WO2010021389A1 - Nucleic acid capable of inhibiting expression of bcl-2 protein - Google Patents

Nucleic acid capable of inhibiting expression of bcl-2 protein Download PDF

Info

Publication number
WO2010021389A1
WO2010021389A1 PCT/JP2009/064675 JP2009064675W WO2010021389A1 WO 2010021389 A1 WO2010021389 A1 WO 2010021389A1 JP 2009064675 W JP2009064675 W JP 2009064675W WO 2010021389 A1 WO2010021389 A1 WO 2010021389A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
bcl
double
base sequence
protein
Prior art date
Application number
PCT/JP2009/064675
Other languages
French (fr)
Japanese (ja)
Inventor
史一 篠原
哲郎 吉田
史朗 曽我
行正 塩津
寛子 杉下
達也 宮澤
俊彦 石井
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Publication of WO2010021389A1 publication Critical patent/WO2010021389A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Definitions

  • the present invention relates to a nucleic acid for use in suppressing the expression of Bcl-2 protein that acts as an inhibitor of apoptosis, and a pharmaceutical composition containing the nucleic acid.
  • Bcl-2 protein is a mitochondrial inner membrane protein showing inhibition of cell death by apoptosis in several cell types (see Non-Patent Document 1). Inhibition of apoptosis due to large-scale expression of Bcl-2 protein is thought to cause cancer and hematological malignancies. In fact, Bcl-2 protein is produced in large quantities in various solid cancers such as lymphosarcoma, prostate cancer, breast cancer, lung cancer, colon cancer and rectal cancer (see Non-Patent Documents 2 to 6). It has also been shown that Bcl-2 protein expression is involved in thymic apoptosis (see Non-Patent Document 7). Bcl-2 protein has also been shown to have some role in prostate cancer, and has been particularly associated with malignant tumors that are common in certain primates (see Non-Patent Documents 8 and 9).
  • Non-Patent Document 8 In diseases that require promotion of apoptosis in their healing, such as solid cancers and hematological malignancies, the method of suppressing the expression of Bcl-2 protein can be an effective treatment or prevention method.
  • Suppressive oligonucleotide compounds configured to inhibit the expression by binding to a nucleic acid encoding a protein causing a disease such as cancer may be useful in the treatment of those diseases.
  • an antisense oligonucleotide for the bcl-2 gene can be considered.
  • RNAi RNA interference
  • siRNA small interfering RNA
  • SiRNA for the translation region of bcl-2 mRNA is known (see Patent Documents 2 and 3, Non-Patent Documents 10 to 12), but siRNA for the untranslated region of bcl-2 mRNA is not known.
  • An object of the present invention is to provide a nucleic acid capable of suppressing the expression of Bcl-2 protein that acts as an inhibitor of apoptosis.
  • Another object of the present invention is to provide a pharmaceutical composition for treating or preventing a disease such as cancer that requires promotion of apoptosis in its healing.
  • the present invention relates to the following (1) to (28).
  • a nucleic acid comprising a partial base sequence of a non-translated region of a gene encoding a Bcl-2 protein, a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid, and Bcl- 2.
  • a nucleic acid having protein expression-inhibiting activity is a nucleic acid according to (1), wherein a part of the base sequence of the untranslated region of the gene encoding Bcl-2 protein is a sequence consisting of 15 to 27 bases.
  • a nucleic acid comprising a partial base sequence of the untranslated region of the gene encoding Bcl-2 protein is a nucleic acid comprising the base sequence represented by any of SEQ ID NOs: 54 to 106 or at least one of the nucleic acids
  • nucleic acid comprising a partial base sequence of the untranslated region of the gene encoding the Bcl-2 protein according to (1), and at least a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid
  • One of the nucleic acids, wherein 1 to 3 bases are substituted, deleted or added, and has a Bcl-2 protein expression inhibitory activity is substituted, deleted or added.
  • a double-stranded nucleic acid comprising a nucleic acid comprising a partial base sequence of the untranslated region of the gene encoding Bcl-2 protein, and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid.
  • the double-stranded nucleic acid according to (5) which has a double-stranded forming part consisting of 15 to 27 base pairs.
  • 1 to 3 bases are substituted, deleted or added, and the expression of Bcl-2 protein is suppressed.
  • a double-stranded nucleic acid having activity (9) A double-stranded nucleic acid comprising the double-stranded nucleic acid according to any one of (5) to (8) and having a duplex forming part of 27 base pairs or less. (10) A double-stranded nucleic acid in which 1 to 4 bases are added to the 3 ′ end or 5 ′ end of at least one strand of the double-stranded nucleic acid according to any one of (5) to (9).
  • (11) A nucleic acid comprising the base sequence represented by any of SEQ ID NOs: 1-212, 216 and 217. (12) The nucleic acid according to (11), wherein 1 to 3 bases are substituted, deleted or added, and has Bcl-2 protein expression inhibitory activity.
  • a pharmaceutical composition comprising the nucleic acid or vector according to any one of (1) to (17) as an active ingredient.
  • the pharmaceutical composition according to (19), wherein the carrier effective for transferring the nucleic acid into the cell is a cationic carrier.
  • the pharmaceutical composition according to (20), wherein the carrier effective for transferring nucleic acid into cells is a liposome.
  • a method for suppressing the expression of Bcl-2 protein in a subject which comprises administering the nucleic acid, vector or pharmaceutical composition according to any one of (1) to (26) to the subject.
  • FIG. 1 shows that the double-stranded nucleic acid of the present invention (SEQ ID NOs: 109 and 162) was transfected into PC-3 cells at a final concentration of 50 nM and cultured for 72 hours, and then the expression of Bcl-2 protein was evaluated by Western blotting. It is a figure which shows a result.
  • FIG. 2 shows that the double-stranded nucleic acid of the present invention (SEQ ID NOs: 109 and 162) was transfected into PC-3 cells at a final concentration of 30 nM, cultured for 24 hours, and then bcl-2 mRNA was prepared by RT-PCR. It is a figure which shows the result of having quantified.
  • FIG. 3 shows the inhibitory effect on cell proliferation of double-stranded nucleic acids (sense strand SEQ ID NOs: 107 to 119, antisense strand SEQ ID NOs: 160 to 172) targeting the untranslated region of the bcl-2 gene. It is a figure which shows the result evaluated by measurement. After transfection of double-stranded nucleic acid into PC-3 cells, the number of viable cells after 6 days of culture was measured.
  • the ratio of the number of viable cells when each double-stranded nucleic acid is transfected when the number of viable PC-3 cells not transfected with the double-stranded nucleic acid is 1 is shown on the vertical axis.
  • Each left bar graph is the result when double-stranded nucleic acid is added at a final concentration of 3 nM
  • the right bar graph is the result when double-stranded nucleic acid is added at a final concentration of 30 nM.
  • FIG. 4 shows the inhibitory effect on cell proliferation of double-stranded nucleic acids (sense strand SEQ ID NO: 120-159, antisense strand SEQ ID NO: 173-212) targeting the untranslated region of the bcl-2 gene.
  • FIG. 5 is a diagram showing the antitumor effect of each double-stranded nucleic acid-WL on PC-3 cells transplanted into nude mice. The vertical axis shows the tumor volume ratio.
  • FIG. 6 shows a double-stranded nucleic acid consisting of SEQ ID NOs: 216 and 217, a double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162, and two having a 2′-OMe modification in the ribose of a part of the nucleotides
  • FIG. 2 shows the results of semi-quantification of bcl-2 mRNA by RT-PCR after strand nucleic acids were transfected into PC-3 cells at a final concentration of 30 nM and cultured for 24 hours.
  • the amount of GADPH mRNA in each sample was used as an internal control.
  • the gene encoding the Bcl-2 protein targeted by the nucleic acid of the present invention (hereinafter also referred to as bcl-2 gene) is Genbank Accession No.
  • the nucleotide consisting of the base sequence represented by SEQ ID NO: 215 is also referred to as a target gene.
  • nucleic acid of the present invention includes (a) a nucleic acid (single-stranded nucleic acid) containing a partial base sequence of the untranslated region of a gene encoding Bcl-2 protein, and (b) a Bcl-2 protein.
  • a nucleic acid (single-stranded nucleic acid) containing a base sequence complementary to a nucleic acid consisting of a part of the base sequence of the untranslated region of the gene to be encoded, or (c) the nucleic acid of (b) and the base sequence of the nucleic acid Double-stranded nucleic acid composed of a nucleic acid containing a base sequence complementary to the above may be used, and any of them may be used.
  • the nucleic acid of the present invention is preferably a nucleic acid that suppresses the expression of Bcl-2 protein.
  • a nucleic acid containing a base sequence complementary to a nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene is referred to as an antisense strand nucleic acid
  • a nucleic acid containing a complementary base sequence is also referred to as a sense strand nucleic acid.
  • the sense strand nucleic acid may be a nucleic acid itself consisting of a partial base sequence of the untranslated region of the bcl-2 gene.
  • the nucleic acid of the present invention may be any molecule as long as it is a molecule obtained by polymerizing nucleotides or molecules having functions equivalent to the nucleotides.
  • it is a polymer of RNA or deoxyribonucleotide that is a polymer of ribonucleotides.
  • examples thereof include DNA, chimeric nucleic acids composed of RNA and DNA, and nucleotide polymers in which at least one nucleotide of these nucleic acids is substituted with a molecule having a function equivalent to that of the nucleotide.
  • the nucleic acid of the present invention includes siRNA, sh (short hairpin) RNA, and derivatives containing at least one molecule having a function equivalent to nucleotide in these nucleic acids.
  • Uridine (U) in RNA can be uniquely read as thymine (T) in DNA.
  • nucleotide derivatives examples include nucleotide derivatives.
  • the nucleotide derivative may be any molecule as long as it is a modified nucleotide.
  • the affinity to complementary strand nucleic acid is increased in order to improve or stabilize the nuclease resistance of the nucleic acid.
  • a molecule in which ribonucleotides or deoxyribonucleotides are modified is preferably used.
  • nucleotide derivatives include sugar-modified nucleotides, phosphodiester bond-modified nucleotides, base-modified nucleotides, and nucleotides modified with at least one of the sugar moiety, phosphodiester bond, and base.
  • the sugar moiety-modified nucleotide may be any nucleotide as long as it is a part or all of the chemical structure of the sugar of the nucleotide, modified or substituted with any substituent, or substituted with any atom.
  • '-Modified nucleotides are preferably used.
  • 2′-modified nucleotides include, for example, those in which the 2′-OH group of ribose is H, OR, R, R′OR, SH, SR, NH 2 , NHR, NR 2 , N 3 , CN, F, Cl, Br and Substituted with a substituent selected from the group consisting of I (R is alkyl or aryl, preferably alkyl having 1 to 6 carbon atoms and R ′ is alkylene, preferably alkylene having 1 to 6 carbon atoms)
  • a 2′-modified nucleotide, preferably a 2′-OH group is F or a methoxy group.
  • substituent selected from the group consisting of N-Dimethylamino) ethoxy group 2- (methylamino) -2-oxoethoxy group
  • 2- (N-methylcarbamoyl) etoxy group and 2-cyanoetoxy group examples thereof include modified nucleotides.
  • sugar-modified nucleotide examples include a crosslinked structure-type artificial nucleic acid (BNA) having two circular structures by introducing a crosslinked structure into the sugar moiety, specifically, the 2 ′ position.
  • BNA crosslinked structure-type artificial nucleic acid
  • LNA Locked ⁇ Nucleic Acid
  • EDA Ethylene Bridged nucleic acid
  • PNA peptide nucleic acids
  • OPNA oxypeptide nucleic acids
  • OPNA oxypeptide nucleic acids
  • OPNA oxypeptide nucleic acids
  • PRNA peptide ribonucleic acid
  • the phosphodiester bond-modified nucleotide is any nucleotide that has been modified or substituted with an arbitrary substituent for a part or all of the chemical structure of the phosphodiester bond of the nucleotide, or with any atom.
  • a nucleotide in which a phosphodiester bond is replaced with a phosphorothioate bond a nucleotide in which a phosphodiester bond is replaced with a phosphorodithioate bond
  • a nucleotide in which a phosphodiester bond is replaced with an alkylphosphonate bond a phosphate
  • Examples thereof include nucleotides in which a diester bond is substituted with a phosphoramidate bond.
  • any or all of the nucleotide base chemical structure modified or substituted with an arbitrary substituent or substituted with an arbitrary atom may be used.
  • oxygen atoms are substituted by sulfur atoms
  • hydrogen atoms are substituted by alkyl groups having 1 to 6 carbon atoms
  • methyl groups are substituted by hydrogen or alkyl groups having 2 to 6 carbon atoms
  • amino Examples thereof include those in which the group is protected with a protecting group such as an alkyl group having 1 to 6 carbon atoms or an alkanoyl group having 1 to 6 carbon atoms.
  • nucleotide derivative a nucleotide, sugar moiety, phosphodiester bond or nucleotide derivative modified with at least one of a base, a lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, Examples include dyes and other chemical substances added.
  • 5′-polyamine addition nucleotide derivatives Specifically, 5′-polyamine addition nucleotide derivatives, cholesterol addition nucleotide derivatives, steroid addition nucleotide derivatives, bile acid addition nucleotide derivatives, vitamin addition nucleotide derivatives, Cy5 Additional nucleotide derivatives, Cy3-added nucleotide derivatives, 6-FAM-added nucleotide derivatives, biotin-added nucleotide derivatives and the like can be mentioned.
  • the nucleotide derivative may form a cross-linked structure such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, or a structure combining at least one of these with other nucleotides or nucleotide derivatives in the nucleic acid. Good.
  • the nucleic acid of the present invention is a nucleic acid having a function equivalent to that of a nucleic acid comprising a partial base sequence of the untranslated region of the bcl-2 gene or a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid. , May be composed of any nucleotide or derivative thereof.
  • nucleotides constituting the base sequence are It may be substituted with a ribonucleotide, deoxyribonucleotide or a derivative thereof having an equivalent function.
  • nucleic acid of the present invention a nucleic acid comprising a part of the base sequence of the untranslated region of the bcl-2 gene and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid may form a double strand.
  • the length of the sequence capable of forming a duplex is usually 15 to 27 bases, preferably 15 to 25 bases, more preferably 15 to 23 bases, and further 15 to 21 bases.
  • 15 to 19 bases are particularly preferable.
  • nucleic acid of the present invention a nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene is used.
  • nucleic acids 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base is used. May be deleted, substituted or added.
  • the nucleic acid that suppresses the expression of Bcl-2 protein includes a partial base sequence of the untranslated region of the bcl-2 gene and a base sequence complementary to the base sequence of the nucleic acid, and Bcl-2 Any nucleic acid such as a single-stranded nucleic acid and a double-stranded nucleic acid can be used as long as it suppresses protein expression, but a double-stranded nucleic acid is preferably used.
  • the double-stranded nucleic acid means a nucleic acid having two strands paired and having a double-stranded forming part.
  • the double-stranded forming part refers to a part where nucleotides constituting the double-stranded nucleic acid or a derivative thereof constitute a base pair to form a double strand.
  • the duplex forming part is usually 15 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, further preferably 15 to 21 base pairs, and particularly preferably 15 to 19 base pairs. .
  • the single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of 15 to 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, and more preferably 15 to 25 bases. More preferably, it consists of 17 to 23 bases, most preferably 19 to 21 bases.
  • the double-stranded nucleic acid of the present invention has an additional nucleotide or nucleotide derivative that does not form a duplex on the 3 ′ side or the 5 ′ side following the duplex forming portion, this is referred to as an overhang.
  • the nucleotide constituting the overhang may be ribonucleotide, deoxyribonucleotide or a derivative thereof.
  • the double-stranded nucleic acid one having a protruding portion consisting of 1 to 3 bases at the 3 ′ end or 5 ′ end of at least one strand is used, but one having a protruding portion consisting of 2 bases is preferably used. What has the protrusion part which consists of dTdT or UU is used more preferable.
  • Overhangs can be on the antisense strand only, sense strand only, and both antisense and sense strands, but double-stranded nucleic acids with overhangs on both the antisense and sense strands, or antisense
  • a double-stranded nucleic acid having an overhang only at the 3 ′ end of the strand is preferably used.
  • a sequence that matches the target sequence following the duplex forming portion, or a sequence that matches the base sequence of the complementary strand of the target sequence following the duplex forming portion can also be used.
  • a double-stranded nucleic acid having a nucleotide derivative is preferably used as the double-stranded nucleic acid having no 3'-end or 5'-end overhang.
  • double-stranded nucleic acid of the present invention it is possible to use a nucleic acid comprising the same sequence as the base sequence of the target gene or its complementary strand, but the 5 ′ end of at least one strand of the nucleic acid or It is also possible to use a double-stranded nucleic acid comprising a nucleic acid from which 1 to 4 bases have been deleted at the 3 ′ end and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid. Examples of such a double-stranded nucleic acid include a double-stranded nucleic acid having a double-stranded forming part consisting of 15 to 19 base pairs.
  • nucleic acid of the present invention can also be used as the nucleic acid of the present invention.
  • nucleic acids include nucleic acids having the base sequences represented by any of SEQ ID NOs: 1-212, 216 and 217, and in these nucleic acids, 1 to 3 bases, preferably 1 to 2 bases, more preferably Examples also include a nucleic acid in which one base is substituted, deleted or added and has Bcl-2 protein expression inhibitory activity.
  • nucleic acid containing these nucleic acids include 30 bases or less, preferably 28 bases or less, more preferably 26 bases or less, still more preferably 24 bases or less, and particularly preferably 23 bases or less.
  • the nucleic acid of the present invention may be a single-stranded nucleic acid obtained by linking the sense strand and the antisense strand of the above-described double-stranded nucleic acid via a spacer sequence.
  • the single-stranded nucleic acid is preferably a single-stranded nucleic acid such as shRNA having a double-strand formation portion with a stem-loop structure.
  • a single-stranded nucleic acid having a stem-loop structure is usually 50 to 70 bases in length.
  • the method for producing the nucleic acid of the present invention is not particularly limited, and examples thereof include a method using known chemical synthesis or an enzymatic transcription method.
  • methods using known chemical synthesis include phosphoramidite method, phosphorothioate method, phosphotriester method, CEM method [Nucleic® Acid® Research, 35, 20073287 (2007)].
  • ABI3900 high-throughput nucleic acid synthesis Can be synthesized by a machine (Applied Biosystems). After the synthesis is completed, elimination from the solid phase, deprotection of the protecting group, purification of the target product, and the like are performed. It is desirable to obtain a nucleic acid having a purity of 90% or more, preferably 95% or more by purification.
  • the sense and antisense strands synthesized and purified are in an appropriate ratio, for example, 0.1 to 10 equivalents, preferably 0.5 to 1 sense strand to 1 equivalent of the antisense strand.
  • Two equivalents, more preferably 0.9 to 1.1 equivalents, and even more preferably equimolar amounts may be mixed and then annealed, or used directly without the step of annealing the mixture. May be. Annealing may be performed under any conditions as long as double-stranded nucleic acid can be formed.
  • the sense strand and the antisense strand are mixed in approximately equimolar amounts, and then heated at about 94 ° C. for about 5 minutes.
  • a transcription method using a phage RNA polymerase for example, T7, T3, or SP6 RNA polymerase, using a plasmid or DNA having a target base sequence as a template can be mentioned.
  • the nucleic acid of the present invention can be introduced into cells using a transfection carrier, preferably a cationic carrier such as a cationic liposome. It can also be directly introduced into cells by the calcium phosphate method, electroporation method or microinjection method.
  • a transfection carrier preferably a cationic carrier such as a cationic liposome. It can also be directly introduced into cells by the calcium phosphate method, electroporation method or microinjection method.
  • nucleic acid of the present invention a vector that can be introduced into cells and expressed can be used.
  • the nucleic acid or the like can be expressed by inserting the sequence encoding the nucleic acid of the present invention downstream of the promoter in the expression vector, constructing the expression vector, and introducing it into a cell.
  • Expression vectors include pCDNA6.2-GW / miR (Invitrogen), pSilencer® 4.1-CMV (Ambion), pSINsi-hH1 DNA (Takara Bio), pSINsi-hU6 DNA (Takara Bio), pENTR / U6 (Invitrogen) etc. can be mentioned.
  • virus vectors include retrovirus vectors, lentivirus vectors, adenovirus vectors, adeno-associated virus vectors, and the like.
  • a first selection criterion for a double-stranded nucleic acid that suppresses expression of Bcl-2 protein is one of untranslated regions on the 5 ′ side or 3 ′ side of the bcl-2 gene.
  • a nucleic acid comprising a part of the base sequence of the untranslated region is selected as a second selection criterion that (a) no G or C sequence has 4 or more bases, and (b) the GC content is 20 to 80%. It is preferable to do.
  • Nucleic acid consisting of a part of the base sequence of the untranslated region of bcl-2 gene is Genbank Accession No. It can be designed based on the untranslated region of the cDNA base sequence (SEQ ID NO: 215) of the full-length mRNA of bcl-2 registered as NM_000633.
  • the untranslated region refers to the region of residues 1 to 493 and residues 1214 to 6492 where the Bcl-2 protein is not encoded in the base sequence represented by SEQ ID NO: 215 (each region). Are also referred to as 5 ′ untranslated region and 3 ′ untranslated region).
  • the partial base sequence of the untranslated region of the bcl-2 gene may be any base sequence as long as it is a partial base sequence of the non-translated region, but a nucleic acid that suppresses the expression of the Bcl-2 protein is designed.
  • a partial base sequence of an untranslated region such as the base sequence represented by any one of SEQ ID NOs: 1 to 53 is preferable, and the base represented by any one of SEQ ID NOs: 1 to 7 and 9 to 53 More preferred is a partial base sequence of a 3 ′ untranslated region such as a sequence, and any one of SEQ ID NOs: 3, 14, 16, 17, 19, 25 to 28, 30, 32 to 34, 36 to 40, and 42 to 48. Is more preferable.
  • the nucleic acid thus selected includes, for example, a nucleic acid comprising a partial base sequence of the untranslated region of the bcl-2 gene and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid. And a double-stranded nucleic acid having Bcl-2 protein expression-inhibiting activity.
  • the single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of 15 to 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, and more preferably 15 to 25 bases. More preferably, it consists of 17 to 23 bases, most preferably 19 to 21 bases.
  • the double-stranded nucleic acid usually consists of 15 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, still more preferably 15 to 21 base pairs, and particularly preferably 15 to 19 base pairs. Has a heavy chain forming part.
  • the double-stranded nucleic acid include the following (a) to (f).
  • B a double-stranded nucleic acid comprising an antisense strand nucleic acid comprising the base sequence represented by any of SEQ ID NOs: 54 to 106, and a sense strand nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid .
  • a double-stranded nucleic acid comprising a sense strand nucleic acid comprising a base sequence complementary to the nucleic acid base sequence.
  • the base substitution, deletion or addition is preferably performed in the sequence on the sense strand side.
  • the duplex forming part has 27 base pairs or less, preferably 25 base pairs or less, more preferably 23 base pairs or less, even more preferably Is a double-stranded nucleic acid of 21 base pairs or less, particularly preferably 19 base pairs or less.
  • F The double-stranded nucleic acid according to any one of (a) to (e), wherein a nucleotide or nucleotide derivative is present at the 3 ′ end or 5 ′ end of at least one of the antisense strand nucleic acid and the sense strand nucleic acid.
  • a double-stranded nucleic acid added with 1 to 8 bases, preferably 1 to 6 bases, more preferably 1 to 3 bases, still more preferably 1 to 2 bases, and particularly preferably 2 bases.
  • a nucleic acid comprising a base sequence represented by SEQ ID NO: N ′ (where N ′ represents any integer of 107 to 159), From a double-stranded nucleic acid consisting of a nucleic acid consisting of a base sequence represented by SEQ ID NO: N '+ 53 as a complementary strand, or a nucleic acid consisting of a base sequence represented by SEQ ID NO: 216, and a base sequence represented by SEQ ID NO: 217 A double-stranded nucleic acid consisting of
  • an antisense strand nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene can also be used.
  • nucleic acids include nucleic acids having the base sequence represented by any of SEQ ID NOs: 54 to 106, and in these nucleic acids, 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base Examples also include nucleic acids that are substituted, deleted or added and have Bcl-2 protein expression inhibitory activity.
  • the nucleic acid containing these nucleic acids include 30 bases or less, preferably 28 bases or less, more preferably 26 bases or less, still more preferably 24 bases or less, and particularly preferably 23 bases or less.
  • the single-stranded nucleic acid that suppresses the expression of Bcl-2 protein includes a nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene and a base sequence complementary to the base sequence of the nucleic acid.
  • Examples of the single-stranded nucleic acids shown in the following (A) to (G) are also included.
  • the base substitution, deletion or addition is preferably performed in the sequence on the sense strand side.
  • the sense strand and the antisense strand contained in the single-stranded nucleic acid according to any one of (A) to (D) are 27 base pairs or less, preferably 25 base pairs or less, more preferably 23 base pairs or less. More preferably, it is a single-stranded nucleic acid that forms a double strand of 21 base pairs or less, particularly preferably 19 base pairs or less.
  • F The single-stranded nucleic acid according to any one of (A) to (E), which forms a double-stranded forming part by a stem-loop structure.
  • G The single-stranded nucleic acid according to any one of (A) to (F), which has a length of 50 to 70 bases.
  • the expression of Bcl-2 protein can be suppressed.
  • the double-stranded nucleic acid of the present invention Can suppress the expression of Bcl-2 protein even at a concentration of several nM to several hundreds of nM even after culturing for 24 hours or more, for example, 72 hours after introduction into cells.
  • the evaluation of the Bcl-2 protein expression inhibitory activity of the single-stranded nucleic acid or double-stranded nucleic acid of the present invention was carried out by transfecting the nucleic acid or the like into a cultured cancer cell using a cationic liposome or the like for a certain period of time. After culturing, the expression level of Bcl-2 protein in the cancer cells can be quantified by Western blotting. Further, bcl-2 mRNA can be quantified by RT-PCR. Furthermore, the effect of suppressing cell proliferation can be evaluated by calculating the number of living cells of cells into which the single-stranded nucleic acid or double-stranded nucleic acid of the present invention has been introduced.
  • the present invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a nucleic acid such as a single-stranded nucleic acid or a double-stranded nucleic acid of the present invention or a vector as an active ingredient.
  • the pharmaceutical composition can further comprise an effective carrier for transferring the nucleic acid into the cell.
  • the pharmaceutical composition of the present invention is a disease caused by overexpression of Bcl-2 protein, a disease in which apoptosis is desirably induced, cancer, AIDS, ARC (AIDS-related disease) or collagen disease (rheumatic), etc.
  • cancer include hematological malignancies such as lymphoma and leukemia, and solid cancers such as liver cancer, skin cancer, breast cancer, lung cancer, digestive organ cancer, prostate cancer, uterine cancer, and bladder cancer.
  • Examples of carriers that are effective for transferring nucleic acids into cells include cationic carriers.
  • Examples of the cationic carrier include cationic liposomes and cationic polymers.
  • a carrier utilizing a viral envelope may be used as an effective carrier for transferring nucleic acids into cells.
  • Cationic liposomes include 2-O- (2-diethylaminoethyl) carbamoyl-1,3-O-dioleoylglycerol-containing liposomes (hereinafter also referred to as liposome A), oligofectamine (Invitrogen), lipofectin ( Invitrogen), Lipofectamine (Invitrogen), Lipofectamine 2000 (Invitrogen), DMRIE-C (Invitrogen), GeneSilencer (Gene Therapy Systems), TransMessenger (QIAGEN M), TransMens (QIAGEN Mus), TransMensi (O Etc. are preferably used.
  • JetSI Qbiogene
  • Jet-PEI polyethyleneimine; Qbiogene
  • the carrier using the virus envelope GenomeOne (HVJ-E liposome; Ishihara Sangyo Co., Ltd.) is preferably used.
  • a composition comprising a single-stranded nucleic acid, double-stranded nucleic acid or vector and a carrier of the present invention can be prepared by methods known to those skilled in the art. For example, it can be prepared by mixing a carrier dispersion of an appropriate concentration with a single-stranded nucleic acid, double-stranded nucleic acid or vector solution.
  • a carrier dispersion of an appropriate concentration with a single-stranded nucleic acid, double-stranded nucleic acid or vector solution.
  • a cationic carrier is used, a single-stranded nucleic acid, a double-stranded nucleic acid or a vector is negatively charged in an aqueous solution and can be easily prepared by mixing in an aqueous solution by a conventional method.
  • aqueous solvent used for preparing the composition examples include electrolyte solutions such as water for injection, distilled water for injection, and physiological saline, and sugar solutions such as glucose solution and maltose solution. Moreover, those skilled in the art can appropriately select conditions such as pH and temperature when preparing the composition.
  • the composition can be made into a uniform composition by carrying out a dispersion treatment using an ultrasonic dispersion device or a high-pressure emulsification device if necessary.
  • the optimal method and conditions for preparing a composition comprising a single-stranded nucleic acid, a double-stranded nucleic acid or a vector and a carrier depend on the carrier to be used, and those skilled in the art can use it without being bound by the above method.
  • the optimum method for the carrier can be selected.
  • compositions comprising a single-stranded nucleic acid, a double-stranded nucleic acid or a vector and a carrier, a composite particle comprising a single-stranded nucleic acid, a double-stranded nucleic acid or vector and a lead particle as constituent components, and the composite particle are coated.
  • Liposomes composed of lipid bilayer membranes are also used, of which the constituent components of the lipid bilayer membrane are soluble in ethanol and part or all of the constituent components are dispersed in a 5 vol% ethanol aqueous solution. That is, it is preferable to use an aggregate, micelle or the like that is emulsified or emulsified, and part or all of the composite particles are dispersed in a 5 vol% ethanol aqueous solution.
  • the lead particles constituting the composite particles for example, fine particles containing lipid aggregates, liposomes, emulsion particles, polymers, metal colloids, fine particle preparations, and the like, preferably fine particles containing liposomes, are used. .
  • Examples of the fine particles containing liposomes as lead particles as constituents include lipids, surfactants, etc., preferably lipids, or those containing lipids and surfactants as constituents.
  • the lipid may be any of simple lipids, complex lipids or derived lipids, such as phospholipids, glyceroglycolipids, sphingoglycolipids, sphingoids, sterols or cationic lipids, preferably phosphorous Lipids or cationic lipids are used.
  • phospholipids examples include phosphatidylcholine (specifically soybean phosphatidylcholine, egg yolk phosphatidylcholine (EPC), distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, etc.), phosphatidylethanolamine (specifically distearoyl).
  • EPC egg yolk phosphatidylcholine
  • distearoylphosphatidylcholine dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, etc.
  • phosphatidylethanolamine specifically distearoyl
  • Phosphatidylethanolamine dipalmitoylphosphatidylethanolamine, dioleoylphosphatidylethanolamine, etc.
  • glycerophospholipid specifically phosphatidylserine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, lysophosphatidylcholine, etc.
  • sphingophospholipid Specifically, sphingomyelin and ceramide phosphoethanol , Ceramide phosphoglycerol, ceramide phosphoglycerophosphate, etc.
  • glycerophosphonolipid sphingophosphonolipid
  • sphingophosphonolipid natural lecithin (specifically egg yolk lecithin, soybean lecithin, etc.) or hydrogenated phospholipid (specifically hydrogenated soybean) Natural or synthetic phospholipids such as phosphatidylcholine.
  • Examples of the cationic lipid include N- [1- (2,3-dioleoylpropyl)]-N, N, N-trimethylammonium chloride (DOTAP), N- [1- (2,3-dioleoyl).
  • DOTAP N-trimethylammonium chloride
  • DODAP N-dimethylamine
  • DODAP N-dimethylamine
  • DOTMA N-trimethylammonium chloride
  • DOSPA 2,3-dioleyl Oxy-N- [2- (sperminecarboxamido) ethyl] -N, N-dimethyl-1-propanaminium trifluoroacetic acid
  • DOSPA N- [1- (2,3-ditetradecyloxypropyl)] -N, N-Dimethyl-N-hydroxyethyl ammonium bromide (DMRIE) or N- [1- (2,3-dioleyloxypropyl)]-N, N-dimethyl-N-hydroxyethyl ammonium bromide (DORIE ) Etc.
  • the lead particles can contain, for example, a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant.
  • a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers or a surfactant.
  • One or more lipid derivatives or fatty acid derivatives or surfactants selected from sugars, peptides, nucleic acids and water-soluble polymers may be contained as lead particles, or may be used in addition to lead particles.
  • the lipid derivative or fatty acid derivative or surfactant of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers is preferably a glycolipid or a lipid derivative or fatty acid derivative of a water-soluble polymer. More preferred are water-soluble polymer lipid derivatives or fatty acid derivatives.
  • Lipid derivatives or fatty acid derivatives or surfactants of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers are those in which part of the molecule and other components of the lead particle, such as hydrophobic affinity, electrostatic It is a substance with a two-sided property that has the property of binding due to mechanical interaction, etc., and the other part has the property of binding to the solvent at the time of lead particle production, for example, hydrophilic affinity, electrostatic interaction, etc. Is preferred.
  • lipid derivatives or fatty acid derivatives of sugars, peptides, or nucleic acids include sugars such as sucrose, sorbitol, and lactose, such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides, peptides such as glutathione, or DNA, RNA, etc.
  • sugars such as sucrose, sorbitol, and lactose, such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides, peptides such as glutathione, or DNA, RNA, etc.
  • nucleic acids and lipids or fatty acids such as stearic acid, palmitic acid, myristic acid, lauric acid and the like.
  • sugar lipid derivative or fatty acid derivative include glyceroglycolipid and glycosphingolipid.
  • water-soluble polymer lipid derivative or fatty acid derivative examples include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, polyglycerin, Chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan, oligoglycerol, etc.
  • lipid derivatives or fatty acid derivatives such as polyethylene glycol derivatives and polyglycerin derivatives, and more preferred are polyethylene glycol derivatives.
  • Lipid derivative or fatty acid derivative of the call derivatives More preferred are lipid derivatives or fatty acid derivatives such as polyethylene glycol derivatives and polyglycerin derivatives, and more preferred are polyethylene glycol derivatives. Lipid derivative or fatty acid derivative of the call derivatives.
  • Examples of lipid derivatives or fatty acid derivatives of polyethylene glycol derivatives include polyethylene glycolated lipids (specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine). -N- [methoxy (polyethylene glycol) -2000] (PEG-DSPE), etc.), polyoxyethylene hydrogenated castor oil 60, Cremophor EL, etc.), polyethylene glycol sorbitan fatty acid esters (specifically mono Oleic acid polyoxyethylene sorbitan, etc.) or polyethylene glycol fatty acid esters, and the like, more preferably polyethylene glycolated lipids.
  • polyethylene glycolated lipids specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine).
  • lipid derivatives or fatty acid derivatives of polyglycerin derivatives include polyglycerinized lipids (specifically polyglycerin-phosphatidylethanolamine) and polyglycerin fatty acid esters, and more preferably polyglycerinized lipids. can give.
  • surfactant examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
  • Nonionic surfactants include, for example, polyoxyethylene sorbitan monooleate (specifically polysorbate 80 etc.), polyoxyethylene polyoxypropylene glycol (specifically pluronic F68 etc.), sorbitan fatty acid ester (specifically Sorbitan monolaurate, sorbitan monooleate, etc.), polyoxyethylene derivatives (specifically, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene lauryl alcohol, etc.), glycerin fatty acid esters and the like.
  • polyoxyethylene sorbitan monooleate specifically polysorbate 80 etc.
  • polyoxyethylene polyoxypropylene glycol specifically pluronic F68 etc.
  • sorbitan fatty acid ester specifically Sorbitan monolaurate, sorbitan monooleate, etc.
  • polyoxyethylene derivatives specifically, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene lauryl alcohol, etc.
  • anionic surfactant examples include acyl sarcosine, sodium alkyl sulfate, alkylbenzene sulfonate, sodium fatty acid having 7 to 22 carbon atoms, such as sodium dodecyl sulfate, sodium lauryl sulfate, sodium cholate, sodium deoxycholate. And sodium taurodeoxycholate.
  • Cationic surfactants include alkylamine salts, acylamine salts, quaternary ammonium salts, amine derivatives, etc., specifically benzalkonium chloride, acylaminoethyldiethylamine salts, N-alkylpolyalkylpolyamine salts, fatty acid polyethylene Examples thereof include polyamide, cetyltrimethylammonium bromide, dodecyltrimethylammonium bromide, alkylpolyoxyethyleneamine, N-alkylaminopropylamine, and fatty acid triethanolamine ester.
  • amphoteric surfactants include 3-[(3-cholamidopropyl) dimethylammonio] -1-propanesulfonic acid, N-tetradecyl-N, N-dimethyl-3-ammonio-1-propanesulfonic acid, and the like. It is done.
  • the lead particles preferably contain a cationic substance, and more preferably have a positive charge.
  • the cationic substance include a cationic substance in lipid, a cationic surfactant (as defined above), a cationic polymer, etc., such as a protein or peptide that exhibits a cationic property at a pH below the isoelectric point.
  • the lead particles may be composed of a complex comprising a combination of two or more lipid aggregates, liposomes, emulsion particles, polymers, metal colloids, fine particle formulations, etc., and lipid aggregates, liposomes, emulsion particles, polymers
  • a complex formed by combining a metal colloid, a fine particle preparation, and the like with another compound eg, sugar, lipid, inorganic compound, etc.
  • another compound eg, sugar, lipid, inorganic compound, etc.
  • the size of the lead particle is preferably an average particle diameter of several nm to several ⁇ m, more preferably about 10 nm to 1000 nm, further preferably about 50 nm to 300 nm, and about 50 nm to 200 nm. It is particularly preferred.
  • Examples of the constituent components of the lipid bilayer membrane that covers the composite particles include lipids, surfactants, and the like, which are synonymous with the fine particles having the liposome as a constituent component.
  • lipid phospholipid, glyceroglycolipid, sphingoglycolipid and the like are preferable, phospholipid is more preferable, and EPC is more preferable.
  • surfactant polyethylene glycol alkyl ether or the like may be used, and polyoxyethylene polyoxypropylene glycol, glycerin fatty acid ester, polyethylene glycol alkyl ether, or the like is preferably used. These lipids or surfactants can be used alone or in combination of two or more.
  • the ratio of the lipid bilayer to the liposome composed of the composite particle and the lipid bilayer coating the composite particle is preferably about 1: 0.1 to 1: 1000 by weight, and about 1: 1 to 1:10. More preferred.
  • the liposome preferably has an average particle diameter of several nm to several ⁇ m, more preferably about 10 nm to 1000 nm, further preferably about 50 nm to 300 nm, and about 50 nm to 200 nm. It is particularly preferred.
  • the liposome is obtained by dispersing the composite particles in a polar organic solvent in which the components of the lipid bilayer coating the composite particles are soluble or a mixture of the solvent and an aqueous medium. After dissolving or dispersing the components, an aqueous medium can be added to the liquid to form a liposome dispersion.
  • the polar organic solvent include alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and tert-butanol, glycols such as glycerin, ethylene glycol, and propylene glycol, and polymers such as polyethylene glycol.
  • Alkylene glycol and the like can be mentioned, but alcohol is usually used, and ethanol is preferably used.
  • aqueous medium water is usually used, but it may contain a salt, an acid, an organic solvent, etc. as long as it does not hinder the formation of a liposome dispersion.
  • the liposome can also be prepared according to the method described in, for example, WO2002 / 028367, WO2006 / 080118 and the like.
  • the compounding ratio of the single-stranded nucleic acid, double-stranded nucleic acid or vector and carrier contained in the pharmaceutical composition of the present invention is 1 to 200 carriers per 1 part by weight of the single-stranded nucleic acid, double-stranded nucleic acid or vector. Part by weight is appropriate. Preferably, the amount is 2.5 to 100 parts by weight, more preferably 10 to 20 parts by weight, based on 1 part by weight of the single-stranded nucleic acid, double-stranded nucleic acid or vector.
  • the pharmaceutical composition of the present invention may contain a pharmaceutically acceptable carrier or diluent in addition to the above carrier.
  • Pharmaceutically acceptable carriers or diluents and the like are essentially chemically inert and harmless compositions that do not affect the biological activity of the pharmaceutical composition of the present invention at all. Examples of such carriers or diluents include but are not limited to salt solutions, sugar solutions, glycerol solutions, ethanol and the like.
  • the pharmaceutical composition of the present invention contains a single-stranded nucleic acid, double-stranded nucleic acid or vector effective in treating or preventing a disease and is provided in a form that can be appropriately administered to a patient.
  • the preparation form of the pharmaceutical composition of the present invention may be, for example, injections, eye drops, liquids for inhalation, etc., for example, external preparations such as ointments, lotions and the like.
  • the concentration range of single-stranded nucleic acid, double-stranded nucleic acid or vector in the pharmaceutical composition of the present invention is usually 0.001 to 25% (w / v), preferably 0.01 to 5%. (W / v), more preferably 0.1 to 2% (w / v).
  • the pharmaceutical composition of the present invention may contain an appropriate amount of any pharmaceutically acceptable additive, for example, an emulsification aid, a stabilizer, an isotonic agent, a pH adjuster and the like. Any pharmaceutically acceptable additive can be added in an appropriate step before or after dispersion of the complex.
  • the lyophilized preparation can be prepared by subjecting a single-stranded nucleic acid, a double-stranded nucleic acid, or a vector and a carrier to a dispersion treatment and then a freeze-drying treatment.
  • the lyophilization treatment can be performed by a conventional method. For example, a predetermined amount of the complex solution after the dispersion treatment is aseptically dispensed into a vial and pre-dried for about 2 hours under the condition of about ⁇ 40 to ⁇ 20 ° C. and about 0 to 10 ° C. Primary drying under reduced pressure, followed by secondary drying under reduced pressure at about 15-25 ° C. and lyophilization. Then, for example, by replacing the inside of the vial with nitrogen gas and stoppering, a freeze-dried preparation of the pharmaceutical composition of the present invention can be obtained.
  • the pharmaceutical composition of the present invention can be redissolved and used by adding any appropriate solution.
  • a solution include electrolytes such as water for injection and physiological saline, glucose solution, and other general infusion solutions.
  • the amount of this solution varies depending on the application and is not particularly limited, but is preferably 0.5 to 2 times the amount before lyophilization or 500 ml or less.
  • the pharmaceutical composition of the present invention can be administered to animals including humans, for example, intravenous administration, intraarterial administration, oral administration, tissue administration, transdermal administration, transmucosal administration, or rectal administration. It is preferable to administer by an appropriate method according to the symptoms. In particular, intravenous administration, transdermal administration, and transmucosal administration are preferably used. Moreover, local administration, such as local administration in cancer, can also be performed. Examples of dosage forms suitable for these administration methods include various injections, oral preparations, drops, absorbents, eye drops, ointments, lotions, suppositories and the like.
  • the dosage of the pharmaceutical composition of the present invention is preferably determined in consideration of the drug, dosage form, patient condition such as age and weight, administration route, nature and degree of disease, etc.
  • the mass of the nucleic acid, double-stranded nucleic acid or vector is 0.1 mg to 10 g / day, preferably 1 mg to 500 mg / day, per day for an adult. In some cases, this may be sufficient, or vice versa. It can also be administered once to several times a day, and can be administered at intervals of one to several days.
  • nucleic acid that suppresses bcl-2 gene expression (1) i) Preparation of double-stranded nucleic acid As a nucleic acid sequence capable of suppressing the expression of the bcl-2 gene, (a) 4 bases of G or C from the mRNA sequence of bcl-2 (GenBank accession number: NM_000633, SEQ ID NO: 215) There were selected 53 sets of sequences satisfying the following three conditions: no sequence that continues, (b) a GC content of 20-80%, and (c) located in the 5 ′ or 3 ′ untranslated region. The sequence is represented by SEQ ID NO: N and the base sequence of SEQ ID NO: N + 53 as its complementary sequence.
  • N is an integer from 1 to 53.
  • a DNA sequence consisting of 2 bases is appropriately added to the 3 ′ end of each RNA consisting of the sequence represented by SEQ ID NOs: 1 to 106, and a nucleic acid consisting of the base sequence represented by SEQ ID NO: N ′ and its complementary strand SiRNA was designed as a double-stranded nucleic acid consisting of a nucleic acid consisting of the base sequence represented by SEQ ID NO: N '+ 53.
  • N ′ represents an integer from 107 to 159.
  • Qiagen Co., Ltd. was requested to synthesize the nucleic acid constituting the double-stranded nucleic acid.
  • Evaluation in screening involves introducing double-stranded nucleic acid into various cancer cells together with a carrier, quantifying the expression level of Bcl-2 protein by Western blotting, and determining the amount of bcl-2 mRNA. This was carried out by quantification by RT-PCR (Reverse transcription-polymerase chain reaction).
  • iii) Preparation of double-stranded nucleic acid / carrier complex
  • a carrier a commercially available cationic liposome, oligofectamine (Invitrogen), is used, and a double-stranded nucleic acid- oligofectamine complex is prepared according to the attached instruction manual. Prepared.
  • the double-stranded nucleic acid was introduced into PC-3 by adding 0.2 ml of the double-stranded nucleic acid-oligofectamine complex solution mixed in OPTI-MEM.
  • the double-stranded nucleic acid includes a double-stranded nucleic acid comprising a nucleic acid comprising the base sequence represented by SEQ ID NO: 109 and a nucleic acid comprising the base sequence represented by SEQ ID NO: 162 and a base sequence represented by SEQ ID NO: 213.
  • a double-stranded nucleic acid (B717, positive control, Nippon Shinyaku Co., Ltd.) targeting the translation region of the bcl-2 gene consisting of the nucleic acid consisting of the nucleic acid consisting of the nucleotide sequence represented by SEQ ID NO: 214 and the nucleic acid consisting of the base sequence represented by SEQ ID NO: 214 was used.
  • Nontargeting siRNA # 1 hereinafter also referred to as Nontargeting # 1 (manufactured by Dharmacon), which is a siRNA that does not cross any human gene, was separately introduced into PC-3 and used as a negative control. The final concentration of double-stranded nucleic acid was 50 nM.
  • the concentration of the double-stranded nucleic acid is shown as a molar concentration when it is assumed that each strand forms a double strand completely.
  • the cells into which the double-stranded nucleic acid has been introduced are cultured in a 5% CO 2 incubator at 37 ° C. for 48 hours, washed twice with phosphate buffered saline (PBS), and 1 using a cell scraper. Transfer to a 5 ml tube.
  • PBS phosphate buffered saline
  • the cells were treated with RIPA buffer [50 mM Tris-HCL (pH 8.0), 150 mM NaCl, 1% Nonident P-40, 0.5% sodium deoxycholate, 0.1% sodium It was dissolved and recovered in dodecyl sulfate, 1% Protease Inhibitor Cocktail Set III (Calbiochem). After leaving still on ice for 30 minutes and centrifuging at 100,000 ⁇ g for 15 minutes, the supernatant was transferred to a new tube to prepare a sample for electrophoresis. After separation by SDS-PAGE by a conventional method, Bcl-2 protein was detected by Western blotting.
  • RIPA buffer 50 mM Tris-HCL (pH 8.0), 150 mM NaCl, 1% Nonident P-40, 0.5% sodium deoxycholate, 0.1% sodium It was dissolved and recovered in dodecyl sulfate, 1% Protease Inhibitor Cocktail Set III (Calbiochem). After leaving still on ice for 30 minutes and centrifug
  • Bcl-2 protein For detection of Bcl-2 protein, an anti-Bcl-2 antibody (manufactured by DAKO) was used. In addition, ⁇ -actin protein was used as the internal standard of the specimen. Anti- ⁇ -actin antibody (manufactured by Sigma) was used for detection of ⁇ -actin protein. The protein mass was measured based on the intensity of the band when the double-stranded nucleic acid was transfected compared to the intensity of the Bcl-2 protein band when transfected with the negative control Nontargeting # 1. As a result, as shown in FIG.
  • PC-3 introduced with the double-stranded nucleic acid of the present invention targeting the untranslated region of the bcl-2 gene has a decreased amount of Bcl-2 protein compared to the negative control.
  • B717 targeting the translation region of the bcl-2 gene the expression of Bcl-2 protein was suppressed.
  • the medium was aspirated from the culture dish and replaced with 0.8 ml of OPTI-MEM (GIBCO, 31985) which is a low serum basic medium.
  • OPTI-MEM a low serum basic medium.
  • the double-stranded nucleic acid was introduced into PC-3 by adding 0.2 ml of the double-stranded nucleic acid-oligofectamine complex solution mixed in OPTI-MEM.
  • Nontargeting # 1 manufactured by Dharmacon
  • the final concentration of double-stranded nucleic acid was 50 nM.
  • the cells into which the double-stranded nucleic acid had been introduced were cultured for 48 hours in a 5% CO 2 incubator at 37 ° C., washed twice with PBS, and transferred to a 1.5 ml tube using a cell scraper. After centrifuging at 1000 ⁇ g for 2 minutes and removing the supernatant, the cells are lysed and collected in RLT buffer (attached to Qiagen RNA Recovery Kit “RNeasy”), and all cells are collected according to the instructions attached to the kit. RNA was recovered. Using 5 ⁇ g of total RNA as a template, reverse transcription reaction was performed using Superscript III First-Strand cDNA Synthesis Kit (Invitrogen) to prepare cDNA.
  • RLT buffer attached to Qiagen RNA Recovery Kit “RNeasy”
  • PC-3 In vitro anti-cell proliferation activity of double-stranded nucleic acid
  • PC-3 is seeded in a 96-well plate at about 2,000-2,500 cells per well and cultured overnight in F-12 Kaighn's medium containing 10% FBS did.
  • an oligofectamine Invitrogen
  • N ′ and N ′ + 53 a double-stranded nucleic acid consisting of a nucleic acid represented by SEQ ID NOs: N ′ and N ′ + 53 and having a non-translated region of the bcl-2 gene as a target gene (N 'Represents an integer of 107 to 159) was introduced into PC-3 to a final concentration of 3 nM or 30 nM.
  • a double-stranded nucleic acid that targets the translation region of the bcl-2 gene comprising a single-stranded nucleic acid comprising the base sequence represented by SEQ ID NO: 213 and a single-stranded nucleic acid comprising the base sequence represented by SEQ ID NO: 214 (B717, Nippon Shinyaku) was used as a positive control.
  • Nontargeting # 1 manufactured by Dharmacon was separately introduced into PC-3 and used as a negative control.
  • the double-stranded nucleic acid was introduced according to the method described in the instructions attached to the oligofectamine.
  • the cell viability was measured using CellTiter-Glo TM Luminescent Cell Viability Assay (manufactured by Promega). The measuring method followed the method described in the instructions attached to the product. The relative viable cell ratio of each was calculated assuming that the viable cell ratio of PC-3 when only oligofectamine was introduced was 1.0. The results are shown in FIGS. As shown in FIGS. 3 and 4, the introduction of a double-stranded nucleic acid targeting the untranslated region of the bcl-2 gene resulted in a decrease in the viable cell rate, and in vitro of the various double-stranded nucleic acids of the present invention. Anti-cell proliferative activity in was observed.
  • Anti-tumor effect by double-stranded nucleic acid targeting untranslated region of bcl-2 gene as target gene From nucleic acids comprising base sequences represented by SEQ ID NOs: 109 and 162, respectively, targeting untranslated region of bcl-2 gene as target gene
  • the double-stranded nucleic acid hereinafter also referred to as the double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162
  • B717 By measuring the antitumor effect of the double-stranded nucleic acid (hereinafter also referred to as the double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162) and B717, their efficacy was compared.
  • WL wrapped liposome
  • a double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162 and a double-stranded nucleic acid consisting of SEQ ID NOs: 213 and 214 (B717) were prepared by annealing.
  • DOTAP manufactured by Avanti Polar Lipids
  • PEG-DSPE manufactured by NOF Corporation, the same shall apply hereinafter
  • distilled water was mixed to 40 mg / 16 mg / mL, and the mixture was shaken and stirred with a vortex mixer.
  • the resulting dispersion was applied to a 0.4 ⁇ m polycarbonate membrane filter (manufactured by Whatman) 10 times at room temperature, 10 times to a 0.2 ⁇ m polycarbonate membrane filter (manufactured by Whatman), 10 times to a 0.1 ⁇ m polycarbonate membrane filter (manufactured by Whatman), Further, lead particles were prepared by passing 35 times through a 0.05 ⁇ m polycarbonate membrane filter (manufactured by Whatman).
  • EPC manufactured by NOF Corporation
  • PEG-DSPE as a component of the lipid bilayer membrane
  • Add to 3.2 mL then add 1 mL of distilled water, adjust the ethanol concentration to 40 vol%, and dissolve EPC / PEG-DSPE in 40 vol% ethanol aqueous solution to 62.5 mg / 62.5 mg / mL 0.32 mL of the prepared solution was added, and then 37.24 mL of distilled water was added to adjust the ethanol concentration to 5 vol% to prepare liposomes.
  • the obtained liposome dispersion was ultracentrifuged (80 minutes, 110,000 ⁇ g, 25 ° C.), the supernatant was removed, and physiological saline was added and redispersed to obtain a preparation. One lot of the preparation was prepared. When the average particle size of the liposome was measured by a dynamic light scattering method (Zetasizer Nano-ZS, Malvern), it was 85 nm.
  • Tumor volume minor axis x minor axis x major axis x 0.5
  • the experiment was performed by using 5 mice in each group. Each drug was diluted with physiological saline and administered from the tail vein. The tumor volume is measured daily from Day 0, and the antitumor effect is determined by comparing the average value of the tumor volume ratio (V / V0) on each measurement day when the tumor volume on Day 0 of each group is V0. It was done by doing.
  • FIG. 5 shows the daily transition of the average value of V / V0 in each group.
  • Table 1 The results of a significant difference test performed between the administration group and the negative control group are shown in Table 1 as p values.
  • the double-stranded nucleic acid (SEQ ID NO: 109, 162) -WL administration group of the present invention tumor growth was suppressed with a statistically significant difference.
  • the B717-WL administration group also showed a tendency to suppress tumor growth, but its effect was not statistically significant. From the above, it was revealed that the double-stranded nucleic acid of the present invention consisting of the nucleic acids represented by SEQ ID NOs: 109 and 162 has an in vivo antitumor action superior to B717.
  • a double-stranded nucleic acid consisting of SEQ ID NO: 216 and 217 it is also referred to as a double-stranded nucleic acid consisting of SEQ ID NO: 216 and 217)
  • a double-stranded nucleic acid hereinafter also referred to as a double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162
  • SEQ ID NO: 216 is a 25-base sequence in which 6 bases are added to the 3 ′ end of the nucleic acid represented by SEQ ID NO: 3, and SEQ ID NO: 217 is the 3 ′ end of the nucleic acid represented by SEQ ID NO: 56. It is a sequence consisting of 27 bases with 8 bases added, SEQ ID NO: 109 is a sequence consisting of 21 bases with 2 bases added to the 3 ′ end of the nucleic acid represented by SEQ ID NO: 3, and SEQ ID NO: 162 is a sequence This is a sequence consisting of 21 bases with 2 bases added to the 3 ′ end of the nucleic acid represented by No. 56.
  • nucleic acid represented by the sequence 1s to 5s as a nucleic acid having a 2′-O-methyl (2′-OMe) modification in the sugar part (ribose) of a part of the nucleotide of the nucleic acid represented by SEQ ID NO: 216
  • Double-stranded nucleic acids having the sequence names shown in Table 2 were prepared using the nucleic acid represented by the sequence 6as as the nucleic acid having 2'-OMe modification in ribose as the sense strand and the antisense strand, respectively.
  • nucleotides written in lower case letters are unmodified ribonucleotides
  • nucleotides written in upper case letters are modified ribonucleotides
  • dA, dC and dT are deoxyadenosine
  • deoxy Cytidine and deoxythymidine are shown, respectively.
  • the present invention provides a nucleic acid that suppresses the expression of Bcl-2 protein, a pharmaceutical composition comprising the nucleic acid, and the like. Since the nucleic acid and pharmaceutical composition of the present invention promote apoptosis, they are useful for the treatment of cancer and the like.

Abstract

Disclosed are: a nucleic acid which can inhibit the expression of Bcl-2 protein that acts as an inhibitory factor for apoptosis; a pharmaceutical composition comprising the nucleic acid; and a method for promoting apoptosis by using the nucleic acid.  Particularly disclosed are: a double-stranded nucleic acid composed of a nucleic acid comprising a nucleotide sequence for a part of an untranslated region of a gene encoding Bcl-2 protein and a nucleic acid comprising a nucleotide sequence complementary with the nucleotide sequence for the aforementioned nucleic acid; and a pharmaceutical composition comprising the double-stranded nucleic acid as an active ingredient.  The pharmaceutical composition can treat or prevent diseases which require the promotion of apoptosis for their healing such as cancer.

Description

Bcl-2蛋白質の発現を抑制する核酸Nucleic acids that suppress the expression of Bcl-2 protein
 本発明は、アポトーシスの抑制因子として働くBcl-2蛋白質の発現抑制に用いるための核酸、該核酸を含む医薬組成物に関する。 The present invention relates to a nucleic acid for use in suppressing the expression of Bcl-2 protein that acts as an inhibitor of apoptosis, and a pharmaceutical composition containing the nucleic acid.
 Bcl-2蛋白質は、いくつかの細胞種でアポトーシスによる細胞死の阻害を示す、ミトコンドリア内膜蛋白質である(非特許文献1参照)。Bcl-2蛋白質の大量発現によるアポトーシスの抑制は、癌や、血液学的悪性疾患などの原因となると考えられている。実際に、Bcl-2蛋白質はリンパ肉腫、前立腺癌、乳癌、肺癌、結腸癌および直腸癌などの様々な固形癌において大量に産生されている(非特許文献2~6参照)。また、胸腺のアポトーシスにはBcl-2蛋白質の発現が関係していることが示されている(非特許文献7参照)。Bcl-2蛋白質はまた、前立腺癌において何らかの役割を持つことが示されており、特に、特定の霊長類によく見られる悪性腫瘍と関連づけられてきた(非特許文献8、9参照)。 Bcl-2 protein is a mitochondrial inner membrane protein showing inhibition of cell death by apoptosis in several cell types (see Non-Patent Document 1). Inhibition of apoptosis due to large-scale expression of Bcl-2 protein is thought to cause cancer and hematological malignancies. In fact, Bcl-2 protein is produced in large quantities in various solid cancers such as lymphosarcoma, prostate cancer, breast cancer, lung cancer, colon cancer and rectal cancer (see Non-Patent Documents 2 to 6). It has also been shown that Bcl-2 protein expression is involved in thymic apoptosis (see Non-Patent Document 7). Bcl-2 protein has also been shown to have some role in prostate cancer, and has been particularly associated with malignant tumors that are common in certain primates (see Non-Patent Documents 8 and 9).
 Bcl-2蛋白質が大量に産生される細胞においては、そのアポトーシス抑制作用から細胞死が誘導されないため、様々な抗癌剤に対する薬物耐性が引き起こされる。一方前立腺癌細胞においてBcl-2蛋白質の発現を抑制すると、細胞増殖の抑制が見られ、アポトーシスを誘導しやすくなることが知られている(非特許文献8参照)。したがって、固形癌および血液学的悪性疾患など、その治癒においてアポトーシスの促進が必要な疾患においては、Bcl-2蛋白質の発現を抑制する方法は効果的な治療法または予防法となり得る。 In cells in which a large amount of Bcl-2 protein is produced, cell death is not induced due to its apoptosis-inhibiting action, and thus drug resistance to various anticancer agents is caused. On the other hand, it is known that suppression of Bcl-2 protein expression in prostate cancer cells results in suppression of cell proliferation and facilitates apoptosis (see Non-Patent Document 8). Therefore, in diseases that require promotion of apoptosis in their healing, such as solid cancers and hematological malignancies, the method of suppressing the expression of Bcl-2 protein can be an effective treatment or prevention method.
 癌などの疾患の原因となる蛋白質をコードする核酸に結合することにより、その発現を阻害するように構成した抑制性オリゴヌクレオチド化合物は、それらの疾患の治療に有用である可能性がある。そのような例として例えば、bcl-2遺伝子に対するアンチセンスオリゴヌクレオチドなどが考えられる。 Suppressive oligonucleotide compounds configured to inhibit the expression by binding to a nucleic acid encoding a protein causing a disease such as cancer may be useful in the treatment of those diseases. For example, an antisense oligonucleotide for the bcl-2 gene can be considered.
 標的遺伝子の発現を抑制する方法として、RNA干渉(RNA interference、以下、RNAiともいう)を利用した方法等が知られている。例えば、21~23塩基の長さの二本鎖RNAを細胞に導入することにより、標的遺伝子の発現が抑制されることが知られている(特許文献1参照)。このようなRNAは、small interfering RNA(siRNA)と名づけられている。 As a method for suppressing the expression of a target gene, a method using RNA interference (hereinafter also referred to as RNAi) is known. For example, it is known that expression of a target gene is suppressed by introducing a double-stranded RNA having a length of 21 to 23 bases into a cell (see Patent Document 1). Such RNA is named small interfering RNA (siRNA).
 bcl-2のmRNAの翻訳領域に対するsiRNAは知られている(特許文献2、3、非特許文献10~12参照)が、bcl-2のmRNAの非翻訳領域に対するsiRNAについては知られていない。 SiRNA for the translation region of bcl-2 mRNA is known (see Patent Documents 2 and 3, Non-Patent Documents 10 to 12), but siRNA for the untranslated region of bcl-2 mRNA is not known.
特表2003-529374号公報Special Table 2003-529374 特表2004-519457号公報JP-T-2004-519457 国際公開第04/106511号パンフレットInternational Publication No. 04/106511 Pamphlet
 本発明は、アポトーシスの抑制因子として働くBcl-2蛋白質の発現を抑制することが可能な核酸を提供することを目的とする。また本発明は、その治癒においてアポトーシスの促進が必要となる癌などの疾患を治療または予防するための医薬組成物を提供することを目的とする。 An object of the present invention is to provide a nucleic acid capable of suppressing the expression of Bcl-2 protein that acts as an inhibitor of apoptosis. Another object of the present invention is to provide a pharmaceutical composition for treating or preventing a disease such as cancer that requires promotion of apoptosis in its healing.
 本発明は、以下の(1)~(28)に関する。
(1)Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とを含有し、かつBcl-2蛋白質の発現抑制活性を有する核酸。
(2)Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列が15~27塩基からなる配列である、(1)に記載の核酸。
(3)Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸が、配列番号54~106のいずれかで表される塩基配列からなる核酸または該核酸の少なくとも一方の末端が1~4塩基削除された核酸である、(1)または(2)に記載の核酸。
(4)(1)に記載のBcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸、および該核酸の塩基配列に対して相補的な塩基配列からなる核酸の少なくとも一方の核酸において、1~3塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する核酸。
(5)Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とからなる二本鎖核酸。
(6)15~27塩基対からなる二重鎖形成部を有する、(5)に記載の二本鎖核酸。
(7)配列番号54~106のいずれかで表される塩基配列からなる核酸または該核酸の少なくとも一方の末端が1~4塩基削除された核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とからなる二本鎖核酸。
(8)(5)~(7)のいずれか1項に記載の二本鎖核酸の少なくとも一方の鎖において、1~3塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する二本鎖核酸。
(9)(5)~(8)のいずれか1項に記載の二本鎖核酸を含む、二重鎖形成部が27塩基対以下である二本鎖核酸。
(10)(5)~(9)のいずれか1項に記載の二本鎖核酸の少なくとも一方の鎖の3’末端または5’末端に1~4塩基が付加された二本鎖核酸。
(11)配列番号1~212、216および217のいずれかで表される塩基配列からなる核酸。
(12)(11)に記載の核酸において、1~3塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する核酸。
(13)(11)または(12)に記載の核酸を含む、30塩基以下の核酸。
(14)(1)~(13)のいずれか1項に記載の核酸を構成するヌクレオチドの一部または全部がリボヌクレオチドであり、かつBcl-2蛋白質の発現抑制活性を有する核酸。
(15)(1)~(14)のいずれか1項に記載の核酸を構成するヌクレオチドの一部または全部が、デオキシリボヌクレオチドまたは修飾ヌクレオチドであり、かつBcl-2蛋白質の発現抑制活性を有する核酸。
(16)3’末端または5’末端に付加された1~4塩基の少なくとも1塩基がデオキシリボヌクレオチドである、(10)または(15)に記載の核酸。
(17)(1)~(16)のいずれか1項に記載の核酸をコードするベクター。
(18)(1)~(17)のいずれか1項に記載の核酸またはベクターを有効成分とする、医薬組成物。
(19)核酸を細胞内に移行させるのに有効な担体をさらに含む、(18)に記載の医薬組成物。
(20)核酸を細胞内に移行させるのに有効な担体がカチオン性担体である、(19)に記載の医薬組成物。
(21)核酸を細胞内に移行させるのに有効な担体がリポソームである、(20)に記載の医薬組成物。
(22)リポソームがBcl-2蛋白質をコードする遺伝子の発現部位を含む組織または臓器に到達するリポソームである、(21)に記載の医薬組成物。
(23)核酸またはベクターとリード粒子とを構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜から構成されるリポソームであって、該脂質二重膜の構成成分がエタノールに可溶で、かつ5vol%エタノール水溶液中で分散し、該複合粒子が5vol%エタノール水溶液中で分散することを特徴とする、(18)に記載の医薬組成物。
(24)Bcl-2蛋白質の発現を抑制することを特徴とする、(18)~(23)のいずれか1項に記載の医薬組成物。
(25)アポトーシスを促進する、(24)に記載の医薬組成物。
(26)癌の治療または予防に用いる、(18)~(25)のいずれか1項に記載の医薬組成物。
(27)(1)~(26)のいずれか1項に記載の核酸、ベクターまたは医薬組成物を対象に投与することを特徴とする、該対象におけるBcl-2蛋白質の発現を抑制する方法。
(28)医薬組成物の製造のための、(1)~(17)のいずれか1項に記載の核酸またはベクターの使用。
The present invention relates to the following (1) to (28).
(1) a nucleic acid comprising a partial base sequence of a non-translated region of a gene encoding a Bcl-2 protein, a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid, and Bcl- 2. A nucleic acid having protein expression-inhibiting activity.
(2) The nucleic acid according to (1), wherein a part of the base sequence of the untranslated region of the gene encoding Bcl-2 protein is a sequence consisting of 15 to 27 bases.
(3) A nucleic acid comprising a partial base sequence of the untranslated region of the gene encoding Bcl-2 protein is a nucleic acid comprising the base sequence represented by any of SEQ ID NOs: 54 to 106 or at least one of the nucleic acids The nucleic acid according to (1) or (2), which is a nucleic acid from which one to four bases have been deleted.
(4) a nucleic acid comprising a partial base sequence of the untranslated region of the gene encoding the Bcl-2 protein according to (1), and at least a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid One of the nucleic acids, wherein 1 to 3 bases are substituted, deleted or added, and has a Bcl-2 protein expression inhibitory activity.
(5) A double-stranded nucleic acid comprising a nucleic acid comprising a partial base sequence of the untranslated region of the gene encoding Bcl-2 protein, and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid.
(6) The double-stranded nucleic acid according to (5), which has a double-stranded forming part consisting of 15 to 27 base pairs.
(7) A nucleic acid comprising the base sequence represented by any of SEQ ID NOs: 54 to 106 or a nucleic acid from which at least one end of the nucleic acid has been deleted by 1 to 4 bases, and complementary to the base sequence of the nucleic acid A double-stranded nucleic acid comprising a nucleic acid comprising a base sequence.
(8) In at least one strand of the double-stranded nucleic acid according to any one of (5) to (7), 1 to 3 bases are substituted, deleted or added, and the expression of Bcl-2 protein is suppressed. A double-stranded nucleic acid having activity.
(9) A double-stranded nucleic acid comprising the double-stranded nucleic acid according to any one of (5) to (8) and having a duplex forming part of 27 base pairs or less.
(10) A double-stranded nucleic acid in which 1 to 4 bases are added to the 3 ′ end or 5 ′ end of at least one strand of the double-stranded nucleic acid according to any one of (5) to (9).
(11) A nucleic acid comprising the base sequence represented by any of SEQ ID NOs: 1-212, 216 and 217.
(12) The nucleic acid according to (11), wherein 1 to 3 bases are substituted, deleted or added, and has Bcl-2 protein expression inhibitory activity.
(13) A nucleic acid having 30 bases or less, including the nucleic acid according to (11) or (12).
(14) A nucleic acid in which part or all of the nucleotides constituting the nucleic acid according to any one of (1) to (13) are ribonucleotides and have Bcl-2 protein expression inhibitory activity.
(15) A nucleic acid in which a part or all of the nucleotides constituting the nucleic acid according to any one of (1) to (14) are deoxyribonucleotides or modified nucleotides and have Bcl-2 protein expression inhibitory activity .
(16) The nucleic acid according to (10) or (15), wherein at least one of the 1 to 4 bases added to the 3 ′ end or 5 ′ end is deoxyribonucleotide.
(17) A vector encoding the nucleic acid according to any one of (1) to (16).
(18) A pharmaceutical composition comprising the nucleic acid or vector according to any one of (1) to (17) as an active ingredient.
(19) The pharmaceutical composition according to (18), further comprising a carrier effective for transferring the nucleic acid into cells.
(20) The pharmaceutical composition according to (19), wherein the carrier effective for transferring the nucleic acid into the cell is a cationic carrier.
(21) The pharmaceutical composition according to (20), wherein the carrier effective for transferring nucleic acid into cells is a liposome.
(22) The pharmaceutical composition according to (21), wherein the liposome reaches the tissue or organ containing the expression site of the gene encoding Bcl-2 protein.
(23) A liposome composed of a composite particle comprising a nucleic acid or vector and a lead particle as constituent components and a lipid bilayer coating the composite particle, wherein the lipid bilayer component is soluble in ethanol The pharmaceutical composition according to (18), wherein the composite particles are dispersed in a 5 vol% ethanol aqueous solution, and the composite particles are dispersed in a 5 vol% ethanol aqueous solution.
(24) The pharmaceutical composition according to any one of (18) to (23), which suppresses the expression of Bcl-2 protein.
(25) The pharmaceutical composition according to (24), which promotes apoptosis.
(26) The pharmaceutical composition according to any one of (18) to (25), which is used for treatment or prevention of cancer.
(27) A method for suppressing the expression of Bcl-2 protein in a subject, which comprises administering the nucleic acid, vector or pharmaceutical composition according to any one of (1) to (26) to the subject.
(28) Use of the nucleic acid or vector according to any one of (1) to (17) for the production of a pharmaceutical composition.
図1は、本発明の二本鎖核酸(配列番号109、162)を終濃度50nMでPC-3細胞にトランスフェクションして72時間培養した後、Bcl-2蛋白質の発現をウエスタンブロッティングにより評価した結果を示す図である。FIG. 1 shows that the double-stranded nucleic acid of the present invention (SEQ ID NOs: 109 and 162) was transfected into PC-3 cells at a final concentration of 50 nM and cultured for 72 hours, and then the expression of Bcl-2 protein was evaluated by Western blotting. It is a figure which shows a result. 図2は、本発明の二本鎖核酸(配列番号109、162)を終濃度30nMにてPC-3細胞にトランスフェクションして24時間培養した後、bcl-2のmRNAをRT-PCRにより準定量した結果を示す図である。bcl-2のmRNAを準定量するに際しては、各サンプルのGADPHのmRNA量を内部対照とした上で算出した。FIG. 2 shows that the double-stranded nucleic acid of the present invention (SEQ ID NOs: 109 and 162) was transfected into PC-3 cells at a final concentration of 30 nM, cultured for 24 hours, and then bcl-2 mRNA was prepared by RT-PCR. It is a figure which shows the result of having quantified. When quasi-quantifying bcl-2 mRNA, the amount of GADPH mRNA in each sample was used as an internal control. 図3は、bcl-2遺伝子の非翻訳領域を標的とする二本鎖核酸(センス鎖の配列番号107~119、アンチセンス鎖の配列番号160~172)の細胞増殖に対する抑制効果を細胞数の計測により評価した結果を示す図である。PC-3細胞に二本鎖核酸をトランスフェクションした後、6日間培養した後の生細胞数を測定した。二本鎖核酸をトランスフェクションしていないPC-3細胞の生細胞数を1としたときの、それぞれの二本鎖核酸をトランスフェクションした場合の生細胞数の割合を縦軸に示す。それぞれ左の棒グラフは二本鎖核酸を終濃度3nMで加えたときの結果であり、右の棒グラフは二本鎖核酸を終濃度30nMで加えたときの結果である。FIG. 3 shows the inhibitory effect on cell proliferation of double-stranded nucleic acids (sense strand SEQ ID NOs: 107 to 119, antisense strand SEQ ID NOs: 160 to 172) targeting the untranslated region of the bcl-2 gene. It is a figure which shows the result evaluated by measurement. After transfection of double-stranded nucleic acid into PC-3 cells, the number of viable cells after 6 days of culture was measured. The ratio of the number of viable cells when each double-stranded nucleic acid is transfected when the number of viable PC-3 cells not transfected with the double-stranded nucleic acid is 1 is shown on the vertical axis. Each left bar graph is the result when double-stranded nucleic acid is added at a final concentration of 3 nM, and the right bar graph is the result when double-stranded nucleic acid is added at a final concentration of 30 nM. 図4は、bcl-2遺伝子の非翻訳領域を標的とする二本鎖核酸(センス鎖の配列番号120~159、アンチセンス鎖の配列番号173~212)の細胞増殖に対する抑制効果を細胞数の計測により評価した結果を示す図である。PC-3細胞に二本鎖核酸をトランスフェクションした後、5日間培養した後の生細胞数を測定した。二本鎖核酸をトランスフェクションしていないPC-3細胞の生細胞数を1としたときの、それぞれの二本鎖核酸をトランスフェクションした場合の生細胞数の割合を縦軸に示す。それぞれ二本鎖核酸を終濃度30nMで加えたときの結果である。FIG. 4 shows the inhibitory effect on cell proliferation of double-stranded nucleic acids (sense strand SEQ ID NO: 120-159, antisense strand SEQ ID NO: 173-212) targeting the untranslated region of the bcl-2 gene. It is a figure which shows the result evaluated by measurement. After transfection of PC-3 cells with double-stranded nucleic acid, the number of viable cells after culturing for 5 days was measured. The ratio of the number of viable cells when each double-stranded nucleic acid is transfected when the number of viable PC-3 cells not transfected with the double-stranded nucleic acid is 1 is shown on the vertical axis. The results are obtained when double-stranded nucleic acid was added at a final concentration of 30 nM. 図5は、ヌードマウスに移植したPC-3細胞に対する各二本鎖核酸-WLの抗腫瘍効果を示す図である。縦軸は腫瘍体積比を示す。*および**は、陰性対照群とbcl-2遺伝子の非翻訳領域を標的とする二本鎖核酸(配列番号109、162)投与群の間に、それぞれP値<0.05およびP値<0.01(Student-t test)をもって有意差があることを示す。◆(菱形印)は陰性対照群、□(四角印)は本発明の二本鎖核酸(配列番号109、162)-WL投与群、△(三角印)はB717-WL投与群を示す。FIG. 5 is a diagram showing the antitumor effect of each double-stranded nucleic acid-WL on PC-3 cells transplanted into nude mice. The vertical axis shows the tumor volume ratio. * And ** indicate a P value <0.05 and a P value <0.01, respectively, between the negative control group and the double-stranded nucleic acid (SEQ ID NO: 109, 162) administration group targeting the untranslated region of the bcl-2 gene. Student-t test) indicates a significant difference. ◆ (diamonds) indicates a negative control group, □ (squares) indicates a double-stranded nucleic acid (SEQ ID NO: 109, 162) -WL administration group of the present invention, and Δ (triangles) indicates a B717-WL administration group. 図6は、配列番号216、217からなる二本鎖核酸および配列番号109、162からなる二本鎖核酸、ならびにこれら二本鎖核酸の一部ヌクレオチドのリボースに2’-OMe修飾を有する二本鎖核酸を、それぞれ終濃度30nMにてPC-3細胞にトランスフェクションして24時間培養した後、bcl-2のmRNAをRT-PCRにより準定量した結果を示す図である。bcl-2のmRNAを準定量するに際しては、各サンプルのGADPHのmRNA量を内部対照とした上で算出した。FIG. 6 shows a double-stranded nucleic acid consisting of SEQ ID NOs: 216 and 217, a double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162, and two having a 2′-OMe modification in the ribose of a part of the nucleotides FIG. 2 shows the results of semi-quantification of bcl-2 mRNA by RT-PCR after strand nucleic acids were transfected into PC-3 cells at a final concentration of 30 nM and cultured for 24 hours. When quasi-quantifying bcl-2 mRNA, the amount of GADPH mRNA in each sample was used as an internal control.
 本発明の核酸が標的とするBcl-2蛋白質をコードする遺伝子(以下、bcl-2遺伝子ともいう)は、Genbank Accession No.NM_000633として登録されている、bcl-2の完全長mRNAに対応するDNA塩基配列(配列番号215)を含む遺伝子があげられる。本発明においては、配列番号215で表される塩基配列からなるヌクレオチドを標的遺伝子とも称する。 The gene encoding the Bcl-2 protein targeted by the nucleic acid of the present invention (hereinafter also referred to as bcl-2 gene) is Genbank Accession No. A gene containing a DNA base sequence (SEQ ID NO: 215) corresponding to the full-length mRNA of bcl-2 registered as NM_000633. In the present invention, the nucleotide consisting of the base sequence represented by SEQ ID NO: 215 is also referred to as a target gene.
1.本発明の核酸
 本発明の核酸としては、(a)Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列を含む核酸(一本鎖核酸)、(b)Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸に対して相補的な塩基配列を含む核酸(一本鎖核酸)、または(c)前記(b)の核酸と該核酸の塩基配列に対して相補的な塩基配列を含む核酸とからなる二本鎖核酸等があげられ、いずれを用いてもよい。本発明の核酸は、好ましくはBcl-2蛋白質の発現を抑制する核酸である。
1. Nucleic acid of the present invention The nucleic acid of the present invention includes (a) a nucleic acid (single-stranded nucleic acid) containing a partial base sequence of the untranslated region of a gene encoding Bcl-2 protein, and (b) a Bcl-2 protein. A nucleic acid (single-stranded nucleic acid) containing a base sequence complementary to a nucleic acid consisting of a part of the base sequence of the untranslated region of the gene to be encoded, or (c) the nucleic acid of (b) and the base sequence of the nucleic acid Double-stranded nucleic acid composed of a nucleic acid containing a base sequence complementary to the above may be used, and any of them may be used. The nucleic acid of the present invention is preferably a nucleic acid that suppresses the expression of Bcl-2 protein.
 本発明において、bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸に対して相補的な塩基配列を含む核酸をアンチセンス鎖核酸と称し、アンチセンス鎖核酸の塩基配列に対して相補的な塩基配列を含む核酸をセンス鎖核酸とも称する。センス鎖核酸は、bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸そのものであってもよい。 In the present invention, a nucleic acid containing a base sequence complementary to a nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene is referred to as an antisense strand nucleic acid, A nucleic acid containing a complementary base sequence is also referred to as a sense strand nucleic acid. The sense strand nucleic acid may be a nucleic acid itself consisting of a partial base sequence of the untranslated region of the bcl-2 gene.
 本発明の核酸としては、ヌクレオチドまたは該ヌクレオチドと同等の機能を有する分子が重合した分子であればいかなる分子であってもよく、例えばリボヌクレオチドの重合体であるRNA、デオキシリボヌクレオチドの重合体であるDNA、RNAとDNAとからなるキメラ核酸、およびこれらの核酸の少なくとも一つのヌクレオチドが該ヌクレオチドと同等の機能を有する分子で置換されたヌクレオチド重合体があげられる。siRNA、sh(short hairpin)RNA、およびこれらの核酸内にヌクレオチドと同等の機能を有する分子を少なくとも一つ含む誘導体も本発明の核酸に含まれる。またRNA中のウリジン(U)は、DNAにおいてはチミン(T)に一義的に読み替えることができる。 The nucleic acid of the present invention may be any molecule as long as it is a molecule obtained by polymerizing nucleotides or molecules having functions equivalent to the nucleotides. For example, it is a polymer of RNA or deoxyribonucleotide that is a polymer of ribonucleotides. Examples thereof include DNA, chimeric nucleic acids composed of RNA and DNA, and nucleotide polymers in which at least one nucleotide of these nucleic acids is substituted with a molecule having a function equivalent to that of the nucleotide. The nucleic acid of the present invention includes siRNA, sh (short hairpin) RNA, and derivatives containing at least one molecule having a function equivalent to nucleotide in these nucleic acids. Uridine (U) in RNA can be uniquely read as thymine (T) in DNA.
 ヌクレオチドと同等の機能を有する分子としては、例えばヌクレオチド誘導体等があげられる。
 ヌクレオチド誘導体としては、ヌクレオチドに修飾を施した分子であればいかなる分子あってもよいが、例えばRNAまたはDNAと比較して、核酸のヌクレアーゼ耐性向上もしくは安定化のため、相補鎖核酸とのアフィニティーをあげるため、細胞透過性をあげるため、または核酸を可視化させるために、リボヌクレオチドまたはデオキシリボヌクレオチドに修飾を施した分子等が好適に用いられる。
Examples of molecules having a function equivalent to nucleotides include nucleotide derivatives.
The nucleotide derivative may be any molecule as long as it is a modified nucleotide. For example, compared to RNA or DNA, the affinity to complementary strand nucleic acid is increased in order to improve or stabilize the nuclease resistance of the nucleic acid. In order to increase cell permeability, to increase cell permeability, or to visualize nucleic acids, a molecule in which ribonucleotides or deoxyribonucleotides are modified is preferably used.
 ヌクレオチド誘導体としては、例えば糖部修飾ヌクレオチド、リン酸ジエステル結合修飾ヌクレオチド、塩基修飾ヌクレオチド、ならびに糖部、リン酸ジエステル結合および塩基の少なくとも一つが修飾されたヌクレオチド等があげられる。 Examples of nucleotide derivatives include sugar-modified nucleotides, phosphodiester bond-modified nucleotides, base-modified nucleotides, and nucleotides modified with at least one of the sugar moiety, phosphodiester bond, and base.
 糖部修飾ヌクレオチドとしては、ヌクレオチドの糖の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよいが、2’-修飾ヌクレオチドが好ましく用いられる。
 2’-修飾ヌクレオチドとしては、例えばリボースの2’-OH基がH、OR、R、R’OR、SH、SR、NH、NHR、NR、N、CN、F、Cl、BrおよびIからなる群(Rはアルキルまたはアリール、好ましくは炭素数1~6のアルキルであり、R’はアルキレン、好ましくは炭素数1~6のアルキレンである)から選択される置換基で置換された2’-修飾ヌクレオチド、好ましくは2’-OH基がFまたはメトキシ基があげられる。また、2-(methoxy)ethoxy基、3-aminopropoxy基、2-[(N,N-dimethylamino)oxy]ethoxy基、3-(N,N-dimethylamino)propoxy基、2-[2-(N,N-Dimethylamino)ethoxy]ethoxy基、2-(methylamino)-2-oxoethoxy基、2-(N-methylcarbamoyl)etoxy基および2-cyanoetoxy基からなる群から選択される置換基で置換された2’-修飾ヌクレオチド等もあげられる。
The sugar moiety-modified nucleotide may be any nucleotide as long as it is a part or all of the chemical structure of the sugar of the nucleotide, modified or substituted with any substituent, or substituted with any atom. '-Modified nucleotides are preferably used.
2′-modified nucleotides include, for example, those in which the 2′-OH group of ribose is H, OR, R, R′OR, SH, SR, NH 2 , NHR, NR 2 , N 3 , CN, F, Cl, Br and Substituted with a substituent selected from the group consisting of I (R is alkyl or aryl, preferably alkyl having 1 to 6 carbon atoms and R ′ is alkylene, preferably alkylene having 1 to 6 carbon atoms) A 2′-modified nucleotide, preferably a 2′-OH group is F or a methoxy group. In addition, 2- (methoxy) ethoxy group, 3-aminopropoxy group, 2-[(N, N-dimethylamino) oxy] ethoxy group, 3- (N, N-dimethylamino) propoxy group, 2- [2- (N, 2'-substituted with a substituent selected from the group consisting of N-Dimethylamino) ethoxy] ethoxy group, 2- (methylamino) -2-oxoethoxy group, 2- (N-methylcarbamoyl) etoxy group and 2-cyanoetoxy group Examples thereof include modified nucleotides.
 また、糖部修飾ヌクレオチドとしては、糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)があげられ、具体的には、2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA)、エチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[Nucleic Acid Research, 32, e175(2004)]等があげられ、さらにペプチド核酸(PNA)[Acc. Chem. Res., 32, 624 (1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653 (2001)]、ペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900 (2000)]等もあげられる。 Examples of the sugar-modified nucleotide include a crosslinked structure-type artificial nucleic acid (BNA) having two circular structures by introducing a crosslinked structure into the sugar moiety, specifically, the 2 ′ position. Locked 原子 Nucleic Acid (LNA), Ethylene Bridged nucleic acid (ENA) [Nucleic Acid Research, 32 , E175 (2004)], and peptide nucleic acids (PNA) [Acc. Chem. Res., 32, 624 (1999)], oxypeptide nucleic acids (OPNA) [J. Am. Chem. Soc., 123 , 4653 (2001)], peptide ribonucleic acid (PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)] and the like.
 リン酸ジエステル結合修飾ヌクレオチドとしては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよく、例えば、リン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロジチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がアルキルホスホネート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロアミデート結合に置換されたヌクレオチド等があげられる。 The phosphodiester bond-modified nucleotide is any nucleotide that has been modified or substituted with an arbitrary substituent for a part or all of the chemical structure of the phosphodiester bond of the nucleotide, or with any atom. For example, a nucleotide in which a phosphodiester bond is replaced with a phosphorothioate bond, a nucleotide in which a phosphodiester bond is replaced with a phosphorodithioate bond, a nucleotide in which a phosphodiester bond is replaced with an alkylphosphonate bond, a phosphate Examples thereof include nucleotides in which a diester bond is substituted with a phosphoramidate bond.
 塩基修飾ヌクレオチドとしては、ヌクレオチドの塩基の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、または任意の原子で置換したものであればいかなるものでもよく、例えば、塩基内の酸素原子が硫黄原子で置換されたもの、水素原子が炭素数1~6のアルキル基で置換されたもの、メチル基が水素もしくは炭素数2~6のアルキル基で置換されたもの、アミノ基が炭素数1~6のアルキル基、炭素数1~6のアルカノイル基等の保護基で保護されたものがあげられる。 As the base-modified nucleotide, any or all of the nucleotide base chemical structure modified or substituted with an arbitrary substituent or substituted with an arbitrary atom may be used. In which oxygen atoms are substituted by sulfur atoms, hydrogen atoms are substituted by alkyl groups having 1 to 6 carbon atoms, methyl groups are substituted by hydrogen or alkyl groups having 2 to 6 carbon atoms, amino Examples thereof include those in which the group is protected with a protecting group such as an alkyl group having 1 to 6 carbon atoms or an alkanoyl group having 1 to 6 carbon atoms.
 さらに、ヌクレオチド誘導体として、ヌクレオチドまたは糖部、リン酸ジエステル結合もしくは塩基の少なくとも一つが修飾されたヌクレオチド誘導体に脂質、リン脂質、フェナジン、フォレート、フェナントリジン、アントラキノン、アクリジン、フルオレセイン、ローダミン、クマリン、色素など、別の化学物質を付加したものもあげられ、具体的には、5’-ポリアミン付加ヌクレオチド誘導体、コレステロール付加ヌクレオチド誘導体、ステロイド付加ヌクレオチド誘導体、胆汁酸付加ヌクレオチド誘導体、ビタミン付加ヌクレオチド誘導体、Cy5付加ヌクレオチド誘導体、Cy3付加ヌクレオチド誘導体、6-FAM付加ヌクレオチド誘導体、およびビオチン付加ヌクレオチド誘導体等があげられる。 Furthermore, as a nucleotide derivative, a nucleotide, sugar moiety, phosphodiester bond or nucleotide derivative modified with at least one of a base, a lipid, phospholipid, phenazine, folate, phenanthridine, anthraquinone, acridine, fluorescein, rhodamine, coumarin, Examples include dyes and other chemical substances added. Specifically, 5′-polyamine addition nucleotide derivatives, cholesterol addition nucleotide derivatives, steroid addition nucleotide derivatives, bile acid addition nucleotide derivatives, vitamin addition nucleotide derivatives, Cy5 Additional nucleotide derivatives, Cy3-added nucleotide derivatives, 6-FAM-added nucleotide derivatives, biotin-added nucleotide derivatives and the like can be mentioned.
 また、ヌクレオチド誘導体は、核酸内の他のヌクレオチドまたはヌクレオチド誘導体とアルキレン構造、ペプチド構造、ヌクレオチド構造、エーテル構造、エステル構造、およびこれらの少なくとも一つを組み合わせた構造等の架橋構造を形成してもよい。 The nucleotide derivative may form a cross-linked structure such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, or a structure combining at least one of these with other nucleotides or nucleotide derivatives in the nucleic acid. Good.
 本発明の核酸は、bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸または該核酸の塩基配列に対して相補的な塩基配列からなる核酸と同等な機能を有する核酸であれば、いずれのヌクレオチドまたはその誘導体から構成されていてもよい。すなわち、bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸または該核酸の塩基配列に対して相補的な塩基配列からなる核酸は、その塩基配列を構成するヌクレオチドが、該ヌクレオチドと同等の機能を有するリボヌクレオチド、デオキシリボヌクレオチドまたはその誘導体に置換されたものであってもよい。 The nucleic acid of the present invention is a nucleic acid having a function equivalent to that of a nucleic acid comprising a partial base sequence of the untranslated region of the bcl-2 gene or a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid. , May be composed of any nucleotide or derivative thereof. That is, in a nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene or a nucleic acid consisting of a base sequence complementary to the base sequence of the nucleic acid, the nucleotides constituting the base sequence are It may be substituted with a ribonucleotide, deoxyribonucleotide or a derivative thereof having an equivalent function.
 本発明の核酸は、bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸と該核酸の塩基配列に対して相補的な塩基配列からなる核酸とが二重鎖を形成することができればいずれの長さでもよいが、二重鎖を形成できる配列の長さは、通常15~27塩基であり、15~25塩基が好ましく、15~23塩基がより好ましく、15~21塩基がさらに好ましく、15~19塩基が特に好ましい。 In the nucleic acid of the present invention, a nucleic acid comprising a part of the base sequence of the untranslated region of the bcl-2 gene and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid may form a double strand. Any length is possible, but the length of the sequence capable of forming a duplex is usually 15 to 27 bases, preferably 15 to 25 bases, more preferably 15 to 23 bases, and further 15 to 21 bases. Preferably, 15 to 19 bases are particularly preferable.
 本発明の核酸としては、bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸が用いられるが、該核酸のうち1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が欠失、置換または付加したものを用いてもよい。 As the nucleic acid of the present invention, a nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene is used. Among the nucleic acids, 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base is used. May be deleted, substituted or added.
 Bcl-2蛋白質の発現を抑制する核酸としては、bcl-2遺伝子の非翻訳領域の一部の塩基配列と、該核酸の塩基配列に対して相補的な塩基配列とを含み、かつBcl-2蛋白質の発現を抑制する核酸であれば、一本鎖核酸、二本鎖核酸等、いずれの核酸も用いられるが、二本鎖核酸が好適に用いられる。 The nucleic acid that suppresses the expression of Bcl-2 protein includes a partial base sequence of the untranslated region of the bcl-2 gene and a base sequence complementary to the base sequence of the nucleic acid, and Bcl-2 Any nucleic acid such as a single-stranded nucleic acid and a double-stranded nucleic acid can be used as long as it suppresses protein expression, but a double-stranded nucleic acid is preferably used.
 本発明において二本鎖核酸とは、二本の鎖が対合し二重鎖形成部を有する核酸をいう。二重鎖形成部とは、二本鎖核酸を構成するヌクレオチドまたはその誘導体が塩基対を構成して二重鎖を形成している部分をいう。二重鎖形成部は、通常15~27塩基対であり、15~25塩基対が好ましく、15~23塩基対がより好ましく、15~21塩基対がさらに好ましく、15~19塩基対が特に好ましい。 In the present invention, the double-stranded nucleic acid means a nucleic acid having two strands paired and having a double-stranded forming part. The double-stranded forming part refers to a part where nucleotides constituting the double-stranded nucleic acid or a derivative thereof constitute a base pair to form a double strand. The duplex forming part is usually 15 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, further preferably 15 to 21 base pairs, and particularly preferably 15 to 19 base pairs. .
 二本鎖核酸を構成する一本鎖の核酸は、通常15~30塩基からなるが、15~29塩基からなることが好ましく、15~27塩基からなることがより好ましく、15~25塩基からなることがさらに好ましく、17~23塩基からなることが特に好ましく、19~21塩基からなることが最も好ましい。 The single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of 15 to 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, and more preferably 15 to 25 bases. More preferably, it consists of 17 to 23 bases, most preferably 19 to 21 bases.
 本発明の二本鎖核酸において、二重鎖形成部に続く3’側または5’側に二重鎖を形成しない追加のヌクレオチドまたはヌクレオチド誘導体を有する場合には、これを突出部(オーバーハング)と呼ぶ。突出部を有する場合には、突出部を構成するヌクレオチドはリボヌクレオチド、デオキシリボヌクレオチドまたはこれらの誘導体であってもよい。 When the double-stranded nucleic acid of the present invention has an additional nucleotide or nucleotide derivative that does not form a duplex on the 3 ′ side or the 5 ′ side following the duplex forming portion, this is referred to as an overhang. Call it. In the case of having an overhang, the nucleotide constituting the overhang may be ribonucleotide, deoxyribonucleotide or a derivative thereof.
 二本鎖核酸としては、少なくとも一方の鎖の3’末端または5’末端に1~3塩基からなる突出部を有するものが用いられるが、2塩基からなる突出部を有するものが好ましく用いられ、dTdTまたはUUからなる突出部を有するものがより好ましく用いられる。突出部は、アンチセンス鎖のみ、センス鎖のみ、およびアンチセンス鎖とセンス鎖の両方に有することができるが、アンチセンス鎖とセンス鎖の両方に突出部を有する二本鎖核酸、またはアンチセンス鎖の3’末端にのみ突出部を有する二本鎖核酸が好ましく用いられる。また、二重鎖形成部に続いて標的配列と一致する配列、または、二重鎖形成部に続いて標的配列の相補鎖の塩基配列と一致する配列を用いることもできる。なお、本発明においては3’末端や5’末端の突出部を有していない二本鎖核酸としては、ヌクレオチド誘導体を有する二本鎖核酸が好適に用いられる。 As the double-stranded nucleic acid, one having a protruding portion consisting of 1 to 3 bases at the 3 ′ end or 5 ′ end of at least one strand is used, but one having a protruding portion consisting of 2 bases is preferably used. What has the protrusion part which consists of dTdT or UU is used more preferable. Overhangs can be on the antisense strand only, sense strand only, and both antisense and sense strands, but double-stranded nucleic acids with overhangs on both the antisense and sense strands, or antisense A double-stranded nucleic acid having an overhang only at the 3 ′ end of the strand is preferably used. In addition, a sequence that matches the target sequence following the duplex forming portion, or a sequence that matches the base sequence of the complementary strand of the target sequence following the duplex forming portion can also be used. In the present invention, a double-stranded nucleic acid having a nucleotide derivative is preferably used as the double-stranded nucleic acid having no 3'-end or 5'-end overhang.
 本発明の二本鎖核酸においては、標的遺伝子の塩基配列またはその相補鎖の塩基配列と同一の配列からなる核酸を用いることが可能であるが、該核酸の少なくとも一方の鎖の5’末端または3’末端が1~4塩基削除された核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とからなる二本鎖核酸を用いることもできる。そのような二本鎖核酸として、二重鎖形成部が15~19塩基対からなる二本鎖核酸があげられる。
 また、本発明の核酸としては、一本鎖の核酸を用いることもできる。そのような核酸の例として、配列番号1~212、216および217のいずれかで表される塩基配列からなる核酸や、これらの核酸において1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する核酸もあげることができる。またこれらの核酸を含む、30塩基以下、好ましくは28塩基以下、より好ましくは26塩基以下、さらに好ましくは24塩基以下、特に好ましくは23塩基以下の核酸をあげることができる。
In the double-stranded nucleic acid of the present invention, it is possible to use a nucleic acid comprising the same sequence as the base sequence of the target gene or its complementary strand, but the 5 ′ end of at least one strand of the nucleic acid or It is also possible to use a double-stranded nucleic acid comprising a nucleic acid from which 1 to 4 bases have been deleted at the 3 ′ end and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid. Examples of such a double-stranded nucleic acid include a double-stranded nucleic acid having a double-stranded forming part consisting of 15 to 19 base pairs.
Moreover, a single-stranded nucleic acid can also be used as the nucleic acid of the present invention. Examples of such nucleic acids include nucleic acids having the base sequences represented by any of SEQ ID NOs: 1-212, 216 and 217, and in these nucleic acids, 1 to 3 bases, preferably 1 to 2 bases, more preferably Examples also include a nucleic acid in which one base is substituted, deleted or added and has Bcl-2 protein expression inhibitory activity. Examples of the nucleic acid containing these nucleic acids include 30 bases or less, preferably 28 bases or less, more preferably 26 bases or less, still more preferably 24 bases or less, and particularly preferably 23 bases or less.
 本発明の核酸としては、上記した二本鎖核酸のセンス鎖およびアンチセンス鎖を、スペーサー配列を介して連結して一本鎖核酸としたものであってもよい。該一本鎖核酸としては、ステムループ構造によって二重鎖形成部を有するshRNA等の一本鎖核酸であることが好ましい。ステムループ構造を有する一本鎖核酸は、通常50~70塩基長である。 The nucleic acid of the present invention may be a single-stranded nucleic acid obtained by linking the sense strand and the antisense strand of the above-described double-stranded nucleic acid via a spacer sequence. The single-stranded nucleic acid is preferably a single-stranded nucleic acid such as shRNA having a double-strand formation portion with a stem-loop structure. A single-stranded nucleic acid having a stem-loop structure is usually 50 to 70 bases in length.
 本発明の核酸を製造する方法としては、特に限定されず、公知の化学合成を用いる方法、あるいは、酵素的転写法等があげられる。公知の化学合成を用いる方法として、ホスホロアミダイト法、ホスホロチオエート法、ホスホトリエステル法、CEM法[Nucleic Acid Research, 35, 3287 (2007)]等をあげることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)により合成することができる。合成が終了した後は、固相からの脱離、保護基の脱保護および目的物の精製等を行う。精製により、純度90%以上、好ましくは95%以上の核酸を得るのが望ましい。二本鎖核酸の場合には、合成・精製したセンス鎖、アンチセンス鎖を適当な比率、例えば、アンチセンス鎖1当量に対して、センス鎖0.1~10当量、好ましくは0.5~2当量、より好ましくは0.9~1.1当量、さらに好ましくは等モル量で混合した後、アニーリングを行って用いてもよいし、または、混合したものをアニーリングする工程を省いて直接用いてもよい。アニーリングは、二本鎖核酸を形成できる条件であればいかなる条件で行ってもよいが、通常、センス鎖、アンチセンス鎖をほぼ等モル量で混合した後、94℃程度で5分程度加熱したのち、室温まで徐冷することにより行われる。本発明の核酸を製造する酵素的転写法としては、目的の塩基配列を有したプラスミドまたはDNAを鋳型としてファージRNAポリメラーゼ、例えば、T7、T3、またはSP6RNAポリメラーゼを用いた転写による方法があげられる。 The method for producing the nucleic acid of the present invention is not particularly limited, and examples thereof include a method using known chemical synthesis or an enzymatic transcription method. Examples of methods using known chemical synthesis include phosphoramidite method, phosphorothioate method, phosphotriester method, CEM method [Nucleic® Acid® Research, 35, 20073287 (2007)]. For example, ABI3900 high-throughput nucleic acid synthesis Can be synthesized by a machine (Applied Biosystems). After the synthesis is completed, elimination from the solid phase, deprotection of the protecting group, purification of the target product, and the like are performed. It is desirable to obtain a nucleic acid having a purity of 90% or more, preferably 95% or more by purification. In the case of a double-stranded nucleic acid, the sense and antisense strands synthesized and purified are in an appropriate ratio, for example, 0.1 to 10 equivalents, preferably 0.5 to 1 sense strand to 1 equivalent of the antisense strand. Two equivalents, more preferably 0.9 to 1.1 equivalents, and even more preferably equimolar amounts may be mixed and then annealed, or used directly without the step of annealing the mixture. May be. Annealing may be performed under any conditions as long as double-stranded nucleic acid can be formed. Usually, the sense strand and the antisense strand are mixed in approximately equimolar amounts, and then heated at about 94 ° C. for about 5 minutes. Then, it is performed by slowly cooling to room temperature. As an enzymatic transcription method for producing the nucleic acid of the present invention, a transcription method using a phage RNA polymerase, for example, T7, T3, or SP6 RNA polymerase, using a plasmid or DNA having a target base sequence as a template can be mentioned.
 本発明の核酸は、トランスフェクション用の担体、好ましくはカチオン性リポソーム等のカチオン性担体を用いて細胞内に導入することができる。また、リン酸カルシウム法、エレクトロポレーション法またはマイクロインジェクション法などにより、直接細胞内に導入することもできる。 The nucleic acid of the present invention can be introduced into cells using a transfection carrier, preferably a cationic carrier such as a cationic liposome. It can also be directly introduced into cells by the calcium phosphate method, electroporation method or microinjection method.
 本発明の核酸の代わりに、細胞内に導入してこれらが発現されるようなベクターを用いてもよい。具体的には、本発明の核酸をコードする配列を発現ベクター内のプロモーター下流に挿入して発現ベクターを構築し、細胞に導入することにより該核酸等を発現させることができる。 In place of the nucleic acid of the present invention, a vector that can be introduced into cells and expressed can be used. Specifically, the nucleic acid or the like can be expressed by inserting the sequence encoding the nucleic acid of the present invention downstream of the promoter in the expression vector, constructing the expression vector, and introducing it into a cell.
 発現ベクターとしては、pCDNA6.2-GW/miR(Invitrogen社製)、pSilencer 4.1-CMV(Ambion社製)、pSINsi-hH1 DNA(タカラバイオ社製)、pSINsi-hU6 DNA(タカラバイオ社製)、pENTR/U6(Invitrogen社製)等をあげることができる。 Expression vectors include pCDNA6.2-GW / miR (Invitrogen), pSilencer® 4.1-CMV (Ambion), pSINsi-hH1 DNA (Takara Bio), pSINsi-hU6 DNA (Takara Bio), pENTR / U6 (Invitrogen) etc. can be mentioned.
 また、本発明の核酸をコードする配列をウイルスベクター内のプロモーター下流に挿入し、該ベクターをパッケージング細胞に導入して生産した組換えウイルスベクターを用いることもできる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター、アデノウイルスベクター、アデノ随伴ウイルスベクターなどがあげられる。 It is also possible to use a recombinant viral vector produced by inserting a sequence encoding the nucleic acid of the present invention downstream of a promoter in a viral vector and introducing the vector into a packaging cell. Examples of virus vectors include retrovirus vectors, lentivirus vectors, adenovirus vectors, adeno-associated virus vectors, and the like.
2.Bcl-2蛋白質の発現を抑制する核酸
 Bcl-2蛋白質の発現を抑制する二本鎖核酸の第1の選択基準としては、bcl-2遺伝子の5’側もしくは3’側の非翻訳領域の一部の塩基配列からなる核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とからなる二本鎖核酸であることである。該非翻訳領域の一部の塩基配列からなる核酸は、(a)GまたはCが4塩基以上続く配列がない、(b)GC含量が20~80%であることを第2の選択基準として選択することが好ましい。
2. Nucleic acid that suppresses expression of Bcl-2 protein A first selection criterion for a double-stranded nucleic acid that suppresses expression of Bcl-2 protein is one of untranslated regions on the 5 ′ side or 3 ′ side of the bcl-2 gene. A double-stranded nucleic acid comprising a nucleic acid comprising a partial base sequence and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid. A nucleic acid comprising a part of the base sequence of the untranslated region is selected as a second selection criterion that (a) no G or C sequence has 4 or more bases, and (b) the GC content is 20 to 80%. It is preferable to do.
 bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸は、Genbank Accession No.NM_000633として登録されているbcl-2の完全長mRNAのcDNA塩基配列(配列番号215)の非翻訳領域に基づいて設計することができる。ここで非翻訳領域とは、配列番号215で表される塩基配列において、Bcl-2蛋白質がコードされていない、1~493残基目および1214~6492残基目の領域をいう(それぞれの領域を、5’非翻訳領域および3’非翻訳領域とも称する)。 Nucleic acid consisting of a part of the base sequence of the untranslated region of bcl-2 gene is Genbank Accession No. It can be designed based on the untranslated region of the cDNA base sequence (SEQ ID NO: 215) of the full-length mRNA of bcl-2 registered as NM_000633. Here, the untranslated region refers to the region of residues 1 to 493 and residues 1214 to 6492 where the Bcl-2 protein is not encoded in the base sequence represented by SEQ ID NO: 215 (each region). Are also referred to as 5 ′ untranslated region and 3 ′ untranslated region).
 bcl-2遺伝子の非翻訳領域の一部の塩基配列としては、非翻訳領域の一部の塩基配列であればいずれであってもよいが、Bcl-2蛋白質の発現を抑制する核酸を設計するためには、例えば配列番号1~53のいずれかで表される塩基配列等の非翻訳領域の一部の塩基配列が好ましく、配列番号1~7および9~53のいずれかで表される塩基配列等の3’非翻訳領域の一部の塩基配列がより好ましく、配列番号3、14、16、17、19、25~28、30、32~34、36~40および42~48のいずれかで表される塩基配列がさらに好ましい。
 このようにして選択される核酸としては、例えばbcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とを含有し、かつBcl-2蛋白質の発現抑制活性を有する二本鎖核酸があげられる。該二本鎖核酸を構成する一本鎖の核酸は、通常15~30塩基からなるが、15~29塩基からなることが好ましく、15~27塩基からなることがより好ましく、15~25塩基からなることがさらに好ましく、17~23塩基からなることが特に好ましく、19~21塩基からなることが最も好ましい。該二本鎖核酸は通常15~27塩基対、好ましくは15~25塩基対、より好ましくは15~23塩基対、さらに好ましくは15~21塩基対、特に好ましくは15~19塩基対からなる二重鎖形成部を有している。
The partial base sequence of the untranslated region of the bcl-2 gene may be any base sequence as long as it is a partial base sequence of the non-translated region, but a nucleic acid that suppresses the expression of the Bcl-2 protein is designed. For this purpose, for example, a partial base sequence of an untranslated region such as the base sequence represented by any one of SEQ ID NOs: 1 to 53 is preferable, and the base represented by any one of SEQ ID NOs: 1 to 7 and 9 to 53 More preferred is a partial base sequence of a 3 ′ untranslated region such as a sequence, and any one of SEQ ID NOs: 3, 14, 16, 17, 19, 25 to 28, 30, 32 to 34, 36 to 40, and 42 to 48. Is more preferable.
The nucleic acid thus selected includes, for example, a nucleic acid comprising a partial base sequence of the untranslated region of the bcl-2 gene and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid. And a double-stranded nucleic acid having Bcl-2 protein expression-inhibiting activity. The single-stranded nucleic acid constituting the double-stranded nucleic acid usually consists of 15 to 30 bases, preferably 15 to 29 bases, more preferably 15 to 27 bases, and more preferably 15 to 25 bases. More preferably, it consists of 17 to 23 bases, most preferably 19 to 21 bases. The double-stranded nucleic acid usually consists of 15 to 27 base pairs, preferably 15 to 25 base pairs, more preferably 15 to 23 base pairs, still more preferably 15 to 21 base pairs, and particularly preferably 15 to 19 base pairs. Has a heavy chain forming part.
 該二本鎖核酸の具体例として、下記(a)~(f)があげられる。
(a)bcl-2のmRNAの相補配列に該当する、配列番号54~106のいずれかで表される塩基配列を含むアンチセンス鎖核酸と、該核酸の塩基配列に対して相補的なセンス鎖塩基配列を含む核酸とからなる二本鎖核酸。
(b)配列番号54~106のいずれかで表される塩基配列からなるアンチセンス鎖核酸と、該核酸の塩基配列に対して相補的な塩基配列からなるセンス鎖核酸とからなる二本鎖核酸。
(c)配列番号54~106のいずれかで表される塩基配列からなる核酸の5’末端または3’末端のうち、少なくとも一方の末端が1~4塩基削除されたアンチセンス鎖核酸と、該核酸の塩基配列に対して相補的な塩基配列からなるセンス鎖核酸とからなる二本鎖核酸。
(d)配列番号1~53のいずれかで表される塩基配列からなるセンス鎖核酸と、配列番号54~106から選ばれる塩基配列からなるアンチセンス鎖核酸(ここで、センス鎖の配列番号N(Nは1~53のいずれかの整数である)に対してアンチセンス鎖の配列番号はN+53である)とからなる二本鎖核酸、または該二本鎖核酸の少なくとも一方の鎖において、1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する二本鎖核酸。塩基の置換、欠失もしくは付加は、センス鎖側の配列においてなされることが好ましい。
(e)(a)~(d)のいずれかに記載の二本鎖核酸において、二重鎖形成部が27塩基対以下、好ましくは25塩基対以下、より好ましくは23塩基対以下、さらに好ましくは21塩基対以下、特に好ましくは19塩基対以下である二本鎖核酸。
(f)(a)~(e)のいずれかに記載の二本鎖核酸において、アンチセンス鎖核酸またはセンス鎖核酸の少なくとも一方の核酸の3’末端または5’末端に、ヌクレオチドまたはヌクレオチド誘導体が1~8塩基、好ましくは1~6塩基、より好ましくは1~3塩基、さらに好ましくは1~2塩基、特に好ましくは2塩基付加された二本鎖核酸。
Specific examples of the double-stranded nucleic acid include the following (a) to (f).
(A) an antisense strand nucleic acid comprising a base sequence represented by any of SEQ ID NOs: 54 to 106 corresponding to a complementary sequence of bcl-2 mRNA, and a sense strand complementary to the base sequence of the nucleic acid A double-stranded nucleic acid comprising a nucleic acid containing a base sequence.
(B) a double-stranded nucleic acid comprising an antisense strand nucleic acid comprising the base sequence represented by any of SEQ ID NOs: 54 to 106, and a sense strand nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid .
(C) an antisense strand nucleic acid from which at least one of the 5 ′ terminal or 3 ′ terminal of the nucleic acid consisting of the base sequence represented by any of SEQ ID NOs: 54 to 106 has been deleted by 1 to 4 bases; A double-stranded nucleic acid comprising a sense strand nucleic acid comprising a base sequence complementary to the nucleic acid base sequence.
(D) a sense strand nucleic acid comprising a base sequence represented by any of SEQ ID NOs: 1 to 53 and an antisense strand nucleic acid comprising a base sequence selected from SEQ ID NOs: 54 to 106 (wherein the sense strand SEQ ID NO: N (N is an integer from 1 to 53) and the antisense strand has a sequence number N + 53), or at least one strand of the double-stranded nucleic acid A double-stranded nucleic acid having -3 bases, preferably 1 to 2 bases, more preferably 1 base substituted, deleted or added, and having Bcl-2 protein expression inhibitory activity. The base substitution, deletion or addition is preferably performed in the sequence on the sense strand side.
(E) In the double-stranded nucleic acid according to any one of (a) to (d), the duplex forming part has 27 base pairs or less, preferably 25 base pairs or less, more preferably 23 base pairs or less, even more preferably Is a double-stranded nucleic acid of 21 base pairs or less, particularly preferably 19 base pairs or less.
(F) The double-stranded nucleic acid according to any one of (a) to (e), wherein a nucleotide or nucleotide derivative is present at the 3 ′ end or 5 ′ end of at least one of the antisense strand nucleic acid and the sense strand nucleic acid. A double-stranded nucleic acid added with 1 to 8 bases, preferably 1 to 6 bases, more preferably 1 to 3 bases, still more preferably 1 to 2 bases, and particularly preferably 2 bases.
 上記(f)の二本鎖核酸の具体的な例として、配列番号N’(ここで、N’は107~159のいずれかの整数を示す)で表される塩基配列からなる核酸と、その相補鎖として配列番号N’+53で表される塩基配列からなる核酸とからなる二本鎖核酸、または配列番号216で表される塩基配列からなる核酸と、配列番号217で表される塩基配列からなる核酸とからなる二本鎖核酸があげられる。 As a specific example of the double-stranded nucleic acid of (f) above, a nucleic acid comprising a base sequence represented by SEQ ID NO: N ′ (where N ′ represents any integer of 107 to 159), From a double-stranded nucleic acid consisting of a nucleic acid consisting of a base sequence represented by SEQ ID NO: N '+ 53 as a complementary strand, or a nucleic acid consisting of a base sequence represented by SEQ ID NO: 216, and a base sequence represented by SEQ ID NO: 217 A double-stranded nucleic acid consisting of
 Bcl-2蛋白質の発現を抑制する一本鎖核酸としては、bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸のアンチセンス鎖核酸を用いることもできる。そのような核酸の例として、配列番号54~106のいずれかで表される塩基配列からなる核酸や、これらの核酸において、1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する核酸もあげることができる。またこれらの核酸を含む、30塩基以下、好ましくは28塩基以下、より好ましくは26塩基以下、さらに好ましくは24塩基以下、特に好ましくは23塩基以下の核酸をあげることができる。 As the single-stranded nucleic acid that suppresses the expression of Bcl-2 protein, an antisense strand nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene can also be used. Examples of such nucleic acids include nucleic acids having the base sequence represented by any of SEQ ID NOs: 54 to 106, and in these nucleic acids, 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base Examples also include nucleic acids that are substituted, deleted or added and have Bcl-2 protein expression inhibitory activity. Examples of the nucleic acid containing these nucleic acids include 30 bases or less, preferably 28 bases or less, more preferably 26 bases or less, still more preferably 24 bases or less, and particularly preferably 23 bases or less.
 Bcl-2蛋白質の発現を抑制する一本鎖核酸としては、bcl-2遺伝子の非翻訳領域の一部の塩基配列からなる核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる、下記(A)~(G)の一本鎖核酸もあげられる。
(A)bcl-2のmRNAの相補配列に該当する、配列番号54~106のいずれかで表される塩基配列を含むアンチセンス鎖と、該塩基配列に対して相補的なセンス鎖とをスペーサー配列を介して連結してなる一本鎖核酸。
(B)配列番号54~106のいずれかで表される塩基配列からなるアンチセンス鎖と、該塩基配列に対して相補的な塩基配列からなるセンス鎖とをスペーサー配列を介して連結してなる一本鎖核酸。
(C)配列番号54~106のいずれかで表される塩基配列からなる核酸の5’末端または3’末端のうち、少なくとも一方の末端が1~4塩基削除されたアンチセンス鎖と、該塩基配列に対して相補的な塩基配列からなるセンス鎖核酸とをスペーサー配列を介して連結してなる一本鎖核酸。
(D)配列番号54~106から選ばれる塩基配列からなるアンチセンス鎖と、該塩基配列に対して相補的な配列番号1~53のいずれかで表される塩基配列からなるセンス鎖(ここで、センス鎖の配列番号N(Nは1~53のいずれかの整数を示す)に対してアンチセンス鎖の配列番号はN+53である)とをスペーサー配列を介して連結してなる一本鎖核酸に含まれる、センス鎖またはアンチセンス鎖の少なくとも一方の鎖において、1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する一本鎖核酸。塩基の置換、欠失もしくは付加は、センス鎖側の配列においてなされることが好ましい。
(E)(A)~(D)のいずれかに記載の一本鎖核酸に含まれるセンス鎖とアンチセンス鎖とが27塩基対以下、好ましくは25塩基対以下、より好ましくは23塩基対以下、さらに好ましくは21塩基対以下、特に好ましくは19塩基対以下の二重鎖を形成する一本鎖核酸。
(F)ステムループ構造によって二重鎖形成部を形成する(A)~(E)のいずれかに記載の一本鎖核酸。
(G)50~70塩基長からなる(A)~(F)のいずれかに記載の一本鎖核酸。
The single-stranded nucleic acid that suppresses the expression of Bcl-2 protein includes a nucleic acid consisting of a partial base sequence of the untranslated region of the bcl-2 gene and a base sequence complementary to the base sequence of the nucleic acid. Examples of the single-stranded nucleic acids shown in the following (A) to (G) are also included.
(A) an antisense strand comprising the base sequence represented by any of SEQ ID NOs: 54 to 106 corresponding to a complementary sequence of bcl-2 mRNA and a sense strand complementary to the base sequence as a spacer A single-stranded nucleic acid linked through a sequence.
(B) An antisense strand consisting of the base sequence represented by any of SEQ ID NOs: 54 to 106 and a sense strand consisting of a base sequence complementary to the base sequence are linked via a spacer sequence Single-stranded nucleic acid.
(C) an antisense strand from which at least one of the 5 ′ end or 3 ′ end of the nucleic acid consisting of the base sequence represented by any of SEQ ID NOs: 54 to 106 has been deleted by 1 to 4 bases, and the base A single-stranded nucleic acid obtained by linking a sense strand nucleic acid comprising a base sequence complementary to a sequence via a spacer sequence.
(D) an antisense strand consisting of a base sequence selected from SEQ ID NOs: 54 to 106 and a sense strand consisting of a base sequence represented by any of SEQ ID NOs: 1 to 53 complementary to the base sequence (here A single-stranded nucleic acid obtained by linking a sense strand SEQ ID NO: N (N represents an integer of 1 to 53) and an antisense strand SEQ ID NO: N + 53 via a spacer sequence 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base is substituted, deleted or added in at least one of the sense strand and the antisense strand contained in and the expression of Bcl-2 protein Single-stranded nucleic acid having inhibitory activity. The base substitution, deletion or addition is preferably performed in the sequence on the sense strand side.
(E) The sense strand and the antisense strand contained in the single-stranded nucleic acid according to any one of (A) to (D) are 27 base pairs or less, preferably 25 base pairs or less, more preferably 23 base pairs or less. More preferably, it is a single-stranded nucleic acid that forms a double strand of 21 base pairs or less, particularly preferably 19 base pairs or less.
(F) The single-stranded nucleic acid according to any one of (A) to (E), which forms a double-stranded forming part by a stem-loop structure.
(G) The single-stranded nucleic acid according to any one of (A) to (F), which has a length of 50 to 70 bases.
 これらの一本鎖核酸または二本鎖核酸を細胞に導入することにより、Bcl-2蛋白質の発現を抑制することができる。アンチセンスDNAを用いたBcl-2蛋白質の発現抑制においては、一般的にアンチセンスDNAを数百nM~数十μMの濃度で必要とするのと比較して、例えば本発明の二本鎖核酸は、数nM~数百nMの濃度でも、細胞に導入した後、24時間以上、例えば72時間培養した段階でもBcl-2蛋白質の発現を抑制することができる。 By introducing these single-stranded nucleic acid or double-stranded nucleic acid into cells, the expression of Bcl-2 protein can be suppressed. In the suppression of Bcl-2 protein expression using antisense DNA, for example, compared with the case where antisense DNA is generally required at a concentration of several hundreds nM to several tens μM, for example, the double-stranded nucleic acid of the present invention Can suppress the expression of Bcl-2 protein even at a concentration of several nM to several hundreds of nM even after culturing for 24 hours or more, for example, 72 hours after introduction into cells.
 また、本発明の一本鎖核酸または二本鎖核酸のBcl-2蛋白質の発現抑制活性の評価は、該核酸等を培養系癌細胞などにカチオン性リポソームなどを用いてトランスフェクションし、一定時間培養した後、当該癌細胞におけるBcl-2蛋白質の発現量をウエスタンブロッティングで定量することにより行うことができる。また、bcl-2のmRNAについてはRT-PCRにより定量することができる。さらに細胞増殖を抑制する効果については、本発明の一本鎖核酸または二本鎖核酸を導入した細胞の生細胞数を算出することにより、評価することができる。 The evaluation of the Bcl-2 protein expression inhibitory activity of the single-stranded nucleic acid or double-stranded nucleic acid of the present invention was carried out by transfecting the nucleic acid or the like into a cultured cancer cell using a cationic liposome or the like for a certain period of time. After culturing, the expression level of Bcl-2 protein in the cancer cells can be quantified by Western blotting. Further, bcl-2 mRNA can be quantified by RT-PCR. Furthermore, the effect of suppressing cell proliferation can be evaluated by calculating the number of living cells of cells into which the single-stranded nucleic acid or double-stranded nucleic acid of the present invention has been introduced.
3.本発明の医薬組成物
 本発明はまた、本発明の一本鎖核酸、二本鎖核酸等の核酸またはベクターを有効成分として含有する医薬組成物に関する。当該医薬組成物は、核酸を細胞内に移行させるのに有効な担体をさらに含むことができる。本発明の医薬組成物はBcl-2蛋白質の過剰発現が原因となっている疾患、アポトーシスを誘導することが望ましい疾患、癌、AIDS、ARC(AIDS関連疾患)またはこう原病(リウマチ)などの治療または予防のために用いることができる。癌としては、例えばリンパ腫、白血病などの血液学的悪性疾患、および肝臓癌、皮膚癌、乳癌、肺癌、消化器癌、前立腺癌、子宮癌、膀胱癌などの固形癌をあげることができる。
3. Pharmaceutical Composition of the Present Invention The present invention also relates to a pharmaceutical composition comprising a nucleic acid such as a single-stranded nucleic acid or a double-stranded nucleic acid of the present invention or a vector as an active ingredient. The pharmaceutical composition can further comprise an effective carrier for transferring the nucleic acid into the cell. The pharmaceutical composition of the present invention is a disease caused by overexpression of Bcl-2 protein, a disease in which apoptosis is desirably induced, cancer, AIDS, ARC (AIDS-related disease) or collagen disease (rheumatic), etc. Can be used for treatment or prevention. Examples of cancer include hematological malignancies such as lymphoma and leukemia, and solid cancers such as liver cancer, skin cancer, breast cancer, lung cancer, digestive organ cancer, prostate cancer, uterine cancer, and bladder cancer.
 核酸を細胞内に移行させるのに有効な担体としては、例えばカチオン性担体があげられる。カチオン性担体としては、カチオン性リポソームおよびカチオン性ポリマーなどがあげられる。また、核酸を細胞内に移行させるのに有効な担体として、ウイルスエンベロープを利用した担体を用いてもよい。カチオン性リポソームとしては、2-O-(2-ジエチルアミノエチル)カルバモイル-1,3-O-ジオレオイルグリセロールを含有するリポソーム(以下リポソームAともいう)、オリゴフェクトアミン(Invitrogen社)、リポフェクチン(Invitrogen社)、リポフェクトアミン(Invitrogen社)、リポフェクトアミン2000(Invitrogen社)、DMRIE-C(Invitrogen社)、GeneSilencer(Gene Therapy Systems社)、TransMessenger(QIAGEN社)、TransIT TKO(Mirus社)、などが好ましく用いられる。カチオン性ポリマーとしては、JetSI(Qbiogene社)、Jet-PEI(ポリエチレンイミン;Qbiogene社)などが好ましく用いられる。ウイルスエンベロープを利用した担体としては、GenomeOne(HVJ-Eリポソーム;石原産業社)などが好ましく用いられる。 Examples of carriers that are effective for transferring nucleic acids into cells include cationic carriers. Examples of the cationic carrier include cationic liposomes and cationic polymers. Further, a carrier utilizing a viral envelope may be used as an effective carrier for transferring nucleic acids into cells. Cationic liposomes include 2-O- (2-diethylaminoethyl) carbamoyl-1,3-O-dioleoylglycerol-containing liposomes (hereinafter also referred to as liposome A), oligofectamine (Invitrogen), lipofectin ( Invitrogen), Lipofectamine (Invitrogen), Lipofectamine 2000 (Invitrogen), DMRIE-C (Invitrogen), GeneSilencer (Gene Therapy Systems), TransMessenger (QIAGEN M), TransMens (QIAGEN Mus), TransMensi (O Etc. are preferably used. As the cationic polymer, JetSI (Qbiogene), Jet-PEI (polyethyleneimine; Qbiogene) and the like are preferably used. As the carrier using the virus envelope, GenomeOne (HVJ-E liposome; Ishihara Sangyo Co., Ltd.) is preferably used.
 本発明の一本鎖核酸、二本鎖核酸またはベクターと担体とを含む組成物は、当業者に既知の方法により調製することができる。例えば、適当な濃度の担体の分散液と一本鎖核酸、二本鎖核酸またはベクター溶液とを混合して調製することができる。カチオン性担体を用いる場合、一本鎖核酸、二本鎖核酸またはベクターは水溶液中で負電荷を帯びているため、常法により水溶液中で混合することによって容易に調製することができる。該組成物を調製するために用いる水性溶媒としては、注射用水、注射用蒸留水、生理食塩水などの電解質液、ブドウ糖液、マルトース液などの糖液などがあげられる。また、該組成物を調製する際のpHおよび温度などの条件は当業者が適宜選択できる。 A composition comprising a single-stranded nucleic acid, double-stranded nucleic acid or vector and a carrier of the present invention can be prepared by methods known to those skilled in the art. For example, it can be prepared by mixing a carrier dispersion of an appropriate concentration with a single-stranded nucleic acid, double-stranded nucleic acid or vector solution. When a cationic carrier is used, a single-stranded nucleic acid, a double-stranded nucleic acid or a vector is negatively charged in an aqueous solution and can be easily prepared by mixing in an aqueous solution by a conventional method. Examples of the aqueous solvent used for preparing the composition include electrolyte solutions such as water for injection, distilled water for injection, and physiological saline, and sugar solutions such as glucose solution and maltose solution. Moreover, those skilled in the art can appropriately select conditions such as pH and temperature when preparing the composition.
 該組成物は、必要ならば超音波分散装置や高圧乳化装置などを用いて分散処理を行うことにより、均一な組成物とすることもできる。一本鎖核酸、二本鎖核酸またはベクターと担体とを含む組成物の調製に最適な方法および条件は、用いる担体に依存するので、当業者であれば、上記の方法にとらわれることなく、用いる担体に最適な方法を選択できる。 The composition can be made into a uniform composition by carrying out a dispersion treatment using an ultrasonic dispersion device or a high-pressure emulsification device if necessary. The optimal method and conditions for preparing a composition comprising a single-stranded nucleic acid, a double-stranded nucleic acid or a vector and a carrier depend on the carrier to be used, and those skilled in the art can use it without being bound by the above method. The optimum method for the carrier can be selected.
 一本鎖核酸、二本鎖核酸またはベクターと担体とを含む組成物としては、一本鎖核酸、二本鎖核酸またはベクターとリード粒子とを構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜から構成されるリポソームも用いられるが、このうち、該脂質二重膜の構成成分がエタノールに可溶で、かつ該構成成分の一部または全部が5vol%エタノール水溶液中で分散、すなわち凝集体、ミセル等を形成して乳濁もしくはエマルジョン化し、該複合粒子の一部または全部が5vol%エタノール水溶液中で分散するものが好適に用いられる。 As a composition comprising a single-stranded nucleic acid, a double-stranded nucleic acid or a vector and a carrier, a composite particle comprising a single-stranded nucleic acid, a double-stranded nucleic acid or vector and a lead particle as constituent components, and the composite particle are coated. Liposomes composed of lipid bilayer membranes are also used, of which the constituent components of the lipid bilayer membrane are soluble in ethanol and part or all of the constituent components are dispersed in a 5 vol% ethanol aqueous solution. That is, it is preferable to use an aggregate, micelle or the like that is emulsified or emulsified, and part or all of the composite particles are dispersed in a 5 vol% ethanol aqueous solution.
 該複合粒子を構成するリード粒子としては、例えば、脂質集合体、リポソーム、エマルジョン粒子、高分子、金属コロイド、微粒子製剤等を構成成分とする微粒子、好ましくはリポソームを構成成分とする微粒子が用いられる。 As the lead particles constituting the composite particles, for example, fine particles containing lipid aggregates, liposomes, emulsion particles, polymers, metal colloids, fine particle preparations, and the like, preferably fine particles containing liposomes, are used. .
 リード粒子としてのリポソームを構成成分とする微粒子としては、例えば脂質、界面活性剤等、好ましくは脂質、または脂質および界面活性剤を構成成分とするものがあげられる。 Examples of the fine particles containing liposomes as lead particles as constituents include lipids, surfactants, etc., preferably lipids, or those containing lipids and surfactants as constituents.
 脂質としては、単純脂質、複合脂質または誘導脂質のいかなるものであってもよく、例えばリン脂質、グリセロ糖脂質、スフィンゴ糖脂質、スフィンゴイド、ステロールまたはカチオン性脂質等があげられるが、好ましくはリン脂質またはカチオン性脂質が用いられる。 The lipid may be any of simple lipids, complex lipids or derived lipids, such as phospholipids, glyceroglycolipids, sphingoglycolipids, sphingoids, sterols or cationic lipids, preferably phosphorous Lipids or cationic lipids are used.
 リン脂質としては、例えばホスファチジルコリン(具体的には大豆ホスファチジルコリン、卵黄ホスファチジルコリン(EPC)、ジステアロイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジミリストイルホスファチジルコリン、ジオレオイルホスファチジルコリン等)、ホスファチジルエタノールアミン(具体的にはジステアロイルホスファチジルエタノールアミン(DSPE)、ジパルミトイルホスファチジルエタノールアミン、ジオレオイルホスファチジルエタノールアミン等)、グリセロリン脂質(具体的にはホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、リゾホスファチジルコリン等)、スフィンゴリン脂質(具体的にはスフィンゴミエリン、セラミドホスホエタノールアミン、セラミドホスホグリセロール、セラミドホスホグリセロリン酸等)、グリセロホスホノ脂質、スフィンゴホスホノ脂質、天然レシチン(具体的には卵黄レシチン、大豆レシチン等)または水素添加リン脂質(具体的には水素添加大豆ホスファチジルコリン等)等の天然または合成のリン脂質があげられる。 Examples of phospholipids include phosphatidylcholine (specifically soybean phosphatidylcholine, egg yolk phosphatidylcholine (EPC), distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, dioleoylphosphatidylcholine, etc.), phosphatidylethanolamine (specifically distearoyl). Phosphatidylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine, dioleoylphosphatidylethanolamine, etc.), glycerophospholipid (specifically phosphatidylserine, phosphatidic acid, phosphatidylglycerol, phosphatidylinositol, lysophosphatidylcholine, etc.), sphingophospholipid ( Specifically, sphingomyelin and ceramide phosphoethanol , Ceramide phosphoglycerol, ceramide phosphoglycerophosphate, etc.), glycerophosphonolipid, sphingophosphonolipid, natural lecithin (specifically egg yolk lecithin, soybean lecithin, etc.) or hydrogenated phospholipid (specifically hydrogenated soybean) Natural or synthetic phospholipids such as phosphatidylcholine.
 カチオン性脂質としては、例えばN-[1-(2,3-ジオレオイルプロピル)]-N,N,N-トリメチル塩化アンモニウム(DOTAP)、N-[1-(2,3-ジオレオイルプロピル)]-N,N-ジメチルアミン(DODAP)、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N,N-トリメチル塩化アンモニウム(DOTMA)、2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキシアミド)エチル]-N,N-ジメチル-1-プロパナミニウムトリフルオロ酢酸(DOSPA)、N-[1-(2,3-ジテトラデシルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウム(DMRIE)またはN-[1-(2,3-ジオレイルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウム(DORIE)等があげられる。 Examples of the cationic lipid include N- [1- (2,3-dioleoylpropyl)]-N, N, N-trimethylammonium chloride (DOTAP), N- [1- (2,3-dioleoyl). Propyl)]-N, N-dimethylamine (DODAP), N- [1- (2,3-dioleyloxypropyl)]-N, N, N-trimethylammonium chloride (DOTMA), 2,3-dioleyl Oxy-N- [2- (sperminecarboxamido) ethyl] -N, N-dimethyl-1-propanaminium trifluoroacetic acid (DOSPA), N- [1- (2,3-ditetradecyloxypropyl)] -N, N-Dimethyl-N-hydroxyethyl ammonium bromide (DMRIE) or N- [1- (2,3-dioleyloxypropyl)]-N, N-dimethyl-N-hydroxyethyl ammonium bromide (DORIE ) Etc.
 リード粒子は、例えば糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤等を含有することができる。糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤は、リード粒子として含有されてもよく、リード粒子に加えて用いてもよい。 The lead particles can contain, for example, a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant. One or more lipid derivatives or fatty acid derivatives or surfactants selected from sugars, peptides, nucleic acids and water-soluble polymers may be contained as lead particles, or may be used in addition to lead particles.
 糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤としては、好ましくは、糖脂質、または水溶性高分子の脂質誘導体もしくは脂肪酸誘導体があげられ、より好ましくは、水溶性高分子の脂質誘導体または脂肪酸誘導体があげられる。糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤は、分子の一部がリード粒子の他の構成成分と例えば疎水性親和力、静電的相互作用等で結合する性質をもち、他の部分がリード粒子の製造時の溶媒と例えば親水性親和力、静電的相互作用等で結合する性質をもつ、2面性をもつ物質であるのが好ましい。 The lipid derivative or fatty acid derivative or surfactant of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers is preferably a glycolipid or a lipid derivative or fatty acid derivative of a water-soluble polymer. More preferred are water-soluble polymer lipid derivatives or fatty acid derivatives. Lipid derivatives or fatty acid derivatives or surfactants of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers are those in which part of the molecule and other components of the lead particle, such as hydrophobic affinity, electrostatic It is a substance with a two-sided property that has the property of binding due to mechanical interaction, etc., and the other part has the property of binding to the solvent at the time of lead particle production, for example, hydrophilic affinity, electrostatic interaction, etc. Is preferred.
 糖、ペプチドまたは核酸の脂質誘導体または脂肪酸誘導体としては、例えばショ糖、ソルビトール、乳糖等の糖、例えばカゼイン由来ペプチド、卵白由来ペプチド、大豆由来ペプチド、グルタチオン等のペプチド、または例えばDNA、RNA等の核酸と、脂質または例えばステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸等の脂肪酸とが結合してなるもの等があげられる。糖の脂質誘導体または脂肪酸誘導体としては、例えばグリセロ糖脂質またはスフィンゴ糖脂質等も含まれる。 Examples of lipid derivatives or fatty acid derivatives of sugars, peptides, or nucleic acids include sugars such as sucrose, sorbitol, and lactose, such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides, peptides such as glutathione, or DNA, RNA, etc. Examples include nucleic acids and lipids or fatty acids such as stearic acid, palmitic acid, myristic acid, lauric acid and the like. Examples of the sugar lipid derivative or fatty acid derivative include glyceroglycolipid and glycosphingolipid.
 水溶性高分子の脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール、ポリグリセリン、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、オリゴ糖、デキストリン、水溶性セルロース、デキストラン、コンドロイチン硫酸、ポリグリセリン、キトサン、ポリビニルピロリドン、ポリアスパラギン酸アミド、ポリ-L-リジン、マンナン、プルラン、オリゴグリセロール等またはそれらの誘導体と、脂質、または例えばステアリン酸、パルミチン酸、ミリスチン酸またはラウリン酸等の脂肪酸とが結合してなるもの等があげられ、より好ましくは、ポリエチレングリコール誘導体、ポリグリセリン誘導体等の脂質誘導体または脂肪酸誘導体があげられ、さらに好ましくは、ポリエチレングリコール誘導体の脂質誘導体または脂肪酸誘導体があげられる。 Examples of the water-soluble polymer lipid derivative or fatty acid derivative include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, polyglycerin, Chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan, oligoglycerol, etc. or their derivatives and lipids or fatty acids such as stearic acid, palmitic acid, myristic acid or lauric acid are combined More preferred are lipid derivatives or fatty acid derivatives such as polyethylene glycol derivatives and polyglycerin derivatives, and more preferred are polyethylene glycol derivatives. Lipid derivative or fatty acid derivative of the call derivatives.
 ポリエチレングリコール誘導体の脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール化脂質(具体的にはポリエチレングリコール-ホスファチジルエタノールアミン(より具体的には1,2-ジステアロイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000](PEG-DSPE)等)、ポリオキシエチレン硬化ヒマシ油60、クレモフォアイーエル(CREMOPHOR EL)等)、ポリエチレングリコールソルビタン脂肪酸エステル類(具体的にはモノオレイン酸ポリオキシエチレンソルビタン等)またはポリエチレングリコール脂肪酸エステル類等があげられ、より好ましくは、ポリエチレングリコール化脂質があげられる。 Examples of lipid derivatives or fatty acid derivatives of polyethylene glycol derivatives include polyethylene glycolated lipids (specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine). -N- [methoxy (polyethylene glycol) -2000] (PEG-DSPE), etc.), polyoxyethylene hydrogenated castor oil 60, Cremophor EL, etc.), polyethylene glycol sorbitan fatty acid esters (specifically mono Oleic acid polyoxyethylene sorbitan, etc.) or polyethylene glycol fatty acid esters, and the like, more preferably polyethylene glycolated lipids.
 ポリグリセリン誘導体の脂質誘導体または脂肪酸誘導体としては、例えばポリグリセリン化脂質(具体的にはポリグリセリン-ホスファチジルエタノールアミン等)またはポリグリセリン脂肪酸エステル類等があげられ、より好ましくは、ポリグリセリン化脂質があげられる。 Examples of lipid derivatives or fatty acid derivatives of polyglycerin derivatives include polyglycerinized lipids (specifically polyglycerin-phosphatidylethanolamine) and polyglycerin fatty acid esters, and more preferably polyglycerinized lipids. can give.
 界面活性剤としては、例えば非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤があげられる。 Examples of the surfactant include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants.
 非イオン性界面活性剤としては、例えばモノオレイン酸ポリオキシエチレンソルビタン(具体的にはポリソルベート80等)、ポリオキシエチレンポリオキシプロピレングリコール(具体的にはプルロニックF68等)、ソルビタン脂肪酸エステル(具体的にはソルビタンモノラウレート、ソルビタンモノオレエート等)、ポリオキシエチレン誘導体(具体的にはポリオキシエチレン硬化ヒマシ油60、ポリオキシエチレンラウリルアルコール等)、グリセリン脂肪酸エステル等があげられる。 Nonionic surfactants include, for example, polyoxyethylene sorbitan monooleate (specifically polysorbate 80 etc.), polyoxyethylene polyoxypropylene glycol (specifically pluronic F68 etc.), sorbitan fatty acid ester (specifically Sorbitan monolaurate, sorbitan monooleate, etc.), polyoxyethylene derivatives (specifically, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene lauryl alcohol, etc.), glycerin fatty acid esters and the like.
 アニオン性界面活性剤としては、アシルサルコシン、アルキル硫酸ナトリウム、アルキルベンゼンスルホン酸塩、炭素数7~22の脂肪酸ナトリウム等、具体的にはドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、コール酸ナトリウム、デオキシコール酸ナトリウム、タウロデオキシコール酸ナトリウム等があげられる。 Examples of the anionic surfactant include acyl sarcosine, sodium alkyl sulfate, alkylbenzene sulfonate, sodium fatty acid having 7 to 22 carbon atoms, such as sodium dodecyl sulfate, sodium lauryl sulfate, sodium cholate, sodium deoxycholate. And sodium taurodeoxycholate.
 カチオン性界面活性剤としては、アルキルアミン塩、アシルアミン塩、第四級アンモニウム塩、アミン誘導体等、具体的には塩化ベンザルコニウム、アシルアミノエチルジエチルアミン塩、N-アルキルポリアルキルポリアミン塩、脂肪酸ポリエチレンポリアミド、セチルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムブロミド、アルキルポリオキシエチレンアミン、N-アルキルアミノプロピルアミン、脂肪酸トリエタノールアミンエステル等があげられる。 Cationic surfactants include alkylamine salts, acylamine salts, quaternary ammonium salts, amine derivatives, etc., specifically benzalkonium chloride, acylaminoethyldiethylamine salts, N-alkylpolyalkylpolyamine salts, fatty acid polyethylene Examples thereof include polyamide, cetyltrimethylammonium bromide, dodecyltrimethylammonium bromide, alkylpolyoxyethyleneamine, N-alkylaminopropylamine, and fatty acid triethanolamine ester.
 両性界面活性剤としては、3-[(3-コールアミドプロピル)ジメチルアンモニオ]-1-プロパンスルホン酸、N-テトラデシル-N,N-ジメチル-3-アンモニオ-1-プロパンスルホン酸等があげられる。 Examples of amphoteric surfactants include 3-[(3-cholamidopropyl) dimethylammonio] -1-propanesulfonic acid, N-tetradecyl-N, N-dimethyl-3-ammonio-1-propanesulfonic acid, and the like. It is done.
 該リード粒子は、カチオン性物質を含有していることが好ましく、正電荷をもつことがさらに好ましい。
 カチオン性物質としては、例えば脂質におけるカチオン性物質、カチオン性界面活性剤(上記と同義)、カチオン性高分子等、等電点以下の値のpHでカチオン性を呈する蛋白質またはペプチド等があげられ、好ましくはN-[1-(2,3-ジオレオイルプロピル)]-N,N,N-トリメチル塩化アンモニウム、N-[1-(2,3-ジオレオイルプロピル)]-N,N-ジメチルアミン、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N,N-トリメチル塩化アンモニウム、N-[1-(2,3-ジテトラデシルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウムおよび3β-[N-(N',N'ジメチルアミノエチル)カルバモイル]コレステロールから選ばれる一つ以上があげられる。
The lead particles preferably contain a cationic substance, and more preferably have a positive charge.
Examples of the cationic substance include a cationic substance in lipid, a cationic surfactant (as defined above), a cationic polymer, etc., such as a protein or peptide that exhibits a cationic property at a pH below the isoelectric point. N- [1- (2,3-dioleoylpropyl)]-N, N, N-trimethylammonium chloride, N- [1- (2,3-dioleoylpropyl)]-N, N -Dimethylamine, N- [1- (2,3-dioleyloxypropyl)]-N, N, N-trimethylammonium chloride, N- [1- (2,3-ditetradecyloxypropyl)]-N , N-dimethyl-N-hydroxyethylammonium bromide and 3β- [N- (N ′, N′dimethylaminoethyl) carbamoyl] cholesterol.
 該リード粒子は、脂質集合体、リポソーム、エマルジョン粒子、高分子、金属コロイド、微粒子製剤等を2つ以上組み合わせた複合体を構成成分としていてもよく、脂質集合体、リポソーム、エマルジョン粒子、高分子、金属コロイド、微粒子製剤等と他の化合物(例えば糖、脂質、無機化合物等)とを組み合わせた複合体を構成成分としていてもよい。 The lead particles may be composed of a complex comprising a combination of two or more lipid aggregates, liposomes, emulsion particles, polymers, metal colloids, fine particle formulations, etc., and lipid aggregates, liposomes, emulsion particles, polymers In addition, a complex formed by combining a metal colloid, a fine particle preparation, and the like with another compound (eg, sugar, lipid, inorganic compound, etc.) may be used as a constituent component.
 リード粒子の大きさは、平均粒子径が数nm~数μmであることが好ましく、約10nm~1000nmであることがより好ましく、約50nm~300nmであることがさらに好ましく、約50nm~200nmであることが特に好ましい。 The size of the lead particle is preferably an average particle diameter of several nm to several μm, more preferably about 10 nm to 1000 nm, further preferably about 50 nm to 300 nm, and about 50 nm to 200 nm. It is particularly preferred.
 該複合粒子を被覆する脂質二重膜の構成成分としては、上記のリポソームを構成成分とする微粒子と同義の、脂質、界面活性剤等があげられる。
 脂質としては、リン脂質、グリセロ糖脂質またはスフィンゴ糖脂質等が好ましく、リン脂質がより好ましく、EPCがさらに好ましい。界面活性剤としては、ポリエチレングリコールアルキルエーテル等も用いてもよく、ポリオキシエチレンポリオキシプロピレングリコール、グリセリン脂肪酸エステルまたはポリエチレングリコールアルキルエーテル等が好適に用いられる。
 これら脂質または界面活性剤は単独でまたは2種以上を組み合わせて用いることができる。
Examples of the constituent components of the lipid bilayer membrane that covers the composite particles include lipids, surfactants, and the like, which are synonymous with the fine particles having the liposome as a constituent component.
As the lipid, phospholipid, glyceroglycolipid, sphingoglycolipid and the like are preferable, phospholipid is more preferable, and EPC is more preferable. As the surfactant, polyethylene glycol alkyl ether or the like may be used, and polyoxyethylene polyoxypropylene glycol, glycerin fatty acid ester, polyethylene glycol alkyl ether, or the like is preferably used.
These lipids or surfactants can be used alone or in combination of two or more.
 複合粒子および該複合粒子を被覆する脂質二重膜から構成されるリポソームに対する脂質二重膜の割合は、重量比で約1:0.1~1:1000が好ましく、約1:1~1:10がより好ましい。該リポソームの大きさは、平均粒子径が数nm~数μmであることが好ましく、約10nm~1000nmであることがより好ましく、約50nm~300nmであることがさらに好ましく、約50nm~200nmであることが特に好ましい。 The ratio of the lipid bilayer to the liposome composed of the composite particle and the lipid bilayer coating the composite particle is preferably about 1: 0.1 to 1: 1000 by weight, and about 1: 1 to 1:10. More preferred. The liposome preferably has an average particle diameter of several nm to several μm, more preferably about 10 nm to 1000 nm, further preferably about 50 nm to 300 nm, and about 50 nm to 200 nm. It is particularly preferred.
 該リポソームは、複合粒子を被覆する脂質二重膜の構成成分が可溶である極性有機溶媒または該溶媒と水性媒体との混液に、該複合粒子を分散させ、また該脂質二重膜の構成成分を溶解または分散させた後、該液に水性媒体を加えてリポソームの分散液を形成させることにより調製することができる。
 極性有機溶媒としては、例えばメタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、tert-ブタノール等のアルコール、グリセリン、エチレングリコール、プロピレングリコール等のグリコール、ポリエチレングリコール等のポリアルキレングリコールなどがあげられるが、通常はアルコールが用いられ、好適にはエタノールが用いられる。水性媒体としては、通常水が用いられるが、リポソームの分散液の形成に支障がない限り、塩、酸、有機溶媒等を含有していてもよい。
 該リポソームは、例えばWO2002/028367、WO2006/080118等に記載の方法にしたがって調製することもできる。
The liposome is obtained by dispersing the composite particles in a polar organic solvent in which the components of the lipid bilayer coating the composite particles are soluble or a mixture of the solvent and an aqueous medium. After dissolving or dispersing the components, an aqueous medium can be added to the liquid to form a liposome dispersion.
Examples of the polar organic solvent include alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, and tert-butanol, glycols such as glycerin, ethylene glycol, and propylene glycol, and polymers such as polyethylene glycol. Alkylene glycol and the like can be mentioned, but alcohol is usually used, and ethanol is preferably used. As the aqueous medium, water is usually used, but it may contain a salt, an acid, an organic solvent, etc. as long as it does not hinder the formation of a liposome dispersion.
The liposome can also be prepared according to the method described in, for example, WO2002 / 028367, WO2006 / 080118 and the like.
 本発明の医薬組成物に含まれる一本鎖核酸、二本鎖核酸またはベクターと担体との配合比は、一本鎖核酸、二本鎖核酸またはベクターの1重量部に対して担体1~200重量部が適当である。好ましくは、一本鎖核酸、二本鎖核酸またはベクターの1重量部に対して担体2.5~100重量部、さらに好ましくは担体10~20重量部である。 The compounding ratio of the single-stranded nucleic acid, double-stranded nucleic acid or vector and carrier contained in the pharmaceutical composition of the present invention is 1 to 200 carriers per 1 part by weight of the single-stranded nucleic acid, double-stranded nucleic acid or vector. Part by weight is appropriate. Preferably, the amount is 2.5 to 100 parts by weight, more preferably 10 to 20 parts by weight, based on 1 part by weight of the single-stranded nucleic acid, double-stranded nucleic acid or vector.
 本発明の医薬組成物には、上記担体の他に、医薬的に許容できるキャリアーまたは希釈剤などを含んでいてもよい。医薬的に許容できるキャリアーまたは希釈剤などは、本質的に化学的に不活性および無害な組成物であり、本発明の医薬組成物の生物学的活性に全く影響を与えないものである。そのようなキャリアーまたは希釈剤の例は、塩溶液、糖溶液、グリセロール溶液、エタノールなどがあるが、これらに限定されない。 The pharmaceutical composition of the present invention may contain a pharmaceutically acceptable carrier or diluent in addition to the above carrier. Pharmaceutically acceptable carriers or diluents and the like are essentially chemically inert and harmless compositions that do not affect the biological activity of the pharmaceutical composition of the present invention at all. Examples of such carriers or diluents include but are not limited to salt solutions, sugar solutions, glycerol solutions, ethanol and the like.
 本発明の医薬組成物は、疾患の治療または予防に有効な量の一本鎖核酸、二本鎖核酸またはベクターを含み、かつ、患者に適切に投与できるような形態で提供される。本発明の医薬組成物の製剤形態は、例えば注射剤、点眼剤、吸入用などの液剤、例えば軟膏、ローション剤などの外用剤等であってもよい。 The pharmaceutical composition of the present invention contains a single-stranded nucleic acid, double-stranded nucleic acid or vector effective in treating or preventing a disease and is provided in a form that can be appropriately administered to a patient. The preparation form of the pharmaceutical composition of the present invention may be, for example, injections, eye drops, liquids for inhalation, etc., for example, external preparations such as ointments, lotions and the like.
 液剤の場合、本発明の医薬組成物における一本鎖核酸、二本鎖核酸またはベクターの濃度範囲は通常、0.001~25%(w/v)であり、好ましくは0.01~5%(w/v)であり、より好ましくは0.1~2%(w/v)である。本発明の医薬組成物は医薬的に許容される任意の添加剤、例えば、乳化補助剤、安定化剤、等張化剤、pH調整剤等を適当量含有していてもよい。医薬的に許容される任意の添加剤は、該複合体の分散前でも分散後でも適当な工程で添加することができる。 In the case of a liquid preparation, the concentration range of single-stranded nucleic acid, double-stranded nucleic acid or vector in the pharmaceutical composition of the present invention is usually 0.001 to 25% (w / v), preferably 0.01 to 5%. (W / v), more preferably 0.1 to 2% (w / v). The pharmaceutical composition of the present invention may contain an appropriate amount of any pharmaceutically acceptable additive, for example, an emulsification aid, a stabilizer, an isotonic agent, a pH adjuster and the like. Any pharmaceutically acceptable additive can be added in an appropriate step before or after dispersion of the complex.
 凍結乾燥製剤は、一本鎖核酸、二本鎖核酸またはベクターと担体とを分散処理した後、凍結乾燥処理することにより調製することができる。凍結乾燥処理は、常法により行うことができる。例えば、上記の分散処理後の複合体溶液を無菌状態にて所定量をバイアル瓶に分注し、約-40~-20℃の条件で予備乾燥を約2時間程度行い、約0~10℃で減圧下に一次乾燥を行い、次いで、約15~25℃で減圧下に二次乾燥して凍結乾燥することができる。そして、例えばバイアル内部を窒素ガスで置換し、打栓することにより、本発明の医薬組成物の凍結乾燥製剤を得ることができる。 The lyophilized preparation can be prepared by subjecting a single-stranded nucleic acid, a double-stranded nucleic acid, or a vector and a carrier to a dispersion treatment and then a freeze-drying treatment. The lyophilization treatment can be performed by a conventional method. For example, a predetermined amount of the complex solution after the dispersion treatment is aseptically dispensed into a vial and pre-dried for about 2 hours under the condition of about −40 to −20 ° C. and about 0 to 10 ° C. Primary drying under reduced pressure, followed by secondary drying under reduced pressure at about 15-25 ° C. and lyophilization. Then, for example, by replacing the inside of the vial with nitrogen gas and stoppering, a freeze-dried preparation of the pharmaceutical composition of the present invention can be obtained.
 本発明の医薬組成物は、任意の適当な溶液の添加によって再溶解し、使用することができる。このような溶液としては、注射用水、生理食塩水などの電解質液、ブドウ糖液、その他一般輸液などをあげることができる。この溶液の液量は、用途などによって異なり、特に制限されないが、凍結乾燥前の液量の0.5~2倍量、または500ml以下が好ましい。 The pharmaceutical composition of the present invention can be redissolved and used by adding any appropriate solution. Examples of such a solution include electrolytes such as water for injection and physiological saline, glucose solution, and other general infusion solutions. The amount of this solution varies depending on the application and is not particularly limited, but is preferably 0.5 to 2 times the amount before lyophilization or 500 ml or less.
 本発明の医薬組成物は、ヒトを含む動物に対し、例えば静脈内投与、動脈内投与、経口投与、組織内投与、経皮投与、経粘膜投与または経直腸投与することができるが、患者の症状に合わせた適切な方法により投与することが好ましい。特に静脈投与、経皮投与、経粘膜投与が好ましく用いられる。また、癌内局所投与など、局所投与をすることもできる。これらの投与方法に適した剤型としては、例えば各種の注射剤、経口剤、点滴剤、吸収剤、点眼剤、軟膏剤、ローション剤、坐剤等があげられる。 The pharmaceutical composition of the present invention can be administered to animals including humans, for example, intravenous administration, intraarterial administration, oral administration, tissue administration, transdermal administration, transmucosal administration, or rectal administration. It is preferable to administer by an appropriate method according to the symptoms. In particular, intravenous administration, transdermal administration, and transmucosal administration are preferably used. Moreover, local administration, such as local administration in cancer, can also be performed. Examples of dosage forms suitable for these administration methods include various injections, oral preparations, drops, absorbents, eye drops, ointments, lotions, suppositories and the like.
 本発明の医薬組成物の用量は、薬物、剤型、年齢や体重などの患者の状態、投与経路、疾患の性質と程度などを考慮した上で決定することが望ましいが、通常は一本鎖核酸、二本鎖核酸またはベクターの質量として、成人に対して1日当たり、0.1mg~10g/日、好ましくは1mg~500mg/日である。場合によっては、これ以下でも十分であるし、また逆にこれ以上の用量を必要とすることもある。また1日1回~数回投与することもでき、1日~数日の間隔をおいて投与することもできる。 The dosage of the pharmaceutical composition of the present invention is preferably determined in consideration of the drug, dosage form, patient condition such as age and weight, administration route, nature and degree of disease, etc. The mass of the nucleic acid, double-stranded nucleic acid or vector is 0.1 mg to 10 g / day, preferably 1 mg to 500 mg / day, per day for an adult. In some cases, this may be sufficient, or vice versa. It can also be administered once to several times a day, and can be administered at intervals of one to several days.
 以下に、本発明を実施例により説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to these examples.
bcl-2遺伝子の発現を抑制する核酸の設計とその評価(1)
i)二本鎖核酸の調製
 bcl-2遺伝子の発現を抑制できる核酸の配列として、bcl-2のmRNA配列(GenBank登録番号:NM_000633、配列番号215)から、(a)GまたはCが4塩基以上続く配列がない、(b)GC含量が20~80%である、(c)5’側もしくは3’側非翻訳領域に位置する、の3つの条件に当てはまる配列53組を選択した。配列は配列番号N、およびその相補配列として配列番号N+53の塩基配列で示す。ここでNは1から53までの整数である。配列番号1~106で表される配列からなるRNAのそれぞれの3’端に、適宜2塩基からなるDNA配列を付加し、配列番号N’で表される塩基配列からなる核酸と、その相補鎖として配列番号N’+53で表される塩基配列からなる核酸とからなる二本鎖核酸である、siRNAを設計した。ここでN’は107から159までの整数を示す。
 二本鎖核酸を構成する核酸の合成は、株式会社キアゲンに依頼した。
Design and evaluation of nucleic acid that suppresses bcl-2 gene expression (1)
i) Preparation of double-stranded nucleic acid As a nucleic acid sequence capable of suppressing the expression of the bcl-2 gene, (a) 4 bases of G or C from the mRNA sequence of bcl-2 (GenBank accession number: NM_000633, SEQ ID NO: 215) There were selected 53 sets of sequences satisfying the following three conditions: no sequence that continues, (b) a GC content of 20-80%, and (c) located in the 5 ′ or 3 ′ untranslated region. The sequence is represented by SEQ ID NO: N and the base sequence of SEQ ID NO: N + 53 as its complementary sequence. Here, N is an integer from 1 to 53. A DNA sequence consisting of 2 bases is appropriately added to the 3 ′ end of each RNA consisting of the sequence represented by SEQ ID NOs: 1 to 106, and a nucleic acid consisting of the base sequence represented by SEQ ID NO: N ′ and its complementary strand SiRNA was designed as a double-stranded nucleic acid consisting of a nucleic acid consisting of the base sequence represented by SEQ ID NO: N '+ 53. Here, N ′ represents an integer from 107 to 159.
Qiagen Co., Ltd. was requested to synthesize the nucleic acid constituting the double-stranded nucleic acid.
ii)スクリーニングにおける評価方法
 スクリーニングにおける評価は、二本鎖核酸を担体と共に各種癌細胞に導入し、Bcl-2蛋白質の発現量をウエスタンブロッティングで定量することにより、および、bcl-2のmRNA量をRT-PCR(Reverse transcription-polymerase chain reaction)により定量することにより行った。
ii) Evaluation method in screening Evaluation in screening involves introducing double-stranded nucleic acid into various cancer cells together with a carrier, quantifying the expression level of Bcl-2 protein by Western blotting, and determining the amount of bcl-2 mRNA. This was carried out by quantification by RT-PCR (Reverse transcription-polymerase chain reaction).
iii)二本鎖核酸と担体の複合体の調製
 担体として、市販カチオニックリポソームであるオリゴフェクトアミン(インビトロジェン社)を用い、添付の使用説明書に従って二本鎖核酸-オリゴフェクトアミンの複合体を調製した。
iii) Preparation of double-stranded nucleic acid / carrier complex As a carrier, a commercially available cationic liposome, oligofectamine (Invitrogen), is used, and a double-stranded nucleic acid- oligofectamine complex is prepared according to the attached instruction manual. Prepared.
iv)ウエスタンブロッティング
 上記の二本鎖核酸-オリゴフェクトアミン複合体を用いて二本鎖核酸を細胞内に導入することで、Bcl-2蛋白質の発現が抑制されるかどうかを、ウエスタンブロッティングによりBcl-2蛋白質の量の変化を測定することで評価した。
 6cm径の培養ディッシュに前立腺癌細胞であるPC-3を2×10細胞数/ディッシュで播種し、10%ウシ胎仔血清(FBS)を含むF-12 Kaighn’s培地(GIBCO、21127)中、37℃、5%CO条件下で一晩培養した。翌日、培養ディッシュから培地を吸引し、0.8mlの低血清基本培地であるOPTI-MEM(GIBCO、31985)に交換した。そこに、OPTI-MEM中で混合した二本鎖核酸-オリゴフェクトアミン複合体溶液を0.2ml添加することにより、二本鎖核酸をPC-3に導入した。
 二本鎖核酸としては、配列番号109で表される塩基配列からなる核酸と配列番号162で表される塩基配列からなる核酸とからなる二本鎖核酸および配列番号213で表される塩基配列からなる核酸と配列番号214で表される塩基配列からなる核酸とからなるbcl-2遺伝子の翻訳領域を標的とする二本鎖核酸(B717、陽性対照、日本新薬)をそれぞれ用いた。
 また、ヒトのいずれの遺伝子とも交差しないsiRNAであるNontargeting siRNA #1(以下、Nontargeting#1ともいう)(Dharmacon社製)を別途PC-3に導入し、陰性対照とした。二本鎖核酸の最終濃度は50nMとした。なお、二本鎖核酸の濃度は、それぞれの鎖が完全に二本鎖を形成していると仮定したときのモル濃度で示している。
 二本鎖核酸を導入した細胞を37℃の5%COインキュベーター内で48時間培養し、リン酸緩衝化生理食塩水(Phosphate buffered saline、PBS)で2回洗浄し、セルスクレーパーを用いて1.5mlチューブに移した。1000×gで2分間遠心分離し、上清を取り除いた後、細胞をRIPA buffer[50mM Tris-HCL(pH8.0)、150mM NaCl、1% Nonident P-40、0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 1% Protease Inhibitor Cocktail Set III(Calbiochem社製)]に溶解して回収した。氷上で30分間静置し、100,000×gで15分間遠心分離後、上清を新しいチューブに移し、電気泳動用サンプルとした。
 定法によりSDS-PAGE法で分離した後、ウェスタンブロッティング法で、Bcl-2蛋白質を検出した。Bcl-2蛋白質の検出には、抗Bcl-2抗体(DAKO社製)を用いた。また、α-actin蛋白質を検体の内部標準とした。α-actin蛋白質の検出には抗α-actin抗体(Sigma社製)を用いた。
 蛋白質量の測定は、陰性対照のNontargeting#1をトランスフェクションした時のBcl-2蛋白質のバンドの濃さと比較した、二本鎖核酸をトランスフェクションした時のバンドの濃さに基づいて行った。その結果、図1に示されるとおり、bcl-2遺伝子の非翻訳領域を標的とする本発明の二本鎖核酸を導入したPC-3は、陰性対照と比較してBcl-2蛋白量が減少しており、bcl-2遺伝子の翻訳領域を標的とするB717と同様に、Bcl-2蛋白質の発現を抑制した。
iv) Western blotting Whether or not the expression of Bcl-2 protein is suppressed by introducing a double-stranded nucleic acid into a cell using the above-mentioned double-stranded nucleic acid-oligofectamine complex is determined by Western blotting. -2 It was evaluated by measuring the change in the amount of protein.
PC-3, a prostate cancer cell, was seeded at a density of 2 × 10 5 cells / dish in a 6 cm-diameter culture dish, 37% in F-12 Kaighn's medium (GIBCO, 21127) containing 10% fetal bovine serum (FBS), 37 ° C., and cultured overnight in 5% CO 2. The next day, the medium was aspirated from the culture dish and replaced with 0.8 ml of OPTI-MEM (GIBCO, 31985) which is a low serum basic medium. The double-stranded nucleic acid was introduced into PC-3 by adding 0.2 ml of the double-stranded nucleic acid-oligofectamine complex solution mixed in OPTI-MEM.
The double-stranded nucleic acid includes a double-stranded nucleic acid comprising a nucleic acid comprising the base sequence represented by SEQ ID NO: 109 and a nucleic acid comprising the base sequence represented by SEQ ID NO: 162 and a base sequence represented by SEQ ID NO: 213. A double-stranded nucleic acid (B717, positive control, Nippon Shinyaku Co., Ltd.) targeting the translation region of the bcl-2 gene consisting of the nucleic acid consisting of the nucleic acid consisting of the nucleotide sequence represented by SEQ ID NO: 214 and the nucleic acid consisting of the base sequence represented by SEQ ID NO: 214 was used.
Further, Nontargeting siRNA # 1 (hereinafter also referred to as Nontargeting # 1) (manufactured by Dharmacon), which is a siRNA that does not cross any human gene, was separately introduced into PC-3 and used as a negative control. The final concentration of double-stranded nucleic acid was 50 nM. The concentration of the double-stranded nucleic acid is shown as a molar concentration when it is assumed that each strand forms a double strand completely.
The cells into which the double-stranded nucleic acid has been introduced are cultured in a 5% CO 2 incubator at 37 ° C. for 48 hours, washed twice with phosphate buffered saline (PBS), and 1 using a cell scraper. Transfer to a 5 ml tube. After centrifugation at 1000 × g for 2 minutes and removing the supernatant, the cells were treated with RIPA buffer [50 mM Tris-HCL (pH 8.0), 150 mM NaCl, 1% Nonident P-40, 0.5% sodium deoxycholate, 0.1% sodium It was dissolved and recovered in dodecyl sulfate, 1% Protease Inhibitor Cocktail Set III (Calbiochem). After leaving still on ice for 30 minutes and centrifuging at 100,000 × g for 15 minutes, the supernatant was transferred to a new tube to prepare a sample for electrophoresis.
After separation by SDS-PAGE by a conventional method, Bcl-2 protein was detected by Western blotting. For detection of Bcl-2 protein, an anti-Bcl-2 antibody (manufactured by DAKO) was used. In addition, α-actin protein was used as the internal standard of the specimen. Anti-α-actin antibody (manufactured by Sigma) was used for detection of α-actin protein.
The protein mass was measured based on the intensity of the band when the double-stranded nucleic acid was transfected compared to the intensity of the Bcl-2 protein band when transfected with the negative control Nontargeting # 1. As a result, as shown in FIG. 1, PC-3 introduced with the double-stranded nucleic acid of the present invention targeting the untranslated region of the bcl-2 gene has a decreased amount of Bcl-2 protein compared to the negative control. In the same manner as B717 targeting the translation region of the bcl-2 gene, the expression of Bcl-2 protein was suppressed.
RT-PCRによるmRNA量の準定量
 二本鎖核酸のトランスフェクションによるBcl-2蛋白質の発現抑制作用がmRNAの発現抑制に起因するかどうかを調べるため、bcl-2のmRNAの発現量をRT-PCRによる準定量により評価した。
 6cm径の培養ディッシュにPC-3を2×10細胞数/ディッシュで播種し、10%ウシ胎仔血清を含むF-12 Kaighn’s培地(GIBCO、21127)中、37℃、5%CO条件下で一晩培養した。翌日、培養ディッシュから培地を吸引し、0.8mlの低血清基本培地であるOPTI-MEM(GIBCO社、31985)に交換した。そこに、OPTI-MEM中で混合した二本鎖核酸-オリゴフェクトアミン複合体溶液を0.2ml添加することにより、二本鎖核酸をPC-3に導入した。また、Nontargeting#1(Dharmacon社製)を別途PC-3に導入し、陰性対照とした。二本鎖核酸の最終濃度は50nMとした。
 二本鎖核酸を導入した細胞を37℃の5%COインキュベーター内で48時間培養し、PBSで2回洗浄し、セルスクレーパーを用いて1.5mlチューブに移した。1000×gで2分間遠心分離し、上清を取り除いた後、細胞をRLT buffer (キアゲン社製 RNA回収キット「RNeasy」に添付)に溶解して回収し、キットに添付された説明書に従って全RNAを回収した。
 全RNA5μgを鋳型として、SuperscriptIII First-Strand cDNA Synthesis Kit(インビトロジェン社)を用いて逆転写反応を行い、cDNAを作成した。このcDNAをPCR反応の鋳型に用い、ABI7900HT Fast(ABI社)を用いたSYBR-Green PCRによりbcl-2遺伝子および構成的発現遺伝子であるGADPH(D-glyceraldehyde-3-phosphate dehydrogenase)遺伝子に特異的なPCR増幅をそれぞれ行い、mRNA量の定量を行った。それぞれの遺伝子のPCR増幅には250ngの全RNA由来cDNAを鋳型に用いた。検体のmRNA量は、二本鎖核酸未導入群(未処理)における、bcl-2のmRNA量またはGADPHのmRNA量を1としたときの相対的な割合として表した。bcl-2のmRNA量についての結果を図2に示す。
 図2に示されるとおり、bcl-2遺伝子の非翻訳領域を標的とする本発明の二本鎖核酸を導入したPC-3は、陰性対照と比較してbcl-2のmRNA量が低下しており、bcl-2遺伝子の翻訳領域を標的とするB717と同等であった。
Semi-quantitative determination of mRNA amount by RT-PCR In order to examine whether the suppression of Bcl-2 protein expression by transfection of double-stranded nucleic acid is due to the suppression of mRNA expression, the expression level of bcl-2 mRNA was determined by RT- Evaluation was performed by semi-quantification by PCR.
PC-3 was seeded at a density of 2 × 10 5 cells / dish in a 6 cm-diameter culture dish, and F-12 Kaighn's medium (GIBCO, 21127) containing 10% fetal bovine serum under conditions of 37 ° C. and 5% CO 2. Incubated overnight. On the next day, the medium was aspirated from the culture dish and replaced with 0.8 ml of OPTI-MEM (GIBCO, 31985) which is a low serum basic medium. The double-stranded nucleic acid was introduced into PC-3 by adding 0.2 ml of the double-stranded nucleic acid-oligofectamine complex solution mixed in OPTI-MEM. Nontargeting # 1 (manufactured by Dharmacon) was separately introduced into PC-3 and used as a negative control. The final concentration of double-stranded nucleic acid was 50 nM.
The cells into which the double-stranded nucleic acid had been introduced were cultured for 48 hours in a 5% CO 2 incubator at 37 ° C., washed twice with PBS, and transferred to a 1.5 ml tube using a cell scraper. After centrifuging at 1000 × g for 2 minutes and removing the supernatant, the cells are lysed and collected in RLT buffer (attached to Qiagen RNA Recovery Kit “RNeasy”), and all cells are collected according to the instructions attached to the kit. RNA was recovered.
Using 5 μg of total RNA as a template, reverse transcription reaction was performed using Superscript III First-Strand cDNA Synthesis Kit (Invitrogen) to prepare cDNA. Using this cDNA as a template for a PCR reaction, specific to the bcl-2 gene and the constitutively expressed gene GADPH (D-glyceraldehyde-3-phosphate dehydrogenase) gene by SYBR-Green PCR using ABI7900HT Fast (ABI) PCR amplification was performed, and the amount of mRNA was quantified. For PCR amplification of each gene, 250 ng of total RNA-derived cDNA was used as a template. The amount of mRNA in the specimen was expressed as a relative ratio when the amount of bcl-2 mRNA or GADPH mRNA was 1 in the double-stranded nucleic acid non-introduced group (untreated). The results for bcl-2 mRNA levels are shown in FIG.
As shown in FIG. 2, PC-3 introduced with the double-stranded nucleic acid of the present invention targeting the untranslated region of the bcl-2 gene has a decreased amount of bcl-2 mRNA compared to the negative control. It was equivalent to B717 targeting the translation region of the bcl-2 gene.
二本鎖核酸のin vitroにおける抗細胞増殖活性
 PC-3を1穴あたり約2,000~2,500細胞数になるように96穴プレートに播種し、10%FBSを含むF-12 Kaighn’s培地で一晩培養した。1日後、オリゴフェクトアミン(Invitrogen社製)を用いて、配列番号N’、N’+53で表される核酸からなる、bcl-2遺伝子の非翻訳領域を標的遺伝子とする二本鎖核酸(N’は107~159の整数を示す)を終濃度3nMもしくは30nMとなるようにPC-3へ導入した。配列番号213で表される塩基配列からなる一本鎖核酸と配列番号214で表される塩基配列からなる一本鎖核酸とからなる、bcl-2遺伝子の翻訳領域を標的とする二本鎖核酸(B717、日本新薬)を、陽性対照とした。また、Nontargeting#1(Dharmacon社製)を別途PC-3に導入し、陰性対照とした。二本鎖核酸の導入は、オリゴフェクトアミンに添付された説明書に記載された方法に従った。
 二本鎖核酸を導入した3~6日後、CellTiter-GloTM Luminescent Cell Viability Assay(Promega社製)を用いて生細胞率を測定した。測定方法は製品に添付された説明書に記載された方法に従った。オリゴフェクトアミンのみ導入した場合のPC-3の生細胞率を1.0として、それぞれの相対生細胞率を計算した。その結果を図3、図4に示す。図3、図4に示されるとおり、bcl-2遺伝子の非翻訳領域を標的とする二本鎖核酸の導入により生細胞率の減少が認められ、本発明の種々の二本鎖核酸のin vitroにおける抗細胞増殖活性が観察された。
In vitro anti-cell proliferation activity of double-stranded nucleic acid PC-3 is seeded in a 96-well plate at about 2,000-2,500 cells per well and cultured overnight in F-12 Kaighn's medium containing 10% FBS did. One day later, using an oligofectamine (Invitrogen), a double-stranded nucleic acid consisting of a nucleic acid represented by SEQ ID NOs: N ′ and N ′ + 53 and having a non-translated region of the bcl-2 gene as a target gene (N 'Represents an integer of 107 to 159) was introduced into PC-3 to a final concentration of 3 nM or 30 nM. A double-stranded nucleic acid that targets the translation region of the bcl-2 gene, comprising a single-stranded nucleic acid comprising the base sequence represented by SEQ ID NO: 213 and a single-stranded nucleic acid comprising the base sequence represented by SEQ ID NO: 214 (B717, Nippon Shinyaku) was used as a positive control. Nontargeting # 1 (manufactured by Dharmacon) was separately introduced into PC-3 and used as a negative control. The double-stranded nucleic acid was introduced according to the method described in the instructions attached to the oligofectamine.
Three to six days after the introduction of the double-stranded nucleic acid, the cell viability was measured using CellTiter-Glo Luminescent Cell Viability Assay (manufactured by Promega). The measuring method followed the method described in the instructions attached to the product. The relative viable cell ratio of each was calculated assuming that the viable cell ratio of PC-3 when only oligofectamine was introduced was 1.0. The results are shown in FIGS. As shown in FIGS. 3 and 4, the introduction of a double-stranded nucleic acid targeting the untranslated region of the bcl-2 gene resulted in a decrease in the viable cell rate, and in vitro of the various double-stranded nucleic acids of the present invention. Anti-cell proliferative activity in was observed.
bcl-2遺伝子の非翻訳領域を標的遺伝子とする二本鎖核酸による抗腫瘍効果
 bcl-2遺伝子の非翻訳領域を標的遺伝子とする配列番号109および162でそれぞれ表される塩基配列からなる核酸からなる二本鎖核酸(以下、配列番号109、162からなる二本鎖核酸ともいう)およびB717の抗腫瘍効果を測定することにより、これらの薬効を比較した。
(i)二本鎖核酸を含有するラップドリポソーム(WL)の調製
 配列番号109、162、213および214でそれぞれ表される塩基配列からなる核酸の化学合成を北海道システム・サイエンス株式会社に依頼し、配列番号109、162からなる二本鎖核酸および配列番号213、214からなる二本鎖核酸(B717)をアニーリングにより調製した。
 DOTAP(アバンチポーラルリピッズ社製)/PEG-DSPE(日本油脂製、以下同様)/蒸留水を40mg/16mg/mLになるように混合し、ボルテックスミキサーで振とう攪拌した。得られた分散液を室温で0.4μmのポリカーボネートメンブランフィルター(ワットマン製)に10回、0.2μmのポリカーボネートメンブランフィルター(ワットマン製)に10回、0.1μmのポリカーボネートメンブランフィルター(ワットマン製)に10回、さらに0.05μmのポリカーボネートメンブランフィルター(ワットマン製)に35回通してリード粒子を調製した。得られたリード粒子の分散液0.624mLに、配列番号109、162からなる二本鎖核酸および配列番号213、214からなる二本鎖核酸(B717)の24mg/mL水溶液0.208mLを添加し複合粒子を調製した。得られた複合粒子の分散液0.8mLを、脂質二重膜の構成成分のEPC(日本油脂製)/PEG-DSPEを15mg/3.125mg/mLになるように62.5vol%エタノール水溶液に溶解した溶液3.2mLに添加し、次に蒸留水1mLを加え、エタノールの濃度が40vol%になるよう調整し、更にEPC/PEG-DSPEを62.5mg/62.5mg/mLになるように40vol%エタノール水溶液に溶解した溶液0.32mLを添加し、次に蒸留水37.24mLを加え、エタノール濃度が5vol%になるように調整しリポソームを調製した。得られたリポソームの分散液を超遠心(80分、110,000×g、25℃)し、上清を除去し、生理食塩水を添加して再分散させて製剤を得た。
 製剤は1ロット調製した。
 動的光散乱法(ゼータサイザーナノ-ZS、マルバーン)でリポソームの平均粒子径を測定したところ、85nmであった。
Anti-tumor effect by double-stranded nucleic acid targeting untranslated region of bcl-2 gene as target gene From nucleic acids comprising base sequences represented by SEQ ID NOs: 109 and 162, respectively, targeting untranslated region of bcl-2 gene as target gene By measuring the antitumor effect of the double-stranded nucleic acid (hereinafter also referred to as the double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162) and B717, their efficacy was compared.
(i) Preparation of wrapped liposome (WL) containing double-stranded nucleic acid We requested Hokkaido System Science Co., Ltd. for chemical synthesis of nucleic acids consisting of the nucleotide sequences represented by SEQ ID NOs: 109, 162, 213 and 214, respectively. A double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162 and a double-stranded nucleic acid consisting of SEQ ID NOs: 213 and 214 (B717) were prepared by annealing.
DOTAP (manufactured by Avanti Polar Lipids) / PEG-DSPE (manufactured by NOF Corporation, the same shall apply hereinafter) / distilled water was mixed to 40 mg / 16 mg / mL, and the mixture was shaken and stirred with a vortex mixer. The resulting dispersion was applied to a 0.4 μm polycarbonate membrane filter (manufactured by Whatman) 10 times at room temperature, 10 times to a 0.2 μm polycarbonate membrane filter (manufactured by Whatman), 10 times to a 0.1 μm polycarbonate membrane filter (manufactured by Whatman), Further, lead particles were prepared by passing 35 times through a 0.05 μm polycarbonate membrane filter (manufactured by Whatman). To the obtained lead particle dispersion 0.624 mL, 0.208 mL of a 24 mg / mL aqueous solution of the double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162 and the double-stranded nucleic acid (B717) consisting of SEQ ID NOs: 213 and 214 is added to form composite particles Was prepared. A solution obtained by dissolving 0.8 mL of the obtained composite particle dispersion in a 62.5 vol% aqueous ethanol solution so that EPC (manufactured by NOF Corporation) / PEG-DSPE as a component of the lipid bilayer membrane is 15 mg / 3.125 mg / mL Add to 3.2 mL, then add 1 mL of distilled water, adjust the ethanol concentration to 40 vol%, and dissolve EPC / PEG-DSPE in 40 vol% ethanol aqueous solution to 62.5 mg / 62.5 mg / mL 0.32 mL of the prepared solution was added, and then 37.24 mL of distilled water was added to adjust the ethanol concentration to 5 vol% to prepare liposomes. The obtained liposome dispersion was ultracentrifuged (80 minutes, 110,000 × g, 25 ° C.), the supernatant was removed, and physiological saline was added and redispersed to obtain a preparation.
One lot of the preparation was prepared.
When the average particle size of the liposome was measured by a dynamic light scattering method (Zetasizer Nano-ZS, Malvern), it was 85 nm.
(ii)二本鎖核酸を含有するラップドリポソームのin vivo薬効評価
 in vitroで培養したPC-3細胞(ヒト前立腺癌細胞株)を1×108細胞/mLとなるようにHanks’balanced salt solution(HBSS)に懸濁し、Balb/cヌードマウス(日本クレア、雄)の腹側部皮内に50μL移植した。細胞移植後7日目にノギスによる腫瘍径の測定を行い、次式より腫瘍体積を算出した。
(ii) Hanks' Balanced in vivo efficacy evaluation in vitro PC-3 cells cultured in the lapped liposomes containing double-stranded nucleic acid (human prostate cancer cell line) so that 1 × 10 8 cells / mL salt It was suspended in solution (HBSS), and 50 μL was transplanted into the ventral skin of Balb / c nude mice (Claire Japan, male). On day 7 after cell transplantation, the tumor diameter was measured with calipers, and the tumor volume was calculated from the following formula.
腫瘍体積=短径×短径×長径×0.5 Tumor volume = minor axis x minor axis x major axis x 0.5
 腫瘍体積が81~98 mm3(平均89 mm3)の範囲内の個体を選抜し、平均腫瘍体積が均一になるように群分けした後に、下記のA~Cの投与群を設定した。群分けした日をDay0とした。 Individuals having a tumor volume in the range of 81 to 98 mm 3 (average 89 mm 3 ) were selected and divided into groups so that the average tumor volume was uniform, and then the following administration groups A to C were set. The day of grouping was designated as Day0.
A. 非投与群(陰性対照群)
B. bcl-2遺伝子の非翻訳領域を標的遺伝子とする二本鎖核酸(配列番号109、162)-WL投与群 : Day0、Day4、Day7、Day11およびDay14に、1匹あたり核酸重量として150μg投与
C. B717 -WL投与群:Day0、Day4、Day7、Day11およびDay14に、1匹あたり核酸重量として150μg投与
A. Non-administration group (negative control group)
B. Double-stranded nucleic acid (SEQ ID NO: 109, 162) -WL administration group targeting untranslated region of bcl-2 gene: 150 μg of nucleic acid weight per animal on Day 0, Day 4, Day 7, Day 11 and Day 14
C. B717-WL administration group: 150 μg of nucleic acid weight per animal on Day 0, Day 4, Day 7, Day 11 and Day 14
 実験は各群共5匹ずつのマウスを用いることにより行った。各薬剤は生理食塩水で希釈調製し、尾静脈内より投与した。Day0より経日的に腫瘍体積の測定を行い、抗腫瘍効果の判定は、各群のDay0における腫瘍体積をV0としたときの各測定日の腫瘍体積比(V/V0)の平均値を比較することにより行った。
 各群のV/V0の平均値の経日的推移を図5に示す。投与群と陰性対照群との間で行った有意差検定の結果をp値として表1に示す。
The experiment was performed by using 5 mice in each group. Each drug was diluted with physiological saline and administered from the tail vein. The tumor volume is measured daily from Day 0, and the antitumor effect is determined by comparing the average value of the tumor volume ratio (V / V0) on each measurement day when the tumor volume on Day 0 of each group is V0. It was done by doing.
FIG. 5 shows the daily transition of the average value of V / V0 in each group. The results of a significant difference test performed between the administration group and the negative control group are shown in Table 1 as p values.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図5および表1に示されるように、本発明の二本鎖核酸(配列番号109、162)-WL投与群において、統計学的な有意差をもって腫瘍の増殖が抑制された。一方、B717 -WL投与群も腫瘍増殖抑制傾向を示したが、その作用は統計学的に有意ではなかった。以上より、配列番号109、162で表される核酸からなる本発明の二本鎖核酸は、B717よりも優れたin vivo抗腫瘍作用を持つことが明らかになった。 As shown in FIG. 5 and Table 1, in the double-stranded nucleic acid (SEQ ID NO: 109, 162) -WL administration group of the present invention, tumor growth was suppressed with a statistically significant difference. On the other hand, the B717-WL administration group also showed a tendency to suppress tumor growth, but its effect was not statistically significant. From the above, it was revealed that the double-stranded nucleic acid of the present invention consisting of the nucleic acids represented by SEQ ID NOs: 109 and 162 has an in vivo antitumor action superior to B717.
bcl-2遺伝子の発現を抑制する核酸の設計とその評価(2)
 配列番号216で表される塩基配列からなるセンス鎖(Eurogentec社)の核酸と配列番号217で表される塩基配列からなるアンチセンス鎖(Eurogentec社)の核酸とをアニーリングさせた二本鎖核酸(以下、配列番号216、217からなる二本鎖核酸ともいう)、および配列番号109で表される塩基配列からなるセンス鎖の核酸と配列番号162で表される塩基配列からなるアンチセンス鎖の核酸とをアニーリングさせた二本鎖核酸(以下、配列番号109、162からなる二本鎖核酸ともいう)を、bcl-2遺伝子の非翻訳領域を標的遺伝子とするsiRNAとして、それぞれ調製した。
 なお、配列番号216は配列番号3で表される核酸の3’末端に6塩基が付加された25塩基からなる配列であり、配列番号217は配列番号56で表される核酸の3’末端に8塩基が付加された27塩基からなる配列であり、配列番号109は配列番号3で表される核酸の3’末端に2塩基が付加された21塩基からなる配列であり、配列番号162は配列番号56で表される核酸の3’末端に2塩基が付加された21塩基からなる配列である。
 また、配列番号216で表される核酸の一部のヌクレオチドの糖部(リボース)に2’-O-メチル(2’-OMe)修飾を有する核酸として配列1s~5sで表される核酸を、配列番号217で表される核酸の一部のヌクレオチドのリボースに2’-OMe修飾を有する核酸として配列1asおよび2asで表される核酸を、配列番号109で表される核酸の一部のヌクレオチドのリボースに2’-OMe修飾を有する核酸として配列6asで表される核酸を、それぞれセンス鎖およびアンチセンス鎖として用い、表2に記載された配列名の二本鎖核酸を調製した。表2に記載されたヌクレオチド配列のうち、小文字で記載されたヌクレオチドは修飾されていないリボヌクレオチドを、大文字で記載されたヌクレオチドは修飾されたリボヌクレオチドを、dA、dCおよびdTはデオキシアデノシン、デオキシシチジンおよびデオキシチミジンを、それぞれ示す。
Design and evaluation of nucleic acids that suppress bcl-2 gene expression (2)
A double-stranded nucleic acid obtained by annealing a nucleic acid of a sense strand (Eurogentec) consisting of a base sequence represented by SEQ ID NO: 216 and a nucleic acid of an antisense strand (Eurogentec) consisting of a base sequence represented by SEQ ID NO: 217 Hereinafter, it is also referred to as a double-stranded nucleic acid consisting of SEQ ID NO: 216 and 217), and a nucleic acid having a sense strand consisting of the base sequence represented by SEQ ID NO: 109 and a nucleic acid having an antisense strand consisting of the base sequence represented by SEQ ID NO: 162 And a double-stranded nucleic acid (hereinafter also referred to as a double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162) were prepared as siRNAs using the untranslated region of the bcl-2 gene as a target gene, respectively.
SEQ ID NO: 216 is a 25-base sequence in which 6 bases are added to the 3 ′ end of the nucleic acid represented by SEQ ID NO: 3, and SEQ ID NO: 217 is the 3 ′ end of the nucleic acid represented by SEQ ID NO: 56. It is a sequence consisting of 27 bases with 8 bases added, SEQ ID NO: 109 is a sequence consisting of 21 bases with 2 bases added to the 3 ′ end of the nucleic acid represented by SEQ ID NO: 3, and SEQ ID NO: 162 is a sequence This is a sequence consisting of 21 bases with 2 bases added to the 3 ′ end of the nucleic acid represented by No. 56.
Further, the nucleic acid represented by the sequence 1s to 5s as a nucleic acid having a 2′-O-methyl (2′-OMe) modification in the sugar part (ribose) of a part of the nucleotide of the nucleic acid represented by SEQ ID NO: 216, The nucleic acid represented by the sequences 1as and 2as as the nucleic acid having a 2′-OMe modification in the ribose of some nucleotides of the nucleic acid represented by SEQ ID NO: 217, and the nucleotides of some nucleotides of the nucleic acid represented by SEQ ID NO: 109 Double-stranded nucleic acids having the sequence names shown in Table 2 were prepared using the nucleic acid represented by the sequence 6as as the nucleic acid having 2'-OMe modification in ribose as the sense strand and the antisense strand, respectively. Among the nucleotide sequences described in Table 2, nucleotides written in lower case letters are unmodified ribonucleotides, nucleotides written in upper case letters are modified ribonucleotides, dA, dC and dT are deoxyadenosine, deoxy Cytidine and deoxythymidine are shown, respectively.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 これらの二本鎖核酸がBcl-2蛋白質の発現抑制作用を有するか否かを調べるため、実施例1と同様な方法を用い、bcl-2のmRNAの発現量をRT-PCRによる準定量により測定し、該二本鎖核酸を評価した。
 bcl-2のmRNA量は、二本鎖核酸未導入群(未処理)におけるbcl-2のmRNA量を1としたときの相対的な割合として表した(データはGADPHのmRNA量で補正した)。結果を図6に示す。
 図6に示されるように、配列番号216、217からなる二本鎖核酸および配列番号109、162からなる二本鎖核酸、ならびにこれら二本鎖核酸の一部ヌクレオチドのリボースに2’-OMe修飾を有する二本鎖核酸を、それぞれ導入したPC-3細胞では、いずれも陰性対照と比較してbcl-2のmRNA量が低下した。
In order to investigate whether these double-stranded nucleic acids have the Bcl-2 protein expression-inhibiting action, the same method as in Example 1 was used, and the expression level of bcl-2 mRNA was determined by semi-quantification by RT-PCR. Measurement and evaluation of the double-stranded nucleic acid.
The amount of bcl-2 mRNA was expressed as a relative ratio when the amount of bcl-2 mRNA in the double-stranded nucleic acid non-introduced group (untreated) was 1, and the data was corrected with the amount of GADPH mRNA. . The results are shown in FIG.
As shown in FIG. 6, the double-stranded nucleic acid consisting of SEQ ID NOs: 216 and 217, the double-stranded nucleic acid consisting of SEQ ID NOs: 109 and 162, and the 2′-OMe modification of the ribose of some nucleotides of these double-stranded nucleic acids In PC-3 cells each introduced with a double-stranded nucleic acid having a phenotype, the amount of bcl-2 mRNA was reduced compared to the negative control.
 本発明により、Bcl-2蛋白質の発現を抑制する核酸、該核酸からなる医薬組成物などが提供される。本発明の核酸、医薬組成物はアポトーシスを促進するため、癌などの治療に有用である。 The present invention provides a nucleic acid that suppresses the expression of Bcl-2 protein, a pharmaceutical composition comprising the nucleic acid, and the like. Since the nucleic acid and pharmaceutical composition of the present invention promote apoptosis, they are useful for the treatment of cancer and the like.
 本出願は、日本で出願された特願2008-213300(出願日:2008年8月21日)を基礎としており、その内容は本明細書に全て包含されるものである。 This application is based on Japanese Patent Application No. 2008-213300 filed in Japan (application date: August 21, 2008), the contents of which are incorporated in full herein.

Claims (28)

  1.  Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とを含有し、かつBcl-2蛋白質の発現抑制活性を有する核酸。 A nucleic acid comprising a partial base sequence of the untranslated region of the gene encoding the Bcl-2 protein, and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid, and comprising the Bcl-2 protein Nucleic acid having expression suppressing activity.
  2.  Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列が15~27塩基からなる配列である、請求項1に記載の核酸。 The nucleic acid according to claim 1, wherein a part of the base sequence of the untranslated region of the gene encoding Bcl-2 protein is a sequence consisting of 15 to 27 bases.
  3.  Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸が、配列番号54~106のいずれかで表される塩基配列からなる核酸または該核酸の少なくとも一方の末端が1~4塩基削除された核酸である、請求項1または2に記載の核酸。 A nucleic acid consisting of a partial base sequence of the untranslated region of the gene encoding Bcl-2 protein is a nucleic acid consisting of the base sequence represented by any of SEQ ID NOs: 54 to 106 or at least one end of the nucleic acid is 1 The nucleic acid according to claim 1 or 2, wherein the nucleic acid has been deleted by ~ 4 bases.
  4.  請求項1に記載のBcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸、および該核酸の塩基配列に対して相補的な塩基配列からなる核酸の少なくとも一方の核酸において、1~3塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する核酸。 A nucleic acid comprising a part of the base sequence of the untranslated region of the gene encoding the Bcl-2 protein according to claim 1, and at least one nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid A nucleic acid having 1-3 base substitutions, deletions or additions and having Bcl-2 protein expression-inhibiting activity.
  5.  Bcl-2蛋白質をコードする遺伝子の非翻訳領域の一部の塩基配列からなる核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とからなる二本鎖核酸。 A double-stranded nucleic acid comprising a nucleic acid comprising a partial base sequence of the untranslated region of the gene encoding the Bcl-2 protein and a nucleic acid comprising a base sequence complementary to the base sequence of the nucleic acid.
  6.  15~27塩基対からなる二重鎖形成部を有する、請求項5に記載の二本鎖核酸。 The double-stranded nucleic acid according to claim 5, which has a double-stranded forming part consisting of 15 to 27 base pairs.
  7.  配列番号54~106のいずれかで表される塩基配列からなる核酸または該核酸の少なくとも一方の末端が1~4塩基削除された核酸と、該核酸の塩基配列に対して相補的な塩基配列からなる核酸とからなる二本鎖核酸。 A nucleic acid comprising the base sequence represented by any of SEQ ID NOs: 54 to 106, a nucleic acid from which at least one end of the nucleic acid has been deleted by 1 to 4 bases, and a base sequence complementary to the base sequence of the nucleic acid A double-stranded nucleic acid consisting of a nucleic acid.
  8.  請求項5~7のいずれか1項に記載の二本鎖核酸の少なくとも一方の鎖において、1~3塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する二本鎖核酸。 A double strand in which at least one base is substituted, deleted or added in at least one strand of the double-stranded nucleic acid according to any one of claims 5 to 7, and has Bcl-2 protein expression inhibitory activity Strand nucleic acid.
  9.  請求項5~8のいずれか1項に記載の二本鎖核酸を含む、二重鎖形成部が27塩基対以下である二本鎖核酸。 A double-stranded nucleic acid comprising the double-stranded nucleic acid according to any one of claims 5 to 8, wherein the double-stranded forming part has 27 base pairs or less.
  10.  請求項5~9のいずれか1項に記載の二本鎖核酸の少なくとも一方の鎖の3’末端または5’末端に1~4塩基が付加された二本鎖核酸。 A double-stranded nucleic acid having 1 to 4 bases added to the 3 'end or 5' end of at least one strand of the double-stranded nucleic acid according to any one of claims 5 to 9.
  11.  配列番号1~212、216および217のいずれかで表される塩基配列からなる核酸。 A nucleic acid consisting of a base sequence represented by any of SEQ ID NOs: 1-212, 216 and 217.
  12.  請求項11に記載の核酸において、1~3塩基が置換、欠失もしくは付加され、かつBcl-2蛋白質の発現抑制活性を有する核酸。 The nucleic acid according to claim 11, wherein 1 to 3 bases are substituted, deleted or added, and has Bcl-2 protein expression inhibitory activity.
  13.  請求項11または12に記載の核酸を含む、30塩基以下の核酸。 A nucleic acid of 30 bases or less, comprising the nucleic acid according to claim 11 or 12.
  14.  請求項1~13のいずれか1項に記載の核酸を構成するヌクレオチドの一部または全部がリボヌクレオチドであり、かつBcl-2蛋白質の発現抑制活性を有する核酸。 A nucleic acid in which a part or all of the nucleotides constituting the nucleic acid according to any one of claims 1 to 13 are ribonucleotides and has Bcl-2 protein expression inhibitory activity.
  15.  請求項1~14のいずれか1項に記載の核酸を構成するヌクレオチドの一部または全部が、デオキシリボヌクレオチドまたは修飾ヌクレオチドであり、かつBcl-2蛋白質の発現抑制活性を有する核酸。 A nucleic acid in which some or all of the nucleotides constituting the nucleic acid according to any one of claims 1 to 14 are deoxyribonucleotides or modified nucleotides, and has Bcl-2 protein expression inhibitory activity.
  16.  3’末端または5’末端に付加された1~4塩基の少なくとも1塩基がデオキシリボヌクレオチドである、請求項10または15に記載の核酸。 The nucleic acid according to claim 10 or 15, wherein at least one of 1 to 4 bases added to the 3 'end or 5' end is deoxyribonucleotide.
  17.  請求項1~16のいずれか1項に記載の核酸をコードするベクター。 A vector encoding the nucleic acid according to any one of claims 1 to 16.
  18.  請求項1~17のいずれか1項に記載の核酸またはベクターを有効成分とする、医薬組成物。 A pharmaceutical composition comprising the nucleic acid or vector according to any one of claims 1 to 17 as an active ingredient.
  19.  核酸を細胞内に移行させるのに有効な担体をさらに含む、請求項18に記載の医薬組成物。 The pharmaceutical composition according to claim 18, further comprising a carrier effective for transferring the nucleic acid into the cell.
  20.  核酸を細胞内に移行させるのに有効な担体がカチオン性担体である、請求項19に記載の医薬組成物。 The pharmaceutical composition according to claim 19, wherein the carrier effective for transferring the nucleic acid into the cell is a cationic carrier.
  21.  核酸を細胞内に移行させるのに有効な担体がリポソームである、請求項20に記載の医薬組成物。 21. The pharmaceutical composition according to claim 20, wherein the effective carrier for transferring the nucleic acid into the cell is a liposome.
  22.  リポソームがBcl-2蛋白質をコードする遺伝子の発現部位を含む組織または臓器に到達するリポソームである、請求項21に記載の医薬組成物。 The pharmaceutical composition according to claim 21, wherein the liposome is a liposome that reaches a tissue or an organ containing an expression site of a gene encoding Bcl-2 protein.
  23.  核酸またはベクターとリード粒子とを構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜から構成されるリポソームであって、該脂質二重膜の構成成分がエタノールに可溶で、かつ5vol%エタノール水溶液中で分散し、該複合粒子が5vol%エタノール水溶液中で分散することを特徴とする、請求項18に記載の医薬組成物。 A liposome comprising a composite particle comprising a nucleic acid or vector and a lead particle as constituents and a lipid bilayer covering the composite particle, wherein the constituents of the lipid bilayer are soluble in ethanol, and The pharmaceutical composition according to claim 18, wherein the composition is dispersed in a 5 vol% ethanol aqueous solution, and the composite particles are dispersed in a 5 vol% ethanol aqueous solution.
  24.  Bcl-2蛋白質の発現を抑制することを特徴とする、請求項18~23のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 18 to 23, which suppresses the expression of Bcl-2 protein.
  25.  アポトーシスを促進する、請求項24に記載の医薬組成物。 The pharmaceutical composition according to claim 24, which promotes apoptosis.
  26.  癌の治療または予防に用いる、請求項18~25のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 18 to 25, which is used for treatment or prevention of cancer.
  27.  請求項1~26のいずれか1項に記載の核酸、ベクターまたは医薬組成物を対象に投与することを特徴とする、該対象におけるBcl-2蛋白質の発現を抑制する方法。 A method for suppressing the expression of Bcl-2 protein in a subject, comprising administering the nucleic acid, vector or pharmaceutical composition according to any one of claims 1 to 26 to the subject.
  28.  医薬組成物の製造のための、請求項1~17のいずれか1項に記載の核酸またはベクターの使用。 Use of the nucleic acid or vector according to any one of claims 1 to 17 for the production of a pharmaceutical composition.
PCT/JP2009/064675 2008-08-21 2009-08-21 Nucleic acid capable of inhibiting expression of bcl-2 protein WO2010021389A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-213300 2008-08-21
JP2008213300 2008-08-21

Publications (1)

Publication Number Publication Date
WO2010021389A1 true WO2010021389A1 (en) 2010-02-25

Family

ID=41707263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064675 WO2010021389A1 (en) 2008-08-21 2009-08-21 Nucleic acid capable of inhibiting expression of bcl-2 protein

Country Status (1)

Country Link
WO (1) WO2010021389A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110314A1 (en) * 2009-03-27 2010-09-30 協和発酵キリン株式会社 Therapeutic agent for pulmonary hypertension comprising nucleic acid
WO2012098692A1 (en) * 2011-01-19 2012-07-26 協和発酵キリン株式会社 Composition for inhibiting target gene expression

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517452A (en) * 2002-02-20 2005-06-16 サーナ・セラピューティクス・インコーポレイテッド RNA interference-mediated inhibition of BCL2 gene expression using short interfering nucleic acids (siNA)
EP1714970A1 (en) * 2005-04-22 2006-10-25 Universität des Saarlandes Use of inhibitors of RNAse A-family enzymes for stabilizing oligonucleotides having RNA interfering activity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005517452A (en) * 2002-02-20 2005-06-16 サーナ・セラピューティクス・インコーポレイテッド RNA interference-mediated inhibition of BCL2 gene expression using short interfering nucleic acids (siNA)
EP1714970A1 (en) * 2005-04-22 2006-10-25 Universität des Saarlandes Use of inhibitors of RNAse A-family enzymes for stabilizing oligonucleotides having RNA interfering activity

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110314A1 (en) * 2009-03-27 2010-09-30 協和発酵キリン株式会社 Therapeutic agent for pulmonary hypertension comprising nucleic acid
WO2012098692A1 (en) * 2011-01-19 2012-07-26 協和発酵キリン株式会社 Composition for inhibiting target gene expression
JPWO2012098692A1 (en) * 2011-01-19 2014-06-09 協和発酵キリン株式会社 Composition that suppresses expression of target gene
JP5952197B2 (en) * 2011-01-19 2016-07-13 協和発酵キリン株式会社 Composition that suppresses expression of target gene

Similar Documents

Publication Publication Date Title
Yang et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation
Shobaki et al. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy
JP6023126B2 (en) Composition that suppresses expression of target gene
US9006191B2 (en) Silencing of polo-like kinase expression using interfering RNA
AU2009236219B8 (en) Silencing of CSN5 gene expression using interfering RNA
KR20140098082A (en) Amine cationic lipids and uses thereof
US20210244826A1 (en) Short interfering rna templated lipoprotein particles (sirna-tlp)
WO2017135397A1 (en) Antisense oligonucleotide for suppressing expression of complement b factor
US9328348B2 (en) Small interference RNAs, uses thereof and method for inhibiting the expression of plk1 gene
WO2013032643A2 (en) Lipids capable of conformational change and their use in formulations to deliver therapeutic agents to cells
WO2018117253A1 (en) Nucleic acid inhibiting expression of complement factor b
US11466272B2 (en) Nucleic acid suppressing expression of APCS
WO2010021389A1 (en) Nucleic acid capable of inhibiting expression of bcl-2 protein
WO2011074652A1 (en) Nucleic acid capable of inhibiting expression of hif-2α
WO2023024230A1 (en) COMPOSITION CONTAINING C/EBPα-SARNA
JP5872898B2 (en) Composition that suppresses expression of target gene
JP5952197B2 (en) Composition that suppresses expression of target gene
US20120244210A1 (en) Composition for suppressing expression of target gene
US20120207818A1 (en) Composition for suppressing expression of target gene
JP2023015297A (en) C/EBPα SMALL MOLECULE ACTIVATING RNA COMPOSITION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09808325

Country of ref document: EP

Kind code of ref document: A1