WO2017135397A1 - Antisense oligonucleotide for suppressing expression of complement b factor - Google Patents

Antisense oligonucleotide for suppressing expression of complement b factor Download PDF

Info

Publication number
WO2017135397A1
WO2017135397A1 PCT/JP2017/003904 JP2017003904W WO2017135397A1 WO 2017135397 A1 WO2017135397 A1 WO 2017135397A1 JP 2017003904 W JP2017003904 W JP 2017003904W WO 2017135397 A1 WO2017135397 A1 WO 2017135397A1
Authority
WO
WIPO (PCT)
Prior art keywords
antisense oligonucleotide
seq
nos
base sequence
bases
Prior art date
Application number
PCT/JP2017/003904
Other languages
French (fr)
Japanese (ja)
Inventor
陽史 山田
清 清水
宏徒 岩井
麻奈 牧野
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Publication of WO2017135397A1 publication Critical patent/WO2017135397A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to an antisense oligonucleotide for use in suppressing the expression of complement factor B or a pharmaceutical composition containing the antisense oligonucleotide.
  • Complements are a group of proteins in the blood that mediate immune responses. Complement effects include phagocytosis of pathogenic bacteria by phagocytic cells, damage to viruses with outer membranes, and loss of infectivity. Is mentioned. Among complements, C3 is the most abundant in serum, and its action is controlled by being activated by complement factor B (CFB) in the alternative pathway (non-patented) Reference 1).
  • CFB complement factor B
  • C3 continues to be activated due to abnormalities in regulatory factors related to the alternative pathway of the complement or stabilization with autoantibodies to C3 convertase, atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria Disease (PNH), age-related macular degeneration (AMD), membranoproliferative glomerulonephritis (MPGN), C3 nephritis, membranous nephropathy, rapidly progressive glomerulonephritis (RPGN), acute kidney injury (AKI), It is known to develop diseases such as systemic lupus erythematosus (SLE), asthma, psoriasis, neuromyelitis optica, myasthenia gravis and autoimmune disease (Non-patent Document 2).
  • aHUS atypical hemolytic uremic syndrome
  • PNH paroxysmal nocturnal hemoglobinuria Disease
  • AMD age-related macular degeneration
  • MPGN membran
  • complement factor B is present in the blood at a relatively high concentration of 300 ⁇ g / mL ( Non-patent document 3), it is not easy to continue to inhibit all these complement factor B by, for example, a general antibody drug.
  • an antisense method is known as a method for suppressing gene expression itself (Patent Document 1).
  • oligonucleotides complementary to the target gene mRNA or mRNA precursor are introduced into the target gene mRNA or mRNA precursor in two. It forms a chain and can specifically suppress the expression of the target gene.
  • RNAi RNA interference
  • the expression of the target gene can be specifically suppressed by introducing a double-stranded RNA (siRNA) having the same sequence as the target gene (Patent Document 2).
  • Patent Document 3 A part of siRNA sequence targeting human complement factor B gene has been disclosed (Patent Document 3). Moreover, although some antisense sequences targeting the gene have been disclosed (Patent Document 4), the present invention is a sequence different from these sequences.
  • the present invention relates to the following (1) to (13).
  • An antisense oligonucleotide that suppresses the expression of complement factor B and is capable of hybridizing under stringent conditions to a nucleic acid comprising the target base sequence represented by any of SEQ ID NOs: 53 to 103. 8 Antisense oligonucleotide of ⁇ 80 bases length.
  • An antisense oligonucleotide having a length of 8 to 80 bases comprising a base sequence complementary to the base sequence represented by any of SEQ ID NOs: 53 to 103.
  • the antisense oligonucleotide according to (3) comprising the base sequence represented by any of SEQ ID NOs: 2-52.
  • the antisense oligonucleotide according to (4) comprising a sequence in which one to several bases are deleted, substituted, inserted or added in the base sequence represented by any of SEQ ID NOs: 2 to 52 .
  • An antisense oligonucleotide comprising the base sequence represented by any of SEQ ID NOs: 2-52.
  • a pharmaceutical composition comprising the antisense oligonucleotide according to any one of (1) to (10).
  • (12) A method for treating a disorder mediated by an abnormality in the alternative complement pathway, comprising a therapeutically effective amount of the antisense oligonucleotide according to any one of (1) to (10) or (11 ) Comprising administering to a human in need of such treatment.
  • the disorder is atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, age-related macular degeneration, membranoproliferative glomerulonephritis, C3 nephritis, membranous nephropathy, rapidly progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma or autoimmune disease, the method according to (12).
  • antisense oligonucleotide of the present invention or the pharmaceutical composition containing the antisense oligonucleotide.
  • the antisense oligonucleotide of the present invention or the pharmaceutical composition containing the antisense oligonucleotide is useful for the treatment / prevention of a disorder mediated by an abnormality in the alternative complement pathway.
  • FIG. 1 shows the results of in vivo knockdown in mice administered with an antisense oligonucleotide represented by any of SEQ ID NOs: 118, 125 and 150.
  • the vertical axis shows the relative expression rate of CFB mRNA in each antisense oligonucleotide administration group when the semi-quantitative value of complement factor B (CFB) mRNA in the control group is 1.
  • FIG. 2 shows the results of in vivo knockdown in mice administered with the antisense oligonucleotide represented by SEQ ID NO: 155.
  • the vertical axis shows the relative expression rate of CFB mRNA in the antisense oligonucleotide-administered group when the semi-quantitative value of CFB mRNA in the control group is 1.
  • Antisense oligonucleotide of the present invention provides an antisense oligonucleotide that suppresses the expression of complement factor B (CFB) (also referred to herein as the “antisense oligonucleotide of the present invention”). .
  • CFB complement factor B
  • antisense oligonucleotide refers to a DNA constituting a target gene, an mRNA precursor transcribed from such DNA, and an oligonucleotide complementary to the mRNA. Suppresses the action of DNA, mRNA precursor or mRNA (transcription, post-transcriptional editing, translation, etc.) by forming double-stranded or triple-stranded with target DNA, mRNA precursor or mRNA.
  • CFB gene As a gene encoding CFB targeted by the antisense oligonucleotide of the present invention (hereinafter also referred to as CFB gene), a cDNA base sequence corresponding to human CFB full-length mRNA registered as Genbank Accession No. NM_001710 (SEQ ID NO: 1), and naturally occurring variants thereof (see, for example, Hum. Mutat. 31: E1445-E1460 (2010), refsnp No. rs12614, rs641153, etc.) are also antisense of the present invention. It goes without saying that it can be a target gene for oligonucleotides.
  • complementary refers to, for example, base pairing between two bases via a slow hydrogen bond, such as the relationship between adenine and thymine or uracil, and the relationship between guanine and cytosine. Means a relationship.
  • “complementary” means not only when two nucleotide sequences are completely complementary in a double-stranded region (a region overlapping when both sequences are aligned), but also the entire double-stranded region. As long as it can have a double helix structure, that is, as long as both sequences can hybridize under stringent conditions, a case where 1 to several mismatches exist is also included.
  • the antisense oligonucleotide of the present invention is a nucleic acid molecule capable of hybridizing under stringent conditions to a nucleic acid comprising DNA encoding CFB, an mRNA precursor, or a target base sequence in mRNA.
  • stringent conditions means that the antisense oligonucleotide of the present invention hybridizes to the target base sequence of the CFB gene, but does not hybridize to other sequences or even if it is a target. It means a condition that is significantly less than the amount hybridized to the base sequence and hybridizes only in a negligible amount that is relatively negligible. Such conditions can be easily selected by changing the temperature during the hybridization reaction and washing, the salt concentration of the hybridization reaction solution and the washing solution, and the like.
  • 6xSSC 0.09M trisodium citrate
  • 6xSSPE 3M NaCl, 0.2M NaH 2 PO 4 , 20mM EDTA ⁇ 2Na, pH7.4
  • the conditions for washing with 0.5xSSC are examples of stringent conditions, but are not limited thereto.
  • a hybridization method for example, Southern blot hybridization method or the like can be used. Specifically, it should be performed according to the method described in Molecular Cloning: A Laboratory Mannual, Second Edition (1989) (Cold Spring Harbor Laboratory Press), Current Protocols in Molecular Biology (1994) (Wiley-Interscience), etc. Can do.
  • the antisense oligonucleotide of the present invention may be any molecule as long as it is a molecule obtained by polymerizing nucleotides or molecules having functions equivalent to those of the nucleotides.
  • DNA that is a polymer of deoxyribonucleotides, and DNA ribonucleotides.
  • examples thereof include RNA as a combination, chimeric nucleic acids composed of DNA and RNA, and nucleotide polymers in which at least one nucleotide of these nucleic acids is substituted with a molecule having a function equivalent to that of the nucleotide.
  • uracil (U) in RNA can be uniquely read as thymine (T) in DNA.
  • nucleotide derivatives examples include nucleotide derivatives.
  • the nucleotide derivative may be any molecule as long as it is a molecule in which nucleotides have been modified.
  • deoxyribonucleotides or molecules modified with ribonucleotides are preferably used.
  • nucleotide examples include a sugar moiety-modified nucleotide, a phosphodiester bond-modified nucleotide, a base-modified nucleotide, and a nucleotide in which two or more of the sugar moiety, phosphodiester bond and base are modified.
  • any or all of the chemical structure of the sugar of the nucleotide may be modified or substituted with any substituent, or may be substituted with any atom.
  • '-Modified nucleotides are preferably used.
  • 2′-modified nucleotides include ribose 2′-OH groups from OR, R, R′OR, SH, SR, NH 2 , NHR, NR 2 , N 3 , CN, F, Cl, Br, and I.
  • Examples include modified nucleotides. More preferred examples include 2′-modified nucleotides substituted with a substituent selected from the group consisting of a methoxy group and a 2- (methoxy) ethoxy group.
  • a crosslinked structure-type artificial nucleic acid having two circular structures by introducing a crosslinked structure into the sugar moiety is also preferably used.
  • LNA locked artificial nucleic acid
  • Ethylene bridged nucleic acid ENA
  • cEt Constrained Ethyl
  • AmNA AmNA
  • scpBNA 2'-O, 4'-C-Spirocyclopropylene bridged nucleic acid
  • peptide nucleic acid [Acc. Chem. Res., 32, 624 (1999)]
  • oxypeptide nucleic acid OPNA
  • peptide ribonucleic acid 2001
  • PRNA peptide ribonucleic acid
  • any or all of the chemical structure of the nucleotide phosphodiester bond modified or substituted with any substituent or any atom may be used.
  • a nucleotide in which a phosphodiester bond is replaced with a phosphorothioate bond a nucleotide in which a phosphodiester bond is replaced with a phosphorodithioate bond, a nucleotide in which a phosphodiester bond is replaced with an alkylphosphonate bond, a phosphate
  • examples include nucleotides in which a diester bond is substituted with a phosphoramidate bond, and preferably nucleotides in which a phosphodiester bond is substituted with a phosphorothioate bond.
  • the base-modified nucleotide may be any nucleotide as long as it is part or all of the nucleotide base chemical structure modified or substituted with an arbitrary substituent, or substituted with an arbitrary atom.
  • oxygen atoms are substituted with sulfur atoms
  • hydrogen atoms are substituted with alkyl groups having 1 to 6 carbon atoms
  • halogen groups methyl groups are hydrogen, hydroxymethyl, alkyl groups with 2 to 6 carbon atoms
  • an amino group is substituted with an alkyl group having 1 to 6 carbon atoms, an alkanoyl group having 1 to 6 carbon atoms, an oxo group, a hydroxy group, or the like.
  • nucleotide derivatives include nucleotide derivatives modified with at least one of nucleotide or sugar moiety, phosphodiester bond or base, ligands such as lipids such as cholesterol, fatty acids, tocopherols, retinoids, N-acetylgalactosamine (GalNAc) , Sugars such as galactose (Gal) and mannose (Man), full antibodies, fragment antibodies such as Fab, scFv, VHH, proteins such as low density lipoprotein (LDL), human serum albumin, RGD, NGR, R9, CPP, etc.
  • ligands such as lipids such as cholesterol, fatty acids, tocopherols, retinoids, N-acetylgalactosamine (GalNAc) , Sugars such as galactose (Gal) and mannose (Man), full antibodies, fragment antibodies such as Fab, scFv, VHH, proteins such as low density lipoprotein (LDL),
  • Peptides small molecules such as phenazine, phenanthridine, anthraquinone, folic acid, synthetic polymers such as synthetic polyamino acids, dyes such as nucleic acid aptamer, acridine, fluorescein, rhodamine, coumarin, Cy3 series, Alexa series, black hole quencher Such as fluorescence There may be mentioned those obtained by adding another chemical substance such as a group directly or via a linker.
  • polyamine addition nucleotide derivatives examples include 6-FAM-added nucleotide derivatives and biotin-added nucleotide derivatives, and preferably include GalNAc-added nucleotide derivatives.
  • modifying agent capable of reacting on the solid phase during the extension reaction on the solid phase. It can also be obtained by previously synthesizing and purifying nucleic acids into which a functional group such as an amino group, mercapto group, azide group or triple bond has been introduced, and allowing a modifier to act on them.
  • the nucleotide derivative may form a crosslinked structure such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, or a structure obtained by combining at least one of these with other nucleotides or nucleotide derivatives in the nucleic acid.
  • the antisense oligonucleotide of the present invention includes those in which some or all atoms in the molecule are substituted with atoms (isotopes) having different mass numbers.
  • the antisense oligonucleotide of the present invention may be introduced into the form of a hairpin oligomer or circular oligomer as long as it is a nucleic acid that hybridizes under stringent conditions to the target base sequence of the CFB gene. It may contain structural elements such as loops.
  • the length of the antisense oligonucleotide of the present invention is 8 to 80 bases, preferably 8 to 30 bases.
  • it can be 8-20 bases, 10-20 bases, 13-20 bases, 13-16 bases, 13 bases, 14 bases, 15 bases, 16 bases, 17 bases, 18 bases, 19 bases, 20 bases.
  • the target base sequence of the antisense oligonucleotide of the present invention include a partial base sequence of CFB mRNA (cDNA) represented by SEQ ID NOs: 53 to 103 described in Table 1. Therefore, the antisense oligonucleotide of the present invention is an oligonucleotide capable of hybridizing under stringent conditions to the target base sequence represented by any of SEQ ID NOs: 53 to 103. As long as the antisense oligonucleotide of the present invention can hybridize to any one of the above target base sequences under stringent conditions, not only the sequence completely complementary to the target base sequence but also 1 to the target base sequence.
  • the antisense oligonucleotide of the present invention includes a base sequence complementary to the target base sequence represented by any of SEQ ID NOs: 53 to 103 and a sequence completely complementary to the target base sequence. , 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base deleted, substituted, inserted or added may be used.
  • Antisense oligonucleotides having a length of 8 to 80 bases containing a series of bases are also preferred antisense oligonucleotides. More preferably 9 or more, still more preferably 10 or more, still more preferably 11 or more, particularly preferably 12 or more, most preferably selected from each antisense base sequence described in Table 1
  • Antisense oligonucleotides containing 13 consecutive bases and having a length of 8 to 80 bases, preferably 8 to 30 bases are also preferred antisense oligonucleotides.
  • Typical preferred antisense oligonucleotides include at least 8, more preferably 9 or more, even more preferably 10 or more, and even more preferably 11 from the 5 ′ end of each antisense base sequence listed in Table 1. Oligonucleotides comprising one or more, particularly preferably 12 or more consecutive nucleobases are included. Similarly, preferable antisense oligonucleotides include at least 8 or more, more preferably 9 or more, still more preferably 10 or more, and still more preferably 11 from the 3 ′ end of each antisense base sequence described in Table 1. Oligonucleotides comprising one or more, particularly preferably 12 or more consecutive nucleobases are included. Most preferably, it is an oligonucleotide containing each antisense base sequence described in Table 1.
  • the antisense oligonucleotide of the present invention includes each antisense base sequence described in Table 1, and lacks 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base in the antisense base sequence. A deletion, substitution, insertion or addition may be used.
  • an antisense oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 104 to 154 and 155 described in Table 2 is preferably used.
  • Antisense oligonucleotides of the present invention include antisense oligonucleotides described in Table 2 and Table 3, each having an antisense oligonucleotide sequence having a CFB relative expression level of 0.5 or less. It is more preferable to use nucleotides, more preferably antisense oligonucleotides having a CFB relative expression level of 0.3 or less, and particularly preferably antisense oligonucleotides having a CFB relative expression level of 0.1 or less.
  • the antisense oligonucleotide of the present invention When the antisense oligonucleotide of the present invention is introduced into a cell, it binds to complementary mRNA and mRNA precursor, and sterically inhibits translation of the mRNA and mRNA precursor into a protein, thereby inhibiting the CFB gene. Can be suppressed.
  • the antisense oligonucleotide of the present invention introduced into a cell may bind to complementary mRNA and mRNA precursor in the cell and cleave the mRNA and mRNA precursor.
  • RNaseH an action through RNaseH, which is an endonuclease that cleaves RNA strands of RNA and DNA double strands.
  • RNaseH an endonuclease that cleaves RNA strands of RNA and DNA double strands
  • an antisense oligonucleotide having 4 to 80 continuous DNA regions is preferable.
  • the antisense oligonucleotide preferably has 0 to 80% sugar-modified nucleotides, more preferably 10 to 60%, and even more preferably 20 to 50%.
  • the number of continuous DNA regions having a sugar-modified nucleotide is more preferably 4 to 20, more preferably 4 to 15, and most preferably 5 to 10.
  • the position of the sugar-modified nucleotide in the antisense oligonucleotide is preferably arranged in the vicinity of the 5 ′ end and / or in the vicinity of the 3 ′ end, and the position within 30% of the total length from the 5 ′ end and / or More preferably, it is arranged at a position within 30% of the total length from the 3 ′ end, and the sugar-modified nucleotide is located at a position within 25% of the total length from the 5 ′ end of the antisense oligonucleotide and / or More preferably, it is arranged at a position within 25% of the total length from the 3 ′ end.
  • the antisense oligonucleotide of the present invention When introduced into a cell, the antisense oligonucleotide of the present invention also binds to genomic DNA encoding a complementary CFB, inhibits transcription of the DNA to an mRNA precursor, and inhibits expression of the CFB gene. Can be suppressed.
  • the vicinity of the 5 'end and / or the vicinity of the 3' end is a sugar-modified nucleotide.
  • the vicinity of the 5 ′ end is a sugar moiety-modified nucleotide means that 1 to 4, preferably 2 to 4 consecutive nucleotides from the 5 ′ end are sugar part-modified nucleotides
  • the vicinity of the 3 ′ end is a sugar part modified nucleotide means that 1 to 4, preferably 2 to 4 consecutive nucleotides from the 3 ′ end are sugar part modified nucleotides.
  • the antisense oligonucleotide of the present invention is preferably an antisense oligonucleotide in which 1 to 4 nucleotides from the 5 ′ end are sugar-modified nucleotides, more preferably 2 to 4 from the 5 ′ end.
  • the nucleotide is a sugar-modified nucleotide.
  • the antisense oligonucleotide of the present invention is preferably an antisense oligonucleotide in which 1 to 4 nucleotides from the 3 ′ end are sugar-modified nucleotides, more preferably 2 to 4 nucleotides from the 3 ′ end. Can be used in which is a sugar-modified nucleotide.
  • the method for producing the antisense oligonucleotide of the present invention is not particularly limited, and includes a method using a known chemical synthesis, an enzymatic transcription method, or the like.
  • known chemical synthesis methods include phosphoramidite method, phosphorothioate method, phosphotriester method, CEM method [Nucleic® Acid® Research, 35, 3287] (2007)].
  • ABI3900 high-throughput nucleic acid synthesis Can be synthesized by a machine (Applied Biosystems). After the synthesis is completed, elimination from the solid phase, deprotection of the protecting group, purification of the target product, and the like are performed.
  • an antisense oligonucleotide having a purity of 90% or more, preferably 95% or more by purification is desirable to obtain an antisense oligonucleotide having a purity of 90% or more, preferably 95% or more by purification.
  • a transcription method using a phage RNA polymerase for example, T7, T3, or SP6 RNA polymerase, using a plasmid or DNA having the target base sequence as a template.
  • the antisense oligonucleotide of the present invention can be introduced into cells using a transfection carrier, preferably a cationic carrier such as a cationic liposome. It can also be directly introduced into cells by the calcium phosphate method, electroporation method or microinjection method.
  • the antisense oligonucleotide of the present invention can also induce suppression of target gene expression by forming a double strand with a complementary oligonucleic acid and introducing it into a cell as a double-stranded nucleic acid (International Publication No. 2005). / 113571).
  • the position at which the double-stranded nucleic acid is modified with a ligand is preferably the 5 'end or 3' end of a complementary oligonucleic acid.
  • the antisense oligonucleotide of the present invention has a cDNA base sequence (SEQ ID NO: 1) corresponding to the full-length mRNA of human CFB or a genomic sequence corresponding to the mRNA precursor. Can be designed based on.
  • the cDNA of human CFB full-length mRNA is registered, for example, as Genbank Accession No. NM_001710, and the genomic sequence containing the human CFB mRNA precursor is, for example, Genbank Accession No. It is registered.
  • the antisense oligonucleotide having CFB expression suppression activity is selected from the group described in Table 1 or Table 2, for example.
  • antisense oligonucleotides composed of antisense base sequences is 8 to 80 bases, preferably 8 to 30 bases.
  • it can be 8-20 bases, 10-20 bases, 13-20 bases, 13-16 bases, 13 bases, 14 bases, 15 bases, 16 bases, 17 bases, 18 bases, 19 bases, 20 bases.
  • CFB expression can be suppressed by introducing these antisense oligonucleotides into cells.
  • the antisense oligonucleotide of the present invention can suppress the expression of CFB mRNA after being introduced into cells at a concentration of several nM to several ⁇ M and then cultured for 24 hours or more, for example 48 hours.
  • the evaluation of the CFB mRNA expression inhibitory activity of the antisense oligonucleotide of the present invention can be carried out using the antisense oligonucleotide as a cationic liposome or the antisense oligonucleotide as it is, or the antisense oligonucleotide.
  • the antisense oligonucleotide of the present invention may contain a ligand.
  • the ligand may be one that directly modifies the 5 ′ end, 3 ′ end and / or the sequence interior of the antisense oligonucleotide of the present invention.
  • the ligand contained in the antisense oligonucleotide of the present invention may be any molecule that has affinity for biomolecules.
  • lipids such as cholesterol, fatty acids, tocopherols, retinoids, N-acetylgalactosamine (GalNAc), Sugars such as galactose (Gal) and mannose (Man), full antibodies, fragment antibodies such as Fab, scFV, VHH, proteins such as low density lipoprotein (LDL), human serum albumin, RGD, NGR, R9, CPP, etc.
  • Peptides, low molecular weight compounds such as folic acid, synthetic polymers such as synthetic polyamino acids, nucleic acid aptamers, and the like can be mentioned, but the invention is not limited thereto, and these can be used in appropriate combinations.
  • a conjugated nucleic acid can be obtained by previously synthesizing and purifying a nucleic acid into which a functional group such as an amino group, a mercapto group, an azide group, or a triple bond has been introduced, and allowing a modifier to act on them.
  • composition of the present invention relates to a pharmaceutical composition containing the antisense oligonucleotide of the present invention as an active ingredient (hereinafter also referred to as the pharmaceutical composition of the present invention).
  • the pharmaceutical composition can further contain a carrier effective for transferring the antisense oligonucleotide into the cell.
  • the pharmaceutical composition of the present invention comprises atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria (PNH), age-related macular degeneration (AMD), membranoproliferative glomerulonephritis (MPGN), C3 Nephritis, membranous nephropathy, rapid progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE), psoriasis, optic neuromyelitis, myasthenia gravis) ) And the like.
  • aHUS atypical hemolytic uremic syndrome
  • PNH paroxysmal nocturnal hemoglobinuria
  • AMD age-related macular degeneration
  • MPGN membranoproliferative glomerulonephriti
  • Examples of the carrier effective for transferring the antisense oligonucleotide into the cell include a cationic carrier.
  • Examples of the cationic carrier include cationic liposomes and cationic polymers.
  • a carrier utilizing a viral envelope may be used as a carrier effective for transferring the antisense oligonucleotide into the cell.
  • cationic liposomes include liposomes containing 2-O- (2-diethylaminoethyl) carbamoyl-1,3-O-dioleoylglycerol (hereinafter also referred to as liposome A), oligofectamine (Invitrogen), lipofectin ( Invitrogen), Lipofectamine (Invitrogen), Lipofectamine 2000 (Invitrogen), DMRIE-C (Invitrogen), GeneSilencer (Gene Therapy Systems), TransMessenger (QIAGEN), TransIT TKO (Mirus), etc. Is preferably used.
  • JetSI Qbiogene
  • Jet-PEI polyethyleneimine; Qbiogene
  • GenomeOne HVJ-E liposome; Ishihara Sangyo Co., Ltd.
  • the pharmaceutical composition of the present invention comprising the above-described carrier in the antisense oligonucleotide of the present invention can be prepared by methods known to those skilled in the art. For example, it can be prepared by mixing a carrier dispersion having an appropriate concentration and an antisense oligonucleotide solution.
  • a carrier dispersion having an appropriate concentration
  • an antisense oligonucleotide solution When a cationic carrier is used, the antisense oligonucleotide is negatively charged in an aqueous solution, and therefore can be easily prepared by mixing in an aqueous solution by a conventional method.
  • the aqueous solvent used for preparing the composition include electrolyte solutions such as water for injection, distilled water for injection, and physiological saline, and sugar solutions such as glucose solution and maltose solution.
  • conditions such as pH and temperature when preparing the composition can be appropriately selected by those skilled in the art.
  • liposome A prepared by gradually adding an antisense oligonucleotide in 10% maltose aqueous solution to 16 mg / ml liposome dispersion in 10% maltose aqueous solution with stirring at pH 7.4 and 25 ° C. can do.
  • the composition can be made into a uniform composition by carrying out a dispersion treatment using an ultrasonic dispersion device or a high-pressure emulsification device if necessary.
  • the optimum method and conditions for the preparation of the composition comprising the carrier and the antisense oligonucleotide depend on the carrier to be used, and those skilled in the art can select the optimum method for the carrier to be used without being bound by the above method. it can.
  • the pharmaceutical composition of the present invention comprises a composite particle comprising an antisense oligonucleotide and a lead particle as constituents and a lipid membrane covering the composite particle, wherein the constituent of the lipid membrane is soluble
  • a liposome containing a liquid containing the polar organic solvent at a concentration capable of dispersing the constituent components of the lipid membrane and the composite particles can also be suitably used.
  • the lead particles include lipid aggregates, liposomes, emulsion particles, polymers, metal colloids, and fine particle preparations, and liposomes are preferably used.
  • the lead particles in the present invention may be composed of a complex obtained by combining two or more lipid aggregates, liposomes, emulsion particles, polymers, metal colloids, fine particle formulations, etc., and lipid aggregates, liposomes, emulsion particles, A complex formed by combining a polymer, a metal colloid, a fine particle preparation, and the like with another compound (eg, sugar, lipid, inorganic compound, etc.) may be used as a constituent component.
  • another compound eg, sugar, lipid, inorganic compound, etc.
  • lipid membrane that coats the composite particles examples include neutral lipids and polyethylene glycol-phosphatidylethanolamine as constituent components.
  • the liposome can be prepared, for example, according to the method described in WO2006 / 080118.
  • the mixing ratio of the antisense oligonucleotide and the carrier contained in the pharmaceutical composition of the present invention is suitably 1 to 200 parts by weight of the carrier with respect to 1 part by weight of the antisense oligonucleotide.
  • the amount is 2.5 to 100 parts by weight, more preferably 10 to 20 parts by weight, based on 1 part by weight of the antisense oligonucleotide.
  • the pharmaceutical composition of the present invention may contain a pharmaceutically acceptable carrier or diluent in addition to the above carrier.
  • a pharmaceutically acceptable carrier or diluent or the like is an essentially chemically inert and harmless composition that does not affect the biological activity of the pharmaceutical composition of the present invention at all. Examples of such carriers or diluents include but are not limited to salt solutions, sugar solutions, glycerol solutions, ethanol and the like.
  • disorders mediated by abnormalities in the alternative complement pathway include atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria (PNH), age-related macular degeneration (AMD), Membranoproliferative glomerulonephritis (MPGN), C3 nephritis, membranous nephropathy, rapidly progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE)) Psoriasis, optic neuritis, myasthenia gravis, etc.).
  • aHUS atypical hemolytic uremic syndrome
  • PNH paroxysmal nocturnal hemoglobinuria
  • AMD age-related macular degeneration
  • MPGN Membranoproliferative glomerulonephritis
  • C3 nephritis C3 nephritis
  • the pharmaceutical composition of the present invention comprises atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria (PNH), age-related macular degeneration (AMD), membranoproliferative glomerulonephritis (MPGN) , C3 nephritis, membranous nephropathy, rapidly progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE), psoriasis, optic neuromyelitis, myasthenia gravis It can be used as a therapeutic or prophylactic agent such as atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria (PNH), age-related macular degeneration (AMD), membranoproliferative glomerulonephritis (MPGN) , C3 nephritis, membranous n
  • the pharmaceutical composition of the present invention can be provided in a form that contains an amount of the complex effective for treating or preventing a disease and can be appropriately administered to a patient.
  • the preparation form of the pharmaceutical composition of the present invention may be, for example, injections, eye drops, liquids for inhalation, etc., for example, external preparations such as ointments, lotions and the like.
  • the concentration range of the pharmaceutical composition of the present invention is usually 0.001 to 25% (w / v), preferably 0.01 to 5% (w / v), more preferably 0.1 to 2% ( w / v).
  • the pharmaceutical composition of the present invention may contain an appropriate amount of any pharmaceutically acceptable additive, for example, an emulsification aid, a stabilizer, an isotonic agent, a pH adjuster and the like. Any pharmaceutically acceptable additive can be added in an appropriate step before or after dispersion of the complex.
  • the pharmaceutical composition of the present invention can also be provided as a lyophilized preparation.
  • the lyophilized preparation can be prepared by dispersing the antisense oligonucleotide and the carrier and then lyophilizing.
  • the lyophilization treatment can be performed by a conventional method. For example, a predetermined amount of the complex solution after the above dispersion treatment is aseptically dispensed into a vial, preliminarily dried for about 2 hours under a condition of about -40 to -20 ° C, and about 0 to 10 ° C. Primary drying under reduced pressure, followed by secondary drying under reduced pressure at about 15-25 ° C. and lyophilization. Then, for example, by replacing the inside of the vial with nitrogen gas and stoppering, a freeze-dried preparation of the pharmaceutical composition of the present invention can be obtained.
  • the pharmaceutical composition of the present invention can be redissolved and used by adding any appropriate solution.
  • a solution include electrolytes such as water for injection and physiological saline, glucose solution, and other general infusion solutions.
  • the amount of this solution varies depending on the application and is not particularly limited, but it is preferably 0.5 to 2 times the amount before lyophilization, or 500 ml or less.
  • the pharmaceutical composition of the present invention can be administered to animals including humans, for example, intravenous administration, intraarterial administration, oral administration, tissue administration, transdermal administration, transmucosal administration, or rectal administration. It is preferable to administer by an appropriate method according to the symptoms. In particular, intravenous administration, transdermal administration, and transmucosal administration are preferably used. Moreover, local administration, such as local administration in cancer, can also be performed. Examples of the dosage form suitable for these administration methods include various injections, oral preparations, drops, absorbents, eye drops, ointments, lotions, suppositories and the like.
  • the dosage of the pharmaceutical composition of the present invention is preferably determined in consideration of the drug, dosage form, patient condition such as age and weight, administration route, nature and degree of disease, etc.
  • the mass of nucleotide is 0.1 mg to 10 g / day, preferably 1 mg to 500 mg / day per day for an adult. In some cases, this may be sufficient, or vice versa. It can also be administered once to several times a day, and can be administered at intervals of 1 to several days.
  • the present invention is further a method of treating a disorder mediated by an alternative pathway alternative comprising a therapeutically effective amount of an antisense oligonucleotide of the invention or a pharmaceutical composition of the invention.
  • a method comprising the step of administering to a human in need of such treatment (the treatment method of the invention).
  • the treatment method of the present invention is preferably an atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, age-related macular degeneration, membranoproliferative glomerulonephritis, C3 nephritis, membranous nephropathy, rapidly progressive It is a method of treating diseases such as glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE), psoriasis, optic neuromyelitis, myasthenia gravis)
  • RPGN glomerulonephritis
  • AKI acute kidney injury
  • SLE systemic lupus erythematosus
  • psoriasis optic neuromyelitis
  • myasthenia gravis a therapeutically effective amount of the antisense oligonucleotide of the present invention or the pharmaceutical composition of the present invention is administered to
  • the administration method, dose, preparation method and the like of the pharmaceutical composition of the present invention can be used.
  • each nucleotide has a phosphodiester bond substituted with a phosphorothioate bond.
  • the antisense oligonucleotide and Lipofectamine LTX & Plus reagent are diluted with Opti-MEM medium (Life Technology, catalog number 11058-021) to terminate the antisense oligonucleotide.
  • 20 ⁇ L of antisense oligonucleotide / Lipofectamine LTX mixed solution was added to each 96-well culture plate so that the concentration was 30 nM, and cultured at 37 ° C. under 5% CO 2 condition for 24 hours.
  • CDNA was synthesized according to the method. Add 5 ⁇ L of this cDNA to a MicroAmpOptical 96-well plate (Applied Biosystems, catalog number 4326659), then add 10 ⁇ L TaqMan Gene Expression Master Mix (Applied Biosystems, catalog number 4369016), 3 ⁇ L of UltraPure Distilled Water (Life Technologies) (Cat. No. 10977-015), 1 ⁇ L human CFB probe, and 1 ⁇ L human ⁇ -actin probe were added.
  • PBS Phosphate buffered saline
  • ⁇ -actin is a constitutively expressed gene, measured as an internal control, and corrected for CFB expression.
  • the relative expression level of CFB mRNA when each antisense oligonucleotide was introduced was calculated with 1.0 as the amount of CFB mRNA when Huh7 cells were treated with only the transfection reagent without adding the antisense oligonucleotide. This experiment was performed a plurality of times, and the average value of the relative expression level of CFB mRNA is shown in Table 2.
  • the CFB mRNA expression rate was determined from the CFB mRNA quasi-quantitative value, with the CFB mRNA quasi-quantitative value in the control group measured similarly.
  • the relative expression rate of the obtained CFB mRNA is shown in FIG.
  • the in vitro knockdown activity was adjusted 3 times in the same manner as in Example 1 by adjusting the final concentration of the antisense oligonucleotide (SEQ ID NO: 155) to 30 nM, 10 nM, 3 nM, 1 nM, and 0.3 nM, respectively.
  • the average value of the results is shown in Table 3.
  • In vivo knockdown activity is shown in FIG. 2, in which antisense oligonucleotide (SEQ ID NO: 155) was subcutaneously administered to mice at 10 mg / kg and measured in the same manner as in Example 2.
  • the present invention provides an antisense oligonucleotide having CFB expression-inhibiting activity, a pharmaceutical composition containing the antisense oligonucleotide as an active ingredient, and the like.
  • the antisense oligonucleotide and the pharmaceutical composition of the present invention suppress the expression of CFB, atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, age-related macular degeneration, membranoproliferative glomerulonephritis, C3 Nephritis, membranous nephropathy, rapid progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE), psoriasis, optic neuromyelitis, myasthenia gravis) It is useful in the treatment and prevention of disorders mediated by abnormalities in the alternative pathway of the complement such as).

Abstract

The present invention provides: an antisense oligonucleotide having CFB expression-suppressing activity; a pharmaceutical composition including the antisense oligonucleotide; and a drug that suppresses the expression of CFB including the antisense oligonucleotide, the drug preventing or treating disorders mediated by abnormalities of the complement alternative pathway such as atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, age-related macular degeneration, membranous-proliferative glomerulonephritis, C3 nephritis, membranous nephropathy, rapid progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, or autoimmune diseases.

Description

補体B因子の発現を抑制するアンチセンスオリゴヌクレオチドAntisense oligonucleotide that suppresses expression of complement factor B
 本発明は、補体B因子の発現抑制に用いるためのアンチセンスオリゴヌクレオチド又は該アンチセンスオリゴヌクレオチドを含む医薬組成物に関する。 The present invention relates to an antisense oligonucleotide for use in suppressing the expression of complement factor B or a pharmaceutical composition containing the antisense oligonucleotide.
 補体は免疫反応を媒介する血中タンパク質の一群であり、補体の作用としては、食細胞による病原菌の食作用促進や外膜を持つウィルスに対して傷害を与えて感染力を失わせる等が挙げられる。補体の中でもC3は血清中に最も多量に存在し、補体第二経路では補体B因子(complement factor B;CFB)等によって活性化されることによってその作用が制御されている(非特許文献1)。 Complements are a group of proteins in the blood that mediate immune responses. Complement effects include phagocytosis of pathogenic bacteria by phagocytic cells, damage to viruses with outer membranes, and loss of infectivity. Is mentioned. Among complements, C3 is the most abundant in serum, and its action is controlled by being activated by complement factor B (CFB) in the alternative pathway (non-patented) Reference 1).
 補体第二経路に関わる制御因子の異常や、C3転換酵素に対する自己抗体での安定化などにより、C3が活性化され続けると、非典型溶血性尿毒症症候群(aHUS)、発作性夜間ヘモグロビン尿症(PNH)、加齢黄斑変性症(AMD)、膜性増殖性糸球体腎炎(MPGN)、C3腎炎、膜性腎症、急速進行性糸球体腎炎(RPGN)、急性腎障害(AKI)、全身性エリテマトーデス(SLE)、喘息、乾癬、視神経脊髄炎、重症筋無力症、自己免疫疾患などの疾患を発症することが知られている(非特許文献2)。補体B因子の作用を特異的に阻害することにより、上記の疾患を予防あるいは治療できると期待できるが、補体B因子は血中に300μg/mLという比較的高濃度で存在しており(非特許文献3)、これら全ての補体B因子を例えば一般的な抗体医薬によって阻害し続けることは容易ではない。 If C3 continues to be activated due to abnormalities in regulatory factors related to the alternative pathway of the complement or stabilization with autoantibodies to C3 convertase, atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria Disease (PNH), age-related macular degeneration (AMD), membranoproliferative glomerulonephritis (MPGN), C3 nephritis, membranous nephropathy, rapidly progressive glomerulonephritis (RPGN), acute kidney injury (AKI), It is known to develop diseases such as systemic lupus erythematosus (SLE), asthma, psoriasis, neuromyelitis optica, myasthenia gravis and autoimmune disease (Non-patent Document 2). Although it can be expected that the above-mentioned diseases can be prevented or treated by specifically inhibiting the action of complement factor B, complement factor B is present in the blood at a relatively high concentration of 300 μg / mL ( Non-patent document 3), it is not easy to continue to inhibit all these complement factor B by, for example, a general antibody drug.
 一方、遺伝子の発現自体を抑制する方法として、例えばアンチセンス法が知られている(特許文献1)。具体的には、標的とする遺伝子のmRNAもしくはmRNA前駆体等に対して相補的なオリゴヌクレオチド(アンチセンスオリゴヌクレオチド)は、細胞内に導入すると標的とする遺伝子のmRNAもしくはmRNA前駆体と二本鎖を形成し、該標的遺伝子の発現を特異的に抑制することができる。また、アンチセンス法以外の遺伝子の発現を抑制する方法として、RNA干渉(RNA interference、以下、RNAiと呼ぶ)を利用した方法も知られている。この方法では、標的とする遺伝子と同一の配列を有する二本鎖RNA(siRNA)を導入することにより、該標的遺伝子の発現を特異的に抑制することができる(特許文献2)。 On the other hand, for example, an antisense method is known as a method for suppressing gene expression itself (Patent Document 1). Specifically, oligonucleotides complementary to the target gene mRNA or mRNA precursor (antisense oligonucleotide) are introduced into the target gene mRNA or mRNA precursor in two. It forms a chain and can specifically suppress the expression of the target gene. As a method for suppressing gene expression other than the antisense method, a method using RNA interference (hereinafter referred to as RNAi) is also known. In this method, the expression of the target gene can be specifically suppressed by introducing a double-stranded RNA (siRNA) having the same sequence as the target gene (Patent Document 2).
 ヒト補体B因子遺伝子を標的とするsiRNA配列の一部が開示されている(特許文献3)。また、該遺伝子を標的とするアンチセンス配列の一部が開示されているが(特許文献4)、本発明はこれらの配列とは異なる配列である。 A part of siRNA sequence targeting human complement factor B gene has been disclosed (Patent Document 3). Moreover, although some antisense sequences targeting the gene have been disclosed (Patent Document 4), the present invention is a sequence different from these sequences.
国際公開第98/56905号パンフレットInternational Publication No. 98/56905 Pamphlet 国際公開第2001/75164号パンフレットInternational Publication No. 2001/75164 Pamphlet 国際公開第2015/089368号パンフレットInternational Publication Number 2015/089368 Pamphlet 国際公開第2015/038939号パンフレットInternational Publication No. 2015/038939 Pamphlet
 本発明は、補体B因子の発現を抑制することが可能な新規なアンチセンスオリゴヌクレオチドを提供することを目的とする。また、本発明は補体B因子の発現に関連する疾患を予防または治療するための医薬組成物を提供することを目的とする。 An object of the present invention is to provide a novel antisense oligonucleotide capable of suppressing the expression of complement factor B. Another object of the present invention is to provide a pharmaceutical composition for preventing or treating a disease associated with the expression of complement factor B.
 本発明は、以下の(1)~(13)に関する。
(1) 補体B因子の発現を抑制するアンチセンスオリゴヌクレオチドであって、配列番号53~103のいずれかで表される標的塩基配列からなる核酸にストリンジェントな条件でハイブリダイズ可能な、8~80塩基長のアンチセンスオリゴヌクレオチド。
(2) 補体B因子の発現を抑制するアンチセンスオリゴヌクレオチドであって、配列番号2~52のいずれかで表されるアンチセンス塩基配列の連続する少なくとも8塩基を含む、8~80塩基長のアンチセンスオリゴヌクレオチド。
(3)配列番号53~103のいずれかで表される塩基配列と相補的な塩基配列を含む、8~80塩基長のアンチセンスオリゴヌクレオチド。
(4) 配列番号2~52のいずれかで表される塩基配列を含む、(3)に記載のアンチセンスオリゴヌクレオチド。
(5) 配列番号2~52のいずれかで表される塩基配列において、1ないし数個の塩基が欠失、置換、挿入もしくは付加された配列を含む、(4)に記載のアンチセンスオリゴヌクレオチド。
(6) 配列番号2~52のいずれかで表される塩基配列からなるアンチセンスオリゴヌクレオチド。
(7) 5’末端近傍及び/又は3’末端近傍が糖部修飾ヌクレオチドで構成される、(1)~(6)のいずれか一項に記載のアンチセンスオリゴヌクレオチド。
(8) 配列番号104~154及び155のいずれかで表されるヌクレオチド配列からなるアンチセンスオリゴヌクレオチド。
(9) 配列番号118、125、150及び155のいずれかで表されるヌクレオチド配列からなるアンチセンスオリゴヌクレオチド。
(10) リガンドを含む、(1)~(9)のいずれか一項に記載のアンチセンスオリゴヌクレオチド。
(11) (1)~(10)のいずれか一項に記載のアンチセンスオリゴヌクレオチドを含む、医薬組成物。
(12) 補体第二経路の異常により媒介される障害を治療する方法であって、治療上有効量の(1)~(10)のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は(11)に記載の医薬組成物を、そのような治療を必要とするヒトに投与するステップを含む方法。
(13) 前記障害が、非典型溶血性尿毒症症候群、発作性夜間ヘモグロビン尿症、加齢黄斑変性症、膜性増殖性糸球体腎炎、C3腎炎、膜性腎症、急速進行性糸球体腎炎(RPGN)、急性腎障害(AKI)、喘息又は自己免疫疾患である、(12)に記載の方法。
The present invention relates to the following (1) to (13).
(1) An antisense oligonucleotide that suppresses the expression of complement factor B, and is capable of hybridizing under stringent conditions to a nucleic acid comprising the target base sequence represented by any of SEQ ID NOs: 53 to 103. 8 Antisense oligonucleotide of ~ 80 bases length.
(2) An antisense oligonucleotide that suppresses the expression of complement factor B and has a length of 8 to 80 bases comprising at least 8 consecutive bases of the antisense base sequence represented by any of SEQ ID NOs: 2 to 52 Antisense oligonucleotides.
(3) An antisense oligonucleotide having a length of 8 to 80 bases comprising a base sequence complementary to the base sequence represented by any of SEQ ID NOs: 53 to 103.
(4) The antisense oligonucleotide according to (3), comprising the base sequence represented by any of SEQ ID NOs: 2-52.
(5) The antisense oligonucleotide according to (4), comprising a sequence in which one to several bases are deleted, substituted, inserted or added in the base sequence represented by any of SEQ ID NOs: 2 to 52 .
(6) An antisense oligonucleotide comprising the base sequence represented by any of SEQ ID NOs: 2-52.
(7) The antisense oligonucleotide according to any one of (1) to (6), wherein the vicinity of the 5 ′ end and / or the vicinity of the 3 ′ end is composed of sugar-modified nucleotides.
(8) An antisense oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 104 to 154 and 155.
(9) An antisense oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 118, 125, 150 and 155.
(10) The antisense oligonucleotide according to any one of (1) to (9), comprising a ligand.
(11) A pharmaceutical composition comprising the antisense oligonucleotide according to any one of (1) to (10).
(12) A method for treating a disorder mediated by an abnormality in the alternative complement pathway, comprising a therapeutically effective amount of the antisense oligonucleotide according to any one of (1) to (10) or (11 ) Comprising administering to a human in need of such treatment.
(13) The disorder is atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, age-related macular degeneration, membranoproliferative glomerulonephritis, C3 nephritis, membranous nephropathy, rapidly progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma or autoimmune disease, the method according to (12).
 本発明のアンチセンスオリゴヌクレオチド又は該アンチセンスオリゴヌクレオチドを含む医薬組成物を投与することによって、補体B因子の発現を抑制することが可能となる。本発明のアンチセンスオリゴヌクレオチド又は該アンチセンスオリゴヌクレオチドを含む医薬組成物は、補体第二経路の異常により媒介される障害の治療・予防に有用である。 It is possible to suppress the expression of complement factor B by administering the antisense oligonucleotide of the present invention or the pharmaceutical composition containing the antisense oligonucleotide. The antisense oligonucleotide of the present invention or the pharmaceutical composition containing the antisense oligonucleotide is useful for the treatment / prevention of a disorder mediated by an abnormality in the alternative complement pathway.
図1は、配列番号118、125及び150のいずれかで表されるアンチセンスオリゴヌクレオチドを投与したマウスにおけるin vivoノックダウンの結果を示す。縦軸は、コントロール群における補体B因子(CFB)のmRNAの準定量値を1とした場合の各アンチセンスオリゴヌクレオチド投与群のCFB mRNAの相対発現率を示す。FIG. 1 shows the results of in vivo knockdown in mice administered with an antisense oligonucleotide represented by any of SEQ ID NOs: 118, 125 and 150. The vertical axis shows the relative expression rate of CFB mRNA in each antisense oligonucleotide administration group when the semi-quantitative value of complement factor B (CFB) mRNA in the control group is 1. 図2は、配列番号155で表されるアンチセンスオリゴヌクレオチドを投与したマウスにおけるin vivoノックダウンの結果を示す。縦軸は、コントロール群におけるCFBのmRNAの準定量値を1とした場合の前記アンチセンスオリゴヌクレオチド投与群のCFB mRNAの相対発現率を示す。FIG. 2 shows the results of in vivo knockdown in mice administered with the antisense oligonucleotide represented by SEQ ID NO: 155. The vertical axis shows the relative expression rate of CFB mRNA in the antisense oligonucleotide-administered group when the semi-quantitative value of CFB mRNA in the control group is 1.
1. 本発明のアンチセンスオリゴヌクレオチド
 本発明は、補体B因子(CFB)の発現を抑制するアンチセンスオリゴヌクレオチド(本明細書中、「本発明のアンチセンスオリゴヌクレオチド」ともいう)を提供する。
1. Antisense oligonucleotide of the present invention The present invention provides an antisense oligonucleotide that suppresses the expression of complement factor B (CFB) (also referred to herein as the “antisense oligonucleotide of the present invention”). .
 本明細書において「アンチセンスオリゴヌクレオチド」とは、標的遺伝子を構成するDNA、このようなDNAから転写されるmRNA前駆体およびmRNAに対して相補的なオリゴヌクレオチドであり、当該アンチセンスオリゴヌクレオチドが標的とするDNA、mRNA前駆体又はmRNAと二本鎖もしくは三本鎖を形成することによりDNA、mRNA前駆体又はmRNAの働き(転写、転写後編集、翻訳など)を抑制する。 As used herein, the term “antisense oligonucleotide” refers to a DNA constituting a target gene, an mRNA precursor transcribed from such DNA, and an oligonucleotide complementary to the mRNA. Suppresses the action of DNA, mRNA precursor or mRNA (transcription, post-transcriptional editing, translation, etc.) by forming double-stranded or triple-stranded with target DNA, mRNA precursor or mRNA.
 本発明のアンチセンスオリゴヌクレオチドが標的とするCFBをコードする遺伝子(以下、CFB遺伝子ともいう)としては、Genbank Accession No.NM_001710として登録されている、ヒトCFBの完全長mRNAに対応するcDNA塩基配列(配列番号1)を有するものが挙げられるが、天然に存在するそのバリアント(例えばHum. Mutat. 31:E1445-E1460(2010)、refsnp No. rs12614、rs641153など参照)も、本発明のアンチセンスオリゴヌクレオチドの標的遺伝子となり得ることはいうまでもない。 As a gene encoding CFB targeted by the antisense oligonucleotide of the present invention (hereinafter also referred to as CFB gene), a cDNA base sequence corresponding to human CFB full-length mRNA registered as Genbank Accession No. NM_001710 (SEQ ID NO: 1), and naturally occurring variants thereof (see, for example, Hum. Mutat. 31: E1445-E1460 (2010), refsnp No. rs12614, rs641153, etc.) are also antisense of the present invention. It goes without saying that it can be a target gene for oligonucleotides.
 本明細書において「相補」とは、例えば、アデニンとチミンまたはウラシルとの関係、並びにグアニンとシトシンとの関係のように、緩やかな水素結合を介して2つの塩基間で塩基対合をし得る関係を意味する。
 また、「相補的である」とは、2つのヌクレオチド配列が二重鎖領域(両配列をアラインメントさせた場合にオーバーラップする領域)において完全に相補する場合だけでなく、該二重鎖領域全体として2重螺旋構造をとり得る限り、即ち、ストリンジェントな条件で両配列がハイブリダイズできる限り、1ないし数個のミスマッチが存在する場合も含まれる。
As used herein, “complementary” refers to, for example, base pairing between two bases via a slow hydrogen bond, such as the relationship between adenine and thymine or uracil, and the relationship between guanine and cytosine. Means a relationship.
In addition, “complementary” means not only when two nucleotide sequences are completely complementary in a double-stranded region (a region overlapping when both sequences are aligned), but also the entire double-stranded region. As long as it can have a double helix structure, that is, as long as both sequences can hybridize under stringent conditions, a case where 1 to several mismatches exist is also included.
 従って、本発明のアンチセンスオリゴヌクレオチドは、CFBをコードするDNA、mRNA前駆体又はmRNA中の標的塩基配列からなる核酸にストリンジェントな条件でハイブリダイズ可能な核酸分子である。 Therefore, the antisense oligonucleotide of the present invention is a nucleic acid molecule capable of hybridizing under stringent conditions to a nucleic acid comprising DNA encoding CFB, an mRNA precursor, or a target base sequence in mRNA.
 本明細書において「ストリンジェントな条件」とは、本発明のアンチセンスオリゴヌクレオチドがCFB遺伝子の標的塩基配列に対してはハイブリダイズするが、その他の配列にはハイブリダイズしないか、するとしても標的塩基配列にハイブリダイズする量よりも大幅に少なく、相対的に無視できる程度の微量しかハイブリダイズしない条件を意味する。ハイブリダイゼーション反応および洗浄時の温度や、ハイブリダイゼーション反応液および洗浄液の塩濃度等を変化させることによって、このような条件を容易に選択することができる。具体的には6xSSC(0.9M NaCl, 0.09M クエン酸三ナトリウム)又は6xSSPE(3M NaCl, 0.2M NaH2PO4, 20mM EDTA・2Na, pH7.4)中42℃でハイブリダイズさせ、さらに42℃で0.5xSSCにより洗浄する条件が、ストリンジェントな条件の一例として挙げられるが、これに限定されるものではない。ハイブリダイゼーションの方法としては、例えばサザンブロットハイブリダイゼーション法等を用いることができる。具体的には、Molecular Cloning:A Laboratory Mannual, Second Edition (1989) (Cold Spring Harbor Laboratory Press), Current Protocols in Molecular Biology (1994) (Wiley-Interscience) 等に記載されている方法に準じて行うことができる。 In the present specification, “stringent conditions” means that the antisense oligonucleotide of the present invention hybridizes to the target base sequence of the CFB gene, but does not hybridize to other sequences or even if it is a target. It means a condition that is significantly less than the amount hybridized to the base sequence and hybridizes only in a negligible amount that is relatively negligible. Such conditions can be easily selected by changing the temperature during the hybridization reaction and washing, the salt concentration of the hybridization reaction solution and the washing solution, and the like. Specifically, it is hybridized at 42 ° C in 6xSSC (0.9M NaCl, 0.09M trisodium citrate) or 6xSSPE (3M NaCl, 0.2M NaH 2 PO 4 , 20mM EDTA · 2Na, pH7.4), and further 42 ° C The conditions for washing with 0.5xSSC are examples of stringent conditions, but are not limited thereto. As a hybridization method, for example, Southern blot hybridization method or the like can be used. Specifically, it should be performed according to the method described in Molecular Cloning: A Laboratory Mannual, Second Edition (1989) (Cold Spring Harbor Laboratory Press), Current Protocols in Molecular Biology (1994) (Wiley-Interscience), etc. Can do.
 本発明のアンチセンスオリゴヌクレオチドとしては、ヌクレオチド又は該ヌクレオチドと同等の機能を有する分子が重合した分子であればいかなる分子であってもよく、例えばデオキシリボヌクレオチドの重合体であるDNA、リボヌクレオチドの重合体であるRNA、DNAとRNAとからなるキメラ核酸及びこれらの核酸の少なくとも一つのヌクレオチドが該ヌクレオチドと同等の機能を有する分子で置換されたヌクレオチド重合体が挙げられる。またRNA中のウラシル(U)は、DNAにおいてはチミン(T)に一義的に読み替えることができる。 The antisense oligonucleotide of the present invention may be any molecule as long as it is a molecule obtained by polymerizing nucleotides or molecules having functions equivalent to those of the nucleotides. For example, DNA that is a polymer of deoxyribonucleotides, and DNA ribonucleotides. Examples thereof include RNA as a combination, chimeric nucleic acids composed of DNA and RNA, and nucleotide polymers in which at least one nucleotide of these nucleic acids is substituted with a molecule having a function equivalent to that of the nucleotide. In addition, uracil (U) in RNA can be uniquely read as thymine (T) in DNA.
 ヌクレオチドと同等の機能を有する分子としては、例えばヌクレオチド誘導体等が挙げられる。ヌクレオチド誘導体としては、ヌクレオチドに修飾を施した分子であればいかなる分子であってもよいが、例えばDNAまたはRNAと比較して、ヌクレアーゼ耐性を向上もしくは分子を安定化させるため、相補鎖核酸とのアフィニティーを上げるため、細胞透過性を上げるため、又は可視化させるために、デオキシリボヌクレオチドまたはリボヌクレオチドに修飾を施した分子等が好適に用いられる。 Examples of molecules having functions equivalent to nucleotides include nucleotide derivatives. The nucleotide derivative may be any molecule as long as it is a molecule in which nucleotides have been modified. For example, in order to improve nuclease resistance or stabilize the molecule compared to DNA or RNA, In order to increase affinity, cell permeability, or visualization, deoxyribonucleotides or molecules modified with ribonucleotides are preferably used.
 ヌクレオチドに修飾を施した分子としては、例えば糖部修飾ヌクレオチド、リン酸ジエステル結合修飾ヌクレオチド、塩基修飾ヌクレオチド、ならびに糖部、リン酸ジエステル結合及び塩基の2以上が修飾されたヌクレオチド等が挙げられる。 Examples of the molecule in which the nucleotide is modified include a sugar moiety-modified nucleotide, a phosphodiester bond-modified nucleotide, a base-modified nucleotide, and a nucleotide in which two or more of the sugar moiety, phosphodiester bond and base are modified.
 糖部修飾ヌクレオチドとしては、ヌクレオチドの糖の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、又は任意の原子で置換したものであればいかなるものでもよいが、2’-修飾ヌクレオチドが好ましく用いられる。 As the sugar-modified nucleotide, any or all of the chemical structure of the sugar of the nucleotide may be modified or substituted with any substituent, or may be substituted with any atom. '-Modified nucleotides are preferably used.
 2’-修飾ヌクレオチドとしては、例えばリボースの2’-OH基がOR、R、R’OR、SH、SR、NH2、NHR、NR2、N3、CN、F、Cl、Br及びIからなる群(Rはアルキルまたはアリール、好ましくは炭素数1~6のアルキルであり、R’はアルキレン、好ましくは炭素数1~6のアルキレンである)から選択される置換基で置換された2’-修飾ヌクレオチドが挙げられ、好ましくはF又はメトキシ基で置換された2’-修飾ヌクレオチドが挙げられる。また、2-(methoxy)ethoxy基、3-aminopropoxy基、2-[(N,N-dimethylamino)oxy]ethoxy基、3-(N,N-dimethylamino)propoxy基、2-[2-(N,N-Dimethylamino)ethoxy]ethoxy基、2-(methylamino)-2-oxoethoxy基、2-(N-methylcarbamoyl)ethoxy基及び2-cyanoethoxy基からなる群から選択される置換基で置換された2’-修飾ヌクレオチド等も挙げられる。より好ましくはメトキシ基及び2-(methoxy)ethoxy基からなる群から選択される置換基で置換された2’-修飾ヌクレオチド等が挙げられる。 Examples of 2′-modified nucleotides include ribose 2′-OH groups from OR, R, R′OR, SH, SR, NH 2 , NHR, NR 2 , N 3 , CN, F, Cl, Br, and I. 2 ′ substituted with a substituent selected from the group consisting of: R is alkyl or aryl, preferably alkyl having 1 to 6 carbons, and R ′ is alkylene, preferably alkylene having 1 to 6 carbons -Modified nucleotides are included, preferably 2'-modified nucleotides substituted with F or methoxy groups. In addition, 2- (methoxy) ethoxy group, 3-aminopropoxy group, 2-[(N, N-dimethylamino) oxy] ethoxy group, 3- (N, N-dimethylamino) propoxy group, 2- [2- (N, N-Dimethylamino) ethoxy] ethoxy group, 2- (methylamino) -2-oxoethoxy group, 2- (N-methylcarbamoyl) ethoxy group, and 2'-substituted with a substituent selected from the group consisting of 2-cyanoethoxy group Examples include modified nucleotides. More preferred examples include 2′-modified nucleotides substituted with a substituent selected from the group consisting of a methoxy group and a 2- (methoxy) ethoxy group.
 また、糖部修飾ヌクレオチドとしては、糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)も好適に用いられる。具体的には、2'位の酸素原子と4'位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA) [Tetrahedron Letters, 38, 8735, (1997)及びTetrahedron, 54, 3607,(1998)]、エチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[Nucleic Acid Research, 32, e175(2004)]、Constrained Ethyl (cEt)[The Journal of Organic Chemistry 75, 1569 (2010)]、Amido-Bridged Nucleic Acid (AmNA)[Chem Bio Chem 13, 2513 (2012)]及び2’-O,4’-C-Spirocyclopropylene bridged nucleic acid (scpBNA)[Chem. Commun., 51, 9737 (2015)]等が挙げられる。 In addition, as the sugar moiety-modified nucleotide, a crosslinked structure-type artificial nucleic acid (BNA) having two circular structures by introducing a crosslinked structure into the sugar moiety is also preferably used. Specifically, a locked artificial nucleic acid (LNA) (Tetrahedron Letters, 38, 8735, (1997) and Tetrahedron, in which a 2 ′ oxygen atom and a 4 ′ carbon atom are bridged via methylene 54, 3607, (1998)], Ethylene bridged nucleic acid (ENA) [Nucleic Acid Research, 32, e175 (2004)], Constrained Ethyl (cEt) [The Journal Organic gan Chemistry 75, 1569 (2010)], Amido-Bridged Nucleic Acid (AmNA) [Chem Bio Chem 13, 2513 (2012)] and 2'-O, 4'-C-Spirocyclopropylene bridged nucleic acid (scpBNA) [Chem. Commun., 51 , 9737 (2015)].
 さらにペプチド核酸(PNA)[Acc. Chem. Res., 32, 624 (1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653 (2001)]、ペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900 (2000)]等も糖部修飾ヌクレオチドとして挙げられる。 Furthermore, peptide nucleic acid (PNA) [Acc. Chem. Res., 32, 624 (1999)], oxypeptide nucleic acid (OPNA) [J. Am. Chem. Soc., 123, 4653 (2001)], peptide ribonucleic acid (2001) PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)] and the like can also be mentioned as sugar-modified nucleotides.
 リン酸ジエステル結合修飾ヌクレオチドとしては、ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、又は任意の原子で置換したものであればいかなるものでもよく、例えば、リン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロジチオエート結合に置換されたヌクレオチド、リン酸ジエステル結合がアルキルホスホネート結合に置換されたヌクレオチド、リン酸ジエステル結合がホスホロアミデート結合に置換されたヌクレオチド等が挙げられ、好ましくはリン酸ジエステル結合がホスホロチオエート結合に置換されたヌクレオチドが挙げられる。 As the phosphodiester bond-modified nucleotide, any or all of the chemical structure of the nucleotide phosphodiester bond modified or substituted with any substituent or any atom may be used. For example, a nucleotide in which a phosphodiester bond is replaced with a phosphorothioate bond, a nucleotide in which a phosphodiester bond is replaced with a phosphorodithioate bond, a nucleotide in which a phosphodiester bond is replaced with an alkylphosphonate bond, a phosphate Examples include nucleotides in which a diester bond is substituted with a phosphoramidate bond, and preferably nucleotides in which a phosphodiester bond is substituted with a phosphorothioate bond.
 塩基修飾ヌクレオチドとしては、ヌクレオチドの塩基の化学構造の一部あるいは全てに対し、任意の置換基で修飾もしくは置換したもの、又は任意の原子で置換したものであればいかなるものでもよく、例えば、塩基内の酸素原子が硫黄原子で置換されたもの、水素原子が炭素数1~6のアルキル基、ハロゲン基で置換されたもの、メチル基が水素、ヒドロキシメチル、炭素数2~6のアルキル基で置換されたもの、アミノ基が炭素数1~6のアルキル基、炭素数1~6のアルカノイル基、オキソ基、ヒドロキシ基等に置換されたものが挙げられる。なお、シトシン(C)の代わりに5-メチルシトシン(5-mC)を塩基修飾ヌクレオチドとして用いることも、本発明の好ましい形態の一つである。 The base-modified nucleotide may be any nucleotide as long as it is part or all of the nucleotide base chemical structure modified or substituted with an arbitrary substituent, or substituted with an arbitrary atom. In which oxygen atoms are substituted with sulfur atoms, hydrogen atoms are substituted with alkyl groups having 1 to 6 carbon atoms, halogen groups, methyl groups are hydrogen, hydroxymethyl, alkyl groups with 2 to 6 carbon atoms And those in which an amino group is substituted with an alkyl group having 1 to 6 carbon atoms, an alkanoyl group having 1 to 6 carbon atoms, an oxo group, a hydroxy group, or the like. In addition, it is one of the preferable embodiments of the present invention to use 5-methylcytosine (5-mC) as a base-modified nucleotide instead of cytosine (C).
 ヌクレオチド誘導体としては、ヌクレオチド又は糖部、リン酸ジエステル結合もしくは塩基の少なくとも一つが修飾されたヌクレオチド誘導体に、リガンド、例えば、コレステロール、脂肪酸、トコフェロール、レチノイドなどの脂質類、N-アセチルガラクトサミン(GalNAc)、ガラクトース(Gal)、マンノース(Man)などの糖類、フル抗体、Fab、scFv、VHHなどのフラグメント抗体、低密度リポタンパク質(LDL)、ヒト血清アルブミンなどのタンパク質、RGD、NGR、R9、CPPなどのペプチド類、フェナジン、フェナントリジン、アントラキノン、葉酸などの低分子、合成ポリアミノ酸などの合成ポリマー、核酸アプタマー、アクリジン、フルオレセイン、ローダミン、クマリンなどの色素、Cy3シリーズ、Alexaシリーズ、ブラックホールクエンチャーなどの蛍光団等の別の化学物質を、直接又はリンカーを介して付加したものも挙げられる。具体的にはポリアミン付加ヌクレオチド誘導体、コレステロール付加ヌクレオチド誘導体、ステロイド付加ヌクレオチド誘導体、GalNAc付加ヌクレオチド誘導体、胆汁酸付加ヌクレオチド誘導体、脂肪酸付加ヌクレオチド誘導体、ビタミン付加ヌクレオチド誘導体、Cy5付加ヌクレオチド誘導体、Cy3付加ヌクレオチド誘導体、6-FAM付加ヌクレオチド誘導体及びビオチン付加ヌクレオチド誘導体等が挙げられ、好ましくはGalNAc付加ヌクレオチド誘導体が挙げられる。これらは、固相上での伸長反応時に、固相上で反応可能な修飾剤を反応させることで、5’末端、3’末端及び/又は配列内部に修飾を施すことができる。また、アミノ基、メルカプト基、アジド基または3重結合などの官能基を導入した核酸をあらかじめ合成および精製しておき、それらに修飾剤を作用させることで得ることもできる。 Examples of nucleotide derivatives include nucleotide derivatives modified with at least one of nucleotide or sugar moiety, phosphodiester bond or base, ligands such as lipids such as cholesterol, fatty acids, tocopherols, retinoids, N-acetylgalactosamine (GalNAc) , Sugars such as galactose (Gal) and mannose (Man), full antibodies, fragment antibodies such as Fab, scFv, VHH, proteins such as low density lipoprotein (LDL), human serum albumin, RGD, NGR, R9, CPP, etc. Peptides, small molecules such as phenazine, phenanthridine, anthraquinone, folic acid, synthetic polymers such as synthetic polyamino acids, dyes such as nucleic acid aptamer, acridine, fluorescein, rhodamine, coumarin, Cy3 series, Alexa series, black hole quencher Such as fluorescence There may be mentioned those obtained by adding another chemical substance such as a group directly or via a linker. Specifically, polyamine addition nucleotide derivatives, cholesterol addition nucleotide derivatives, steroid addition nucleotide derivatives, GalNAc addition nucleotide derivatives, bile acid addition nucleotide derivatives, fatty acid addition nucleotide derivatives, vitamin addition nucleotide derivatives, Cy5 addition nucleotide derivatives, Cy3 addition nucleotide derivatives, Examples include 6-FAM-added nucleotide derivatives and biotin-added nucleotide derivatives, and preferably include GalNAc-added nucleotide derivatives. These can be modified at the 5 'end, 3' end and / or inside the sequence by reacting a modifying agent capable of reacting on the solid phase during the extension reaction on the solid phase. It can also be obtained by previously synthesizing and purifying nucleic acids into which a functional group such as an amino group, mercapto group, azide group or triple bond has been introduced, and allowing a modifier to act on them.
 ヌクレオチド誘導体は、核酸内の他のヌクレオチド又はヌクレオチド誘導体とアルキレン構造、ペプチド構造、ヌクレオチド構造、エーテル構造、エステル構造及びこれらの少なくとも一つを組み合わせた構造等の架橋構造を形成してもよい。 The nucleotide derivative may form a crosslinked structure such as an alkylene structure, a peptide structure, a nucleotide structure, an ether structure, an ester structure, or a structure obtained by combining at least one of these with other nucleotides or nucleotide derivatives in the nucleic acid.
 本発明のアンチセンスオリゴヌクレオチドは、その分子中の一部あるいは全部の原子が質量数の異なる原子(同位体)で置換されたものも包含する。 The antisense oligonucleotide of the present invention includes those in which some or all atoms in the molecule are substituted with atoms (isotopes) having different mass numbers.
 本発明のアンチセンスオリゴヌクレオチドは、CFB遺伝子の標的塩基配列にストリンジェントな条件でハイブリダイズする核酸であれば、ヘアピンオリゴマー、環状オリゴマーの形態中に導入されてもよく、内部または末端のバルジまたはループなどの構造要素を含有してもよい。 The antisense oligonucleotide of the present invention may be introduced into the form of a hairpin oligomer or circular oligomer as long as it is a nucleic acid that hybridizes under stringent conditions to the target base sequence of the CFB gene. It may contain structural elements such as loops.
 本発明のアンチセンスオリゴヌクレオチドの長さは、8~80塩基であり、8~30塩基が好ましい。例えば、8~20塩基、10~20塩基、13~20塩基、13~16塩基、13塩基、14塩基、15塩基、16塩基、17塩基、18塩基、19塩基、20塩基であり得る。 The length of the antisense oligonucleotide of the present invention is 8 to 80 bases, preferably 8 to 30 bases. For example, it can be 8-20 bases, 10-20 bases, 13-20 bases, 13-16 bases, 13 bases, 14 bases, 15 bases, 16 bases, 17 bases, 18 bases, 19 bases, 20 bases.
 本発明のアンチセンスオリゴヌクレオチドの具体的な標的塩基配列としては、表1に記載された配列番号53~103で表されるCFB mRNA(cDNA)の部分塩基配列が挙げられる。従って、本発明のアンチセンスオリゴヌクレオチドは、配列番号53~103のいずれかで表される標的塩基配列にストリンジェントな条件でハイブリダイズ可能なオリゴヌクレオチドである。本発明のアンチセンスオリゴヌクレオチドは、上記いずれかの標的塩基配列にストリンジェントな条件でハイブリダイズし得る限り、該標的塩基配列と完全に相補する配列のみならず、該標的塩基配列に対して1ないし数個、好ましくは1~3個、より好ましくは1又は2個、特に好ましくは1個のミスマッチを有する配列を含むものも含まれる。従って、本発明のアンチセンスオリゴヌクレオチドとしては、配列番号53~103のいずれかで表される標的塩基配列に対して相補的な塩基配列を含み、かつ該標的塩基配列と完全に相補する配列において、1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が欠失、置換、挿入または付加したものを用いてもよい。 Specific examples of the target base sequence of the antisense oligonucleotide of the present invention include a partial base sequence of CFB mRNA (cDNA) represented by SEQ ID NOs: 53 to 103 described in Table 1. Therefore, the antisense oligonucleotide of the present invention is an oligonucleotide capable of hybridizing under stringent conditions to the target base sequence represented by any of SEQ ID NOs: 53 to 103. As long as the antisense oligonucleotide of the present invention can hybridize to any one of the above target base sequences under stringent conditions, not only the sequence completely complementary to the target base sequence but also 1 to the target base sequence. Also included are those containing sequences having several, preferably 1 to 3, more preferably 1 or 2, particularly preferably 1 mismatch. Therefore, the antisense oligonucleotide of the present invention includes a base sequence complementary to the target base sequence represented by any of SEQ ID NOs: 53 to 103 and a sequence completely complementary to the target base sequence. , 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base deleted, substituted, inserted or added may be used.
 特定の好ましい具体的な塩基配列は本明細書中に記載されるが、表1に記載された配列番号2~52のいずれかで表されるアンチセンス塩基配列の中から選択された少なくとも8個の連続した塩基を含む、長さ8~80塩基のアンチセンスオリゴヌクレオチドもまた、好ましいアンチセンスオリゴヌクレオチドと言える。表1に記載された各アンチセンス塩基配列の中から選択された、より好ましくは9個以上、さらに好ましくは10個以上、より一層好ましくは11個以上、特に好ましくは12個以上、最も好ましくは13個の連続した塩基を含む、長さ8~80塩基、好ましくは8~30塩基のアンチセンスオリゴヌクレオチドもまた、好ましいアンチセンスオリゴヌクレオチドと言える。 Specific preferred specific base sequences are described herein, but at least 8 selected from the antisense base sequences represented by any of SEQ ID NOs: 2 to 52 described in Table 1 Antisense oligonucleotides having a length of 8 to 80 bases containing a series of bases are also preferred antisense oligonucleotides. More preferably 9 or more, still more preferably 10 or more, still more preferably 11 or more, particularly preferably 12 or more, most preferably selected from each antisense base sequence described in Table 1 Antisense oligonucleotides containing 13 consecutive bases and having a length of 8 to 80 bases, preferably 8 to 30 bases, are also preferred antisense oligonucleotides.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 典型的な好ましいアンチセンスオリゴヌクレオチドには、表1に記載された各アンチセンス塩基配列の5’末端から少なくとも8個、より好ましくは9個以上、さらに好ましくは10個以上、より一層好ましくは11個以上、特に好ましくは12個以上の連続した核酸塩基を含むオリゴヌクレオチドが含まれる。同様に好ましいアンチセンスオリゴヌクレオチドには、表1に記載された各アンチセンス塩基配列の3’末端から少なくとも8個以上、より好ましくは9個以上、さらに好ましくは10個以上、より一層好ましくは11個以上、特に好ましくは12個以上の連続した核酸塩基を含むオリゴヌクレオチドが含まれる。最も好ましくは、表1に記載された各アンチセンス塩基配列を含むオリゴヌクレオチドである。 Typical preferred antisense oligonucleotides include at least 8, more preferably 9 or more, even more preferably 10 or more, and even more preferably 11 from the 5 ′ end of each antisense base sequence listed in Table 1. Oligonucleotides comprising one or more, particularly preferably 12 or more consecutive nucleobases are included. Similarly, preferable antisense oligonucleotides include at least 8 or more, more preferably 9 or more, still more preferably 10 or more, and still more preferably 11 from the 3 ′ end of each antisense base sequence described in Table 1. Oligonucleotides comprising one or more, particularly preferably 12 or more consecutive nucleobases are included. Most preferably, it is an oligonucleotide containing each antisense base sequence described in Table 1.
 本発明のアンチセンスオリゴヌクレオチドとしては、表1に記載された各アンチセンス塩基配列を含み、かつ該アンチセンス塩基配列において1~3塩基、好ましくは1~2塩基、より好ましくは1塩基が欠失、置換、挿入または付加したものを用いてもよい。 The antisense oligonucleotide of the present invention includes each antisense base sequence described in Table 1, and lacks 1 to 3 bases, preferably 1 to 2 bases, more preferably 1 base in the antisense base sequence. A deletion, substitution, insertion or addition may be used.
 本発明のアンチセンスオリゴヌクレオチドとしては、表2に記載の配列番号104~154及び155のいずれかで表されるヌクレオチド配列からなるアンチセンスオリゴヌクレオチドを用いることが好ましい。なかでも、配列番号118、125、150及び155のいずれかで表されるヌクレオチド配列からなるアンチセンスオリゴヌクレオチドを用いることが好ましい。 As the antisense oligonucleotide of the present invention, an antisense oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 104 to 154 and 155 described in Table 2 is preferably used. Among these, it is preferable to use an antisense oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 118, 125, 150 and 155.
 本発明のアンチセンスオリゴヌクレオチドとしては、表2および表3に記載のアンチセンスオリゴヌクレオチドであって、該表に記載のCFB相対発現量が0.5以下であるアンチセンスオリゴヌクレオチド配列を含むアンチセンスオリゴヌクレオチドを用いることがより好ましく、さらに好ましくはCFB相対発現量が0.3以下であるアンチセンスオリゴヌクレオチド、特に好ましくはCFB相対発現量が0.1以下であるアンチセンスオリゴヌクレオチドを用いることができる。 Antisense oligonucleotides of the present invention include antisense oligonucleotides described in Table 2 and Table 3, each having an antisense oligonucleotide sequence having a CFB relative expression level of 0.5 or less. It is more preferable to use nucleotides, more preferably antisense oligonucleotides having a CFB relative expression level of 0.3 or less, and particularly preferably antisense oligonucleotides having a CFB relative expression level of 0.1 or less.
 本発明のアンチセンスオリゴヌクレオチドは、細胞内に導入されると、相補的なmRNA及びmRNA前駆体と結合し、mRNA及びmRNA前駆体が蛋白質に翻訳されるのを立体的に阻害してCFB遺伝子の発現を抑制することができる。 When the antisense oligonucleotide of the present invention is introduced into a cell, it binds to complementary mRNA and mRNA precursor, and sterically inhibits translation of the mRNA and mRNA precursor into a protein, thereby inhibiting the CFB gene. Can be suppressed.
 また、細胞内に導入された本発明のアンチセンスオリゴヌクレオチドは、細胞内において、相補的なmRNA及びmRNA前駆体と結合し、mRNA及びmRNA前駆体を切断することもある。このような例として、RNAとDNAの二重鎖のRNA鎖を切断するエンドヌクレアーゼであるRNaseHを介した作用が知られている。本発明のアンチセンスオリゴヌクレオチドが細胞内でmRNA及びmRNA前駆体と二重鎖を形成すると、内在性のRNaseHに認識され、相補的なmRNA鎖を酵素的に分解することができる。 In addition, the antisense oligonucleotide of the present invention introduced into a cell may bind to complementary mRNA and mRNA precursor in the cell and cleave the mRNA and mRNA precursor. As such an example, an action through RNaseH, which is an endonuclease that cleaves RNA strands of RNA and DNA double strands, is known. When the antisense oligonucleotide of the present invention forms a duplex with mRNA and mRNA precursor in the cell, it is recognized by endogenous RNase H and can enzymatically degrade the complementary mRNA strand.
 RNaseHによるmRNA及びmRNA前駆体の切断を誘導するには、4~80個の連続したDNA領域を持つアンチセンスオリゴヌクレオチドが好ましい。この場合、アンチセンスオリゴヌクレオチドは0~80%の糖部修飾ヌクレオチドを持つことが好ましく、10~60%がより好ましく、20~50%がさらに好ましい。また、糖部修飾ヌクレオチドを持つ場合の連続したDNA領域は、4~20個がより好ましく、4~15個がさらに好ましく、5~10個が最も好ましい。更に、アンチセンスオリゴヌクレオチドにおける糖部修飾ヌクレオチドの位置は、5’末端近傍及び/又は3’末端近傍に配置することが好ましく、5’末端から全長の長さの30%以内の位置及び/又は3’末端から全長の長さの30%以内の位置に配置することがより好ましく、糖部修飾ヌクレオチドが、アンチセンスオリゴヌクレオチドの5’末端から全長の長さの25%以内の位置及び/又は3’末端から全長の長さの25%以内の位置に配置することがさらに好ましい。 In order to induce cleavage of mRNA and mRNA precursor by RNaseH, an antisense oligonucleotide having 4 to 80 continuous DNA regions is preferable. In this case, the antisense oligonucleotide preferably has 0 to 80% sugar-modified nucleotides, more preferably 10 to 60%, and even more preferably 20 to 50%. In addition, the number of continuous DNA regions having a sugar-modified nucleotide is more preferably 4 to 20, more preferably 4 to 15, and most preferably 5 to 10. Furthermore, the position of the sugar-modified nucleotide in the antisense oligonucleotide is preferably arranged in the vicinity of the 5 ′ end and / or in the vicinity of the 3 ′ end, and the position within 30% of the total length from the 5 ′ end and / or More preferably, it is arranged at a position within 30% of the total length from the 3 ′ end, and the sugar-modified nucleotide is located at a position within 25% of the total length from the 5 ′ end of the antisense oligonucleotide and / or More preferably, it is arranged at a position within 25% of the total length from the 3 ′ end.
 本発明のアンチセンスオリゴヌクレオチドはまた、細胞内に導入されると、相補的なCFBをコードするゲノムDNAと結合し、該DNAからのmRNA前駆体への転写を阻害してCFB遺伝子の発現を抑制することができる。 When introduced into a cell, the antisense oligonucleotide of the present invention also binds to genomic DNA encoding a complementary CFB, inhibits transcription of the DNA to an mRNA precursor, and inhibits expression of the CFB gene. Can be suppressed.
 本発明のアンチセンスオリゴヌクレオチドは、5’末端近傍及び/又は3’末端近傍が糖部修飾ヌクレオチドであることが特に好ましい。本明細書中、5’末端近傍が糖部修飾ヌクレオチドであるとは、5’末端から1~4個、好ましくは2~4個の連続するヌクレオチドが糖部修飾ヌクレオチドであることを意味し、3’末端近傍が糖部修飾ヌクレオチドであるとは、3’末端から1~4個、好ましくは2~4個の連続するヌクレオチドが糖部修飾ヌクレオチドであることを意味する。すなわち、本発明のアンチセンスオリゴヌクレオチドは、その5’末端から1~4個のヌクレオチドが糖部修飾ヌクレオチドであるアンチセンスオリゴヌクレオチドを用いることが好ましく、より好ましくは5’末端から2~4個のヌクレオチドが糖部修飾ヌクレオチドであるものを用いることができる。本発明のアンチセンスオリゴヌクレオチドは、その3’末端から1~4個のヌクレオチドが糖部修飾ヌクレオチドであるアンチセンスオリゴヌクレオチドを用いることが好ましく、より好ましくは3’末端から2~4個のヌクレオチドが糖部修飾ヌクレオチドであるものを用いることができる。 In the antisense oligonucleotide of the present invention, it is particularly preferable that the vicinity of the 5 'end and / or the vicinity of the 3' end is a sugar-modified nucleotide. In the present specification, the vicinity of the 5 ′ end is a sugar moiety-modified nucleotide means that 1 to 4, preferably 2 to 4 consecutive nucleotides from the 5 ′ end are sugar part-modified nucleotides, The vicinity of the 3 ′ end is a sugar part modified nucleotide means that 1 to 4, preferably 2 to 4 consecutive nucleotides from the 3 ′ end are sugar part modified nucleotides. That is, the antisense oligonucleotide of the present invention is preferably an antisense oligonucleotide in which 1 to 4 nucleotides from the 5 ′ end are sugar-modified nucleotides, more preferably 2 to 4 from the 5 ′ end. In which the nucleotide is a sugar-modified nucleotide. The antisense oligonucleotide of the present invention is preferably an antisense oligonucleotide in which 1 to 4 nucleotides from the 3 ′ end are sugar-modified nucleotides, more preferably 2 to 4 nucleotides from the 3 ′ end. Can be used in which is a sugar-modified nucleotide.
 本発明のアンチセンスオリゴヌクレオチドを製造する方法としては、特に限定されず、公知の化学合成を用いる方法、あるいは、酵素的転写法等が挙げられる。公知の化学合成を用いる方法として、ホスホロアミダイト法、ホスホロチオエート法、ホスホトリエステル法、CEM法[Nucleic Acid Research, 35, 3287 (2007)]等を挙げることができ、例えば、ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)により合成することができる。合成が終了した後は、固相からの脱離、保護基の脱保護および目的物の精製等を行う。精製により、純度90%以上、好ましくは95%以上のアンチセンスオリゴヌクレオチドを得るのが望ましい。本発明のアンチセンスオリゴヌクレオチドを製造する酵素的転写法としては、目的の塩基配列を有したプラスミド又はDNAを鋳型としてファージRNAポリメラーゼ、例えば、T7、T3、またはSP6RNAポリメラーゼを用いた転写による方法が挙げられる。 The method for producing the antisense oligonucleotide of the present invention is not particularly limited, and includes a method using a known chemical synthesis, an enzymatic transcription method, or the like. Examples of known chemical synthesis methods include phosphoramidite method, phosphorothioate method, phosphotriester method, CEM method [Nucleic® Acid® Research, 35, 3287] (2007)]. For example, ABI3900 high-throughput nucleic acid synthesis Can be synthesized by a machine (Applied Biosystems). After the synthesis is completed, elimination from the solid phase, deprotection of the protecting group, purification of the target product, and the like are performed. It is desirable to obtain an antisense oligonucleotide having a purity of 90% or more, preferably 95% or more by purification. As an enzymatic transcription method for producing the antisense oligonucleotide of the present invention, a transcription method using a phage RNA polymerase, for example, T7, T3, or SP6 RNA polymerase, using a plasmid or DNA having the target base sequence as a template. Can be mentioned.
 本発明のアンチセンスオリゴヌクレオチドは、トランスフェクション用の担体、好ましくはカチオン性リポソーム等のカチオン性担体を用いて細胞内に導入することができる。また、リン酸カルシウム法、エレクトロポレーション法又はマイクロインジェクション法などにより、直接細胞内に導入することもできる。 The antisense oligonucleotide of the present invention can be introduced into cells using a transfection carrier, preferably a cationic carrier such as a cationic liposome. It can also be directly introduced into cells by the calcium phosphate method, electroporation method or microinjection method.
 本発明のアンチセンスオリゴヌクレオチドは、相補的なオリゴ核酸と二重鎖を形成させ、二重鎖核酸として細胞内に導入することで標的遺伝子の発現抑制を誘導することもできる(国際公開第2005/113571号)。この場合の二重鎖核酸をリガンドで修飾する位置は、相補的なオリゴ核酸の5’末端又は3’末端が好ましい。 The antisense oligonucleotide of the present invention can also induce suppression of target gene expression by forming a double strand with a complementary oligonucleic acid and introducing it into a cell as a double-stranded nucleic acid (International Publication No. 2005). / 113571). In this case, the position at which the double-stranded nucleic acid is modified with a ligand is preferably the 5 'end or 3' end of a complementary oligonucleic acid.
2. 本発明のアンチセンスオリゴヌクレオチドによるCFBの発現抑制
 本発明のアンチセンスオリゴヌクレオチドは、ヒトCFBの完全長mRNAに対応するcDNA塩基配列(配列番号1)あるいはmRNA前駆体に対応するゲノム配列に基づいて設計することができる。ヒトCFBの完全長mRNAのcDNAは例えば、Genbank Accession No.NM_001710として登録されており、またヒトCFBのmRNA前駆体を含むゲノム配列は、例えばGenbank Accession No. NC_000006.12(31945944..31952084)として登録されている。
2. Inhibition of CFB Expression by the Antisense Oligonucleotide of the Present Invention The antisense oligonucleotide of the present invention has a cDNA base sequence (SEQ ID NO: 1) corresponding to the full-length mRNA of human CFB or a genomic sequence corresponding to the mRNA precursor. Can be designed based on. The cDNA of human CFB full-length mRNA is registered, for example, as Genbank Accession No. NM_001710, and the genomic sequence containing the human CFB mRNA precursor is, for example, Genbank Accession No. It is registered.
 CFB遺伝子の一部の標的塩基配列に対して相補的な塩基配列からなる核酸のうち、CFBの発現抑制活性を有するアンチセンスオリゴヌクレオチドとしては、例えば表1または表2に記載された群から選択されるアンチセンス塩基配列で構成されるアンチセンスオリゴヌクレオチドが挙げられる。アンチセンスオリゴヌクレオチドの長さは、8~80塩基であり、8~30塩基が好ましい。例えば、8~20塩基、10~20塩基、13~20塩基、13~16塩基、13塩基、14塩基、15塩基、16塩基、17塩基、18塩基、19塩基、20塩基であり得る。 Among the nucleic acid consisting of a base sequence complementary to a part of the target base sequence of the CFB gene, the antisense oligonucleotide having CFB expression suppression activity is selected from the group described in Table 1 or Table 2, for example. And antisense oligonucleotides composed of antisense base sequences. The length of the antisense oligonucleotide is 8 to 80 bases, preferably 8 to 30 bases. For example, it can be 8-20 bases, 10-20 bases, 13-20 bases, 13-16 bases, 13 bases, 14 bases, 15 bases, 16 bases, 17 bases, 18 bases, 19 bases, 20 bases.
 これらのアンチセンスオリゴヌクレオチドを細胞に導入することにより、CFBの発現を抑制することができる。例えば本発明のアンチセンスオリゴヌクレオチドは、数nM~数μMの濃度で、細胞に導入した後、24時間以上、例えば48時間培養した段階でCFBのmRNAの発現を抑制することができる。 CFB expression can be suppressed by introducing these antisense oligonucleotides into cells. For example, the antisense oligonucleotide of the present invention can suppress the expression of CFB mRNA after being introduced into cells at a concentration of several nM to several μM and then cultured for 24 hours or more, for example 48 hours.
 また、本発明のアンチセンスオリゴヌクレオチドのCFBのmRNAの発現抑制活性の評価は、該アンチセンスオリゴヌクレオチドをカチオン性リポソームなどを用いて、もしくは該アンチセンスオリゴヌクレオチドをそのまま、あるいは該アンチセンスオリゴヌクレオチドを何らかのリガンドと結合させて、ヒト細胞株などへ導入し、一定時間培養した後、当該ヒト細胞株におけるCFBのmRNAの発現量を定量することにより行うことができる。 The evaluation of the CFB mRNA expression inhibitory activity of the antisense oligonucleotide of the present invention can be carried out using the antisense oligonucleotide as a cationic liposome or the antisense oligonucleotide as it is, or the antisense oligonucleotide. Can be bound to some ligand, introduced into a human cell line, etc., cultured for a certain period of time, and then quantified for the expression level of CFB mRNA in the human cell line.
 本発明のアンチセンスオリゴヌクレオチドは、リガンドを含んでもよい。該リガンドは、本発明のアンチセンスオリゴヌクレオチドの5'末端、3'末端および/または配列内部を、直接修飾するものであってもよい。 The antisense oligonucleotide of the present invention may contain a ligand. The ligand may be one that directly modifies the 5 ′ end, 3 ′ end and / or the sequence interior of the antisense oligonucleotide of the present invention.
 本発明のアンチセンスオリゴヌクレオチドに含まれるリガンドとしては、生体分子と親和性のある分子であれば良いが、例えば、コレステロール、脂肪酸、トコフェロール、レチノイドなどの脂質類、N-アセチルガラクトサミン(GalNAc)、ガラクトース(Gal)、マンノース(Man)などの糖類、フル抗体、Fab、scFV、VHHなどのフラグメント抗体、低密度リポタンパク質(LDL)、ヒト血清アルブミンなどのタンパク質、RGD、NGR、R9、CPPなどのペプチド類、葉酸などの低分子、合成ポリアミノ酸などの合成ポリマー、あるいは核酸アプタマーなどがあげられるがこれらに限定されず、これらを適宜組み合わせて用いることもできる。 The ligand contained in the antisense oligonucleotide of the present invention may be any molecule that has affinity for biomolecules.For example, lipids such as cholesterol, fatty acids, tocopherols, retinoids, N-acetylgalactosamine (GalNAc), Sugars such as galactose (Gal) and mannose (Man), full antibodies, fragment antibodies such as Fab, scFV, VHH, proteins such as low density lipoprotein (LDL), human serum albumin, RGD, NGR, R9, CPP, etc. Peptides, low molecular weight compounds such as folic acid, synthetic polymers such as synthetic polyamino acids, nucleic acid aptamers, and the like can be mentioned, but the invention is not limited thereto, and these can be used in appropriate combinations.
 本発明のアンチセンスオリゴヌクレオチドにリガンドを付加する方法としては、例えば、固相上での伸張反応時に、固相上で反応可能な修飾剤を反応させることで、5'末端、3'末端および/または配列内部に修飾を施すことができるが、これに限定されない。また、アミノ基、メルカプト基、アジド基または3重結合などの官能基を導入した核酸をあらかじめ合成および精製しておき、それらに修飾剤を作用させることでコンジュゲート核酸を得ることもできる。 As a method for adding a ligand to the antisense oligonucleotide of the present invention, for example, at the time of extension reaction on a solid phase, by reacting a modifying agent capable of reacting on the solid phase, the 5 ′ end, 3 ′ end and However, the present invention is not limited to this. Alternatively, a conjugated nucleic acid can be obtained by previously synthesizing and purifying a nucleic acid into which a functional group such as an amino group, a mercapto group, an azide group, or a triple bond has been introduced, and allowing a modifier to act on them.
3. 本発明の医薬組成物
 本発明は、本発明のアンチセンスオリゴヌクレオチドを有効成分として含有する医薬組成物(本明細書中、本発明の医薬組成物ともいう)に関する。
3. Pharmaceutical composition of the present invention The present invention relates to a pharmaceutical composition containing the antisense oligonucleotide of the present invention as an active ingredient (hereinafter also referred to as the pharmaceutical composition of the present invention).
 当該医薬組成物は、アンチセンスオリゴヌクレオチドを細胞内に移行させるのに有効な担体をさらに含むことができる。本発明の医薬組成物は、非典型溶血性尿毒症症候群(aHUS)、発作性夜間ヘモグロビン尿症(PNH)、加齢黄斑変性症(AMD)、膜性増殖性糸球体腎炎(MPGN)、C3腎炎、膜性腎症、急速進行性糸球体腎炎(RPGN)、急性腎障害(AKI)、喘息、自己免疫疾患(例えば、全身性エリテマトーデス(SLE)、乾癬、視神経脊髄炎、重症筋無力症等)などの治療剤又は予防剤として用いることができる。 The pharmaceutical composition can further contain a carrier effective for transferring the antisense oligonucleotide into the cell. The pharmaceutical composition of the present invention comprises atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria (PNH), age-related macular degeneration (AMD), membranoproliferative glomerulonephritis (MPGN), C3 Nephritis, membranous nephropathy, rapid progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE), psoriasis, optic neuromyelitis, myasthenia gravis) ) And the like.
 アンチセンスオリゴヌクレオチドを細胞内に移行させるのに有効な担体としては、例えばカチオン性担体が挙げられる。カチオン性担体としては、カチオン性リポソームおよびカチオン性ポリマーなどが挙げられる。また、アンチセンスオリゴヌクレオチドを細胞内に移行させるのに有効な担体として、ウイルスエンベロープを利用した担体を用いてもよい。カチオン性リポソームとしては、2-O-(2-ジエチルアミノエチル)カルバモイル-1,3-O-ジオレオイルグリセロールを含有するリポソーム(以下リポソームAともいう)、オリゴフェクトアミン(Invitrogen社)、リポフェクチン(Invitrogen社)、リポフェクトアミン(Invitrogen社)、リポフェクトアミン2000(Invitrogen社)、DMRIE-C(Invitrogen社)、GeneSilencer(Gene Therapy Systems社)、TransMessenger(QIAGEN社)、TransIT TKO(Mirus社)などが好ましく用いられる。カチオン性ポリマーとしては、JetSI(Qbiogene社)、Jet-PEI(ポリエチレンイミン;Qbiogene社)などが好ましく用いられる。ウイルスエンベロープを利用した担体としては、GenomeOne(HVJ-Eリポソーム;石原産業社)などが好ましく用いられる。 Examples of the carrier effective for transferring the antisense oligonucleotide into the cell include a cationic carrier. Examples of the cationic carrier include cationic liposomes and cationic polymers. Further, a carrier utilizing a viral envelope may be used as a carrier effective for transferring the antisense oligonucleotide into the cell. Examples of cationic liposomes include liposomes containing 2-O- (2-diethylaminoethyl) carbamoyl-1,3-O-dioleoylglycerol (hereinafter also referred to as liposome A), oligofectamine (Invitrogen), lipofectin ( Invitrogen), Lipofectamine (Invitrogen), Lipofectamine 2000 (Invitrogen), DMRIE-C (Invitrogen), GeneSilencer (Gene Therapy Systems), TransMessenger (QIAGEN), TransIT TKO (Mirus), etc. Is preferably used. As the cationic polymer, JetSI (Qbiogene), Jet-PEI (polyethyleneimine; Qbiogene) and the like are preferably used. As a carrier using a virus envelope, GenomeOne (HVJ-E liposome; Ishihara Sangyo Co., Ltd.) is preferably used.
 本発明のアンチセンスオリゴヌクレオチドに上記担体を含む本発明の医薬組成物は、当業者に既知の方法により調製することができる。例えば、適当な濃度の担体分散液とアンチセンスオリゴヌクレオチド溶液とを混合して調製することができる。カチオン性担体を用いる場合、アンチセンスオリゴヌクレオチドは水溶液中で負電荷を帯びているため、常法により水溶液中で混合することによって容易に調製することができる。該組成物を調製するために用いる水性溶媒としては、注射用水、注射用蒸留水、生理食塩水などの電解質液、ブドウ糖液、マルトース液などの糖液などが挙げられる。また、該組成物を調製する際のpHおよび温度などの条件は当業者が適宜選択できる。例えば、リポソームAの場合、10%マルトース水溶液中の16mg/mlのリポソーム分散液に、10%マルトース水溶液中のアンチセンスオリゴヌクレオチドを、pH7.4、25℃で撹拌しながら徐々に添加して調製することができる。 The pharmaceutical composition of the present invention comprising the above-described carrier in the antisense oligonucleotide of the present invention can be prepared by methods known to those skilled in the art. For example, it can be prepared by mixing a carrier dispersion having an appropriate concentration and an antisense oligonucleotide solution. When a cationic carrier is used, the antisense oligonucleotide is negatively charged in an aqueous solution, and therefore can be easily prepared by mixing in an aqueous solution by a conventional method. Examples of the aqueous solvent used for preparing the composition include electrolyte solutions such as water for injection, distilled water for injection, and physiological saline, and sugar solutions such as glucose solution and maltose solution. In addition, conditions such as pH and temperature when preparing the composition can be appropriately selected by those skilled in the art. For example, in the case of liposome A, prepared by gradually adding an antisense oligonucleotide in 10% maltose aqueous solution to 16 mg / ml liposome dispersion in 10% maltose aqueous solution with stirring at pH 7.4 and 25 ° C. can do.
 該組成物は、必要ならば超音波分散装置や高圧乳化装置などを用いて分散処理を行うことにより、均一な組成物とすることもできる。担体とアンチセンスオリゴヌクレオチドとを含む組成物の調製に最適な方法及び条件は、用いる担体に依存するので、当業者であれば、上記の方法にとらわれることなく、用いる担体に最適な方法を選択できる。 The composition can be made into a uniform composition by carrying out a dispersion treatment using an ultrasonic dispersion device or a high-pressure emulsification device if necessary. The optimum method and conditions for the preparation of the composition comprising the carrier and the antisense oligonucleotide depend on the carrier to be used, and those skilled in the art can select the optimum method for the carrier to be used without being bound by the above method. it can.
 本発明の医薬組成物としては、アンチセンスオリゴヌクレオチドとリード粒子とを構成成分とする複合粒子および該複合粒子を被覆する脂質膜から構成され、該脂質膜の構成成分が可溶な極性有機溶媒を含む液の中に、該脂質膜の構成成分が分散可能で、該複合粒子も分散可能な濃度で該極性有機溶媒を含む液が存在するリポソームも好適に用いられるが、これに限定されない。リード粒子としては、例えば、脂質集合体、リポソーム、エマルジョン粒子、高分子、金属コロイド、微粒子製剤等が挙げられ、好ましくはリポソームが用いられる。本発明におけるリード粒子は、脂質集合体、リポソーム、エマルジョン粒子、高分子、金属コロイド、微粒子製剤等を2つ以上組み合わせた複合体を構成成分としていてもよく、脂質集合体、リポソーム、エマルジョン粒子、高分子、金属コロイド、微粒子製剤等と他の化合物(例えば糖、脂質、無機化合物等)とを組み合わせた複合体を構成成分としていてもよい。 The pharmaceutical composition of the present invention comprises a composite particle comprising an antisense oligonucleotide and a lead particle as constituents and a lipid membrane covering the composite particle, wherein the constituent of the lipid membrane is soluble A liposome containing a liquid containing the polar organic solvent at a concentration capable of dispersing the constituent components of the lipid membrane and the composite particles can also be suitably used. Examples of the lead particles include lipid aggregates, liposomes, emulsion particles, polymers, metal colloids, and fine particle preparations, and liposomes are preferably used. The lead particles in the present invention may be composed of a complex obtained by combining two or more lipid aggregates, liposomes, emulsion particles, polymers, metal colloids, fine particle formulations, etc., and lipid aggregates, liposomes, emulsion particles, A complex formed by combining a polymer, a metal colloid, a fine particle preparation, and the like with another compound (eg, sugar, lipid, inorganic compound, etc.) may be used as a constituent component.
 該複合粒子を被覆する脂質膜としては、例えば中性脂質およびポリエチレングリコール-ホスファチジルエタノールアミン等を構成成分とするものが挙げられる。 Examples of the lipid membrane that coats the composite particles include neutral lipids and polyethylene glycol-phosphatidylethanolamine as constituent components.
 該リポソームは、例えばWO2006/080118等に記載の方法に従って調製することができる。 The liposome can be prepared, for example, according to the method described in WO2006 / 080118.
 本発明の医薬組成物に含まれるアンチセンスオリゴヌクレオチドと担体との配合比は、アンチセンスオリゴヌクレオチドの1重量部に対して担体1~200重量部が適当である。好ましくは、アンチセンスオリゴヌクレオチドの1重量部に対して担体2.5~100重量部、さらに好ましくは担体10~20重量部である。 The mixing ratio of the antisense oligonucleotide and the carrier contained in the pharmaceutical composition of the present invention is suitably 1 to 200 parts by weight of the carrier with respect to 1 part by weight of the antisense oligonucleotide. Preferably, the amount is 2.5 to 100 parts by weight, more preferably 10 to 20 parts by weight, based on 1 part by weight of the antisense oligonucleotide.
 本発明の医薬組成物には、上記担体の他に、医薬的に許容できるキャリアー又は希釈剤などを含んでいてもよい。医薬的に許容できるキャリアー又は希釈剤などは、本質的に化学的に不活性及び無害な組成物であり、本発明の医薬組成物の生物学的活性に全く影響を与えないものである。そのようなキャリアー又は希釈剤の例は、塩溶液、糖溶液、グリセロール溶液、エタノールなどがあるが、これらに限定されない。 The pharmaceutical composition of the present invention may contain a pharmaceutically acceptable carrier or diluent in addition to the above carrier. A pharmaceutically acceptable carrier or diluent or the like is an essentially chemically inert and harmless composition that does not affect the biological activity of the pharmaceutical composition of the present invention at all. Examples of such carriers or diluents include but are not limited to salt solutions, sugar solutions, glycerol solutions, ethanol and the like.
 本発明の医薬組成物は、補体第二経路の異常により媒介される障害の治療又は予防用に好適に用いることができる。本明細書中、補体第二経路の異常により媒介される障害とは、非典型溶血性尿毒症症候群(aHUS)、発作性夜間ヘモグロビン尿症(PNH)、加齢黄斑変性症(AMD)、膜性増殖性糸球体腎炎(MPGN)、C3腎炎、膜性腎症、急速進行性糸球体腎炎(RPGN)、急性腎障害(AKI)、喘息、自己免疫疾患(例えば、全身性エリテマトーデス(SLE)、乾癬、視神経脊髄炎、重症筋無力症等)などを指す。従って、本発明の医薬組成物は、非典型溶血性尿毒症症候群(aHUS)、発作性夜間ヘモグロビン尿症(PNH)、加齢黄斑変性症(AMD)、膜性増殖性糸球体腎炎(MPGN)、C3腎炎、膜性腎症、急速進行性糸球体腎炎(RPGN)、急性腎障害(AKI)、喘息、自己免疫疾患(例えば、全身性エリテマトーデス(SLE)、乾癬、視神経脊髄炎、重症筋無力症等)などの治療剤又は予防剤として用いることができる。 The pharmaceutical composition of the present invention can be suitably used for the treatment or prevention of disorders mediated by abnormalities in the alternative pathway of complement. In the present specification, disorders mediated by abnormalities in the alternative complement pathway include atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria (PNH), age-related macular degeneration (AMD), Membranoproliferative glomerulonephritis (MPGN), C3 nephritis, membranous nephropathy, rapidly progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE)) Psoriasis, optic neuritis, myasthenia gravis, etc.). Therefore, the pharmaceutical composition of the present invention comprises atypical hemolytic uremic syndrome (aHUS), paroxysmal nocturnal hemoglobinuria (PNH), age-related macular degeneration (AMD), membranoproliferative glomerulonephritis (MPGN) , C3 nephritis, membranous nephropathy, rapidly progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE), psoriasis, optic neuromyelitis, myasthenia gravis It can be used as a therapeutic or prophylactic agent such as
 本発明の医薬組成物は、疾患の治療又は予防に有効な量の該複合体を含み、かつ、患者に適切に投与できるような形態で提供され得る。本発明の医薬組成物の製剤形態は、例えば注射剤、点眼剤、吸入用などの液剤、例えば軟膏、ローション剤などの外用剤等であってもよい。 The pharmaceutical composition of the present invention can be provided in a form that contains an amount of the complex effective for treating or preventing a disease and can be appropriately administered to a patient. The preparation form of the pharmaceutical composition of the present invention may be, for example, injections, eye drops, liquids for inhalation, etc., for example, external preparations such as ointments, lotions and the like.
 液剤の場合、本発明の医薬組成物の濃度範囲は通常、0.001~25%(w/v)であり、好ましくは0.01~5%(w/v)であり、より好ましくは0.1~2%(w/v)である。本発明の医薬組成物は医薬的に許容される任意の添加剤、例えば、乳化補助剤、安定化剤、等張化剤、pH調整剤等を適当量含有していてもよい。医薬的に許容される任意の添加剤は、該複合体の分散前でも分散後でも適当な工程で添加することができる。 In the case of a liquid, the concentration range of the pharmaceutical composition of the present invention is usually 0.001 to 25% (w / v), preferably 0.01 to 5% (w / v), more preferably 0.1 to 2% ( w / v). The pharmaceutical composition of the present invention may contain an appropriate amount of any pharmaceutically acceptable additive, for example, an emulsification aid, a stabilizer, an isotonic agent, a pH adjuster and the like. Any pharmaceutically acceptable additive can be added in an appropriate step before or after dispersion of the complex.
 本発明の医薬組成物は、凍結乾燥製剤として提供することもできる。凍結乾燥製剤は、アンチセンスオリゴヌクレオチドと担体とを分散処理した後、凍結乾燥処理することにより調製することができる。凍結乾燥処理は、常法により行うことができる。例えば、上記の分散処理後の複合体溶液を無菌状態にて所定量をバイアル瓶に分注し、約-40~-20℃の条件で予備乾燥を約2時間程度行い、約0~10℃で減圧下に一次乾燥を行い、次いで、約15~25℃で減圧下に二次乾燥して凍結乾燥することができる。そして、例えばバイアル内部を窒素ガスで置換し、打栓することにより、本発明の医薬組成物の凍結乾燥製剤を得ることができる。 The pharmaceutical composition of the present invention can also be provided as a lyophilized preparation. The lyophilized preparation can be prepared by dispersing the antisense oligonucleotide and the carrier and then lyophilizing. The lyophilization treatment can be performed by a conventional method. For example, a predetermined amount of the complex solution after the above dispersion treatment is aseptically dispensed into a vial, preliminarily dried for about 2 hours under a condition of about -40 to -20 ° C, and about 0 to 10 ° C. Primary drying under reduced pressure, followed by secondary drying under reduced pressure at about 15-25 ° C. and lyophilization. Then, for example, by replacing the inside of the vial with nitrogen gas and stoppering, a freeze-dried preparation of the pharmaceutical composition of the present invention can be obtained.
 本発明の医薬組成物を凍結乾燥製剤として提供する場合、本発明の医薬組成物を任意の適当な溶液の添加によって再溶解し、使用することができる。このような溶液としては、注射用水、生理食塩水などの電解質液、ブドウ糖液、その他一般輸液などを挙げることができる。この溶液の液量は、用途などによって異なり、特に制限されないが、凍結乾燥前の液量の0.5~2倍量、または500ml以下が好ましい。 When the pharmaceutical composition of the present invention is provided as a lyophilized preparation, the pharmaceutical composition of the present invention can be redissolved and used by adding any appropriate solution. Examples of such a solution include electrolytes such as water for injection and physiological saline, glucose solution, and other general infusion solutions. The amount of this solution varies depending on the application and is not particularly limited, but it is preferably 0.5 to 2 times the amount before lyophilization, or 500 ml or less.
 本発明の医薬組成物は、ヒトを含む動物に対し、例えば静脈内投与、動脈内投与、経口投与、組織内投与、経皮投与、経粘膜投与又は経直腸投与することができるが、患者の症状に合わせた適切な方法により投与することが好ましい。特に静脈投与、経皮投与、経粘膜投与が好ましく用いられる。また、癌内局所投与など、局所投与をすることもできる。これらの投与方法に適した剤型としては、例えば各種の注射剤、経口剤、点滴剤、吸収剤、点眼剤、軟膏剤、ローション剤、坐剤等が挙げられる。 The pharmaceutical composition of the present invention can be administered to animals including humans, for example, intravenous administration, intraarterial administration, oral administration, tissue administration, transdermal administration, transmucosal administration, or rectal administration. It is preferable to administer by an appropriate method according to the symptoms. In particular, intravenous administration, transdermal administration, and transmucosal administration are preferably used. Moreover, local administration, such as local administration in cancer, can also be performed. Examples of the dosage form suitable for these administration methods include various injections, oral preparations, drops, absorbents, eye drops, ointments, lotions, suppositories and the like.
 本発明の医薬組成物の用量は、薬物、剤型、年齢や体重などの患者の状態、投与経路、疾患の性質と程度などを考慮した上で決定することが望ましいが、通常はアンチセンスオリゴヌクレオチドの質量として、成人に対して1日当たり、0.1mg~10g/日、好ましくは1mg~500mg/日である。場合によっては、これ以下でも十分であるし、また逆にこれ以上の用量を必要とすることもある。また1日1回~数回投与することもでき、1日~数日の間隔をおいて投与することもできる。 The dosage of the pharmaceutical composition of the present invention is preferably determined in consideration of the drug, dosage form, patient condition such as age and weight, administration route, nature and degree of disease, etc. The mass of nucleotide is 0.1 mg to 10 g / day, preferably 1 mg to 500 mg / day per day for an adult. In some cases, this may be sufficient, or vice versa. It can also be administered once to several times a day, and can be administered at intervals of 1 to several days.
4.治療方法
 本発明はさらに、補体第二経路の異常により媒介される障害を治療する方法であって、治療上有効量の、本発明のアンチセンスオリゴヌクレオチド又は本発明の医薬組成物を、そのような治療を必要とするヒトに投与するステップを含む方法(本発明の治療方法)を提供する。
4. Therapeutic methods The present invention is further a method of treating a disorder mediated by an alternative pathway alternative comprising a therapeutically effective amount of an antisense oligonucleotide of the invention or a pharmaceutical composition of the invention. , A method comprising the step of administering to a human in need of such treatment (the treatment method of the invention).
 本発明の治療方法は、好ましくは、非典型溶血性尿毒症症候群、発作性夜間ヘモグロビン尿症、加齢黄斑変性症、膜性増殖性糸球体腎炎、C3腎炎、膜性腎症、急速進行性糸球体腎炎(RPGN)、急性腎障害(AKI)、喘息、自己免疫疾患(例えば、全身性エリテマトーデス(SLE)、乾癬、視神経脊髄炎、重症筋無力症等)などの疾患を治療する方法であって、治療上有効量の本発明のアンチセンスオリゴヌクレオチドまたは本発明の医薬組成物を、該治療を必要とするヒトに投与することが特徴である。その他の工程および条件は、何ら制限されない。 The treatment method of the present invention is preferably an atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, age-related macular degeneration, membranoproliferative glomerulonephritis, C3 nephritis, membranous nephropathy, rapidly progressive It is a method of treating diseases such as glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE), psoriasis, optic neuromyelitis, myasthenia gravis) Thus, it is characterized in that a therapeutically effective amount of the antisense oligonucleotide of the present invention or the pharmaceutical composition of the present invention is administered to a human in need of the treatment. Other processes and conditions are not limited at all.
 本発明の治療方法は、例えば、前記本発明の医薬組成物の投与方法、用量、調製方法等を援用できる。 For the treatment method of the present invention, for example, the administration method, dose, preparation method and the like of the pharmaceutical composition of the present invention can be used.
 以下に、本発明を実施例により説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to these examples.
ヒト細胞におけるCFB mRNAのノックダウン活性の測定
 96ウェルの培養プレートにヒト肝臓癌由来の細胞株であるHuh7細胞(国立研究開発法人 医薬基盤・健康・栄養研究所 JCRB細胞バンクより入手)を、20,000細胞/80μL/ウェルとなるよう播種した。培地は、10%ウシ胎仔血清(FBS)を含むDMEM培地(ライフテクノロジー社製、カタログ番号11095-098)を用いた。アンチセンスオリゴヌクレオチドは、表2に記載のものをジーンデザインにて合成して利用した。表2のアンチセンスオリゴヌクレオチドにおいて、小文字はDNAを、大文字はLNAを示し、C(M)は5-メチルシトシンLNAを示す。なお、いずれのアンチセンスオリゴヌクレオチドも各ヌクレオチドはリン酸ジエステル結合がホスホロチオエート結合で置換されている。このアンチセンスオリゴヌクレオチドとLipofectamine LTX & Plus試薬(ライフテクノロジー社製、カタログ番号15338)とをOpti-MEM 培地(ライフテクノロジー社製、カタログ番号11058-021)で希釈して、アンチセンスオリゴヌクレオチドの終濃度が30nMとなるように20μLのアンチセンスオリゴヌクレオチド/Lipofectamine LTX混合液を各々96ウェルの培養プレートに添加し、37℃、5% CO2条件下で24時間培養した。その後、細胞をPBS(Phosphate buffered saline)で洗浄し、各々のプレートからCells-to-Ctキット(アプライドバイオシステムズ社製、カタログ番号:AM1728)を用いて製品に添付された説明書に記載された方法に従いcDNAを合成した。このcDNA 5μLをMicroAmpOptical 96ウェルプレート(アプライドバイオシステムズ社製、カタログ番号4326659)に加え、更に10μLのTaqMan Gene Expression Master Mix(アプライドバイオシステムズ社製、カタログ番号4369016)、3μLのUltraPure Distilled Water(ライフテクノロジーズ社製、カタログ番号:10977-015)、1μLのhuman CFBプローブ、1μLのヒト β-actinプローブを添加した。ABI7900 HTリアルタイムPCRシステムを用いて、ヒトCFB遺伝子およびヒトβ-actinのリアルタイムPCRを行った。β-actinは構成的発現遺伝子であり内部対照として測定し、CFB発現量を補正した。アンチセンスオリゴヌクレオチドを添加せずにトランスフェクション試薬だけでHuh7細胞を処理した時のCFB mRNA量を1.0として、各アンチセンスオリゴヌクレオチドを導入した時のCFB mRNA相対発現量を算出した。本実験を複数回行い、CFB mRNA相対発現量の平均値を表2に示した。
Measurement of knockdown activity of CFB mRNA in human cells Huh7 cells (obtained from JCRB Cell Bank, National Institute of Biomedical Innovation, Health and Nutrition) on a 96-well culture plate, a cell line derived from human liver cancer Cells / 80 μL / well were seeded. As the medium, a DMEM medium (Life Technologies, catalog number 11095-098) containing 10% fetal bovine serum (FBS) was used. Antisense oligonucleotides described in Table 2 were synthesized by gene design and used. In the antisense oligonucleotides in Table 2, lower case letters indicate DNA, upper case letters indicate LNA, and C (M) indicates 5-methylcytosine LNA. In any antisense oligonucleotide, each nucleotide has a phosphodiester bond substituted with a phosphorothioate bond. The antisense oligonucleotide and Lipofectamine LTX & Plus reagent (Life Technology, catalog number 15338) are diluted with Opti-MEM medium (Life Technology, catalog number 11058-021) to terminate the antisense oligonucleotide. 20 μL of antisense oligonucleotide / Lipofectamine LTX mixed solution was added to each 96-well culture plate so that the concentration was 30 nM, and cultured at 37 ° C. under 5% CO 2 condition for 24 hours. After that, the cells were washed with PBS (Phosphate buffered saline) and described in the instructions attached to the product from each plate using the Cells-to-Ct kit (Applied Biosystems, catalog number: AM1728). CDNA was synthesized according to the method. Add 5 μL of this cDNA to a MicroAmpOptical 96-well plate (Applied Biosystems, catalog number 4326659), then add 10 μL TaqMan Gene Expression Master Mix (Applied Biosystems, catalog number 4369016), 3 μL of UltraPure Distilled Water (Life Technologies) (Cat. No. 10977-015), 1 μL human CFB probe, and 1 μL human β-actin probe were added. Real-time PCR of human CFB gene and human β-actin was performed using ABI7900 HT real-time PCR system. β-actin is a constitutively expressed gene, measured as an internal control, and corrected for CFB expression. The relative expression level of CFB mRNA when each antisense oligonucleotide was introduced was calculated with 1.0 as the amount of CFB mRNA when Huh7 cells were treated with only the transfection reagent without adding the antisense oligonucleotide. This experiment was performed a plurality of times, and the average value of the relative expression level of CFB mRNA is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
アンチセンスオリゴヌクレオチドのマウスにおけるin vivoノックダウン活性
 実施例1で得られた各アンチセンスオリゴヌクレオチドのうち、配列番号118、125、150について、それぞれ以下の方法によりin vivoノックダウン活性を測定した。なお、各アンチセンスオリゴヌクレオチドは、リン酸緩衝化生理食塩水(DPBS)(ナカライテスク社製)で希釈して用いた。
 マウス(BALB/cA、日本クレアより入手)を馴化飼育後、各アンチセンスオリゴヌクレオチドを3 mg/kgずつマウスに皮下注投与した。また、コントロール群としてはDPBSのみをマウスに皮下注投与した。各アンチセンスオリゴヌクレオチドあるいはコントロール群は、それぞれ3匹のマウスに投与した。
 投与から3日後に動物を安楽死させ、肝臓を採取し液体窒素で凍結保存した。肝臓凍結サンプルをトリゾール(登録商標)アールエヌエーアイソレーションリージェンツ (ライフテクノロジーズ社製、カタログ番号15596026)およびマグナピュア96セルラーアールエヌエーラージボリュームキット(ロシュ社製、カタログ番号05467535001)を用い、製品に添付された説明書に記載された方法に従い、全RNAの回収を行った。さらにトランスクリプターファーストストランドシーディーエヌエーシンセシスキット (ロシュ社製、カタログ番号04897030001)を用いて、製品に添付された説明書に記載された方法に従い、得られた全RNAを鋳型とする逆転写反応によるcDNAの作製を行った。得られたcDNAを鋳型とし、タックマン(登録商標)ジーンエクスプレッションアッセイズプローブ(アプライドバイオシステムズ社製)をプローブとして、クオントスタジオ12ケーフレックスリアルタイムピーシーアールシステム(ABI社製)を用い、添付された使用説明書に記載された方法に従ってPCR反応させることにより、CFB遺伝子および構成的発現遺伝子であるグリセルアルデヒド3-リン酸脱水素酵素 (D-glyceraldehyde-3-phosphate dehydrogenase、以下Gapdhと表す)遺伝子をPCR反応させてmRNA増幅量をそれぞれ測定し、GapdhのmRNA増幅量を内部対照として、CFBのmRNAの準定量値を算出した。同様に測定したコントロール群におけるCFBのmRNAの準定量値を1として、CFBのmRNAの準定量値から、CFBのmRNAの発現率を求めた。得られたCFBのmRNAの相対発現率を図1に示す。
In Vivo Knockdown Activity of Antisense Oligonucleotide in Mice Among the antisense oligonucleotides obtained in Example 1, the in vivo knockdown activity of SEQ ID NOS: 118, 125, and 150 was measured by the following method. Each antisense oligonucleotide was diluted with phosphate buffered saline (DPBS) (manufactured by Nacalai Tesque).
Mice (BALB / cA, obtained from Clea Japan) were bred and conditioned, and then each antisense oligonucleotide was administered subcutaneously at a dose of 3 mg / kg. As a control group, only DPBS was subcutaneously administered to mice. Each antisense oligonucleotide or control group was administered to 3 mice each.
Three days after administration, animals were euthanized, livers were collected and stored frozen in liquid nitrogen. A sample of frozen liver is attached to the product using Trizol® NA Isolation Regents (manufactured by Life Technologies, catalog number 15596026) and Magna Pure 96 Cellular NA NA Volume Volume Kit (manufactured by Roche, catalog number 05467535001). Total RNA was collected according to the method described in the written instructions. Furthermore, using the transcripter first strand CDNA synthesis kit (Roche, catalog number 04897030001), according to the method described in the instructions attached to the product, cDNA by reverse transcription reaction using the obtained total RNA as a template Was made. Using the obtained cDNA as a template, a Tackman (registered trademark) Gene Expression Assays probe (Applied Biosystems) as a probe, a Quant Studio 12 Kaflex Real-Time PC system (ABI) was used and attached The CFB gene and constitutively expressed gene glyceraldehyde 3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate dehydrogenase, hereinafter referred to as Gapdh) gene by PCR reaction according to the method described in the instruction manual The amount of mRNA amplification was measured by PCR reaction, and the semi-quantitative value of CFB mRNA was calculated using the amount of mRNA amplification of Gapdh as an internal control. Similarly, the CFB mRNA expression rate was determined from the CFB mRNA quasi-quantitative value, with the CFB mRNA quasi-quantitative value in the control group measured similarly. The relative expression rate of the obtained CFB mRNA is shown in FIG.
修飾核酸の異なるアンチセンスオリゴヌクレオチド(配列番号155)のin vitroおよびin vivoノックダウン活性
 実施例1で得られたアンチセンス塩基配列(配列番号23)を修飾したC(M)C(M)AtgttgtgC(M)AA(配列番号155)をジーンデザインにて新たに合成し、in vitroおよびin vivoノックダウン活性を測定した。ここで、小文字はDNAを、大文字はLNAを示し、C(M)は5-メチルシトシンLNAを示す。なお、いずれのアンチセンスオリゴヌクレオチドも各ヌクレオチドはリン酸ジエステル結合がホスホロチオエート結合で置換されている。
 in vitroノックダウン活性は、アンチセンスオリゴヌクレオチド(配列番号155)の終濃度がそれぞれ30nM、10nM、3nM、1nM、0.3nMとなるように調整し、実施例1と同様な方法で3回測定した結果の平均値を表3に示した。in vivoノックダウン活性は、アンチセンスオリゴヌクレオチド(配列番号155)を10 mg/kgずつマウスに皮下注投与し、実施例2と同様な方法で測定した結果を図2に示す。
In vitro and in vivo knockdown activity of antisense oligonucleotides (SEQ ID NO: 155) with different modified nucleic acids C (M) C (M) AtgttgtgC modified with the antisense base sequence (SEQ ID NO: 23) obtained in Example 1 (M) AA (SEQ ID NO: 155) was newly synthesized by Gene Design, and in vitro and in vivo knockdown activity was measured. Here, lowercase letters indicate DNA, uppercase letters indicate LNA, and C (M) indicates 5-methylcytosine LNA. In any antisense oligonucleotide, each nucleotide has a phosphodiester bond substituted with a phosphorothioate bond.
The in vitro knockdown activity was adjusted 3 times in the same manner as in Example 1 by adjusting the final concentration of the antisense oligonucleotide (SEQ ID NO: 155) to 30 nM, 10 nM, 3 nM, 1 nM, and 0.3 nM, respectively. The average value of the results is shown in Table 3. In vivo knockdown activity is shown in FIG. 2, in which antisense oligonucleotide (SEQ ID NO: 155) was subcutaneously administered to mice at 10 mg / kg and measured in the same manner as in Example 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本出願は、日本国で出願された特願2016-21128(出願日:2016年2月5日)を基礎としており、ここで言及することにより、その内容は本明細書に全て包含される。 This application is based on Japanese Patent Application No. 2016-21128 (filing date: February 5, 2016) filed in Japan, the contents of which are hereby incorporated by reference.
 本発明によりCFBの発現抑制活性を有するアンチセンスオリゴヌクレオチド、該アンチセンスオリゴヌクレオチドを有効成分とする医薬組成物などが提供される。本発明のアンチセンスオリゴヌクレオチドおよび医薬組成物は、CFBの発現を抑制し、非典型溶血性尿毒症症候群、発作性夜間ヘモグロビン尿症、加齢黄斑変性症、膜性増殖性糸球体腎炎、C3腎炎、膜性腎症、急速進行性糸球体腎炎(RPGN)、急性腎障害(AKI)、喘息、自己免疫疾患(例えば、全身性エリテマトーデス(SLE)、乾癬、視神経脊髄炎、重症筋無力症等)などの補体第二経路の異常により媒介される障害の治療・予防に有用である。 The present invention provides an antisense oligonucleotide having CFB expression-inhibiting activity, a pharmaceutical composition containing the antisense oligonucleotide as an active ingredient, and the like. The antisense oligonucleotide and the pharmaceutical composition of the present invention suppress the expression of CFB, atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, age-related macular degeneration, membranoproliferative glomerulonephritis, C3 Nephritis, membranous nephropathy, rapid progressive glomerulonephritis (RPGN), acute kidney injury (AKI), asthma, autoimmune diseases (eg systemic lupus erythematosus (SLE), psoriasis, optic neuromyelitis, myasthenia gravis) It is useful in the treatment and prevention of disorders mediated by abnormalities in the alternative pathway of the complement such as).

Claims (13)

  1.  補体B因子の発現を抑制するアンチセンスオリゴヌクレオチドであって、配列番号53~103のいずれかで表される標的塩基配列からなる核酸にストリンジェントな条件でハイブリダイズ可能な、8~80塩基長のアンチセンスオリゴヌクレオチド。 Antisense oligonucleotide that suppresses the expression of complement factor B, which can hybridize under stringent conditions to a nucleic acid comprising the target base sequence represented by any of SEQ ID NOs: 53 to 103, 8 to 80 bases Long antisense oligonucleotide.
  2.  補体B因子の発現を抑制するアンチセンスオリゴヌクレオチドであって、配列番号2~52のいずれかで表されるアンチセンス塩基配列の連続する少なくとも8塩基を含む、8~80塩基長のアンチセンスオリゴヌクレオチド。 An antisense oligonucleotide that suppresses the expression of complement factor B, comprising 8 to 80 bases in length, comprising at least 8 consecutive bases of the antisense base sequence represented by any of SEQ ID NOs: 2 to 52 Oligonucleotide.
  3.  配列番号53~103のいずれかで表される塩基配列と相補的な塩基配列を含む、8~80塩基長のアンチセンスオリゴヌクレオチド。 An antisense oligonucleotide having a length of 8 to 80 bases comprising a base sequence complementary to the base sequence represented by any of SEQ ID NOs: 53 to 103.
  4.  配列番号2~52のいずれかで表される塩基配列を含む、請求項3に記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to claim 3, comprising the base sequence represented by any of SEQ ID NOs: 2 to 52.
  5.  配列番号2~52のいずれかで表される塩基配列において、1ないし数個の塩基が欠失、置換、挿入もしくは付加された配列を含む、請求項4に記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to claim 4, comprising a sequence in which one to several bases are deleted, substituted, inserted or added in the base sequence represented by any of SEQ ID NOs: 2 to 52.
  6.  配列番号2~52のいずれかで表される塩基配列からなるアンチセンスオリゴヌクレオチド。 An antisense oligonucleotide consisting of the base sequence represented by any of SEQ ID NOs: 2 to 52.
  7.  5’末端近傍及び/又は3’末端近傍が糖部修飾ヌクレオチドで構成される、請求項1~6のいずれか一項に記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to any one of claims 1 to 6, wherein the vicinity of the 5 'end and / or the vicinity of the 3' end is composed of sugar-modified nucleotides.
  8.  配列番号104~154及び155のいずれかで表されるヌクレオチド配列からなるアンチセンスオリゴヌクレオチド。 An antisense oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 104 to 154 and 155.
  9.  配列番号118、125、150及び155のいずれかで表されるヌクレオチド配列からなるアンチセンスオリゴヌクレオチド。 An antisense oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 118, 125, 150 and 155.
  10.  リガンドを含む、請求項1~9のいずれか一項に記載のアンチセンスオリゴヌクレオチド。 The antisense oligonucleotide according to any one of claims 1 to 9, comprising a ligand.
  11.  請求項1~10のいずれか一項に記載のアンチセンスオリゴヌクレオチドを含む、医薬組成物。 A pharmaceutical composition comprising the antisense oligonucleotide according to any one of claims 1 to 10.
  12.  補体第二経路の異常により媒介される障害を治療する方法であって、治療上有効量の、請求項1~10のいずれか一項に記載のアンチセンスオリゴヌクレオチド又は請求項11に記載の医薬組成物を、そのような治療を必要とするヒトに投与するステップを含む方法。 A method of treating a disorder mediated by an alternative pathway alternative comprising a therapeutically effective amount of an antisense oligonucleotide according to any one of claims 1 to 10 or claim 11. Administering a pharmaceutical composition to a human in need of such treatment.
  13.  前記障害が、非典型溶血性尿毒症症候群、発作性夜間ヘモグロビン尿症、加齢黄斑変性症、膜性増殖性糸球体腎炎、C3腎炎、膜性腎症、急速進行性糸球体腎炎(RPGN)、急性腎障害(AKI)、喘息、又は自己免疫疾患である、請求項12に記載の方法。 The disorders include atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria, age-related macular degeneration, membranoproliferative glomerulonephritis, C3 nephritis, membranous nephropathy, rapid progressive glomerulonephritis (RPGN) The method according to claim 12, which is acute kidney injury (AKI), asthma, or autoimmune disease.
PCT/JP2017/003904 2016-02-05 2017-02-03 Antisense oligonucleotide for suppressing expression of complement b factor WO2017135397A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-021128 2016-02-05
JP2016021128 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135397A1 true WO2017135397A1 (en) 2017-08-10

Family

ID=59499604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003904 WO2017135397A1 (en) 2016-02-05 2017-02-03 Antisense oligonucleotide for suppressing expression of complement b factor

Country Status (2)

Country Link
TW (1) TW201730341A (en)
WO (1) WO2017135397A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117253A1 (en) * 2016-12-23 2018-06-28 協和発酵キリン株式会社 Nucleic acid inhibiting expression of complement factor b
WO2019027015A1 (en) * 2017-08-02 2019-02-07 協和発酵キリン株式会社 Nucleic acid complex
CN110951915A (en) * 2019-11-21 2020-04-03 南方医科大学南方医院 Primer and kit for predicting antiviral treatment response curative effect of chronic hepatitis B
CN114144525A (en) * 2019-07-24 2022-03-04 国立大学法人东北大学 Chimeric molecule, pharmaceutical composition, method for cleaving target nucleic acid, and kit for cleaving target nucleic acid or for diagnosis
WO2022124345A1 (en) * 2020-12-08 2022-06-16 学校法人福岡大学 Stable target-editing guide rna to which chemically modified nucleic acid is introduced

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015038939A2 (en) * 2013-09-13 2015-03-19 Isis Pharmaceuticals, Inc. Modulators of complement factor b
WO2015089368A2 (en) * 2013-12-12 2015-06-18 Alnylam Pharmaceuticals, Inc. Complement component irna compositions and methods of use thereof
WO2015188194A1 (en) * 2014-06-06 2015-12-10 Isis Pharmaceuticals, Inc. Compositions and methods for enhanced intestinal absorption of conjugated oligomeric compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015038939A2 (en) * 2013-09-13 2015-03-19 Isis Pharmaceuticals, Inc. Modulators of complement factor b
WO2015089368A2 (en) * 2013-12-12 2015-06-18 Alnylam Pharmaceuticals, Inc. Complement component irna compositions and methods of use thereof
WO2015188194A1 (en) * 2014-06-06 2015-12-10 Isis Pharmaceuticals, Inc. Compositions and methods for enhanced intestinal absorption of conjugated oligomeric compounds

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117253A1 (en) * 2016-12-23 2018-06-28 協和発酵キリン株式会社 Nucleic acid inhibiting expression of complement factor b
WO2019027015A1 (en) * 2017-08-02 2019-02-07 協和発酵キリン株式会社 Nucleic acid complex
CN114144525A (en) * 2019-07-24 2022-03-04 国立大学法人东北大学 Chimeric molecule, pharmaceutical composition, method for cleaving target nucleic acid, and kit for cleaving target nucleic acid or for diagnosis
CN110951915A (en) * 2019-11-21 2020-04-03 南方医科大学南方医院 Primer and kit for predicting antiviral treatment response curative effect of chronic hepatitis B
WO2022124345A1 (en) * 2020-12-08 2022-06-16 学校法人福岡大学 Stable target-editing guide rna to which chemically modified nucleic acid is introduced

Also Published As

Publication number Publication date
TW201730341A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2017135397A1 (en) Antisense oligonucleotide for suppressing expression of complement b factor
WO2015137459A1 (en) Nucleic acid that inhibits expression of irf5
JP2022528487A (en) Oligonucleotide-based regulation of C9orf72
TW202031269A (en) Double-stranded ribonucleic acid inhibiting expression of complement c5
WO2013056670A1 (en) Small interference rnas, uses thereof and method for inhibiting the expression of plk1 gene
WO2018117253A1 (en) Nucleic acid inhibiting expression of complement factor b
EP3594345A1 (en) Nucleic acid capable of inhibiting expression of masp2
US20170247701A1 (en) Nucleic acid capable of inhibiting expression of beta-2gpi
US11466272B2 (en) Nucleic acid suppressing expression of APCS
JP2023533124A (en) Double-stranded oligonucleotides and compositions for treating coronavirus infection-19 (COVID-19) containing the same
WO2011074652A1 (en) Nucleic acid capable of inhibiting expression of hif-2α
EP3902917A2 (en) Compositions and methods for treating cancer
WO2010021389A1 (en) Nucleic acid capable of inhibiting expression of bcl-2 protein
WO2017010500A1 (en) Antisense oligonucleotide inhibiting β2gpi expression
WO2016021673A1 (en) Method for predicting drug efficacy of pharmaceutical composition containing small rna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP