WO2010019975A1 - Vorrichtung zur berührungslosen abstandsmessung zwischen zwei messstellen - Google Patents

Vorrichtung zur berührungslosen abstandsmessung zwischen zwei messstellen Download PDF

Info

Publication number
WO2010019975A1
WO2010019975A1 PCT/AT2009/000305 AT2009000305W WO2010019975A1 WO 2010019975 A1 WO2010019975 A1 WO 2010019975A1 AT 2009000305 W AT2009000305 W AT 2009000305W WO 2010019975 A1 WO2010019975 A1 WO 2010019975A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
stage
measurement
evaluation
measuring devices
Prior art date
Application number
PCT/AT2009/000305
Other languages
English (en)
French (fr)
Inventor
Andreas Stelzer
Stefan Scheiblhofer
Original Assignee
Universität Linz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Linz filed Critical Universität Linz
Priority to DE112009001989T priority Critical patent/DE112009001989A5/de
Publication of WO2010019975A1 publication Critical patent/WO2010019975A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations

Definitions

  • the invention relates to a device for contactless distance measurement between at least two measuring points associated with the measuring points, interconnected by a radio link measuring devices, each having an oscillator stage for generating a frequency-modulated in the sense of a ram- frequency waveform measurement signal, a transmitting and receiving unit for Measuring signals and a connected to an evaluation stage mixing unit for the generated in the respective measuring device and received by the other measuring device measuring signals, and with at least one connected to the evaluation of the measuring devices computer stage for calculating the evaluated in the evaluation levels measurement data and output of the calculated Distances.
  • a radio link measuring devices each having an oscillator stage for generating a frequency-modulated in the sense of a ram- frequency waveform measurement signal, a transmitting and receiving unit for Measuring signals and a connected to an evaluation stage mixing unit for the generated in the respective measuring device and received by the other measuring device measuring signals, and with at least one connected to the evaluation of the measuring devices computer stage for calculating the evaluated in the evaluation levels measurement data and output of the calculated Distances
  • the invention is therefore based on the object, a device of the type described for contactless distance measurement between at least two measuring points in such a way that with a low cost, a high-resolution distance measurement is possible.
  • the invention achieves the stated object in that the evaluation stage of at least one of the measuring devices is connected to a separate from the transmitting and receiving unit for the measuring signals transmitting unit for wireless transmission of the evaluated measurement data to the computer stage.
  • the transmitting unit connected to the evaluation stage is connected to the computer stage via a data transmission path separate from the measuring radio link between the measuring devices, then the measuring radio link between the measuring devices can be used exclusively for the transmission of the measuring signals, which is an advantageous prerequisite for the accurate detection of high Speed-changing distance ratios is because the measurement radio link is not additionally burdened by the transmission of the evaluated measurement data and thus the transmission rate of the measurement signals is limited.
  • Particularly advantageous conditions arise in this context, if already existing networks, preferably wireless networks for mobile communication, used and the case-proven facilities are used, so that the potential application can be considerably expanded.
  • the computer stage for billing the measurement data evaluated with regard to the frequency differences can be assigned in a manner known per se to at least one measuring device and combined with the evaluation stage of this measuring device to form a common computer unit.
  • FIG. 1 shows a device according to the invention for non-contact distance measurement between two measuring points in a simplified block diagram
  • FIG. 2 shows a representation corresponding to FIG. 1 of an embodiment variant of the device according to the invention
  • FIG. 3 shows the temporal frequency profile of the transmitted and received measuring signals of the measuring device of one of the two measuring points
  • FIG. 4 shows the temporal frequency curve of the transmitted and received measuring signals of the measuring device of the other measuring point.
  • the two measuring devices 1, 2 assigned to each measuring point have the same structure and each have an oscillator stage 4 controllable via a control unit 3 for a measuring signal in the microwave range whose frequency is modulated in the form of a ramped frequency response. Although this is not mandatory, one will is. Although not mandatory, a linear increase or decrease in the frequency response is sought.
  • the frequency-modulated measuring signal is fed to a transmitting and receiving unit 5.
  • the transmitting and receiving units 5 of the two measuring units 1 and 2 are connected to each other by a measuring radio link 6.
  • the measurement signal received by the respective other measuring device 1, 2 is supplied to a mixing unit 7, in which the received measuring signal is mixed with the measuring signal to be transmitted, in order to apply a mixed signal to an evaluating stage 8 connected to the mixing unit 7.
  • the evaluated measurement data are forwarded via the control unit 3 after a corresponding processing to a transmitting unit 9, which is connected to a computer stage 10 via a separate from the measurement radio link 6 data transmission link 11, in particular a radio network 12 for mobile communication.
  • the evaluated measurement data of the two measuring devices 1 and 2 are therefore provided to the computer stage 10 for offsetting and for output of the calculated distances.
  • FIGS. 3 and 4 illustrate the temporal frequency profiles of the transmitted and received measuring signals of the two measuring devices 1 and 2. From FIG. 3, which relates to the measuring device 1, one can see the ram-shaped course of the frequency response U of the measuring signal transmitted at the instant t 0 .
  • FIG. 4 shows the frequency curve f 2 of the measuring signal transmitted in the measuring device 2. This measurement signal is sent delayed with respect to the measurement signal of the measuring device 1 by a time T o ff and reaches the measuring device 1 after a transit time T. The measurement signal received by the measuring device 2 in the measuring device 1 is thus opposite the measuring signal of the measuring device 1 by a period of time T. O ff + T offset, which of course also shows in the displacement of the frequency response f 2 'of the received measurement signal.
  • the frequency difference ⁇ f ⁇ is calculated analogously from the frequency profiles h and V of the transmitted and received measurement signals of the measuring device 2
  • the distance d of the two measuring devices 1, 2 can be determined independently of one another by the time delay T off of the transmitted signals f 1 and h. It is only to ensure a corresponding overlap of the frequency ramps of the transmitted and the received measurement signals and thus for a corresponding order of magnitude of the frequency difference, which may require a rough Vorsynchronmaschine based on the time difference between the transmitted and received measurement signal.
  • the mixed signals in the sense of determining the frequency differences .DELTA. ⁇ and ⁇ f ⁇ are evaluated to account for the evaluated measurement signals in the computer stage 10 for determining the distance d. Because of the separate data transmission path 11 for the transmission of the evaluated measurement data, the measurement radio link 6 is not subjected to any additional load due to a data transmission and remains free for the transmission of the measurement signals. Due to the separate data transmission link 11 and the computer stage 10 can be assigned to a separate from the measuring devices 1, 2 output device 13.
  • FIG. 2 differs from that of FIG. 1 only in that the computer stage 10 is assigned to one of the two measuring devices 1, 2, so that the distance determination in this measuring device, in the embodiment, the measuring device 2, is performed, and Although as described in connection with FIGS. 3 and 4. But it can also be assigned to both measuring devices 1, 2 computer stages 10, as indicated by dashed lines in Fig. 2 for the measuring device 1. In this case, ensure a mutual exchange of data between the two measuring devices 1 and 2.
  • the computer stage 10 can be summarized with the evaluation stage 8 to a common computer unit 14, which preferably also includes the control unit 3.
  • Fig. 2 dash-dotted lines indicated that the measurement radio link 6 can also be used for data transmission, if z. B. the transmitting unit 9 of the measuring device 1, the antenna of the radio link 6 with the appropriately formatted, evaluated measurement data acted upon.

Abstract

Es wird eine Vorrichtung zur berührungslosen Abstandsmessung zwischen wenigstens zwei Messstellen mit den Messstellen zugeordneten, durch eine Messfunkstrecke (6) miteinander verbundenen Messeinrichtungen (1, 2), die je eine Oszillatorstufe (4) zum Erzeugen eines im Sinne eines rampenförmigem Freguenzverlaufs frequenzmodulierten Messsignals, eine Sende- und Empfangseinheit (5) für die Messsignale, sowie eine an eine Auswertestufe (8) angeschlossene Mischeinheit (7) für die in der jeweiligen Messeinrichtung (1, 2) erzeugten und die von der anderen Messeinrichtung (2, 1) empfangenen Messsignale aufweist, und mit wenigstens einer an die Auswertestufen (8) der Messeinrichtungen (1, 2) angeschlossnen Rechnerstufe (10) zum Verrechnen der in den Auswertestufen ausgewerteten Messdaten und zur Ausgabe der errechneten Abstände beschrieben. Um vorteilhafte Konstruktionsverhältnisse zu schaffen, wird vorgeschlagen, dass die Auswertestufe (8) zumindest einer der Messeinrichtungen (1, 2) an eine von der Sende- und Empfangseinheit (5) für die Messsignale gesonderte Sendeeinheit (9) zur drahtlosen Übermittlung der ausgewerteten Messdaten an die Rechnerstufe (10) angeschlossen ist.

Description

Vorrichtung zur berührungslosen Abstandsmessunq zwischen zwei Messstellen
Technisches Gebiet
Die Erfindung bezieht sich auf eine Vorrichtung zur Berührungslosen Abstandsmessung zwischen wenigstens zwei Messstellen mit den Messstellen zugeordneten, durch eine Messfunkstrecke miteinander verbundenen Messeinrichtungen, die je eine Oszillatorstufe zum Erzeugen eines im Sinne eines ram- penförmigem Frequenzverlaufs frequenzmodulierten Messsignals, eine Sende- und Empfangseinheit für die Messsignale, sowie eine an eine Auswertestufe angeschlossene Mischeinheit für die in der jeweiligen Messeinrichtung erzeugten und die von der anderen Messeinrichtung empfangenen Messsignale aufweist, und mit wenigstens einer an die Auswertestufen der Messeinrichtungen angeschlossnen Rechnerstufe zum Verrechnen der in den Auswertestufen ausgewerteten Messdaten und zur Ausgabe der errechneten Abstände.
Stand der Technik
Um eine vorteilhafte Radarmessung des Abstands zwischen zwei Messeinrichtungen sicherzustellen, ist es bekannt (DE 101 57 931 A1), von einer der Messeinrichtungen ein frequenzmoduliertes Messsignal mit einem rampenartigen Frequenzverlauf auszusenden und dieses von der anderen Messeinrichtung empfangene Messsignal mit einem in der empfangenden Messeinrichtung in übereinstimmender Weise mit dem Messsignal erzeugten Vergleichssignal zu mischen, sodass sich zwischen dem Frequenzverlauf des in der empfangenden Messeinrichtung erzeugten Vergleichssignals und dem Frequenzver- lauf des empfangenen Messsignals eine konstante, einerseits von der Laufzeit des Messsignals zwischen den beiden Messeinrichtungen und anderseits von der gegenseitigen zeitlichen Verschiebung zwischen Messsignal und Vergleichssignal abhängige Frequenzdifferenz ergibt, aus der der Abstand zwischen den Messeinrichtungen in bekannter Art ermittelt werden kann, wenn die zeitliche Verschiebung zwischen Messsignal und Vergleichssignal bekannt ist. Die Genauigkeit der für eine entsprechende Empfindlichkeit der Abstandsmessung notwendigen, zeit- und frequenzbezogenen Synchronisierung der Oszillatoren für das Mess- und das Vergleichssignal ist allerdings erheblich, was einem vergleichsweise einfachen Aufbau entgegensteht.
Damit eine genaue zeitliche Abstimmung der Oszillatoren in den beiden Messeinrichtungen überflüssig wird, wurde bereits vorgeschlagen (Stefan Scheibel- hofer et al. „Performance Analysis of Cooperative FMCW Radar Distance Mea- surement Systems" in IEEE MTT-S International Microwave Symp. 2008, pp.121-124, Atlanta, USA Jun. 2008), die in beiden Messeinrichtungen übereinstimmend erzeugten Messsignale einerseits an die jeweils andere Messeinrichtung zu übertragen und anderseits mit dem jeweils empfangenen Messsignal zu mischen, um in beiden Messeinrichtungen über eine Auswertestufe die jeweilige Frequenzdifferenz zwischen den Rampen des Frequenzverlaufs der gesendeten und der empfangenen Messsignale zu ermitteln, weil durch eine Verrechnung dieser beiden jeweils von der Laufzeit der Messsignale und der zeitlichen Verschiebung zwischen den Messsignalen der beiden Messeinrichtungen abhängigen Frequenzdifferenzen die zeitliche Verschiebung eliminiert werden kann. Nachteilig ist vor allem, dass vergleichsweise aufwändige Vorkehrungen getroffen werden müssen, um die ausgewerteten Messdaten mit Hilfe der Empfangs- und Sendeeinheiten über die Messfunkstrecke zwischen den Messeinrichtungen zu übertragen.
Darstellung der Erfindung Der Erfindung liegt somit die Aufgabe zugrunde, eine Vorrichtung der eingangs geschilderten Art zur berührungslosen Abstandsmessung zwischen wenigstens zwei Messstellen so auszugestalten, dass mit einem geringen Aufwand eine hochauflösende Abstandsmessung ermöglicht wird.
Die Erfindung löst die gestellte Aufgabe dadurch, dass die Auswertestufe zumindest einer der Messeinrichtungen an eine von der Sende- und Empfangseinheit für die Messsignale gesonderte Sendeeinheit zur drahtlosen Übermittlung der ausgewerteten Messdaten an die Rechnerstufe angeschlossen ist.
Durch das Vorsehen einer gesonderten Sendeeinheit für die Übertragung der ausgewerteten Messdaten können herkömmliche Protokolle für die Datenübertragung eingesetzt werden, wodurch der konstruktive Aufwand sowohl auf der Senderseite als auch insbesondere auf der Empfängerseite vergleichsweise klein gehalten und auf bewährte Komponenten zurückgegriffen werden kann. Zur Datenübertragung selbst kann die Messfunkstrecke zwischen den Messeinrichtungen benützt werden, und zwar mit dem Vorteil der Nutzung einer für die Übertragung der Messsignale erforderlichen Funkstrecke. Wird die an die Auswertestufe angeschlossene Sendeeinheit über eine von der Messfunkstrecke zwischen den Messeinrichtungen gesonderte Datenübertragungsstrecke mit der Rechnerstufe verbunden, so kann die Messfunkstrecke zwischen den Messeinrichtungen ausschließlich für die Übertragung der Messsignale genützt werden, was eine vorteilhafte Voraussetzung für die genaue Erfassung von sich mit hoher Geschwindigkeit ändernden Abstandverhältnissen ist, weil die die Messfunkstrecke nicht durch die Übertragung der ausgewerteten Messdaten zusätzlich belastet und damit die Übertragungsrate der Messsignale eingeschränkt wird. Besonders vorteilhafte Verhältnisse ergeben sich in diesem Zusammenhang, wenn bereits bestehende Netze, vorzugsweise Funknetze für die mobile Kommunikation, eingesetzt und die hiefür bewährten Einrichtungen genützt werden, wodurch das mögliche Einsatzgebiet erheblich erweitert werden kann. Die Rechnerstufe zur Verrechnung der hinsichtlich der Frequenzdifferenzen ausgewerteten Messdaten kann in an sich bekannter Weise zumindest einer Messeinrichtung zugeordnet werden und mit der Auswertestufe dieser Messeinrichtung zu einer gemeinsamen Rechnereinheit zusammengefasst werden. Es eröffnet sich aber auch die Möglichkeit, eine von den Messeinrichtungen gesonderte Ausgabeeinrichtung mit der Rechnerstufe zur Verrechnung der ausgewerteten Messdaten vorzusehen, weil ja an diese Rechnerstufe lediglich die ausgewerteten Messwerte aus den Auswertestufen der Messeinrichtungen zu übermitteln sind, was unabhängig vom Messzeitpunkt auch mit einer zeitlichen Verzögerung erfolgen kann. Es ist nur darauf zu achten, dass die Zuordnung der in den beiden Messeinrichtungen ausgewerteten Messdaten nicht verloren geht.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt. Es zeigen
Fig. 1 eine erfindungsgemäße Vorrichtung zur berührungslosen Abstandmessung zwischen zwei Messstellen in einem vereinfachten Blockschaltbild, Fig. 2 eine der Fig. 1 entsprechende Darstellung einer Ausführungsvariante der erfindungsgemäßen Vorrichtung,
Fig. 3 den zeitlichen Frequenzverlauf der gesendeten und empfangenen Messsignale der Messeinrichtung einer der beiden Messstellen und Fig. 4 den zeitlichen Frequenzverlauf der gesendeten und empfangenen Messsignale der Messeinrichtung der anderen Messstelle.
Weg zur Ausführung der Erfindung
Gemäß der Fig. 1 sind die beiden je einer Messstelle zugeordneten Messeinrichtungen 1 , 2 gleich aufgebaut und weisen je eine über eine Steuereinheit 3 ansteuerbare Oszillatorstufe 4 für ein Messsignal im Mikrowellenbereich auf, dessen Frequenz im Sinne eines rampenförmigen Frequenzverlaufs moduliert ist. Obwohl dies nicht zwingend ist, wird ein ist. Obwohl dies nicht zwingend ist, wird ein linearer Anstieg bzw. Abfall des Frequenzverlaufs angestrebt. Das frequenzmodulierte Messsignal wird einer Sende- und Empfangseinheit 5 zugeleitet. Die Sende- und Empfangseinheiten 5 der beiden Messeinheiten 1 und 2 sind durch eine Messfunkstrecke 6 miteinander verbunden. Das von der jeweils anderen Messeinrichtung 1 , 2 empfangene Messsignal wird einer Mischeinheit 7 zugeführt, in der das empfangene Messsignal mit dem zu sendenden Messsignal gemischt wird, um eine an die Mischeinheit 7 angeschlossene Auswertestufe 8 mit dem Mischsignal zu beaufschlagen. Nach einer entsprechenden Auswertung des Mischsignals werden die ausgewerteten Messdaten über die Steuereinheit 3 nach einer entsprechenden Aufbereitung an eine Sendeeinheit 9 weitergeleitet, die mit einer Rechnerstufe 10 über eine von der Messfunkstrecke 6 gesonderte Datenübertragungsstrecke 11 , insbesondere ein Funknetz 12 für mobile Kommunikation verbunden ist. Die ausgewerteten Messdaten der beiden Messeinrichtungen 1 und 2 werden daher der Rechnerstufe 10 zur Verrechnung und zur Ausgabe der errechneten Abstände zur Verfügung gestellt.
In den Fig. 3 und 4 sind die zeitlichen Frequenzverläufe der gesendeten und empfangenen Messsignale der beiden Messeinrichtungen 1 und 2 veranschaulicht. Aus der Fig. 3, die die Messeinrichtung 1 betrifft, erkennt man den ram- penförmigen Verlauf des Frequenzganges U des zum Zeitpunkt t0 gesendeten Messsignals. In der Fig. 4 ist der Frequenzverlauf f2 des in der Messeinrichtung 2 gesendeten Messsignals ersichtlich. Dieses Messsignal wird gegenüber dem Messsignal der Messeinrichtung 1 um eine Zeitspanne TOff verzögert gesendet und erreicht nach einer Laufzeit T die Messeinrichtung 1. Das in der Messeinrichtung 1 von der Messeinrichtung 2 empfangene Messsignal ist damit gegenüber dem Messsignal der Messeinrichtung 1 um eine Zeitspanne TOff + T versetzt, was sich selbstverständlich auch in der Versetzung des Frequenzverlaufs f2' des empfangenen Messsignals zeigt. Da wegen des parallelen Rampenverlaufs der Frequenzgänge fi und f2 ! die Frequenzdifferenz Δfj = f 1 - h' konstant ist, ergibt sich die vorzeichenabhängige Frequenzdifferenz aus der bekannten Steigung k des rampenförmigen Frequenzverlaufs gemäß Fig. 3 zu Δή = k(Toff + T).
In analoger Weise berechnet sich gemäß der Fig. 4 die Frequenzdifferenz Δfπ aus den Frequenzverläufen h und V der gesendeten und der empfangenen Messsignale der Messeinrichtung 2 zu
Figure imgf000008_0001
Werden die Frequenzdifferenzen Δή und Δfπ durch eine Addition miteinander verrechnet, so ergibt sich die Laufzeit zu
τ = (1/2k) (fi + fπ) und damit der Abstand d zwischen den beiden Messeinrichtungen 1 und 2 bei einer angenommenen Ausbreitungsgeschwindigkeit Co der elektromagnetischen Wellen zu d = (co/2k) (fi + fii).
Da aus den Mischsignalen die konstante Frequenzdifferenz beispielsweise durch eine Fourier-Transformation ermittelt werden kann, kann der Abstand d der beiden Messeinrichtungen 1 , 2 voneinander unabhängig von der zeitlichen Verzögerung Toff der gesendeten Signale fι und h bestimmt werden. Es ist lediglich für eine entsprechende Überlappung der Frequenzrampen der gesendeten und der empfangenen Messsignale und damit für eine entsprechende Größenordnung der Frequenzdifferenz zu sorgen, was unter Umständen eine grobe Vorsynchronisierung anhand der Zeitdifferenz zwischen gesendetem und empfangenem Messsignal erforderlich macht.
In den Auswertestufen 8 der beiden Messeinrichtungen 1 und 2 werden die Mischsignale im Sinne der Bestimmung der Frequenzdifferenzen Δή und Δfπ ausgewertet, um die ausgewerteten Messsignale in der Rechnerstufe 10 zur Bestimmung des Abstandes d zu verrechnen. Wegen der gesonderten Datenübertragungsstrecke 11 für die Übertragung der ausgewerteten Messdaten wird die Messfunkstrecke 6 keiner zusätzlichen Belastung durch eine Datenübertragung unterworfen und bleibt für die Übertragung der Messsignale frei. Aufgrund der gesonderten Datenübertragungsstrecke 11 kann auch die Rechnerstufe 10 einer von den Messeinrichtungen 1 , 2 gesonderten Ausgabeeinrichtung 13 zugeordnet werden.
Die Ausführungsform nach der Fig. 2 unterscheidet sich von der nach der Fig. 1 lediglich dadurch, dass die Rechnerstufe 10 einer der beiden Messeinrichtungen 1 , 2 zugeordnet ist, sodass die Abstandsbestimmung in dieser Messeinrichtung, im Ausführungsbeispiel die Messeinrichtung 2, durchgeführt wird, und zwar wie im Zusammenhang mit den Fig. 3 und 4 beschrieben. Es können aber auch beiden Messeinrichtungen 1 , 2 Rechnerstufen 10 zugeordnet werden, wie dies in der Fig. 2 für die Messeinrichtung 1 strichliert angedeutet ist. In diesem Fall ist für einen gegenseitigen Datenaustausch zwischen den beiden Messeinrichtungen 1 und 2 zu sorgen. Bei der Zuordnung der Rechnerstufe 10 zu den Messeinrichtungen 1 , 2 kann die Rechnerstufe 10 mit der Auswertestufe 8 zu einer gemeinsamen Rechnereinheit 14 zusammengefasst werden, die vorzugsweise auch die Steuereinheit 3 umfasst.
In der Fig. 2, ist strichpunktiert angedeutet, dass die Messfunkstrecke 6 auch für die Datenübertragung eingesetzt werden kann, wenn z. B. die Sendeeinheit 9 der Messeinrichtung 1 die Antenne der Messfunkstrecke 6 mit den entsprechend formatierten, ausgewerteten Messdaten beaufschlagt.

Claims

P a t e n t a n s p r ü c h e
1. Vorrichtung zur berührungslosen Abstandsmessung zwischen wenigstens zwei Messstellen mit den Messstellen zugeordneten, durch eine Messfunkstrecke (6) miteinander verbundenen Messeinrichtungen (1 , 2), die je eine Oszillatorstufe (4) zum Erzeugen eines im Sinne eines rampenförmigem Frequenzverlaufs frequenzmodulierten Messsignals, eine Sende- und Empfangseinheit (5) für die Messsignale, sowie eine an eine Auswertestufe (8) angeschlossene Mischeinheit (7) für die in der jeweiligen Messeinrichtung (1 , 2) erzeugten und die von der anderen Messeinrichtung (2, 1) empfangenen Messsignale aufweist, und mit wenigstens einer an die Auswertestufen (8) der Messeinrichtungen (1 , 2) angeschlossnen Rechnerstufe (10) zum Verrechnen der in den Auswertestufen ausgewerteten Messdaten und zur Ausgabe der errechneten Abstände, dadurch gekennzeichnet, dass die Auswertestufe (8) zumindest einer der Messeinrichtungen (1 , 2) an eine von der Sende- und Empfangseinheit (5) für die Messsignale gesonderte Sendeeinheit (9) zur drahtlosen Übermittlung der ausgewerteten Messdaten an die Rechnerstufe (10) angeschlossen ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die an die Auswertestufe (8) angeschlossene Sendeeinheit (9) über die Messfunkstrecke (6) zwischen den Messeinrichtungen (1 , 2) mit der Rechnerstufe (10) verbunden ist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die an die Auswertestufe (8) angeschlossene Sendeeinheit (9) über eine von der Messfunkstrecke (6) zwischen den Messeinrichtungen (1 , 2) gesonderte Datenübertragungsstrecke (11) mit der Rechnerstufe (10) verbunden ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Datenübertragungsstrecke (11) zwischen der Rechnerstufe (10) und wenigstens einer der Auswertestufen (8) der Messeinrichtungen (1 , 2) Teil eines Funknetzes (12) für mobile Kommunikation ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Rechnerstufe (10) und die Auswertestufe (8) in zumindest einer Messeinrichtung (2) zu einer gemeinsamen Rechnereinheit (14) zusammenge- fasst sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Rechnerstufe (10) einer von den Messeinrichtungen (1 , 2) gesonderten Ausgabeeinrichtung (13) zugeordnet ist.
PCT/AT2009/000305 2008-08-18 2009-08-07 Vorrichtung zur berührungslosen abstandsmessung zwischen zwei messstellen WO2010019975A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112009001989T DE112009001989A5 (de) 2008-08-18 2009-08-07 Vorrichtung zur berührungslosen Abstandsmessung zwischen zwei Messstellen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT12812008A AT506707B1 (de) 2008-08-18 2008-08-18 Vorrichtung zur berührungslosen abstandsmessung zwischen zwei messstellen
ATA1281/2008 2008-08-18

Publications (1)

Publication Number Publication Date
WO2010019975A1 true WO2010019975A1 (de) 2010-02-25

Family

ID=41259324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2009/000305 WO2010019975A1 (de) 2008-08-18 2009-08-07 Vorrichtung zur berührungslosen abstandsmessung zwischen zwei messstellen

Country Status (3)

Country Link
AT (1) AT506707B1 (de)
DE (1) DE112009001989A5 (de)
WO (1) WO2010019975A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2602636A1 (de) * 2011-12-08 2013-06-12 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Verfahren zur Bestimmung der Entfernung und der Geschwindigkeit von FMCW-Radarendgeräten
DE102014104273A1 (de) * 2014-03-26 2015-10-01 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren in einem Radarsystem, Radarsystem bzw. Vorrichtung eines Radarsystems
WO2018206290A1 (de) 2017-05-12 2018-11-15 Symeo Gmbh Verfahren und vorrichtung zur kompensation von störeinflüssen
JP2019505782A (ja) * 2016-01-04 2019-02-28 シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング レーダシステムにおける位相ノイズに起因する干渉を低減するための方法及びシステム
WO2021047844A1 (de) 2019-09-09 2021-03-18 Symeo Gmbh Radar-verfahren sowie radar-system
US11733348B2 (en) 2017-05-12 2023-08-22 Symeo Gmbh Method and device for compensating for phase noise

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2742638A (en) * 1952-01-05 1956-04-17 Vernon M Haywood Radio ranging system
DE10157931A1 (de) * 2001-11-26 2003-06-12 Siemens Ag Verfahren und Vorrichtungen zur Synchronisation von Funkstationen und zeitsynchrones Funkbussystem

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2742638A (en) * 1952-01-05 1956-04-17 Vernon M Haywood Radio ranging system
DE10157931A1 (de) * 2001-11-26 2003-06-12 Siemens Ag Verfahren und Vorrichtungen zur Synchronisation von Funkstationen und zeitsynchrones Funkbussystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STELZER A ET AL: "Precise distance measurement with cooperative FMCW radar units", RADIO AND WIRELESS SYMPOSIUM, 2008 IEEE, IEEE, PISCATAWAY, NJ, USA, 22 January 2008 (2008-01-22), pages 771 - 774, XP031237276, ISBN: 978-1-4244-1462-8 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085386A1 (en) 2011-12-08 2013-06-13 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method of determining distance and speed of fmcw radar terminals
EP2602636A1 (de) * 2011-12-08 2013-06-12 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Verfahren zur Bestimmung der Entfernung und der Geschwindigkeit von FMCW-Radarendgeräten
US10962634B2 (en) 2014-03-26 2021-03-30 Symeo Gmbh Method in a radar system, radar system, and/or device of a radar system
DE102014104273A1 (de) * 2014-03-26 2015-10-01 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren in einem Radarsystem, Radarsystem bzw. Vorrichtung eines Radarsystems
WO2015144134A3 (de) * 2014-03-26 2015-11-12 Symeo Gmbh Verfahren in einem radarsystem, radarsystem bzw. vorrichtung eines radarsystems
JP2017513024A (ja) * 2014-03-26 2017-05-25 シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング レーダシステムの方法、レーダシステム及びレーダシステムの装置
JP7357585B2 (ja) 2014-03-26 2023-10-06 シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング レーダシステムの方法、レーダシステム及びレーダシステムの装置
EP3588134A1 (de) * 2014-03-26 2020-01-01 Symeo GmbH Verfahren in einem radarsystem, radarsystem bzw. vorrichtung eines radarsystems
JP2020165980A (ja) * 2014-03-26 2020-10-08 シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング レーダシステムの方法、レーダシステム及びレーダシステムの装置
JP2019505782A (ja) * 2016-01-04 2019-02-28 シメオ ゲゼルシャフト ミット ベシュレンクテル ハフツング レーダシステムにおける位相ノイズに起因する干渉を低減するための方法及びシステム
US11016169B2 (en) 2016-01-04 2021-05-25 Symeo Gmbh Method and system for reducing interference caused by phase noise in a radar system
US11733348B2 (en) 2017-05-12 2023-08-22 Symeo Gmbh Method and device for compensating for phase noise
US11774551B2 (en) 2017-05-12 2023-10-03 Symeo Gmbh Method and device for compensating for interfering influences
WO2018206290A1 (de) 2017-05-12 2018-11-15 Symeo Gmbh Verfahren und vorrichtung zur kompensation von störeinflüssen
WO2021047844A1 (de) 2019-09-09 2021-03-18 Symeo Gmbh Radar-verfahren sowie radar-system

Also Published As

Publication number Publication date
DE112009001989A5 (de) 2011-07-28
AT506707A4 (de) 2009-11-15
AT506707B1 (de) 2009-11-15

Similar Documents

Publication Publication Date Title
EP2845026B1 (de) Verfahren und anordnung zur relativen lageerkennung von stationen mittels funkortung
EP1825293B1 (de) Elektronisches messverfahren
EP0535196B1 (de) Verfahren und anordnung zur abstandsmessung nach dem rückstrahlprinzip radar
AT506707B1 (de) Vorrichtung zur berührungslosen abstandsmessung zwischen zwei messstellen
DE19538309C2 (de) Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und einem oder mehreren Hindernissen
DE112006001114T5 (de) Radargerät
DE10104022A1 (de) Radareinrichtung und Verfahren zum Codieren einer Radareinrichtung
DE102009060591A1 (de) Sender-Empfänger-Schaltung und Verfahren zur Entfernungsmessung zwischen einem ersten Knoten und einem zweiten Knoten eines Funknetzes
EP1864155A1 (de) Verfahren und vorrichtung zur abstands- und relativgeschwindigkeitsmessung mehrerer objekte
DE102009023962A1 (de) Radarvorrichtung und Verarbeitungsverfahren hierfür
EP1340097A1 (de) Radareinrichtung und verfahren zum betreiben einer radareinrichtung
EP2406659A1 (de) Abstandsmessung
DE102012103085A1 (de) Radarvorrichtung
WO2000000842A1 (de) Verfahren zur simulation von echosignalen für doppler-radar-systeme
EP1831720A1 (de) Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen
DE19743132C2 (de) Verfahren und Vorrichtung zur Abstandsmessung
EP1549972B1 (de) Verfahren zur ermittlung des abstands zwischen zwei sende-empfangs- stationen und sende-empfangs-stationen zur durchführung des verfahrens
EP2465310B1 (de) Verfahren und anordnung zur laufzeitmessung eines signals zwischen zwei stationen der anordnung
EP1549971A1 (de) Verfahren zur ermittlung des abstands zwischen zwei sende-empfangs-stationen
DE4027972A1 (de) Vorrichtung und verfahren zur telemetrischen bestimmung einer entfernung und anwendung bei einer radarsonde fuer die bestimmung der topographischen karte der begichtungsoberflaeche in einem schachtofen
DE102010027962A1 (de) Füllstandsmessgerät
DE102019115729A1 (de) Fahrerassistenzsystem für ein Fahrzeug zur Bestimmung einer relativen Geschwindigkeit anhand einer Signalform eines Sendesignals
EP1413896A2 (de) Verfahren zum Betrieb eines Radarsensors sowie Anordnungen hierzu
DE102019201742A1 (de) Transceiver und Verfahren zur Distanzmessung
DE102007049998A1 (de) Radarvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09775590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

Effective date: 20110219

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009001989

Country of ref document: DE

Effective date: 20110728

122 Ep: pct application non-entry in european phase

Ref document number: 09775590

Country of ref document: EP

Kind code of ref document: A1