WO2010018980A2 - 무선 통신 시스템에서 제어신호 전송 방법 및 장치 - Google Patents

무선 통신 시스템에서 제어신호 전송 방법 및 장치 Download PDF

Info

Publication number
WO2010018980A2
WO2010018980A2 PCT/KR2009/004480 KR2009004480W WO2010018980A2 WO 2010018980 A2 WO2010018980 A2 WO 2010018980A2 KR 2009004480 W KR2009004480 W KR 2009004480W WO 2010018980 A2 WO2010018980 A2 WO 2010018980A2
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
index
control signal
resource
control information
Prior art date
Application number
PCT/KR2009/004480
Other languages
English (en)
French (fr)
Other versions
WO2010018980A3 (ko
Inventor
한승희
이문일
권영현
고현수
구자호
김동철
정재훈
문성호
곽진삼
노민석
이현우
Original Assignee
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자주식회사 filed Critical 엘지전자주식회사
Priority to CN200980131260.XA priority Critical patent/CN102119497B/zh
Priority to JP2011522904A priority patent/JP5576372B2/ja
Priority to US13/058,294 priority patent/US8848629B2/en
Priority to EP09806842.2A priority patent/EP2333985B1/en
Publication of WO2010018980A2 publication Critical patent/WO2010018980A2/ko
Publication of WO2010018980A3 publication Critical patent/WO2010018980A3/ko
Priority to US14/464,092 priority patent/US9191931B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for transmitting a control signal in a wireless communication system.
  • the next generation multimedia wireless communication system which is being actively researched recently, requires a system capable of processing and transmitting various information such as video, wireless data, etc., out of an initial voice-oriented service.
  • the purpose of a wireless communication system is to enable a large number of users to communicate reliably regardless of location and mobility.
  • a wireless channel is a Doppler due to path loss, noise, fading due to multipath, intersymbol interference (ISI), or mobility of UE.
  • ISI intersymbol interference
  • There are non-ideal characteristics such as the Doppler effect.
  • Various techniques have been developed to overcome the non-ideal characteristics of the wireless channel and to improve the reliability of the wireless communication.
  • MIMO multiple input multiple output
  • MIMO techniques include spatial multiplexing, transmit diversity, beamforming, and the like.
  • the MIMO channel matrix according to the number of receive antennas and the number of transmit antennas may be decomposed into a plurality of independent channels. Each independent channel is called a spatial layer or stream.
  • the number of streams is called rank.
  • ITU International Telecommunication Union
  • 3rd generation is the next generation of mobile communication system after 3rd generation, and provides high-speed transmission rates of downlink 1 Gbps (Gigabits per second) and uplink 500 Mbps (Megabits per second), thereby enabling a multimedia seamless based on IP (internet protocol).
  • Standardization of the IMT-A (Advanced) system which aims to support seamless) services, is in progress.
  • 3GPP LTE-A (Advanced) system is considered as a candidate technology for IMT-A system.
  • the LTE-A system is progressing toward improving the completeness of the LTE system, and is expected to maintain backward compatibility with the LTE system. This is because the compatibility between the LTE-A system and the LTE system is convenient from the user's point of view, and the operator can also reuse the existing equipment.
  • a wireless communication system is a single carrier system that supports one carrier. Since the transmission rate is proportional to the transmission bandwidth, the transmission bandwidth must be increased to support the high rate. However, frequency allocation of large bandwidths is not easy except in some regions of the world.
  • spectral aggregation or bandwidth aggregation, also known as carrier aggregation
  • Spectral aggregation technology is a technique that combines a plurality of physically non-continuous bands in the frequency domain and uses the effect of using a logically large band.
  • spectrum aggregation technology multiple carriers can be supported in a wireless communication system.
  • a wireless communication system supporting multiple carriers is called a multiple carrier system.
  • the carrier may be referred to in other terms such as radio frequency (RF), component carrier, and the like.
  • the uplink control information includes acknowledgment (ACK) / not-acknowledgement (NACK) used for performing a hybrid automatic repeat request (HARQ), channel quality indicator (CQI) indicating a downlink channel state, and radio resource allocation for uplink transmission.
  • ACK acknowledgment
  • NACK not-acknowledgement
  • CQI channel quality indicator
  • SR scheduling request
  • An object of the present invention is to provide a method and apparatus for transmitting a control signal in a wireless communication system.
  • the method may further include generating the first control signal by processing the first control information based on the first resource index, generating the second control signal by processing the second control information based on the second resource index, and the And transmitting the first control signal and the second control signal to a base station.
  • the first control information may be control information for a first downlink carrier
  • the second control information may be control information for a second downlink carrier.
  • the first control information and the second control information may be transmitted through the same uplink carrier.
  • the first control signal and the second control signal may be transmitted simultaneously.
  • the first resource index and the second resource index may be different from each other.
  • the first resource index may indicate a first cyclic shift index and a first resource block
  • the second resource index may indicate a second cyclic shift index and a second resource block.
  • the generating of the first control signal comprises: generating a first cyclically shifted sequence by cyclically shifting a base sequence by a first cyclic shift amount obtained from the first cyclic shift index, wherein the first cyclic shift Generating a first modulated sequence based on the sequence sequence and a first modulation symbol for the first control information, and mapping the first modulated sequence to the first resource block to generate the first control signal.
  • generating the second control signal comprises generating a second cyclically shifted sequence by cyclically shifting the base sequence by a second cyclic shift amount obtained from the second cyclic shift index. Generating a second modulated sequence based on a two cyclically shifted sequence and a second modulation symbol for the second control information
  • the second after mapping the modulated sequence to the second resource block may include generating the second control signal.
  • the first control information is a first acknowledgment (ACK) / not-acknowledgement (NACK) for the first data received through the first downlink carrier
  • the second control information is a second downlink carrier It may be a second ACK / NACK for the second data received through.
  • the method may further include receiving the first data through the first downlink carrier, and receiving the second data through the second downlink carrier.
  • a radio frequency (RF) unit for generating and transmitting a radio signal and the RF unit are connected to process first control information based on a first resource index to generate a first control signal, and a second control.
  • the present invention provides a device for wireless communication including a processor for processing information based on a second resource index to generate a second control signal and to transmit the first control signal and the second control signal.
  • An efficient control signal transmission method and apparatus in a wireless communication system are provided. Thus, overall system performance can be improved.
  • FIG. 1 is a block diagram illustrating a wireless communication system.
  • HARQ hybrid automatic repeat request
  • NACK not-acknowledgement
  • CQI channel quality indicator
  • 3GPP 3rd generation partnership project
  • LTE long term evolution
  • FIG 5 shows an example of a resource grid for one uplink slot in 3GPP LTE.
  • FIG. 6 shows an example of a structure of a downlink subframe in 3GPP LTE.
  • FIG. 7 shows an example of a structure of an uplink subframe in 3GPP LTE.
  • PUCCH physical uplink control channel
  • CP normal cyclic prefix
  • FIG. 10 shows an example of PUCCH format 2 / 2a / 2b transmission in case of normal CP.
  • FIG. 11 shows an example of PUCCH format 2 / 2a / 2b transmission in case of an extended CP.
  • FIG. 12 is a flowchart illustrating an example of an information transmission method.
  • FIG. 13 is a flowchart illustrating another example of an information transmission method.
  • FIG. 14 is a flowchart illustrating still another example of an information transmission method.
  • 15 is a flowchart illustrating an example of an information processing method based on a resource index.
  • 16 is a flowchart illustrating another example of an information processing method based on a resource index.
  • 17 is a flowchart illustrating a control signal transmission method according to an embodiment of the present invention.
  • 18 is a block diagram illustrating an example of a transmitter structure.
  • 19 shows an example of one resource block to which an r th spread sequence is mapped.
  • FIG. 20 shows an example of a subframe to which an rth modulated sequence is mapped.
  • 21 is a block diagram illustrating an example of an apparatus for wireless communication.
  • 22 is a block diagram illustrating an example of a base station.
  • the following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be used for various multiple access schemes.
  • SC-FDMA is a method in which an inverse fast fourier transform (IFFT) is performed on complex fourier transform (DFT) spread complex symbols, also called DFT spread-orthogonal frequency division multiplexing (DFTS-OFDM).
  • IFFT inverse fast fourier transform
  • DFT complex fourier transform
  • DFTS-OFDM DFT spread-orthogonal frequency division multiplexing
  • the following technique may be used for a multiple access scheme, such as clustered SC-FDMA, NxSC-FDMA, which is a variation of SC-FDMA.
  • Clustered SC-FDMA is also referred to as clustered DFTS-OFDM, in which DFT spread complex symbols are divided into a plurality of subblocks, and the plurality of subblocks are distributed in a frequency domain and mapped to subcarriers.
  • N ⁇ SC-FDMA is also called a chunk specific DFTS-OFDM in that a code block is divided into a plurality of chunks, and a DFT and an IFFT are performed in chunks.
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented by a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • E-UTRA Evolved UTRA
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A Advanced is the evolution of 3GPP LTE.
  • FIG. 1 is a block diagram illustrating a wireless communication system.
  • the wireless communication system 10 includes at least one base station 11 (BS).
  • Each base station 11 provides a communication service for a particular geographic area (generally called a cell) 15a, 15b, 15c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the user equipment (UE) 12 may be fixed or mobile, and may include a mobile station (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), It may be called other terms such as a wireless modem and a handheld device.
  • the base station 11 generally refers to a fixed station communicating with the terminal 12, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like. have.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like. have.
  • downlink means communication from the base station to the terminal
  • uplink means communication from the terminal to the base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of a base station.
  • Heterogeneous network refers to a network in which a relay station, a femto cell and / or a pico cell is disposed.
  • downlink may mean communication from a base station to a repeater, a femto cell, or a pico cell.
  • the downlink may mean communication from the repeater to the terminal.
  • the downlink may mean communication from the first relay to the second relay.
  • uplink may mean communication from a repeater, a femtocell or a picocell to a base station.
  • the uplink may mean communication from the terminal to the repeater.
  • uplink may mean communication from a second repeater to a first repeater.
  • the wireless communication system may be any one of a multiple input multiple output (MIMO) system, a multiple input single output (MIS) system, a single input single output (SISO) system, and a single input multiple output (SIMO) system.
  • MIMO multiple input multiple output
  • MIS multiple input single output
  • SISO single input single output
  • SIMO single input multiple output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • the transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • the receive antenna means a physical or logical antenna used to receive one signal or stream.
  • uplink and / or downlink hybrid automatic repeat request may be supported.
  • a channel quality indicator CQI may be used for link adaptation.
  • ACK HARQ acknowledgment
  • NACK not-acknowledgement
  • a terminal receiving downlink data (DL data) from a base station transmits HARQ ACK / NACK after a predetermined time elapses.
  • the downlink data may be transmitted on a physical downlink shared channel (PDSCH) indicated by a physical downlink control channel (PDCCH).
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • HARQ ACK / NACK becomes ACK when the decoding of the downlink data is successful, and NACK when the decoding of the downlink data fails.
  • the base station may retransmit the downlink data until the ACK is received or the maximum number of retransmissions.
  • a transmission time of HARQ ACK / NACK for downlink data, resource allocation information for HARQ ACK / NACK transmission, and the like may be dynamically informed by the base station through signaling.
  • a transmission time of HARQ ACK / NACK, resource allocation information, and the like may be previously reserved according to the transmission time of the downlink data or the resource used for the transmission of the downlink data.
  • FDD frequency division duplex
  • HARQ ACK / NACK for the PDSCH is transmitted through a physical uplink control channel (PUCCH) in subframe n + 4. Can be.
  • PUCCH physical uplink control channel
  • the terminal may measure the downlink channel state and report the CQI to the base station periodically and / or aperiodically.
  • the base station can be used for downlink scheduling using the CQI.
  • the base station may determine the modulation and coding scheme (MCS) used for transmission using the CQI received from the terminal. If it is determined that the channel state is good by using the CQI, the base station can increase the transmission rate by increasing the modulation order (modulation order) or the coding rate (coding rate). If it is determined that the channel state is not good by using the CQI, the base station may lower the transmission rate by lowering the modulation order or the coding rate. If the transmission rate is low, the reception error rate may be reduced.
  • the CQI may indicate a channel state for all bands and / or a channel state for some bands of all bands.
  • the base station may inform the terminal of the time of transmission of CQI or resource allocation information for CQI transmission.
  • the UE may report a precoding matrix indicator (PMI) and a rank indicator (RI) to the base station.
  • PMI indicates the index of the precoding matrix selected in the codebook
  • RI indicates the number of useful transmission layers.
  • CQI is a concept including PMI and RI in addition to CQI.
  • a terminal first sends a scheduling request (SR) to an eNB for uplink transmission.
  • the SR requests that the terminal requests uplink radio resource allocation to the base station.
  • SR may also be called a bandwidth request.
  • SR is a kind of advance information exchange for data exchange.
  • the terminal In order to transmit uplink data to the base station, the terminal first requests radio resource allocation through the SR.
  • the base station may inform the terminal of the SR transmission time or resource allocation information for SR transmission.
  • the SR may be sent periodically.
  • the base station may inform the terminal of the transmission period of the SR.
  • the base station transmits an uplink grant (UL grant) to the terminal in response to the SR.
  • the uplink grant may be transmitted on the PDCCH.
  • the uplink grant includes information on uplink radio resource allocation.
  • the terminal transmits uplink data through the allocated uplink radio resource.
  • the terminal may transmit uplink control information such as HARQ ACK / NACK, CQI and SR at a given transmission time.
  • uplink control information such as HARQ ACK / NACK, CQI and SR
  • the type and size of uplink control information may vary depending on the system, and the technical spirit of the present invention is not limited thereto.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • FIG. 5 is an exemplary diagram illustrating a resource grid for one uplink slot in 3GPP LTE.
  • an uplink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and includes N UL resource blocks (RBs) in a frequency domain. do.
  • the OFDM symbol is for representing one symbol period.
  • the OFDM symbol may be a multiple access scheme such as OFDMA, SC-FDMA, clustered SC-FDMA, or N ⁇ SC-FDMA.
  • the OFDM symbol may be referred to as an SC-FDMA symbol, an OFDMA symbol, or a symbol interval according to a system.
  • the resource block includes a plurality of subcarriers in the frequency domain.
  • the number N UL of resource blocks included in an uplink slot depends on an uplink transmission bandwidth set in a cell.
  • Each element on the resource grid is called a resource element.
  • Resource elements on the resource grid may be identified by an index pair (k, l) in the slot.
  • an exemplary resource block includes 7 ⁇ 12 resource elements including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the number of subcarriers and the OFDM symbols in the resource block is equal to this. It is not limited. The number of OFDM symbols or the number of subcarriers included in the resource block may be variously changed.
  • the resource block means a general frequency resource. In other words, if the resource blocks are different, the frequency resources are different.
  • the number of OFDM symbols may change depending on the length of a cyclic prefix (CP). For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP.
  • CP cyclic prefix
  • a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
  • FIG. 6 shows an example of a structure of a downlink subframe in 3GPP LTE.
  • the downlink subframe includes two consecutive slots.
  • the maximum 3 OFDM symbols of the first slot in the downlink subframe are the control region, and the remaining OFDM symbols are the data region.
  • the PDSCH may be allocated to the data area. Downlink data is transmitted on the PDSCH.
  • the downlink data may be a transport block which is a data block for a downlink shared channel (DL-SCH) which is a transport channel transmitted during TTI.
  • the base station may transmit downlink data through one antenna or multiple antennas to the terminal.
  • a base station may transmit one codeword through one antenna or multiple antennas to a terminal, and may transmit two codewords through multiple antennas. That is, up to 2 codewords are supported in 3GPP LTE. Codewords are coded bits in which channel coding is performed on information bits corresponding to information. Modulation may be performed for each codeword.
  • control channels such as a physical control format indicator channel (PCFICH), a physical HARQ indicator channel (PHICH), and a PDCCH may be allocated.
  • PCFICH physical control format indicator channel
  • PHICH physical HARQ indicator channel
  • PDCCH Physical Downlink Control Channel
  • the PCFICH carries information on the number of OFDM symbols used for transmission of PDCCHs in a subframe.
  • the control region includes 3 OFDM symbols.
  • the PHICH carries HARQ ACK / NACK for uplink transmission.
  • the control region consists of a set of a plurality of control channel elements (CCE). If the total number of CCEs constituting the CCE set in the downlink subframe is N (CCE), the CCE is indexed from 0 to N (CCE) -1.
  • the CCE corresponds to a plurality of resource element groups. Resource element groups are used to define control channel mappings to resource elements. One resource element group is composed of a plurality of resource elements.
  • the PDCCH is transmitted on an aggregation of one or several consecutive CCEs. A plurality of PDCCHs may be transmitted in the control region.
  • the PDCCH carries downlink control information such as downlink scheduling information, uplink scheduling information, or uplink power control command.
  • the base station transmits downlink data to the terminal on the PDSCH in the subframe
  • the base station carries downlink control information used for scheduling of the PDSCH on the PDCCH in the subframe.
  • the UE may read downlink data transmitted on a PDSCH by decoding the downlink control information.
  • FIG. 7 shows an example of a structure of an uplink subframe in 3GPP LTE.
  • an uplink subframe may be divided into a control region to which a PUCCH carrying uplink control information is allocated and a data region to which a physical uplink shared channel (PUSCH) carrying uplink data is allocated.
  • PUSCH physical uplink shared channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. That is, the RBs allocated to the PUCCH are hopped at a slot level.
  • resource block hopping at the slot level is called frequency hopping.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the PUSCH is mapped to an uplink shared channel (UL-SCH) which is a transport channel.
  • the uplink control information transmitted on the PUCCH includes HARQ ACK / NACK, CQI indicating a downlink channel state, SR which is an uplink radio resource allocation request.
  • PUCCH may support multiple formats. That is, uplink control information having a different number of bits per subframe may be transmitted according to a modulation scheme dependent on the application of the PUCCH format.
  • the following table shows an example of a modulation scheme and the number of bits per subframe according to the PUCCH format.
  • PUCCH format 1 is used for transmission of SR
  • PUCCH format 1a / 1b is used for transmission of HARQ ACK / NACK
  • PUCCH format 2 is used for transmission of CQI
  • PUCCH format 2a / 2b is used for transmission of CQI and HARQ ACK / NACK. Used.
  • PUCCH format 1a / 1b When HARQ ACK / NACK is transmitted alone in any subframe, PUCCH format 1a / 1b is used, and when SR is transmitted alone, PUCCH format 1 is used.
  • the UE may simultaneously transmit HARQ ACK / NACK and SR in the same subframe. For positive SR transmission, the UE transmits HARQ ACK / NACK through PUCCH resources allocated for SR, and for negative SR transmission, UE transmits HARQ through PUCCH resources allocated for ACK / NACK. Send ACK / NACK.
  • Control information transmitted on the PUCCH may use a cyclically shifted sequence.
  • the cyclically shifted sequence may be generated by cyclically shifting a base sequence by a specific cyclic shift amount.
  • the specific CS amount is indicated by the cyclic shift index (CS index).
  • Various kinds of sequences can be used as the base sequence.
  • a well-known sequence such as a pseudo-random (PN) sequence or a Zadoff-Chu (ZC) sequence may be used as the base sequence.
  • ZC Zadoff-Chu
  • CAZAC computer generated constant amplitude zero auto-correlation
  • the following equation is an example of a basic sequence.
  • i ⁇ ⁇ 0,1, ..., 29 ⁇ is the root index
  • n the element index
  • 0 ⁇ n ⁇ N-1 N is the length of the base sequence.
  • i may be determined by a cell ID, a slot number in a radio frame, or the like.
  • N may be 12.
  • Different base sequences define different base sequences.
  • b (n) may be defined as shown in the following table.
  • the cyclically shifted sequence r (n, Ics) may be generated by circularly shifting the basic sequence r (n) as shown in the following equation.
  • Ics is a cyclic shift index indicating the amount of CS (0 ⁇ Ics ⁇ N-1, and Ics is an integer).
  • the available cyclic shift index of the base sequence refers to a cyclic shift index derived from the base sequence according to the CS interval (CS interval). For example, if the length of the base sequence is 12 and the CS interval is 1, the total number of available cyclic shift indices of the base sequence is 12. Alternatively, if the length of the base sequence is 12 and the CS interval is 2, the total number of available cyclic shift indices of the base sequence is six.
  • the CS interval may be determined in consideration of delay spread.
  • FIG. 8 illustrates an example of PUCCH format 1 / 1a / 1b transmission in the case of a normal CP. This shows a resource block pair allocated to the first slot and the second slot in one subframe.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • each of the first slot and the second slot includes 7 OFDM symbols.
  • RS reference signal
  • the RS is carried in three contiguous OFDM symbols in the middle of each slot. In this case, the number and position of symbols used for the RS may vary, and the number and position of symbols used for the control information may also change accordingly.
  • PUCCH formats 1, 1a and 1b each use one complex-valued symbol d (0).
  • the complex symbol d (0) for the PUCCH format 1a is a modulation symbol generated by binary bit shift keying (BPSK) modulation of 1-bit HARQ ACK / NACK information.
  • BPSK binary bit shift keying
  • the complex symbol d (0) for PUCCH format 1b is a modulation symbol generated by quadrature phase shift keying (QPSK) modulation of 2 bits of HARQ ACK / NACK information.
  • PUCCH format 1a is for HARQ ACK / NACK information for one codeword
  • PUCCH format 1b is for HARQ ACK / NACK information for two codewords.
  • the following table shows examples of modulation symbols to which HARQ ACK / NACK information bits are mapped according to a modulation scheme.
  • a modulated sequence s (n) is generated using the complex symbol d (0) for the PUCCH format 1 / 1a / 1b and the cyclically shifted sequence r (n, Ics).
  • a modulated sequence s (n) may be generated by multiplying a cyclically shifted sequence r (n, Ics) by a complex symbol d (0) as shown in the following equation.
  • Ics which is a cyclic shift index of the cyclically shifted sequence r (n, Ics)
  • CS hopping may be performed according to the slot number n s in the radio frame and the symbol index l in the slot. Therefore, the cyclic shift index Ics may be expressed as Ics (n s , L).
  • CS hopping may be performed cell-specific to randomize inter-cell interference.
  • the modulated sequence s (n) may be spread using an orthogonal sequence.
  • the terminal multiplexing capacity is the number of terminals that can be multiplexed on the same resource block.
  • Elements constituting the orthogonal sequence correspond to 1: 1 in OFDM symbols carrying control information in order.
  • Each of the elements constituting the orthogonal sequence is multiplied by a modulated sequence s (n) carried in a corresponding OFDM symbol to generate a spread sequence.
  • the spread sequence is mapped to a resource block pair allocated to the PUCCH in the subframe.
  • an IFFT is performed for each OFDM symbol of the subframe to output a time domain signal for control information.
  • the orthogonal sequence is multiplied before the IFFT is performed, but the same result can be obtained even if the orthogonal sequence is multiplied after the IFFT for the modulated sequence s (n).
  • one OFDM symbol on the PUCCH is punctured.
  • the last OFDM symbol of the subframe may be punctured.
  • control information is carried in 4 OFDM symbols in the first slot of the subframe, and control information is carried in 3 OFDM symbols in the second slot of the subframe.
  • Orthogonal sequence index Ios may be hopped to slot level starting from allocated resources.
  • hopping of an orthogonal sequence index of a slot level is referred to as orthogonal sequence remapping.
  • Orthogonal sequence remapping may be performed according to the slot number n s in the radio frame. Therefore, the orthogonal sequence index Ios may be represented by Ios (n s ). Orthogonal sequence remapping may be performed for randomization of intercell interference.
  • the modulated sequence s (n) can be scrambled in addition to spreading using an orthogonal sequence.
  • the modulated sequence s (n) may be multiplied by 1 or j depending on the particular parameter.
  • the RS may be generated using a cyclically shifted sequence and an orthogonal sequence generated from the same basic sequence as the control information.
  • FIG. 9 shows an example of PUCCH format 1 / 1a / 1b transmission in case of an extended CP.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • each of the first slot and the second slot includes 6 OFDM symbols.
  • An orthogonal sequence w Ios (k) having a spreading coefficient K 2 (Ios is an orthogonal sequence index, k is an element index of an orthogonal sequence, and 0 ⁇ k ⁇ K-1) may use a sequence as shown in the following table.
  • the terminal multiplexing capacity is as follows. Since the number of Ics for the control information is 6 and the number of Ios is 3, 18 terminals may be multiplexed per resource block. However, since the number of I'cs for RS is 6 and the number of I'os is 2, 12 UEs can be multiplexed per resource block. Therefore, the terminal multiplexing capacity is limited by the RS part rather than the control information part.
  • FIG. 10 shows an example of PUCCH format 2 / 2a / 2b transmission in case of normal CP.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • RS is carried on 2 OFDM symbols among 7 OFDM symbols included in each slot, and CQI is carried on the remaining 5 OFDM symbols.
  • the number and position of symbols used for the RS may vary, and the number and position of symbols used for the CQI may change accordingly.
  • the terminal performs channel coding on the CQI information bits to generate encoded CQI bits.
  • a block code may be used.
  • An example of a block code is the Reed-Muller code family.
  • A is the size of the CQI information bits. That is, in 3GPP LTE, 20 bits of encoded CQI bits are always generated regardless of the size of CQI information bits.
  • the following table shows an example of 13 basis sequences for the (20, A) block code.
  • n is the base sequence (0 ⁇ n ⁇ 12, n is an integer).
  • the coded CQI bits are generated with a linear combination of 13 basis sequences.
  • the following equation shows an example of the coded CQI bit b i (0 ⁇ i ⁇ 19, i is an integer).
  • a 0 , a 1 , ..., a A-1 is the CQI information bits, and A is the size of the CQI information bits (A is a natural number).
  • the CQI information bit may include one or more fields.
  • a CQI field indicating a CQI index for determining an MCS a precoding matrix indication (PMI) field indicating an index of a precoding matrix selected from a codebook, a rank indication (RI) field indicating a rank, and the like are CQI information bits. Can be included.
  • the following table shows an example of a field included in the CQI information bit and the bit size of the field.
  • the CQI information bit may include only a wideband CQI field having a size of 4 bits. At this time, the size A of the CQI information bit is four.
  • the wideband CQI field indicates the CQI index for the entire band.
  • the following table shows another example of a field included in the CQI information bit and the bit size of the field.
  • the CQI information bit may include a wideband CQI field, a spatial differential CQI field, and a PMI field.
  • the spatial difference CQI field indicates the difference between the CQI index for the full band for the first codeword and the CQI index for the full band for the second codeword.
  • the following table shows another example of a field included in the CQI information bit and a bit size of the field.
  • the 20-bit encoded CQI bit may be scrambled by a UE-specific scrambling sequence to generate a 20-bit scrambled bit.
  • the 20-bit scrambled bit is mapped to 10 modulation symbols d (0), ..., d (9) via QPSK.
  • PUCCH format 2a one bit of HARQ ACK / NACK information is mapped to one modulation symbol d (10) through BPSK modulation.
  • PUCCH format 2b two bits of HARQ ACK / NACK information are mapped to one modulation symbol d (10) through QPSK modulation. That is, in PUCCH format 2a, CQI and 1-bit HARQ ACK / NACK information are simultaneously transmitted.
  • PUCCH format 2b CQI and 2-bit HARQ ACK / NACK information are simultaneously transmitted.
  • d (10) is used for RS generation.
  • d (10) corresponds to one OFDM symbol of 2 OFDM symbols carrying an RS in each slot.
  • phase modulation is performed on the RS carried in the one OFDM symbol in each slot according to the corresponding d (10).
  • PUCCH format 2a / 2b may be supported only for a normal CP. As such, in PUCCH formats 2a and 2b, one modulation symbol is used for RS generation.
  • the cyclic shift index Ics of the cyclically shifted sequence r (n, Ics) may vary according to the slot number n s in the radio frame and the symbol index l in the slot. Therefore, the cyclic shift index Ics may be expressed as Ics (n s , L).
  • the RS may use a cyclically shifted sequence generated from the same basic sequence as the control information.
  • PUCCH format 2 / 2a / 2b does not use orthogonal sequences unlike PUCCH format 1 / 1a / 1b.
  • FIG. 11 shows an example of PUCCH format 2 / 2a / 2b transmission in case of an extended CP.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • each of the first slot and the second slot includes 6 OFDM symbols.
  • RS is carried on 1 OFDM symbol among 6 OFDM symbols of each slot, and control information is carried on the remaining 5 OFDM symbols. Except for this, the example of the normal CP of FIG. 10 is applied as it is.
  • the following information is required for PUCCH format 2/2 / a / 2b transmission.
  • Subcarriers (or resource blocks) to which control information is transmitted, cyclic shift index Ics for control information, and cyclic shift index I'cs for RS are required.
  • the CS interval is 1, the number of Ics for the control information and the I'cs for the RS are 12, respectively, and 12 terminals may be multiplexed per resource block.
  • the CS interval is 2
  • the number of Ics for the control information and the I'cs for the RS are 6, respectively, and six terminals may be multiplexed per resource block.
  • FIG. 12 is a flowchart illustrating an example of an information transmission method.
  • the terminal acquires a resource index (S11).
  • the terminal processes the information based on the resource index (S12).
  • the terminal transmits information to the base station (S13).
  • a plurality of terminals in the cell may simultaneously transmit their information to the base station. At this time, if each terminal uses a different resource, the base station can distinguish the information for each terminal.
  • the information may be control information, user data, information in which various control information are mixed, or information in which control information and user data are multiplexed.
  • the resource may include at least one of a resource block, a frequency domain sequence, and a time domain sequence.
  • Resource blocks are frequency resources over which information is transmitted.
  • the frequency domain sequence is used to spread the symbols corresponding to the information into the frequency domain.
  • the time domain sequence is used to spread the symbol into the time domain. If the resource includes a frequency domain sequence and a time domain sequence, the frequency domain sequence and the time domain sequence are used to spread the symbol into a two-dimensional time-frequency domain (frequency domain and time domain).
  • the resource index identifies a resource used for transmitting information.
  • the resource index may include at least one of resource block information, a frequency domain sequence index, and a time domain sequence index.
  • Resource block information indicates a resource block
  • a frequency domain sequence index indicates a frequency domain sequence
  • a time domain sequence index indicates a time domain sequence.
  • the resource index may include resource block information and a frequency domain sequence index.
  • the sequence may be selected from a sequence set having a plurality of sequences as elements.
  • the plurality of sequences included in the sequence set may be orthogonal to each other or may have low correlation with each other.
  • the resource index may include a sequence index.
  • the sequence may be generated based on the sequence index.
  • the sequence is a frequency domain sequence and / or a time domain sequence.
  • the sequence index may indicate one sequence selected from the sequence set.
  • Each sequence belonging to the sequence set may correspond one-to-one to one sequence index.
  • the sequence index indicates an amount of cyclic shift
  • the sequence may be generated by cyclically shifting a base sequence by the cyclic shift amount.
  • the time-domain sequence is one orthogonal sequence selected from a set of orthogonal sequences
  • the frequency-domain sequence is a cyclic shifted sequence generated by cyclically shifting the base sequence by a cyclic shift amount.
  • the time domain sequence index may be an orthogonal sequence index indicating an orthogonal sequence
  • the frequency domain sequence index may be a cyclic shift index indicating an cyclic shift amount.
  • this is merely an example and does not limit the time domain sequence and / or the frequency domain sequence.
  • a resource consists of a combination of (1) CS amount, (2) orthogonal sequence, and (3) resource block.
  • a resource consists of a combination of (1) CS amount and (2) resource block.
  • the cyclic shift index and the resource block are determined from the resource index.
  • the orthogonal sequence index is also determined from the resource index.
  • the position index m representing the logical frequency domain position of the RB pair allocated to the PUCCH in the subframe may be determined from the resource index.
  • FIG. 13 is a flowchart illustrating another example of an information transmission method.
  • the base station transmits a resource index to the terminal (S21).
  • the terminal processes the information based on the resource index (S22).
  • the terminal transmits information to the base station (23).
  • the base station may explicitly inform the terminal of the resource index.
  • the resource index may be set by higher layer signaling.
  • the upper layer of the physical layer may be a radio resource control (RRC) layer that controls radio resources between the terminal and the network.
  • the information transmitted by the terminal may be SR, semi-persistent scheduling (SPS) ACK / NACK, CQI, or the like.
  • SPS ACK / NACK is HARQ ACK / NACK for downlink data transmitted by semi-static scheduling.
  • a PDCCH corresponding to the PDSCH may not exist.
  • FIG. 14 is a flowchart illustrating still another example of an information transmission method.
  • the base station transmits downlink data to the terminal (S31).
  • the terminal acquires a resource index (S32).
  • the resource index may be obtained from a radio resource through which a control channel for receiving downlink data is transmitted.
  • the terminal processes the information based on the resource index (S33).
  • the terminal transmits information to the base station (S34).
  • the base station may implicitly inform the terminal of the resource index.
  • the information transmitted by the terminal may be dynamic ACK / NACK.
  • Dynamic ACK / NACK is ACK / NACK for downlink data transmitted by dynamic scheduling. In dynamic scheduling, whenever a base station transmits downlink data through a PDSCH, a downlink grant is transmitted to the user equipment through a PDCCH each time.
  • the following equation is an example of determining a resource index (In) for dynamic ACK / NACK transmission.
  • n (CCE) is the first CCE index used for PDCCH transmission for the PDSCH
  • N (1) PUCCH is the number of resource indexes allocated for SR and SPS ACK / NACK.
  • N (1) PUCCH may be set by a higher layer such as an RRC layer.
  • the base station may adjust resources for ACK / NACK transmission by adjusting the first CCE index used for PDCCH transmission.
  • 15 is a flowchart illustrating an example of an information processing method based on a resource index.
  • the terminal determines a cyclic shift index based on the resource index (S41).
  • the terminal generates a cyclically shifted sequence on the basis of the cyclic shift index (S42).
  • the cyclically shifted sequence can be generated by cyclically shifting the base sequence by the amount of cyclic shift obtained from the cyclic shift index.
  • the terminal generates a modulated sequence based on the cyclically shifted sequence and symbols for information (S43).
  • the terminal maps the modulated sequence to the resource block (S44). Resource blocks may be determined based on resource indexes.
  • the terminal transmits the modulated sequence. In this case, the information transmitted by the terminal may be a CQI.
  • 16 is a flowchart illustrating another example of an information processing method based on a resource index.
  • the terminal determines an orthogonal sequence index and a cyclic shift index based on the resource index (S51).
  • the terminal generates a cyclically shifted sequence based on the cyclic shift index (S52).
  • the terminal generates a modulated sequence based on a cyclically shifted sequence and symbols for information (S53).
  • the terminal generates a spread sequence from the modulated sequence based on the orthogonal sequence index (S54).
  • the terminal maps the spread sequence to the resource block (S55). Resource blocks may be determined based on resource indexes.
  • the terminal transmits the spread sequence.
  • the information transmitted by the terminal may be SR, HARQ ACK / NACK.
  • two bits of HARQ ACK / NACK information for two codewords or 20 bits of encoded CQI bits may be transmitted.
  • additional control information must be transmitted.
  • the number of codewords is increased or in case of a multiple carrier system, additional control information must be transmitted.
  • the number of codewords is four, a method of transmitting 4-bit HARQ ACK / NACK information is needed.
  • a method of transmitting 4-bit HARQ ACK / NACK information is needed.
  • a method of increasing the modulation order for transmitting additional control information may be considered. For example, if two bits of control information are QPSK modulated to generate one modulation symbol, the four bits of control information may be modulated by 16 QAM (quadrature amplitude modulation) to generate one modulation symbol.
  • 16 QAM quadrature amplitude modulation
  • the receiver needs to know the exact transmit power.
  • 16QAM degrades performance compared to QPSK. 16QAM does not have the same detection performance according to each signal constellation.
  • 17 is a flowchart illustrating a control signal transmission method according to an embodiment of the present invention.
  • the terminal processes the first control information based on the first resource index to generate a first control signal (S110).
  • the terminal generates the second control signal by processing the second control information based on the second resource index (S120).
  • the first resource index and the second resource index may be different from each other.
  • the terminal transmits the first control signal and the second control signal to the base station (S130).
  • the first control signal and the second control signal may be transmitted simultaneously.
  • the additional control information may be transmitted by being allocated an additional resource index.
  • the second control signal is phase-shifted to generate a third control signal
  • the first control signal and the third control signal is added to the fourth Generating a control signal and transmitting a fourth control signal.
  • the first control information may be control information for the first downlink carrier, and the second control information may be control information for the second downlink carrier.
  • the first control information and the second control information may be transmitted through the same uplink carrier.
  • the first control information is a first ACK / NACK for the first data received by the terminal through the first downlink carrier
  • the second control information is a second control information for the second data received through the second downlink carrier It may be 2 ACK / NACK.
  • the first control information may be a first CQI for the first downlink carrier
  • the second control information may be a second CQI for the second downlink carrier. That is, a first resource index may be allocated to the first downlink carrier and a second resource index may be allocated to the second downlink carrier.
  • control information for each of the first downlink carrier and the second downlink carrier may be transmitted through one uplink carrier. Therefore, the control signal transmission method of FIG. 17 may be used in an asymmetric multicarrier system in which the number of downlink carriers is larger than the number of uplink carriers.
  • the number of downlink carriers to the number of uplink carriers may be used in a multicarrier system having a 2: 1 ratio.
  • the first control information and the second control information may be representative control information, respectively.
  • the representative control information is one control information representing a plurality of control information. Representing a plurality of control information as one representative control information is referred to as control information bundling.
  • the representative control information includes representative CQI, representative ACK / NACK, representative PMI, and the like.
  • the representative CQI may be one CQI for a plurality of downlink carriers.
  • the representative CQI may be an average CQI of respective CQIs for a plurality of downlink carriers.
  • the representative CQI may be one CQI representing respective CQIs for a plurality of codewords.
  • the representative ACK / NACK may be one HARQ ACK / NACK for each data transmitted through a plurality of downlink carriers. For example, when the decoding of each data transmitted through the plurality of downlink carriers is all successful, the representative ACK / NACK is ACK, otherwise the representative ACK / NACK is NACK.
  • the representative ACK / NACK may be one HARQ ACK / NACK representing each ACK / NACK for a plurality of codewords.
  • the first control information is first representative control information for the first downlink carrier and the second downlink carrier
  • the second control information is the second representative for the third downlink carrier and the fourth downlink carrier. It may be control information.
  • the first control information may be first representative control information for a plurality of codewords
  • the second control information may be second representative control information for other codewords.
  • each resource index may indicate a cyclic shift index and a resource block.
  • the first resource index indicates the first cyclic shift index and the first resource block
  • the second resource index indicates the second cyclic shift index and the second resource block.
  • Each control information may be processed as in PUCCH format 2 / 2a / 2b using each resource index.
  • the terminal generates a first cyclically shifted sequence by cyclically shifting the base sequence by the first cyclic shift amount obtained from the first cyclic shift index, and uses the first modulation symbol for the first cyclically shifted sequence and the first control information. To generate a first modulated sequence and to map the first modulated sequence to the first resource block.
  • the first control signal may refer to a first time domain signal IFFT after mapping to a first modulated sequence or first resource block.
  • the terminal generates a second cyclically shifted sequence by cyclically shifting the base sequence by a second cyclic shift amount obtained from a second cyclic shift index, and generates a second cyclically shifted sequence and a second modulation on the second control information.
  • a second modulated sequence is generated using the symbol, and the second modulated sequence is mapped to the second resource block.
  • the second control signal may mean a second time-domain signal IFFT after mapping to a second modulated sequence or second resource block. In this case, the first control signal and the second control signal may be transmitted simultaneously.
  • the terminal may receive the first resource index and the second resource index from the base station.
  • each of the plurality of resource indexes may be directly signaled, such as 0 for the first resource index and 2 for the second resource index.
  • the terminal may receive the first resource index from the base station and obtain the second resource index from the first resource index.
  • the second resource index is predetermined in accordance with the first resource index. For example, when the first resource index is 0, the second resource index is 5, and when the first resource index is 1, the second resource index may be predetermined. If the base station signals only 0 or 1 as the first resource index, the terminal may obtain a second resource index 5 or 6 from the first resource index.
  • At least one of the cyclic shift index and the resource block may be different from the first resource index and the second resource index.
  • the scheduler of the base station may limit the resource index in the following cases. (1) when the first and second cyclic shift indices are different, and the first and second resource blocks are the same, (2) the first and second cyclic shift indices are the same, and the first and second resource blocks are mutually different. In other cases, (3) one of the cases (1) and (2) above.
  • each resource index may indicate a cyclic shift index, an orthogonal sequence index, and a resource block.
  • the first resource index indicates the first cyclic shift index, the first orthogonal sequence index, and the first resource block
  • the second resource index indicates the second cyclic shift index, the second orthogonal sequence index, and the second resource block.
  • Each control information may be processed as in PUCCH format 1 / 1a / 1b using each resource index.
  • the terminal generates a first cyclically shifted sequence by cyclically shifting the base sequence by the first cyclic shift amount obtained from the first cyclic shift index, and uses the first modulation symbol for the first cyclically shifted sequence and the first control information.
  • the first control signal may mean a first time domain signal IFFTd after mapping to a first spreading sequence or a first resource block.
  • the terminal generates a second cyclically shifted sequence by cyclically shifting the base sequence by a second cyclic shift amount obtained from a second cyclic shift index, and generates a second cyclically shifted sequence and a second modulation on the second control information.
  • Generate a second modulated sequence using the symbol generate a second spread sequence from the second modulated sequence using the second orthogonal sequence index, and map the second spread sequence to the second resource block.
  • the second control signal may mean a second time domain signal IFFTd after mapping to a second spreading sequence or a second resource block. In this case, the first control signal and the second control signal may be transmitted simultaneously.
  • Each control information may be HARQ ACK / NACK, and the terminal may further include receiving each downlink data from the base station.
  • the first resource index may be obtained from a radio resource for a physical control channel for receiving first downlink data
  • the second resource index may be obtained from a radio resource for a physical control channel for receiving second downlink data.
  • At least one or more of a cyclic shift index, an orthogonal sequence index, and a resource block may be different from the first resource index and the second resource index.
  • the scheduler of the base station may limit the resource index to only one case of a cyclic shift index, an orthogonal sequence index, and a resource block as follows.
  • each control information is processed as PUCCH format 1 / 1a / 1b or PUCCH format 2 / 2a / 2b using each resource index has been described, but this may be applied to all CDM-based transmission schemes.
  • the control information transmission method of FIG. 17 may be extended to three or more transmission antennas.
  • different R resource indexes may be allocated to each of the R transmit antennas (R is a natural number of 2 or more).
  • the terminal may transmit each of the R control information to the base station through each transmit antenna using each resource index.
  • the transmitter may be part of the terminal or the base station.
  • the transmitter 100 includes R modulators 110, R information processing units 120-1,..., 120 -R, and R are two or more natural numbers), and a transmission antenna 190.
  • a resource index is allocated for every R control information. That is, the r resource index is allocated to the r control information.
  • the r-th modulator 110 modulates the r-th control information to generate an r-th modulation symbol.
  • the r th modulation symbol may be one or plural.
  • the r-th modulation symbol is input to the r-th information processing unit 120-r.
  • the r-th information processing unit 120-r generates the r-th control signal by processing the r-th modulation symbol using the r-th resource index.
  • R control signals are added and transmitted through one transmit antenna 190.
  • the r-th control signal may be phase-shifted by the r-th phase.
  • the fourth control signal may be transmitted by adding the first control signal and the third control signal phase-shifted by the second phase to the second control signal.
  • the second phase may be 90 degrees, and in the case of QPSK, the second phase may be 45 degrees.
  • R control information can be transmitted using R resource indexes.
  • the transmitter includes only one transmit antenna is shown here, it is also applicable to the case in which the transmitter includes a plurality of transmit antennas. That is, a plurality of resource indexes may be applied to each transmit antenna.
  • the first modulation symbol for the first control information is d 1 (0) and the second modulation symbol for the second control information is d 2 (0).
  • the r th modulation symbol for the r th control information is referred to as d r (0) (r is a natural number).
  • a case in which two bits of control information '10' is transmitted is divided into one bit of first control information '1' and one bit of second control information '0'.
  • the first control information '1' is BPSK modulated to generate a first modulation symbol '-1'
  • first control information '01' may be QPSK modulated to become a first modulation symbol '-j'
  • the first embodiment is a case where a resource used for transmission of control information consists of only an orthogonal sequence.
  • the resource index indicates only an orthogonal sequence index.
  • the r th spread sequence generated by spreading the r modulation symbol d r (0) through the r orthogonal sequence is obtained from [z r (0), z r (1), ..., z r (N-1). ] Is called.
  • the spread sequence may be generated as in the following equation.
  • the r th spread sequence may be mapped to a time domain or a frequency domain.
  • the r-th spread sequence may be mapped to N subcarriers.
  • the r th spread sequence may be mapped to N time samples, N chips, or N OFDM symbols.
  • R spread sequences generated using each of the R resource indexes may be transmitted in the same transmission interval.
  • each spreading sequence may be transmitted during one subframe.
  • each spreading sequence may be transmitted through the same resource block or may be transmitted through different resource blocks.
  • Each received signal may be represented by the following equation. In this case, it is assumed that the characteristics of the channel during the transmission period is static. That is, the characteristics of the channel do not change during the transmission period.
  • h is the channel during the transmission interval and n (k) is the kth element of noise.
  • d ′ r (0) When the r th estimated symbol for the r th modulation symbol d r (0) is referred to as d ′ r (0), it may be expressed as the following equation.
  • N is the length of the orthogonal sequence and w r (k) is the k-th element of the r-th orthogonal sequence.
  • Orthogonal sequences may be generated using Walsh-Hadamard matrices.
  • the following equation represents a 4x4 Walsh-Hadamard matrix.
  • Each of the four rows of the Walsh-Hadamard matrix constitutes an orthogonal sequence that is orthogonal to each other. 4, like [1, 1, 1, 1], [1, -1, 1, -1], [1, 1, -1, -1] and [1, -1, -1, 1] Orthogonal sequences can be defined.
  • 3GPP LTE uses three orthogonal sequences except [1, 1, -1, -1] (see Table 3), but [1, 1, -1, -1] can also be used.
  • the first orthogonal sequence is [1, 1, 1, 1]
  • the second orthogonal sequence is [1, -1, 1, -1]
  • the first resource index indicates orthogonal sequence index 0
  • the second resource index indicates orthogonal sequence index 1 (see Table 3).
  • the first spreading sequence is [d 1 (0), d 1 (0), d 1 (0), d 1 (0)], and the second spreading sequence is [d 2 (0), -d 2 ( 0), d 2 (0), -d 2 (0)].
  • a first estimated symbol despread using a first orthogonal sequence from a received signal is referred to as d ' 1 (0)
  • a second estimated symbol despread using a second orthogonal sequence from a received signal is referred to as d' 2 (0).
  • the second embodiment is a case where a resource used for transmission of control information consists of an orthogonal sequence and a CS amount.
  • the resource index indicates an orthogonal sequence index and a cyclic shift index.
  • the r th spread sequence generated using the r th resource index may be represented as a two-dimensional region of time-frequency as shown in the following equation.
  • each row may correspond to a subcarrier
  • each column may correspond to an OFDM symbol.
  • Each element of the matrix may be mapped to a resource element of a resource block used for transmitting control information.
  • the matrix consists of 12 rows and 4 columns, but this is only an example and does not limit the number of rows and the number of columns.
  • 19 shows an example of one resource block to which an r th spread sequence is mapped.
  • a resource block includes a slot (7 OFDM symbols) in the time domain and 12 subcarriers in the frequency domain. 3 OFDM symbols are carried among 7 OFDM symbols, and control information is carried on the remaining 4 OFDM symbols (see FIG. 8).
  • the terminal determines the r orthogonal sequence index and the r th cyclic shift index by using the r resource index.
  • the terminal generates an r th cyclic shifted sequence using the r th cyclic shift index.
  • the terminal generates an r-modulated sequence using the d r (0) for the r-th shifted sequence and the r-th modulation symbol for the r-th control information.
  • the terminal generates an r th spread sequence from the r th modulated sequence using the r orthogonal sequence index.
  • An element of the r th spread sequence may be represented by the following equation.
  • the received signal can be expressed as the following equation.
  • a first estimated symbol despread using a first orthogonal sequence from a received signal is referred to as d ' 1 (0)
  • a second estimated symbol despread using a second orthogonal sequence from a received signal is referred to as d' 2 (0).
  • the third embodiment is a case where a resource used for transmitting control information is composed of an orthogonal sequence, a CS amount, and a resource block.
  • the resource index indicates an orthogonal sequence index, a cyclic shift index, and a resource block.
  • the r th spread sequence may be expressed as the following equation.
  • w r (k) is the k-th element of the r orthogonal sequence index
  • d r (0) is the r-th modulation symbol for the r-th control information
  • Ics r is the r-th cyclic shift index
  • r (n, Ics r ) is the r th cyclically shifted sequence.
  • a resource used for transmission of control information consists of a cyclic shift sequence and a resource block.
  • the resource index indicates a cyclic shift index and a resource block.
  • the terminal determines the r th cyclic shift index and the r th resource block by using the r resource index.
  • the terminal generates an r th cyclic shifted sequence using the r th cyclic shift index.
  • the terminal generates an r-modulated sequence using the r-th shifted sequence and the plurality of r-th modulation symbols for the r-th control information.
  • the terminal maps the r-th modulated sequence to the r-th resource block.
  • An element of the r-th modulated sequence may be represented by the following equation.
  • d r (k) is the r th modulation symbol for the r th control information
  • Ics r is the r th cyclic shift index
  • r (n, Ics r ) is the r th cyclic shifted sequence.
  • resource blocks belonging to a resource block pair are expressed as occupying the same frequency band in the first slot and the second slot, the resource blocks may be hopped to the slot level as described with reference to FIG. 7.
  • RS is carried on 2 OFDM symbols among 7 OFDM symbols included in each slot, and control information is carried on the remaining 5 OFDM symbols (see FIG. 10).
  • the apparatus 50 for wireless communication may be part of a terminal.
  • the device 50 for wireless communication includes a processor 51, a memory 52, an RF unit 53, a display unit 54, a user interface unit, 55).
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the memory 52 is connected with the processor 51 to store driving systems, applications, and general files.
  • the display unit 54 displays various information of the terminal, and may use well-known elements such as liquid crystal display (LCD) and organic light emitting diodes (OLED).
  • the user interface unit 55 may be a combination of a well-known user interface such as a keypad or a touch screen.
  • the processor 51 performs all the methods related to the above-mentioned information processing and transmission so far.
  • the base station 60 includes a processor 61, a memory 62, a scheduler 63, and an RF unit 64.
  • the RF unit 64 is connected to the processor 61 and transmits and / or receives a radio signal.
  • the processor 61 may perform all the methods related to the above-described information transmission so far.
  • the memory 62 is connected to the processor 61 and stores information processed by the processor 61.
  • the scheduler 63 may be connected to the processor 61 to perform all methods related to scheduling for information transmission, such as the resource index allocation described above.
  • an efficient control signal transmission method and apparatus can be provided in a wireless communication system.
  • a method of efficiently transmitting additional control information while maintaining compatibility with a single carrier system in a multicarrier system may be provided.
  • control information can be efficiently transmitted in an asymmetric multicarrier system in which the number of downlink carriers and the number of uplink carriers are different.
  • 3GPP LTE which supports up to 2 codewords
  • a processor such as a microprocessor, a controller, a microcontroller, an application specific integrated circuit (ASIC), or the like according to software or program code coded to perform the function.
  • ASIC application specific integrated circuit

Abstract

무선 통신 시스템에서 제어신호 전송 방법 및 장치를 제공한다. 상기 방법은 제1 제어정보를 제1 자원 인덱스를 기반으로 처리하여 제1 제어신호를 생성하는 단계, 제2 제어정보를 제2 자원 인덱스를 기반으로 처리하여 제2 제어신호를 생성하는 단계 및 상기 제1 제어신호 및 상기 제2 제어신호를 전송하는 단계를 포함한다.

Description

무선 통신 시스템에서 제어신호 전송 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 무선 통신 시스템에서 제어신호 전송 방법 및 장치에 관한 것이다.
최근 활발하게 연구되고 있는 차세대 멀티미디어 무선 통신 시스템은 초기의 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 정보를 처리하여 전송할 수 있는 시스템이 요구되고 있다. 무선 통신 시스템의 목적은 다수의 사용자가 위치와 이동성에 관계없이 신뢰할 수 있는(reliable) 통신을 할 수 있도록 하는 것이다. 그런데, 무선 채널(wireless channel)은 경로 손실(path loss), 잡음(noise), 다중 경로(multipath)에 의한 페이딩(fading) 현상, 심벌 간 간섭(Intersymbol Interference, ISI) 또는 단말의 이동성으로 인한 도플러 효과(Doppler effect) 등의 비이상적인 특성이 있다. 무선 채널의 비이상적 특성을 극복하고, 무선 통신의 신뢰도(reliability)를 높이기 위해 다양한 기술이 개발되고 있다.
신뢰할 수 있는 고속의 데이터 서비스를 지원하기 위한 기술로 MIMO(multiple input multiple output)가 있다. MIMO 기술은 다중 전송 안테나와 다중 수신 안테나를 사용하여 데이터의 송수신 효율을 향상시킨다. MIMO 기술에는 공간 다중화(spatial multiplexing), 전송 다이버시티(transmit diversity), 빔포밍(beamforming) 등이 있다. 수신 안테나 수와 전송 안테나 수에 따른 MIMO 채널 행렬은 다수의 독립 채널로 분해될 수 있다. 각각의 독립 채널은 공간 계층(spatial layer) 또는 스트림(stream)이라 한다. 스트림의 개수는 랭크(rank)라 한다.
ITU(International Telecommunication Union)에서는 3세대 이후의 차세대 이동통신 시스템으로 하향링크 1Gbps(Gigabits per second) 및 상향링크 500Mbps(Megabits per second)인 고속의 전송률을 제공하여 IP(internet protocol) 기반의 멀티미디어 심리스(seamless) 서비스를 지원하는 것을 목표로 하는 IMT-A(Advanced) 시스템의 표준화를 진행하고 있다. 3GPP에서는 IMT-A 시스템을 위한 후보 기술로 3GPP LTE-A(Advanced) 시스템이 고려되고 있다. LTE-A 시스템은 LTE 시스템의 완성도를 높이는 방향으로 진행되고, LTE 시스템과 역호환성(backward compatibility)을 유지할 것으로 예상되고 있다. LTE-A 시스템과 LTE 시스템 사이에 호환성을 두는 것이 사용자의 입장에서 편리하고, 사업자의 입장에서도 기존 장비의 재활용을 도모할 수 있기 때문이다.
일반적으로 무선 통신 시스템은 하나의 반송파를 지원하는 단일 반송파(single carrier) 시스템이다. 전송률은 전송 대역폭(transmission bandwidth)에 비례하므로, 고속의 전송률이 지원되려면 전송 대역폭이 증가되어야 한다. 그러나, 전세계적으로 일부 지역을 제외하고는 큰 대역폭의 주파수 할당이 용이하지 않다. 조각난 작은 밴드를 효율적으로 사용하기 위해, 스펙트럼 집성(또는, 대역폭 집성(bandwidth aggregation), 반송파 집성(carrier aggregation)이라고도 함) 기술이 개발되고 있다. 스펙트럼 집성 기술은 주파수 영역에서 물리적으로 비연속적인(non-continuous) 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 내는 기술이다. 스펙트럼 집성 기술을 통해 무선 통신 시스템에서 다중 반송파가 지원될 수 있다. 다중 반송파가 지원되는 무선 통신 시스템을 다중 반송파(multiple carrier) 시스템이라 한다. 반송파는 무선 주파수(radio frequency, RF), 구성 반송파(component carrier) 등 다른 용어로 불릴 수 있다.
한편, 다양한 상향링크 제어정보가 상향링크 제어채널을 통해 전송된다. 상향링크 제어정보로는 HARQ(hybrid automatic repeat request) 수행에 사용되는 ACK(acknowledgement)/NACK(not-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 전송을 위한 무선 자원 할당을 요청하는 SR(scheduling request) 등 여러 가지 종류가 있다.
그런데, 차세대 무선 통신 시스템에서 고속의 전송률이 제공되기 위해 기존 시스템보다 추가적인 제어정보가 전송될 수 있어야 한다. 따라서, 기존 시스템과 호환성을 유지하면서 효율적으로 추가적인 제어정보를 전송하는 방법 및 장치를 제공할 필요가 있다.
본 발명이 이루고자 하는 기술적 과제는 무선 통신 시스템에서 제어신호 전송 방법 및 장치를 제공하는 데 있다.
무선 통신 시스템에서 단말에 의해 수행되는 제어신호 전송 방법을 제공한다. 상기 방법은 제1 제어정보를 제1 자원 인덱스를 기반으로 처리하여 제1 제어신호를 생성하는 단계, 제2 제어정보를 제2 자원 인덱스를 기반으로 처리하여 제2 제어신호를 생성하는 단계 및 상기 제1 제어신호 및 상기 제2 제어신호를 기지국으로 전송하는 단계를 포함한다.
바람직하게는, 상기 제1 제어신호 및 상기 제2 제어신호를 상기 기지국으로 전송하는 단계는 상기 제2 제어신호를 위상 변환하여 제3 제어신호를 생성하는 단계, 상기 제1 제어신호 및 상기 제3 제어신호를 더하여 제4 제어신호를 생성하는 단계 및 상기 제4 제어신호를 전송하는 단계를 포함할 수 있다.
바람직하게는, 상기 제1 제어정보는 제1 하향링크 반송파에 대한 제어정보이고, 상기 제2 제어정보는 제2 하향링크 반송파에 대한 제어정보일 수 있다.
바람직하게는, 상기 제1 제어정보 및 상기 제2 제어정보는 동일한 상향링크 반송파를 통해 전송될 수 있다.
바람직하게는, 상기 제1 제어신호 및 상기 제2 제어신호는 동시에 전송될 수 있다.
바람직하게는, 상기 제1 자원 인덱스와 상기 제2 자원 인덱스는 서로 다를 수 있다.
바람직하게는, 상기 제1 자원 인덱스는 제1 순환 쉬프트 인덱스 및 제1 자원블록을 지시하고, 상기 제2 자원 인덱스는 제2 순환 쉬프트 인덱스 및 제2 자원블록을 지시할 수 있다.
바람직하게는, 상기 제1 제어신호를 생성하는 단계는 상기 제1 순환 쉬프트 인덱스로부터 얻은 제1 순환 쉬프트 양만큼 기본 시퀀스를 순환 쉬프트시킴으로써 제1 순환 쉬프트된 시퀀스를 생성하는 단계, 상기 제1 순환 쉬프트된 시퀀스 및 상기 제1 제어정보에 대한 제1 변조 심벌을 기반으로 제1 변조된 시퀀스를 생성하는 단계 및 상기 제1 변조된 시퀀스를 상기 제1 자원블록에 맵핑한 후 상기 제1 제어신호를 생성하는 단계를 포함하고, 상기 제2 제어신호를 생성하는 단계는 상기 제2 순환 쉬프트 인덱스로부터 얻은 제2 순환 쉬프트 양만큼 상기 기본 시퀀스를 순환 쉬프트시킴으로써 제2 순환 쉬프트된 시퀀스를 생성하는 단계, 상기 제2 순환 쉬프트된 시퀀스 및 상기 제2 제어정보에 대한 제2 변조 심벌을 기반으로 제2 변조된 시퀀스를 생성하는 단계 및 상기 제2 변조된 시퀀스를 상기 제2 자원블록에 맵핑한 후 상기 제2 제어신호를 생성하는 것을 포함할 수 있다.
바람직하게는, 상기 제1 제어정보는 제1 하향링크 반송파를 통해 수신된 제1 데이터에 대한 제1 ACK(acknowledgement)/NACK(not-acknowledgement)이고, 상기 제2 제어정보는 제2 하향링크 반송파를 통해 수신된 제2 데이터에 대한 제2 ACK/NACK일 수 있다.
상기 방법은 상기 제1 하향링크 반송파를 통해 상기 제1 데이터를 수신하는 단계, 상기 제2 하향링크 반송파를 통해 상기 제2 데이터를 수신하는 단계를 더 포함할 수 있다.
다른 양태에서, 무선 신호를 생성 및 전송하는 RF(radio frequency)부 및 상기 RF부와 연결되어, 제1 제어정보를 제1 자원 인덱스를 기반으로 처리하여 제1 제어신호를 생성하고, 제2 제어정보를 제2 자원 인덱스를 기반으로 처리하여 제2 제어신호를 생성하고, 상기 제1 제어신호 및 상기 제2 제어신호를 전송하는 프로세서를 포함하는 무선 통신을 위한 장치를 제공한다.
무선 통신 시스템에서 효율적인 제어신호 전송 방법 및 장치를 제공한다. 따라서, 전체 시스템 성능을 향상시킬 수 있다.
도 1은 무선 통신 시스템을 나타낸 블록도이다.
도 2는 HARQ(hybrid automatic repeat request) ACK(acknowledgement)/NACK(not-acknowledgement) 및 CQI(channel quality indicator) 전송을 나타낸다.
도 3은 상향링크 전송을 나타낸다.
도 4는 3GPP(3rd Generation Partnership Project) LTE(long term evolution)에서 무선 프레임의 구조를 나타낸다.
도 5는 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드를 나타낸 예시도이다.
도 6은 3GPP LTE에서 하향링크 서브프레임의 구조의 예를 나타낸다.
도 7은 3GPP LTE에서 상향링크 서브프레임의 구조의 예를 나타낸다.
도 8은 노멀 CP(cyclic prefix)의 경우, PUCCH(physical uplink control channel) 포맷 1/1a/1b 전송의 예를 나타낸다.
도 9는 확장된 CP의 경우, PUCCH 포맷 1/1a/1b 전송의 예를 나타낸다.
도 10은 노멀 CP의 경우, PUCCH 포맷 2/2a/2b 전송의 예를 나타낸다.
도 11은 확장된 CP의 경우, PUCCH 포맷 2/2a/2b 전송의 예를 나타낸다.
도 12는 정보 전송 방법의 일 예를 나타낸 흐름도이다.
도 13은 정보 전송 방법의 다른 예를 나타낸 흐름도이다.
도 14는 정보 전송 방법의 또 다른 예를 나타낸 흐름도이다.
도 15는 자원 인덱스를 기반으로 하는 정보 처리 방법의 일 예를 나타낸 순서도이다.
도 16은 자원 인덱스를 기반으로 하는 정보 처리 방법의 다른 예를 나타낸 순서도이다.
도 17은 본 발명의 일 실시예에 따른 제어신호 전송 방법을 나타낸 흐름도이다.
도 18은 전송기 구조의 예를 나타낸 블록도이다.
도 19는 제r 확산된 시퀀스가 맵핑되는 하나의 자원블록의 예를 나타낸다.
도 20은 제r 변조된 시퀀스가 맵핑되는 서브프레임의 예를 나타낸다.
도 21은 무선 통신을 위한 장치의 예를 나타낸 블록도이다.
도 22는 기지국의 예를 나타낸 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 다중 접속 방식(multiple access scheme)에 사용될 수 있다. SC-FDMA는 DFT(Discrete Fourier Transform) 확산(spreading)된 복소수 심벌들에 IFFT(Inverse Fast Fourier Transform)가 수행되는 방식으로, DFTS-OFDM(DFT spread-orthogonal frequency division multiplexing)이라고도 한다. 또한, 이하의 기술은 SC-FDMA의 변형인 클러스터된(clustered) SC-FDMA, N×SC-FDMA 등의 다중 접속 방식에 사용될 수도 있다. 클러스터된 SC-FDMA는 DFT 확산된 복소수 심벌들이 복수의 서브블록(subblock)으로 나뉘고, 상기 복수의 서브블록이 주파수 영역에서 분산되어 부반송파에 맵핑되는 방식으로, 클러스터된 DFTS-OFDM이라고도 한다. N×SC-FDMA는 코드블록이 복수의 청크(chunk)로 나뉘고, 청크 단위로 DFT와 IFFT가 수행되는 방식으로, 청크 특정(chunk specific) DFTS-OFDM이라고도 한다.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(Institute of Electrical and Electronics Engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선 통신 시스템을 나타낸 블록도이다.
도 1을 참조하면, 무선 통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; User Equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서 하향링크(downlink, DL)는 기지국에서 단말로의 통신을 의미하며, 상향링크(uplink, UL)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 전송기는 기지국의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 전송기는 단말의 일부분일 수 있고, 수신기는 기지국의 일부분일 수 있다.
이종 네트워크(heterogeneous network)란 중계기(relay station), 펨토 셀(femto cell) 및/또는 피코 셀(pico cell) 등이 배치된 네트워크를 의미한다. 이종 네트워크에서, 하향링크는 기지국에서 중계기, 펨토 셀 또는 피코 셀로의 통신을 의미할 수 있다. 또한, 하향링크는 중계기에서 단말로의 통신을 의미할 수 있다. 또한, 다중 홉 릴레이(multi-hop relay)의 경우 하향링크는 제1 중계기에서 제2 중계기로의 통신을 의미할 수도 있다. 이종 네트워크에서, 상향링크는 중계기, 펨토 셀 또는 피코셀에서 기지국으로의 통신을 의미할 수 있다. 또한, 상향링크는 단말에서 중계기로의 통신을 의미할 수 있다. 또한, 다중 홉 릴레이의 경우 상향링크는 제2 중계기에서 제1 중계기로의 통신을 의미할 수도 있다.
무선 통신 시스템은 MIMO(multiple input multiple output) 시스템, MISO(multiple input single output) 시스템, SISO(single input single output) 시스템 및 SIMO(single input multiple output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다.
이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다.
무선 통신 시스템에서는 상향링크 및/또는 하향링크 HARQ(hybrid automatic repeat request)가 지원될 수 있다. 또한, 링크 적응(link adaptation)을 위해 CQI(channel quality indicator)가 사용될 수 있다.
도 2는 HARQ ACK(acknowledgement)/NACK(not-acknowledgement) 및 CQI 전송을 나타낸다.
도 2를 참조하면, 기지국으로부터 하향링크 데이터(DL data)를 수신한 단말은 일정 시간이 경과한 후에 HARQ ACK/NACK을 전송한다. 하향링크 데이터는 PDCCH(physical downlink control channel)에 의해 지시되는 PDSCH(physical downlink shared channel) 상으로 전송될 수 있다. HARQ ACK/NACK은 상기 하향링크 데이터의 디코딩에 성공하면 ACK이 되고, 상기 하향링크 데이터의 디코딩에 실패하면 NACK이 된다. 기지국은 NACK이 수신되면, ACK이 수신되거나 최대 재전송 횟수까지 상기 하향링크 데이터를 재전송할 수 있다.
하향링크 데이터에 대한 HARQ ACK/NACK의 전송 시점, HARQ ACK/NACK 전송을 위한 자원 할당 정보 등은 기지국이 시그널링(signaling)을 통해 동적으로 알려줄 수 있다. 또는, HARQ ACK/NACK의 전송 시점, 자원 할당 정보 등은 상기 하향링크 데이터의 전송 시점이나 상기 하향링크 데이터 전송에 사용된 자원에 따라 미리 약속되어 있을 수 있다. 예를 들어, FDD(frequency division duplex) 시스템에서, PDSCH가 n번 서브프레임을 통해 수신되면, 상기 PDSCH에 대한 HARQ ACK/NACK은 n+4번 서브프레임 내 PUCCH(physical uplink control channel)를 통해 전송될 수 있다.
단말은 하향링크 채널 상태를 측정하여, 주기적 및/또는 비주기적으로 CQI를 기지국에 보고할 수 있다. 기지국은 CQI를 이용하여 하향링크 스케줄링에 사용할 수 있다. 기지국은 단말로부터 수신되는 CQI를 이용하여 전송에 사용되는 MCS(modulation and coding scheme)를 결정할 수 있다. CQI를 이용하여 채널 상태가 좋다고 판단되면, 기지국은 변조 차수(modulation order)를 높이거나 부호화율(coding rate)을 높여 전송률을 높일 수 있다. CQI를 이용하여 채널 상태가 좋지 않다고 판단되면, 기지국은 변조 차수를 낮추거나 부호화율을 낮춰 전송률을 낮출 수 있다. 전송률이 낮아지면, 수신 오류율이 감소될 수 있다. CQI는 전체 대역에 대한 채널 상태 및/또는 전체 대역 중 일부 대역에 대한 채널 상태를 가리킬 수 있다. 기지국은 단말에게 CQI의 전송 시점이나 CQI 전송을 위한 자원 할당 정보를 알려줄 수 있다.
단말은 CQI 외에도 PMI(precoding matrix indicator), RI(rank indicator) 등을 기지국에 보고할 수 있다. PMI는 코드북에서 선택된 프리코딩 행렬의 인덱스를 지시하고, RI는 유용한 전송 레이어(useful transmission layer)의 개수를 지시한다. 이하, CQI는 CQI 외에도 PMI, RI까지 포함된 개념이다.
도 3은 상향링크 전송을 나타낸다.
도 3을 참조하면, 상향링크 전송을 위해 먼저 단말은 기지국으로 SR(scheduling request)을 보낸다. SR은 단말이 상향링크 무선 자원 할당을 기지국에 요청하는 것이다. SR은 대역폭 요청(bandwidth request)으로도 불릴 수 있다. SR은 데이터 교환을 위한 사전 정보 교환의 일종이다. 단말이 기지국으로 상향링크 데이터를 전송하기 위해서는 먼저 SR을 통해 무선 자원 할당을 요청한다. 기지국은 단말에게 SR의 전송 시점이나 SR 전송을 위한 자원 할당 정보를 알려줄 수 있다. SR은 주기적으로 전송될 수 있다. 기지국은 단말에게 SR의 전송 주기를 알려줄 수 있다.
기지국은 SR에 대한 응답으로 상향링크 그랜트(UL grant)를 단말에게 보낸다. 상향링크 그랜트는 PDCCH 상으로 전송될 수 있다. 상향링크 그랜트는 상향링크 무선 자원 할당에 대한 정보를 포함한다. 단말은 할당된 상향링크 무선 자원을 통해 상향링크 데이터를 전송한다.
도 2 및 3에 나타난 바와 같이, 단말은 HARQ ACK/NACK, CQI 및 SR과 같은 상향링크 제어정보를 주어진 전송 시점에서 전송할 수 있다. 상향링크 제어정보의 종류 및 크기는 시스템에 따라 달라질 수 있으며, 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 4는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
도 4를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다.
도 5는 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 5를 참조하면, 상향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역(frequency domain)에서 NUL 자원블록(resource block, RB)을 포함한다. OFDM 심벌은 하나의 심벌 구간(symbol period)을 표현하기 위한 것이다. OFDM 심벌은 OFDMA, SC-FDMA, 클러스터된 SC-FDMA 또는 N×SC-FDMA 등의 다중 접속 방식이 적용될 수 있다. OFDM 심벌은 시스템에 따라 SC-FDMA 심벌, OFDMA 심벌 또는 심벌 구간이라고 할 수 있다.
자원블록은 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯에 포함되는 자원블록의 수 NUL은 셀에서 설정되는 상향링크 전송 대역폭(bandwidth)에 종속한다.
자원 그리드 상의 각 요소(element)를 자원요소(resource element)라 한다. 자원 그리드 상의 자원요소는 슬롯 내 인덱스 쌍(pair) (k, ℓ)에 의해 식별될 수 있다. 여기서, k(k=0,...,NUL×12-1)는 주파수 영역 내 부반송파 인덱스이고, ℓ(ℓ=0,...,6)은 시간 영역 내 심벌 인덱스이다.
여기서, 하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되는 7×12 자원요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 부반송파의 수와 OFDM 심벌의 수는 이에 제한되는 것은 아니다. 자원블록이 포함하는 OFDM 심벌의 수 또는 부반송파의 수는 다양하게 변경될 수 있다. 이하, 자원블록은 일반적인 주파수 자원을 의미한다. 즉, 자원블록이 다르면, 주파수 자원이 다르다. OFDM 심벌의 수는 사이클릭 프리픽스(cyclic prefix, 이하 CP)의 길이에 따라 변경될 수 있다. 예를 들어, 노멀(normal) CP의 경우 OFDM 심벌의 수는 7이고, 확장된(extended) CP의 경우 OFDM 심벌의 수는 6이다.
도 5의 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다.
도 6은 3GPP LTE에서 하향링크 서브프레임의 구조의 예를 나타낸다.
도 6을 참조하면, 하향링크 서브프레임은 2개의 연속적인(consecutive) 슬롯을 포함한다. 하향링크 서브프레임 내의 제1 슬롯의 앞선 최대 3 OFDM 심벌들은 제어영역(control region)이고, 나머지 OFDM 심벌들은 데이터 영역(data region)이 된다.
데이터 영역에는 PDSCH가 할당될 수 있다. PDSCH 상으로는 하향링크 데이터가 전송된다. 하향링크 데이터는 TTI 동안 전송되는 전송 채널(transport channel)인 DL-SCH(downlink shared channel)를 위한 데이터 블록인 전송블록(transport block)일 수 있다. 기지국은 단말에게 하나의 안테나 또는 다중 안테나를 통해 하향링크 데이터를 전송할 수 있다. 3GPP LTE에서, 기지국은 단말에게 하나의 안테나 또는 다중 안테나를 통해 1 코드워드(codeword)를 전송할 수 있고, 다중 안테나를 통해서 2 코드워드를 전송할 수 있다. 즉, 3GPP LTE에서는 2 코드워드까지 지원된다. 코드워드란 정보에 해당하는 정보 비트(information bit)에 채널 코딩이 수행된 부호화된 비트(coded bits)이다. 코드워드마다 변조가 수행될 수 있다.
제어영역에는 PCFICH(physical control format indicator channel), PHICH(physical HARQ indicator channel), PDCCH 등의 제어채널이 할당될 수 있다.
PCFICH는 서브프레임 내에서 PDCCH들의 전송에 사용되는 OFDM 심벌의 개수에 관한 정보를 나른다(carry). 여기서, 제어영역이 3 OFDM 심벌을 포함하는 것은 예시에 불과하다. PHICH는 상향링크 전송에 대한 HARQ ACK/NACK을 나른다.
제어영역은 복수의 CCE(control channel elements)들의 집합으로 구성된다. 하향링크 서브프레임에서 CCE 집합을 구성하는 CCE의 총 수가 N(CCE)라면, CCE는 0부터 N(CCE)-1까지 CCE 인덱스가 매겨진다. CCE는 복수의 자원요소 그룹(resource element group)에 대응된다. 자원요소 그룹은 자원요소들로의 제어채널 맵핑을 정의하기 위해 사용된다. 하나의 자원요소 그룹은 복수의 자원요소로 구성된다. PDCCH는 하나 또는 몇몇 연속적인 CCE의 집단(aggregation) 상으로 전송된다. 제어영역 내에서 복수의 PDCCH가 전송될 수 있다.
PDCCH는 하향링크 스케줄링 정보, 상향링크 스케줄링 정보 또는 상향링크 파워 제어 명령 등의 하향링크 제어정보를 나른다. 기지국이 단말에게 서브프레임 내 PDSCH 상으로 하향링크 데이터를 전송하는 경우, 기지국은 상기 서브프레임 내 PDCCH 상으로 상기 PDSCH의 스케줄링을 위해 사용되는 하향링크 제어정보를 나른다. 단말은 상기 하향링크 제어정보를 디코딩하여 PDSCH 상으로 전송되는 하향링크 데이터를 읽을 수 있다.
도 7은 3GPP LTE에서 상향링크 서브프레임의 구조의 예를 나타낸다.
도 7을 참조하면, 상향링크 서브프레임은 상향링크 제어정보를 나르는 PUCCH가 할당되는 제어영역과 상향링크 데이터를 나르는 PUSCH(physical uplink shared channel)가 할당되는 데이터 영역으로 나눌 수 있다. 3GPP LTE(Release 8)에서는 단일 반송파 특성(single carrier property)을 유지하기 위해, 하나의 단말에게 할당되는 자원블록들은 주파수 영역에서 연속된다. 하나의 단말은 PUCCH와 PUSCH를 동시에 전송할 수 없다. LTE-A(Release 10)에서는 PUCCH와 PUSCH의 동시 전송(concurrent transmission)이 고려 중에 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 즉, PUCCH에 할당된 자원블록은 슬롯 레벨(slot level)로 홉핑(hopping)된다. 이하, 슬롯 레벨의 자원블록 홉핑을 주파수 홉핑(frequency hopping)이라 한다. 단말이 상향링크 제어정보를 시간에 따라 서로 다른 위치의 주파수를 통해 전송함으로써, 주파수 다이버시티 이득이 얻어질 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUSCH는 전송 채널인 UL-SCH(uplink shared channel)에 맵핑된다. PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ ACK/NACK, 하향링크 채널 상태를 나타내는 CQI, 상향링크 무선 자원 할당 요청인 SR 등이 있다.
PUCCH는 다중 포맷을 지원할 수 있다. 즉, PUCCH 포맷의 적용에 종속된 변조 방식(modulation scheme)에 따라 서브프레임당 서로 다른 비트 수를 갖는 상향링크 제어정보를 전송할 수 있다. 다음 표는 PUCCH 포맷에 따른 변조 방식 및 서브프레임당 비트 수의 예를 나타낸다.
표 1
Figure PCTKR2009004480-appb-T000001
PUCCH 포맷 1은 SR의 전송에 사용되고, PUCCH 포맷 1a/1b는 HARQ ACK/NACK의 전송에 사용되고, PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a/2b는 CQI 및 HARQ ACK/NACK의 전송에 사용된다.
임의의 서브프레임에서 HARQ ACK/NACK이 단독으로 전송되는 경우에는 PUCCH 포맷 1a/1b를 사용되고, SR이 단독으로 전송되는 경우에는 PUCCH 포맷 1을 사용한다. 단말은 HARQ ACK/NACK 및 SR을 동일 서브프레임에서 동시에 전송할 수 있다. 긍정적인(positive) SR 전송을 위해 단말은 SR용으로 할당된 PUCCH 자원을 통해 HARQ ACK/NACK을 전송하고, 부정적인(negative) SR 전송을 위해서는 단말은 ACK/NACK용으로 할당된 PUCCH 자원을 통해 HARQ ACK/NACK을 전송한다.
PUCCH 상으로 전송되는 제어정보는 순환 쉬프트된 시퀀스(cyclically shifted sequence)를 이용할 수 있다. 순환 쉬프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 쉬프트시켜 생성할 수 있다. 특정 CS 양은 순환 쉬프트 인덱스(CS index)에 의해 지시된다. 다양한 종류의 시퀀스가 기본 시퀀스로 사용될 수 있다. 예를 들어, PN(pseudo-random) 시퀀스, ZC(Zadoff-Chu) 시퀀스와 같은 잘 알려진 시퀀스를 기본 시퀀스로 사용할 수 있다. 또는, 컴퓨터를 통해 생성되는 CAZAC(Constant Amplitude Zero Auto-Correlation)를 사용할 수 있다. 다음 수학식은 기본 시퀀스의 예이다.
수학식 1
Figure PCTKR2009004480-appb-M000001
여기서, i ∈ {0,1,...,29}는 원시 인덱스(root index), n은 요소 인덱스로 0≤n≤N-1, N은 기본 시퀀스의 길이이다. i는 셀 ID(identitifer), 무선 프레임 내 슬롯 번호 등에 의해 정해질 수 있다. 하나의 자원블록이 12 부반송파를 포함한다고 할 때, N은 12로 할 수 있다. 다른 원시 인덱스에 따라 다른 기본 시퀀스가 정의된다. N=12 일 때, b(n)은 다음 표와 같이 정의될 수 있다.
표 2
Figure PCTKR2009004480-appb-T000002
기본 시퀀스 r(n)을 다음 수학식과 같이 순환 쉬프트시켜 순환 쉬프트된 시퀀스 r(n, Ics)을 생성할 수 있다.
수학식 2
Figure PCTKR2009004480-appb-M000002
여기서, Ics는 CS 양을 나타내는 순환 쉬프트 인덱스이다(0≤Ics≤N-1, Ics는 정수).
이하에서 기본 시퀀스의 가용(available) 순환 쉬프트 인덱스는 CS 간격(CS interval)에 따라 기본 시퀀스로부터 얻을 수(derive) 있는 순환 쉬프트 인덱스를 말한다. 예를 들어, 기본 시퀀스의 길이가 12이고, CS 간격이 1이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 수는 12가 된다. 또는, 기본 시퀀스의 길이가 12이고, CS 간격이 2이라면, 기본 시퀀스의 가용 순환 쉬프트 인덱스의 총 수는 6이 된다. CS 간격은 지연 스프레드(delay spread)를 고려하여 결정될 수 있다.
도 8은 노멀 CP의 경우, PUCCH 포맷 1/1a/1b 전송의 예를 나타낸다. 이는 하나의 서브프레임 내 제1 슬롯과 제2 슬롯에 할당된 자원블록 쌍을 나타낸 것이다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 8을 참조하면, 제1 슬롯과 제2 슬롯 각각은 7 OFDM 심벌을 포함한다. 각 슬롯의 7 OFDM 심벌 중 3 OFDM 심벌에는 RS(reference signal)가 실리고, 나머지 4 OFDM 심벌에는 제어정보가 실린다. RS는 각 슬롯 중간의 3개의 인접하는(contiguous) OFDM 심벌에 실린다. 이때 RS에 사용되는 심벌의 개수 및 위치는 달라질 수 있으며, 제어정보에 사용되는 심벌의 개수 및 위치도 그에 따라 변경될 수 있다.
PUCCH 포맷 1, 1a 및 1b 각각은 하나의 복소 심벌(complex-valued symbol) d(0)를 사용한다. 기지국은 SR을 단말로부터의 PUCCH 포맷 1 전송의 존재 또는 부존재만으로 알 수 있다. 즉, SR 전송에는 OOK(on-off keying) 변조 방식이 사용될 수 있다. 따라서, PUCCH 포맷 1을 위한 복소 심벌 d(0)의 값으로는 임의의 복소수를 사용할 수 있다. 예를 들어, d(0)=1을 사용할 수 있다. PUCCH 포맷 1a를 위한 복소 심벌 d(0)는 1비트의 HARQ ACK/NACK 정보가 BPSK(Binary Phase Shift Keying) 변조되어 생성되는 변조 심벌이다. PUCCH 포맷 1b를 위한 복소 심벌 d(0)는 2비트의 HARQ ACK/NACK 정보가 QPSK(Quadrature Phase Shift Keying) 변조되어 생성되는 변조 심벌이다. PUCCH 포맷 1a는 1 코드워드에 대한 HARQ ACK/NACK 정보를 위한 것이고, PUCCH 포맷 1b는 2 코드워드에 대한 HARQ ACK/NACK 정보를 위한 것이다.
다음 표는 변조 방식에 따라 HARQ ACK/NACK 정보 비트가 맵핑되는 변조 심벌의 예를 나타낸다.
표 3
Figure PCTKR2009004480-appb-T000003
PUCCH 포맷 1/1a/1b을 위한 복소 심벌 d(0) 및 순환 쉬프트된 시퀀스 r(n,Ics)를 이용하여 변조된 시퀀스(modulated sequence) s(n)를 생성한다. 다음 수학식과 같이 순환 쉬프트된 시퀀스 r(n,Ics)에 복소 심벌 d(0)를 곱하여 변조된 시퀀스 s(n)을 생성할 수 있다.
수학식 3
Figure PCTKR2009004480-appb-M000003
순환 쉬프트된 시퀀스 r(n,Ics)의 순환 쉬프트 인덱스인 Ics는 할당된 자원으로부터 시작하여 심벌 레벨(symbol level)로 홉핑될 수 있다. 이하, 심벌 레벨의 순환 쉬프트 인덱스의 홉핑을 CS 홉핑(CS hopping)이라 한다. CS 홉핑은 무선 프레임 내 슬롯 번호(ns) 및 슬롯 내 심벌 인덱스(ℓ)에 따라 수행될 수 있다. 따라서, 순환 쉬프트 인덱스 Ics는 Ics(ns,ℓ)로 표현될 수 있다. CS 홉핑은 셀 간 간섭(inter-cell interference)을 랜덤화(randomization)시키기 위해 셀 특정하게 수행될 수 있다. 여기서는, 제1 슬롯의 슬롯 번호는 0이고, 제2 슬롯의 슬롯 번호는 1로 하고, Ics(0,0)=0, Ics(0,1)=1, Ics(0,5)=2, Ics(0,6)=3, Ics(1,0)=4, Ics(1,1)=5, Ics(1,5)=6 및 Ics(1,6)=7로 두고 있으나, 이는 예시에 불과하다.
단말 다중화 용량(UE multiplexing capacity)을 증가시키기 위해, 변조된 시퀀스 s(n)은 직교 시퀀스를 이용하여 확산될 수 있다. 단말 다중화 용량이란, 동일한 자원블록에 다중화될 수 있는 단말의 개수이다.
여기서는, 하나의 슬롯 내의 제어정보가 실리는 4 OFDM 심벌에 대해 확산 계수(spreading factor) K=4인 직교 시퀀스 w(k)를 통해 변조된 시퀀스 s(n)을 확산시키는 것을 보이고 있다. 확산 계수 K=4인 직교 시퀀스 wIos(k) (Ios는 직교 시퀀스 인덱스, k는 직교 시퀀스의 요소 인덱스, 0≤k≤K-1)로 다음 표와 같은 시퀀스를 사용할 수 있다.
표 4
Figure PCTKR2009004480-appb-T000004
직교 시퀀스를 구성하는 요소들은 차례대로 제어정보가 실리는 OFDM 심벌들에 1:1로 대응된다. 직교 시퀀스를 구성하는 요소들 각각은 대응하는 OFDM 심벌에 실리는 변조된 시퀀스 s(n)에 곱해져 확산된 시퀀스가 생성된다. 확산된 시퀀스는 서브프레임 내 PUCCH에 할당되는 자원블록 쌍에 맵핑된다. 확산된 시퀀스가 자원블록 쌍에 맵핑된 후, 상기 서브프레임의 OFDM 심벌마다 IFFT가 수행되어 제어정보에 대한 시간 영역 신호가 출력된다. 여기서는, IFFT 수행 전에 직교 시퀀스가 곱해지나, 변조된 시퀀스 s(n)에 대한 IFFT 수행 후에 직교 시퀀스가 곱해져도 동일한 결과가 얻어질 수 잇다.
또는, 확산 계수 K=3인 직교 시퀀스 wIos(k) (Ios는 직교 시퀀스 인덱스, k는 직교 시퀀스의 요소 인덱스, 0≤k≤K-1)로 다음 표와 같은 시퀀스를 사용할 수 있다.
표 5
Figure PCTKR2009004480-appb-T000005
사운딩 참조신호(sounding reference signal, SRS)와 PUCCH 포맷 1/1a/1b이 하나의 서브프레임에서 동시에 전송되는 경우, PUCCH 상의 하나의 OFDM 심벌이 천공(puncturing)된다. 예를 들어, 서브프레임의 마지막 OFDM 심벌이 천공될 수 있다. 이 경우, 상기 서브프레임의 제1 슬롯에서는 제어정보가 4 OFDM 심벌에 실리고, 상기 서브프레임의 제2 슬롯에서는 제어정보가 3 OFDM 심벌에 실린다. 따라서, 제1 슬롯에 대해서는 확산 계수 K=4인 직교 시퀀스가 이용되고, 제2 슬롯에 대해서는 확산 계수 K=3인 직교 시퀀스가 이용된다.
직교 시퀀스 인덱스 Ios는 할당된 자원으로부터 시작하여 슬롯 레벨로 홉핑될 수 있다. 이하, 슬롯 레벨의 직교 시퀀스 인덱스의 홉핑을 직교 시퀀스 리맵핑(OS remapping)이라 한다. 직교 시퀀스 리맵핑은 무선 프레임 내 슬롯 번호(ns)에 따라 수행될 수 있다. 따라서, 직교 시퀀스 인덱스 Ios는 Ios(ns)로 표현될 수 있다. 직교 시퀀스 리맵핑은 셀 간 간섭의 랜덤화를 위해 수행될 수 있다.
변조된 시퀀스 s(n)은 직교 시퀀스를 이용한 확산 외에도 스크램블될 수 있다. 예를 들어, 변조된 시퀀스 s(n)에 특정 파라미터에 따라 1 또는 j가 곱해질 수 있다.
RS는 제어정보와 동일한 기본 시퀀스로부터 생성된 순환 쉬프트된 시퀀스와 직교 시퀀스를 이용하여 생성할 수 있다. 순환 쉬프트된 시퀀스를 확산 계수 K=3인 직교 시퀀스 w(k)를 통해 확산시켜 RS로 사용할 수 있다. 따라서, 단말이 제어정보를 전송하기 위해, 제어정보를 위한 순환 쉬프트 인덱스와 직교 시퀀스 인덱스 외에도, RS를 위한 순환 쉬프트 인덱스와 직교 시퀀스 인덱스도 필요하다.
도 9는 확장된 CP의 경우, PUCCH 포맷 1/1a/1b 전송의 예를 나타낸다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 9를 참조하면, 제1 슬롯과 제2 슬롯 각각은 6 OFDM 심벌을 포함한다. 각 슬롯의 6 OFDM 심벌 중 2 OFDM 심벌에는 RS가 실리고, 나머지 4 OFDM 심벌에는 제어정보가 실린다. 이를 제외하면, 도 8의 노멀 CP의 경우의 예가 그대로 적용될 수 있다. 다만, RS는 순환 쉬프트된 시퀀스를 확산 계수 K=2인 직교 시퀀스 w(k)를 통해 확산시켜 RS로 사용할 수 있다.
확산 계수 K=2인 직교 시퀀스 wIos(k) (Ios는 직교 시퀀스 인덱스, k는 직교 시퀀스의 요소 인덱스, 0≤k≤K-1)로 다음 표와 같은 시퀀스를 사용할 수 있다.
표 6
Figure PCTKR2009004480-appb-T000006
상술한 바와 같이, 노멀 CP, 확장된 CP의 경우 모두 PUCCH 포맷 1/1/a/1b 전송을 위해, 다음의 정보가 필요하다. 제어정보가 전송되는 부반송파(또는 자원블록), 제어정보를 위한 순환 쉬프트 인덱스 Ics 및 직교 시퀀스 인덱스 Ios, RS를 위한 순환 쉬프트 인덱스 I'cs 및 직교 시퀀스 인덱스 I'os가 필요하다. 예를 들어, 확장된 CP에서 CS 간격이 2인 경우, 단말 다중화 용량은 다음과 같다. 제어정보를 위한 Ics의 개수는 6이고, Ios의 개수는 3이므로, 하나의 자원블록당 18개의 단말이 다중화될 수 있다. 그러나, RS를 위한 I'cs의 개수는 6이고, I'os의 개수는 2이므로, 하나의 자원블록당 12개의 단말이 다중화될 수 있다. 따라서, 단말 다중화 용량은 제어정보 부분(part)보다는 RS 부분에 의해 제한된다.
도 10은 노멀 CP의 경우, PUCCH 포맷 2/2a/2b 전송의 예를 나타낸다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 10을 참조하면, 각 슬롯에 포함되는 7 OFDM 심벌 중 2 OFDM 심벌에는 RS가 실리고, 나머지 5 OFDM 심벌에는 CQI가 실린다. 이때 RS에 사용되는 심벌의 개수 및 위치는 달라질 수 있으며, CQI에 사용되는 심벌의 개수 및 위치도 그에 따라 변경될 수 있다.
단말은 CQI 정보 비트에 채널 코딩을 수행하여 부호화된 CQI 비트를 생성한다. 이때, 블록 코드(block code)가 사용될 수 있다. 블록 코드의 예로 리드 뮬러 코드(Reed-Muller code) 패밀리가 있다. 3GPP LTE에서는 (20, A) 블록 코드가 사용된다. 여기서, A는 CQI 정보 비트의 크기이다. 즉, 3GPP LTE에서는 CQI 정보 비트의 크기에 상관없이 항상 20비트의 부호화된 CQI 비트가 생성된다.
다음 표는 (20, A) 블록 코드를 위한 13 기저 시퀀스(basis sequence)의 예를 나타낸다.
표 7
Figure PCTKR2009004480-appb-T000007
여기서, Mi,n은 기저 시퀀스이다(0≤n≤12, n은 정수). 부호화된 CQI 비트는 13 기저 시퀀스들의 선형 결합(linear combination)으로 생성된다. 다음 수학식은 부호화된 CQI 비트 bi의 예를 나타낸다(0≤i≤19, i는 정수).
수학식 4
Figure PCTKR2009004480-appb-M000004
여기서, a0,a1,...,aA-1은 CQI 정보 비트이고, A는 CQI 정보 비트의 크기이다(A는 자연수).
CQI 정보 비트는 하나 이상의 필드를 포함할 수 있다. 예를 들어, MCS를 결정하는 CQI 인덱스를 지시하는 CQI 필드, 코드북에서 선택된 프리코딩 행렬의 인덱스를 지시하는 PMI(precoding matrix indication) 필드, 랭크를 지시하는 RI(rank indication) 필드 등이 CQI 정보 비트에 포함될 수 있다.
다음 표는 CQI 정보 비트가 포함하는 필드 및 상기 필드의 비트 크기의 일 예를 나타낸다.
표 8
Figure PCTKR2009004480-appb-T000008
CQI 정보 비트는 4비트 크기의 광대역(wideband) CQI 필드만을 포함할 수 있다. 이때, CQI 정보 비트의 크기 A는 4이다. 광대역 CQI 필드는 전체 대역에 대한 CQI 인덱스를 지시한다.
다음 표는 CQI 정보 비트가 포함하는 필드 및 상기 필드의 비트 크기의 다른 예를 나타낸다.
표 9
Figure PCTKR2009004480-appb-T000009
CQI 정보 비트는 광대역 CQI 필드, 공간 차이(spatial differential) CQI 필드, PMI 필드를 포함할 수 있다. 공간 차이 CQI 필드는 제1 코드워드를 위한 전체 대역에 대한 CQI 인덱스와 제2 코드워드를 위한 전체 대역에 대한 CQI 인덱스의 차이를 지시한다. 각 필드의 크기는 기지국의 전송 안테나의 개수와 랭크에 따라 달라질 수 있다. 예를 들어, 기지국이 4 전송 안테나를 사용하고, 랭크가 1 보다 큰 경우, CQI 정보 비트는 4비트의 광대역 CQI 필드, 3비트의 공간 차이 CQI 필드 및 4비트의 PMI 필드를 포함한다(A=11).
다음 표는 CQI 정보 비트가 포함하는 필드 및 상기 필드의 비트 크기의 또 다른 예를 나타낸다.
표 10
Figure PCTKR2009004480-appb-T000010
20비트의 부호화된 CQI 비트는 단말 특정 스크램블링 시퀀스(UE-specific scrambling sequence)에 의해 스크램블되어 20비트의 스크램블된 비트를 생성할 수 있다. 20비트의 스크램블된 비트는 QPSK를 통해 10개의 변조 심벌들 d(0),...,d(9)로 맵핑된다. PUCCH 포맷 2a에서는 1비트의 HARQ ACK/NACK 정보가 BPSK 변조를 통해 1개의 변조 심벌 d(10)으로 맵핑된다. PUCCH 포맷 2b에서는 2비트의 HARQ ACK/NACK 정보가 QPSK 변조를 통해 1개의 변조 심벌 d(10)으로 맵핑된다. 즉, PUCCH 포맷 2a에서는 CQI 및 1비트의 HARQ ACK/NACK 정보가 동시에 전송되고, PUCCH 포맷 2b에서는 CQI 및 2비트의 HARQ ACK/NACK 정보가 동시에 전송된다. 여기서, d(10)은 RS 생성에 사용된다. d(10)은 각 슬롯 내 RS가 실리는 2 OFDM 심벌 중 하나의 OFDM 심벌에 대응된다. 다시 말하면, 각 슬롯 내 상기 하나의 OFDM 심벌에 실리는 RS에는 해당 d(10)에 따라 위상 변조(phase modulation)가 수행된다. PUCCH 포맷 2a/2b는 노멀 CP에만 지원될 수 있다. 이와 같이, PUCCH 포맷 2a 및 2b 각각에서, 1개의 변조 심벌은 RS 생성에 사용된다.
변조 심벌들 d(0),...,d(9)와 기본 시퀀스로부터 생성된 순환 쉬프트된 시퀀스 r(n,Ics)를 기반으로 변조된 시퀀스를 생성한다. 순환 쉬프트된 시퀀스 r(n,Ics)의 순환 쉬프트 인덱스 Ics는 무선 프레임 내 슬롯 번호(ns) 및 슬롯 내 심벌 인덱스(ℓ)에 따라 달라질 수 있다. 따라서, 순환 쉬프트 인덱스 Ics는 Ics(ns,ℓ)로 표현될 수 있다. 여기서는, 제1 슬롯의 슬롯 번호는 0이고, 제2 슬롯의 슬롯 번호는 1로 하고, Ics(0,0)=0, Ics(0,2)=1, Ics(0,3)=2, Ics(0,4)=3, Ics(0,6)=4, Ics(1,0)=5, Ics(1,2)=6, Ics(1,3)=7, Ics(1,4)=8 및 Ics(1,6)=9로 두고 있으나, 이는 예시에 불과하다. RS는 제어정보와 동일한 기본 시퀀스로부터 생성된 순환 쉬프트된 시퀀스를 이용할 수 있다.
PUCCH 포맷 2/2a/2b는 PUCCH 포맷 1/1a/1b와 달리 직교 시퀀스는 사용하지 않는다.
도 11은 확장된 CP의 경우, PUCCH 포맷 2/2a/2b 전송의 예를 나타낸다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 11을 참조하면, 제1 슬롯과 제2 슬롯 각각은 6 OFDM 심벌을 포함한다. 각 슬롯의 6 OFDM 심벌 중 1 OFDM 심벌에는 RS가 실리고, 나머지 5 OFDM 심벌에는 제어정보가 실린다. 이를 제외하면, 도 10의 노멀 CP의 경우의 예가 그대로 적용된다.
상술한 바와 같이, 노멀 CP, 확장된 CP의 경우 모두 PUCCH 포맷 2/2/a/2b 전송을 위해, 다음의 정보가 필요하다. 제어정보가 전송되는 부반송파(또는 자원블록), 제어정보를 위한 순환 쉬프트 인덱스 Ics, RS를 위한 순환 쉬프트 인덱스 I'cs가 필요하다. CS 간격이 1인 경우, 제어정보를 위한 Ics의 개수 및 RS를 위한 I'cs는 각각 12이고, 하나의 자원블록당 12개의 단말이 다중화될 수 있다. CS 간격이 2인 경우, 제어정보를 위한 Ics의 개수 및 RS를 위한 I'cs는 각각 6이고, 하나의 자원블록당 6개의 단말이 다중화될 수 있다.
도 12는 정보 전송 방법의 일 예를 나타낸 흐름도이다.
도 12를 참조하면, 단말은 자원 인덱스(resource index)를 획득한다(S11). 단말은 자원 인덱스를 기반으로 정보를 처리한다(S12). 단말은 기지국으로 정보를 전송한다(S13).
셀 내 복수의 단말은 기지국으로 동시에 각자의 정보를 전송할 수 있다. 이때, 각 단말이 서로 다른 자원을 사용한다면, 기지국은 각 단말마다의 정보를 구별할 수 있다. 정보란 제어정보, 사용자 데이터, 여러 제어정보가 혼합된 정보 또는 제어정보와 사용자 데이터가 다중화된 정보 등이 될 수 있다.
자원(resource)은 자원블록, 주파수 영역 시퀀스 및 시간 영역 시퀀스 중 적어도 하나 이상을 포함할 수 있다. 자원블록은 정보가 전송되는 주파수 자원이다. 주파수 영역 시퀀스는 정보에 대응하는 심벌을 주파수 영역으로 확산시키기 위해 사용된다. 시간 영역 시퀀스는 상기 심벌을 시간 영역으로 확산시키기 위해 사용된다. 자원이 주파수 영역 시퀀스 및 시간 영역 시퀀스를 포함하는 경우, 주파수 영역 시퀀스 및 시간 영역 시퀀스는 상기 심벌을 2차원의 시간-주파수 영역(주파수 영역 및 시간 영역)으로 확산시키기 위해 사용된다.
자원 인덱스는 정보 전송에 사용되는 자원을 식별한다. 자원에 따라 자원 인덱스는 자원블록 정보, 주파수 영역 시퀀스 인덱스 및 시간 영역 시퀀스 인덱스 중 적어도 하나 이상을 포함할 수 있다. 자원블록 정보는 자원블록을 지시하고, 주파수 영역 시퀀스 인덱스는 주파수 영역 시퀀스를 지시하고, 시간 영역 시퀀스 인덱스는 시간 영역 시퀀스를 지시한다. 예를 들어, 자원이 자원블록 및 주파수 영역 시퀀스를 포함하는 경우, 자원 인덱스는 자원블록 정보 및 주파수 영역 시퀀스 인덱스를 포함할 수 있다.
이하, 주파수 영역 시퀀스 및/또는 시간 영역 시퀀스로 사용되는 시퀀스에 대해 상술한다. 시퀀스는 복수의 시퀀스들을 원소로 하는 시퀀스 집합에서 선택될 수 있다. 시퀀스 집합에 포함되는 상기 복수의 시퀀스들은 서로 직교하거나, 서로 낮은 상관도(correlation)를 가질 수 있다.
자원이 시퀀스를 포함하는 경우, 자원 인덱스는 시퀀스 인덱스를 포함할 수 있다. 시퀀스는 시퀀스 인덱스를 기반으로 생성될 수 있다. 이하, 시퀀스는 주파수 영역 시퀀스 및/또는 시간 영역 시퀀스이다.
일 예로, 시퀀스 인덱스는 시퀀스 집합에서 선택된 하나의 시퀀스를 지시할 수 있다. 시퀀스 집합에 속한 시퀀스들 각각은 하나의 시퀀스 인덱스에 일대일로 대응될 수 있다.
다른 예로, 시퀀스 인덱스는 순환 쉬프트 양을 지시하고, 시퀀스는 기본 시퀀스를 상기 순환 쉬프트 양만큼 순환 쉬프트시킴으로써 생성될 수 있다.
이하에서는 시간 영역 시퀀스는 직교 시퀀스들의 집합에서 선택된 하나의 직교 시퀀스이고, 주파수 영역 시퀀스는 기본 시퀀스를 순환 쉬프트 양만큼 순환 쉬프트시킴으로써 생성된 순환 쉬프트된 시퀀스인 경우를 가정한다. 이 경우, 시간 영역 시퀀스 인덱스는 직교 시퀀스를 지시하는 직교 시퀀스 인덱스이고, 주파수 영역 시퀀스 인덱스는 순환 쉬프트 양을 지시하는 순환 쉬프트 인덱스일 수 있다. 다만, 이는 예시일 뿐, 시간 영역 시퀀스 및/또는 주파수 영역 시퀀스를 제한하는 것은 아니다.
PUCCH 포맷 1/1a/1b의 경우, 자원은 (1) CS 양, (2) 직교 시퀀스 및 (3) 자원블록의 조합으로 구성된다. 자원 인덱스는 순환 쉬프트 인덱스, 직교 시퀀스 인덱스 및 자원블록을 지시한다. 예를 들어, 순환 쉬프트 인덱스의 개수가 6, 직교 시퀀스 인덱스의 개수가 3, 자원블록의 개수가 3이면, 자원의 총수는 54(=6×3×3)이다. 54개의 자원은 0부터 53까지 자원 인덱스가 매겨질 수 있다. 54개 자원 각각은 서로 다른 단말에게 할당될 수 있다.
PUCCH 포맷 2/2a/2b의 경우, 자원은 (1) CS 양, (2) 자원블록의 조합으로 구성된다. 자원 인덱스는 순환 쉬프트 인덱스 및 자원블록을 지시한다. 예를 들어, 순환 쉬프트 인덱스의 개수가 6, 자원블록의 개수가 2이면, 자원의 총수는 12(=6×2)이다. 12개의 자원은 0부터 11까지 자원 인덱스가 매겨질 수 있다. 12개 자원 각각은 서로 다른 단말에게 할당될 수 있다.
이와 같이, 자원 인덱스로부터 순환 쉬프트 인덱스 및 자원블록이 결정된다. PUCCH 포맷 1/1a/1b의 경우에는 자원 인덱스로부터 직교 시퀀스 인덱스 역시 결정된다. 예를 들어, 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스 m은 자원 인덱스로부터 결정될 수 있다.
도 13은 정보 전송 방법의 다른 예를 나타낸 흐름도이다.
도 13을 참조하면, 기지국은 단말에게 자원 인덱스를 전송한다(S21). 단말은 자원 인덱스를 기반으로 정보를 처리한다(S22). 단말은 기지국으로 정보를 전송한다(23). 이와 같이, 기지국은 단말에게 자원 인덱스를 명시적으로(explicitly) 알려줄 수 있다. 자원 인덱스는 상위 계층(higher layer) 시그널링에 의해 설정될 수 있다. 예를 들어, 물리 계층(physical layer)의 상위 계층은 단말과 네트워크 간에 무선 자원을 제어하는 RRC(radio resource control) 계층일 수 있다. 이 경우, 단말이 전송하는 정보는 SR, SPS(semi-persistent scheduling) ACK/NACK, CQI 등일 수 있다. SPS ACK/NACK은 반정적 스케줄링으로 전송된 하향링크 데이터에 대한 HARQ ACK/NACK이다. 상기 하향링크 데이터가 PDSCH를 통해 전송될 경우, 상기 PDSCH에 대응하는 PDCCH가 존재하지 않을 수 있다.
도 14는 정보 전송 방법의 또 다른 예를 나타낸 흐름도이다.
도 14를 참조하면, 기지국은 단말에게 하향링크 데이터를 전송한다(S31). 단말은 자원 인덱스를 획득한다(S32). 이때, 자원 인덱스는 하향링크 데이터 수신을 위한 제어채널이 전송되는 무선 자원으로부터 얻을 수 있다. 단말은 자원 인덱스를 기반으로 정보를 처리한다(S33). 단말은 기지국으로 정보를 전송한다(S34). 이와 같이, 기지국은 단말에게 자원 인덱스를 암시적으로(implicitly) 알려줄 수 있다. 이 경우, 단말이 전송하는 정보는 동적(dynamic) ACK/NACK일 수 있다. 동적 ACK/NACK은 동적 스케줄링으로 전송된 하향링크 데이터에 대한 ACK/NACK이다. 동적 스케줄링은 기지국이 PDSCH를 통한 하향링크 데이터를 전송할 때마다 단말에게 PDCCH를 통해 하향링크 그랜트를 매번 전송하는 것이다.
다음 수학식은 동적 ACK/NACK 전송을 위한 자원 인덱스(In)를 결정하는 예이다.
수학식 5
Figure PCTKR2009004480-appb-M000005
여기서, n(CCE)는 PDSCH에 대한 PDCCH 전송에 사용된 첫번째 CCE 인덱스이고, N(1) PUCCH는 SR과 SPS ACK/NACK을 위해 할당되는 자원 인덱스의 개수이다. N(1) PUCCH는 RRC 계층과 같은 상위 계층에 의해 설정될 수 있다.
따라서, 기지국은 PDCCH 전송에 사용되는 첫번째 CCE 인덱스를 조절하여 ACK/NACK 전송을 위한 자원을 조절할 수 있다.
도 15는 자원 인덱스를 기반으로 하는 정보 처리 방법의 일 예를 나타낸 순서도이다.
도 15를 참조하면, 단말은 자원 인덱스를 기반으로 순환 쉬프트 인덱스를 결정한다(S41). 단말은 순환 쉬프트 인덱스를 기반으로 순환 쉬프트된 시퀀스를 생성한다(S42). 순환 쉬프트된 시퀀스는 순환 쉬프트 인덱스로부터 얻은 순환 쉬프트 양만큼 기본 시퀀스를 순환 쉬프트시킴으로써 생성될 수 있다. 단말은 순환 쉬프트된 시퀀스 및 정보를 위한 심벌을 기반으로 변조된 시퀀스를 생성한다(S43). 단말은 변조된 시퀀스를 자원블록에 맵핑한다(S44). 자원블록은 자원 인덱스를 기반으로 결정될 수 있다. 단말은 변조된 시퀀스를 전송한다. 이때, 단말이 전송하는 정보는 CQI일 수 있다.
도 16은 자원 인덱스를 기반으로 하는 정보 처리 방법의 다른 예를 나타낸 순서도이다.
도 16을 참조하면, 단말은 자원 인덱스를 기반으로 직교 시퀀스 인덱스 및 순환 쉬프트 인덱스를 결정한다(S51). 단말은 순환 쉬프트 인덱스를 기반으로 순환 쉬프트된 시퀀스를 생성한다(S52). 단말은 순환 쉬프트된 시퀀스 및 정보를 위한 심벌을 기반으로 변조된 시퀀스를 생성한다(S53). 단말은 직교 시퀀스 인덱스를 기반으로 변조된 시퀀스로부터 확산된 시퀀스를 생성한다(S54). 단말은 확산된 시퀀스를 자원블록에 맵핑한다(S55). 자원블록은 자원 인덱스를 기반으로 결정될 수 있다. 단말은 확산된 시퀀스를 전송한다. 이때, 단말이 전송하는 정보는 SR, HARQ ACK/NACK 등일 수 있다.
지금까지 설명된 제어정보 전송 방법을 이용할 경우, 2 코드워드 대한 2비트의 HARQ ACK/NACK 정보 또는 20 비트의 부호화된 CQI 비트가 전송될 수 있다. 그런데, 3GPP LTE와의 호환성을 유지하면서, 추가적인 제어정보를 전송할 수 있는 방법이 필요하다. 예를 들어, 코드워드의 개수가 증가되거나, 다중 반송파(multiple carrier) 시스템의 경우, 추가적인 제어정보를 전송해야 한다. 예를 들어, 코드워드의 개수가 4개인 경우, 4비트의 HARQ ACK/NACK 정보를 전송하는 방법이 필요하다. 또 다른 예로, 2 하향링크 및 1 상향링크(2DL-1UL)로 구성된 반송파 집성 시스템(carrier aggregation system)의 경우에도 4비트의 HARQ ACK/NACK 정보를 전송하는 방법이 필요하다.
먼저, 추가적인 제어정보 전송을 위해 변조 차수를 높이는 방법이 고려될 수 있다. 예를 들어, 2비트의 제어정보가 QPSK 변조되어 1 변조 심벌이 생성되었다면, 4비트의 제어정보는 16QAM(quadrature amplitude modulation) 변조되어 1 변조 심벌을 생성할 수 있다. 그러나, 16QAM을 사용할 경우, 수신기에서 정확한 전송 전력을 알아야 한다. 또한, 16QAM은 QPSK에 비해 성능이 열화된다. 16QAM은 각 신호 성상(constellation)에 따라 검출 성능이 서로 같지 않다.
도 17은 본 발명의 일 실시예에 따른 제어신호 전송 방법을 나타낸 흐름도이다.
도 17을 참조하면, 단말은 제1 제어정보를 제1 자원 인덱스를 기반으로 처리하여 제1 제어신호를 생성한다(S110). 단말은 제2 제어정보를 제2 자원 인덱스를 기반으로 처리하여 제2 제어신호를 생성한다(S120). 제1 자원 인덱스와 제2 자원 인덱스는 서로 다를 수 있다. 단말은 기지국으로 제1 제어신호 및 제2 제어신호를 전송한다(S130). 제1 제어신호 및 제2 제어신호는 동시에 전송될 수 있다. 이와 같이, 추가적인 제어정보는 추가적인 자원 인덱스를 할당받아 전송될 수 있다.
여기서, 단말이 제1 제어신호 및 제2 제어신호를 기지국으로 전송하는 단계는 제2 제어신호를 위상 변환하여 제3 제어신호를 생성하고, 제1 제어신호 및 상기 제3 제어신호를 더하여 제4 제어신호를 생성하고, 제4 제어신호를 전송하는 것으로 구성될 수 있다.
제1 제어정보는 제1 하향링크 반송파에 대한 제어정보이고, 제2 제어정보는 제2 하향링크 반송파에 대한 제어정보일 수 있다. 제1 제어정보 및 제2 제어정보는 동일한 상향링크 반송파를 통해 전송될 수 있다. 제1 제어정보는 단말이 제1 하향링크 반송파를 통해 수신한 제1 데이터에 대한 제1 ACK/NACK이고, 제2 제어정보는 단말이 제2 하향링크 반송파를 통해 수신한 제2 데이터에 대한 제2 ACK/NACK일 수 있다. 또는, 제1 제어정보는 제1 하향링크 반송파에 대한 제1 CQI이고, 제2 제어정보는 제2 하향링크 반송파에 대한 제2 CQI일 수 있다. 즉, 제1 하향링크 반송파에 대해서는 제1 자원 인덱스를 할당받고, 제2 하향링크 반송파에 대해서는 제2 자원 인덱스를 할당받을 수 있다. 이 경우, 제1 하향링크 반송파 및 제2 하향링크 반송파 각각에 대한 제어정보가 하나의 상향링크 반송파를 통해 전송될 수 있다. 따라서, 도 17의 제어신호 전송 방법은 하향링크 반송파의 수가 상향링크 반송파의 수보다 많은 비대칭적(asymmetric) 다중 반송파 시스템에서 사용될 수 있다. 예를 들어, 하향링크 반송파 수 대 상향링크 반송파 수가 2 대 1인 다중 반송파 시스템에서 사용될 수 있다.
또는, 제1 제어정보 및 제2 제어정보는 각각 대표 제어정보일 수 있다. 대표 제어정보란 복수의 제어정보를 대표하는 하나의 제어정보이다. 복수의 제어정보를 하나의 대표 제어정보로 나타내는 것을 제어정보 묶음(bundling)이라 한다. 대표 제어정보에는 대표 CQI, 대표 ACK/NACK, 대표 PMI 등이 있다. 대표 CQI는 복수의 하향링크 반송파 전체에 대한 하나의 CQI일 수 있다. 예를 들어, 대표 CQI는 복수의 하향링크 반송파에 대한 각각의 CQI들의 평균 CQI일 수 있다. 또는, 대표 CQI는 복수의 코드워드에 대한 각각의 CQI들을 대표하는 하나의 CQI일 수 있다.
대표 ACK/NACK은 복수의 하향링크 반송파를 통해 전송된 각각의 데이터들에 대한 하나의 HARQ ACK/NACK일 수 있다. 예를 들어, 복수의 하향링크 반송파를 통해 전송된 각각의 데이터에 대한 디코딩이 모두 성공한 경우, 대표 ACK/NACK은 ACK이 되고, 그 외의 경우에는 대표 ACK/NACK은 NACK이 된다. 또는, 대표 ACK/NACK은 복수의 코드워드에 대한 각각의 ACK/NACK을 대표하는 하나의 HARQ ACK/NACK일 수 있다.
예를 들어, 제1 제어정보는 제1 하향링크 반송파 및 제2 하향링크 반송파에 대한 제1 대표 제어정보이고, 제2 제어정보는 제3 하향링크 반송파 및 제4 하향링크 반송파에 대한 제2 대표 제어정보일 수 있다. 또 다른 예로, 제1 제어정보는 복수의 코드워드에 대한 제1 대표 제어정보이고, 제2 제어정보는 다른 코드워드들에 대한 제2 대표 제어정보일 수 있다.
첫째, 각 자원 인덱스는 순환 쉬프트 인덱스 및 자원블록을 지시할 수 있다. 이 경우, 제1 자원 인덱스는 제1 순환 쉬프트 인덱스 및 제1 자원블록을 지시하고, 제2 자원 인덱스는 제2 순환 쉬프트 인덱스 및 제2 자원블록을 지시한다. 각 제어정보는 각 자원 인덱스를 이용하여 PUCCH 포맷 2/2a/2b와 같이 처리될 수 있다. 단말은 제1 순환 쉬프트 인덱스로부터 얻은 제1 순환 쉬프트 양만큼 기본 시퀀스를 순환 쉬프트시킴으로써 제1 순환 쉬프트된 시퀀스를 생성하고, 제1 순환 쉬프트된 시퀀스 및 제1 제어정보에 대한 제1 변조 심벌을 이용하여 제1 변조된 시퀀스를 생성하고, 제1 변조된 시퀀스를 제1 자원블록에 맵핑한다. 제1 제어신호는 제1 변조된 시퀀스 또는 제1 자원블록에 맵핑 후 IFFT된 제1 시간 영역 신호를 의미할 수 있다. 또한, 단말은 제2 순환 쉬프트 인덱스로부터 얻은 제2 순환 쉬프트 양만큼 상기 기본 시퀀스를 순환 쉬프트시킴으로써 제2 순환 쉬프트된 시퀀스를 생성하고, 제2 순환 쉬프트된 시퀀스 및 제2 제어정보에 대한 제2 변조 심벌을 이용하여 제2 변조된 시퀀스를 생성하고, 제2 변조된 시퀀스를 제2 자원블록에 맵핑한다. 제2 제어신호는 제2 변조된 시퀀스 또는 제2 자원블록에 맵핑 후 IFFT된 제2 시간 영역 신호를 의미할 수 있다. 이때, 제1 제어신호 및 제2 제어신호는 동시에 전송될 수 있다.
단말은 제1 자원 인덱스 및 제2 자원 인덱스를 기지국으로부터 수신할 수 있다. 예를 들어, 제1 자원 인덱스는 0, 제2 자원 인덱스는 2와 같이, 복수의 자원 인덱스 각각이 직접 시그널링될 수 있다. 또는, 단말은 제1 자원 인덱스를 기지국으로부터 수신하고, 제2 자원 인덱스를 제1 자원 인덱스로부터 획득할 수 있다. 이 경우, 제2 자원 인덱스는 제1 자원 인덱스에 따라 미리 결정(predetermined)되어 있다. 예를 들어, 제1 자원 인덱스가 0인 경우, 제2 자원 인덱스는 5이고, 제1 자원 인덱스가 1이면, 제2 자원 인덱스는 6으로 미리 정해놓을 수 있다. 기지국은 제1 자원 인덱스로 0 또는 1만을 시그널링하면, 단말은 제1 자원 인덱스로부터 제2 자원 인덱스 5 또는 6을 획득할 수 있다.
제1 자원 인덱스와 제2 자원 인덱스는 순환 쉬프트 인덱스 및 자원블록 중 적어도 하나 이상이 다를 수 있다. 또는, CM을 낮추기 위해, 기지국의 스케줄러는 다음과 같은 경우로 자원 인덱스를 제한할 수도 있다. (1) 제1 및 제2 순환 쉬프트 인덱스가 서로 다르고, 제1 및 제2 자원블록이 동일한 경우, (2) 제1 및 제2 순환 쉬프트 인덱스가 동일하고, 제1 및 제2 자원블록이 서로 다른 경우, (3) 상기 (1) 및 (2)의 경우 중 하나의 경우.
둘째, 각 자원 인덱스는 순환 쉬프트 인덱스, 직교 시퀀스 인덱스 및 자원블록을 지시할 수 있다. 이 경우, 제1 자원 인덱스는 제1 순환 쉬프트 인덱스, 제1 직교 시퀀스 인덱스 및 제1 자원블록을 지시하고, 제2 자원 인덱스는 제2 순환 쉬프트 인덱스, 제2 직교 시퀀스 인덱스 및 제2 자원블록을 지시한다. 각 제어정보는 각 자원 인덱스를 이용하여 PUCCH 포맷 1/1a/1b와 같이 처리될 수 있다. 단말은 제1 순환 쉬프트 인덱스로부터 얻은 제1 순환 쉬프트 양만큼 기본 시퀀스를 순환 쉬프트시킴으로써 제1 순환 쉬프트된 시퀀스를 생성하고, 제1 순환 쉬프트된 시퀀스 및 제1 제어정보에 대한 제1 변조 심벌을 이용하여 제1 변조된 시퀀스를 생성하고, 제1 직교 시퀀스 인덱스를 이용하여 제1 변조된 시퀀스로부터 제1 확산된 시퀀스를 생성하고, 제1 확산된 시퀀스를 제1 자원블록에 맵핑한다. 제1 제어신호는 제1 확산된 시퀀스 또는 제1 자원블록에 맵핑 후 IFFT된 제1 시간 영역 신호를 의미할 수 있다. 또한, 단말은 제2 순환 쉬프트 인덱스로부터 얻은 제2 순환 쉬프트 양만큼 상기 기본 시퀀스를 순환 쉬프트시킴으로써 제2 순환 쉬프트된 시퀀스를 생성하고, 제2 순환 쉬프트된 시퀀스 및 제2 제어정보에 대한 제2 변조 심벌을 이용하여 제2 변조된 시퀀스를 생성하고, 제2 직교 시퀀스 인덱스를 이용하여 제2 변조된 시퀀스로부터 제2 확산된 시퀀스를 생성하고, 제2 확산된 시퀀스를 제2 자원블록에 맵핑한다. 제2 제어신호는 제2 확산된 시퀀스 또는 제2 자원블록에 맵핑 후 IFFT된 제2 시간 영역 신호를 의미할 수 있다. 이때, 제1 제어신호 및 제2 제어신호는 동시에 전송될 수 있다.
각 제어정보는 HARQ ACK/NACK일 수 있고, 단말은 기지국으로부터 각 하향링크 데이터를 수신하는 단계를 더 포함할 수 있다. 제1 자원 인덱스는 제1 하향링크 데이터를 수신하기 위한 물리적 제어채널에 대한 무선 자원으로부터 획득되고, 제2 자원 인덱스는 제2 하향링크 데이터를 수신하기 위한 물리적 제어채널에 대한 무선 자원으로부터 획득될 수 있다.
제1 자원 인덱스와 제2 자원 인덱스는 순환 쉬프트 인덱스, 직교 시퀀스 인덱스 및 자원블록 중 적어도 하나 이상이 다를 수 있다. 또는, CM을 낮추기 위해, 기지국의 스케줄러는 다음과 같이 순환 쉬프트 인덱스, 직교 시퀀스 인덱스 및 자원블록 중 하나만 다른 경우로 자원 인덱스를 제한할 수도 있다. (1) 제1 및 제2 직교 시퀀스 인덱스가 동일하고, 제1 및 제2 자원블록이 동일하고, 제1 및 제2 순환 쉬프트 인덱스만이 다른 경우, (2) 제1 및 제2 순환 쉬프트 인덱스가 동일하고, 제1 및 제2 자원블록이 동일하고, 제1 및 제2 직교 시퀀스 인덱스만이 다른 경우, (3) 제1 및 제2 순환 쉬프트 인덱스가 동일하고, 제1 및 제2 직교 시퀀스 인덱스가 동일하고, 제1 및 제2 자원블록만이 다른 경우, (4) 상기 (1) 및 (2)의 경우 중 하나의 경우, (5) 상기 (1) 및 (3)의 경우 중 하나의 경우, (6) 상기 (2) 및 (3)의 경우 중 하나의 경우, (7) 상기 (1), (2) 및 (3)의 경우 중 하나의 경우.
지금까지, 각 제어정보가 각 자원 인덱스를 이용하여 PUCCH 포맷 1/1a/1b 또는 PUCCH 포맷 2/2a/2b와 같이 처리되는 방법 대해 설명하였으나, 이는 모든 CDM 기반의 전송 방식에 적용될 수 있다.
도 17의 제어정보 전송 방법은 3개 이상의 전송 안테나에 대해서도 확장 적용될 수 있다. 단말이 R개의 전송 안테나를 통해 R개의 제어정보를 전송하려는 경우, R개의 전송 안테나 각각에 대해 서로 다른 R개의 자원 인덱스를 할당받을 수 있다(R은 2 이상의 자연수). 단말은 R개의 제어정보 각각을 각 자원 인덱스를 이용하여 각 전송 안테나를 통해 기지국으로 전송할 수 있다.
도 18은 전송기 구조의 예를 나타낸 블록도이다. 여기서, 전송기는 단말 또는 기지국의 일부분일 수 있다.
도 18을 참조하면, 전송기(100)는 R개의 변조기(110), R개의 정보 처리부(120-1,...,120-R, R은 2 이상의 자연수) 및 전송 안테나(190)를 포함한다. 제r 정보 처리부(120-r)는 제r 변조기(120-r)와 연결된다(r=1,...,R). R개의 제어정보마다 자원 인덱스가 할당된다. 즉, 제r 제어정보에 대해서는 제r 자원 인덱스를 할당받는다. 제r 변조기(110)는 제r 제어정보를 변조하여 제r 변조 심벌을 생성한다. 제r 변조 심벌은 하나일 수도 있고, 복수일 수도 있다. 제r 변조 심벌은 제r 정보 처리부(120-r)에 입력된다. 제r 정보 처리부(120-r)는 제r 자원 인덱스를 이용하여 제r 변조 심벌을 처리하여 제r 제어신호를 생성한다. R개의 제어신호는 더해져 하나의 전송 안테나(190)를 통해 전송된다. 이때, 제r 제어신호는 제r 위상만큼 위상 변환될 수 있다. R=2인 경우를 예로 설명한다. 제2 제어신호에서 제2 위상만큼 위상 변환된 제3 제어신호와 제1 제어신호를 더해 제4 제어신호가 전송될 수 있다. BPSK인 경우 제2 위상은 90도이고, QPSK인 경우 제2 위상은 45도일 수 있다.
이와 같이, R개의 자원 인덱스를 이용해 R개의 제어정보를 전송할 수 있다. 여기서는 전송기가 하나의 전송 안테나만을 포함하는 경우를 도시하였으나, 전송기가 복수의 전송 안테나를 포함하는 경우에도 적용 가능하다. 즉, 각 전송 안테나마다 복수의 자원 인덱스가 적용될 수 있다.
먼저, PUCCH 포맷 1/1a/1b와 같이, 제어정보 전송에 하나의 변조 심벌을 사용하는 경우를 설명한다. 제1 제어정보에 대한 제1 변조 심벌은 d1(0)이고, 제2 제어정보에 대한 제2 변조 심벌은 d2(0)라 한다. 일반적으로, 제r 제어정보에 대한 제r 변조 심벌은 dr(0)라 한다(r은 자연수).
일 예로, 2비트의 제어정보 '10'이 1 비트의 제1 제어정보 '1' 및 1 비트의 제2 제어정보 '0'으로 분리되어 전송되는 경우를 설명한다. 제1 제어정보 '1'은 BPSK 변조되어 제1 변조 심벌 '-1'이 생성되고, 제2 제어정보 '0'은 BPSK 변조되어 제2 변조 심벌 '1'이 생성될 수 있다(d1(0)=-1, d2(0)=1).
다른 예로, 4비트의 제어정보 '0110'이 2비트의 제1 제어정보 '01' 및 2비트의 제2 제어정보 '10'으로 분리되어 전송되는 경우를 설명한다. 제1 제어정보 '01'은 QPSK 변조되어 제1 변조 심벌 '-j'가 되고, 제2 제어정보 '10'은 QPSK 변조되어 제2 변조 심벌 'j'가 생성될 수 있다(d1(0)=-j, d2(0)=j).
(1) 제 1 실시예
제 1 실시예는 제어정보 전송에 사용되는 자원이 직교 시퀀스만으로 구성된 경우이다. 이 경우, 자원 인덱스는 직교 시퀀스 인덱스만을 지시한다.
제r 자원 인덱스가 지시하는 확산 계수 K=N인 제r 직교 시퀀스를 [wr(0), wr(1), ..., wr(N-1)]이라 한다(N은 자연수, r=1,...,R). 제r 직교 시퀀스를 통해 제r 변조 심벌 dr(0)를 확산시켜 생성된 제r 확산된 시퀀스를 [zr(0), zr(1), ..., zr(N-1)]이라 한다. 확산된 시퀀스는 다음 수학식과 같이 생성될 수 있다.
수학식 6
Figure PCTKR2009004480-appb-M000006
제r 확산된 시퀀스는 시간 영역 또는 주파수 영역에 맵핑될 수 있다. 주파수 영역으로 맵핑되는 경우, 제r 확산된 시퀀스는 N개의 부반송파에 맵핑될 수 있다. 시간 영역으로 맵핑되는 경우, 제r 확산된 시퀀스는 N개의 타임 샘플, N개의 칩(chip) 또는 N개의 OFDM 심벌에 맵핑될 수 있다.
R개의 자원 인덱스 각각을 이용해 생성된 R개의 확산된 시퀀스들은 동일한 전송 구간에서 전송될 수 있다. 예를 들어, 하나의 서브프레임 동안 각각의 확산된 시퀀스들이 전송될 수 있다. 이때, 각각의 확산된 시퀀스들은 모두 동일한 자원블록을 통해 전송되거나, 서로 다른 자원블록을 통해 전송될 수도 있다.
수신 신호를 y=[y(0), y(1), ..., y(N-1)]라 한다. 각 수신 신호는 다음 수학식과 같이 나타낼 수 있다. 이때, 전송 구간 동안 채널의 특성은 정적(static)이라고 가정한다. 즉, 전송 구간 동안 채널의 특성은 변하지 않는다.
수학식 7
Figure PCTKR2009004480-appb-M000007
여기서, h는 전송 구간 동안의 채널이고, n(k)는 잡음의 k번째 요소이다.
수신 신호로부터 R개의 자원 인덱스 각각에 대해 디스프레딩(despreading)을 수행하여 R개의 변조 심벌 각각을 추정할 수 있다. 제r 변조 심벌 dr(0)에 대한 제r 추정 심벌을 d'r(0)라 할 때, 다음 수학식과 같이 나타낼 수 있다.
수학식 8
Figure PCTKR2009004480-appb-M000008
여기서, N은 직교 시퀀스의 길이이고, wr(k)는 제r 직교 시퀀스의 k번째 요소이다.
직교 시퀀스는 월시-하다마드(Walsh-Hadamard) 행렬을 이용하여 생성될 수 있다. 다음 수학식은 4×4 월시-하다마드 행렬을 나타낸다.
수학식 9
Figure PCTKR2009004480-appb-M000009
월시-하다마드 행렬의 4 행 각각은 상호 간에 직교하는 직교 시퀀스를 구성한다. 즉, [1, 1, 1, 1], [1, -1, 1, -1], [1, 1, -1, -1] 및 [1, -1, -1, 1]과 같이 4개의 직교 시퀀스를 정의할 수 있다. 3GPP LTE에서는 [1, 1, -1, -1]을 제외한 3개의 직교 시퀀스를 사용하나(표 3 참조), [1, 1, -1, -1]도 사용 가능하다.
이하, R=2이고, 제1 직교 시퀀스는 [1, 1, 1, 1]이고, 제2 직교 시퀀스는 [1, -1, 1, -1] 인 경우를 예로 설명한다. 제1 자원 인덱스는 직교 시퀀스 인덱스 0을 지시하고, 제2 자원 인덱스는 직교 시퀀스 인덱스 1을 지시한다(표 3 참조).
제1 확산된 시퀀스는 [d1(0), d1(0), d1(0), d1(0)]이고, 제2 확산된 시퀀스는 [d2(0), -d2(0), d2(0), -d2(0)]가 된다. 수신 신호를 y=[y(0), y(1), y(2), y(3)]라 할 때, 각 수신 신호는 다음 수학식과 같이 나타낼 수 있다.
수학식 10
Figure PCTKR2009004480-appb-M000010
수신 신호로부터 제1 직교 시퀀스를 이용해 디스프레딩된 제1 추정 심벌을 d'1(0)이라 하고, 수신 신호로부터 제2 직교 시퀀스를 이용해 디스프레딩된 제2 추정 심벌을 d'2(0)이라 할 때, 다음 수학식과 같이 나타낼 수 있다.
수학식 11
Figure PCTKR2009004480-appb-M000011
(2) 제 2 실시예
제 2 실시예는 제어정보 전송에 사용되는 자원이 직교 시퀀스 및 CS 양으로 구성된 경우이다. 이 경우, 자원 인덱스는 직교 시퀀스 인덱스 및 순환 쉬프트 인덱스를 지시한다.
제r 자원 인덱스를 이용하여 생성된 제r 확산된 시퀀스는 다음 수학식과 같이 시간-주파수의 2차원 영역으로 나타낼 수 있다.
수학식 12
Figure PCTKR2009004480-appb-M000012
여기서, 각 행은 부반송파에 대응하고, 각 열은 OFDM 심벌에 대응될 수 있다. 행렬의 각 요소는 제어정보 전송에 사용되는 자원블록의 자원요소에 맵핑될 수 있다. 여기서는, 행렬이 12개의 행과 4개의 열로 구성되나, 이는 예시일 뿐, 행의 수 및 열의 수를 제한하는 것은 아니다.
도 19는 제r 확산된 시퀀스가 맵핑되는 하나의 자원블록의 예를 나타낸다.
도 19를 참조하면, 자원블록은 시간 영역에서 슬롯(7 OFDM 심벌), 주파수 영역에서 12 부반송파로 구성된다. 7 OFDM 심벌 중 3 OFDM 심벌이 실리고, 나머지 4 OFDM 심벌에 제어정보가 실린다(도 8 참조).
단말은 제r 자원 인덱스를 이용하여 제r 직교 시퀀스 인덱스 및 제r 순환 쉬프트 인덱스를 결정한다. 단말은 제r 순환 쉬프트 인덱스를 이용하여 제r 순환 쉬프트된 시퀀스를 생성한다. 단말은 제r 순환 쉬프트된 시퀀스 및 제r 제어정보에 대한 제r 변조 심벌은 dr(0)를 이용하여 제r 변조된 시퀀스를 생성한다. 단말은 제r 직교 시퀀스 인덱스를 이용하여 제r 변조된 시퀀스로부터 제r 확산된 시퀀스를 생성한다. 제r 확산된 시퀀스의 요소는 다음 수학식과 같이 나타낼 수 있다.
수학식 13
Figure PCTKR2009004480-appb-M000013
여기서, n=0,..,11이고, k=0,1,2,3이고, wr(k)는 제r 자원 인덱스가 지시하는 제r 직교 시퀀스의 k번째 요소이고, Icsr은 제r 순환 쉬프트 인덱스이고, r(n,Icsr)은 제r 순환 쉬프트된 시퀀스이다.
R=2인 경우, 수신 신호는 다음 수학식과 같이 나타낼 수 있다.
수학식 14
Figure PCTKR2009004480-appb-M000014
수신 신호로부터 제1 직교 시퀀스를 이용해 디스프레딩된 제1 추정 심벌을 d'1(0)이라 하고, 수신 신호로부터 제2 직교 시퀀스를 이용해 디스프레딩된 제2 추정 심벌을 d'2(0)이라 할 때, 다음 수학식과 같이 나타낼 수 있다.
수학식 15
Figure PCTKR2009004480-appb-M000015
(3) 제 3 실시예
제 3 실시예는 제어정보 전송에 사용되는 자원이 직교 시퀀스, CS 양, 자원블록으로 구성된 경우이다. 이 경우, 자원 인덱스는 직교 시퀀스 인덱스, 순환 쉬프트 인덱스 및 자원블록을 지시한다.
제r 확산된 시퀀스는 다음 수학식과 같이 나타낼 수 있다.
수학식 16
Figure PCTKR2009004480-appb-M000016
여기서, k는 제r 자원블록 내 OFDM 심벌의 심벌 인덱스이다. RS가 실리는 OFDM 심벌을 제외하면 k=0,1,2,3일 수 있다. Rr은 제r 자원블록의 주파수 위치 오프셋이고, n은 제r 자원블록 내 부반송파 인덱스이다(n=0,1,...,11). wr(k)는 제r 직교 시퀀스 인덱스의 k번째 요소이고, dr(0)는 제r 제어정보에 대한 제r 변조 심벌이고,Icsr은 제r 순환 쉬프트 인덱스이고, r(n,Icsr)은 제r 순환 쉬프트된 시퀀스이다.
다음, PUCCH 포맷 2/2a/2b와 같이, 제어정보 전송에 복수의 변조 심벌을 사용하는 경우를 설명한다. 제어정보 전송에 사용되는 자원은 순환 쉬프트 시퀀스 및 자원블록으로 구성된다. 이 경우, 자원 인덱스는 순환 쉬프트 인덱스 및 자원블록을 지시한다.
단말은 제r 자원 인덱스를 이용하여 제r 순환 쉬프트 인덱스 및 제r 자원블록을 결정한다. 단말은 제r 순환 쉬프트 인덱스를 이용하여 제r 순환 쉬프트된 시퀀스를 생성한다. 단말은 제r 순환 쉬프트된 시퀀스 및 제r 제어정보에 대한 복수의 제r 변조 심벌을 이용하여 제r 변조된 시퀀스를 생성한다. 단말은 제r 변조된 시퀀스를 제r 자원블록에 맵핑한다.
제r 변조된 시퀀스의 요소는 다음 수학식과 같이 나타낼 수 있다.
수학식 17
Figure PCTKR2009004480-appb-M000017
여기서, k는 제r 자원블록의 OFDM 심벌의 심벌 인덱스일 수 있다. RS가 실리는 OFDM 심벌을 제외하면 k=0,1,...,9일 수 있다. Rr은 제r 자원블록의 주파수 위치 오프셋이고, n은 제r 자원블록 내 부반송파 인덱스이다(n=0,1,...,11). dr(k)는 제r 제어정보에 대한 제r 변조 심벌이고, Icsr은 제r 순환 쉬프트 인덱스이고, r(n,Icsr)은 제r 순환 쉬프트된 시퀀스이다.
도 20은 제r 변조된 시퀀스가 맵핑되는 서브프레임의 예를 나타낸다. 여기서는, 자원블록 쌍에 속하는 자원블록들이 제1 슬롯과 제2 슬롯에서 동일한 주파수 대역을 차지하는 것처럼 표현하였으나, 도 7에서 설명한 것과 같이 자원블록은 슬롯 레벨로 홉핑될 수 있다.
도 20을 참조하면, 각 슬롯에 포함되는 7 OFDM 심벌 중 2 OFDM 심벌에는 RS가 실리고, 나머지 5 OFDM 심벌에는 제어정보가 실린다(도 10 참조).
도 21은 무선 통신을 위한 장치를 나타낸 블록도이다. 무선 통신을 위한 장치(50)는 단말의 일부일 수 있다. 무선 통신을 위한 장치(50)는 프로세서(processor, 51), 메모리(memory, 52), RF부(Radio Frequency unit, 53), 디스플레이부(display unit, 54), 사용자 인터페이스부(user interface unit, 55)를 포함한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호(radio signal)를 전송 및/또는 수신한다. 메모리(52)는 프로세서(51)와 연결되어, 구동 시스템, 애플리케이션 및 일반적인 파일을 저장한다. 디스플레이부(54)는 단말의 여러 정보를 디스플레이하며, LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes) 등 잘 알려진 요소를 사용할 수 있다. 사용자 인터페이스부(55)는 키패드나 터치 스크린 등 잘 알려진 사용자 인터페이스의 조합으로 이루어질 수 있다. 프로세서(51)는 지금까지 상술한 정보 처리 및 전송에 관한 모든 방법들을 수행한다.
도 22는 기지국의 예를 나타낸 블록도이다. 기지국(60)은 프로세서(processor, 61), 메모리(memory, 62), 스케줄러(scheduler, 63) 및 RF부(64)를 포함한다. RF부(64)는 프로세서(61)와 연결되어, 무선 신호를 전송 및/또는 수신한다. 프로세서(61)는 지금까지 상술한 정보 전송과 관련한 모든 방법들을 수행할 수 있다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)에서 처리된 정보들을 저장한다. 스케줄러(63)는 프로세서(61)와 연결되어, 지금까지 상술한 자원 인덱스 할당과 같이 정보 전송을 위한 스케줄링에 관한 모든 방법들을 수행할 수 있다.
이와 같이, 무선 통신 시스템에서 효율적인 제어신호 전송 방법 및 장치를 제공할 수 있다. 다중 반송파 시스템에서 단일 반송파 시스템과 호환성을 유지하면서 효율적으로 추가적인 제어정보를 전송하는 방법이 제공될 수 있다. 특히, 하향링크 반송파의 수와 상향링크 반송파의 수가 다른 비대칭적 다중 반송파 시스템에서 효율적으로 제어정보를 전송할 수 있다. 또한, 2 코드워드까지 지원되는 3GPP LTE와 역호환성이 만족하면서, 2 코드워드 이상을 지원하는 시스템에서 효율적으로 추가적인 제어정보를 전송할 수 있다. 이를 통해, 무선 통신의 신뢰도를 높일 수 있고, 전체 시스템 성능을 향상시킬 수 있다.
지금까지 상향링크 정보 전송을 기준으로 설명하였으나, 지금까지 설명된 내용은 하향링크 정보 전송에도 그대로 적용될 수 있다. 또한, 지금까지 설명된 내용은 제어정보 전송뿐 아니라, 데이터 정보 전송 등 일반적인 정보 전송에도 적용될 수 있다.
상술한 모든 기능은 상기 기능을 수행하도록 코딩된 소프트웨어나 프로그램 코드 등에 따른 마이크로프로세서, 제어기, 마이크로제어기, ASIC(Application Specific Integrated Circuit) 등과 같은 프로세서에 의해 수행될 수 있다. 상기 코드의 설계, 개발 및 구현은 본 발명의 설명에 기초하여 당업자에게 자명하다고 할 것이다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.

Claims (11)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 제어신호 전송 방법에 있어서,
    제1 제어정보를 제1 자원 인덱스를 기반으로 처리하여 제1 제어신호를 생성하는 단계;
    제2 제어정보를 제2 자원 인덱스를 기반으로 처리하여 제2 제어신호를 생성하는 단계; 및
    상기 제1 제어신호 및 상기 제2 제어신호를 기지국으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 제1 제어신호 및 상기 제2 제어신호를 상기 기지국으로 전송하는 단계는
    상기 제2 제어신호를 위상 변환하여 제3 제어신호를 생성하는 단계;
    상기 제1 제어신호 및 상기 제3 제어신호를 더하여 제4 제어신호를 생성하는 단계; 및
    상기 제4 제어신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 제1 제어정보는 제1 하향링크 반송파에 대한 제어정보이고, 상기 제2 제어정보는 제2 하향링크 반송파에 대한 제어정보인 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서,
    상기 제1 제어정보 및 상기 제2 제어정보는 동일한 상향링크 반송파를 통해 전송되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 제1 제어신호 및 상기 제2 제어신호는 동시에 전송되는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서,
    상기 제1 자원 인덱스와 상기 제2 자원 인덱스는 서로 다른 것을 특징으로 하는 방법.
  7. 제 1 항에 있어서,
    상기 제1 자원 인덱스는 제1 순환 쉬프트 인덱스 및 제1 자원블록을 지시하고, 상기 제2 자원 인덱스는 제2 순환 쉬프트 인덱스 및 제2 자원블록을 지시하는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서,
    상기 제1 제어신호를 생성하는 단계는
    상기 제1 순환 쉬프트 인덱스로부터 얻은 제1 순환 쉬프트 양만큼 기본 시퀀스를 순환 쉬프트시킴으로써 제1 순환 쉬프트된 시퀀스를 생성하는 단계;
    상기 제1 순환 쉬프트된 시퀀스 및 상기 제1 제어정보에 대한 제1 변조 심벌을 기반으로 제1 변조된 시퀀스를 생성하는 단계; 및
    상기 제1 변조된 시퀀스를 상기 제1 자원블록에 맵핑한 후 상기 제1 제어신호를 생성하는 단계를 포함하고,
    상기 제2 제어신호를 생성하는 단계는
    상기 제2 순환 쉬프트 인덱스로부터 얻은 제2 순환 쉬프트 양만큼 상기 기본 시퀀스를 순환 쉬프트시킴으로써 제2 순환 쉬프트된 시퀀스를 생성하는 단계;
    상기 제2 순환 쉬프트된 시퀀스 및 상기 제2 제어정보에 대한 제2 변조 심벌을 기반으로 제2 변조된 시퀀스를 생성하는 단계; 및
    상기 제2 변조된 시퀀스를 상기 제2 자원블록에 맵핑한 후 상기 제2 제어신호를 생성하는 것을 포함하는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서,
    상기 제1 제어정보는 제1 하향링크 반송파를 통해 수신된 제1 데이터에 대한 제1 ACK(acknowledgement)/NACK(not-acknowledgement)이고, 상기 제2 제어정보는 제2 하향링크 반송파를 통해 수신된 제2 데이터에 대한 제2 ACK/NACK인 것을 특징으로 하는 방법.
  10. 제 9 항에 있어서,
    상기 제1 하향링크 반송파를 통해 상기 제1 데이터를 수신하는 단계;
    상기 제2 하향링크 반송파를 통해 상기 제2 데이터를 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  11. 무선 신호를 생성 및 전송하는 RF(radio frequency)부; 및
    상기 RF부와 연결되어,
    제1 제어정보를 제1 자원 인덱스를 기반으로 처리하여 제1 제어신호를 생성하고, 제2 제어정보를 제2 자원 인덱스를 기반으로 처리하여 제2 제어신호를 생성하고, 상기 제1 제어신호 및 상기 제2 제어신호를 전송하는 프로세서를 포함하는 것을 특징으로 하는 무선 통신을 위한 장치.
PCT/KR2009/004480 2008-08-11 2009-08-11 무선 통신 시스템에서 제어신호 전송 방법 및 장치 WO2010018980A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980131260.XA CN102119497B (zh) 2008-08-11 2009-08-11 在无线通信系统中发送控制信号的方法和装置
JP2011522904A JP5576372B2 (ja) 2008-08-11 2009-08-11 無線通信システムにおける制御信号の送信方法及び装置
US13/058,294 US8848629B2 (en) 2008-08-11 2009-08-11 Method and apparatus for the transmission of a control signal in a radio communication system
EP09806842.2A EP2333985B1 (en) 2008-08-11 2009-08-11 Method and apparatus for the transmission of a control signal in a radio communication system
US14/464,092 US9191931B2 (en) 2008-08-11 2014-08-20 Method and apparatus for the transmission of a control signal in a radio communication system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US8773708P 2008-08-11 2008-08-11
US61/087,737 2008-08-11
US11448108P 2008-11-14 2008-11-14
US61/114,481 2008-11-14
US11723708P 2008-11-24 2008-11-24
US61/117,237 2008-11-24
KR1020090049553A KR101571566B1 (ko) 2008-08-11 2009-06-04 무선 통신 시스템에서 제어신호 전송 방법
KR10-2009-0049553 2009-06-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/058,294 A-371-Of-International US8848629B2 (en) 2008-08-11 2009-08-11 Method and apparatus for the transmission of a control signal in a radio communication system
US14/464,092 Continuation US9191931B2 (en) 2008-08-11 2014-08-20 Method and apparatus for the transmission of a control signal in a radio communication system

Publications (2)

Publication Number Publication Date
WO2010018980A2 true WO2010018980A2 (ko) 2010-02-18
WO2010018980A3 WO2010018980A3 (ko) 2010-05-14

Family

ID=42090142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004480 WO2010018980A2 (ko) 2008-08-11 2009-08-11 무선 통신 시스템에서 제어신호 전송 방법 및 장치

Country Status (6)

Country Link
US (2) US8848629B2 (ko)
EP (1) EP2333985B1 (ko)
JP (1) JP5576372B2 (ko)
KR (1) KR101571566B1 (ko)
CN (1) CN102119497B (ko)
WO (1) WO2010018980A2 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043689A1 (ja) * 2010-09-29 2012-04-05 シャープ株式会社 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
WO2012060630A2 (en) * 2010-11-02 2012-05-10 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
JP2013526156A (ja) * 2010-04-13 2013-06-20 クゥアルコム・インコーポレイテッド 異機種ネットワークのための発展型ノードbチャネル品質インジケータ(cqi)の処理
JP2013528978A (ja) * 2010-04-05 2013-07-11 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御情報の伝送方法及び装置
JP2013529406A (ja) * 2010-04-04 2013-07-18 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御情報の送信方法及び装置
JP2013530593A (ja) * 2010-05-06 2013-07-25 パナソニック株式会社 多重化方法および多重化装置
US9106385B2 (en) 2010-01-17 2015-08-11 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
JP2016131377A (ja) * 2010-07-16 2016-07-21 サムスン エレクトロニクス カンパニー リミテッド 肯定応答信号及びサウンディングレファレンス信号を多重化するための方法及びシステム
US9677285B2 (en) 2000-03-31 2017-06-13 Pergo (Europe) Ab Building panels

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089838B1 (ko) * 2008-08-13 2011-12-05 한국전자통신연구원 캐리어 집성을 사용하는 통신 시스템 및 상기 통신 시스템에 속하는 기지국 및 단말
US8379581B2 (en) * 2008-12-08 2013-02-19 Sharp Kabushiki Kaisha Systems and methods for uplink power control
US8199666B2 (en) * 2009-02-02 2012-06-12 Texas Instruments Incorporated Transmission of acknowledge/not-acknowledge with repetition
EP2406911B1 (en) 2009-03-11 2023-03-01 Samsung Electronics Co., Ltd. Transmission of acknowledgement signals in a communication system
TWI628933B (zh) * 2009-10-01 2018-07-01 內數位專利控股公司 傳輸上鏈控制資訊的方法及系統
EP3499772A1 (en) * 2009-10-19 2019-06-19 Samsung Electronics Co., Ltd. Transmission diversity and multiplexing for harq-ack signals in communication systems
KR20110051082A (ko) * 2009-11-09 2011-05-17 주식회사 팬택 이종의 무선 네트워크 환경에서 제어 정보를 송신하는 방법 및 장치
KR101521001B1 (ko) 2010-01-08 2015-05-15 인터디지탈 패튼 홀딩스, 인크 다중 반송파의 채널 상태 정보 전송 방법
GB2477082A (en) * 2010-01-11 2011-07-27 Nokia Siemens Networks Oy Determining resource index information on the uplink control channel for an aggregated or component carrier downlink channel
WO2012005522A2 (ko) * 2010-07-07 2012-01-12 엘지전자 주식회사 무선통신 시스템에서의 제어정보의 전송 방법 및 장치
US8769365B2 (en) 2010-10-08 2014-07-01 Blackberry Limited Message rearrangement for improved wireless code performance
CN102594493B (zh) 2011-01-17 2014-08-20 华为技术有限公司 一种应答信息的编码、处理方法和装置
US10638464B2 (en) 2011-04-01 2020-04-28 Futurewei Technologies, Inc. System and method for transmission and reception of control channels in a communications system
US20130114514A1 (en) * 2011-11-04 2013-05-09 Nokia Siemens Networks Oy DMRS Arrangements For Coordinated Multi-Point Communication
CN105591718B (zh) * 2011-11-09 2019-10-01 华为技术有限公司 传输信息的方法及装置
CN103178926B (zh) 2011-12-21 2016-01-06 华为技术有限公司 传输控制信息的方法、用户设备和基站
CN103378882B (zh) * 2012-04-16 2018-04-27 中兴通讯股份有限公司 一种大规模天线系统控制信号发送方法及装置
CN109921885B (zh) 2012-04-20 2021-11-26 北京三星通信技术研究有限公司 支持发送分集和信道选择的分配harq-ack信道资源的方法
US10178651B2 (en) * 2012-05-11 2019-01-08 Blackberry Limited Method and system for uplink HARQ and CSI multiplexing for carrier aggregation
US9769677B2 (en) * 2012-07-02 2017-09-19 Industrial Technology Research Institute Method and apparatus for bit-adaptive precoding matrix indicator feedback
CN104823500B (zh) * 2012-10-30 2019-04-12 爱立信(中国)通信有限公司 用于去耦的下行链路-上行链路的调度请求传送方法和设备
KR102032167B1 (ko) * 2012-12-21 2019-11-08 삼성전자주식회사 무선통신 시스템에서 적응적 복합자동재전송을 고려한 변조 방법 및 장치
KR102231056B1 (ko) 2013-08-07 2021-03-25 인터디지탈 패튼 홀딩스, 인크 디바이스 대 디바이스 통신을 위한 분산형 스케줄링
US9793243B2 (en) 2014-08-13 2017-10-17 Taiwan Semiconductor Manufacturing Company, Ltd. Buffer layer(s) on a stacked structure having a via
US10523383B2 (en) 2014-08-15 2019-12-31 Huawei Technologies Co., Ltd. System and method for generating waveforms and utilization thereof
CN110266426B (zh) * 2014-08-25 2021-03-05 第一媒体有限责任公司 灵活的正交频分复用phy传输数据帧前导码的动态配置
TWI809802B (zh) 2015-03-09 2023-07-21 美商第一媒體有限責任公司 通信系統、用於無線通信之方法及傳輸裝置
CN107710708B (zh) * 2015-06-11 2021-05-07 瑞士优北罗股份有限公司 调制解调器装置、通信系统和处理循环前缀的方法
CN106330407A (zh) * 2015-06-30 2017-01-11 深圳市中兴微电子技术有限公司 一种信息传输方法及系统、发送设备及接收设备
US10615925B2 (en) 2015-12-10 2020-04-07 Lg Electronics Inc. Method for transmitting uplink signals in wireless communication system for supporting short transmission time interval, and device for supporting same
EP3451600A4 (en) * 2016-04-27 2019-11-27 Sharp Kabushiki Kaisha DEVICE DEVICE, BASIC STATION DEVICE, COMMUNICATION METHOD AND INTEGRATED CIRCUIT
US10277357B2 (en) * 2017-01-19 2019-04-30 Qualcomm Incorporated Selection of modulation and coding scheme
RU2021132082A (ru) * 2017-05-03 2021-11-17 Идак Холдингз, Инк. Способы, системы и устройство для передачи информации управления восходящей линии связи
KR101976054B1 (ko) * 2017-06-16 2019-05-08 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 물리 상향링크 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
KR102434225B1 (ko) 2017-06-16 2022-08-19 삼성전자 주식회사 차세대 이동 통신 시스템에서 안테나빔별 망혼잡을 제어하는 방법 및 장치

Family Cites Families (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141393A (en) 1999-03-03 2000-10-31 Motorola, Inc. Method and device for channel estimation, equalization, and interference suppression
US20020110108A1 (en) 2000-12-07 2002-08-15 Younglok Kim Simple block space time transmit diversity using multiple spreading codes
US20030048753A1 (en) 2001-08-30 2003-03-13 Ahmad Jalali Method and apparatus for multi-path elimination in a wireless communication system
US6566948B1 (en) 2002-02-26 2003-05-20 Agilent Technologies, Inc. Method and system for reducing non-linearities
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
FI20031200A0 (fi) * 2003-08-26 2003-08-26 Nokia Corp Menetelmä ja tukiasema siirtoyhteyden sovituksen ja pakettiajoituksen ohjaamiseksi HSDPA-radiojärjestelmässä
DE10341107B3 (de) 2003-09-05 2005-05-19 Infineon Technologies Ag Verfahren und Empfangseinheit zur Kompensation eines Frequenzversatzes und/oder einer zeitlichen Änderung der Phase eines Übertragungskanals durch empfängerseitiges Auswerten von Randsymbolen eines empfangenen Datenbursts
KR100929091B1 (ko) 2004-02-14 2009-11-30 삼성전자주식회사 이동통신 시스템에서 제어 정보 전송 장치 및 방법
US7564814B2 (en) 2004-05-07 2009-07-21 Qualcomm, Incorporated Transmission mode and rate selection for a wireless communication system
US7620096B2 (en) 2004-05-25 2009-11-17 New Jersey Institute Of Technology Equal BER power control for uplink MC-CDMA with MMSE successive interference cancellation
JP2005341317A (ja) 2004-05-27 2005-12-08 Toshiba Corp 無線通信装置
KR100774290B1 (ko) 2004-08-17 2007-11-08 삼성전자주식회사 성능 향상위한 시공간 블록 부호화 장치 및 방법
AU2005273134B2 (en) 2004-08-17 2008-10-02 Samsung Electronics Co., Ltd. Apparatus and method for space-time-frequency block coding for increasing performance
EP1788742B1 (en) * 2004-09-13 2013-09-11 Panasonic Corporation Automatic retransmission request control system and retransmission method in mimo-ofdm system
US8040968B2 (en) 2004-09-30 2011-10-18 Intel Corporation High rate, high diversity transmission on multiple transmit antennas
KR100938091B1 (ko) * 2004-10-13 2010-01-21 삼성전자주식회사 직교주파수다중분할 이동통신시스템에서 블록 부호화기법과 순환 지연 다이버시티 기법을 사용하는 기지국송신 장치 및 방법
KR100719840B1 (ko) 2004-11-04 2007-05-18 삼성전자주식회사 시공간 주파수 블록 부호화 장치 및 방법
US8130855B2 (en) 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US8730877B2 (en) 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
US20070183386A1 (en) * 2005-08-03 2007-08-09 Texas Instruments Incorporated Reference Signal Sequences and Multi-User Reference Signal Sequence Allocation
US8331216B2 (en) 2005-08-09 2012-12-11 Qualcomm Incorporated Channel and interference estimation in single-carrier and multi-carrier frequency division multiple access systems
WO2007051028A1 (en) * 2005-10-27 2007-05-03 Qualcomm Incorporated A method and apparatus for modulating r-dpich in wireless communication systems
WO2007052767A1 (ja) 2005-11-04 2007-05-10 Matsushita Electric Industrial Co., Ltd. 無線送信装置および無線送信方法
US8130857B2 (en) 2006-01-20 2012-03-06 Qualcomm Incorporated Method and apparatus for pilot multiplexing in a wireless communication system
US7848438B2 (en) * 2006-02-14 2010-12-07 Motorola Mobility, Inc. Method and apparatus for pilot signal transmission
AU2007219067A1 (en) 2006-02-27 2007-08-30 Cohda Wireless Pty Ltd Method and system for communication in a wireless network
KR20070091889A (ko) 2006-03-08 2007-09-12 삼성전자주식회사 다중 안테나 시스템에서 전송 모드를 결정하기 위한 장치및 방법
CN101043311B (zh) 2006-03-20 2011-01-26 松下电器产业株式会社 实现混合频分多址的频率分配和检测方法
KR101253162B1 (ko) 2006-06-16 2013-04-10 엘지전자 주식회사 무선통신 시스템 상향링크에서의 제어정보 전송방법,제어정보 전송장치 및 dft-s-ofdm 방식 무선통신시스템의 사용자 기기
US7916775B2 (en) * 2006-06-16 2011-03-29 Lg Electronics Inc. Encoding uplink acknowledgments to downlink transmissions
JP4430052B2 (ja) 2006-06-19 2010-03-10 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、ユーザ装置及び送信方法
US7620373B2 (en) 2006-06-23 2009-11-17 Sierra Monolithics, Inc. Apparatus and method for calibration of gain and/or phase imbalance and/or DC offset in a communication system
US8839362B2 (en) * 2006-07-31 2014-09-16 Motorola Mobility Llc Method and apparatus for managing transmit power for device-to-device communication
US8295243B2 (en) * 2006-08-21 2012-10-23 Qualcomm Incorporated Method and apparatus for random access in an orthogonal multiple-access communication system
US20080049692A1 (en) 2006-08-23 2008-02-28 Motorola, Inc. Apparatus and Method For Resource Allocation and Data Transmission Using Heterogeneous Modulation Formats in a Wireless Packet Communication System
US8670777B2 (en) * 2006-09-08 2014-03-11 Qualcomm Incorporated Method and apparatus for fast other sector interference (OSI) adjustment
CN101542938B (zh) 2006-09-18 2012-12-12 马维尔国际贸易有限公司 用于无线mimo通信系统中的隐式波束形成的校准校正
KR100830614B1 (ko) 2006-10-10 2008-05-22 한국전자통신연구원 다중 안테나 송신 시스템 및 이를 이용한 신호 전송 방법
US8630256B2 (en) 2006-12-05 2014-01-14 Qualcomm Incorporated Method and system for reducing backhaul utilization during base station handoff in wireless networks
WO2008075890A1 (en) * 2006-12-18 2008-06-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving data and control information through an uplink in a wireless communication system
KR101002247B1 (ko) * 2006-12-18 2010-12-20 삼성전자주식회사 무선통신 시스템에서 상향링크를 통해 데이터 및 제어정보를 송수신하는 방법 및 장치
KR100946875B1 (ko) * 2006-12-21 2010-03-09 삼성전자주식회사 통신 시스템에서 데이터 수신 장치 및 방법
PL1942597T3 (pl) 2007-01-05 2013-07-31 Samsung Electronics Co Ltd Sposób i urządzenie do transmitowania i odbierania informacji sterującej dla powodowania losowości zakłóceń międzykomórkowych w komórkowym systemie telekomunikacyjnym
KR101386214B1 (ko) 2007-01-09 2014-04-18 삼성전자주식회사 무선통신 시스템에서 ack/nak 신호의 송수신 방법
KR101384078B1 (ko) * 2007-01-10 2014-04-09 삼성전자주식회사 무선통신 시스템에서 애크/내크 채널 자원을 할당하고시그널링하는 방법 및 장치
US9065714B2 (en) * 2007-01-10 2015-06-23 Qualcomm Incorporated Transmission of information using cyclically shifted sequences
US8625652B2 (en) * 2007-01-11 2014-01-07 Qualcomm Incorporated Collision-free group hopping in a wireless communication system
US8520607B2 (en) * 2007-01-17 2013-08-27 Qualcomm Incorported Hopping structure for control channels
US8169956B2 (en) * 2007-01-26 2012-05-01 Qualcomm Incorporated Mapping uplink acknowledgement transmission based on downlink virtual resource blocks
JP2008193414A (ja) * 2007-02-05 2008-08-21 Nec Corp 無線通信システム、その上りリンクにおけるデータ送信方法、基地局装置及び移動局装置
JP4935993B2 (ja) * 2007-02-05 2012-05-23 日本電気株式会社 無線通信システムにおけるリファレンス信号生成方法および装置
KR101345505B1 (ko) 2007-02-06 2013-12-27 삼성전자주식회사 무선통신 시스템에서 상향링크 제어채널의 송수신 방법 및장치
EP1959603A1 (en) * 2007-02-15 2008-08-20 Mitsubishi Electric Information Technology Center Europe B.V. Method of radio data emission, emitter and receiver using the method
CN101247171A (zh) * 2007-02-16 2008-08-20 北京三星通信技术研究有限公司 使用约定资源发送控制信道的设备和方法
KR20090122203A (ko) 2007-02-28 2009-11-26 가부시키가이샤 엔티티 도코모 기지국장치 및 통신제어방법
US8213329B2 (en) * 2007-03-01 2012-07-03 Ntt Docomo, Inc. Base station apparatus and communication control method
US8077596B2 (en) * 2007-03-12 2011-12-13 Qualcomm Incorporated Signaling transmission and reception in wireless communication systems
EP2122861B1 (en) * 2007-03-12 2011-11-16 Electronics and Telecommunications Research Institute Synchronization in a packet based mobile communication system
US8068457B2 (en) 2007-03-13 2011-11-29 Samsung Electronics Co., Ltd. Methods for transmitting multiple acknowledgments in single carrier FDMA systems
KR101049138B1 (ko) * 2007-03-19 2011-07-15 엘지전자 주식회사 이동 통신 시스템에서, 수신확인신호 수신 방법
US8553594B2 (en) * 2007-03-20 2013-10-08 Motorola Mobility Llc Method and apparatus for resource allocation within a multi-carrier communication system
US8451915B2 (en) * 2007-03-21 2013-05-28 Samsung Electronics Co., Ltd. Efficient uplink feedback in a wireless communication system
US20080233966A1 (en) * 2007-03-22 2008-09-25 Comsys Communication & Signal Processing Ltd. Resource allocation apparatus and method in an orthogonal frequency division multiple access communication system
CN101272179A (zh) * 2007-03-23 2008-09-24 Nxp股份有限公司 无线通信的方法、订户站和基站
GB2449230B (en) 2007-04-24 2009-09-02 Multitone Electronics Plc Telecommunications system and method
KR101350134B1 (ko) * 2007-04-26 2014-01-08 엘지전자 주식회사 기준신호 전송 방법
KR101381095B1 (ko) 2007-04-26 2014-04-02 삼성전자주식회사 무선통신 시스템에서 응답 신호 송수신 방법 및 장치
KR100968223B1 (ko) 2007-05-01 2010-07-06 한국전자통신연구원 무선통신 시스템에서 ack/nak 제어정보의 송수신방법 및 장치
WO2008136615A1 (en) * 2007-05-02 2008-11-13 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in a mobile communication system
US9084277B2 (en) 2007-05-04 2015-07-14 Qualcomm Incorporated Method and apparatus for UL ACK allocation
EP2156629A4 (en) * 2007-05-30 2016-03-23 Lg Electronics Inc METHOD FOR TRANSMITTING CONTROL SIGNAL IN WIRELESS COMMUNICATION SYSTEM
US8031688B2 (en) * 2007-06-11 2011-10-04 Samsung Electronics Co., Ltd Partitioning of frequency resources for transmission of control signals and data signals in SC-FDMA communication systems
US8493873B2 (en) * 2007-06-18 2013-07-23 Qualcomm Incorporated Multiplexing of sounding signals in ACK and CQI channels
JP5024533B2 (ja) * 2007-06-19 2012-09-12 日本電気株式会社 移動通信システムにおけるリファレンス信号系列の割当方法および装置
US8102809B2 (en) * 2007-06-19 2012-01-24 Texas Instruments Incorporated Time-sharing of sounding resources
US8160177B2 (en) 2007-06-25 2012-04-17 Samsung Electronics Co., Ltd. Transmit methods with delay diversity and space-frequency diversity
US20090028261A1 (en) * 2007-07-26 2009-01-29 Interdigital Technology Corporation Method and apparatus for reducing signaling overhead during a dual codeword hybrid automatic repeat request operation
US8149938B2 (en) * 2007-08-07 2012-04-03 Texas Instruments Incorporated Transmission of ACK/NACK bits and their embedding in the CQI reference signal
KR20090015778A (ko) 2007-08-08 2009-02-12 엘지전자 주식회사 스케줄링 요청 신호 전송 방법
US20090046645A1 (en) * 2007-08-13 2009-02-19 Pierre Bertrand Uplink Reference Signal Sequence Assignments in Wireless Networks
US20110103367A1 (en) * 2007-08-14 2011-05-05 Ntt Docomo, Inc. User apparatus, base station apparatus, and transmission control method
KR101405974B1 (ko) * 2007-08-16 2014-06-27 엘지전자 주식회사 다중입력 다중출력 시스템에서 코드워드를 전송하는 방법
AU2008295748B2 (en) 2007-09-03 2012-05-24 Samsung Electronics Co., Ltd. Sequence hopping in SC-FDMA communication systems
US8077693B2 (en) * 2007-09-19 2011-12-13 Samsung Electronics Co., Ltd. Resource remapping and regrouping in a wireless communication system
US8023524B2 (en) * 2007-10-09 2011-09-20 Nokia Corporation Cooperative relay system enabling simultaneous broadcast-unicast operation with efficient automatic repeat request functionality
KR101447750B1 (ko) * 2008-01-04 2014-10-06 엘지전자 주식회사 랜덤 액세스 과정을 수행하는 방법
CN101222291B (zh) * 2008-01-05 2013-06-12 中兴通讯股份有限公司 用于物理上行控制信道的发送方法和装置
EP2250849B1 (en) * 2008-02-04 2014-04-09 Nokia Solutions and Networks Oy Mapping a cyclic shift to a channel index for ack/nack resource allocation
US8155683B2 (en) * 2008-02-05 2012-04-10 Motorola Mobility, Inc. Physical downlink control channel specific scrambling
KR100943908B1 (ko) * 2008-02-19 2010-02-24 엘지전자 주식회사 Pdcch를 통한 제어 정보 송수신 방법
KR100925450B1 (ko) * 2008-03-03 2009-11-06 엘지전자 주식회사 상향링크 신호의 충돌 해결 방법
KR101349830B1 (ko) * 2008-03-05 2014-01-09 엘지전자 주식회사 간섭 측정 방법
WO2009116754A2 (en) * 2008-03-16 2009-09-24 Lg Electronics Inc. Method of performing hybrid automatic repeat request (harq) in wireless communication system
CN101960732B (zh) * 2008-03-17 2014-11-05 Lg电子株式会社 在无线通信系统中传送上行链路数据的方法
US8606336B2 (en) * 2008-03-20 2013-12-10 Blackberry Limited System and method for uplink timing synchronization in conjunction with discontinuous reception
US8477734B2 (en) * 2008-03-25 2013-07-02 Qualcomm Incorporated Reporting of ACK and CQI information in a wireless communication system
US9036564B2 (en) * 2008-03-28 2015-05-19 Qualcomm Incorporated Dynamic assignment of ACK resource in a wireless communication system
US9030948B2 (en) * 2008-03-30 2015-05-12 Qualcomm Incorporated Encoding and decoding of control information for wireless communication
EP2272194B1 (en) 2008-04-25 2018-09-19 Avago Technologies General IP (Singapore) Pte. Ltd. Method and system for predicting channel quality index (cqi) values for maximum likelihood (ml) detection in a 2x2 multiple input multiple output (mimo) wireless system
KR101467512B1 (ko) * 2008-04-30 2014-12-02 삼성전자주식회사 피투피 네트워크 시스템 및 그의 운용 방법
US20090276675A1 (en) * 2008-05-05 2009-11-05 Jussi Ojala Signaling of redundancy version and new data indication
US8675573B2 (en) 2008-05-05 2014-03-18 Qualcomm Incorporated Uplink resource management in a wireless communication system
US8626223B2 (en) * 2008-05-07 2014-01-07 At&T Mobility Ii Llc Femto cell signaling gating
WO2009138841A2 (en) * 2008-05-15 2009-11-19 Telefonaktiebolaget L M Ericsson (Publ) Increasing reliability of hybrid automatic repeat request protocol
JP4511611B2 (ja) 2008-05-29 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ 無線リソース選択方法、無線基地局及び移動局
WO2010006903A1 (en) * 2008-06-23 2010-01-21 Nokia Siemens Networks Oy Method and apparatus for providing acknowledgment bundling
WO2009156838A1 (en) * 2008-06-25 2009-12-30 Nokia Corporation Physical uplink control channel ack/nack indexing
US8537763B2 (en) 2008-06-30 2013-09-17 Motorola Mobility Llc Frame allocation to support legacy wireless communication protocols on uplink transmission
US20100150081A1 (en) * 2008-06-30 2010-06-17 Nokia Corporation Physical upling control channel compression supporting ack/nack bundling
KR101565417B1 (ko) * 2008-08-08 2015-11-03 엘지전자 주식회사 다중 주파수 대역 시스템에서의 자원 할당하는 방법 및 장치
KR101603338B1 (ko) * 2008-08-11 2016-03-15 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
KR20100019947A (ko) 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법
KR101520708B1 (ko) * 2008-08-12 2015-05-15 엘지전자 주식회사 다중반송파 무선통신시스템에서 하향링크 제어정보를 송수신하는 방법 및 장치
US9094910B2 (en) * 2008-09-09 2015-07-28 Htc Corporation Methods utilized in mobile device for handling situations when time alignment timer expires, and mobile device thereof
KR101227740B1 (ko) * 2008-10-01 2013-01-29 엘지전자 주식회사 서브프레임의 무선자원 할당 방법 및 장치
US8792434B2 (en) * 2008-10-08 2014-07-29 Telefonaktiebolaget Lm Ericsson Method and apparatus for selecting control channel elements for physical downlink control channel
WO2010044721A1 (en) * 2008-10-17 2010-04-22 Telefonaktiebolaget L M Ericsson (Publ) Method for improving battery life and harq retransmissions in wireless communications systems
DK2351445T3 (en) * 2008-10-20 2015-10-26 Interdigital Patent Holdings carrier Aggregation
US8705461B2 (en) * 2008-10-20 2014-04-22 Interdigital Patent Holdings, Inc. Control channel signaling and acquisition for carrier aggregation
KR101648775B1 (ko) * 2008-10-30 2016-08-17 엘지전자 주식회사 무선 통신 시스템에서 harq 확인 응답 전송 및 전송 블록 재전송 방법
EP2352249B1 (en) * 2008-10-31 2019-03-27 LG Electronics Inc. Method and apparatus for performing harq process in wireless communication system
US8488535B2 (en) * 2008-11-04 2013-07-16 Nokia Corporation Apparatus and method to allocate communication resources for an aperiodic data packet in a communication system
CN102165828B (zh) * 2008-11-04 2012-07-04 华为技术有限公司 确定资源索引的方法、设备和系统
JP5400168B2 (ja) * 2008-11-14 2014-01-29 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける情報送信方法及び装置
EP2197138B1 (en) * 2008-12-15 2019-03-20 Mitsubishi Electric R&D Centre Europe B.V. Space-frequency block coding for a multiuser system
CA2749373C (en) * 2009-01-12 2017-04-04 Battelle Memorial Institute Nested, hierarchical resource allocation schema for management and control of an electric power grid
KR20100091876A (ko) 2009-02-11 2010-08-19 엘지전자 주식회사 다중안테나 전송을 위한 단말 동작
KR101729550B1 (ko) * 2009-03-23 2017-04-24 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
KR101731333B1 (ko) * 2009-03-25 2017-04-28 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
EA027814B1 (ru) * 2009-05-26 2017-09-29 Шарп Кабусики Кайся Система мобильной связи, устройство базовой станции, устройство мобильной станции и способ мобильной связи
US20100329200A1 (en) * 2009-06-24 2010-12-30 Industrial Tehnology Research Institute Apparatus and method for allocating uplink resources
US8891480B2 (en) * 2009-07-01 2014-11-18 Qualcomm Incorporated Positioning reference signals in a telecommunication system
JP5801093B2 (ja) 2011-04-27 2015-10-28 シャープ株式会社 基地局、端末、通信システムおよび通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9677285B2 (en) 2000-03-31 2017-06-13 Pergo (Europe) Ab Building panels
US9106385B2 (en) 2010-01-17 2015-08-11 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
US10721045B2 (en) 2010-01-17 2020-07-21 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
USRE47912E1 (en) 2010-01-17 2020-03-17 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
US9948442B2 (en) 2010-01-17 2018-04-17 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
JP2013529406A (ja) * 2010-04-04 2013-07-18 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御情報の送信方法及び装置
US9544886B2 (en) 2010-04-05 2017-01-10 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
KR101802756B1 (ko) 2010-04-05 2017-11-29 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
JP2013528978A (ja) * 2010-04-05 2013-07-11 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御情報の伝送方法及び装置
US9282550B2 (en) 2010-04-05 2016-03-08 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
US9301290B2 (en) 2010-04-05 2016-03-29 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
JP2013526156A (ja) * 2010-04-13 2013-06-20 クゥアルコム・インコーポレイテッド 異機種ネットワークのための発展型ノードbチャネル品質インジケータ(cqi)の処理
US9363038B2 (en) 2010-04-13 2016-06-07 Qualcomm Incorporated Evolved node B channel quality indicator (CQI) processing for heterogeneous networks
JP2013530593A (ja) * 2010-05-06 2013-07-25 パナソニック株式会社 多重化方法および多重化装置
JP2016131377A (ja) * 2010-07-16 2016-07-21 サムスン エレクトロニクス カンパニー リミテッド 肯定応答信号及びサウンディングレファレンス信号を多重化するための方法及びシステム
JP2012095288A (ja) * 2010-09-29 2012-05-17 Sharp Corp 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
US10750477B2 (en) 2010-09-29 2020-08-18 Sharp Kabushiki Kaisha Uplink resource allocation for transmitting information indicating an ACK/NACK for downlink data in a mobile communication system
WO2012043689A1 (ja) * 2010-09-29 2012-04-05 シャープ株式会社 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
US9781703B2 (en) 2010-09-29 2017-10-03 Sharp Kabushiki Kaisha Determining uplink resources for a mobile station that communicates with a base station on a primary cell and a secondary cell
US10085239B2 (en) 2010-09-29 2018-09-25 Sharp Kabushiki Kaisha Mobile communication system, mobile station apparatus, base station apparatus, communication method and integrated circuit
US9565005B2 (en) 2010-11-02 2017-02-07 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
US8861394B2 (en) 2010-11-02 2014-10-14 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
WO2012060630A3 (en) * 2010-11-02 2012-07-05 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
US9461798B2 (en) 2010-11-02 2016-10-04 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
WO2012060630A2 (en) * 2010-11-02 2012-05-10 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system
US8514826B2 (en) 2010-11-02 2013-08-20 Lg Electronics Inc. Method and apparatus for transmitting control information in radio communication system

Also Published As

Publication number Publication date
KR20100019949A (ko) 2010-02-19
US20110142000A1 (en) 2011-06-16
EP2333985A2 (en) 2011-06-15
CN102119497A (zh) 2011-07-06
CN102119497B (zh) 2015-10-14
EP2333985A4 (en) 2016-01-20
KR101571566B1 (ko) 2015-11-25
JP5576372B2 (ja) 2014-08-20
EP2333985B1 (en) 2019-06-26
WO2010018980A3 (ko) 2010-05-14
US9191931B2 (en) 2015-11-17
US8848629B2 (en) 2014-09-30
JP2011530942A (ja) 2011-12-22
US20140362804A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
WO2010018980A2 (ko) 무선 통신 시스템에서 제어신호 전송 방법 및 장치
WO2010018977A2 (en) Method and apparatus of transmitting information in wireless communication system
WO2010056068A9 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2010018979A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2017026814A1 (ko) 상향링크 전송을 수행하는 방법 및 사용자 장치
WO2016108658A1 (ko) 무선 통신 시스템에서 ack/nack 전송 방법 및 이를 이용한 장치
WO2016064218A2 (ko) Mtc 기기의 상향링크 채널 및 복조 참조 신호 전송 방법
WO2012005516A2 (ko) 무선통신 시스템에서 제어정보의 전송 방법 및 장치
WO2011043598A2 (ko) 다중 안테나 시스템에서 상향링크 전송 방법 및 장치
WO2010087645A2 (en) Method and apparatus for receiving and transmitting signals in wireless communication system
WO2010047512A2 (ko) 무선통신 시스템에서 신호 전송 방법 및 장치
WO2010056078A2 (ko) 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2011122837A2 (en) Method and system for uplink acknowledgement signaling in carrier-aggregated wireless communication systems
WO2010056069A2 (ko) 다중 안테나 시스템에서 복수의 자원을 이용한 데이터 전송 방법 및 장치
WO2010013963A2 (en) Method and apparatus of transmitting control information in wireless communication system
WO2011159131A2 (en) Method and system for mapping harq-ack bits
WO2016126057A1 (en) Method and apparatus for controlling uplink control information transmission in wireless communication system providing widebandwidth services via carrier aggregation
WO2010090415A2 (en) Apparatus and method for transmitting signal in wireless communication system
WO2011052949A2 (ko) 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
WO2010016729A2 (en) Method and apparatus for transmitting signal in wireless communication system
WO2012015214A2 (ko) 무선 통신 시스템에서 확장된 상향링크 제어정보를 전송하는 방법 및 장치
WO2012091490A2 (ko) Tdd 기반 무선 통신 시스템에서 ack/nack 전송 방법 및 장치
WO2010016750A2 (ko) 다중 반송파 시스템에서 harq 수행 방법 및 장치
WO2011068385A2 (ko) 무선 통신 시스템에서 효율적인 경합 기반 전송 방법 및 장치
WO2011105813A2 (ko) 상향링크 다중 안테나 전송을 지원하는 무선 통신 시스템에서 상향링크 전송을 위한 제어정보를 제공하는 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131260.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806842

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009806842

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13058294

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011522904

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE