WO2010017947A2 - Pare-vapeur s'adaptant au taux d'humidité - Google Patents

Pare-vapeur s'adaptant au taux d'humidité Download PDF

Info

Publication number
WO2010017947A2
WO2010017947A2 PCT/EP2009/005798 EP2009005798W WO2010017947A2 WO 2010017947 A2 WO2010017947 A2 WO 2010017947A2 EP 2009005798 W EP2009005798 W EP 2009005798W WO 2010017947 A2 WO2010017947 A2 WO 2010017947A2
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
vapor barrier
adaptive
humidity
diffusion
Prior art date
Application number
PCT/EP2009/005798
Other languages
German (de)
English (en)
Other versions
WO2010017947A3 (fr
Inventor
Rainer Dorn
Franz-Josef Kasper
Original Assignee
Saint-Gobain Isover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Isover filed Critical Saint-Gobain Isover
Priority to EP09777787.4A priority Critical patent/EP2318603B1/fr
Publication of WO2010017947A2 publication Critical patent/WO2010017947A2/fr
Publication of WO2010017947A3 publication Critical patent/WO2010017947A3/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/625Sheets or foils allowing passage of water vapor but impervious to liquid water; house wraps
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/64Insulation or other protection; Elements or use of specified material therefor for making damp-proof; Protection against corrosion

Definitions

  • the invention relates to a moisture-adaptive vapor barrier according to the preamble of patent claim 1.
  • vapor barriers in the form of films are known to prevent the entry of moisture in the form of water vapor in a building structure.
  • Such films are characterized by a correspondingly high constant water vapor diffusion resistance, which in the construction practice is converted into the diffusion-equivalent air layer thickness (s d value).
  • the S d value is generally above 10 m, preferably at 100 m.
  • the water vapor diffusion resistance is usually measured according to DIN EN ISO 12572: 2001. Since in many cases a blocking of the moisture exchange through the vapor barrier, ie a non-drying, is undesirable, since this may be accompanied by a damage to the building structure, such vapor barriers are now replaced by vapor barriers.
  • vapor barriers are designed in their thickness and / or material by nature so as to allow moisture removal from the building structure.
  • wet-adaptive vapor barriers are known (see WO 96/33321 Al), which are formed by a material in which the water vapor Diffusion resistance decreases with increasing mean ambient humidity, ie with increasing mean ambient humidity the vapor barrier has a larger water vapor transmission. allows the vapor barrier so opens accordingly.
  • the moisture-adaptive properties of the films are adjusted so that they have a water vapor diffusion resistance (S d value) of 2 to 2 at an average humidity of the atmosphere surrounding the vapor barrier of 30-50%.
  • the term ambient humidity used below refers in each case to the relative mean moisture of the atmosphere surrounding the vapor barrier, ie the arithmetic mean of the moistures applied to the foil on both sides.
  • DIN EN ISO 12572: 2001 the inventors have recognized that, despite the enormous advantages of such a moisture-adaptive vapor barrier, improvements are required to enable improved adaptation of the moisture-adaptive properties of a vapor barrier to specific construction-specific requirements. For example. Due to the fact that the interior design moves more and more into the autumn and winter months occur in these construction measures increasingly wet situations in which an opening of the known vapor barriers is undesirable.
  • the object of the invention is to provide a moisture-adaptive vapor barrier, which allows an adaptation of their moisture-adaptive properties to different construction-specific concerns.
  • the invention assumes that the diffusion resistance behavior of a moisture-adaptive vapor barrier is represented in an S curve when the S d value for the water vapor diffusion resistance is plotted above the ambient humidity.
  • the incoming S-leg of this S-curve in this case is up to a humidity of the environment of 50% to a diffusion resistance of 2 m for the diffusion-equivalent air layer thickness and above, then at greater ambient humidity, the curve with a substantially flat slope in the overflowing S-leg, which is then desirably at a level less than 1 m diffusion-equivalent air layer thickness at a humidity of the environment or atmosphere from 60%.
  • the S d value can be adjusted by the thickness of the vapor barrier, and that is based on the formula
  • is a material-dependent moisture-adaptive vapor barrier parameter influenced only by the ambient humidity and D indicates the thickness of the vapor barrier. If one wanted to adjust the moisture-adaptive character of the vapor barrier via the change in thickness, ie increase or decrease the thickness accordingly, then this would lead to a shift of the S-curve along the ordinate, ie. H. Increasing the thickness of the vapor barrier will increase the Sd value in both dry (winter) and wet (summer) conditions, but this would mean that the characteristics of the wet-adaptive vapor barrier may be ideal for winter conditions but ideal for summer conditions would lead to a deterioration because of the decreased desiccation behavior.
  • the adaptive functional layer at a humidity of the environment above 70% has a water vapor diffusion resistance which is ⁇ 1 m diffusion-equivalent air layer thickness
  • this has a desired steep turnaround area between the S-legs of the S d -value curve result, on the one hand, to an influence on the opening of the vapor barrier as a result of the shift of the turning region along the abscissa to the right, ie the vapor barrier opens only at a higher ambient humidity for the water vapor passage, and on the other hand, the transition between the closing and opening the film is much faster than in conventional non-inventively modified wet-adaptive vapor barriers.
  • the low water vapor diffusion resistance in the moisture-adaptive vapor barrier according to the invention would be present only at humidity values of the environment from 70%, that is, from values of ambient humidity which are generally not reached in the case of screed work in winter.
  • the required opening of the moisture-adaptive vapor barrier in summer is guaranteed. makes, so that at any time a corresponding dehydration of the construction is guaranteed.
  • the curve shape can be adjusted to construction-specific features.
  • the incorporation of hydrophobizing agents ensures that moisture is incorporated into the moisture-adaptive functional layer with a delay, which is the cause of the moisture-adaptive behavior. This obstructed storage of water has the intended displacement effect.
  • this effect can also be achieved with the incorporation of hydrophilizing, ie water-absorbing agents, since the moisture is then bound and held by these hydrophilizing agents and the entry into the moisture-adaptive functional layer takes place only with delay.
  • hydrophilicizing agents it is expedient for entry into the moisture-adaptive functional layer if this incorporation takes place only in the surface region or near-surface regions of the vapor barrier or additionally or alternatively in a coating provided on the moisture-adaptive functional layer.
  • the entry into the moisture-adaptive functional layer can take place in total or additionally and alternatively also in the coating.
  • the turning region between incoming S-limb and expiring S-limb is shifted to the right by about 10% -points relative to the non-modified vapor barrier.
  • This is achieved by setting the vapor barrier to the values for the water vapor diffusion resistance mentioned in the claims.
  • the approximately parallel course of the incoming S-leg is extended to the right in the direction of the abscissa, ie, to increasing humidity, which then at the same time also increases at the given values for the higher humidity of the environment a steeper course of the turning region between the two legs of the S-curve different from the S-curves of conventional not correspondingly modified damp-adaptive vapor brakes leads.
  • the invention is characterized in that the inflection point of the S-curve is at a humidity of the environment from 60% and above.
  • inflection point here is that point of the S-curve to understand where the incoming S-leg merges into the expiring S-leg.
  • the invention assumes that the two-dimensional S d -profile with the ordinate-applied Sd value and-applied on the abscissa degree of humidity which the functional relationship between the S d - value, and the voltage applied to the vapor barrier average relative humidity x , which is calculated from the relative humidity of the atmosphere applied to both surfaces of the vapor barrier, which forms the basis for the relevant humidity temporal behavior calculations in constructions.
  • the measurement specification for the determination of a single value ⁇ d ⁇ x is described in the international standard DIN EN ISO 12572: 2001, which is based on the formation of a dynamic equilibrium. Due to the fact that the basic measurement specification at the time of its development was designed for non-wet-adaptive vapor barriers, ie those with a substantially constant S d value, the current version of DIN EN ISO 12572: 2001 focuses on two particularly preferred points , the so-called wet cup and the dry cup. The wet-cup is defined by two adjacent humidities of 50% and 93%, so that an average relative humidity of 71.5% is established, for the dry-cup 3% and 50% moisture are applied so that the mean 26 , 5%. Out.
  • one of the two humidities in a vessel with a SaIz is set, while the second humidity is set with a controllable climate chamber, so that also other than the "classic" dry-cup and wet-cup ratios are adjustable.This is especially necessary for moisture-adaptive vapor brakes, as the exact function has to be determined.
  • DIN EN ISO 12571: 2000 contains a list of further salts with which other humidities can be set so that any mean relative humidity and moisture gradient in the combination of salt and controllable climatic chamber is possible.
  • such a measurement curve should be determined, for example, in the form of an incremental measurement series. This conflicts with the practical problem that the measurement of a single point at S d values greater than 2-3 m can already take several weeks until the dynamic equilibrium has been established, so that the number of support points in the form of measured value tuples ⁇ d ⁇ x ) is reduced to usually 5 to 7 in order to limit the total time required for the measurement to a period of 3 to 4 months.
  • These interpolation points are suitably distributed over the range of the mean humidity from 0 to 100%.
  • a test point distribution with 6 value tuples proven in practice is given: (3/50); (33/50); (33/65); (50/75); (50/93); (80/93).
  • the two numerical values represent the respective humidity of an atmosphere applied to the vapor barrier, so that average relative humidity of 26.5%, 41.5%, 49%, 62.5%, 71, 5% and 81, 5% result.
  • the salts used are silica gel (3%), magnesium chloride (33%), sodium chloride (75%) and ammonium dihydrogen phosphate (93%). The opposite side is adjusted with a controlled climate chamber.
  • the measurement results ie, the value tuples, are evaluated in a least squares regression analysis using an approximation function to provide the database for the computational programs.
  • any function can be used.
  • Suitable programs are included in the known statistics program packages. In practice, it can be seen that with all moisture-variable vapor brakes, the curve can best be approximated with a so-called S-curve.
  • D stands for the asymptotic lower limit of the curve, ie in the case of a moisture-variable vapor brake approximately for S d, m i n> which follows from a limit analysis for x against ⁇ taking into account the upper limit of the physically possible humidity range between 0 and 100%.
  • A stands for the spread of the function between minimum and maximum value, thus, in the case of the damp-adaptive vapor barrier, the value S d, ma ⁇ is approximately equal to A + D, which results from a limit consideration for x against - ⁇ and the restriction taking into account the lower one Barrier of the physically possible humidity range between 0 and 100% follows.
  • C indicates the location of the inflection point (C; A / 2 + D).
  • the measurement data tuple (26.5%, 4.5 m) results; (41.5%, 3.8m); (62.5%, im); (71.5%; 0,44m); adds another estimation point (90%, 0, lm) to the estimators for the parameters:
  • the vapor barrier can thus be adapted to different construction-specific conditions by shifting the inflection point of the S-curve from the usual moisture ranges of unmodified vapor barriers of less than 60% ambient humidity into an ambient moisture range of 60-70%, which is the case for the described winter construction situations is advantageous.
  • An adjustment of the transition point in the humidity range of 70-80% of the environment is advantageous when building structures have on the outside additional vapor-tight layers, such as in the form of a bituminous sheet, which hinders dehydration to the outside.
  • the curve of the moisture-adaptive vapor barrier be converted to a moisture content of 50% above a Sd value greater than 4 m diffusion-equivalent air layer thickness, preferably greater than 5 m diffusion-equivalent air layer thickness.
  • the outgoing leg of the S-curve of the moisture-adaptive vapor barrier has a sa value ⁇ 0.5 m from 75% ambient humidity, preferably from 70% ambient humidity. In conjunction with the aforementioned parameters, this results in a correspondingly steep curve in the turning region of the S-curve.
  • the moisture-adaptive functional layer itself is characterized in particular by a thickness in the range of 30 .mu.m to 100 .mu.m. Furthermore, the functional layer is expediently formed by a film.
  • the functional layer are layers or films made of polyamide; Polyvinyl alcohol, in particular EVOH (ethylene) len-vinyl alcohol); Polyethylene copolymers with ionomers or polyethylene polyacrylic acid copolymers (in particular as a multi-layer structure) are suitable.
  • hydrophobizing or hydrophilizing agents the usual suitable agents can be used, such as fluorocarbons, fluorinated esters or silicone-based agents, in particular organic silicone compounds.
  • suitable hydrophilizing agents are polyethers, organic ammonium salts and organic acids.
  • a hydrophilizing or hydrophobizing agent and a deviating from the material of the functional layer material from said group of polyamide; Polyvinyl alcohol, especially EVOH (ethylene-vinyl alcohol); Polyethylene copolymers with ionomers or polyethylene polyacrylic acid copolymers in question.
  • the profile of the S d values can be represented by the humidity in the case of moisture-adaptive vapor brakes in the form of an S-curve
  • the steepness of the turning region between the incoming S-leg and the outgoing S-axis can be easily determined by suitable material parameters. Thighs wanted be placed, with a particularly steep course is preferred. This requires only conventional test series with the appropriate materials.
  • hydrophobing and hydrophilizing agents are added to a compound or batch for the production of a vapor barrier, for example based on polyamide, in the manufacture of the vapor barrier, whereby a uniform distribution of these agents within the moisture-adaptive functional layer achieves and results in a single-layer construction of the vapor barrier.
  • the application is carried out by an impregnation process in which the vapor barrier, which is preferably designed as a film, is passed through a bath so that the hydrophilizing or hydrophobicizing agent can be applied as a layer with the interposition of an adhesion promoter.
  • the spraying of the agent or the application of the agent in the manner of a coating dispersion is also suitable.
  • these production methods enumerated above are by no means to be considered as limiting.
  • Fig. 1 shows an example sa profiles for different vapor barriers.
  • Curves 1 and 2 depict the S-curve of conventional moisture-adaptive vapor barrier films whose inflection point is clearly visible below 60% ambient humidity.
  • the curve denoted by 3 represents the S-curve of a modified according to the invention damp-adaptive vapor barrier, in accordance with the basis of a vapor barrier film.
  • Curve 1 by incorporating hydrophobic agent into the moisture-adaptive functional layer has reversed the turning region of the curve to the right overall.
  • the S-curve 3 opens only at higher humidity of the environment.
  • the inflection point of curve 3, designated 4 is in the range of the mean relative humidity of 65%.
  • the diagram also shows that the curve 3 in the turning region is significantly steeper than the curves 1 and 2.
  • the base material for a one-layered vapor barrier film in particular are polyamides, preferred Polyamide 6 is likewise suitable. Polyamides 3, 4, 12 or 66 are also suitable. Inventive films can be produced in the so-called cast process or in the blown process, for example by the company MF Folien in Kempten.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Braking Arrangements (AREA)
  • Drying Of Gases (AREA)

Abstract

L'invention concerne un pare-vapeur s'adaptant au taux d'humidité, comportant au moins une couche fonctionnelle s'adaptant au taux d'humidité, dont le matériau présente une résistance à la diffusion de la vapeur d'eau qui diminue à mesure que l'humidité de l'atmosphère entourant le pare-vapeur augmente, de sorte que le pare-vapeur, à un taux d'humidité de 30-50 %, présente une résistance à la diffusion de la vapeur d'eau de 2 m d'épaisseur de couche d'air (valeur sd) équivalente à la diffusion et au-delà et, à partir d'un taux d'humidité de 60 %, une résistance à la diffusion de la vapeur d'eau < 1 m d'épaisseur de couche d'air équivalente à la diffusion. Dans la couche fonctionnelle s'adaptant au taux d'humidité dudit pare-vapeur sont intégrés des moyens d'hydrophobisation ou d'hydrophilisation et/ou la couche fonctionnelle s'adaptant au taux d'humidité est dotée d'un revêtement qui comporte des moyens d'hydrophobisation ou d'hydrophilisation, de façon que ladite couche fonctionnelle du pare-vapeur, à un taux d'humidité ambiant inférieur à 50 %, présente une résistance à la diffusion de la vapeur d'eau > 4 m d'épaisseur de couche d'air équivalente à la diffusion, de préférence > 5 m, en particulier de préférence > 10 m et, à un taux d'humidité ambiant supérieure à 70 %, une résistance à la diffusion de la vapeur d'eau < 1 m d'épaisseur de couche d'air équivalente à la diffusion.
PCT/EP2009/005798 2008-08-11 2009-08-10 Pare-vapeur s'adaptant au taux d'humidité WO2010017947A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09777787.4A EP2318603B1 (fr) 2008-08-11 2009-08-10 Pare-vapeur s'adaptant au taux d'humidité

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810037292 DE102008037292A1 (de) 2008-08-11 2008-08-11 Feuchteadaptive Dampfbremse
DE102008037292.7 2008-08-11

Publications (2)

Publication Number Publication Date
WO2010017947A2 true WO2010017947A2 (fr) 2010-02-18
WO2010017947A3 WO2010017947A3 (fr) 2010-07-01

Family

ID=41527957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005798 WO2010017947A2 (fr) 2008-08-11 2009-08-10 Pare-vapeur s'adaptant au taux d'humidité

Country Status (3)

Country Link
EP (1) EP2318603B1 (fr)
DE (2) DE102008037292A1 (fr)
WO (1) WO2010017947A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055788A1 (de) 2010-12-23 2012-06-28 Hanno-Werk Gmbh & Co. Kg Fugendichtungsband
EP2692959A1 (fr) 2012-07-29 2014-02-05 Hanno-Werk GmbH & Co. KG Film sheet
EP3124712A1 (fr) 2015-07-30 2017-02-01 Hanno-Werk GmbH & Co. KG Bande de garniture de joint compressible et son procede de fabrication
DE202017102227U1 (de) 2017-04-12 2017-06-06 Hanno-Werk Gmbh & Co. Kg Fugendichtungsband
DE102020126123A1 (de) 2020-10-06 2022-04-07 SwissChem AG Verfahren zur Herstellung eines Folienbandes und Folienband

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010054110A1 (de) * 2009-12-10 2011-06-16 Saint-Gobain Isover G+H Ag Feuchteadaptive Dampfbremse, insbesondere für den Einsatz zur Wärmedämmung von Gebäuden, sowie Verfahrenzur Herstellung einer solchen Dampfbremse
DE102010026155A1 (de) 2010-07-06 2012-01-12 Lhb Gmbh & Co Beschichtungs Kg Dampfbremse
DE202012101990U1 (de) 2012-05-23 2013-08-27 Tremco Illbruck Produktion Gmbh Dichtband
PL2759403T3 (pl) 2013-01-29 2016-12-30 Ukierunkowana paroizolacja wykazująca zmienność pod wpływem wilgotności
DE202016101644U1 (de) 2016-03-24 2017-06-27 Coroplast Fritz Müller Gmbh & Co. Kg Überputzbares Klebeband

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004007543U1 (de) 2004-05-07 2004-08-05 Wirz, Peter Abdichtungsbahn für Gebäude
DE202004019654U1 (de) 2004-12-14 2005-04-07 Orbita Film Gmbh Dampfbremsfolie

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19514420C1 (de) 1995-04-19 1997-03-06 Fraunhofer Ges Forschung Dampfbremse für den Einsatz zur Wärmedämmung von Gebäuden
DE10111319A1 (de) * 2001-03-08 2002-09-26 Oekologische Bausysteme B I Mo Werkstoff für ein Laminat bzw. Schichtstoff
EP1296002A3 (fr) * 2001-09-24 2004-02-11 Icopal A/S Une membrane pare-vapeur ou membrane de sous-toiture pour bâtiments
US20070015424A1 (en) * 2005-07-15 2007-01-18 Certainteed Corporation Building material having adaptive vapor retarder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004007543U1 (de) 2004-05-07 2004-08-05 Wirz, Peter Abdichtungsbahn für Gebäude
DE202004019654U1 (de) 2004-12-14 2005-04-07 Orbita Film Gmbh Dampfbremsfolie

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055788A1 (de) 2010-12-23 2012-06-28 Hanno-Werk Gmbh & Co. Kg Fugendichtungsband
US9732853B2 (en) 2010-12-23 2017-08-15 Hanno-Werk Gmbh & Co. Kg Joint-sealing strip
DE202011111150U1 (de) 2010-12-23 2021-05-28 Hanno Werk Gmbh & Co. Kg Fugendichtungsband
EP2655775B2 (fr) 2010-12-23 2022-12-07 Hanno-Werk GmbH & Co. KG Bande d'étanchéité pour joints
EP2692959A1 (fr) 2012-07-29 2014-02-05 Hanno-Werk GmbH & Co. KG Film sheet
EP2692959B1 (fr) 2012-07-29 2016-04-06 Hanno-Werk GmbH & Co. KG Film sheet
EP3067481A1 (fr) 2012-07-29 2016-09-14 Hanno-Werk GmbH & Co. KG Bande de feuille
EP3124712A1 (fr) 2015-07-30 2017-02-01 Hanno-Werk GmbH & Co. KG Bande de garniture de joint compressible et son procede de fabrication
DE202017102227U1 (de) 2017-04-12 2017-06-06 Hanno-Werk Gmbh & Co. Kg Fugendichtungsband
DE102020126123A1 (de) 2020-10-06 2022-04-07 SwissChem AG Verfahren zur Herstellung eines Folienbandes und Folienband
EP3981576A1 (fr) 2020-10-06 2022-04-13 SwissChem AG Procédé de fabrication d'une bande de feuille et bande de feuille

Also Published As

Publication number Publication date
WO2010017947A3 (fr) 2010-07-01
DE102008037292A1 (de) 2010-02-18
EP2318603B1 (fr) 2017-03-01
DE202009018740U1 (de) 2012-12-17
EP2318603A2 (fr) 2011-05-11

Similar Documents

Publication Publication Date Title
EP2318603B1 (fr) Pare-vapeur s&#39;adaptant au taux d&#39;humidité
EP2510166B1 (fr) Pare-vapeur s&#39;adaptant au taux d&#39;humidité, utilisé en particulier pour l&#39;isolation thermique de bâtiments, et procédé de fabrication de ce pare-vapeur
EP2759403B1 (fr) Barrière pare-vapeur orientée variable selon l&#39;humidité
EP2193022B1 (fr) Film pour le secteur de la construction et film composite
EP1824902B1 (fr) Film pare-vapeur
DE102008020955A1 (de) Dichtelement
WO2005035896A1 (fr) Element en matiere isolante constituee de feutre de fibres minerales, destine a etre installe par collage entre des poutres et analogues
CH702833A1 (de) Wand zum Trennen der Innenseite eines Gebäudes von der Aussenseite.
EP3105386A1 (fr) Structure de bâtiment isolée
EP2982821A1 (fr) Élement d&#39;etancheite et son procede de fabrication
DE10239985A1 (de) Für die Bautechnik geeignete Abdichtungsbänder
EP3608480B1 (fr) Rouleau de bande d&#39;étanchéité d&#39;une bande d&#39;étanchéité dotée d&#39;une couche barrière interne dans une direction de fonctionnement
DE1908286A1 (de) Verfahren zur Herstellung von papierbeschichteten Gipsbauplatten
DE102009031639A1 (de) Brettschichtholz
DE102014008530A1 (de) Feuchtevariable Schutzschicht und Verwendung einer feuchtevariablen Schutzschicht
DE102008046894A1 (de) Belüftungseinsatz mit statistisch zufälliger Zellenverteilung
EP1085141A2 (fr) Barrière d&#39;air perméable à la vapeur d&#39;eau composée d&#39;une nappe non-tissée recouverte d&#39;un film
EP3369875B1 (fr) Construction de plancher avec filtre à joint périphérique
CH706973A1 (de) Biozidhaltiges Verkleidungssystem.
DE102018112260A1 (de) Wärmedämmelement, Bauwerkskonstruktion sowie Verfahren zur Vermeidung von Feuchteschäden an einem Bauwerk
DE102017120913A1 (de) Plattenförmiges Bauelement mit Dampfdiffusionsbremse oder Dampfdiffusionssperre
DE60031170T2 (de) Wasserdichte membran und verfahren zu deren herstellung
AT515504B1 (de) Flächiges Bauelement
EP2369078B1 (fr) Matériau d&#39;isolation
DE102013019715A1 (de) Dämmstoffelement und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009777787

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009777787

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777787

Country of ref document: EP

Kind code of ref document: A2