WO2010020178A1 - Pon中承载多协议标签交换报文的方法、装置、系统 - Google Patents

Pon中承载多协议标签交换报文的方法、装置、系统 Download PDF

Info

Publication number
WO2010020178A1
WO2010020178A1 PCT/CN2009/073342 CN2009073342W WO2010020178A1 WO 2010020178 A1 WO2010020178 A1 WO 2010020178A1 CN 2009073342 W CN2009073342 W CN 2009073342W WO 2010020178 A1 WO2010020178 A1 WO 2010020178A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical network
label switching
passive optical
protocol label
mode frame
Prior art date
Application number
PCT/CN2009/073342
Other languages
English (en)
French (fr)
Inventor
郑若滨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09807877A priority Critical patent/EP2296336A4/en
Priority to JP2011523294A priority patent/JP2012500542A/ja
Publication of WO2010020178A1 publication Critical patent/WO2010020178A1/zh
Priority to US13/013,305 priority patent/US20110116796A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0071Provisions for the electrical-optical layer interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to an optical communication network, and in particular, to a method for carrying an MPLS packet in a P0N, a 0NU/0NT/0LT, system. Background technique
  • the entire reference architecture of the Optical Access Network consists of the Customer Premises Network (CPN), the Access Network, and the Service Node Function, as shown in Figure 1.
  • AF Adaptation Function
  • CPN Customer Premises Network
  • Access Network Access Network
  • Service Node Function Service Node Function
  • AF Adaptation Function
  • AF can also be built in 0NU / 0NT, so (a) reference point Can not.
  • the AF can also be placed after the 0LT as a mutual conversion between the 0LT (Optical Line Termination) interface and the SNI (Service Node Interface) interface.
  • AF can be regarded as a function of CPN, or as a function of Access Network.
  • the main network elements of the access network include: an optical line terminal OLT, an optical distribution network (optical distribution network), an optical network unit/optical network terminal 0NU/0NT/0NT, and an adaptation function body AF.
  • OLT optical line terminal
  • OLT optical distribution network
  • 0NU/0NT optical network unit/optical network terminal
  • adaptation function body AF adaptation function body AF.
  • T is the reference point of the 1 interface
  • V is the reference point of the SNI interface.
  • 0LT provides a network interface for 0 ⁇ and is connected to one or more 0 ⁇ .
  • 0 ⁇ provides a means of transmission for 0LT and 0NU/0NT.
  • 0NU/0NT provides a user-side interface for 0AN and is connected to 0DN.
  • CPE Customer Premises Equipment
  • DSL Digi ta 1 Subscriber loop, digital subscriber loop
  • AF AF converts the message format from 1 interface format to (a) interface (eg Ethernet link) format that can be connected to 0NU/0NT, 0NU/0NT
  • interface eg Ethernet link
  • the message is converted to a format that can be transmitted on the 0DN.
  • SNI Serial Network Interface
  • the packet format of the Ethernet link (such as the Ethernet link) is accessed by the service point.
  • PON Passive Optical Network
  • PON includes an optical line terminal (0LT) installed at the central control station, and a group of optical network units installed in the user's premises.
  • P0N includes three technologies: AP0N, EP0N and GPON.
  • AP0N AP0N
  • EP0N AP0N
  • GPON GPON
  • GPON Gigabit Passive Optical Network
  • One of the layers is the GPON Physical Medium Dependent (GPM), which is responsible for the transmission of GTC frames on the optical fiber, and transmits the optical signals circulating on the optical fiber to the P0N media access control layer for data processing, and the P0N media.
  • the data signal transmitted from the access control layer is converted into an optical signal.
  • MAC Media Access Control
  • GTC GPON Transmission Convergence Layer
  • the service received from the GPON Encapsulation Method Client is cut into a GPON Encapsulation Method (GEM) data block;
  • the GEM data blocks in the frame are assembled into corresponding service data.
  • the TC frame processing of the GTC TC frame is performed in the GTC framing sub-layer, specifically, according to the control information of the physical layer operation and maintenance management (Physical Layer 0 AM, PL0AM), before the GEM data block, the GTC TC frame header is added, and the composition is complete.
  • GTC TC frame and sent to the Gigabit passive optical network physical medium phase GPON Physical Media Dependent Layer (GPM);
  • GPM Physical Media Dependent Layer
  • the GTC TC frame header information received from the GPM needs to be removed and submitted to the TC adaptation sublayer for processing.
  • the service data encapsulation mode provided by the GTC layer of the GP0N is GEM encapsulation mode
  • the GEM encapsulation mode is a variable length encapsulation mode, which supports changing the length of the GEM encapsulation frame according to the length of the service data.
  • the GEM encapsulation method mainly supports the encapsulation of Ethernet (Ethernet).
  • GP0N There is also a level of GP0N.
  • this level includes: (1) PL0AM, which is responsible for P0N physical layer operation, management, and maintenance functions; (2) Optical network unit management and control interface (OMCI) , ONU/ONT Management and Control Interface ) 0 OMCI data can be encapsulated into GEM data block transmissions, just like normal business data.
  • PL0AM which is responsible for P0N physical layer operation, management, and maintenance functions
  • OMCI Optical network unit management and control interface
  • ONU/ONT Management and Control Interface Optical network unit management and control interface
  • MPLS Multi- Protocol Label Switching
  • the switch path provides flexible end-to-end QoS (Quality of Service), traffic engineering, and VPN (Virtual Private Network) services, providing operators with manageable and operational networks. .
  • MPLS can be applied to Layer 3 IP packets. It adds an MPLS label to the IP packet, establishes a label switching path, and adds a header of the L2 layer for transmission.
  • the L2 header can be used. It is a PPP frame header or an Ethernet frame header.
  • MPLS can also be applied to Layer 2 data networks, emulating Layer 2 data such as Ethernet, Asynchronous Transfer Mode (ATM) or Frame Relay (FR), encapsulating, establishing virtual link (VC) or PW (Pseudo Wires pseudo- Line), Layer 2 data is transmitted in VC or PW; where MPLS-based Layer 2 or Layer 3 virtual private network (L2 or L3 VPN, Virtual Private Network) structure uses MPLS inner layer labels to identify different VC/PW (that is, Layer 2 tunnel) uses the outer label to make a public tunnel.
  • the equipment of the service provider network does not need to maintain any Layer 2 information, and only performs MPLS forwarding on the public network tunnel according to the MPLS label information. .
  • PSN is usually used after P0N (Packet Switching Network, Packet Swi tch Network)
  • P0N Packet Switching Network, Packet Swi tch Network
  • MPLS can be moved down to the 0NU/0NT or the base station so that the network behind the base station can form an end-to-end connection capability to support Wireless voice service.
  • the prior art can only carry MPLS to the Ethernet first, first perform QoS to Ethernet QoS 01 quality, Qua ty of Servi ce) mapping, and then carry Ethernet to P0N, and then perform Ethernet to P0N.
  • the backhaul of the base station has a higher bandwidth requirement for the P0N, and the P0N is the access technology of the shared medium, which is the bandwidth bottleneck of the network.
  • the packet header overhead caused by the protocol stack is very large, which brings about the bandwidth bottleneck problem of P0N.
  • Embodiments of the present invention provide a method, a receiving method, an MPLS encapsulating apparatus, an MPLS decapsulating apparatus, and a communication system for carrying an MPLS packet in a passive optical network, so as to simplify the protocol stack level when the P0N is used as a base station backhaul, and reduce the protocol stack. Hierarchical overhead, improve carrying efficiency.
  • a method for carrying an MPLS packet in a passive optical network including:
  • a method for receiving an MPLS packet in a passive optical network includes:
  • An MPLS package device comprising:
  • a multi-protocol label switching processing unit which obtains a multi-protocol label switching message
  • An MPLS decapsulation device comprising:
  • Receiving unit receiving a Gigabit passive optical network encapsulation mode frame
  • Decapsulating the processing unit decapsulating the Gigabit passive optical network encapsulation mode frame into a multi-protocol label exchange message
  • the multi-protocol label switching sending unit sends the multi-protocol label switching message.
  • An optical communication system comprising: a multi-protocol label switching encapsulation device and a multi-protocol label switching decapsulation device; a multi-protocol label switching encapsulation device for
  • the 0LT encapsulates the received MPLS packet into a GEM frame and sends it to the ONU/ONT.
  • the ONU/ONT decapsulates the GEM frame received from the OLT into an MPLS packet and sends it.
  • the 0NU/0NT encapsulates the received MPLS packet into a GEM frame and sends it to the OLT.
  • the 0LT decapsulates the GEM frame received from the ONU/0NT into an MPLS packet and transmits it.
  • the passive optical network and the mobile network are implemented.
  • Tight coupling because of the transmission mode of MPLS ove r GEM, simplifies the protocol stack level of P0N for base station backhaul, effectively reduces protocol stack level overhead, improves bearer efficiency, and solves the bandwidth bottleneck problem of P0N during base station backhaul.
  • FIG. 1 is an architectural diagram of an optical access network in the prior art
  • FIG. 2 is a schematic diagram of layering of a GP0N protocol in the prior art
  • FIG. 3 is a flowchart of a first embodiment of a method for carrying an MPLS packet in a passive optical network according to the present invention
  • FIG. 4 is a schematic diagram of a second embodiment of a method for carrying an MPLS packet in a passive optical network according to the present invention
  • FIG. 5 is a schematic diagram of the MPLS >3 ⁇ 4 text encapsulation in FIG. 4 as a GEM frame;
  • FIG. 6 is a schematic diagram of a first method of mapping a payload to a GEM frame after segmenting or combining the MPLS text in FIG. 4;
  • FIG. 7 is a schematic diagram of a second method for mapping a payload to a GEM frame after segmenting or combining the MPLS text in FIG. 4;
