WO2010020177A1 - 一种织物热湿传输的计算方法 - Google Patents

一种织物热湿传输的计算方法 Download PDF

Info

Publication number
WO2010020177A1
WO2010020177A1 PCT/CN2009/073328 CN2009073328W WO2010020177A1 WO 2010020177 A1 WO2010020177 A1 WO 2010020177A1 CN 2009073328 W CN2009073328 W CN 2009073328W WO 2010020177 A1 WO2010020177 A1 WO 2010020177A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
yarn
heat
water
equation
Prior art date
Application number
PCT/CN2009/073328
Other languages
English (en)
French (fr)
Inventor
李毅
毛爱华
王若梅
罗笑南
王众
Original Assignee
香港纺织及成衣研发中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港纺织及成衣研发中心 filed Critical 香港纺织及成衣研发中心
Publication of WO2010020177A1 publication Critical patent/WO2010020177A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • the present invention relates to a method of calculating heat and moisture transfer of fabrics, and more particularly to a method of calculating heat and moisture transport in laundry and fibrous materials.
  • the heat and moisture transfer process in monthly armor materials is the main target of research on heat and moisture functional textiles.
  • the heat and moisture properties of the fabric are dynamically expressed during the heat and moisture transfer process.
  • Nordon proposed an exponential relationship for the first and second stages to describe the moisture absorption of the fiber.
  • the technical problem to be solved by the present invention is to provide a calculation method for heat and moisture transfer of fabrics in view of the simple and limited drawbacks of the heat and moisture transmission calculation method in the existing fabric.
  • the invention provides a calculation method for heat and moisture transmission of a fabric.
  • the fabric is a single layer
  • the following equation is solved to obtain parameters of heat and moisture transmission of a single layer fabric, and the differential unit of position X in the single layer fabric is at time t.
  • the formula is: where 8 ⁇ is the effective evaporation or condensation surface area, C*CT) is the saturated water vapor concentration in the surface local air, and the water vapor concentration on the surface of the C a yarn;
  • the formula for calculating v is: ⁇
  • Sv is the area/volume ratio of the yarn
  • the formula is: 2 ⁇ 2 Z is the length of the yarn, which is the radius of the yarn; e. ⁇ is the water concentration inside the yarn along the radius, according to the second Fick's law, the water vapor transmission equation of the yarn in the cylindrical coordinate system and the given initial And boundary calculations: Under the assumption of offset, the formula is:
  • K is the effective thermal conductivity in a porous media fabric, which is calculated as:
  • K fab is the dynamic thermal conductivity in the wet fabric obtained through the test, which is the thermal conductivity of water.
  • the invention also provides another calculation method for heat and moisture transmission of the fabric.
  • the fabric is a multi-layer fabric, the following parameters for obtaining heat and moisture transmission of the multilayer fabric are obtained, and each layer of the multilayer fabric is X.
  • K mx £ l K l +s f K f +s a K a
  • f. FL is the amount of heat radiation in the left and right directions of the differential unit of the fabric. Under the assumption that the yarn and fabric are offset, the formula is: dF B
  • the object of the present invention is to provide a theoretical analysis tool for researchers to develop a new type of fabric material, the accuracy of the inch simulation is very high; in order to achieve the accuracy requirement of the simulation result, the fabric moisture absorption control is adopted in implementation.
  • the equation of the wetting process and the control fabric are combined with the boundary equation of the external convection to control the heat and moisture transfer process of the fabric in a specific environment to ensure the accuracy of the simulation results;
  • the fabric is isotropic in its structural and thermal properties, ie each part of the fabric acts as a single part having structural and thermal properties;
  • the inner layer of the textile is adjacent to the human body, and the outer layer is in contact with the external environment.
  • the internal structure of the textile material is assumed to be a capillary composition which is produced by criss-crossing channels formed by the yarn. Under capillary action, liquid water can flow from a high content to a low content. Therefore, according to the porous structure of the internal capillary, the distribution of liquid water and gaseous water in the fabric can be expressed by the following equation:
  • the volume percentage of liquid water, gaseous water and fiber in the differential unit respectively.
  • Equation 2 The dynamic distribution of liquid water and gaseous water in the 3 ⁇ 4K vapor and liquid water differential units represented by Equations 2 and 3, respectively, can be described by the following equation:
  • Equation 3 The liquid diffusivity in Equation 3 is derived from the physical mechanism of capillary theory and the Darcy's law transmitted in liquid #3 ⁇ 4 porous media. Dl ⁇ ) can be expressed as: Where, the dynamic heat of the fabric is defined by the following equation:
  • Equation 9 is described in terms of the cylindrical coordinate system of the second Fick's law (the fabric moisture absorption process is described.
  • the water vapor diffusion coefficient D f is related to the moisture content W cf ( X , t) in the fiber. Under given initial and boundary conditions, The distribution of water concentration inside the fiber along the radius can be calculated.
  • Equation 10 is a thermal radiation flux attenuation equation derived from the assumption that the 3 ⁇ 4 inch offset of the fibers in the fabric is neglected.
  • the total amount of heat radiation transmitted by a volumetric microcell from the inside to the left and to the right is recorded as The fraction of FL, F B and FL, i.e. the percentage of fiber absorption in the volume unit, is represented by the absorption constant ⁇ . ⁇ ⁇ + ⁇ " (10)
  • K fab is the dynamic thermal conductivity in wet fabric, which can be obtained by experimental or empirical equations, and is the dynamic conductivity of liquid water.
  • a more complex multilayer moisture thermal model can be developed.
  • the mechanism of the heat and moisture transport process of the porous anisotropic multilayer fabric is similar to that of the isotropic porous single layer fabric.
  • Heat can be transferred by the conduction and radiation processes, or it can occur during phase changes such as moisture absorption or condensation in the fabric.
  • Humidity occurs in the internal voids of the fabric and inside the yarn, and it is also affected by processes such as moisture absorption or steam condensation.
  • the important considerations are the effects of different yarns in each layer of fabric, and the process of heat and moisture transfer interactions in adjacent layers.
  • the heat and moisture transfer model of each layer of fabric is the same as the heat and moisture transfer model for a single layer of isotropic fabric.
  • Multilayer anisotropic composite fabrics are 3 ⁇ 4t in terms of geometric characteristics of different fibers, layer-to-layer relationships, fiber type composition and physical properties.
  • 1 10 and l u are defined as the thickness of the left and right gaps between adjacent layers, and ⁇ and ⁇ 1 are the innermost layer and the outermost layer, respectively, which are in direct contact with the environment.
  • the shed of the average attribute value of the power of the power is based on its percentage and can be expressed as:
  • the transmission of liquid water from the line is the liquid diffusion rate of liquid transport in the region of the fiber type ti, and can be calculated by Equation 18.
  • the water contact angle is an obtuse angle. Therefore, in this case, it approaches 0.
  • Equation 19-21 They are average volume specific heat, average heat of adsorption, and average conductivity. Their calculation formula is Equation 19-21:
  • K mix s l K l +s f K f +s a K a
  • the average moisture absorption rate and average fiber water content ⁇ can be expressed as:
  • ⁇ F are made movable absorbance ⁇ 3 ⁇ 4 condensed liquid water distribution determined transmission capacity in the fabric, and therefore may be expressed as:
  • Thermal radiation can be expressed as:
  • the calculation method of the heat and moisture transmission of the fabric of the invention is solved according to the material property value of a certain fabric, the boundary of the fabric, the environment cow, and the like, and the mathematical model of the heat and moisture transfer of the fabric is established, and finally the simulation result is obtained.
  • the simulation result is obtained.
  • the user can simulate the various fabrics of the research by solving the model of the heat and moisture transfer of the fabric in the calculation method of the present invention, and analyze the results by post-processing, so that the fabrics of these researches can be intuitively obtained in the heat and moisture transfer.
  • the difference in terms provides a scientific analytical method for the development of new fabrics.
  • the present invention provides a method for calculating the heat and moisture transport of fabrics for use in the description of the heat and moisture transport of a certain type of fabric under a particular environment, and describes changes in the physical properties of the fabric during heat and moisture transport.
  • the 3 ⁇ 4 ⁇ 4 dynamic distribution mathematical equation in the differential unit takes into account the effects of radiation, moisture absorption and desorption of the yarn, evaporation and condensation of water vapor on the temperature.
  • the mathematical description equation adopted is a set of partial differential equations. Digitally simulating the process on a computer must first be numerically solved. Solving based on partial differential equations In the step, the boundary cow and the initial cow of the solution must be set first, and then the discrete equations can be solved.
  • the discretization method of the equation uses the finite volume method, and the discrete method of the finite volume method divides the calculation domain into a series of Orthogonal grids, because they seek an approximate solution of the function on the grid, do not consider the variation of the solution between the grids.
  • the finite volume method takes a control volume around each mesh node, and integrates the differential equation to be solved for each control volume to obtain a set of discrete equations corresponding to the differential equation.
  • the boundary condition of the heat and moisture transfer model of the single layer fabric is granulated, and the boundary of the model of the multilayer fabric is ox. Because it considers the boundary between the fabrics inside the textile system, it is also necessary to consider the boundaries of the fabric at the boundary of the textile system, and each layer of fabric may be coated with a waterproof membrane, so the boundary considerations are more complicated.
  • the present invention is a ten-calculation method for fabric heat and moisture transmission simulation, and the purpose is to better serve the researcher and provide a tool for the researcher to develop a new type of fabric. Therefore, the present invention has the following Aspect characteristics:
  • the object of the present invention is to provide a theoretical analysis tool for researchers to develop new types of fabric materials, the accuracy of the simulation is very high.
  • the equations for controlling the moisture absorption/desorption process of the fabric and the boundary equations for controlling the fabric and the external convection are combined to control the heat and moisture transfer process of the fabric in a specific environment. The accuracy of the simulation results is guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Woven Fabrics (AREA)

Description

说明书
一种织物 ¾ tr的计算旅 餘领域
本发明涉及一种织物热湿传输的计算方法, 更具体地说, 涉及一种衣物和纤维材料中热 湿传输的计算方法。
背景脉
月艮装材料中的热湿传输过程是热湿功能性纺织品研究的主要对象。织物的热湿性能在热 湿传输过程中是动态表现的, 通过研究此过程的机制和原理, 可以考察纺织品的热湿性能在 传输过程中的变化趋势和影响因子, 进而模拟服装材料在实际环境中的热湿分布和变化情 况。
纤维隔热材料的热湿传输具有相当复杂的机制。 在上世纪 30年代, 亨利研究出了一套 由两个微分耦合控制方程组成的理论模型来描述纤维隔热材料中的热湿相变关系。
直到 20世纪 80年代, Ogniewwicz和 Tien才取得了很大进展, 他们提出了一种基于热 舰过传导和对流传输,冷凝物处于立摆状态的假设的模型。 Motakef将该模型进行了扩展, 分析了非稳态的热湿传输过程, 并将分析结果与实验测量的结果进行了比较。
在 20世纪 80年代, Farnworth最先提出了一种将热湿传输与吸附和凝聚过程耦合的动 态模型。该模型比较简化且具有一定的局限性。 Dowries通过实验的方法发现羊毛吸附水蒸气 的过程包括两个阶段。
为了描述织物中两阶段吸收行为的这一复杂过程, Nordon提出了一种适用于第一和第二 个阶段的指数关系来描述纤维的吸湿率。
上述织物热湿传输的计算方法具有结果不准确, 且较少考虑环境因素的局限性。
发明内容
本发明要解决的技术问题在于,针对现有织物中热湿传输计算方法简单且具有局限性的 缺陷, 提供一种织物热湿传输的计算方法。 本发明提供了一种织物热湿传输的计算方法, 所述织物为单层时, 求解下列方程获得单 层织物热湿传输的参数, 所述单层织物中位置为 X的微分单元在 t时刻的液态水、 气态水以 及 的动态分布:
Figure imgf000003_0001
其巾:
a. 分别为所述微分单元中液态水、 气态水和纱线的百分含量, 且满足: st + εα = 1 - sf
b.公式 1中 为多孔渗水介质中水的传输量, 根据毛细管现象和 Darcy定理, 其 计算公式为: γ cos Θ sin adcsi c.公式 3中 为布料的动 本积比热, 计算公式为: cv = ^ vl + £fcvf + sacva 其中 Qi, Cva分别为微分单元中液态水、 气态水和纱线的动态体积比热;
d. 为蒸 凝结量, 其计算公式为: 其中 8^为有效的蒸发或凝结表面积, C*CT)为外表局部空气中的饱和水蒸气浓度, Ca 纱线表面的水蒸气浓度; S,v的计算公式为: ε
其中 Sv为纱线的面积 /体积比值, 计算公式为: 2πτΙ 2 Z为纱线的长度, 为纱线的半径; e. ^为纱线内部沿着半径的方向水浓度, 根据第二 Fick定律纱线在圆柱坐标系统中 的水蒸气传输方程以及给定的初始和边界 计算:
Figure imgf000004_0001
抵消的假设下, 其计算公式为:
dx
dFL
FL - βσΤ
dx
g. K 为多孔介质织物中的有效热传导率, 其计算公式为:
Figure imgf000004_0002
其中 Kfab为通过试验得到的潮湿织物中的动态热传导率, 为水的热传导率。 本发明还提供了另一种织物热湿传输的计算方法, 所述织物为多层织物时, 求解下列 获得多层织物热湿传输的参数, 所述多层织物中每一层位置为 X的微分单元在 t时亥啲 液态水、 气态水以及 ¾S的动态分布:
Figure imgf000004_0003
a.对于有超过一种不同纱线构成的织物, 含量百分比 表示每种纱线 , tn为每层 中纱线的种类数; b. 为计算单位面积内具有不同毛细能力的纱线的液态水
'ί=1 dx 的传输; (D ^为纱线 中的液态水的扩散率, 其计算公式为: γ cos Θ sin dcS{
D
20ηε' c. ,')' &分别为平均体积比热、 平均吸附热以及平均传导率; 计算公式为:
cv = Si vlfcvf + acva
Figure imgf000005_0001
KmxlKl +sfKf +saKa
d.
Figure imgf000005_0002
e. 为动态流体蒸 凝结率,决定于液态水在织物中传输能力的分布其计算公式为:
Figure imgf000005_0003
f. FL分别为织物的微分单元中在左右两个方向上的热辐射量,在忽略纱线与织物 抵消的假设下, 其计算公式为: dFB
-βΡκ+βσΤ
dx
dF,
L = PFL -βσΤ
dx β 实施本发明的织物热湿传输的计算方法, 具有以下有益效果:
1、 由于本发明的目的是为研究人员研制新型的织物材料提供理论分析的工具, 因 it 寸 仿真的精确性要求很高; 为达到仿真结果的精确性要求, 在实现时采用控制织物吸湿 /放湿 过程的方程和控制织物与外界对流的边界方程相结合,一起控制织物在某一具体环境^牛的 热湿传递过程, 保证了仿真结果的精确性;
2、 可以提供更快的计算速度, 对控制方程(偏微分方程)采用优化的离散化方法进行 求解, 保证结果准确性的同时, 极大的提高了仿真的速度;
3、 可以提供更直观的数据分析手段; 在对仿真结果进行分析时, 采用可视化处理和数 值分析相结合的方法, 为研究人员分析特定织物的热湿传递情况提供一种便利的工具。 具体
考虑至 |J之前的理论以及实验研究工作中, 热湿传输模型并没有考虑至 IJ某働理现象。而 在本发明中,考虑通过改进的模型来对纤维隔热材料中的热湿传输进行数值模拟计算。为了 解决这一模型, 采用有限体积法来开发这一数学模型。数值计算结果表明, 此方法可用于进 行仿真设计。
基于多相流扩散到织物中的物理机制,根据质量守恒和热量平衡来 ¾½只物热湿传输的 数学方程。 假设和限定
在本发明的方法中做了下列假设:
1 )织物在结构和热性质上为各向同性, 即织物的每一部分作为一个单一的具有结构和 热性质的部分;
2)考虑到体积较小, 假定各相在纤维和空气间都存在局部热平衡;
3) 由于吸湿而造成的体积变化被忽略不计;
4)织物从人体皮肤到外部环境的热湿传输是一维的, 惯性和重力作用被忽略;
5)在液态水存在的情况下, 水蒸气可以立即达到饱和状态。 此外, 还有一 叚设 牛, 如辐射强度的分布角度为常量, 而由纱线抵消的辐射可以被 忽略;在纱线的表面以及周围的空气中,水蒸气的含量可以达到稳态; 由于速度很慢的关系, 液态水的惯性被忽略; 强制对流入风袭的影响被忽略。 单层材料
考虑一 ±夬纺织品中的单层纺织布, 其纺织品的内层临近人体, 夕卜层与外界环境接触。纺 织品材料的内部结构假设为毛细管组成, 这些毛细管是由纱线形成的纵横交错的孔道产生 的。在毛细管现象下, 液态水可以从含量高的地方向含量低的地方流动。 因此, 根据内部毛 细管的多孔结构, 织物内液态水和气态水的分布可以通过下列方程来表示:
Si + sa = - sf (1)
其中, 分别为微分单元中液态水、 气态水和纤维的体积百分数。
下列数学控制方程 ii t在上述假设的基础上。方程 2和 3分别表示的 ¾K蒸气和液态水 微分单元中的液态水和气态水动态分布可以用以下方程来描述:
Figure imgf000007_0001
微分单元中的温度动态分布数学方程为 4所示: 方程中考虑了辐射, 水蒸气的吸收和释 放、 蒸发和凝结等因素对 ¾¾的影响。
Figure imgf000007_0002
方程 3中的液体扩散率 )是根据毛细管理论的物理机制以及液 #¾多孔介质中传输 的 Darcy定律推导出来的。 Dl ^ )可以被表示为:
Figure imgf000007_0003
其中, 为织物的动 本积比热, 由以下方程定义:
Cv = SlC Vl + Sf C Vf + £a Cva (6) 纤维表面的水蒸气浓度 Ca和饱和水蒸气浓度 C*(T)之差决定了发生蒸发还是凝结。 当
Ca>C*(T)时, 纤维表面发生凝结, 而当 Ca<C*(T), 并且液态水的体积百分数 超过蒸气临 界值 ^Κ)时, 液态水从纤维表面蒸发。 蒸发或凝结的有效面积可以通过以下方程表示:
5"v = ε f Sv
ε
(7)
_ 2 i _ 2
= ~ ϊ = ~
mr I r 其中, 8为纤维面 体积比值, Z为纤维的长度, 为纤维的半径。 因此, 可以得到蒸 ¾凝结的比例可以表示为:
Figure imgf000008_0001
公式 9根据第二 Fick定律的圆柱坐标系 (寸织物湿度吸收过程进行描述。水蒸气扩散系 数 Df与纤维中水分含量 Wcf(X,t)相关。 在给定初始和边界条件下, 在纤维内部沿着半径的方 向水浓度 的分布情况可以计算出来。
Figure imgf000008_0002
在纱线表面 可位置 (x,t)上被液态水或者水蒸气引起的纱线湿度吸收的比率可以通过两 个参数 ξΐ 、 ξ2来描述。 它们分别定义为 ξΐ = sa/ ε、 ξ2 = εΐ/ε, 且其和为 1。 公式 10是在忽略织物内纤维 ¾寸的抵消作用的假设下得出的热辐射通量衰减方程。 一 个体积微单元从内部向左和向右两个方向传递的总热辐射量分别记为
Figure imgf000008_0003
FL, FB和 FL的分 数, 即体积单元内纤维吸收的百分数由吸收常数 β表示。 βΡκ + βσΤ" (10)
dx FL - βσΤ
dx
Figure imgf000009_0001
为多孔织物的有效热传导率, 并通过公式 11表示。其中, Kfab为潮湿织物中的动态 热传导率, 可以通过实验或经验方程获得, 而 为液态水的动态传导率。
Kmix = slKl + (sa + sf )Kfab (11)
多层各项异性多孔织物
在单层织物以考虑了防水膜影响的热湿传输模型的基础上, 可以发展更为复杂的多层织 物热湿模型。多孔各向异性的多层织物的热湿传输过程的机制类似与各项同性的多孔单层织 物。 热量可以被传导和辐射过程传输, 也可以在织物内部发生的吸湿或者蒸 凝结等相变 过程中产生。在织物的内部空隙、纱线的内部都将发生传湿现象, 它同时也受到纱线吸湿或 水蒸气蒸 凝结等过程的影响。 在各项异性的织物热湿模型中, 需要重点考虑的是每层织 物中不同纱线的影响, 以及相邻层中的热湿传输交互的过程。对于多层各向异性的织物系统 中, 每层织物的热湿传输模型与单层各向同性织物时的热湿传输模型是相同的。
多层各向异性组合织物是 ¾t在不同纤维的几何特征、层与层之间的关系、纤维类型组 成和物理属性上的, 下面进 fiH羊细描述:
1 )所有织物层 (LI, L2, Ln)是连续设置的;
2) 110和 lu定义为相邻层之间左右空隙的厚度, ^和^1分别为最内层和最外层, 均与 环境直手幾触。 两侧的外界自然环境。 对于中间的相邻层, 有如下的关系:
Figure imgf000009_0002
定义了不同的 Contact值来描述第 i层在边界上(内部)的接触状态。所述接触状态确定 了层之间边界处的热湿传输情况: Contact:, 1 lij 0 (l≤ i≤n, j = 0,1)
0 ≠0 ' (13)
3 )对于由超过一种不同纤维构成的织物, 使用 表示每种纤维 的含量百分比, tn为每 层中纤维的种类总数;
4)力口权平均属性值 的棚是在其百分数 的基础上的, 可表达为:
f = ti Pti {tn > 2) (14) 因此, 在前面假设以及单层各项同性模型的控制方程(即织物热湿传输数学模型)基础 上, 多层各项异性织物模型中每层的控制方程(即织物热湿传输数学模型)可以表示为:
dt τα dx 、 a
Figure imgf000010_0001
Figure imgf000010_0002
在公式 16中 为计算单位面积内具有不同毛细能力的纱
Figure imgf000010_0003
线的液态水的传输。 其中, 为在纤维类型 ti的区域中液体传输的液体扩散率, 且可 通过方程 18计算出来。 当纤维类型 11为¾7性时, 其水接触角为钝角。 因此, 在这种情况 下, 趋近于 0。
γ cos θ sin adcsi
(18)
分别为平均体积比热, 平均吸附热以及平均传导率。 它们的计算公 式为方程 19-21 :
Figure imgf000011_0001
Kmix =slKl+sfKf +saKa
Figure imgf000011_0002
动 均吸湿率 和平均纤维水含量^可表示为:
Figure imgf000011_0003
动^ F均凝结 发吸收率 Γ¾决定于液态水在织物中传输能力的分布, 因此可表达为:
Figure imgf000011_0004
热辐射可表达为:
-- FR+ T (25)
dx FL - σΤ4 (26)
dx
Figure imgf000011_0005
(27)
Figure imgf000012_0001
tn
ti=\ 在本发明中,在先前各向同性模型的基础上,将织物每层使用不同材料的影响考虑进来, 开发了一种新的计算方法。该计算方法所采用的新模型中每层内的热湿传输原贝脷方程与各 向同性模型中一样。在此,考虑了每层中不同纤维类型的影响, 以及每层间的不同内部界面。 该方法通过物理实验进行了验证,该物理实验使用了具有不同液体传输性能的织物组件以及 不同吸湿能力的多种纤维。计算结果和实验结果之间的比较表明,本发明的计算方法能够精 确地描述多层各向异性织物组件的耦合热湿(气态和液态)传递的情况。 由不同纤维制成的 织物组件的显著影响通过仿真进行了阐明。新模型增强了功能上的灵活性, 且提供了更全面 的信息来分析耦合热湿(气态和液态)穿过具有更复杂的结构特征的分层织物组件的机理。
本发明的织物热湿传输的计算方法,根据某一织物的材料属性值,以及织物的边界 牛, 环境 牛等信息,通过建立相应的织物热湿传递的数学模型进行求解,最后将仿真的结果以 可视化和数值分析相结合的方式得以呈现。
用户可以通过求解本发明计算方法中的织物热湿传输的模型,对进行研究的各种织物进 行仿真, 并将结果通过后处理方式进行分析, 从而可以直观的得到这些研究的织物在热湿传 递方面的区别, 为研制新型的织物提供科学的分析方法。
本发明提供的织物热湿传输的计算方法,用于对某种类型的织物在某一具体环境下的热 湿传输的描述, 且描述了织物的热湿传输过程中物理性能的变化情况。
在本发明提供的织物热湿传输的计算方法中,其微分单元中的¾¾动态分布数学方程考 虑了辐射, 纱线的吸湿和放湿, 水蒸气的蒸发和凝结等因素对温度的影响。
在本发明提供的织物热湿传输的计算方法中, 其采用的数学描述方程为一组偏微分方 程。在计算机上对该过程进行数字仿真, 必须先对其进行数值求解。根据偏微分方程的求解 步骤, 须先设定其解的边界 牛以及初始 牛, 能后对离散后的方程开始求解。
在本发明提供的织物热湿传输的计算方法中, 其偏微分方程的数值求解过程中, 方程的 离散化方法使用了有限体积法, 有限体积法的离散做法为将计算域划分为一系列的正交网 格, 由于其寻求的为函数在网格上的近似解, 故不考虑解在网格之间的变化。有限体积法对 每个网格节点周围取一个控制体积, 将待解的微分方程对每个控制体积积分, 从而得出一组 对应微分方程的离散方程。
在本发明提供的织物热湿传输的计算方法中, 粒了单层织物的热湿传输模型的边界条 件, 多层织物的模型的边界 牛。 因为其要考虑纺织品系统内部织物之间的边界 牛, 也要 考虑在纺织品系统边界上的织物的边界 , 并且每层织物都有可能会加上防水膜,所以边 界 要考虑的情况比较复杂。
根据上面所述, 本发明作为织物热湿传输仿真的一 十算方法, 目的是更好地为研究人 员服务, 为研究人员研制出新型的织物提供分析的工具, 因此, 本发明具有以下几个方面的 特点:
1、 由于本发明的目的是为研究人员研制新型的织物材料提供理论分析的工具, 因此对 仿真的精确性要求很高。 为达到仿真结果的精确性要求, 在实现时采用控制织物吸湿 /放湿 过程的方程和控制织物与外界对流的边界方程想结合,一起控制织物在某一具体环境^牛的 热湿传递过程, 保证了仿真结果的精确。
2、 可以提供更快的计算速度。 对控制方程(偏微分方程)采用优化的离散化方法进行 求解, 保证结果准确性的同时, 极大的提高了仿真的速度。
3、 可以提供更直观的数据分析手段。 在对仿真结果进行分析时, 采用可视化处理和数 值分析相结合的方法, 为研究人员分析特定织物的热湿传递情况提供一种便利的工具。

Claims

权利要求书
1、 一种织物热湿传输的计算方法, 其特征在于, 所述织物为单层时, 求 解下列方程获得单层织物热湿传输的参数,所述单层织物中位置为 X的微分单 元在 t时刻的液态水、 气态水以及温度的动态分布:
Figure imgf000014_0001
其中:
a. ^ , 分别为所述微分单元中液态水、气态水和纱线的百分含量, 且 满足: £l + £a = l - £f
b. 公式 1 中 为多孔渗水介质中水的传输量, 根据毛细管现象和 Darcy定理, 其计算公式为: γ cos Θ sin adcsi c.公式 3中 为布料的动态体积比热, 计算公式为: cvtcvl +sfc +εα 其中 C^, 分别为微分单元中液态水、 气态水和纱线的动态体积 比热; d. 为蒸 凝结量, 其计算公式为:
rlg=^Ag(c (T)-C^
其中 8 为有效的蒸发或凝结表面积, C*m为外表局部空气中的饱和水蒸 ε
2πή 2
其中 Sv为纱线的面积体积比值, 计算公式为: s
πτ I r
z为纱线的长度, 为纱线的半径; e. 为纱线内部沿着半径的方向水浓度,根据第二 Fick定律纱线在圆柱 坐标系统中的水蒸气传输方程以及给定的初始和边界条件计算:
Figure imgf000015_0001
f. F P FL分别为织物的微分单元中在左右两个方向上的热辐射量, 在忽 略纱线与织物抵消的假设下, 其计算公式为: dx
dFL
FL - βσΤ
dx
g. 为多孔介质织物中的有效热传导率, 其计算公式为:
Kmix = slKl + (εα + sf )K fab 其中 Kfeb为通过试验得到的潮湿织物中的动态热传导率, 为水的热传
2、一种织物热湿传输的计算方法,其特征在于,所述织物为多层织物时, 求解下列方程获得多层织物热湿传输的参数, 所述多层织物中每一层位置为 X 的微分单元在 t时刻的液态水、 气态水以及温度的动态分布:
+ ξ2Ιι)-λΐΒΤι
Figure imgf000015_0002
其中: a.对于有超过一种不同纱线构成的织物, 使用含量百分比 fti表示每种纱 tn为每层中纱线的种类数; b. ∑ fel 为计算单位面积内具有不同毛细能力的纱
V dx 人
线的液态水的传输; 为纱线 中的液态水的扩散率, 其计算公式为 γ cos Θ sin dcsl
20ηε' 分别为平均体积比热、 平均吸附热以及平均传导率; 计
C V = £lC Vl + £fC Vf + £aC Va
Figure imgf000016_0001
Kmix =slKl +sfKf +saKa
tn ί \ d. 为动态吸湿率, 为平均纱线水含』 其计算公式分别为:
Figure imgf000016_0002
e. ^为动态流体蒸^ y凝结率,决定于液态水在织物中传输能力的分布其 计算公式为: ^ )
f. F PFL分别为织物的微分单元中在左右两个方向上的热辐射量, 在忽 略纱线与织物抵消的假设下, 其计算公式为:
¾
Figure imgf000017_0001
Figure imgf000017_0002
M
= r
PCT/CN2009/073328 2008-08-18 2009-08-18 一种织物热湿传输的计算方法 WO2010020177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13618708P 2008-08-18 2008-08-18
US61/136,187 2008-08-18

Publications (1)

Publication Number Publication Date
WO2010020177A1 true WO2010020177A1 (zh) 2010-02-25

Family

ID=41706870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073328 WO2010020177A1 (zh) 2008-08-18 2009-08-18 一种织物热湿传输的计算方法

Country Status (2)

Country Link
CN (1) CN101666795A (zh)
WO (1) WO2010020177A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499601A (zh) * 2013-09-10 2014-01-08 中国计量学院 一种测试纺织品动态热传递特性的方法和装置
CN103499602A (zh) * 2013-09-25 2014-01-08 东华大学 一种多层服装系统热湿阻的预测方法
CN111157392A (zh) * 2019-12-02 2020-05-15 上海工程技术大学 一种纤维材料热湿形变动态测量表征的装置及其使用方法
CN114491930A (zh) * 2021-12-17 2022-05-13 广东第二师范学院 一种运动着装人体热生理仿真方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108647400A (zh) * 2018-04-18 2018-10-12 华南理工大学 一种多尺度框架下的热物理传输数值仿真方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289764A (ja) * 2000-04-04 2001-10-19 Japan Synthetic Textile Inspection Inst Foundation 繊維製品の吸水蒸散速度の測定方法および測定装置
US6499338B2 (en) * 2000-04-20 2002-12-31 Hong Kong Polytechnic University Moisture management of textiles
CN101169401A (zh) * 2006-10-27 2008-04-30 香港理工大学 织物动态热湿传递特性的测量设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289764A (ja) * 2000-04-04 2001-10-19 Japan Synthetic Textile Inspection Inst Foundation 繊維製品の吸水蒸散速度の測定方法および測定装置
US6499338B2 (en) * 2000-04-20 2002-12-31 Hong Kong Polytechnic University Moisture management of textiles
CN101169401A (zh) * 2006-10-27 2008-04-30 香港理工大学 织物动态热湿传递特性的测量设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L.I. FENGZHI ET AL.: "Research on transport mechanism model in porous fabrics", JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY, vol. 43, no. 1, January 2003 (2003-01-01), pages 28 - 32 *
LIU YINGXI ET AL.: "A NEW ALGORITHM FOR SOLUTION OF TRANSIENT THERMAL AND HUMIDITY IELD IN POROUS FABRIC", JOURNAL OF NUMERICAL METHODS AND COMPUTER APPLICATIONS, March 2004 (2004-03-01), pages 13 - 19 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103499601A (zh) * 2013-09-10 2014-01-08 中国计量学院 一种测试纺织品动态热传递特性的方法和装置
CN103499601B (zh) * 2013-09-10 2016-06-08 中国计量学院 一种测试纺织品动态热传递特性的方法和装置
CN103499602A (zh) * 2013-09-25 2014-01-08 东华大学 一种多层服装系统热湿阻的预测方法
CN103499602B (zh) * 2013-09-25 2015-11-18 东华大学 一种多层服装系统热湿阻的预测方法
CN111157392A (zh) * 2019-12-02 2020-05-15 上海工程技术大学 一种纤维材料热湿形变动态测量表征的装置及其使用方法
CN111157392B (zh) * 2019-12-02 2022-10-21 上海工程技术大学 一种纤维材料热湿形变动态测量表征的装置及其使用方法
CN114491930A (zh) * 2021-12-17 2022-05-13 广东第二师范学院 一种运动着装人体热生理仿真方法

Also Published As

Publication number Publication date
CN101666795A (zh) 2010-03-10

Similar Documents

Publication Publication Date Title
Gibson Modeling heat and mass transfer from fabric-covered cylinders
WO2010020177A1 (zh) 一种织物热湿传输的计算方法
Zhang et al. Experimental analysis of an internally-cooled liquid desiccant dehumidifier
Li et al. A model of coupled liquid moisture and heat transfer in porous textiles with consideration of gravity
Liu et al. Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator
Neves et al. Effects of clothing and fibres properties on the heat and mass transport, for different body heat/sweat releases
Wang et al. Effect of moisture migration and phase change on effective thermal conductivity of porous building materials
Neves et al. On the determination of parameters required for numerical studies of heat and mass transfer through textiles–Methodologies and experimental procedures
Ghali et al. Modeling of heat and moisture transport by periodic ventilation of thin cotton fibrous media
Wissler et al. A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air
Bhatia et al. Thermophysiological wear comfort of clothing: an overview
Das et al. MOISTURE TRANSMISSION THROUGH TEXTILES: Part II: Evaluation Methods and Mathematical Modelling
Xu et al. Numerical solution of a dynamic model of heat and moisture transfer in porous fabric under low temperature
Fontana et al. Mathematical modeling and numerical simulation of heat and moisture transfer in a porous textile medium
Huang et al. Moisture transport in fibrous clothing assemblies
Ghaddar et al. Integrated human-clothing system model for estimating the effect of walking on clothing insulation
Hang et al. Finite volume solution of heat and moisture transfer through three-dimensional textile materials
CN101551379A (zh) 一种织物动态热湿传递性能的测试方法
Chen et al. Energy improvement and performance prediction of desiccant coated dehumidifiers based on dimensional and scaling analysis
Bennai et al. Contribution to the modelling of coupled heat and mass transfers on 3D real structure of heterogeneous building materials: application to hemp concrete
Zhu Investigating the effective thermal conductivity of moist fibrous fabric based on Parallel-Series model: A consideration of material’s swelling effect
Zhu et al. Investigation of the 3D model of coupled heat and liquid moisture transfer in hygroscopic porous fibrous media
Havenith Clothing heat exchange models for research and application
Fengzhi et al. Effect of clothing material on thermal responses of the human body
Wang et al. Radiation and conduction heat transfer coupled with liquid water transfer, moisture sorption, and condensation in porous polymer materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09807876

Country of ref document: EP

Kind code of ref document: A1