触点的一端接 12V电源, 另一 端接喇叭 W, 喇叭 W的另一端接 12V电源地端。 当达林顿晶体管芯片 ULN2003接 收到微机主控单元报警信号后, 将输出端 04及输出端 05导通, 12V直流电源通过 输出端 04及输出端 05送至启动继电器 K1201线圈的一端及报警继电器 K1102线 圈的一端, 由于启动继电器 K1201线圈另一端与 12V电源相连, 启动继电器 K1201 线圈两端得电吸合, 其常开触点闭合, 通过闭合的常开触点将 12V电源送至报警继 电器 K1202线圈另一端, 报警继电器 K1202线圈得电吸合, 其常开触点接通, 常开 触点另一端的 12V电源通过电阻 R1201送至喇叭 W, 喇叭 W得电发出声响。
参见图 13所示, 为控制门电路, 其控制门电路由达林顿晶体管芯片 ULN2003、 启动继电器 K1301、 合闸继电器 Κ1302、 分闸继电器 Κ1303、 脱扣继电器 K1304组 成。 达林顿晶体管芯片 ULN2003的输入端 10、 II、 12及 15与微机主控单元输出信 号端相连,其输出端 Ο0、Ο1、Ο2及 05分别与合闸继电器 Κ1302、分闸继电器 Κ1303、 脱扣继电器 K1304及启动继电器 K1301的线圈相连, 达林顿晶体管芯片 ULN2003 的输出公共端接 12V直流电源, 启动继电器 K1301线圈的另一端接 12V直流电源, 并与启动继电器 K1301常开触点的一端相连, 启动继电器 K1301触点的另一端与合 闸继电器 Κ1202、 分闸继电器 Κ1303、 脱扣继电器 K1304的线圈的另一端相连, 合 闸继电器 K1302常开触点接外部合闸机构, 分闸继电器 K1303常开触点接外部分闸 机构, 脱扣继电器 K1304常幵触点接外部脱扣机构。 其合闸控制的工作原理是: 当 达林顿晶体管芯片 ULN2003输入端 10及 15接收到微机主控单元合闸信号后, 将输 出端 01及输出端 05导通, 12V直流电源通过输出端 01及输出端 05送至启动继 电器 K1301线圈的一端及合闸继电器 K1302线圈的一端,由于启动继电器 K1301线 圈另一端与 12V电源相连,启动继电器 K1301线圈两端得电吸合,其常开触点闭合, 通过闭合的常开触点将 12V电源送至合闸继电器 K1302线圈另一端, 合闸继电器 K1302线圈得电吸合, 其常开触点接通, 驱动外部合闸机构动作。 其分闸控制及脱 扣控制原理相同, 这里不再赘述。
如图 14所示, 为显示通讯电路的原理示意图。 显示通讯电路由两个正向高压驱 动器 74LVC1G07及电阻组成。 微机主控单元显示通讯数据信号经 TXDIS端口发出 经过正向高压驱动器, 信号由原来的 3.3V提升至 5.0V后经过限流电阻送至显示单 元。 显示屏的数据信号经过限流电阻送至正向高压驱动器, 信号由 5V下拉至 3.3V 后送至微机主控单元的 RXDIS端口。
本实施例所述安全防火电控装置可实现下列功能:
( 1 ) 断路器断开状态预检功能
预检功能包含有: 短路预检报警、 漏电预检报警、 过压预检报警、 欠压预检 报警、 缺相预检报警、 逆相预检报警。
(2) 断路器运行状态保护功能
保护功能包含有: 短路保护、 过载保护、 漏电保护、 过压保护、 欠压保护、 缺相保护、 逆相保护、 断相保护、 断零保护、 零序过载保护、 谐波过载保护、 防 雷保护等。
(3 ) 控制功能
控制功能包含有: 来电自动合闸控制、 手动合闸控制、 遥控合闸控制、 手动 分闸控制、 遥控分闸控制、 保护脱扣控制、 消防联控跳闸。
(4) 锁定功能
锁定功能包含有: 故障状态合闸锁定功能、 报警状态合闸锁定功能。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施 例, 凡属于本发明思路下的技术方案均属于本发明的保护范围。 应当指出, 对于本 技术领域的普通技术人员来说, 在不脱离本发明原理前提下的若干改进和润饰, 这 些改进和润饰也应视为本发明的保护范围。

Claims

权利 要求
1、一种安全防火电控装置, 有空气断路器或无触点开关接在三相电路中, 其特征在于,还包含有微机主控单元和信号采样端接入三相电路的短路采样预 检保护单元,所述短路采样预检保护单元的信号输出端通过接入微机主控单元 与空气断路器脱扣线圈或无触点开关的控制端连接。
2、 根据权利要求 1所述安全防火电控装置, 其特征是还包括信号采样端 接入三相电路的漏电采样预检保护单元,所述漏电采样预检保护单元的信号输 出端接入微机主控单元与空气断路器脱扣线圈或无触点开关的控制端连接。
3、 根据权利要求 2所述安全防火电控装置, 其特征是所述短路采样预检 保护单元和漏电采样预检保护单元均由接入三相负载电路上的信号源和三相 电路上连接的预检信号检测电路通过三相电路各相之间、相对零线之间的短路 点及各相对地之间的漏电点连接为回路组成。
4、 根据权利要求 3所述安全防火电控装置, 其特征是所述短路采样预检 保护单元的检测回路中的信号源包括达林顿晶体管芯片 ULN2003和其输出端 连接的启动继电器 K0、 驱动继电器 Κ1〜Κ3及切换驱动继电器 Κ4, 所述预检 信号检测电路由 V/F转换器芯片 AD654、 高速光隔 6N137及电阻电容连接组 成, 达林顿晶体管芯片 ULN2003的输入端与微机主控单元的预检驱动信号输 出端相连, 其输出公共端 H/L与电源 Vcc相连, 启动继电器 K0线圈的另一端 接驱动电源 QD5V, 同时驱动电源 QD5V亦接至启动继电器 K0触点的一端, 驱动继电器 K1〜K3线圈及切换驱动继电器 Κ4线圈的另一端接至启动继电器 Κ0触点的另一端, 5V电源经预检信号电阻 R201及驱动继电器 Κ1〜Κ3的触点 与负载端的三相 Al、 Bl、 CI相连,预检信号检测电路接于预检信号电阻 R201 与驱动继电器 K1〜K3触点之间,驱动继电器 Κ1~Κ3另一触点连接在负载端的 三相 Bl、 Cl、 A1及 5V电源地端之间, 切换驱动继电器 K4的触点接在负载 端 Un及 5V电源地端之间。
5、根据权利要求 3所述安全防火电控装置, 其特征是所述短路釆样预检保 护单元中的信号源为通过电阻及电容串联接入负载端的三相 Al、 Bl、 CI和零 线 Un上的高频方波发生器, 预检信号检测电路包括并接至三相负载电源的 3 个比较器 LM393、3个高速光隔 6N137及电容电阻;其中每一组比较器 LM393、 高速光隔 6N137串联构成的回路通过电容接于负载端的三相 Bl、 C A1上, 高速光隔 6N137的输出端分别接入微机主控单元。
6、 根据权利要求 3所述安全防火电控装置, 其特征是所述漏电采样预检 保护单元包括信号源和预检信号捡测电路,其中信号源包括达林顿晶体管芯片 ULN2003 ,启动继电器 和驱动继电器 〜 ^;所述预检信号检测电路由 A/D 转换器芯片 AD654、 高速光隔 6N137及电阻电容连接组成, 所述达林顿晶体 管芯片 ULN2003的输入端与微机主控单元的预检信号输出端相连, 其输出公 共端与电源 Vcc相连, 其输出端分别与启动继电器 及驱动继电器 K1 K3的 线圈的一端相连,启动继电器 。线圈的另一端接驱动电源 QD5V, 同时驱动电 源 QD5V亦接至启动继电器 触点的一端, 驱动继电器 K1〜K3线圈的另一端 接至启动继电器^:。触点的另一端, 5V电源经预检信号电阻 R201及驱动继电 器 Κ1~Κ3的触点与负载端的 Al、 Bl、 CI三相相连, 预检信号检测电路接于 预检信号电阻 R201与驱动继电器 K1 K3触点之间, 驱动继电器 K1 K3另一 触点连接在负载端的地端 PE及 5V电源地端之间。
7、 根据权利要求 4或 6所述安全防火电控装置, 其特征是所述接入预检 信号电阻的 5V电源为 5V交流电源时, 所述预检信号捡测电路的输入端设置 有整流滤波电路。
8、 根据权利要求 3所述安全防火电控装置, 其特征是所述漏电采样预检 保护单元包括信号源和预检信号检测电路,其中信号源为 3个高频方波发生器, 预检信号检测电路由 3个比较器 LM393、3个高速光隔 6N137及电容电阻相连 并接至主回路而组成, 所述 3个高频方波发生器与电阻 RA5、 RB5、 RC5及电 容 CA5、 CB5、 CC5串联接入负载端的地端 PE上, 由比较器 LM393、 高速光 隔 6N137串联构成的回路通过电容接于负载端的三相 Al、 Bl、 CI上, 高速 光隔 6N137de 的信号输出端接入微机主控单元。
9、 根据权利要求 1-6、 8之一所述安全防火电控装置, 其特征是所述三相 负载电源还挂接有信号采样端接入三相负载电源,信号输出端接入微机主控单 元的逆功采样预检保护单元、 过压、 欠压、 缺相和逆相预检单元, 电压采样检 测与过压、 欠压、 缺相、 逆相、 断零保护单元, 电流采样检测与短路、 过流、 断相、 零序过载、 谐波过载保护单元。
10、根据权利要求 9所述安全防火电控装置, 其特征是所述微机主控单元 上还连接有报警电路, 显示电路和合分复位电路, 所述微机主控单元直接或通 过故障锁定单元接入控制门电路后,与空气断路器脱扣线圈或无触点开关的控 制端连接。
PCT/CN2009/000396 2008-09-02 2009-04-15 安全防火电控装置 WO2010025606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810143115.0 2008-09-02
CN2008101431150A CN101499642B (zh) 2008-09-02 2008-09-02 智能安防电控装置

Publications (1)

Publication Number Publication Date
WO2010025606A1 true WO2010025606A1 (zh) 2010-03-11

Family

ID=40946565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000396 WO2010025606A1 (zh) 2008-09-02 2009-04-15 安全防火电控装置

Country Status (2)

Country Link
CN (1) CN101499642B (zh)
WO (1) WO2010025606A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688133A (zh) * 2017-10-26 2018-02-13 绵阳高新区探索科技有限责任公司 充电枪缆上控制盒用上电短路检测电路
CN107910853A (zh) * 2017-12-15 2018-04-13 湖南电铨科技股份有限公司 交流三相智能模块
CN108011348A (zh) * 2017-11-06 2018-05-08 湖南电铨科技股份有限公司 低压智能配电控制保护系统及其控制保护方法
CN108493898A (zh) * 2018-04-26 2018-09-04 浙江智美电气有限公司 一种智能电路监测保护器
CN108646636A (zh) * 2018-07-03 2018-10-12 兰州工业学院 智能水族箱综合控制系统
CN109802360A (zh) * 2019-02-22 2019-05-24 天津润和绿能科技有限公司 用于风力发电机的防误合闸控制器
CN109920181A (zh) * 2019-04-02 2019-06-21 深圳市鑫德亮电子有限公司 紧急呼叫报警器及其电路
CN110829374A (zh) * 2018-08-14 2020-02-21 上海华建电力设备股份有限公司 一种带故障录波功能的微机电动机保护监控装置
CN111953327A (zh) * 2019-05-15 2020-11-17 贵州振华群英电器有限公司(国营第八九一厂) 一种小型智能固态继电器
CN112290507A (zh) * 2020-11-30 2021-01-29 桂林仁立达科技有限责任公司 一种方便与断路器集成使用的防雷模块
CN113985132A (zh) * 2021-09-30 2022-01-28 华能太仓发电有限责任公司 一种备用电动机的绝缘电阻测量装置及方法
CN116088487A (zh) * 2023-04-11 2023-05-09 湖南长长电泵科技有限公司 一种用于水泵控制器应急监测装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118018B (zh) * 2009-12-31 2015-07-08 天津市松正电动汽车技术股份有限公司 一种具有上下限功能的保护电路
CN102064521A (zh) * 2011-01-18 2011-05-18 储应坤 过压、过流、漏电、防雷多功能太阳能、市电保护控制器
CN102377157A (zh) * 2011-11-25 2012-03-14 湖南新航程智能测控技术有限公司 一种消防智能电控装置
CN103311886B (zh) * 2012-03-06 2016-03-30 海尔集团公司 防误断电的漏电保护装置
CN102882189A (zh) * 2012-09-22 2013-01-16 天津中电华利电器科技集团有限公司 断路器用智能控制器
CN103176099B (zh) * 2013-03-01 2015-05-13 常熟理工学院 低压断路器合闸前主接线短路检测传感装置
CN103268835A (zh) * 2013-05-22 2013-08-28 中山市福瑞特科技产业有限公司 一种带功率显示功能的电气火灾监控探测器
TWI553983B (zh) * 2014-04-08 2016-10-11 Multi - function power output protection device
CN103942868A (zh) * 2014-05-07 2014-07-23 国家电网公司 一种用于35kv电气开关柜的带电显示门禁装置
CN106655748B (zh) * 2015-11-02 2019-06-07 中国船舶重工集团公司第七二三研究所 一种两路输出直流电源的加电逻辑及保护电路
CN106159909A (zh) * 2016-07-18 2016-11-23 国网山东省电力公司栖霞市供电公司 配电设备智能合闸保护控制装置
CN107967001A (zh) * 2017-12-08 2018-04-27 广东电网有限责任公司清远供电局 一种智能型低压防洪水位控制系统
CN113259831A (zh) * 2021-06-03 2021-08-13 广州市威牛智能科技有限公司 一种音箱ai智能检测保护系统
CN118572622A (zh) * 2024-08-05 2024-08-30 南通连邦数智信息技术有限公司 一种智能电力保护装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819382A (zh) * 2005-02-08 2006-08-16 郭龙云 智能防火电控系统
CN1316705C (zh) * 2003-06-09 2007-05-16 湖南正通智能电器有限公司 智能无触点开关
CN200941545Y (zh) * 2006-07-31 2007-08-29 邱红斌 一种防火漏电保护器
US20080007881A1 (en) * 2006-07-04 2008-01-10 Moeller Gmbh Circuit breaker and short circuiter combination

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87202097U (zh) * 1987-02-17 1988-04-13 吴文龙 一种不停电用电保安器
CN200947538Y (zh) * 2006-06-16 2007-09-12 罗英约 一种合闸前短路检测漏电保护开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316705C (zh) * 2003-06-09 2007-05-16 湖南正通智能电器有限公司 智能无触点开关
CN1819382A (zh) * 2005-02-08 2006-08-16 郭龙云 智能防火电控系统
US20080007881A1 (en) * 2006-07-04 2008-01-10 Moeller Gmbh Circuit breaker and short circuiter combination
CN200941545Y (zh) * 2006-07-31 2007-08-29 邱红斌 一种防火漏电保护器

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688133A (zh) * 2017-10-26 2018-02-13 绵阳高新区探索科技有限责任公司 充电枪缆上控制盒用上电短路检测电路
CN108011348A (zh) * 2017-11-06 2018-05-08 湖南电铨科技股份有限公司 低压智能配电控制保护系统及其控制保护方法
CN108011348B (zh) * 2017-11-06 2023-12-26 湖南电铨科技股份有限公司 低压智能配电控制保护系统及其控制保护方法
CN107910853A (zh) * 2017-12-15 2018-04-13 湖南电铨科技股份有限公司 交流三相智能模块
CN107910853B (zh) * 2017-12-15 2023-12-26 湖南电铨科技股份有限公司 交流三相智能模块
CN108493898A (zh) * 2018-04-26 2018-09-04 浙江智美电气有限公司 一种智能电路监测保护器
CN108646636B (zh) * 2018-07-03 2023-11-10 兰州工业学院 智能水族箱综合控制系统
CN108646636A (zh) * 2018-07-03 2018-10-12 兰州工业学院 智能水族箱综合控制系统
CN110829374A (zh) * 2018-08-14 2020-02-21 上海华建电力设备股份有限公司 一种带故障录波功能的微机电动机保护监控装置
CN109802360A (zh) * 2019-02-22 2019-05-24 天津润和绿能科技有限公司 用于风力发电机的防误合闸控制器
CN109802360B (zh) * 2019-02-22 2024-04-26 天津润和绿能科技有限公司 用于风力发电机的防误合闸控制器
CN109920181A (zh) * 2019-04-02 2019-06-21 深圳市鑫德亮电子有限公司 紧急呼叫报警器及其电路
CN109920181B (zh) * 2019-04-02 2024-02-13 深圳市鑫德亮电子有限公司 紧急呼叫报警器及其电路
CN111953327A (zh) * 2019-05-15 2020-11-17 贵州振华群英电器有限公司(国营第八九一厂) 一种小型智能固态继电器
CN112290507A (zh) * 2020-11-30 2021-01-29 桂林仁立达科技有限责任公司 一种方便与断路器集成使用的防雷模块
CN113985132A (zh) * 2021-09-30 2022-01-28 华能太仓发电有限责任公司 一种备用电动机的绝缘电阻测量装置及方法
CN116088487A (zh) * 2023-04-11 2023-05-09 湖南长长电泵科技有限公司 一种用于水泵控制器应急监测装置

Also Published As

Publication number Publication date
CN101499642B (zh) 2010-12-22
CN101499642A (zh) 2009-08-05

Similar Documents

Publication Publication Date Title
WO2010025606A1 (zh) 安全防火电控装置
KR101741386B1 (ko) 전원 전환 장치, 배전반, 감시 장치, 전원 전환 방법 및 기록 매체
CN202652141U (zh) 给煤机变频器低电压穿越装置
CN102005720B (zh) 中性线断线检测保护方法及装置
CN100546142C (zh) 一种分励脱扣型单相短路保护装置
JP2016509459A (ja) 予備電源システムと、地域配電網を上位送電網から切断する方法
CN203344867U (zh) 电动汽车缆上控制盒
CN202917961U (zh) 一种自恢复式过欠电压保护断路器
CN201149988Y (zh) 低压电网零线断线过电压保护器
CN207664593U (zh) 配电系统电压综合保护装置
CN100576674C (zh) 一种使漏电保护无动作死区的方法及其断路器
CN110931277A (zh) 一种无变压器电机式断路器及其分合闸控制方法
CN205984829U (zh) 一种具有重合闸功能的连续可调三相断路器
TWM583158U (zh) 交流系統電容跳脫裝置改良裝置
CN106159894B (zh) 小型可联网采集断路器
CN204314645U (zh) 一种低压配电系统的逐屏通断自动控制装置
CN111969566B (zh) 高压交流系统电容跳脱改良装置
CN201985606U (zh) 公共应急电源快速接入装置
CN203039358U (zh) 交流分、合闸自保持电路
CN203387397U (zh) 大功率光伏逆变器辅助电源软起电路结构
CN201868856U (zh) 一种三相交流异步电机综合保护装置
KR20170042070A (ko) 전력계통에서의 단락 발생시 재해 방지장치 및 방법
CN110492597A (zh) 故障导向安全装置、用电安全系统及备自投互锁控制系统
CN2924779Y (zh) 具有过压欠压保护功能的断路开关
CN111682512B (zh) 一种断路器本体三相不一致保护防误动回路及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09810981

Country of ref document: EP

Kind code of ref document: A1