  • FIG. 8 is a schematic diagram of a third method of mapping the payload of a MPLS file to a GEM frame after segmenting or combining the MPLS text in FIG. 4;
  • FIG. 9 is a flowchart of a first embodiment of a method for receiving an MPLS packet in a passive optical network according to the present invention
  • FIG. 10 is a method for receiving an MPLS packet in a passive optical network according to a second embodiment of the present invention, in a GP0N Flowchart of the GEM decapsulation process carrying the MPLS protocol;
  • Figure 1 is a structural diagram of a first embodiment of the 0NU/0NT/0LT of the present invention
  • Figure 12 is a structural diagram of a second embodiment of the 0NU/0NT/0LT of the present invention.
  • Figure 13 is a structural diagram of a first embodiment of the 0NU/0NT/0LT of the present invention.
  • Figure 14 is a structural diagram of a second embodiment of the 0NU/0NT/0LT of the present invention.
  • 15 is a structural diagram of an optical communication system according to an embodiment of the present invention.
  • 16 is a network structure diagram of a first application scenario of an optical communication system according to an embodiment of the present invention.
  • FIG. 17 is a network structure diagram of a second application scenario of an optical communication system according to an embodiment of the present invention.
  • FIG. 18 is a structural diagram of a network of a third application scenario of an optical communication system according to an embodiment of the present invention. detailed description
  • an embodiment of the present invention provides a method for carrying an MPLS packet in a passive optical network.
  • the embodiment of the present invention can be used in the first scenario, that is, the 0NU/0NT obtains the MPLS packet from the user premises network, and can also be used in the second scenario, that is, the 0LT obtains the MPLS packet from the service function point.
  • This hair The embodiment of the present invention is described by taking the second scenario as an example, that is, 0LT obtains an MPLS packet from a service function point.
  • a method for carrying an MPLS packet in a passive optical network according to an embodiment of the present invention includes: a method for carrying an MPLS packet in a passive optical network according to an embodiment of the present invention, including:
  • the step of obtaining the MPLS packet may include: receiving a PW data payload, and encapsulating the PW data payload into an MPLS packet with an inner label;
  • the MPLS packet with the inner label can be further encapsulated into an MPLS packet with an outer label.
  • the MPLS inner label identifies different VC/PWs (that is, Layer 2 tunnels) and uses the outer label as a public tunnel.
  • 0LT encapsulates the MPLS packet into a GEM frame.
  • 0LT sends the GEM frame to 0NU/0NT.
  • Figure 5 is a schematic diagram of MPLS >3 ⁇ 4 text encapsulation as a GEM frame.
  • the process of encapsulating MPLS packets into GEM frames can include mapping and framing in two steps:
  • Al l segmenting or combining MPLS packets, and mapping each segment or combination to the payload portion of a GEM frame may be used but is not limited to the following methods:
  • the MPLS packet is divided into at least two MPLS packet segments; and at least two MPLS packet segments are respectively mapped to payloads of different GEM frames. That is, the payload of the MPLS packet is divided into multiple segments, and the MPLS packets of each segment are respectively mapped to the payload portion of a GEM frame, and only the segment 1 has an MPLS packet header;
  • the second method extracting the MPLS packet payload and the MPLS header; dividing the MPLS payload into at least two segments; adding MPLS headers before each segment, respectively forming New segmentation; maps new segments to the payload of different GEM frames. That is, the payload of the MPLS packet is divided into multiple segments, and the MPLS packets of each segment are respectively mapped to the payload portion of a GEM frame, and each segment is duplicated with an MPLS packet header.
  • the third method combines at least one MPLS packet to map the combined MPLS text to the payload of the same GEM frame. That is to say, multiple MPLS >3 ⁇ 4 texts are simply combined, and their respective MPLS packet headers are reserved and mapped to the payload portion of a GEM frame.
  • the header of the GEM frame added before the payload of each GEM frame constitutes a GEM frame, wherein a specific range of GEM Port ID fields can be used to indicate that the MPLS over GEM mode is used. That is to say, after the MPLS packet is segmented or combined, each segment or combination of MPLS packets is mapped to the payload portion of the GEM frame, and a 5-byte GEM frame header is added to form a GEM frame.
  • the GEM frame header is 5 bytes, including the payload length indication (PLI, size 12 bits), port identifier (Por t ID, size 12 bits), payload type indication (PTI, size 3 bits), and header. Error control (HEC, size 1 3 bits) Four parts.
  • the least significant bit of the PTI indicating whether the segment is the last segment of the MPLS packet can be indicated by the least significant bit of the PTI.
  • the PTI when the PTI is "000”, it indicates that it is not the last segment.
  • the PTI when the PTI is "001", it indicates the last segment.
  • the 0NU/0NT when the MPLS packet is carried in the passive optical network, when the embodiment of the present invention is applied to the first scenario, the 0NU/0NT obtains the MPLS packet from the customer premises network; and the 0NU/0NT uses the MPLS packet. Encapsulated as a GEM frame; 0NU/0NT sends the GEM frame to the 0LT; when the embodiment of the present invention is applied to the second scenario, the 0LT obtains the MPLS packet from the service function point; 0LT encapsulates the MPLS packet into a GEM frame; 0LT sends the GEM frame to the ONU/0NT, which realizes the tight coupling between the passive optical network and the mobile network. Due to the transmission mode of MPLS over GEM, the protocol stack layer overhead is effectively reduced, and the bearer efficiency is improved.
  • the present invention further provides a method for receiving the MPLS packet in the passive optical network.
  • the embodiment of the present invention can be used in the first scenario, that is, 0LT receives a GEM frame from 0NU/0NT; or can also be used in a second scenario, 0NU/0NT. Receive GEM frames from the OLT.
  • the method for receiving an MPLS packet in a passive optical network includes:
  • 0NU/0NT receives a GEM frame from 0LT;
  • 0NU/0NT decapsulate the GEM frame into an MPLS packet.
  • the GEM frame header includes a POT ID field, and according to the GEM Por t ID field, it is determined whether the transmission mode uses MPLS over GEM.
  • the service type domain is included, and according to the service type domain, whether the transmission mode is determined. Use MPLS over GEM.
  • the GEM frame header includes a PTI field.
  • the least significant bit of the PTI is used to determine whether the GEM frame contains the last segment of the MPLS packet.
  • the process of encapsulating MPLS packets into GEM frames is shown in Figure 5, 6, 7, and 8.
  • the GEM decapsulation process for carrying MPLS packets in the GP0N is as shown in Figure 10, which is shown in Figure 4 for MPLS.
  • the encapsulation process is the inverse of the GEM frame, including the steps:
  • Bl determines whether to use the MPLS over GEM mode, when it is judged that the MPLS over GEM mode is used, the MPLS over GEM mode is loaded in the payload portion of the GEM frame.
  • the MPLS packet is taken out, that is, the GEM frame payload is extracted from the GEM frame.
  • the step of combining or segmenting the extracted GEM frame payloads to generate an MPLS packet may use the following methods, but is not limited to the following methods:
  • the first method is to obtain at least two GEM frame payloads; and combine the at least two GEM frame payloads as MPLS packets, and the process is to segment or combine the MPLS packets in FIG. The inverse of the segment or combination mapping to the payload portion of a GEM frame.
  • the second method acquiring at least two GEM frame payloads; removing the MPLS ⁇ header in the remaining GEM frame payloads except the first GEM frame payload; and placing the first GEM frame payload and The remaining GEM frame payload combination of the MPLS header is removed as an MPLS packet; this process is an MPLS packet in Figure 7. Segmentation or combination, the inverse of each segment or combination mapped to the payload portion of a GEM frame.
  • the process is to segment or combine the MPLS packets in FIG. 8, and each segment or combination is mapped to The inverse of the payload portion of a GEM frame.
  • 0NU/0NT sends the MPLS packet to the customer premises network.
  • the embodiment of the present invention can be used in two scenarios. If the 0LT sends the MPLS packet to the service function point before the step of the first type, the method includes: when the 0LT has multiple P0N interfaces, at least two When the 0DNs are in communication with the 0NU/0NTs of the different P0N interfaces, the MPLS packets are synthesized; the 0LT sends the MPLS packets to the service function points: the 0LT sends the synthesized MPLS packets to the Business function point.
  • the 0LT receives the GEM frame from the 0NU/0NT; the 0LT encapsulates the GEM frame into an MPLS packet; the 0LT sends the MPLS packet to the service function point;
  • 0NU/0NT receives the GEM frame from the 0LT; 0NU/0NT encapsulates the GEM frame into an MPLS packet; 0NU/0NT sends the MPLS packet to the customer premises network, which implements the passive optical network and the mobile network. Coupling, due to the transmission mode of MPLS ove r GEM, effectively reduces the stack stack overhead and improves the bearer efficiency.
  • an embodiment of the present invention further provides an MPLS encapsulation device.
  • MPLS encapsulation device There are two scenarios for carrying MPLS packets in a passive optical network: one scenario is that 0NU/0NT obtains MPLS ⁇ ⁇ from the customer premises network. In this application scenario, the MPLS encapsulation device is placed in the ONU/0NT; in another scenario, the OLT obtains the MPLS packet from the service function point. In this application scenario, MPLS The package is placed in the 0LT.
  • the MPLS encapsulation device includes:
  • the MPLS processing unit 11 1 obtains an MPLS packet
  • the encapsulation processing unit 112' encapsulates the multi-protocol label switching message into a Gigabit passive optical network encapsulation mode frame, and the sending unit 114' transmits the Gigabit passive optical network encapsulation mode frame.
  • the package processing unit 112' further includes:
  • the encapsulation processing unit 112 encapsulates the MPLS packet into a GEM frame.
  • the framing processing unit 11 3 performs GTC framing processing on the GEM frame to generate a GTC TC frame.
  • the sending unit 114 ′ further includes: an 0DN interface unit 114, performs physical layer processing on the GTC TC frame, and transmits.
  • the encapsulation processing unit 1 12 includes:
  • the segment/combining unit 1121 maps the MPLS packet into a payload of the GEM frame in segments or in combination; the header adding unit 1122 adds a GEM header before the payload of the GEM frame.
  • the segment/combination unit 1 121 is specifically:
  • the MPLS packet payload and the MPLS header are extracted; the MPLS packet is divided into at least two MPLS packet segments; and at least two MPLS packet segments are respectively mapped to the payload of different GEM frames;
  • the frame header adding unit adds a GEM frame header before the payload of each GEM frame to form a GEM frame, wherein a specific range of GEM Por t ID fields may be used to indicate that the MPLS over GEM mode is used;
  • the last segment of the MPLS packet sets the least significant bit of the PTI.
  • the MPLS processing unit obtains an MPLS packet;
  • the unit encapsulates the MPLS packet into a GEM frame;
  • the framing processing unit performs GTC framing processing on the GEM frame to generate a GTC TC frame, and the interface unit performs physical layer processing on the GTC TC frame, and sends the packet.
  • Due to the transmission mode of MPLS over GEM the protocol stack level overhead is effectively reduced, and the bearer efficiency is improved.
  • the embodiment of the invention uses the transmission mode of the MPLS over GEM, which effectively reduces the protocol stack layer overhead and improves the bearer efficiency.
  • an embodiment of the present invention discloses a multi-protocol label switching decapsulation apparatus.
  • 0NU/0NT obtains MPLS packets from the customer premises network.
  • the MPLS decapsulation device is placed in the 0LT; in another scenario, the 0LT obtains the MPLS packet from the service function point. In this application scenario, the MPLS decapsulation device is placed in 0NU/0NT.
  • the method includes: a multi-protocol label switching decapsulation device, comprising:
  • the receiving unit 211' receives the Gigabit passive optical network encapsulation mode frame
  • the decapsulation processing unit 213' decapsulates the Gigabit passive optical network encapsulation mode frame into a multi-protocol label switching message
  • the multi-protocol label switching sending unit 214 sends the multi-protocol label switching message.
  • the receiving unit 211' further includes:
  • the interface unit 211 receives the packet, performs physical layer processing on the received packet, and generates a GTC TC frame.
  • the decapsulation processing unit 213' further includes:
  • the framing processing unit 212 performs GTC de-frame processing on the GTC TC to generate a GEM frame, and the encapsulation processing unit 213 decapsulates the GEM frame into an MPLS ⁇ text;
  • the MPLS processing unit 214 sends the MPLS packet.
  • the PON TC layer processing unit encapsulation processing unit 213 includes: an extracting unit 2131, which extracts a GEM frame payload from a GEM frame;
  • Segmentation/combining unit 2132 segmenting or combining the extracted GEM frame payloads to generate MPLS Message.
  • the segment/combination unit 21 32 is specifically:
  • the GEM frame payload is extracted from a GEM frame, and at least one MPLS packet is directly obtained.
  • the ONU/0NT/0LT carrying the MPLS packet in the P0N the 0DN interface unit receives the text, performs physical layer processing on the received text, and generates a GTC TC frame; the framing processing unit performs the GTC on the GTC TC.
  • De-frame processing generating a GEM frame; the encapsulation processing unit decapsulates the GEM frame into an MPLS packet; and the MPLS processing unit sends the MPLS packet. Due to the transmission mode of MPLS over GEM, the protocol stack level overhead is effectively reduced, and the bearer efficiency is improved.
  • an embodiment of the present invention provides an optical communication system, including: 0NU/0NT and 0LT and 0DN, where the 0NU/ONT is connected to the 0LT through 0DN.
  • the ONU/0NT is configured to encapsulate the received MPLS packet into a GEM frame; perform GTC framing processing on the GEM frame to generate a GTC TC frame; perform physical layer processing on the GTC TC frame, and send the 0LT;
  • the OLT is configured to perform physical layer processing on the received text from the ONU/0NT to generate a GTC TC frame; perform GTC de-frame processing on the GTC TC to generate a GEM frame; and decapsulate the GEM frame into an MPLS packet. And send;
  • the OLT is further configured to encapsulate the received MPLS ⁇ ⁇ ⁇ ⁇ ; ; ; ; ; ; ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ Give 0NU/0NT;
  • the ONU/0NT is further configured to perform physical layer processing on the received text to generate a GTC TC frame; perform GTC de-frame processing on the GTC TC to generate a GEM frame; and according to a POT ID of the GEM frame header Determining whether the transmission mode is MPLS OVER GEM, and if so, decapsulating the GEM frame into an MPLS packet; and transmitting.
  • the 0NU/0NT and 0LT respectively include: an MPLS processing unit, a P0N processing unit,
  • the MPLS processing unit implements the LER (Label Switching Router) or LSR (Label Switching Edge Router) function.
  • the P0N processing unit is responsible for the implementation of the GP0N protocol stack, and is composed of a PON TC layer processing unit and a 0DN interface unit.
  • the P0N TC processing unit implements the function of the GP0N transmission aggregation layer in the GP0N protocol stack, and performs GEM encapsulation or decapsulation processing on the MPLS text.
  • the 0DN interface unit implements the GP0N physical medium correlation layer function in the GP0N protocol stack.
  • the POT processing unit of the 0LT further includes: an MUX processing unit, configured to: when the 0LT has multiple P0N interfaces, and communicate with the 0NU/0NTs belonging to different P0N interfaces by using at least two 0DNs, synthesizing the multi-path MPLS into one MPLS. Or divide one MPLS into multiple MPLS.
  • an MUX processing unit configured to: when the 0LT has multiple P0N interfaces, and communicate with the 0NU/0NTs belonging to different P0N interfaces by using at least two 0DNs, synthesizing the multi-path MPLS into one MPLS. Or divide one MPLS into multiple MPLS.
  • the MPLS processing unit is configured to obtain an MPLS certificate
  • the PON TC unit is configured to encapsulate the received MPLS packet into a GEM frame, perform GTC framing processing on the GEM frame, generate a GTC TC frame, perform physical layer processing on the GTC TC frame, and Send
  • the P0N unit is further configured to receive a packet, perform physical layer processing on the received packet, and generate a GTC TC frame; perform GTC de-frame processing on the GTC TC to generate a GEM frame; Frame decapsulation is MPLS ⁇ ;
  • the MPLS processing unit is further configured to send an MPLS packet.
  • the P0N processing unit includes: a PON TC layer processing unit, and an 0DN interface unit.
  • a PON TC layer processing unit configured to encapsulate the received MPLS packet into a GEM frame, perform GTC framing processing on the GEM frame, and generate a GTC TC frame;
  • 0 ⁇ interface unit configured to perform physical layer processing on the GTC TC frame, and send; and, 0 ⁇ interface unit, is further configured to receive a message, and perform physical layering on the received packet To generate a GTC TC frame;
  • the PON TC layer processing unit is further configured to perform GTC deframe processing on the GTC TC to generate a GEM frame, and decapsulate the GEM frame into an MPLS text.
  • the optical communication system of the embodiment of the invention realizes tight coupling between the passive optical network and the mobile network, and the transmission mode of the MPLS over GEM is adopted, thereby effectively reducing the protocol stack layer overhead and improving the bearer efficiency.
  • 0NU/0NT/0LT The function block diagram of 0NU/0NT/0LT is shown in Figure 15.
  • 0LT is connected to multiple ONU/0NTs through the same 0 ⁇ through a P0N interface. It can also have multiple P0N interfaces in 0LT, and belong to different P0N interfaces through at least two 0DNs. 0NU/0NT connection.
  • FIG. 17 is a connection diagram of the PW data carrying system carrying the MPLS packet receiving data of the PW encapsulation structure in the P0N, in which the PW data payload is encapsulated into an MPLS packet with an inner label, or with an emulation circuit identifier and The PW packet of the pseudowire control word;
  • FIG. 16 is a connection diagram when the communication system carrying the MPLS packet in the P0N receives the data of the PW encapsulation structure, and unlike the FIG. 17, the system also has an inner label.
  • MPLS packets are encapsulated into MPLS packets with outer labels.
  • Figure 18 is a diagram showing the connection diagram when the communication system carrying the MPLS packet in the P0N receives the IP packet data.
  • the 0NU/0NT is obtained by encapsulating the TDM frame data into an MPLS-based PW, or removing the Ethernet frame header.
  • MPLS packets are encapsulated into GEMs for frame processing, GTC framing, and P0N physical layer processing. Finally, they are transmitted to 0LT through 0.
  • the 0LT performs the corresponding P0N physical layer processing, GTC de-frame processing, and GEM de-encapsulation into frame processing for the ⁇ NU text from 0NU/0NT, and then obtains the MPLS packet, and then transfers the MPLS through the network side interface. vice versa.
  • the embodiments of the present invention can implement tight coupling between multiple passive optical networks and mobile networks such as the next-generation P0N network evolved by GP0N or GP0N technology; simplifying the protocol stack level when P0N is used as a backhaul of the base station, and effectively reducing the protocol stack level overhead. Improve bearer efficiency and solve the bandwidth bottleneck problem of P0N during base station backhaul.
  • the encoded language transmitted through the network The audio data is transmitted over the network in a short packet format.
  • RFC5086 and RFC4453 define the transmission of structured and unstructured TDM (Time Division Multiplexing) on MPLS, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

PON中承载多协议标签交换报文的方法、 装置、 系统
本申请要求于 2008年 8月 19 日提交中国专利局、 申请号为
200810145767.8, 发明名称为 "P0N中承载 MPLS报文的方法、 装置、 系统" 的中国专利申请的优先权。
技术领域
本发明涉及光通讯网络, 尤其涉及 P0N 中承载 MPLS 报文的方法、 0NU/0NT/0LT, 系统。 背景技术
光接入网 (Optical Access Network, OAN )整个参考架构由用户驻地网 ( Customer Premises Network, CPN)、 接入网 (Access Network)和业务功能 点 (Service Node Function ) 组成, 如图 1 所示。 其中在接入网中, AF ( Adaptation Function, 适配功能体 ) 是可选设备, 主要是提供
Figure imgf000003_0001
Network Uni t,光网络单元 /Opt ica 1 Network Terminal 光网络终端)接口与 UNI (User Network Interface,用户网络接口)接口的相 互转换, AF也可以内置在 0NU/0NT中, 这样(a)参考点可以不要。 AF也可以 放在 0LT之后,作为 0LT ( Optical Line Termination, 光线路终端)接口和 SNI (Service Node Interface, 业务点接口)接口的相互转换。 AF既可以看 成 CPN的功能体, 也可以看成是 Access Network的功能体。 接入网的主要网 元包括: 光线路终端 0LT、 光分配网 (Optical Distribution Network, 光分 配网 )、 光网络单元 /光网络终端 0NU/0NT/0NT、 适配功能体 AF。 其中 T为而1 接口的参考点, V为 SNI接口的参考点。 0LT为 0匪提供网络接口, 并连至一 个或多个 0匪。 0匪为 0LT和 0NU/0NT提供传输手段。 0NU/0NT为 0AN提供用 户侧接口, 并和 0DN相连。 用户端设备 CPE (Customer Premises Equipment) 通过丽(User Network Interface,用户网络接口)接口(如:通过 DSL (Digi ta 1 Subscriber loop,数字用户环路) )连接到 AF, AF将报文格式由而1接口格 式转换成能与 0NU/0NT连接的(a)接口 (如: Ethernet链路)格式, 0NU/0NT 再将报文转换成能在 0DN上传送的格式。 最后由 0LT将报文转换成 SNI接口
(如: Ethernet链路) 的报文格式, 再进行业务点的访问。
PON ( Passive Optical Network, 无源光网络) 包括一个安装于中心控 制站的光线路终端 (0LT), 以及一批配套的安装于用户场所的光网络单元
( 0NU/0NT )。 P0N包括三种技术: AP0N、 EP0N和 GPON, 同时,还有现有的 EP0N、 GPON技术演进到下一代 PON网络的 xP0N。以 GPON为例, GPON (Gigabit Passive Optical Network,千兆位无源光网络)协议栈结构如图 2所示, 从下到上可分 为三个层次:
其中一个层次是物理媒质相关层 (GPON Physical Medium Dependent, GPM), 其负责 GTC 帧在光纤上的传输, 将在光纤上流通的光信号传送到 P0N 媒体访问控制层进行数据处理, 以及将 P0N媒体访问控制层传送过来的数据 信号转换成光信号。
另一个层次是媒体访问控制(Media Access Control, MAC)层,对于 GPON 来说, MAC 层为千兆位无源光网络传输汇聚层 ( GPON Transmission Convergence layer, GTC), 其可以分为两个子层:
(a) TC适配子层 (TC Adapter Sublayer )
在 TC 适配子层, 将从千兆位无源光网络封装模式客户端 ( GPON Encapsulation Method Client, GEM Client ) 收到的业务切割成为 GPON封 装方式 (GPON Encapsulation Method , GEM)数据块; 将 GTC帧中的 GEM数 据块组装成相应的业务数据。
(b) GTC成帧子层 ( GTC Framing Sublayer )
在 GTC成帧子层执行 GTC TC帧的组帧处理, 具体为, 根据物理层操作维 护管理(Physical Layer 0 AM, PL0AM ) 的控制信息, 在 GEM数据块前, 添加 GTC TC帧头, 组成完整的 GTC TC帧, 并发送到千兆位无源光网络物理媒质相 关层 (GPON Physical Media Dependent Layer, GPM); 在 GTC成帧子层还需 去掉从 GPM接收到的 GTC TC帧帧头信息, 并提交 TC适配子层处理。
GP0N的 GTC层提供的业务数据封装方式为 GEM封装方式, GEM封装方式 是变长封装方式, 其支持根据业务数据的长度改变 GEM封装帧的长度。 目前 GEM封装方式主要支持对以太网 (Ethernet) ^艮文的封装。
GP0N还有一个层次, 这个层次除 GEM Client (GEM客户端)外, 还包括: (1 ) PL0AM, 其负责 P0N物理层操作、 管理、 维护功能; (2) 光网络单元管 理和控制接口 (OMCI, ONU/ONT Management and Control Interface )0 OMCI 的数据和普通的业务数据一样, 都可以封装成 GEM数据块传输。
MPLS (多协议标签交换, Multi- Protocol Label Switching ) 无缝地集 成了 IP路由技术的灵活性和二层交换的简捷性, 提高了 IP的转发效率, 更 重要的是, MPLS建立面向连接的标签交换路径,可以灵活的提供端到端的 QoS (Quality of Service,服务质量),还可以进行流量工程和提供 VPN ( Virtual Private Network, 虚拟个人网络)业务, 为运营商提供了可管理和运营的网 络。
MPLS作为一个垫层, 可以应用在三层的 IP数据包上, 其在 IP包前加上 MPLS标签, 建立标签交换路径, 再加上 L2层的帧头(header)进行传送, L2 帧头可以是 PPP帧头、 也可以是 Ethernet帧头。
MPLS也可以应用在二层数据网中, 对二层数据如 Ethernet, 异步转移模 式 ATM )或、 帧中继(FR )等进行仿真, 封装, 建立虚链路( VC )或 PW ( Pseudo Wires伪线), 二层的数据在 VC或 PW中进行传送; 其中, 基于 MPLS的二层或 三层虚拟个人网络 (L2 或 L3 VPN, Virtual Private Network ) 的结构, 使 用 MPLS内层标签来标识不同的 VC/PW (也就是二层隧道),使用外层标签来做 公共隧道。 业务运营商网络的设备不需要维护任何二层信息, 只根据 MPLS标 签信息在公网隧道上进行 MPLS转发。。
现有技术中 P0N之后通常釆用 PSN(包交换网络, Packet Swi tch Network ) 网络作为城域汇聚网,如果釆用 P0N作为基站的回程(backhaul)技术,则要求 MPLS能下移到 0NU/0NT或基站上,以便在基站之后的网络能形成端到端的连接 能力,以支持无线语音业务。 但现有技术只能先将 MPLS承载到 Ethernet上, 先进行 MPLS到 Ethernet的 QoS 01良务质量, Qua l i ty of Servi ce)映射, 然后 再将 Ethernet承载到 P0N上, 进行 Ethernet到 P0N的第二重 QoS 映射, 协 议栈层次多, 承载效率低, 实现起来比较复杂, 成本高; 另外, 基站的回程 对 P0N的带宽要求比较高, 而 P0N为共享介质的接入技术, 是网络的带宽瓶 颈所在, 协议栈层次多带来的报文头开销很大, 带来 P0N的带宽瓶颈问题。 发明内容
本发明的实施例提供一种无源光网络中承载 MPLS报文的方法、接收方法、 MPLS封装装置、 MPLS解封装装置以及通讯系统, 以简化 P0N作基站回程时的 协议栈层次, 减少协议栈层次开销, 提高承载效率。
为达到上述目的, 本发明的实施例釆用如下技术方案:
一种无源光网络中承载 MPLS报文的方法, 包括:
获得多协议标签交换报文;
将所述多协议标签交换报文封装到千兆无源光网络封装模式帧中; 发送所述千兆无源光网络封装模式帧。
一种无源光网络中接收 MPLS报文的方法, 包括:
接收千兆无源光网络封装模式帧;
将所述千兆无源光网络封装模式帧解封装为 MPLS报文;
发送所述 MPLS 文。
一种 MPLS封装装置, 包括:
多协议标签交换处理单元, 获得多协议标签交换报文;
封装处理单元, 将所述多协议标签交换报文封装为千兆无源光网络封装 模式帧;
发送单元, 发送所述千兆无源光网络封装模式帧。 一种 MPLS解封装装置, 包括:
接收单元, 接收千兆无源光网络封装模式帧;
解封装处理单元, 将所述千兆无源光网络封装模式帧解封装为多协议标 签交换报文;
多协议标签交换发送单元, 发送所述多协议标签交换报文。
一种光通讯系统, 包括: 多协议标签交换封装装置和多协议标签交换解 封装装置; 多协议标签交换封装装置用于,
获得多协议标签交换报文;
将所述多协议标签交换 ^艮文封装到千兆无源光网络封装模式帧中; 发送所述千兆无源光网络封装模式帧;
多协议标签交换解封装装置用于,
接收千兆无源光网络封装模式帧;
将所述千兆无源光网络封装模式帧解封装为 MPLS报文;
发送所述 MPLS 文。
本发明实施例所述的技术方案, 0LT将接收的 MPLS报文封装为 GEM帧, 并发送给 ONU/ONT; ONU/ONT将从 OLT接收的 GEM帧解封装为 MPLS ^艮文, 并 发送;或者, 0NU/0NT将接收的 MPLS报文封装为 GEM帧, 并发送给 OLT; 0LT 将从 0NU/0NT接收的 GEM帧解封装为 MPLS报文, 并发送;实现了无源光网络 与移动网络紧耦合, 由于使用 MPLS ove r GEM的传输模式, 简化了 P0N作基 站回程时的协议栈层次, 有效地减少协议栈层次开销, 提高了承载效率, 解 决基站回程时 P0N的带宽瓶颈问题。 附图说明
图 1为现有技术中光接入网的架构图;
图 2为现有技术中 GP0N协议分层示意图;
图 3为本发明无源光网络中承载 MPLS报文的方法第一实施例的流程图; 图 4为本发明无源光网络中承载 MPLS报文的方法第二实施例中,将 MPLS "^文封装为 GEM帧的处理过程的流程图
图 5为图 4中 MPLS >¾文封装为 GEM帧的示意图;
图 6为图 4中将 MPLS 文分段或组合后, 映射到 GEM帧的净荷第一种方 法示意图;
图 7为图 4中将 MPLS 文分段或组合后, 映射到 GEM帧的净荷第二种方 法示意图;
图 8为图 4中将 MPLS 文分段或组合后, 映射到 GEM帧的净荷第三种方 法示意图;
图 9为本发明无源光网络中接收 MPLS报文的方法第一实施例的流程图; 图 1 0为本发明无源光网络中接收 MPLS报文的方法第二实施例中 ,将 GP0N 中承载 MPLS ^艮文的 GEM解封装处理过程的流程图;
图 1 1为本发明 0NU/0NT/0LT第一实施例的结构图;
图 12为本发明 0NU/0NT/0LT第二实施例的结构图;
图 1 3为本发明 0NU/0NT/0LT第一实施例的结构图;
图 14为本发明 0NU/0NT/0LT第二实施例的结构图;
图 15为本发明实施例光通讯系统结构图;
图 16为本发明实施例光通讯系统第一应用场景网络结构图;
图 17为本发明实施例光通讯系统第二应用场景网络结构图;
图 18为本发明实施例光通讯系统第三应用场景网络结构图。 具体实施方式
下面结合附图对本发明实施例 P0N 中承载 MPLS 报文的方法、 0NU/0NT/0LT , 系统进行详细描述。
一方面, 本发明实施例提供一种无源光网络中承载 MPLS报文的方法。 本发明实施例可以用于第一种场景,即, 0NU/0NT从用户驻地网获得 MPLS 报文, 也可以用于第二种场景, 即, 0LT从业务功能点获得 MPLS报文。 本发 明实施例以第二种场景为例进行描述, 即, 0LT从业务功能点获得 MPLS报文。 如图 3所示, 本发明实施例无源光网络中承载 MPLS报文的方法, 包括: 本发明实施例无源光网络中承载 MPLS报文的方法, 包括:
51 01 , 0LT从业务功能点获得 MPLS ^艮文;
其中, 可选的, 所述获得 MPLS报文的步骤可以包括: 接收 PW数据净荷,; 并将所述 PW数据净荷封装为带内层标签的 MPLS报文;
也可以进一步将带内层标签的 MPLS报文再封装为带外层标签的 MPLS报 文。 MPLS内层标签来标识不同的 VC/PW (也就是二层隧道), 使用外层标签来 做公共隧道。
也可以为, 直接获得 MPLS报文。
51 02, 0LT将所述 MPLS才艮文封装为 GEM帧。
51 03, 0LT将 GEM帧发送给 0NU/0NT。
其中, 图 5为 MPLS >¾文封装为 GEM帧的示意图。
如图 4所示, 对 MPLS ^艮文封装为 GEM帧的处理过程, 可包括映射和成帧 两个步骤:
A1 将 MPLS报文进行分段或组合, 每个分段或组合映射到一个 GEM帧 的净荷部分;
A12、 每个 GEM帧的净荷前添加 GEM帧的帧头构成 GEM帧。
其中, Al l、 将 MPLS报文进行分段或组合, 每个分段或组合映射到一个 GEM帧的净荷部分的步骤可以釆用但是不限于以下几种方法:
第一种方法, 如图 6所示, 将 MPLS报文分为至少两个 MPLS报文分段; 将至少两个 MPLS报文分段分别映射到不同 GEM帧的净荷。也就是说, MPLS报 文的净荷分为多个分段, 各分段的 MPLS报文分别映射到一个 GEM帧的净荷部 分, 仅分段 1有 MPLS报文头;
或者为, 第二种方法, 如图 7所示, 提取 MPLS的报文净荷和 MPLS报头; 将 MPLS净荷分为至少两个分段; 在各分段前分别添加 MPLS报头, 分别形成 新的分段; 将新的分段分别映射到不同 GEM帧的净荷。 也就是说, MPLS报文 的净荷分为多个分段,各分段的 MPLS报文分别映射到一个 GEM帧的净荷部分, 各分段都复制有 MPLS报文头。
或者为, 第三种方法, 如图 8所示, 将至少一个 MPLS ^艮文组合, 将组合 后的 MPLS 文映射到同一 GEM帧的净荷。 也就是说, 多个 MPLS >¾文简单组 合, 保留各自的 MPLS报文头, 映射到一个 GEM帧的净荷部分。
其中, A12、 每个 GEM帧的净荷前添加 GEM帧的帧头构成 GEM帧, 其中可 釆用特定范围的 GEM Por t ID字段来表示釆用了 MPLS over GEM模式。 也就 是说, MPLS报文分段或组合后, 各分段或组合的 MPLS报文映射到 GEM帧的净 荷部分, 再添加 5个字节的 GEM帧头, 即构成一个 GEM帧。 GEM帧头为 5个字 节, 包括净荷长度指示 (PLI , 大小为 12 比特)、 端口标识(Por t ID, 大小 为 12比特)、 净荷类型指示 (PTI , 大小为 3比特)和头错误控制 (HEC , 大 小为 1 3比特) 四个部分。
根据 PTI的最低有效位, 表示分段是否为 MPLS报文的最后一个分段, 可 以利用 PTI的最低有效位来指示。 本发明实施例中, 当 PTI为 "000" 时, 表 示不是最后一个分段, 当 PTI为 "001 " 时, 表示最后一个分段。
本发明实施例无源光网络中承载 M P L S报文的方法, 当本发明实施例应用 于第一种场景时, 0NU/0NT从用户驻地网获得 MPLS报文; 0NU/0NT将所述 MPLS 报文封装为 GEM帧; 0NU/0NT将 GEM帧发送给 0LT;当本发明实施例应用于第 二种场景时, 0LT从业务功能点获得 MPLS报文; 0LT将所述 MPLS报文封装为 GEM帧; 0LT将 GEM帧发送给 ONU/ 0NT ,实现了无源光网络与移动网络紧耦合, 由于使用 MPLS over GEM 的传输模式, 有效地减少协议栈层次开销, 提高承 载效率。
与本发明实施例无源光网络中承载 MPL S报文的方法相对应, 本发明还提 供一种无源光网络中接收 MPLS报文的方法。 本发明实施例可以用于第一种场 景, 即, 0LT从 0NU/0NT接收 GEM帧; 或者, 也可以用于第二种场景, 0NU/0NT 从 OLT接收 GEM帧。 以下以第二种场景为例进行描述。
如图 9所示, 本发明实施例无源光网络中接收 MPLS报文的方法包括:
5201 , 0NU/0NT从 0LT接收 GEM帧;
5202, 0NU/0NT将所述 GEM帧解封装为 MPLS才艮文。
其中, 所述 GEM帧头包括 Por t ID字段, 根据所述 GEM Por t ID字段, 判断传输模式是否釆用 MPLS over GEM; 可选包括业务类型域, 根据所述业务 类型域, 判断传输模式是否釆用 MPLS over GEM。
所述 GEM帧头包括 PTI字段; 利用 PTI的最低有效位, 判断 GEM帧是否 包含 MPLS报文的最后一个分段。
与图 5、 6、 7、 8中将 MPLS报文封装为 GEM帧相对应,对 GP0N中承载 MPLS 才艮文的 GEM解封装处理过程如图 10所示, 为图 4中对 MPLS ^艮文的封装过程 成 GEM帧的逆过程, 包括步骤:
bl、 可根据特定的 GEM Por t ID字段或业务类型域, 判断是否釆用 MPLS over GEM模式, 当判断釆用了 MPLS over GEM模式, 按 MPLS over GEM模式 将装载于 GEM帧的净荷部分的 MPLS报文取出,也就是从 GEM帧中提取 GEM帧 净荷;
b2、 根据 GEM帧的 PTI , 对 GEM帧多个取出的 MPLS报文进行重组, 也就 是将所述提取的 GEM帧净荷组合或分段, 生成 MPLS报文。
其中, 所述将所述提取的 GEM帧净荷组合或分段, 生成 MPLS报文的步骤 可以釆用以下但是不限于以下几种方法:
第一种方法, 获取至少两个 GEM帧净荷; 将所述至少两个 GEM帧净荷组 合, 作为 MPLS报文, 此过程为图 6中将 MPLS报文进行分段或组合, 每个分 段或组合映射到一个 GEM帧的净荷部分的逆过程。
或者为, 第二种方法, 获取至少两个 GEM帧净荷; 将除第一个 GEM帧净 荷以外的剩余 GEM帧净荷中的 MPLS ^艮头去掉;将第一个 GEM帧净荷和去掉 MPLS 报头的剩余 GEM帧净荷组合, 作为 MPLS报文; 此过程为图 7中将 MPLS报文 进行分段或组合, 每个分段或组合映射到一个 GEM帧的净荷部分的逆过程。 或者为, 第三种方法, 获取一个 GEM帧净荷, 将 GEM帧净荷分为至少一 个 MPLS , 此过程为图 8中将 MPLS报文进行分段或组合,每个分段或组合映射 到一个 GEM帧的净荷部分的逆过程。
S203, 0NU/0NT将 MPLS才艮文发送给用户驻地网。
本发明实施例可以用于两种场景, 如果应用于第一种场景时, 所述 0LT 将 MPLS报文发送给业务功能点的步骤之前,还包括: 当 0LT有多个 P0N接口, 通过至少两个 0DN与属于不同 P0N接口的 0NU/0NT通讯时, 将所述 MPLS ^艮文 合成; 所述 0LT将 MPLS报文发送给业务功能点的步骤为: 所述 0LT将合成的 MPLS报文发送给业务功能点。
本发明实施例当应用于第一种场景时, 0LT从 0NU/0NT接收 GEM帧; 0LT 将所述 GEM帧封装为 MPLS报文; 0LT将 MPLS报文发送给业务功能点;当应用 于第二种场景时, 0NU/0NT从 0LT接收 GEM帧; 0NU/0NT将所述 GEM帧封装为 MPLS报文; 0NU/0NT将 MPLS报文发送给用户驻地网, 实现了无源光网络与移 动网络紧耦合, 由于使用 MPLS ove r GEM 的传输模式, 有效地减少协议栈层 次开销, 提高承载效率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-On l y Memory , ROM )或随机存储记忆体 ( Random Acce s s Memory , RAM )等。 另一方面, 本发明实施例还提供了一种 MPLS封装装置。 无源光网络中承载 MPLS报文的方法有两种应有场景:一种场景是 0NU/0NT 从用户驻地网获得 MPLS ^艮文。 在该应用场景下, MPLS封装装置置于 0NU/0NT 中; 另一种场景是 0LT从业务功能点获得 MPLS报文。 在该应用场景下, MPLS 封装装置置于 0LT中。
如图 11所示, MPLS封装装置包括:
MPLS处理单元 11 1 , 获得 MPLS报文;
封装处理单元 112' ,将所述多协议标签交换报文封装为千兆无源光网络 封装模式帧; 发送单元 114 ' , 发送所述千兆无源光网络封装模式帧。
封装处理单元 112' 进一步包括:
封装处理单元 112 , 将所述 MPLS ^艮文封装为 GEM帧;
成帧处理单元 11 3 , 对所述 GEM帧进行 GTC成帧处理, 生成 GTC TC帧; 发送单元 114 ' 进一步包括: 0DN接口单元 114 , 对所述 GTC TC帧进行物 理层处理, 并发送。
如图 12所示, 所述封装处理单元 1 12包括:
分段 /组合单元 1121 ,将 MPLS报文进行分段或组合映射到 GEM帧的净荷; 帧头添加单元 1122 , 在 GEM帧的净荷前添加 GEM帧头。
所述分段 /组合单元 1 121具体为:
提取 MPLS的报文净荷和 MPLS报头; 将 MPLS报文分为至少两个 MPLS报 文分段; 将至少两个 MPLS报文分段分别映射到不同 GEM帧的净荷;
或者为; 提取 MPLS的报文净荷和 MPLS报头; 将 MPLS净荷分为至少两个 分段; 在各分段前分别添加 MPLS报头, 分别形成新的分段; 将新的分段分别 映射到不同 GEM帧的净荷;
或者为, 将至少一个 MPLS报文组合, 将组合后的 MPLS报文映射到同一 GEM帧的净荷。
帧头添加单元在每个 GEM帧的净荷前添加 GEM帧的帧头构成 GEM帧, 其 中可釆用特定范围的 GEM Por t ID字段来表示釆用了 MPLS over GEM模式; 根据分段是否为 MPLS报文的最后一个分段, 设置 PTI的最低有效位。
本发明实施例的 0NU/0NT/0LT, MPLS处理单元获得 MPLS报文; 封装处理 单元将所述 MPLS报文封装为 GEM帧; 成帧处理单元对所述 GEM帧进行 GTC成 帧处理, 生成 GTC TC帧, 0匪接口单元对所述 GTC TC帧进行物理层处理, 并 发送, 由于使用 MPLS over GEM 的传输模式, 有效地减少协议栈层次开销, 提高承载效率。 本发明实施例使用 MPLS over GEM 的传输模式, 有效地减少 协议栈层次开销, 提高承载效率。
另一方面, 如图 13所示, 本发明实施例公开了一种多协议标签交换解封 装装置。
无源光网络中承载 MPLS报文的方法有两种应有场景:一种场景是 0NU/0NT 从用户驻地网获得 MPLS报文。在该应用场景下, MPLS解封装装置置于 0LT中; 另一种场景是 0LT从业务功能点获得 MPLS报文。在该应用场景下, MPLS解封 装装置置于 0NU/0NT中。
包括: 一种多协议标签交换解封装装置, 其特征在于, 包括:
接收单元 211' , 接收千兆无源光网络封装模式帧;
解封装处理单元 213' ,将所述千兆无源光网络封装模式帧解封装为多协 议标签交换报文;
多协议标签交换发送单元 214, 发送所述多协议标签交换报文。
接收单元 211' 进一步包括:
0匪接口单元 211, 接收报文, 对所述接收的报文进行物理层处理, 生成 GTC TC帧;
解封装处理单元 213' 进一步包括:
成帧处理单元 212, 将所述 GTC TC进行 GTC解帧处理, 生成 GEM帧; 封装处理单元 213, 将所述 GEM帧解封装为 MPLS ^艮文;
MPLS处理单元 214, 发送所述 MPLS报文。
如图 14所示, 所述 PON TC层处理单元封装处理单元 213包括: 提取单元 2131, 从 GEM帧中提取 GEM帧净荷;
分段 /组合单元 2132, 将所述提取的 GEM帧净荷分段或组合, 生成 MPLS 报文。
所述分段 /组合单元 21 32具体为:
获取至少两个 GEM帧净荷; 将所述至少两个 GEM帧净荷组合, 作为 MPLS 报文;
或者为, 获取至少两个 GEM帧净荷; 将除第一个 GEM帧净荷以外的剩余 GEM帧净荷中的 MPLS报头去掉;将第一个 GEM帧净荷和去掉 MPLS报头的剩余 GEM帧净荷组合;
或者为,从一个 GEM帧中提取 GEM帧净荷,直接得到至少一个 MPLS报文。 本发明实施例 P0N中承载 MPLS报文的 0NU/0NT/0LT , 0DN接口单元接收 文, 对所述接收的 文进行物理层处理, 生成 GTC TC帧; 成帧处理单元将 所述 GTC TC进行 GTC解帧处理, 生成 GEM帧; 封装处理单元将所述 GEM帧解 封装为 MPLS报文; MPLS处理单元发送所述 MPLS报文。由于使用 MPLS over GEM 的传输模式, 有效地减少协议栈层次开销, 提高承载效率。
另一方面, 如图 15 所示, 本发明实施例提供一种光通讯系统, 包括: 0NU/0NT和 0LT以及 0DN , 所述 0NU/ONT通过 0DN与所述 0LT相连,
所述 0NU/0NT用于, 将接收的 MPLS ^艮文封装为 GEM帧; 对所述 GEM帧进 行 GTC成帧处理, 生成 GTC TC帧; 对所述 GTC TC帧进行物理层处理, 并发 送给 0LT;
所述 0LT用于,对从 0NU/0NT接收的 文进行物理层处理, 生成 GTC TC 帧; 将所述 GTC TC进行 GTC解帧处理, 生成 GEM帧; 将所述 GEM帧解封装为 MPLS报文,并发送;
并且, 所述 0LT还用于,将接收的 MPLS ^艮文封装为 GEM帧; 对所述 GEM 帧进行 GTC成帧处理, 生成 GTC TC帧; 对所述 GTC TC帧进行物理层处理, 并发送给 0NU/0NT;
所述 0NU/0NT还用于, 对所述接收的 文进行物理层处理, 生成 GTC TC 帧; 将所述 GTC TC进行 GTC解帧处理, 生成 GEM帧; 根据 GEM帧头的 Por t ID 判断传输模式是否为 MPLS OVER GEM , 如果是, 则将所述 GEM帧解封装为 MPLS 报文; 并发送。
所述 0NU/0NT和 0LT分别包括: MPLS处理单元, P0N处理单元,
MPLS处理单元, 实现 LER (标签交换路由器)或 LSR (标签交换边缘路由 器)功能。
P0N处理单元负责 GP0N协议栈的实现, 由 PON TC层处理单元、 0DN接口 单元组成。 其中, P0N TC处理单元, 实现 GP0N协议栈中的 GP0N传输汇聚层 功能, 完成对 MPLS 文做 GEM封装或解封装处理。 0DN接口单元, 实现 GP0N 协议栈中的 GP0N物理媒质相关层功能。
可选的, 0LT的 P0N处理单元还包括: MUX处理单元, 用于当 0LT有多个 P0N接口, 通过至少两个 0DN与属于不同 P0N接口的 0NU/0NT通讯时, 将多路 MPLS合成一路 MPLS ; 或者将一路 MPLS分成多路 MPLS。
以下以 0LT与 0NU/0NT通讯时的具体场景, 描述各部分的具体功能。 所述 MPLS处理单元, 用于获得 MPLS ^艮文;
所述 PON TC单元, 用于将所述接收的 MPLS ^艮文封装为 GEM帧, 对所述 GEM帧进行 GTC成帧处理, 生成 GTC TC帧; 对所述 GTC TC帧进行物理层处理, 并发送;
以及, 所述 P0N单元, 还用于接收报文, 对所述接收的报文进行物理层 处理, 生成 GTC TC帧; 将所述 GTC TC进行 GTC解帧处理, 生成 GEM帧; 将 所述 GEM帧解封装为 MPLS ^艮文;
所述 MPLS处理单元, 还用于发送 MPLS报文。
所述 P0N处理单元包括: PON TC层处理单元、 0DN接口单元。
PON TC层处理单元, 用于将所述接收的 MPLS ^艮文封装为 GEM帧, 对所述 GEM帧进行 GTC成帧处理, 生成 GTC TC帧;
0匪接口单元, 用于对所述 GTC TC帧进行物理层处理, 并发送; 以及, 0匪接口单元, 还用于接收报文, 对所述接收的报文进行物理层处 理, 生成 GTC TC帧;
PON TC层处理单元, 还用于将所述 GTC TC进行 GTC解帧处理, 生成 GEM 帧; 将所述 GEM帧解封装为 MPLS 文。
本发明实施例的光通讯系统, 实现了无源光网络与移动网络紧耦合, 由 于使用 MPLS over GEM 的传输模式, 有效地减少协议栈层次开销, 提高承载 效率。
0NU/0NT/0LT功能框图如图 15所示, 0LT通过一个 P0N接口由同一 0匪 同时与多个 0NU/0NT连接, 也可以 0LT有多个 P0N接口, 通过至少两个 0DN 与属于不同 P0N接口的 0NU/0NT连接。
图 17描述了 P0N中承载 MPLS报文的通讯系统接收 PW封装结构的数据时 的连接图, 此系统中将 PW数据净荷封装为带内层标签的 MPLS报文, 或带仿 真电路标志符和伪线控制字的 PW报文; 图 16描述了 P0N中承载 MPLS报文的 通讯系统接收 PW封装结构的数据时的连接图, 与图 17不同的是, 此系统中 还将带内层标签的 MPLS报文再封装为带外层标签的 MPLS报文。 图 18描述了 P0N中承载 MPLS报文的通讯系统接收 IP包数据时的连接图。
以下大致描述该光通讯系统的流程图。 对于来自 BS的 TDM帧 (如图 16 或图 17所示)或以太网帧 (如图 18所示 ), 0NU/0NT通过将 TDM帧数据封装 到基于 MPLS的 PW, 或去除以太网帧头得到 MPLS报文, 然后将 MPLS报文做 GEM封装为帧处理、 GTC成帧处理和 P0N物理层处理, 最后通过 0匪传给 0LT。 0LT对来自 0NU/0NT的 ^艮文, 做相应的 P0N物理层处理、 GTC解帧处理、 GEM 解封装为帧处理, 然后得到 MPLS报文, 将 MPLS交换后通过网络侧接口传送 出去。 反之亦然。
本发明实施例可以实现 GP0N或 GP0N技术演进的下一代 P0N网络等多种 无源光网络与移动网络的紧耦合; 简化 P0N作基站回程时的协议栈层次, 可 有效地减少协议栈层次开销, 提高承载效率, 解决基站回程时 P0N 的带宽瓶 颈问题。 具体的, 为了保证语音传输的实时性, 通过网络传输的编码后的语 音数据都是通过短包的格式在网络上传输。 RFC5086和 RFC4453分别定义了结 构化和非结构化 TDM (Time Division Multiplexing, 时分复用)在 MPLS 上 的传输。 以 RFC4453的 SAToP ( Structure-Agnostic TDM over Packet, 非结 构化 TDM承载于数据包)为例,在承载 T1信号的情况下,每个包的净荷为 193 比特 TDM数据加 7比特填充(padding), 即 25字节, 则传输效率为: 净荷长 度 /(Ethernet 帧头长度 + MPLS 标签栈长度 + SAToP控制字长度 +净荷长 度) = 24/( 26 + 4*2 + 4 + 25 ) = 24/63= 38%。 从中可以看出, 主要的开 销在以太网帧头, 釆用本发明实施例提供的 MPLS over GEM 的方式, 去掉以 太网协议承载, 其传输效率为: 净荷长度 /( MPLS标签栈长度 + SAToP控制 字长度 +净荷长度) = 24/( 4*2 + 4 + 25 ) = 24/37= 65%, 传输效率因此提 高了近一倍。
以上所述, 仅为本发明的具体实施模式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种在无源光网络中承载多协议标签交换报文的方法, 其特征在于, 包 括:
获得多协议标签交换报文;
将所述多协议标签交换报文封装到千兆无源光网络封装模式帧中; 发送所述千兆无源光网络封装模式帧。
2、 根据权利要求 1所述的无源光网络中承载多协议标签交换报文的方法, 其特征在于, 所述获得多协议标签交换报文的步骤包括:
接收伪线 PW数据净荷;
将所述 PW数据净荷封装为带内层标签的多协议标签交换报文;
或者包括,
接收 PW数据净荷;
将所述 PW数据净荷封装为带内层标签的多协议标签交换报文;
将带内层标签的多协议标签交换报文再封装为带外层标签的多协议标签交 换报文。
3、 根据权利要求 1所述的无源光网络中承载多协议标签交换报文的方法, 其特征在于, 所述将多协议标签交换报文封装到千兆无源光网络封装模式帧中 的步骤包括:
将多协议标签交换报文分段或组合后, 映射到千兆无源光网络封装模式帧 的净荷;
在千兆无源光网络封装模式帧的净荷前添加千兆无源光网络封装模式帧 头。
4、 根据权利要求 3所述的无源光网络中承载多协议标签交换报文的方法, 其特征在于, 所述将多协议标签交换报文分段后, 映射到千兆无源光网络封装 模式帧的净荷的步骤为:
将多协议标签交换报文分为至少两个多协议标签交换报文分段; 将所述多协议标签交换报文分段映射到千兆无源光网络封装模式帧的净 荷;
或者为, 提取多协议标签交换的报文净荷和多协议标签交换报头; 将多协议标签交换净荷分为至少两个分段;
在各分段前分别添加多协议标签交换报头, 分别形成新的分段;
将新的分段映射到千兆无源光网络封装模式帧的净荷。
5、 根据权利要求 3所述的无源光网络中承载多协议标签交换报文的方法, 其特征在于,
所述千兆无源光网络封装模式帧头包括: 端口标识字段或业务类型域, 用 于指示传输模式为: 多协议标签交换报文承载于千兆无源光网络封装模式帧。
6、 根据权利要求 1所述的无源光网络中承载多协议标签交换报文的方法, 其特征在于, 所述获得多协议标签交换报文的步骤为:
0NU/0NT从用户驻地网获得多协议标签交换报文;
或者为, 0LT从业务功能点获得多协议标签交换报文;
所述发送千兆无源光网络封装模式帧的步骤为:
0NU/0NT将千兆无源光网络封装模式帧发送给 0LT;
或者为, 0LT将千兆无源光网络封装模式帧发送给 0NU/0NT。
7、一种无源光网络中接收多协议标签交换报文的方法, 其特征在于, 包括: 接收千兆无源光网络封装模式帧;
将所述千兆无源光网络封装模式帧解封装为多协议标签交换报文; 发送所述多协议标签交换报文。
8、 根据权利要求 7所述的无源光网络中接收多协议标签交换报文的方法, 其特征在于, 将所述千兆无源光网络封装模式帧解封装为多协议标签交换报文 的步骤为:
从千兆无源光网络封装模式帧中提取千兆无源光网络封装模式帧净荷; 将所述提取的千兆无源光网络封装模式帧净荷组合或分段, 生成多协议标 签交换报文。
9、 根据权利要求 8所述的无源光网络中接收多协议标签交换报文的方法, 其特征在于, 所述将所述提取的千兆无源光网络封装模式帧净荷组合, 生成多 协议标签交换报文的步骤为:
将至少两个千兆无源光网络封装模式帧净荷组合, 作为多协议标签交换报 文;
或者为, 获取至少两个千兆无源光网络封装模式帧净荷; 将除第一个千兆 无源光网络封装模式帧净荷以外的剩余千兆无源光网络封装模式帧净荷中的多 协议标签交换报头去掉; 将第一个千兆无源光网络封装模式帧净荷和去掉多协 议标签交换报头的剩余千兆无源光网络封装模式帧净荷组合, 作为多协议标签 交换报文。
10、 一种多协议标签交换封装装置, 其特征在于, 包括:
多协议标签交换处理单元, 获得多协议标签交换报文;
封装处理单元, 将所述多协议标签交换报文封装为千兆无源光网络封装模 式帧;
发送单元, 发送所述千兆无源光网络封装模式帧。
11、 根据权利要求 10所述的多协议标签交换封装装置, 其特征在于, 所述 封装处理单元包括:
分段 /组合单元, 将多协议标签交换报文分段或组合后, 映射到无源光网络 封装数据帧的净荷;
帧头添加单元, 在千兆无源光网络封装模式帧的净荷前添加千兆无源光网 络封装模式帧头。
12、 一种多协议标签交换解封装装置, 其特征在于, 包括:
接收单元, 接收千兆无源光网络封装模式帧;
解封装处理单元, 将所述千兆无源光网络封装模式帧解封装为多协议标签 交换报文; 多协议标签交换发送单元, 发送所述多协议标签交换报文。
1 3、 根据权利要求 12所述的多协议标签交换解封装装置, 其特征在于, 所 述解封装处理单元包括:
提取单元, 从千兆无源光网络封装模式帧中提取千兆无源光网络封装模式 帧净荷;
分段 /组合单元, 将所述提取的千兆无源光网络封装模式帧净荷分段或组 合, 生成多协议标签交换报文。
14、 一种光通讯系统, 其特征在于, 包括: 多协议标签交换封装装置和多 协议标签交换解封装装置; 多协议标签交换封装装置用于,
获得多协议标签交换报文;
将所述多协议标签交换 ^艮文封装到千兆无源光网络封装模式帧中; 发送所述千兆无源光网络封装模式帧给所述多协议标签交换解封装装置; 多协议标签交换解封装装置用于,
接收所述多协议标签交换封装装置的千兆无源光网络封装模式帧; 将所述千兆无源光网络封装模式帧解封装为多协议标签交换报文; 发送所述多协议标签交换报文。
PCT/CN2009/073342 2008-08-19 2009-08-19 Pon中承载多协议标签交换报文的方法、装置、系统 WO2010020178A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09807877A EP2296336A4 (en) 2008-08-19 2009-08-19 METHOD, DEVICE AND SYSTEM FOR SUPPORTING MPLS PACKETS IN A PASSIVE OPTICAL NETWORK (PON)
JP2011523294A JP2012500542A (ja) 2008-08-19 2009-08-19 受動光ネットワーク(pon)においてマルチプロトコルラベルスイッチングパケットを運ぶ方法、装置、及びシステム
US13/013,305 US20110116796A1 (en) 2008-08-19 2011-01-25 Method, device, and system for bearing multi-protocol label switching packet in passive optical network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810145767A CN101656660A (zh) 2008-08-19 2008-08-19 Pon中承载mpls报文的方法、装置、系统
CN200810145767.8 2008-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/013,305 Continuation US20110116796A1 (en) 2007-01-11 2011-01-25 Method, device, and system for bearing multi-protocol label switching packet in passive optical network

Publications (1)

Publication Number Publication Date
WO2010020178A1 true WO2010020178A1 (zh) 2010-02-25

Family

ID=41706871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073342 WO2010020178A1 (zh) 2008-08-19 2009-08-19 Pon中承载多协议标签交换报文的方法、装置、系统

Country Status (5)

Country Link
US (1) US20110116796A1 (zh)
EP (1) EP2296336A4 (zh)
JP (1) JP2012500542A (zh)
CN (1) CN101656660A (zh)
WO (1) WO2010020178A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105025029A (zh) * 2015-07-27 2015-11-04 潍坊学院 Olt设备动态访问控制列表生成方法及数据包处理方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931548B (zh) * 2009-06-24 2012-09-19 华为技术有限公司 一种接入网络标签管理方法、装置和系统
US8693868B2 (en) * 2010-03-16 2014-04-08 Marvell Israel (M.I.S.L) Ltd. Versatile optical network interface methods and systems
US8885652B2 (en) * 2010-08-06 2014-11-11 Futurewei Technologies, Inc. Hybrid orthogonal frequency division multiplexing time domain multiplexing passive optical network
CN104735746B (zh) * 2011-04-13 2019-04-16 德国电信股份公司 用于传输mpls报头的方法、用于建立mpls路径的方法以及用于执行mpls路径切换的方法
US9031408B2 (en) 2011-06-09 2015-05-12 Telefonaktiebolaget L M Ericsson (Publ) Method for fast wavelength division multiplexing (WDM) passive optical network (PON) initialization in heterogeneous networks
US8548328B2 (en) * 2011-09-08 2013-10-01 Telefonaktiebolaget L M Ericsson (Publ) Transparent overhead in a passive optical network that supports enhanced features
WO2013130647A1 (en) * 2012-03-02 2013-09-06 Huawei Technologies Co., Ltd. Passive optical network digital subscriber line convergence architecture
US20190289374A1 (en) 2012-08-02 2019-09-19 Joseph L. Vilella Mutually secure optical data network and method
GB2510012B (en) * 2012-10-28 2015-06-10 Lantiq Deutschland Gmbh Method of packet encapsulation for multi-service operation from a distribution point
CN104601352B (zh) * 2013-10-30 2019-02-12 华为技术有限公司 一种网络上下行数据处理方法、电子设备及系统
US9680740B2 (en) * 2013-11-08 2017-06-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Service multiplexing and demultiplexing using a single pseudowire service/label switched path label in a multiprotocol label switching network
CN104410052A (zh) * 2014-09-29 2015-03-11 国家电网公司 基于pon网络通信的电流差动保护系统及其保护方法
CN107251453B (zh) * 2015-08-06 2019-11-05 华为技术有限公司 一种光接入设备及光接入系统
CN106888105B (zh) * 2015-12-16 2019-11-08 中国移动通信集团河北有限公司 一种端到端的三层虚链路的发现方法及装置
CN107205180B (zh) * 2016-03-17 2021-01-15 华为技术有限公司 消息传输方法、中继设备及消息处理器
CN108063987A (zh) * 2017-12-06 2018-05-22 国网山东电力公司日照供电公司 一种基于mpls技术的epon手拉手系统
CN108111318A (zh) * 2017-12-28 2018-06-01 国网河南省电力公司信息通信公司 面向均衡分布的电力通信业务路由规划算法
WO2019205136A1 (zh) * 2018-04-28 2019-10-31 华为技术有限公司 报文处理方法及设备
JP6962291B2 (ja) * 2018-08-02 2021-11-05 日本電信電話株式会社 通知装置および通知方法
CN111885433B (zh) * 2020-05-27 2023-04-18 浙江双成电气有限公司 一种可实现端到端监测的网络系统、方法及设备
CN112822128B (zh) * 2020-12-30 2023-04-07 瑞斯康达科技发展股份有限公司 一种pon系统报文镜像方法及pon系统
CN115225585A (zh) * 2021-04-14 2022-10-21 华为技术有限公司 一种dcn报文处理的方法、网络设备及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625177A (zh) * 2003-12-03 2005-06-08 华为技术有限公司 传送多协议标签交换协议数据单元的方法
US20080117895A1 (en) * 2006-11-21 2008-05-22 Arie Johannes De Heer Method and Apparatus for Transporting Multiprotocol Label Switching Frames Over Physical Communication Links
CN101360041A (zh) * 2007-07-31 2009-02-04 华为技术有限公司 无源光网络中承载ip报文的方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040723A (ja) * 2002-07-08 2004-02-05 Mitsubishi Electric Corp アクセスサービス網構築システム及びアクセスサービス網構築方法
EP1522174B1 (en) * 2002-07-16 2009-09-09 Enterasys Networks, Inc. Apparatus and method for a virtual hierarchial local area network
US7355965B2 (en) * 2003-05-06 2008-04-08 Overture Networks, Inc. Apparatus and method for rapid detection of unidirectional breaks in a network ring
JP4429758B2 (ja) * 2004-02-13 2010-03-10 富士通テレコムネットワークス株式会社 通信装置及びネットワークシステム
JP4794630B2 (ja) * 2005-10-31 2011-10-19 テレコム・イタリア・エッセ・ピー・アー パッシブ光ネットワークを介して異なる優先順位を有するデータパケットを送信する方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625177A (zh) * 2003-12-03 2005-06-08 华为技术有限公司 传送多协议标签交换协议数据单元的方法
US20080117895A1 (en) * 2006-11-21 2008-05-22 Arie Johannes De Heer Method and Apparatus for Transporting Multiprotocol Label Switching Frames Over Physical Communication Links
CN101360041A (zh) * 2007-07-31 2009-02-04 华为技术有限公司 无源光网络中承载ip报文的方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LANG WEI-MIN ET AL., GPON TECHNOLOGY RESEARCH, COMPOTECH CHINA, 8 December 2005 (2005-12-08), pages 129 - 134, XP008155119 *
LI YU-SU ET AL.: "The Key Technologies of GPON - GEM Encapsulation", OPTICAL COMMUNICATION TECHNOLOGY, 8 December 2005 (2005-12-08), pages 4 - 7, XP008104890 *
See also references of EP2296336A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105025029A (zh) * 2015-07-27 2015-11-04 潍坊学院 Olt设备动态访问控制列表生成方法及数据包处理方法
CN105025029B (zh) * 2015-07-27 2018-02-23 潍坊学院 Olt设备动态访问控制列表生成方法及数据包处理方法

Also Published As

Publication number Publication date
JP2012500542A (ja) 2012-01-05
EP2296336A4 (en) 2011-12-14
EP2296336A1 (en) 2011-03-16
CN101656660A (zh) 2010-02-24
US20110116796A1 (en) 2011-05-19

Similar Documents

Publication Publication Date Title
WO2010020178A1 (zh) Pon中承载多协议标签交换报文的方法、装置、系统
US11258705B2 (en) Method, apparatus, and system for managing label of access network
EP2341675B1 (en) Label switching method, apparatus and system
US9077560B2 (en) Adaptation scheme for communications traffic
US8295278B2 (en) Systems and methods for pseudowire-in-pseudowire to transport pseudowire payload across packet switched networks
EP1720024B1 (en) A method for realizing the pseudo wire emulation edge-to-edge protocol
EP1768321B1 (en) Interworking, circuit emulation service over packet and IP/MPLS packet processing
EP2434697B1 (en) Method for interconnecting multi-protocol label switching network and ethernet, thereof device and system
EP2154836B1 (en) A method, device and system for bearing ip message in passive optical network
US8467683B2 (en) Mapping method, apparatus, and system for data transmission
US20040170173A1 (en) Method and apparatus for transporting packet data over an optical network
WO2013082773A1 (zh) 一种在光传送网中实现业务传送的方法及实现该方法的设备和系统
WO2017181675A1 (zh) 一种以太网中数据处理的方法、设备及系统
CN101489154B (zh) 无源光网络连接处理的方法、系统和设备
WO2012171384A1 (zh) 一种在无源光网络中实现电路仿真的方法及系统
US8532137B1 (en) Network architecture for a packet aware transport network
CN1946242B (zh) 光接入网络中支持tdm业务的方法及装置
Yongjun et al. Service Adaptation and Label Forwarding Mechanism for MPLS-TP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 295/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009807877

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011523294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE