WO2010025583A1 - 多功能光聚散板 - Google Patents

多功能光聚散板 Download PDF

Info

Publication number
WO2010025583A1
WO2010025583A1 PCT/CN2008/001574 CN2008001574W WO2010025583A1 WO 2010025583 A1 WO2010025583 A1 WO 2010025583A1 CN 2008001574 W CN2008001574 W CN 2008001574W WO 2010025583 A1 WO2010025583 A1 WO 2010025583A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
light
cavities
refraction
transmission
Prior art date
Application number
PCT/CN2008/001574
Other languages
English (en)
French (fr)
Inventor
肖立峰
Original Assignee
Xiao Lifeng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiao Lifeng filed Critical Xiao Lifeng
Priority to PCT/CN2008/001574 priority Critical patent/WO2010025583A1/zh
Publication of WO2010025583A1 publication Critical patent/WO2010025583A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/10Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to the field of optical technology, and more particularly to a multifunctional light-scattering plate that causes light to be deflected in parallel and focused by a double-parabolic reflection of a confocal point.
  • solar energy is inexhaustible, but it is not yet an important source of energy that can be used on a large scale.
  • fossil energy such as coal, oil, natural gas and rising prices
  • photoelectric conversion and photothermal conversion devices have been used, such as photoelectric conversion and photothermal conversion devices.
  • a common photothermal conversion device typically has a heat collecting tube coated with light absorbing and converted into heat energy in each of the plurality of glass tubes. The disadvantage is obvious, since the light energy density per unit area irradiated on the heat collecting tube is small, Therefore, the heat collecting efficiency is 4, and the solar energy utilization cost is high; and because the heat dissipating surface is large, a high temperature cannot be obtained.
  • Ordinary photoelectric conversion equipment is mainly a photovoltaic panel, which can convert solar energy into electrical energy.
  • photovoltaic panels are expensive and easy to damage, they have only a single power generation application, and are inconvenient to install and use, and cannot be applied on a large scale.
  • Ordinary parallel light sources are obtained by parabolic reflection from a point source or a line source. They are bulky and cannot be made into a plate shape, and cannot be used in a large amount on illumination or background light sources.
  • the present invention aims to solve the above problems, and provides a plate-shaped solar power generation and set. Heated in one, it can collect light at high density, high photoelectricity and light-to-heat conversion efficiency, low cost, and easy to install and maintain. It is also an object of the present invention to provide a multifunctional light-scattering plate capable of producing parallel light sources.
  • the present invention provides a multifunctional light-scattering plate having a strip-shaped body made of a transparent material and having an indefinite length.
  • the plate body is provided with two groups.
  • the symmetrical refractive cavity is composed of a plurality of polygonal cavities arranged in the order of the width direction of the plate-like body, and the plurality of polygonal cavities of the two sets of refractive cavities extend from one end to the other end along the longitudinal direction of the plate-like body.
  • a substrate is disposed at a lower portion of the plate body, the upper surface of the substrate is a symmetrical paraboloid of two confocal lines, and the two paraboloids are light reflecting surfaces, and a cavity is formed between the upper surface and the lower surface of the plate body.
  • the focal line A of the paraboloid is located on the symmetry plane of the two paraboloids in the cavity, and a heat collecting tube is disposed at the focal line, and both ends of the multifunctional light collecting plate are provided with sealing end caps.
  • the plate-like body is formed by the upper plate body and the lower plate body, and the upper plate body and the lower plate body each have an upper portion and a lower portion of a plurality of polygonal cavities.
  • Each polygonal cavity is a quadrilateral cavity consisting of two first transmissive, refractive surfaces that transmit and refract light, a second transmissive, refractive surface, and two vertical and beveled surfaces that do not transmit and refract.
  • the incident light is transmitted through the upper surface of the plate-shaped body, the first transmitting and refracting surface, and the second transmitting, refracting surface and the lower surface of the plate-like body are transmitted and refracted to deflect the light toward the two paraboloids.
  • the intersection of the first transmitting and refracting surface of each cavity and the second transmitting and refracting surface is connected to the intersection of the adjacent vertical and inclined surfaces where transmission and refraction do not occur.
  • the substrate is a plate-like body made of a heat insulating material, and the upper surface thereof is provided with two pairs of confocal lines.
  • the paraboloid is called a parabolic surface coated with a light-reflecting film that reflects the light incident thereon to the heat collecting tube.
  • the heat collecting tube is made of a high thermal conductive metal material, and the outer surface thereof is coated with a high light absorbing photothermal conversion material, and both ends of the heat collecting tube are provided with a conduit which is sealed and fixed to the end cover and extracts heat.
  • the multifunctional light-scattering plate has a strip-shaped plate body of an infinitely long length made of a transparent material, and the plate-like body is provided with two sets of bilaterally symmetric refractive cavities, each set The refractive cavity is composed of a plurality of polygonal cavities arranged in the order of the width direction of the plate-like body, and the plurality of polygonal cavities of the two sets of refractive cavities extend from one end to the other end along the longitudinal direction of the plate-like body, in the lower part of the plate-shaped body a substrate is provided, the upper surface of the substrate is a symmetrical paraboloid of two confocal lines, and the two paraboloids are light reflecting surfaces, and a cavity is formed between the upper surface and the lower surface of the plate body, and the focal line A of the paraboloid is located A symmetrical surface of the two paraboloids in the cavity is provided with a photoelectric conversion heat collecting device at the focal line, and two ends of the multifunctional light collecting plate are provided
  • the plate-like body is formed by the upper plate body and the lower plate body, and the upper plate body and the lower plate body each have an upper portion and a lower portion of a plurality of polygonal cavities.
  • Each of the polygonal cavities is a quadrilateral cavity composed of two first transmissive and refractive surfaces that transmit and refract light, a second transmissive, refractive surface, and two vertical and inclined surfaces that do not transmit and refract.
  • the incident light passes through the upper surface of the plate-shaped body, the first transmitting and refracting surface, and the second transmitting, refracting surface and the lower surface of the shape are transmitted and refracted to deflect the light toward the two paraboloids.
  • the intersection of the first transmitting and refracting surface of each cavity and the second transmitting and refracting surface is connected to the intersection of the adjacent vertical and inclined surfaces where transmission and refraction do not occur.
  • the substrate is a plate-shaped body made of a heat insulating material, and the upper surface thereof is provided with two symmetrical paraboloids of a confocal line, and a parabolic surface is plated or a light-reflecting film, and the paraboloid reflects the light incident thereon to the photoelectric conversion. Collecting device.
  • the photoelectric conversion heat collecting device is composed of a heat collecting tube and a photovoltaic panel, the photovoltaic panel is closely attached to the outside of the heat collecting tube, and the collecting tube is made of a high thermal conductive metal material, and the outer surface thereof is coated with a high light absorbing photothermal conversion material.
  • the two ends of the heat collecting tube are provided with a conduit which is sealed and fixed to the end cover and takes out heat, and the photovoltaic battery is connected with an output terminal provided on the end cover.
  • the multifunctional light-scattering plate has a strip-shaped plate body of an infinitely long length made of a transparent material, and the plate-like body is provided with two sets of bilaterally symmetric refractive cavities, each set The refracting cavity is formed by a plurality of polygonal cavities arranged in the order of the width direction of the plate-like body, and the plurality of polygonal cavities of the two sets of refracting cavities extend from one end to the other end along the longitudinal direction of the plate-like body, and are disposed at the lower part of the plate-shaped body
  • the upper surface of the substrate is a symmetrical paraboloid of two confocal lines, and the two paraboloids are light reflecting surfaces, and a cavity is formed between the substrate and the lower surface of the plate body, and the focal line A of the paraboloid is located at the space A symmetrical surface of the two paraboloids in the cavity is provided with a light-emitting device at the focal line, and both ends of
  • the plate-like body is formed by the upper plate body and the lower plate body, and the upper plate body and the lower plate body each have an upper portion and a lower portion of a plurality of polygonal cavities.
  • Each of the polygonal cavities is a quadrilateral cavity composed of two first transmissive and refractive surfaces that transmit and refract light, a second transmissive surface, a refractive surface, and two vertical and inclined surfaces that do not transmit and refract.
  • the incident light passes through the upper surface of the plate-shaped body, the first transmitting and refracting surface, and the second transmitting, refracting surface and the lower surface of the shape are transmitted and refracted to deflect the light toward the two paraboloids.
  • the intersection of the first transmitting and refracting surface of each cavity and the second transmitting and refracting surface is connected to the intersection of the adjacent vertical and inclined surfaces where transmission and refraction do not occur.
  • the substrate is a plate-like body, and the upper surface thereof is provided with two symmetrical paraboloids of a confocal line, and the parabolic surface is plated or adhered to a light-reflecting film, and the paraboloid reflects the light incident thereon by the illuminating device onto the plate-like body.
  • the illuminating device may be a line source or a series of point sources.
  • the multifunctional light-scattering plate has a disc-shaped plate body made of a transparent material, and the plate-like body is provided with a plurality of end-to-end refractive chambers along the circumferential direction of the plate-like body.
  • Each of the refracting cavities is a polygonal cavity
  • a substrate is disposed at a lower portion of the plate-like body, and an upper surface of the substrate is a paraboloid formed by two confocal symmetrical paraboloids rotating along a symmetry line, the paraboloid being a light reflecting surface
  • a cavity is formed with the lower surface of the plate-like body, the focal point A of the paraboloid being located on a central axis within the cavity, at which a light-emitting device is provided.
  • the plate-like body is formed by the upper plate body and the lower plate body, and the upper plate body and the lower plate body each have an upper portion and a lower portion of a plurality of polygonal cavities.
  • Each of the polygonal cavities is a quadrilateral cavity composed of two first transmissive and refractive surfaces that transmit and refract light, a second transmissive surface, a refractive surface, and two vertical surfaces and inclined surfaces that do not transmit and refract.
  • the incident light is transmitted and refracted through the upper surface of the plate-shaped body, the first transmitting and refracting surface, and the second transmitting, refracting surface and the lower surface of the body to deflect the light toward the two paraboloids.
  • the intersection of the first transmitting and refracting surface of each cavity and the second transmitting and refracting surface is connected to the intersection of the adjacent vertical and inclined surfaces where transmission and refraction do not occur.
  • the substrate is a circular plate-shaped body, and the upper surface thereof is provided with two confocal symmetrical paraboloids, and the paraboloid is plated or adhered to the reflective film, and the paraboloid reflects the light incident thereon by the illuminating device onto the plate-like body.
  • the illuminating device is a point source.
  • the contribution of the present invention is that it makes full use of the principle of refraction and reflection focusing of light, and designs a light-scattering plate which is relatively large in width and height and which collects solar heat, solar power and illuminates in one body.
  • the multi-functional light-scattering plate deflects the solar light to the paraboloid by the transmission and refraction of light, and then focuses the parabola to the center, so the thickness thereof can be thin, and the larger the deflection angle, the thinner the thickness, so the volume is small. , low production cost, and a wide range of uses.
  • the light plate combines the photoelectric conversion and the heat collecting device, the utilization rate of the incident light is greatly improved, so that it can be used not only for solar power generation but also for generating high-temperature heat energy, and the heat energy generated by the light plate can be used for power generation and the like. use. It is also used as a new plate-like parallel light source because of its thinness. It also has the characteristics of simple and reliable structural process, easy availability of materials, and high-volume, modular production. And because of its plate-like structure and the characteristics of not needing to track the sun, it can easily form a large-area array to achieve higher power output. At the same time, since the upper parabola, the refractive cavity and the photovoltaic panel are sealed in The inside of the scatter plate allows for less maintenance or maintenance free.
  • FIG. 1 is a schematic view showing the structure of a first embodiment of the present invention, wherein Fig. 1A is a perspective view, Fig. 1B is a schematic end view, and Fig. 1C is a schematic cross sectional view.
  • FIG. 2 is a schematic structural view of Embodiment 2 of the present invention, wherein FIG. 2A is a perspective view 2B is a schematic view of an end face, and FIG. 2C is a schematic cross-sectional view.
  • FIG. 3 is a schematic structural view of Embodiment 3 of the present invention, wherein FIG. 3A is a perspective view, FIG. 3B is a schematic end view, and FIG. 3C is a cross-sectional view.
  • Fig. 4 is a schematic view showing the structure of a fourth embodiment of the present invention, wherein Fig. 4A is a perspective view and Fig. 4B is a schematic axial sectional view.
  • Figure 5 is a schematic view of the concentrating light of the present invention.
  • Figure 6 is a schematic diagram of the astigmatism of the present invention.
  • the multifunctional light-scattering plate 100 of the present invention has a strip-shaped plate body 10 made of a transparent material, which is made of a transparent material such as glass, plexiglass or transparent resin, and the length thereof can be Determined by actual needs.
  • the plate-like body 10 is joined by the upper plate body 11 and the lower plate body 12, and is fixed by bonding or welding.
  • the plate body is provided with two sets of symmetrical refractive chambers 21 and 22, each of which is composed of a plurality of polygonal cavities 211 and 221, which are arranged in the order of the width direction of the plate body, and a plurality of refraction cavities of the two groups.
  • each of the polygonal cavities 211 and 221 is a quadrangular cavity, which is composed of two pieces that transmit and refract light.
  • transmissive, refractive surface 2111, 2211 a transmissive, refractive surface 2111, 2211, a second transmissive, refractive surface 2112, 2212 and two vertical faces 2113, 2213 and slopes 2114, 2214 that do not transmit and refract
  • first transmissive and refractive surface 2111 is The upper surface of the plate-like body 10 is formed to be inclined downward, and the second transmissive and refractive surface 2112 is formed to be inclined upward along the upper surface of the plate-like body 10, and the two intersect at one end.
  • the incident light is transmitted and refracted through the upper surface 111 of the plate-like body 10, the first transmitting and refracting surfaces 2111, 2211, the second transmitting and refracting surfaces 2112, 2212, and the lower surface 121 of the plate-like body 10, so that the light is directed to the two paraboloids. 31, 32 deflection.
  • the intersections of the first transmissive and refractive surfaces 2111 and 2211 and the second transmissive and refractive surfaces 2112 and 2212 of the respective cavities are adjacent thereto.
  • intersections of the vertical faces 2113, 2213 and the slopes 2114, 2214 where transmission and refraction do not occur are connected to form a plurality of polygonal cavities 211, a refraction cavity 21 connected end to end, and a plurality of polygonal cavities of the refraction cavity 22 symmetric thereto
  • the shapes of 221 are the same and the directions are opposite.
  • a substrate 30 is disposed on a lower portion of the plate-like body 10.
  • the substrate 30 is a plate-shaped body made of a heat insulating material, preferably a rigid foam, and the upper surface of the substrate is a symmetrical paraboloid of two confocal lines.
  • 31, 32 the two paraboloids are light reflecting surfaces, which are coated with a light reflecting film, and the two paraboloids form a substantially arcuate cavity 40 between the lower surface 121 of the plate body.
  • the focal line A of the paraboloids 31, 32 is located on the symmetry plane of the two paraboloids within the cavity.
  • a heat collecting tube 51 is formed at or near the focal line, and the heat collecting tube is made of a highly thermally conductive metal material such as aluminum or copper, and the outer surface thereof is coated with a light-absorbing material having high light absorption, and both ends of the heat collecting tube 51 are provided.
  • a conduit 511 that is sealed to the end cap 60 and that draws heat away. The paraboloids 31, 32 reflect the light incident thereon to the heat collecting tube 51.
  • the multifunctional light-dispersing plate 100 of the present invention is directed into the plate-like body 10, and is deflected by the plate-like body 10 to be incident on the paraboloids 31, 32, and then focused to the heat collecting tube 51. Since the structure deflects the angle of the light, the thickness of the cavity 40 can be made thin, and the larger the deflection angle, the thinner the thickness of the cavity 40. Therefore, the multifunctional light-scattering plate 100 can be formed into a plate shape.
  • the photoelectric conversion heat collecting device is composed of a heat collecting tube 521 and a photovoltaic panel 522.
  • the photovoltaic panel 522 is commercially available, and is closely attached to the outside of the heat collecting tube 521.
  • the photovoltaic panel 522 is disposed on the end cover 60.
  • the output terminals are connected to convert solar light energy into electrical energy.
  • the heat collecting tube 521 is made of a highly thermally conductive metal material, and the outer surface thereof is coated with a highly light-absorbing photothermal conversion material.
  • Both ends of the heat collecting tube 521 are provided with a conduit 5211 which is sealed and fixed to the end cover 60 and extracts heat.
  • the heat collecting tube 521 can absorb the portion of the light that is not absorbed by the photovoltaic panel 522, and can also derive the thermal energy generated by the photovoltaic panel 522 to function as a cooling photovoltaic cell.
  • the basic structure is the same as that of Embodiment 1, except that a light-emitting device 53 is provided at or near the focal line of the paraboloids 31, 32, and the light-emitting device is a line light source such as a light tube.
  • a light-emitting device 53 is provided at or near the focal line of the paraboloids 31, 32, and the light-emitting device is a line light source such as a light tube.
  • the deflection angle is perpendicular to the parallel light of the plate surface of the plate-like body to be refracted to the outside; the other small portion of the light is directly passed through the plate shape.
  • Body 10 is refracted to the outside at a certain angle, because This forms a plate-like parallel light source that can be used for illumination, background light sources, etc., and the light is relatively uniform, soft, and high in brightness.
  • the basic structure of the solution is the same as that of Embodiment 1, except that the multifunctional light-scattering plate 100 has a disc-shaped plate body 10 made of a transparent material.
  • a plurality of end-to-end refractive chambers 21 are disposed in the circumferential direction of the plate-like body, each of the refractive chambers is a polygonal cavity 211, and a substrate 30 is disposed at a lower portion of the plate-like body 10.
  • the substrate 30 is a circular plate-shaped body.
  • the upper surface is provided with two confocal symmetrical paraboloids 31, 32 which are formed by two symmetric confocal parabola rotation along a symmetry line, the paraboloid is a light reflecting surface, and the parabolic surfaces 31, 32 are plated with a reflective film.
  • the focal point A of the paraboloid 31 is located on the central axis within the cavity 40, at which the illumination means 54 are provided.
  • the illuminating device 54 is a point source such as a high pressure halogen lamp. Referring to Fig.
  • most of the light emitted by the illuminating device 54 is parabolically reflected to the plate-like body 10, and the parallel light whose deflection angle is perpendicular to the plate surface of the plate-like body is refracted to the outside; the other small portion of the light passes directly through the plate.
  • the body 10 is refracted to the outside at an angle, thereby forming a disc-shaped parallel light source, which can be used for illumination, background light sources, etc., and the light is relatively uniform, soft, and high in brightness.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

多功能光聚散板
【技术领域】
本发明涉及光学技术领域, 特别是涉及一种使光产生平行偏转, 并以共焦点的双抛物线反射聚焦的多功能光聚散板。
【背景技术】
众所周知, 太阳能是取之不尽, 用之不竭, 但人们尚未能大规模 利用的重要能源。随着煤、 石油、 天然气等化石能源的减少及价格的 不断上涨, 人类直接从太阳能中获取能量已变得越来越重要。 目前已 有各种各样的太阳能利用设备被使用, 如光电转换及光热转换设备 等。普通的光热转换设备典型的是在多根玻璃管中各装有一根涂有吸 光并转换为热能的集热管, 其缺点显而易见, 由于照射在集热管上的 单位面积上光能量密度较小, 因此其集热效率 4氏, 且太阳能利用成本 较高; 还由于其散热面大, 因此不能获得较高的温度。 普通光电转换 设备主要为光伏电池板, 它能将太阳能转化为电能, 但因光伏电池板 造价高昂, 易损坏, 且只具有单一的发电用途, 不便安装使用, 不能 大规模应用。 普通平行光源均是由点光源或线光源经抛物面反射得 到, 其体积大, 不能做成板状, 不能大量用在照明或背景光源上。
【发明内容】
本发明旨在解决上述问题, 而提供一种板状的集太阳能发电、 集 热于一体, 可高密度聚集光线, 光电及光热转换效率高, 成本低, 安 装使用及维护方便的多功能光聚散板。本发明的目的还在于提供一种 能产生平行光源多功能光聚散板。
为实现上述目的, 本发明提供一种多功能光聚散板, 该多功能光 聚散板有一个透明材料制成的长度可无限延长的条形板状体,该板状 体内设有两组左右对称的折射腔,每组折射腔由多个沿板状体宽度方 向依次排列的多边形腔体构成,两组折射腔的多个多边形腔体沿板状 体长度方向从一端延伸至另一端, 在所述板状体下部设有基板, 该基 板的上表面为两个共焦线的对称的抛物面, 两个抛物面为光反射面, 其与板状体的下表面之间形成空腔,所述抛物面的焦线 A位于空腔内 的两个抛物面的对称面上, 在所述焦线处设有集热管, 该多功能光聚 散板的两端设有密封用端盖。
板状体由上板体、 下板体对合而成, 所述上板体、 下板体上各具 有多个多边形腔体的上部和下部。 ' 每个多边形腔体均为四边形腔体,它由两个使光发生透射和折射 的第一透射、 折射面, 第二透射、折射面和两个不发生透射和折射的 竖直面及斜面构成, 入射光经板状体的上表面、 第一透射、 折射面, 第二透射、折射面及板状体的下表面透射、折射, 使光向两个抛物面 偏转。
多个腔体中, 各腔体的第一透射、 折射面和第二透射、折射面的 交点与其相邻的不发生透射和折射的竖直面及斜面的交点相连。
基板是由隔热材料制成的板状体,其上表面设有两个共焦线的对 称的抛物面,抛物面上镀或贴光反射膜, 该抛物面将入射到其上的光 线反射到集热管。
集热管由高导热金属材料制成,其外表面涂有高吸光的光热转换 材料, 集热管的两端设有与端盖密封固定和将热量引出的导管。
在本发明的另一方案中,该多功能光聚散板有一个透明材料制成 的长度可无限延长的条形板状体,该板状体内设有两组左右对称的折 射腔,每组折射腔由多个沿板状体宽度方向依次排列的多边形腔体构 成,两组折射腔的多个多边形腔体沿板状体长度方向从一端延伸至另 一端,, 在所述板状体下部设有基板, 该基板的上表面为两个共焦线 的对称的抛物面, 两个抛物面为光反射面, 其与板状体的下表面之间 形成空腔, 所述抛物面的焦线 A位于空腔内的两个抛物面的对称面 上, 在所述焦线处设有光电转换集热装置, 该多功能光聚散板的两端 设有密封用端盖。
板状体由上板体、 下板体对合而成, 所述上板体、 下板体上各具 有多个多边形腔体的上部和下部。
每个多边形腔体均为四边形腔体,它由两个使光发生透射和折射 的第一透射、 折射面, 第二透射、折射面和两个不发生透射和折射的 竖直面及斜面构成, 入射光经板状体的上表面、 第一透射、 折射面, 第二透射、 折射面及状体的下表面透射、 折射, 使光向两个抛物面偏 转。
多个腔体中, 各腔体的第一透射、折射面和第二透射、折射面的 交点与其相邻的不发生透射和折射的竖直面及斜面的交点相连。 基板是由隔热材料制成的板状体,其上表面设有两个共焦线的对 称的抛物面,抛物面上镀或贴光反射膜, 该抛物面将入射到其上的光 线反射到光电转换集热装置。
光电转换集热装置由集热管和光伏电池板构成,所述光伏电池板 紧密贴合在集热管外部, 集热管由高导热金属材料制成, 其外表面涂 有高吸光的光热转换材料,集热管的两端设有与端盖密封固定和将热 量引出的导管, 光伏电池与设在端盖上的输出端子相连接。
在本发明的另一方案中,该多功能光聚散板有一个透明材料制成 的长度可无限延长的条形板状体,该板状体内设有两组左右对称的折 射腔,每组折射腔由多个沿板状体宽度方向依次排列的多边形腔体构 成,两组折射腔的多个多边形腔体沿板状体长度方向从一端延伸至另 一端,在所述板状体下部设有基板, 该基板的上表面为两个共焦线的 对称的抛物面, 两个抛物面为光反射面, 其与板状体的下表面之间形 成空腔, 所述抛物面的焦线 A位于空腔内的两个抛物面的对称面上, 在所述焦线处设有发光装置,该多功能光聚散板的两端设有密封用端 盖。
板状体由上板体、 下板体对合而成, 所述上板体、 下板体上各具 有多个多边形腔体的上部和下部。
每个多边形腔体均为四边形腔体,它由两个使光发生透射和折射 的第一透射、折射面, 第二透射、 折射面和两个不发生透射和折射的 竖直面及斜面构成, 入射光经板状体的上表面、 第一透射、 折射面, 第二透射、折射面及状体的下表面透射、 折射, 使光向两个抛物面偏 转。
多个腔体中, 各腔体的第一透射、折射面和第二透射、折射面的 交点与其相邻的不发生透射和折射的竖直面及斜面的交点相连。
基板为板状体, 其上表面设有两个共焦线的对称的抛物面,抛物 面上镀或贴光反射膜,该抛物面将发光装置射到其上的光线反射到板 状体上。
发光装置可以是线光源或由点光源串接而成。
在本发明的又一方案中,该多功能光聚散板有一个透明材料制成 的圆盘形板状体,该板状体内沿板状体圆周方向设有多个首尾相连的 折射腔, 每个折射腔为多边形腔体, 在所述板状体下部设有基板, 该 基板的上表面为两段共焦点的对称的抛物线沿对称线旋转形成的抛 物面, 该抛物面为光反射面, 其与板状体的下表面之间形成空腔, 所 述抛物面的焦点 A位于空腔内的中轴线上,在所述焦线处设有发光装 置。
板状体由上板体、 下板体对合而成, 所述上板体、 下板体上各具 有多个多边形腔体的上部和下部。
每个多边形腔体为四边形腔体,它由两个使光发生透射和折射的 第一透射、 折射面, 第二透射、折射面和两个不发生透射和折射的竖 直面及斜面构成, 入射光经板状体的上表面、 第一透射、 折射面, 第 二透射、折射面及状体的下表面透射、折射,使光向两个抛物面偏转。
多个腔体中, 各腔体的第一透射、折射面和第二透射、折射面的 交点与其相邻的不发生透射和折射的竖直面及斜面的交点相连。 基板为圆形板状体, 其上表面设有两个共焦点的对称的抛物面, 抛物面上镀或贴光反射膜,该抛物面将发光装置射到其上的光线反射 到板状体上。
发光装置为点光源。
本发明的贡献在于, 它充分利用了光的折射和反射聚焦原理,设 计了宽度和高度比较大, 并且集太阳能集热、 太阳能发电和发光于一 体的光聚散板。 该多功能光聚散板由于通过光的透射、折射而将太阳 光线偏转到抛物面, 再由抛物面聚焦到中心, 因此其厚度可以很薄, 且偏转角度越大, 厚度就越薄, 因此体积小, 制作成本低, 且用途十 分广泛。 由于该光板将光电转换及集热装置结合为一体, 因此大大提 高了入射光的利用率, 使其不仅可用于太阳能发电, 还能产生高温热 能, 由其产生的热能又可用于发电等多种用途。 还由于其 4艮薄, 因此 还可用作新的板状平行光源。它还具有结构工艺简单可靠,材料易得, 可以大批量、 模块化生产等特点。且由于它的板状结构以及不需日跟 踪太阳的特性使得它可以方便地形成大面积阵列, 实现较大功率输 出, 同时, 由于^ 1的上的抛物面、 折射腔及光伏电池板均密封在聚 散板内部, 因此可少维护或免维护。
【附图说明】
图 1是本发明的实施例 1的结构示意图, 其中, 图 1A为立体示 意图, 图 1B为端面示意图, 图 1C为横截面示意图。
图 2是本发明的实施例 2的结构示意图, 其中, 图 2A为立体示 意图, 图 2B为端面示意图, 图 2C为横截面示意图。
图 3是本发明的实施例 3的结构示意图, 其中, 图 3A为立体示 意图, 图 3B为端面示意图, 图 3C为横截面示意图。
图 4是本发明的实施例 4的结构示意图, 其中, 图 4A为立体示 意图, 图 4B为轴向截面示意图。
图 5是本发明的聚光原理图。
图 6是本发明的散光原理图。
【具体实施方式】
下列实施例是对本发明的进一步解释和说明,对本发明不构成任 何限制。
实施例 1
参阅图 1A -图 1C, 本发明的多功能光聚散板 100有一个透明材 料制成的条形板状体 10, 它由玻璃、 有机玻璃、 透明树脂等透明材 料制成, 其长度可以根据实际需要而确定。 具体地说, 图 1B、 图 1C 中, 板状体 10由上板体 11、 下板体 12对合, 并通过粘接或焊接固 定。 该板状体内设有两组左右对称的折射腔 21、 22 , 每组折射腔由 多个多边形腔体 211、 221构成, 它们沿板状体宽度方向依次排列, 且两组折射腔的多个多边形腔体 211、 221沿板状体长度方向从一端 延伸至另一端, 所述上板体 11、 下板体 12上各具有多个多边形腔体 211、 221的上部和下部。 更具体地说, 如图 1B、 图 1C, 每个多边形 腔体 211、 221均为四边形腔体, 它由两个使光发生透射和折射的第 一透射、 折射面 2111、 2211 , 第二透射、 折射面 2112、 2212和两个 不发生透射和折射的竖直面 2113、 2213及斜面 2114、 2214构成, 其 中,第一透射、折射面 2111是沿板状体 10的上表面向下倾斜而形成, 而第二透射、 折射面 2112是沿板状体 10的上表面向上倾斜而形成, 且两者在一端相交。 入射光经板状体 10的上表面 111、 第一透射、 折射面 2111、 2211, 第二透射、 折射面 2112、 2212及板状体 10的 下表面 121透射、 折射, 使光向两个抛物面 31、 32偏转。 如图 1B、 图 1C所示, 所述的多个腔体 211、 221中, 各腔体的第一透射、 折射 面 2111、 2211和第二透射、 折射面 2112、 2212的交点与其相邻的不 发生透射和折射的竖直面 2113、 2213及斜面 2114、 2214的交点相连, 形成由多个多边形腔体 211、 首尾相连的折射腔 21 , 与之对称的折射 腔 22的多个多边形腔体 221的形状相同, 且方向相反。
在所述板状体 10下部设有基板 30, 该基板 30是由隔热材料, 最好为硬泡沫塑料制成的板状体,该基板的上表面为两个共焦线的对 称的抛物面 31、 32 , 两个抛物面为光反射面, 其上镀有光反射膜, 两个抛物面与板状体的下表面 121之间形成大致为弓形的空腔 40。 所述抛物面 31、 32的焦线 A位于空腔内的两个抛物面的对称面上。 在所述焦线或其附近设有集热管 51, 该集热管由铝、 铜等高导热金 属材料制成, 其外表面涂有高吸光的光热转换材料, 集热管 51的两 端设有与端盖 60密封固定和将热量引出的导管 511。 该抛物面 31、 32将入射到其上的光线反射到集热管 51。
在多功能光聚散板 100的两端设有密封用端盖 60。 参见图 5, 本发明的多功能光聚散板 100在工作时, 太阳光垂直 射入板状体 10, 经板状体 10偏转角度后射到抛物面 31、 32, 然后聚 焦到集热管 51。 由于该结构对光线角度进行偏转, 使得空腔 40的厚 度可做得很薄, 偏转角度越大, 空腔 40的厚度就越薄, 因此本多功 能光聚散板 100可制成板状。
实施例 2
参阅图 2A -图 2C, 其基本结构同实施例 1 , 所不同的是, 在所 述抛物面 31、 32的焦线 A或其附近设有光电转换集热装置 52。 该光 电转换集热装置由集热管 521和光伏电池板 522构成,所述光伏电池 板 522由获得商购获得, 它紧密贴合在集热管 521外部, 光伏电池板 522与设在端盖 60上的输出端子相连接, 用于将太阳光光能转换成 电能。 集热管 521由高导热金属材料制成, 其外表面涂有高吸光的光 热转换材料, 集热管 521的两端设有与端盖 60密封固定和将热量引 出的导管 5211。 该集热管 521可吸收未被光伏电池板 522所吸收的 那部分光, 同时还可将光伏电池板 522产生的热能导出,起到冷却光 伏电池的作用。
实施例 3
参阅图 3人~图 3C, 其基本结构同实施例 1, 所不同的是, 在所 述抛物面 31、 32的焦线或其附近设有发光装置 53, 该发光装置为线 光源, 如灯管参见图 6, 发光装置 53发出的光大部分经抛物面反射 到板状体 10, 再偏转角度成垂直于板状体的板面的平行光折射到外 部; 光的另一小部分则直接经板状体 10呈一定角度折射到外部, 因 此形成了一个板状的平行光源, 可用于照明、 背景光源等, 其光线较 为均匀、 柔和, 亮度高。
实施例 4
参阅图 4A、 4B,该方案中,其基本结构同实施例 1,所不同的是, 多功能光聚散板 100有一个透明材料制成的圆盘形板状体 10, 该板 状体内沿板状体圆周方向设有多个首尾相连的折射腔 21, 每个折射 腔为多边形腔体 211, 在所述板状体 10下部设有基板 30, 该基板 30 为圓形板状体, 其上表面设有两个共焦点的对称的抛物面 31、 32, 它是由两段共焦点的对称的抛物线沿对称线旋转形成,该抛物面为光 反射面, 抛物面 31、 32上镀光反射膜。 所述抛物面 31的焦点 A位于 空腔 40内的中轴线上, 在所述焦线处设有发光装置 54。发光装置 54 为点光源, 如高压卤灯。 参见图 6, 该发光装置 54发出的光大部分 经抛物面反射到板状体 10 , 再偏转角度成垂直于板状体的板面的平 行光折射到外部; 光的另一小部分则直接经板状体 10呈一定角度折 射到外部, 因此形成了一个圓板状的平行光源, 可用于照明、 背景光 源等, 其光线较为均匀、 柔和, 亮度高。
尽管通过以上实施例对本发明进行了揭示,但是本发明的范围并 不局限于此,在不偏离本发明构思的条件下, 以上各构件可用所属技 术领域人员了解的相似或等同元件来替换。

Claims

权 利 要 求
1、 一种多功能光聚散板, 其特征在于, 它有一个透明材料制成 的长度可无限延长的条形板状体(10), 该板状体内设有两组左右对 称的折射腔(21、 22), 每组折射腔由多个沿板状体宽度方向依次排 列的多边形腔体( 211、 221 )构成,两组折射腔的多个多边形腔体( 211、 221) 沿板状体长度方向从一端延伸至另一端, 在所述板状体(10) 下部设有基板 (30), 该基板的上表面为两个共焦线的对称的抛物面 (31、 32), 两个抛物面为光反射面, 其与板状体的下表面(121)之 间形成空腔(40), 所述抛物面 (31、 32) 的焦线 A位于空腔内的两 个抛物面的对称面上, 在所述焦线处设有集热管 (51), 该多功能光 聚散板 (100) 的两端设有密封用端盖(60)。
2、 如权利要求 1所述的多功能光聚散板, 其特征在于, 所述板状 体(10)由上板体(11)、 下板体(12)对合而成, 所述上板体(11)、 下板体 (12)上各具有多个多边形腔体(211、 221) 的上部和下部。
3、 如权利要求 1所述的多功能光聚散板, 其特征在于, 所述的 每个多边形腔体(211、 221)均为四边形腔体, 它由两个使光发生透 射和折射的第一透射、折射面( 2111、 2211 ),第二透射、折射面( 2112、 2212 )和两个不发生透射和折射的竖直面( 2113、 2213 )及斜面( 2114、 2214)构成, 入射光经板状体(10)的上表面(111)、 第一透射、 折 射面( 2111、 2211 ), 第二透射、折射面( 2112、 2212 )及板状体( 10 ) 的下表面 (121)透射、 折射, 使光向两个抛物面 (31、 32)偏转。 4、 如权利要求 3所述的多功能光聚散板, 其特征在于, 所述多 个腔体(211、 221) 中, 各腔体的第一透射、 折射面 (2111、 2211 ) 和第二透射、 折射面(2112、 2212)的交点与其相邻的不发生透射和 折射的竖直面 (2113、 2213)及斜面 (2114、 2214) 的交点相连。
5、 如权利要求 1所述的多功能光聚散板, 其特征在于, 所述基 板( 30)是由隔热材料制成的板状体, 其上表面设有两个共焦线的对 称的抛物面 (31、 32), 抛物面 (31、 32)上镀或贴光反射膜, 该抛 物面将入射到其上的光线反射到集热管 ( 51 )。
6、 如权利要求 1所述的多功能光聚散板, 其特征在于, 所述集 热管(51)由高导热金属材料制成, 其外表面涂有高吸光的光热转换 材料, 集热管(51)的两端设有与端盖(60)密封固定和将热量引出 的导管 (511)。
7、 一种多功能光聚散板, 其特征在于, 它有一个透明材料制成 的长度可无限延长的条形板状体(10), 该板状体内设有两组左右对 称的折射腔(21、 22), 每组折射腔由多个沿板状体宽度方向依次排 列的多边形腔体( 211、 221 )构成,两组折射腔的多个多边形腔体( 211、 221) 沿板状体长度方向从一端延伸至另一端, 在所述板状体(10) 下部设有基板 (30), 该基板的上表面为两个共焦线的对称的抛物面
(31、 32), 两个抛物面为光反射面, 其与板状体的下表面(121)之 间形成空腔(40), 所述抛物面 (31、 32) 的焦线 A位于空腔内的两 个抛物面的对称面上, 在所述焦线处设有光电转换集热装置(52), 该多功能光聚散板 (100)的两端设有密封用端盖(60)。 8、 如权利要求 7所述的多功能光聚散板, 其特征在于, 所述板 状体(10)由上板体(11)、下板体(12)对合而成,所述上板体(11)、 下板体(12)上各具有多个多边形腔体 (21U 221) 的上部和下部。
9、 如权利要求 7所述的多功能光聚散板, 其特征在于, 所述的 每个多边形腔体(211、 221)均为四边形腔体, 它由两个使光发生透 射和折射的第一透射、折射面( 2111、 2211 ),第二透射、折射面( 2112、 2212 )和两个不发生透射和折射的竖直面( 2113、 2213 )及斜面( 2114、 2214)构成, 入射光经板状体(10)的上表面(111)、 第一透射、 折 射面(2111、 2211), 第二透射、 折射面 (2112、 2212)及状体(10) 的下表面 (121)透射、 折射, 使光向两个抛物面 (31、 32)偏转。
10、 如权利要求 9所述的多功能光聚散板, 其特征在于, 所述多 个腔体(211、 221) 中, 各腔体的第一透射、 折射面 (2111、 2211) 和第二透射、 折射面(2112、 2212)的交点与其相邻的不发生透射和 折射的竖直面 (2113, 2213)及斜面 (2114、 2214) 的交点相连。
11、 如权利要求 7所述的多功能光聚散板, 其特征在于, 所述基 板( 30 )是由隔热材料制成的板状体, 其上表面设有两个共焦线的对 称的抛物面 (31、 32), 抛物面 (31、 32)上镀或贴光反射膜, 该抛 物面将入射到其上的光线反射到光电转换集热装置( 52 )。
12、 如权利要求 7所述的多功能光聚散板, 其特征在于, 所述光 电转换集热装置(52) 由集热管(521)和光伏电池板 ( 522 )构成, 所述光伏电池板( 522 )紧密贴合在集热管( 521 )外部,集热管( 521 ) 由高导热金属材料制成, 其外表面涂有高吸光的光热转换材料, 集热 管 (521 ) 的两端设有与端盖 (60) 密封固定和将热量引出的导管 (5211), 光伏电池( 522 )与设在端盖(60)上的输出端子相连接。
13、 一种多功能光聚散板, 其特征在于, 它有一个透明材料制成 的长度可无限延长的条形板状体(10), 该板状体内设有两组左右对 称的折射腔(21、 22), 每组折射腔由多个沿板状体宽度方向依次排 列的多边形腔体( 211、 221 )构成,两组折射腔的多个多边形腔体( 211、 221) 沿板状体长度方向从一端延伸至另一端, 在所述板状体(10) 下部设有基板 (30), 该基板的上表面为两个共焦线的对称的抛物面
(31、 32), 两个抛物面为光反射面, 其与板状体的下表面(121)之 间形成空腔(40), 所述抛物面 (31、 32)的焦线 A位于空腔内的两 个抛物面的对称面上, 在所述焦线处设有发光装置(53), 该多功能 光聚散板 (100)的两端设有密封用端盖(60)。
14、 如权利要求 13所迷的多功能光聚散板, 其特征在于, 所述 板状体(10) 由上板体(11)、 下板体(12)对合而成, 所述上板体
(11)、 下板体 (12)上各具有多个多边形腔体(211、 221)的上部 和下部。
15、 如权利要求 13所述的多功能光聚散板, 其特征在于, 所述 的每个多边形腔体(211、 221)均为四边形腔体, 它由两个使光发生 透射和折射的第一透射、 折射面 (2111、 2211), 第二透射、 折射面
(2112、 2212)和两个不发生透射和折射的竖直面(2113、 2213)及 斜面 (2114、 2214)构成, 入射光经板状体(10)的上表面 (111)、 第一透射、 折射面(2111、 2211), 第二透射、 折射面(2112、 2212) 及状体(10)的下表面(121)透射、 折射, 使光向两个抛物面(31、 32 )偏转。
16、 如权利要求 13所述的多功能光聚散板, 其特征在于, 所述 多个腔体(211、 221)中, 各腔体的第一透射、折射面(2111、 2211) 和第二透射、 折射面 (2112、 2212)的交点与其相邻的不发生透射和 折射的竖直面 (2113、 2213)及斜面 (2114、 2214) 的交点相连。
17、 如权利要求 13所述的多功能光聚散板, 其特征在于, 所述 基板 ( 30 )为板状体,其上表面设有两个共焦线的对称的抛物面( 31、 32 ),抛物面( 31、 32 )上镀或贴光反射膜,该抛物面将发光装置( 53 ) 射到其上的光线反射到板状体(10)上。
18、 如权利要求 13所述的多功能光聚散板, 其特征在于, 所述 发光装置(53)可以是线光源或由点光源串接而成。
19、 一种多功能光聚散板, 其特征在于, 它有一个透明材料制成 的圓盘形板状体(10), 该板状体内沿板状体圆周方向设有多个首尾 相连的折射腔( 21 ), 每个折射腔为多边形腔体( 211 ), 在所述板状 体( 10 )下部设有基板 ( 30 ), 该基板的上表面为两段共焦点的对称 的抛物线沿对称线旋转形成的抛物面 (31), 该抛物面为光反射面, 其与板状体的下表面 (121)之间形成空腔(40), 所述抛物面 (31) 的焦点 A位于空腔(40)内的中轴线上, 在所述焦线处设有发光装置
(54)。
20、 如权利要求 19所述的多功能光聚散板, 其特征在于, 所述 板状体( 10 ) 由上板体( 11 )、 下板体 ( 12 )对合而成, 所述上板体 ( 11 )、下板体 ( 12 )上各具有多个多边形腔体( 211 )的上部和下部。
21、 如权利要求 19所述的多功能光聚散板, 其特征在于, 所述 的每个多边形腔体(211) 为四边形腔体, 它由两个使光发生透射和 折射的第一透射、 折射面 (2111), 第二透射、 折射面 (2112)和两 个不发生透射和折射的竖直面(2113)及斜面(2114)构成, 入射光 经板状体(10) 的上表面 (111)、 第一透射、 折射面 (2111), 第二 透射、 折射面 (2112)及状体(10) 的下表面 (121)透射、 折射, 使光向两个抛物面 (31、 32)偏转。
22、 如权利要求 19所述的多功能光聚散板, 其特征在于, 所述 多个腔体(211) 中, 各腔体的第一透射、 折射面 (2111)和第二透 射、 折射面 (2112) 的交点与其相邻的不发生透射和折射的竖直面
(2113)及斜面 (2114)的交点相连。
23、 如权利要求 19所述的多功能光聚散板, 其特征在于, 所述 基板(30)为圆形板状体, 其上表面设有两个共焦点的对称的抛物面
(31、 32), 抛物面 (31、 32)上镀或贴光反射膜, 该抛物面将发光 装置(54)射到其上的光线反射到板状体(10)上。
24、 如权利要求 19所述的多功能光聚散板, 其特征在于, 所述 发光装置(54)为点光源。
PCT/CN2008/001574 2008-09-04 2008-09-04 多功能光聚散板 WO2010025583A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001574 WO2010025583A1 (zh) 2008-09-04 2008-09-04 多功能光聚散板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001574 WO2010025583A1 (zh) 2008-09-04 2008-09-04 多功能光聚散板

Publications (1)

Publication Number Publication Date
WO2010025583A1 true WO2010025583A1 (zh) 2010-03-11

Family

ID=41796704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001574 WO2010025583A1 (zh) 2008-09-04 2008-09-04 多功能光聚散板

Country Status (1)

Country Link
WO (1) WO2010025583A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103851807A (zh) * 2012-12-05 2014-06-11 深圳市鹏桑普太阳能股份有限公司 一种太阳能平板聚焦中温集热器板芯

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230094A (en) * 1975-02-13 1980-10-28 Unisearch Limited Solar concentrator
EP0560107B1 (de) * 1992-03-13 1995-10-18 Gerhard Feustle Vorrichtung zur Konzentration oder zur Umlenkung von Licht
CN2557882Y (zh) * 2002-05-23 2003-06-25 林祥参 平板式太阳能聚光集热器
EP1120600B1 (de) * 1999-12-01 2004-05-12 Siteco Beleuchtungstechnik GmbH Lichtleiterleuchte mit einer linearen Prismenstruktur
CN1940603A (zh) * 2005-09-21 2007-04-04 三星电子株式会社 光学元件、其制造方法及显示装置
WO2007084518A2 (en) * 2006-01-17 2007-07-26 Soliant Energy, Inc. A hybrid primary optical component for optical concentrators
CN100359708C (zh) * 2004-02-26 2008-01-02 京瓷株式会社 发光装置及照明装置
CN101118097A (zh) * 2007-08-23 2008-02-06 黄永年 太阳能聚光集热器
WO2008054097A1 (en) * 2006-11-01 2008-05-08 On-Nuri Electronics Inc., Ltd. Flat prism sheet for backlight units and method of manufacturing the same
WO2008056473A1 (fr) * 2006-11-09 2008-05-15 Sharp Kabushiki Kaisha Feuille prismatique et afficheur à cristaux liquides
CN101218464A (zh) * 2005-07-07 2008-07-09 松下电工株式会社 液晶面板用照明装置
CN101349816A (zh) * 2008-08-20 2009-01-21 肖立峰 多功能光聚散板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4230094A (en) * 1975-02-13 1980-10-28 Unisearch Limited Solar concentrator
EP0560107B1 (de) * 1992-03-13 1995-10-18 Gerhard Feustle Vorrichtung zur Konzentration oder zur Umlenkung von Licht
EP1120600B1 (de) * 1999-12-01 2004-05-12 Siteco Beleuchtungstechnik GmbH Lichtleiterleuchte mit einer linearen Prismenstruktur
CN2557882Y (zh) * 2002-05-23 2003-06-25 林祥参 平板式太阳能聚光集热器
CN100359708C (zh) * 2004-02-26 2008-01-02 京瓷株式会社 发光装置及照明装置
CN101218464A (zh) * 2005-07-07 2008-07-09 松下电工株式会社 液晶面板用照明装置
CN1940603A (zh) * 2005-09-21 2007-04-04 三星电子株式会社 光学元件、其制造方法及显示装置
WO2007084518A2 (en) * 2006-01-17 2007-07-26 Soliant Energy, Inc. A hybrid primary optical component for optical concentrators
WO2008054097A1 (en) * 2006-11-01 2008-05-08 On-Nuri Electronics Inc., Ltd. Flat prism sheet for backlight units and method of manufacturing the same
WO2008056473A1 (fr) * 2006-11-09 2008-05-15 Sharp Kabushiki Kaisha Feuille prismatique et afficheur à cristaux liquides
CN101118097A (zh) * 2007-08-23 2008-02-06 黄永年 太阳能聚光集热器
CN101349816A (zh) * 2008-08-20 2009-01-21 肖立峰 多功能光聚散板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103851807A (zh) * 2012-12-05 2014-06-11 深圳市鹏桑普太阳能股份有限公司 一种太阳能平板聚焦中温集热器板芯

Similar Documents

Publication Publication Date Title
TWI404975B (zh) 集光方法、集光系統以及光能轉換裝置
CN101965645B (zh) 光伏电池组件
KR20100017477A (ko) 광-가이드 태양 전지판 및 그 제작 방법
CN102280511B (zh) 一种密集阵列式聚光太阳能光伏装置
KR20130130707A (ko) 집광 및 조명 시스템을 위한 방향전환 광소자
JPH11243225A (ja) 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法
WO2019084707A1 (zh) 聚光式太阳能系统
CN202259382U (zh) 一种密集阵列式聚光太阳能光伏装置
CN110521111A (zh) 聚光式多功能太阳能系统
KR101207852B1 (ko) 평판형 고집광 태양전지 모듈 및 이를 이용한 태양광 트랙커
CN117148559A (zh) 太阳能定焦聚光镜及其光伏发电与集热装置
CN102607193B (zh) 太阳能直线型超薄光热利用聚光器
WO2010025583A1 (zh) 多功能光聚散板
TW201616071A (zh) 耐高溫高效能太陽能熱接收器
CN101349816B (zh) 多功能光聚散板
JP2011210890A (ja) 太陽光発電装置
US10199527B2 (en) Solar concentrator and illumination apparatus
CN218099671U (zh) 一种太阳能光热利用的球面或非球面平凸柱面透镜阵列
CN217817512U (zh) 一种太阳能光热利用的非球面或球面的平凸透镜阵列
CN118041223B (zh) 广角高倍聚光系统
KR101357200B1 (ko) 박형 집광형 태양전지모듈
CN218099672U (zh) 一种太阳能光热利用的球面或非球面双凸柱面透镜阵列
CN217817513U (zh) 一种太阳能光热利用的双凸透镜阵列
KR101327211B1 (ko) 고집광형 태양전지모듈
CN201852991U (zh) 四重抛物柱面聚光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (14.07.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 08800570

Country of ref document: EP

Kind code of ref document: A1