WO2010017702A1 - 一种检测集成电路负载在线功耗的方法、装置和设备 - Google Patents

一种检测集成电路负载在线功耗的方法、装置和设备 Download PDF

Info

Publication number
WO2010017702A1
WO2010017702A1 PCT/CN2009/070399 CN2009070399W WO2010017702A1 WO 2010017702 A1 WO2010017702 A1 WO 2010017702A1 CN 2009070399 W CN2009070399 W CN 2009070399W WO 2010017702 A1 WO2010017702 A1 WO 2010017702A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
node
resistance value
source node
module
Prior art date
Application number
PCT/CN2009/070399
Other languages
English (en)
French (fr)
Inventor
朱勇发
晋兆国
韩承章
贾荣华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010017702A1 publication Critical patent/WO2010017702A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage
    • G01R31/3004Current or voltage test

Definitions

  • the present invention relates to the field of integrated circuits, and in particular, to a method, device and device for detecting online power consumption of an integrated circuit load.
  • FIG. 1 a schematic diagram of a typical communication device is provided.
  • the communication device uses a distributed power supply system, wherein the communication device provides a 48V power bus, and a VRM (Voltage Regulator Module) in the board A
  • VRM Voltage Regulator Module
  • the 12V voltage obtained by adjusting the 48V voltage is supplied to the IC1, IC2, and IC3 chips for power supply.
  • the board B and the board C use their respective VRM modules to obtain the voltage required by the board.
  • the IC chip and the module are powered to realize the normal operation of each board.
  • the inventors found that the IC chip and the module are heated during operation, which leads to a decrease in performance and reliability. Since the heat generation and power consumption of the IC chip and the module are related, how to accurately detect the IC chip and the module during product debugging The power consumption has become the focus of the technicians.
  • IC chips and modules provided by various manufacturers usually only describe the static power consumption and maximum power consumption of IC chips or modules. The online power consumption of IC chips or modules under actual working conditions cannot be obtained. If the power consumption of the ic chip and module in the online state of each board can be accurately obtained, the long-term operational reliability of the communication device can be evaluated, and the temperature of the IC chip and the module can be predicted as the input of the newly developed communication device. Whether the design requirements are met and the optimal cost performance system design is given.
  • the method of power consumption detection using a serial instrument (such as an ammeter, a current probe, or a power meter) has at least the following disadvantages and Insufficient:
  • the circuit branch of the device in operation is connected to the current detector, which destroys the physical structure and appearance of the circuit of the device. In reality, it is usually not allowed.
  • a power network has a large number of IC chips and modules, these The IC chip and the module are on the same power plane, and the in-line position of the instrument cannot be found.
  • an ic chip or module has Many power pins, these power pins are directly connected to the power plane, and it is not possible to string the instrument into each power pin. Summary of the invention
  • the embodiment of the invention provides a method, device and device for detecting the online power consumption of the integrated circuit load.
  • a method for detecting online power consumption of an integrated circuit load comprising:
  • the power plane including a source node and at least one load node
  • the power consumption of the integrated circuit load is obtained based on the voltage value and the DC resistance value, the integrated circuit load having at least one load node.
  • an apparatus for detecting online power consumption of an integrated circuit load comprising: a location determining module, configured to determine a location of a source node and a load node in a power plane, the power plane including a source node and at least a load node;
  • a voltage acquisition module configured to acquire a voltage value of the source node and the load node determined by the location determining module
  • a resistance obtaining module configured to acquire a DC resistance value between the source node and the load node determined by the location determining module, and a DC resistance value between the load nodes
  • a power consumption detecting module configured to acquire power consumption of the integrated circuit load according to the voltage value acquired by the voltage acquiring module and the DC resistance value obtained by the resistance acquiring module, where the integrated circuit load has at least one load node.
  • an apparatus for detecting online power consumption of an integrated circuit load having means for detecting an online power consumption of an integrated circuit load, the apparatus comprising:
  • a location determining module configured to determine a location of the source node and the load node in a power plane, where the power plane includes a source node and at least one load node;
  • a voltage acquisition module configured to acquire a voltage value of the source node and the load node determined by the location determining module
  • a resistance obtaining module configured to acquire a DC resistance value between the source node and the load node determined by the location determining module, and a DC resistance value between the load nodes
  • a power consumption detecting module configured to acquire power consumption of the integrated circuit load according to the voltage value acquired by the voltage acquiring module and the DC resistance value obtained by the resistance acquiring module, where the integrated circuit load has at least one load node.
  • the invention realizes the detection of the online power consumption of the IC chip and the module, and solves the problem that the power consumption of each IC chip and the module in the online state cannot be decomposed in the hardware development; the current of the online working state of the obtained IC chip and the module And power consumption can accurately evaluate the reliability and temperature rise of the IC chip and module; can directly design the optimal cost performance in the newly developed equipment or equipment optimization, reduce the cost and improve the reliability; further, the communication device can also be realized Intelligent monitoring of online power consumption of electronic devices.
  • FIG. 1 is a schematic diagram of the composition of a communication device provided by the prior art
  • FIG. 2 is a schematic flowchart of a method for detecting online power consumption of an integrated circuit load according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a power supply plane according to Embodiment 1 of the present invention
  • Embodiment 4 is a schematic diagram of an equivalent circuit network provided by Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of adaptive adaptation of a power plane according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a node and a DC resistance layout of a power plane provided by Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram showing a simplified transformation of a DC resistance network according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram of a DC resistance equivalent circuit network according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of a software system implementation process according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic flowchart showing an implementation process of a power consumption detection of an online working state by a communication device according to Embodiment 1 of the present invention.
  • FIG. 11 is a schematic diagram of an apparatus for detecting online power consumption of an integrated circuit load according to Embodiment 2 of the present invention.
  • FIG. 12 is a first schematic diagram of an apparatus for detecting online power consumption of an integrated circuit load according to Embodiment 2 of the present invention
  • FIG. 13 is a second schematic diagram of an apparatus for detecting online power consumption of an integrated circuit load according to Embodiment 2 of the present invention
  • the embodiment of the invention provides an online power consumption for detecting the integrated circuit load.
  • the method is as follows: Determine the location of the source node and the load node in the power plane, the power plane includes the source node and the at least one load node; obtain the voltage values of the source node and the load node; acquire the node (usually, will be in the circuit).
  • the connection point of three or more branches is defined as the DC resistance value between any two nodes in the node (ie, the DC resistance value between the source node and the load node and the DC resistance value between the load nodes);
  • the value and the DC resistance value are used to obtain the power consumption of the integrated circuit load, and the integrated circuit load has at least one load node.
  • an embodiment of the present invention provides a method for detecting online power consumption of an integrated circuit load.
  • the integrated circuit load is described by taking an IC chip and a module as an example in this embodiment. For details, see steps 101 to 104 below. The method is as follows:
  • the board of the board can obtain the power plane to be tested by importing a PCB (Printed Circuit Board) file, wherein the board PCB file includes: routing information of the board PCB Layer plane information (such as signal plane, various power planes, ground planes). Since the PCB file will include multiple power planes, for example: X power plane corresponding to 12V, Y power plane corresponding to 24V, and so on. According to the test requirements, the power plane that needs to be tested is selected. According to the selected routing information of the power plane to be tested, the location information of the VRM module (ie, the source node) on the board PCB can be obtained. Similarly, it can be known.
  • PCB Print Circuit Board
  • Position information of each IC chip and module on the board PCB (ie, load node position information), wherein the embodiment of the present invention is described by taking an example of testing the online power consumption of the IC chip for convenience of description, because the module (ie, the circuit module) Integrating some chips and resistors on a small board, the small board only leads to a few pins, and several pins of the small board can be soldered to other boards.
  • the test principle is similar and will not be described again. Among them, it is necessary to pay special attention to the fact that with the continuous development of integrated circuit technology, an IC chip can have multiple load nodes, that is, one IC chip can support multiple loads, that is, one IC chip corresponds to multiple load nodes.
  • this embodiment takes an IC chip as a load node as an example.
  • the online voltage data of the source node and the load node may be obtained first, and then the DC resistance value between any two nodes may be obtained; or the DC resistance value between any two nodes may be obtained first, and then the source node and the load node are obtained online.
  • Electricity The data of the online voltage data of the source node and the load node, and the DC resistance value between any two nodes can be obtained at the same time; the embodiment of the present invention does not limit the sequence of obtaining the voltage data and the DC resistance value:
  • the online voltage data of the source node and the load node in this step it can be realized by the following methods: Using detection equipment (for example, high-precision detection instrument: digital multimeter with more than six and a half precision), etc.
  • the voltage data of each node (including the source node and the load node) for example, using a multimeter parallel detection method, sequentially accesses two nodes in parallel, thereby obtaining voltage data between any two nodes.
  • the embodiment of the present invention does not limit the manner of obtaining the voltage data between any two nodes on the power plane. Any manner and method for obtaining the acquisition are within the scope of protection of the embodiments of the present invention.
  • Grid split mode and direct test mode. The following two methods are respectively described below;
  • the so-called mesh splitting method refers to performing mesh adaptive splitting on the physical structure of the PCB to obtain DC resistance between nodes on the power plane.
  • the method is as follows:
  • the power plane is adaptively split to obtain the physical area after the split.
  • mesh adaptive segmentation algorithm when adaptively splitting the power plane, mesh adaptive segmentation algorithm can be used, such as quadrilateral meshing algorithm, triangular meshing algorithm, and tetrahedral meshing algorithm.
  • the adaptiveness of the so-called adaptive meshing algorithm is based on the existing planar grid, based on the calculation results of the splitting to determine the calculation error, and then determine whether it is necessary to re-mesh the grid and recalculate one. Closed loop process. When the error reaches a preset threshold (ie, a preset prescribed value), the adaptive splitting process ends.
  • FIG. 3 a schematic diagram of a power plane of a single-board PCB is provided.
  • the power adjustment module VRM provides power to a plurality of IC chips and modules thereon by means of a PCB power plane and a ground plane.
  • all the power pins of any one of the power chips of the IC chip or the module occupy a certain physical area on the power plane, and the physical area can be divided into a certain number of subdivision grids, wherein the number of subdivisions It can be determined according to the voltage gradient between each grid node detected.
  • these grids can be combined according to the lumped circuit principle.
  • the surface current density integral of the grid is the current flowing out of the node, that is, the current flowing into all the power pins in the grid.
  • the entire circuit plane can be simplified to a circuit network with "one active outflow node (where each IC chip or module can have one or more active outflow nodes, adaptive detection number)" Equivalent circuit network).
  • the so-called “source inflow node” refers to "the node providing the power supply, or the node at the power supply", that is, the “source node”;
  • the “source out node” refers to the "node that consumes power", that is, the "load node”, where the definition of the node is a relative concept.
  • the source inflow node and the source outflow node there is a definition of the source inflow node and the source outflow node, and the source inflow The node is the source node described in this embodiment, and the source outflow node is the load node.
  • FIG. 4 a schematic diagram of an equivalent circuit network is provided.
  • the figure illustrates that there is one source inflow node A (ie, source node) and three source outflow nodes B, C, and D (ie, load nodes) as an example.
  • an IC chip can carry multiple loads, that is, one IC chip can have multiple load nodes, that is, one IC chip can correspond to multiple load nodes, and this embodiment is an IC for convenience of description.
  • the chip only carries one load, that is, an IC chip corresponds to one load node as an example for description.
  • a power plane adaptive splitting diagram is provided. As shown in the figure, the power plane is adaptively divided into X*Y small square physical regions.
  • each physical region obtained after the split is approximated as a point (referred to as an approximate point), and the integral is used to solve the DC resistance between adjacent approximate points.
  • an approximate point a point
  • the integral is used to solve the DC resistance between adjacent approximate points.
  • the figure has one source inflow node ⁇ (ie source node), three source outflow nodes 8, C and D (ie load node)
  • a high-precision DC resistance tester for example, test accuracy of 0.01%
  • step 103 According to the voltage data of the source node and the load node acquired in step 102, and the DC resistance value between any two nodes, the equation is obtained to obtain the current values of the source node and the load node.
  • FIG. 4 a schematic diagram of an equivalent circuit network is provided.
  • the figure illustrates a source inflow node A (ie, source node) and three source outflow nodes 8, C, and D (ie, load nodes) as an example for convenience. , still take an IC chip corresponding to a source out node (load node) as an example.
  • Resistor Based on the physical structure of the PCB, the grid is adaptively meshed to the power plane, and the DC resistance between nodes in the equivalent network of the power supply is automatically extracted.
  • FIG. 9 is a schematic flowchart of a computing software system for implementing power consumption of an IC chip and a module in an online working state, wherein the process is as follows:
  • the embodiment of the present invention does not limit the order of the foregoing steps (c) and (d), that is, the DC resistance value between nodes in the equivalent network may be obtained first; and the voltage data of each node may be acquired; The voltage data is obtained to obtain the DC resistance value between the nodes in the equivalent network; the voltage data of each node and the DC resistance value between the nodes in the equivalent network can also be obtained at the same time.
  • the method for detecting the online power consumption of the integrated circuit load provided by the embodiment of the present invention can be applied to the online power consumption detection of the IC chip and the module of the communication device/system test instrument with the integrated circuit chip and the module:
  • the DC data of the selected node is stored in the data storage unit of the equipment system/test instrument.
  • the high-precision voltage detection circuit is built in the communication equipment system/test instrument to detect the voltage of the selected node on the power network in real time.
  • the value, and then solve the equation, the power consumption of each power consumption chip and module is obtained, and the detected power consumption value can be displayed in real time or can be used as input data for intelligent management of online state power consumption. Referring to FIG.
  • a schematic diagram of an implementation process of an integrated chip and a module online working state power consumption detecting function in a communication device system/test instrument wherein the DC resistance data is stored in a data storage unit of the communication device system/test instrument,
  • the DC resistance data can be obtained in two ways:
  • the high-precision DC resistance tester tests the DC resistance of the source and load nodes set on the single-board power supply network in the event of a power failure
  • the equation is solved to obtain the DC resistance value between any two nodes in the equivalent resistance network.
  • the source node and the load node voltage data in the online working state, and the DC resistance data stored in the data storage unit are obtained, and the load node and the source node are obtained by solving the equation.
  • Current value calculating total current and total power consumption of each chip and module according to voltage data of each node in the online working state, and current values of the source node and the load node;
  • the method for detecting online power consumption of an integrated circuit load achieves online power consumption of detecting IC chip and module load by acquiring node voltage and resistance between nodes, and solves hardware development. Can not be decomposed to obtain the power consumption problem of each IC chip and module in the online working state; through the accurate IC chip and module online working state current and power consumption, the chip reliability and temperature rise can be accurately evaluated; Optimize cost-effective design in new development equipment or equipment optimization, reduce costs, improve reliability, improve equipment comprehensive competitiveness, and establish competitive advantages; also realize power consumption in electronic equipment (such as communication equipment, terminal equipment) Intelligent monitoring.
  • an embodiment of the present invention provides a device for detecting online power consumption of an integrated circuit load.
  • the integrated circuit load has at least one load node, and the device includes:
  • a location determining module 201 configured to determine a location of the source node and the load node in a power plane, where the power plane includes a source node and at least one load node;
  • the voltage acquisition module 202 is configured to acquire a voltage value of the source node and the load node determined by the location determining module 201.
  • the resistor obtaining module 203 is configured to acquire a DC resistance value and a load between the source node and the load node determined by the location determining module 201. DC resistance value between nodes;
  • the power consumption detecting module 204 is configured to obtain power consumption of the integrated circuit load according to the voltage value acquired by the voltage obtaining module 202 and the DC resistance value obtained by the resistance acquiring module 203, and the integrated circuit load has at least one load node.
  • the resistance acquisition module 203 includes:
  • the splitting unit 2031 is configured to adaptively split the power plane, and obtain an approximate point after the power plane is divided.
  • the first acquiring unit 2032 is configured to acquire the DC power of the adjacent approximate point obtained by dividing the power plane by the splitting unit 2031. Resistance value
  • the simplification unit 2033 is configured to simplify the number of sub-nodes obtained by the splitting unit 2031 by dividing the power plane according to the source node position and the load node position determined by the position determining module 201, and obtain an equivalent circuit having only the source node and the load node.
  • the internet ;
  • the second obtaining unit 2034 is configured to obtain a simplified unit according to the DC resistance value acquired by the first acquiring unit 2032.
  • the resistance acquisition module 203 specifically includes:
  • the testing unit 2035 is configured to obtain a DC resistance value between the source node and the load node and a DC power between the load nodes by using a high-precision DC resistance test instrument according to the source node position and the load node position determined by the position determining module 201. Resistance value.
  • the voltage obtaining module 202 is specifically:
  • the voltage obtaining unit is configured to obtain the voltage values of the source node and the load node by detecting the detection of the source node and the load node in the power plane according to the position determining module 201.
  • the power consumption detecting module 204 specifically includes:
  • a current acquisition unit configured to obtain a current value of the source node and the load node according to the voltage value acquired by the voltage acquisition module 202 and the DC resistance value obtained by the resistance acquisition module 203;
  • the power consumption obtaining unit is configured to obtain a voltage value of the source node and the load node acquired by the voltage acquiring module 202 and acquire a current value according to the current acquiring unit, to obtain power consumption of the integrated circuit load.
  • the device for detecting online load power consumption of an integrated circuit provided by the embodiment of the present invention achieves online power consumption of detecting IC chip and module load by acquiring node voltage and resistance between nodes, and solves hardware development. Can not be decomposed to obtain the power consumption problem of each IC chip and module in the online working state; through the accurate IC chip and module online working state current and power consumption, the chip reliability and temperature rise can be accurately evaluated; Optimize cost-effective design in new development equipment or equipment optimization, reduce costs, improve reliability, improve equipment comprehensive competitiveness, and establish competitive advantages; also realize power consumption in electronic equipment (such as communication equipment, terminal equipment) Intelligent monitoring.
  • an embodiment of the present invention provides a communication device for detecting online power consumption of an integrated circuit load, wherein the device has a device for detecting online power consumption of an integrated circuit load, and the device includes:
  • a location determining module 301 configured to determine a location of the source node and the load node in a power plane, where the power plane includes a source section Point and at least one load node;
  • the voltage acquisition module 302 is configured to acquire a voltage value of the source node and the load node determined by the location determining module 301.
  • the resistor obtaining module 303 is configured to acquire a DC resistance value and a load between the source node and the load node determined by the location determining module 301. DC resistance value between nodes;
  • the power consumption detecting module 304 is configured to obtain power consumption of the integrated circuit load according to the voltage value acquired by the voltage obtaining module 302 and the DC resistance value obtained by the resistance acquiring module 303, and the integrated circuit load has at least one load node.
  • the resistance acquiring module 303 of the device specifically includes:
  • a splitting unit configured to adaptively split the power plane, and obtain an approximate point after the power plane is divided
  • a first obtaining unit configured to acquire a DC resistance value of a neighboring approximate point obtained by dividing the power plane by the splitting unit; a simplified unit, configured to simplify the split according to the predetermined source node position and the load node position determined by the position determining module 301
  • the unit divides the number of nodes obtained by the power plane to obtain an equivalent circuit network having only the source node and the load node; the second obtaining unit is configured to obtain the simplified unit obtained according to the DC resistance value acquired by the first acquiring unit, etc.
  • the resistance acquiring module 303 of the device specifically includes:
  • test unit configured to determine a DC resistance value between the source node and the load node and a DC resistance between the load nodes by using a high-precision DC resistance test instrument according to the predetermined source node position and the load node position determined by the position determining module 301. value.
  • the device for detecting online power consumption of an integrated circuit load obtained by the embodiment of the present invention obtains the resistance between the node voltage and the node through the device capable of detecting the online power consumption of the integrated circuit load, thereby realizing the detection.
  • IC chip and module load online power consumption solve the problem that the hardware development can not be decomposed to obtain the online working state of each IC chip and module, and solve the problem that the power consumption of each IC chip and module can not be decomposed in the hardware development; Through the accurate current and power consumption of the IC chip and module online working status, the chip reliability and temperature rise can be accurately evaluated.
  • the optimal cost-effective design can be directly implemented in the newly developed equipment or equipment optimization, reducing costs and improving Reliability, improve the comprehensive competitiveness of equipment, and establish a competitive advantage; It can also realize intelligent monitoring of power consumption in electronic equipment (such as communication equipment, terminal equipment).
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.
  • the serial numbers of the embodiments of the present invention are merely for the description, and do not represent the advantages and disadvantages of the embodiments.
  • a person skilled in the art can understand that all or part of the process of implementing the above embodiment method can be completed by a computer program to instruct related hardware, and the program can be stored in a computer readable storage medium. In execution, the flow of an embodiment of the methods as described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

一种检测集成电路负载在线功耗的方法、 装置和设备
本申请要求于 2008年 8月 12 日提交中国专利局、 申请号为 200810147367. 0、 发明名 称为 "一种检测集成电路负载在线功耗的方法、 装置和设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及集成电路领域, 特别涉及一种检测集成电路负载在线功耗的方法、 装置和 设备。 说
背景技术
随着集成电路 (IC, Integrated Circuit ) 技术的发展, IC芯片及模块被广泛应用于 电力电子电路及各种电子设备中 (如通信设备等),书通常, 通信设备由各类单板组成, 每块 单板分别完成不同或者相同的功能, 其中, 在每块单板上拥有数量众多的 IC芯片及模块。 参见图 1,提供了一种典型的通信设备组成示意图,该通信设备采用分布式电源系统,其中, 该通信设备提供 48V的电源总线, 单板 A中的 VRM (Voltage Regulator Module, 电源调整 模块)调整该 48V电压后得到的 12V的电压, 提供给自身的 IC1、 IC2和 IC3芯片供电使用; 同理, 单板 B、 单板 C利用各自的 VRM模块获取自身单板需要的电压提供给自身的 IC芯片 及模块供电, 从而实现各单板的正常工作。
发明人在实现本发明时发现, IC芯片及模块在工作中发热会导致性能和可靠性下降, 由于 IC芯片及模块的发热与功耗有关, 在产品调试中, 如何准确的检测 IC芯片及模块的 功耗便成了技术人员关注的重点。 目前, 各厂商提供的 IC芯片及模块中通常只有对 IC芯 片或模块静态功耗和最大功耗的描述, 实际工作状态下的 IC芯片或模块的在线功耗无法获 得。 如果能准确获得各单板中 ic芯片及模块在线状态的功耗, 就能评估该通信设备长期的 工作可靠性, 也可以作为新开发通信设备的输入来预测其 IC芯片及模块工作的温升是否满 足设计要求, 并给出最优性价比的系统设计方案。
通常一个单板上会存数量众多的 IC芯片及模块, 对在线工作的 IC芯片及模块采用串 入仪器 (如电流表、 电流探头或功率计) 进行功耗检测的方法, 至少存在以下的缺点和不 足:
首先, 在工作中的设备电路支路串入电流检测计, 破坏了设备的电路物理结构和外观, 现实中通常是不允许的; 其次, 由于一个电源网络有数量众多的 IC 芯片和模块, 这些 IC 芯片和模块在同一个电源平面上, 无法找到仪器的串入位置; 再次, 一个 ic芯片或模块有 很多的电源管脚, 这些电源管脚直接接在电源平面上, 无法为每个电源管脚都串入仪器。 发明内容
为了能够检测 IC芯片及模块在线状态的功耗, 从而实现评估通信设备长期工作的可靠 性, 本发明实施例提供了一种检测集成电路负载在线功耗的方法、 装置和设备。
一方面, 提供了一种检测集成电路负载在线功耗的方法, 所述方法包括:
确定源节点和负载节点在电源平面的位置, 所述电源平面包括源节点和至少一个负载 节点;
获取所述源节点和所述负载节点的电压值; 获取所述源节点和负载节点之间的直流电 阻值以及所述负载节点之间的直流电阻值;
根据所述电压值和所述直流电阻值, 获取集成电路负载的功耗, 所述集成电路负载拥 有至少一个负载节点。
另一方面, 提供了一种检测集成电路负载在线功耗的装置, 所述装置包括: 位置确定模块, 用于确定源节点和负载节点在电源平面的位置, 所述电源平面包括源 节点和至少一个负载节点;
电压获取模块, 用于获取所述位置确定模块确定的所述源节点和所述负载节点的电压 值;
电阻获取模块, 用于获取所述位置确定模块确定的所述源节点和负载节点之间的直流 电阻值以及所述负载节点之间的直流电阻值;
功耗检测模块, 用于根据所述电压获取模块获取的电压值和所述电阻获取模块获取的 直流电阻值, 获取集成电路负载的功耗, 所述集成电路负载拥有至少一个负载节点。
再一方面, 提供了一种实现检测集成电路负载在线功耗的设备, 所述设备拥有检测集 成电路负载在线功耗的装置, 所述装置包括:
位置确定模块, 用于确定源节点和负载节点在电源平面的位置, 所述电源平面包括源 节点和至少一个负载节点;
电压获取模块, 用于获取所述位置确定模块确定的所述源节点和所述负载节点的电压 值;
电阻获取模块, 用于获取所述位置确定模块确定的所述源节点和负载节点之间的直流 电阻值以及所述负载节点之间的直流电阻值;
功耗检测模块, 用于根据所述电压获取模块获取的电压值和所述电阻获取模块获取的 直流电阻值, 获取集成电路负载的功耗, 所述集成电路负载拥有至少一个负载节点。 本发明实施例提供的技术方案的有益效果是:
本发明实现了对 IC芯片及模块的在线功耗的检测, 解决了硬件开发中不能分解获得每 个 IC芯片及模块在线状态下功耗的问题; 通过获得的 IC芯片及模块在线工作状态的电流 和功耗可以准确评估该 IC芯片及模块的可靠性和温升; 可直接在新开发设备或设备优化中 进行最优性价比设计, 降低成本, 提升可靠性; 进一步地, 还可以实现对通信设备等电子 设备在线功耗智能监控。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以 根据这些附图获得其他的附图。
图 1是现有技术提供的通信设备组成示意图;
图 2是本发明实施例 1提供的检测集成电路负载在线功耗的方法流程示意图; 图 3是本发明实施例 1提供的电源平面示意图;
图 4是本发明实施例 1提供的等效电路网络示意图;
图 5是本发明实施例 1提供的电源平面自适应剖分示意图;
图 6是本发明实施例 1提供的电源平面的节点和直流电阻布局示意图;
图 7是本发明实施例 1提供的直流电阻网络的简化变换示意图;
图 8 是本发明实施例 1提供的直流电阻等效电路网络示意图;
图 9 是本发明实施例 1提供的软件系统实现流程示意图;
图 10是本发明实施例 1提供的通信设备可执行在线工作状态功耗检测的实现流程示意 图;
图 11是本发明实施例 2提供的检测集成电路负载在线功耗的装置示意图;
图 12是本发明实施例 2提供的检测集成电路负载在线功耗的装置第一示意图; 图 13是本发明实施例 2提供的检测集成电路负载在线功耗的装置第二示意图; 图 14是本发明实施例 3提供的实现检测集成电路负载在线功耗的设备的示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地 描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本 发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实 施例, 都属于本发明保护的范围。
为了实现对 ic 芯片及模块的在线功耗的检测, 解决硬件开发中不能分解获得每个 IC 芯片及模块在线状态下功耗的难题; 本发明实施例提供了一种检测集成电路负载在线功耗 的方法, 该方法内容如下: 确定源节点和负载节点在电源平面的位置, 电源平面包括源节 点和至少一个负载节点; 获取源节点和负载节点的电压值; 获取节点 (通常, 将在电路中 三条或三条以上支路的联接点定义为节点) 中任意两节点之间的直流电阻值 (即获取源节 点和负载节点之间的直流电阻值以及负载节点之间的直流电阻值); 根据电压值和直流电阻 值, 获取集成电路负载的功耗, 集成电路负载拥有至少一个负载节点。 为了对本发明实施 例提供的检测集成电路负载在线功耗的方法进行详细的阐述, 参见下述实施例。 实施例 1
参见图 2, 本发明实施例提供了一种检测集成电路负载在线功耗的方法, 其中, 集成电 路负载在本实施例以 IC芯片及模块为例进行说明, 详见下述步骤 101至 104, 该方法内容 如下:
101: 获取待测电源平面的源节点和负载节点位置。
其中, 本领域技术人员可以获知, 可以通过导入单板 PCB (Printed Circuit Board, 印制电路板) 文件获取待测电源平面, 其中, 上述单板 PCB文件中, 包括: 该单板 PCB的 布线信息、 层平面信息 (如信号平面、 各种电源平面、 地平面)。 由于, PCB文件中会包括 多个电源平面, 例如: 对应于 12V的 X电源平面、 对应于 24V的 Y电源平面等等。 根据测 试需要, 选定需要进行测试的电源平面, 根据该选定的待测电源平面的布线信息可以获知 到该单板 PCB上 VRM模块的 (即源节点) 位置信息, 同理, 可以获知到该单板 PCB上各 IC 芯片及模块的位置信息 (即负载节点位置信息), 其中, 本发明实施例为了便于描述, 以测 试 IC芯片的在线功耗为例进行说明, 由于模块 (即电路模块, 将一些芯片和阻容器件集成 在一个小单板上, 这个小单板对外只引出几个引脚, 同时这个小单板的几个引脚又可以焊 接在其它单板上) 与 IC芯片的测试原理类似, 不再赘述。 其中, 需要特别注意的是, 随着 集成电路技术的不断发展, IC芯片可以拥有多个负载节点, 即一个 IC芯片可以支持多个负 载, 即一个 IC芯片会对应多个负载节点。 本实施例为了便于说明, 以一个 IC芯片对应一 个负载节点为例。
102: 获取上述源节点和负载节点的在线电压数据、 和任意两节点之间的直流电阻值。 其中, 可以先获取源节点和负载节点的在线电压数据, 再获取任意两节点之间的直流 电阻值; 也可以先获取任意两节点之间的直流电阻值, 再获取源节点和负载节点的在线电 压数据; 还可以同时获取源节点和负载节点的在线电压数据, 和任意两节点之间的直流电 阻值; 本发明实施例不限制上述在获取电压数据和直流电阻值时的先后顺序:
一、 在该步骤中获取源节点和负载节点的在线电压数据时, 可以通过以下方式实现: 采用检测设备 (如, 高精度检测仪器: 六位半以上精度的数字万用表等) 检测到在线 工作状态下的各节点 (包括源节点和负载节点) 的电压数据, 例如, 采用万用表并联探测 的方式, 通过依次并联接入两个节点, 从而获取到任意两个节点之间的电压数据。 本发明 实施例不限制该电源平面上任意两个节点之间电压数据的获取方式, 任何能够实现获取的 方式和方法都在本发明实施例保护的范围之内。
二、 在该步骤中获取任意两节点之间的直流电阻值时, 可以采用如下两种方式: 网格 剖分方式和直接测试方式, 下面对上述两种方式分别进行说明;
(一) 网格剖分方式
其中, 所谓网格剖分方式是指, 针对 PCB物理结构进行网格自适应剖分实现获得电源 平面上各节点之间直流电阻, 该方法内容如下:
首先, 将电源平面进行自适应剖分, 获取剖分后的物理区域。
其中, 在对电源平面进行自适应剖分时, 可以采用网格自适应剖分算法实现, 例如四 边形网格剖分算法、 三角网格剖分算法、 四面体网格剖分算法等。 所谓自适应网格剖分算 法的自适应性体现在在现有平面网格基础上, 根据剖分计算结果来确定计算误差, 并 ώ此 来确定是否需要重新剖分网格和再计算的一个闭路循环过程。 当误差达到预先设定的阈值 (即预设规定值) 时, 则该自适应剖分过程结束。
本实施例以采用四边形网格剖分算法进行剖分为例进行说明, 请参见下文描述: 参见图 3,提供了单板 PCB的电源平面示意图,本领域技术人员可以获知在单板设计中, 通常电源调整模块 VRM是通过 PCB电源平面与地平面的方式实现为其上的多个 IC芯片及模 块提供电源的。
其中, 一个 IC芯片或模块的任意一种电源网络的所有电源管脚在电源平面上会占据一 定的物理区域, 该物理区域可以剖分为一定数量的细分网格, 其中, 细分的数量可以根据 检测的每个网格节点间的电压梯度来决定, 当检测到每两点间的电压梯度为给定的高阶极 小值时, 根据集总电路原理, 就可以将这些网格合并为一个节点, 该网格的表面电流密度 积分即为流出该节点的电流, 即流进该网格内所有电源管脚的电流。
这样, 最终可以将整个电路平面简化为有《个有源流出节点 (其中, 每个 IC芯片或模 块可以有一个或多个有源流出节点,自适应检测数量")的电路网络(可称为等效电路网络)。 其中, 所谓"源流入节点"指的是 "提供电源的节点, 或电源供入处的节点", 即"源节点"; 而 "源流出节点"指 "消耗电源的节点", 即 "负载节点", 其中, 节点的定义是相对的概 念, 针对电路网络而言, 存在源流入节点和源流出节点的定义, 而源流入节点即本实施例 所述的源节点, 源流出节点即负载节点。
参见图 4, 提供了等效电路网络示意图, 该图以存在一个源流入节点 A (即源节点)、 三个源流出节点 B、 C和 D (即负载节点) 为例进行说明, 如前文所述, 由于 IC芯片技术 的发展, 一个 IC芯片可以承载多个负载, 即一个 IC芯片可以拥有多个负载节点, 即一个 IC芯片会对应多个负载节点, 本实施例为了便于说明, 以一个 IC芯片仅承载一个负载, 即 一个 IC芯片对应一个负载节点为例进行描述。
参见图 5, 提供了电源平面自适应剖分示意图, 如图所示, 将电源平面自适应地剖分成 X*Y个细小方形物理区域。
然后, 将剖分后获取的每个物理区域近似为一个点 (称近似点), 积分求解出相邻近似 点之间的直流电阻, 参见图 6, 为将图 5所示的物理区域近似后得到的网络示意图。 其中, 圆形代表近似点, 矩形代表近似点之间的直流电阻。
其次, 根据预先确定的源节点位置和负载节点位置, 简化电源平面中的近似点的个数, 获取直流电阻的等效网络。
其中, 在简化近似点的个数时, 可以采用 " + " 型到 "口"型变换方式实现, 以获得 更简单的等效网络, 如图 7所示, 图中箭头所指近似点经过一次 "+ "型到 "口 "型变换后, 便被简化掉, 不再存在, 同时与之相连的四个电阻也被简化不存在 (即矩形所示电阻), 取 而代之的是另外四个电阻 (阴影矩形所示)。
需要特别注意的是, 在进行简化近似点个数的变化时, 根据预先确定的源节点位置和 负载节点位置, 要保证源节点和负载节点一直存在, 不被简化掉。 于是, 经多次 "+ "型到 "口"型变换后, 获得最终等效电路网络, 如图 8 所示, 只有源节点和负载节点保留了下 来。
综上, 论述了采用网格剖分方式是如何获取任意两节点之间的直流电阻值的, 下面将 论述采用如何直接测试的方式获取任意两节点之间的直流电阻值, 详见下文,
(二) 直接测试方式
首先, 使用高精密直流电阻测试仪器, 测试断电情况下单板电源网络上设定的源节点 和负载节点、 负载节点和负载节点之间的的直流电阻值;
然后, 建立方程, 求解得到等效电阻网络中任意两两节点间的直流电阻值。
例如, 以图 4提供的等效电路网络示意图为例, 说明如何通过测试方法获取直流电阻 值: 该图以存在一个源流入节点 Α (即源节点)、 三个源流出节点8、 C和 D (即负载节点) 为例, 采用高精密直流电阻测试仪器 (如, 测试精度达到 0.01%) 分别测试断电情况下源 节点 A和负载节点 B之间的直流电阻值 R^,源节点 A和负载节点 C之间的直流电阻值 R^, 源节点 A 和负载节点 D 之间的直流电阻值 R^, 以及负载节点之间的直流电阻值 RBCH 其中, 显而易见, R^的值是 R„并联了 R12,R13,R22,R23,R33 后的电阻值, 同 理,测得的 的值是 并联了 ?23, ?33后的电阻值,同理,测量得到的 R^是 R33 并联了 R^R R^R^ ^后的电阻值,同理, 测量得到的 R^是 R12并联了 R^ ^R^R^ ^ 后的电阻值, ^,RBZ3类似不再赘述。 于是, 根据电路理论相关知识, 通过建立方程, 可以 利用 R S、 RAC、 RAD以及 RBC ,
Figure imgf000009_0001
R33
103: 根据步骤 102获取的源节点和负载节点的电压数据、 和任意两节点之间的直流电 阻值, 解方程式得到源节点和负载节点的电流值。
参见图 4, 提供了等效电路网络示意图, 该图以存在一个源流入节点 A (即源节点)、 三个源流出节点8、 C和 D (即负载节点) 为例进行说明, 为了便于说明, 仍以一个 IC芯 片对应一个源流出节点 (负载节点) 为例。
根据电路理论,只要获得了图 4中 R^R^ ^R^R^ ^以及 的值, 就可以 通过电路相关理论得到:
1、 源流入节点 A总电流 I。及总功耗 ;
2、 每个源流出节点8、 C、 D的电流 I,, 12, 13
3、 每个 IC芯片的电流 Ik(k=^和功耗 Pk(k^。
特别需要注意的是, 当一个 IC芯片拥有多个负载节点时, 即一个 IC芯片对应一个以 上的源流出节点的情况下, 则该 IC芯片的电流应该为各源流出节点的加和。
自适应等效网络的源流出节点数量为 3 的情况下, 在求解时需要确定的中间量数量为 C3 2 +1 + (3 + l), 共 10个 (即
Figure imgf000009_0002
容易证明, 当自适应等效 网络的源流出节点数量为 n的情况下, 则需要确定的中间量的数量为 2 +1+(« + 1)。 如前所 述, 这些中间量可以通过如下的方法获得:
电压: 在芯片和模块工作状态稳定的情况下, 使用高精密检测设备分别检测出上图中 每个节点的电压;
电阻: 基于 PCB物理结构, 对电源平面进行网格自适应剖分, 自动提取得到电源的等 效网络中各节点间的直流电阻值。
104: 根据获取的源节点和负载节点的电压数据和电流值, 求出各 IC 芯片及模块负载 的功耗。
其中, 可以采用编程语言根据上述流程编程实现上述本发明实施例提供的方法, 参见 图 9, 本发明实施例提供了实现 IC芯片及模块在线工作状态功耗的计算软件系统实现流程 示意图, 其中, 流程如下:
开始;
( a) 软件系统中导入待测对象单板 PCB文件;
(b ) 在软件系统中设定待分析电源网络上的源及负载节点位置;
( c ) 在软件系统中基于 PCB物理结构, 对电源平面进行网格自适应剖分, 自动提取得 到电源的等效网络中各节点间的直流电阻值;
( d) 高精密检测设备检测到的在线工作状态下各节点电压数据输入软件系统中;
( e ) 根据所述在线工作状态下各节点电压数据, 以及各节点间的直流电阻值, 解方程 得到各源节点与负载节点的电流值;
( f )根据所述在线工作状态下各节点电压数据, 以及所述源节点和负载节点的电流值, 计算得出各芯片及模块的功耗;
结束。
其中, 本发明实施例不限制上述步骤 (c ) 和步骤 (d) 的次序, 即可以先获取等效网 络中各节点间的直流电阻值; 再获取各节点电压数据; 也可以先获取各节点电压数据, 再 获取获取等效网络中各节点间的直流电阻值; 还可以同时获取各节点电压数据, 和等效网 络中各节点间的直流电阻值。
进一步地, 可以将本发明实施例提供的检测集成电路负载在线功耗的方法, 应用于存 在集成电路芯片及模块的通信设备 /系统测试仪器的 IC芯片及模块的在线功耗检测: 通过 在通信设备系统 /测试仪器的数据存储单元中事先存入所选定节点之间直流电阻数据, 同 时, 通信设备系统 /测试仪器中内置高精密电压检测电路, 可实时检测电源网络上选定节点 的电压值, 再通过解方程, 得到各耗电芯片及模块的功耗, 检测得到的功耗值可实时显示 或可作为实现在线状态功耗智能管理的输入数据。参见图 10, 提供了通信设备系统 /测试仪 器中集成芯片及模块在线工作状态功耗检测功能的实现流程示意图, 其中, 在将直流电阻 数据存入通信设备系统 /测试仪器的数据存储单元中, 其中直流电阻数据可以由两种途径得 到:
1] 、 软件仿真法 (对应图 10中的 [1] ):
直流电阻仿真软件系统中导入待测对象单板 PCB文件;
在直流电阻仿真软件中设定待分析电源网络上的源及负载节点位置;
在直流电阻仿真软件中基于 PCB物理结构, 对电源平面进行网格自适应剖分, 自动提 取得到电源的等效网络中各节点间的直流电阻值。 2]、 仪器测试法 (对应图 10中的 [2] ):
高精密直流电阻测试仪器测试断电情况下单板电源网络上设定的源及负载节点的直流 电阻;
建立方程求解得到等效电阻网络中任意两两节点间的直流电阻值。
根据通信设备系统 /测试仪器中内置的高精密电压检测电路检测得到在线工作状态下 源节点及负载节点电压数据, 以及上述数据存储单元存储的直流电阻数据, 解方程得到各 负载节点与源节点节点的电流值; 根据所述在线工作状态下各节点电压数据, 以及所述源 节点和负载节点的电流值, 计算得出各芯片及模块的总电流与总功耗;
过程结束。
综上所述, 本发明实施例提供的检测集成电路负载在线功耗的方法, 通过获取节点电 压、 节点之间的电阻, 从而实现了检测 IC芯片及模块负载在线功耗, 解决了硬件开发中不 能分解获得每个 IC芯片及模块在线工作状态下功耗的难题; 通过获得的准确的 IC芯片及 模块在线工作状态的电流和功耗, 可以准确评估芯片可靠性和温升; 进而, 可直接在新开 发设备或设备优化中进行最优性价比设计, 降低成本, 提升可靠性, 提升设备综合竞争力, 建立竞争优势; 还可以实现在电子设备 (如通信设备、 终端设备) 等中实现功耗的智能监 控。 实施例 2
参见图 11, 本发明实施例提供了一种检测集成电路负载在线功耗的装置, 集成电路负 载拥有至少一个负载节点, 该装置包括:
位置确定模块 201, 用于确定源节点和负载节点在电源平面的位置, 电源平面包括源节 点和至少一个负载节点;
电压获取模块 202, 用于获取位置确定模块 201确定的源节点和负载节点的电压值; 电阻获取模块 203,用于获取位置确定模块 201确定的源节点和负载节点之间的直流电 阻值以及负载节点之间的直流电阻值;
功耗检测模块 204,用于根据电压获取模块 202获取的电压值和电阻获取模块 203获取 的直流电阻值, 获取集成电路负载的功耗, 集成电路负载拥有至少一个负载节点。
(一)、 参见图 12, 当采用软件仿真方法获取上述直流电阻值时, 电阻获取模块 203具 体包括:
剖分单元 2031, 用于自适应剖分电源平面, 获取电源平面剖分后的近似点; 第一获取单元 2032,用于获取剖分单元 2031剖分电源平面得到的相邻近似点的直流电 阻值;
简化单元 2033, 用于根据位置确定模块 201预先确定的源节点位置和负载节点位置, 简化剖分单元 2031剖分电源平面得到的分节点个数, 获取只拥有源节点和负载节点的等效 电路网络;
第二获取单元 2034, 用于根据第一获取单元 2032 获取的直流电阻值, 获取简化单元
2033得到的等效网络中任意两节点之间的直流电阻值。
(二)、 参见图 13, 当采用仪器测试方法获取上述电阻值时, 电阻获取模块 203具体包 括:
测试单元 2035, 用于根据位置确定模块 201预先确定的源节点位置和负载节点位置, 通过高精密直流电阻测试仪器测试, 获取源节点和负载节点之间的直流电阻值以及负载节 点之间的直流电阻值。
其中, 上述电压获取模块 202具体为:
电压获取单元, 用于根据位置确定模块 201 预先确定的源节点和负载节点在电源平面 的位置, 通过检测仪器的检测获取源节点和负载节点的电压值。
其中, 上述功耗检测模块 204具体包括:
电流获取单元, 用于根据电压获取模块 202获取的电压值和电阻获取模块 203获取的 直流电阻值, 获取源节点和负载节点的电流值;
功耗获取单元, 用于电压获取模块 202 获取的源节点和负载节点的电压值和根据电流 获取单元获取电流值, 获取集成电路负载的功耗。
综上所述, 本发明实施例提供的检测集成电路负载在线功耗的装置, 通过获取节点电 压、 节点之间的电阻, 从而实现了检测 IC芯片及模块负载在线功耗, 解决了硬件开发中不 能分解获得每个 IC芯片及模块在线工作状态下功耗的难题; 通过获得的准确的 IC芯片及 模块在线工作状态的电流和功耗, 可以准确评估芯片可靠性和温升; 进而, 可直接在新开 发设备或设备优化中进行最优性价比设计, 降低成本, 提升可靠性, 提升设备综合竞争力, 建立竞争优势; 还可以实现在电子设备 (如通信设备、 终端设备) 等中实现功耗的智能监 控。 实施例 3
参见图 14, 本发明实施例提供了一种实现检测集成电路负载在线功耗的通信设备, 其 中, 该设备拥有检测集成电路负载在线功耗的装置, 装置包括:
位置确定模块 301, 用于确定源节点和负载节点在电源平面的位置, 电源平面包括源节 点和至少一个负载节点;
电压获取模块 302, 用于获取位置确定模块 301确定的源节点和负载节点的电压值; 电阻获取模块 303,用于获取位置确定模块 301确定的源节点和负载节点之间的直流电 阻值以及负载节点之间的直流电阻值;
功耗检测模块 304,用于根据电压获取模块 302获取的电压值和电阻获取模块 303获取 的直流电阻值, 获取集成电路负载的功耗, 集成电路负载拥有至少一个负载节点。
其中, 装置的电阻获取模块 303具体包括:
剖分单元, 用于自适应剖分电源平面, 获取电源平面剖分后的近似点;
第一获取单元, 用于获取剖分单元剖分电源平面得到的相邻近似点的直流电阻值; 简化单元, 用于根据位置确定模块 301 预先确定的源节点位置和负载节点位置, 简化 剖分单元剖分电源平面得到的分节点个数, 获取只拥有源节点和负载节点的等效电路网络; 第二获取单元, 用于根据第一获取单元获取的直流电阻值, 获取简化单元得到的等效 网络中任意两节点之间的直流电阻值。
其中, 装置的电阻获取模块 303具体包括:
测试单元, 用于根据位置确定模块 301 预先确定的源节点位置和负载节点位置, 通过 高精密直流电阻测试仪器测试, 获取源节点和负载节点之间的直流电阻值以及负载节点之 间的直流电阻值。
综上所述, 本发明实施例提供的实现检测集成电路负载在线功耗的设备, 通过设备中 的能够检测集成电路负载在线功耗的装置获取节点电压、 节点之间的电阻, 从而实现了检 测 IC芯片及模块负载在线功耗, 解决了硬件开发中不能分解获得每个 IC芯片及模块在线 工作状态,解决了硬件开发中不能分解获得每个 IC芯片及模块在线工作状态下功耗的难题; 通过获得的准确的 IC芯片及模块在线工作状态的电流和功耗, 可以准确评估芯片可靠性和 温升; 进而, 可直接在新开发设备或设备优化中进行最优性价比设计, 降低成本, 提升可 靠性, 提升设备综合竞争力, 建立竞争优势; 还可以实现在电子设备 (如通信设备、 终端 设备) 等中实现功耗的智能监控。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中的模块或流程并 不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述分布于实施例 的装置中, 也可以进行相应变化位于不同于本实施例的一个或多个装置中。 上述实施例的 模块可以合并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过 计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、只读存储记忆体(Read-Only Memory, ROM)或随机存储记忆体(Random Access Memory, RAM) 等。
以上所述仅为本发明的几个实施例, 本领域的技术人员依据申请文件公开的可以对本 发明进行各种改动或变型而不脱离本发明的精神和范围。

Claims

权 利 要 求 书
1、 一种检测集成电路负载在线功耗的方法, 其特征在于, 所述方法包括:
确定源节点和负载节点在电源平面的位置, 所述电源平面包括源节点和至少一个负载 节点;
获得所述源节点和所述负载节点的电压值; 获得所述源节点和负载节点之间的直流电 阻值以及所述负载节点之间的直流电阻值;
根据所述电压值和所述直流电阻值, 获得集成电路负载的功耗, 所述集成电路负载拥 有至少一个负载节点。
2、 如权利要求 1所述的方法, 其特征在于, 所述获取所述源节点和负载节点之间的直 流电阻值以及所述负载节点之间的直流电阻值的步骤, 包括:
自适应剖分所述电源平面, 获得所述电源平面剖分后的近似点;
获得所述相邻近似点的直流电阻值;
根据所述确定的源节点位置和负载节点位置, 简化所述电源平面的近似点个数, 获取 只拥有所述源节点和所述负载节点的等效电路网络;
根据所述近似点的直流电阻值和所述等效电路网络, 获得所述等效网络中任意两节点 之间的直流电阻值。
3、 如权利要求 1所述的方法, 其特征在于, 所述获得所述源节点和负载节点之间的直 流电阻值以及所述负载节点之间的直流电阻值的步骤, 包括:
根据所述确定的源节点位置和负载节点位置, 通过高精密直流电阻测试仪器测试, 获 得所述源节点和所述负载节点之间的直流电阻值, 以及所述负载节点之间的直流电阻值。
4、 如权利要求 1所述的方法, 其特征在于, 所述获取所述源节点和所述负载节点的电 压值的步骤, 包括:
根据所述源节点和负载节点在电源平面的位置, 通过检测仪器的检测获得所述源节点 和所述负载节点的电压值。
5、 如权利要求 1所述的方法, 其特征在于, 所述根据所述电压值和所述直流电阻值, 获取集成电路负载的功耗的步骤, 包括:
根据所述电压值和所述直流电阻值, 获得所述源节点和所述负载节点的电流值; 根据获得的源节点和负载节点的电压值和所述电流值, 获取集成电路负载的功耗。
6、 如权利要求 1至 5任一权利要求所述的方法, 其特征在于,
所述集成电路负载包括: 集成电路芯片 IC和 /或集成电路模块。
7、 一种检测集成电路负载在线功耗的装置, 其特征在于, 所述装置包括: 位置确定模块, 用于确定源节点和负载节点在电源平面的位置, 所述电源平面包括源 节点和至少一个负载节点;
电压获取模块, 用于获得所述位置确定模块确定的所述源节点和所述负载节点的电压 值;
电阻获取模块, 用于获得所述位置确定模块确定的所述源节点和负载节点之间的直流 电阻值以及所述负载节点之间的直流电阻值;
功耗检测模块, 用于根据所述电压获取模块获取的电压值和所述电阻获取模块获得的 直流电阻值, 获得集成电路负载的功耗, 所述集成电路负载拥有至少一个负载节点。
8、 如权利要求 7所述的装置, 其特征在于, 所述电阻获取模块具体包括:
剖分单元, 用于自适应剖分所述电源平面, 获得所述电源平面剖分后的近似点; 第一获取单元, 用于获得所述剖分单元剖分电源平面得到的相邻近似点的直流电阻值; 简化单元, 用于根据所述位置确定模块确定的源节点位置和负载节点位置, 简化所述 剖分单元剖分电源平面得到的分节点个数, 获取只拥有所述源节点和所述负载节点的等效 电路网络;
第二获取单元, 用于根据所述第一获取单元获取的直流电阻值, 获得所述简化单元得 到的等效网络中任意两节点之间的直流电阻值。
9、 如权利要求 7所述的装置, 其特征在于, 所述电阻获取模块具体包括:
测试单元, 用于根据所述位置确定模块确定的源节点位置和负载节点位置, 通过高精 密直流电阻测试仪器测试, 获得所述源节点和负载节点之间的直流电阻值以及所述负载节 点之间的直流电阻值。
10、 如权利要求 7所述的装置, 其特征在于, 所述电压获取模块具体包括:
电压获取单元, 用于根据所述位置确定模块预先确定的源节点和负载节点在电源平面 的位置, 通过检测仪器的检测获得所述源节点和所述负载节点的电压值。
11、 如权利要求 7所述的装置, 其特征在于, 所述功耗检测模块具体包括:
电流获取单元, 用于根据所述电压获取模块获取的电压值和所述电阻获取模块获取的 直流电阻值, 获得所述源节点和所述负载节点的电流值;
功耗获取单元, 用于所述电压获取模块获得的源节点和负载节点的电压值和所述根据 所述电流获取单元获取电流值, 获取集成电路负载的功耗。
12、 一种通信设备, 其特征在于, 所述设备包括集成电路负载, 以及检测集成电路负 载在线功耗的装置, 所述检测集成电路负载在线功耗的装置包括: 位置确定模块, 用于确定源节点和负载节点在电源平面的位置, 所述电源平面包括源 节点和至少一个负载节点;
电压获取模块, 用于获得所述位置确定模块确定的所述源节点和所述负载节点的电压 值;
电阻获取模块, 用于获得所述位置确定模块确定的所述源节点和负载节点之间的直流 电阻值以及所述负载节点之间的直流电阻值;
功耗检测模块, 用于根据所述电压获取模块获取的电压值和所述电阻获取模块获得的 直流电阻值, 获得集成电路负载的功耗, 所述集成电路负载拥有至少一个负载节点。
13、 如权利要求 12所述的设备, 其特征在于, 所述装置的电阻获取模块具体包括: 剖分单元, 用于自适应剖分所述电源平面, 获得所述电源平面剖分后的近似点; 第一获取单元, 用于获取所述剖分单元剖分电源平面得到的相邻近似点的直流电阻值; 简化单元, 用于根据所述位置确定模块确定的源节点位置和负载节点位置, 简化所述 剖分单元剖分电源平面得到的分节点个数, 获取只拥有所述源节点和所述负载节点的等效 电路网络;
第二获取单元, 用于根据所述第一获取单元获取的直流电阻值, 获得所述简化单元得 至 I撤等效网络中任意两节点之间的直流电阻值。
14、 如权利要求 12所述的设备, 其特征在于, 所述装置的电阻获取模块具体包括: 测试单元, 用于根据所述位置确定模块确定的源节点位置和负载节点位置, 通过高精 密直流电阻测试仪器测试, 获得所述源节点和负载节点之间的直流电阻值以及所述负载节 点之间的直流电阻值。
PCT/CN2009/070399 2008-08-12 2009-02-11 一种检测集成电路负载在线功耗的方法、装置和设备 WO2010017702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101473670A CN101650408B (zh) 2008-08-12 2008-08-12 一种检测集成电路负载在线功耗的方法、装置和设备
CN200810147367.0 2008-08-12

Publications (1)

Publication Number Publication Date
WO2010017702A1 true WO2010017702A1 (zh) 2010-02-18

Family

ID=41668659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070399 WO2010017702A1 (zh) 2008-08-12 2009-02-11 一种检测集成电路负载在线功耗的方法、装置和设备

Country Status (2)

Country Link
CN (1) CN101650408B (zh)
WO (1) WO2010017702A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107707276A (zh) * 2017-11-09 2018-02-16 青岛东软载波科技股份有限公司 一种基于宽带电力线载波通信单元的功耗检测装置
US10924832B2 (en) 2015-02-27 2021-02-16 Zuma Array Limited Light and loudspeaker driver device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980220B (zh) * 2010-10-15 2012-06-20 清华大学 一种基于近似概率转换的电路性能可靠性的估计方法
CN102147822A (zh) * 2010-12-23 2011-08-10 上海高性能集成电路设计中心 一种基于功耗库的大规模数字集成电路功耗动态评估装置
TWI448711B (zh) * 2012-01-13 2014-08-11 Realtek Semiconductor Corp 產生積體電路模型的方法
US9482696B2 (en) 2012-10-31 2016-11-01 Huawei Technologies Co., Ltd. Method and device for measuring current
CN102928657B (zh) * 2012-10-31 2015-07-22 华为技术有限公司 测量电流的方法与装置
CN102944740A (zh) * 2012-11-15 2013-02-27 浪潮电子信息产业股份有限公司 一种机柜内节点功耗测试方法
CN105447242B (zh) * 2015-11-17 2019-01-15 西安紫光国芯半导体有限公司 一种实时分析集成电路电源网络状态的方法
CN106199171A (zh) * 2016-07-12 2016-12-07 张升泽 电子芯片的功率信息发送方法及系统
WO2018010088A1 (zh) * 2016-07-12 2018-01-18 张升泽 电子芯片的功率信息发送方法及系统
CN110275103B (zh) * 2019-06-24 2022-03-15 浙江华仪电子股份有限公司 一种目标板功耗及电平时序检测系统
CN112362971B (zh) * 2020-10-30 2024-05-31 苏州华兴源创科技股份有限公司 电源模块等效电阻测试方法、装置、设备及存储介质
CN116027103B (zh) * 2023-03-29 2023-09-15 荣耀终端有限公司 功耗检测电路、功耗检测芯片及终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696694A (en) * 1994-06-03 1997-12-09 Synopsys, Inc. Method and apparatus for estimating internal power consumption of an electronic circuit represented as netlist
US20050008069A1 (en) * 2003-07-10 2005-01-13 Lipeng Cao Power consumption estimation
CN1654966A (zh) * 2005-01-07 2005-08-17 清华大学 集成电路芯片瞬态电流测量方法及其系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5696694A (en) * 1994-06-03 1997-12-09 Synopsys, Inc. Method and apparatus for estimating internal power consumption of an electronic circuit represented as netlist
US6075932A (en) * 1994-06-03 2000-06-13 Synopsys, Inc. Method and apparatus for estimating internal power consumption of an electronic circuit represented as netlist
US20050008069A1 (en) * 2003-07-10 2005-01-13 Lipeng Cao Power consumption estimation
CN1654966A (zh) * 2005-01-07 2005-08-17 清华大学 集成电路芯片瞬态电流测量方法及其系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10924832B2 (en) 2015-02-27 2021-02-16 Zuma Array Limited Light and loudspeaker driver device
CN107707276A (zh) * 2017-11-09 2018-02-16 青岛东软载波科技股份有限公司 一种基于宽带电力线载波通信单元的功耗检测装置
CN107707276B (zh) * 2017-11-09 2023-08-15 青岛东软载波科技股份有限公司 一种基于宽带电力线载波通信单元的功耗检测装置

Also Published As

Publication number Publication date
CN101650408B (zh) 2011-11-30
CN101650408A (zh) 2010-02-17

Similar Documents

Publication Publication Date Title
WO2010017702A1 (zh) 一种检测集成电路负载在线功耗的方法、装置和设备
RU2636230C2 (ru) Система оптимизации стабильности системы электропитания
JP5178960B2 (ja) 電力分配装置・デバイス間の相関
US8135571B2 (en) Validating manufacturing test rules pertaining to an electronic component
CN110187299B (zh) 一种航空保障装备电学参数通用校准系统
CN115841046B (zh) 基于维纳过程的加速退化试验数据处理方法和装置
WO2020113526A1 (zh) 一种芯片验证方法和装置
US6873147B2 (en) Optimized pin assignment with constraints
JP2000121705A (ja) 基板モデル修正方法および装置
CN115081389B (zh) 一种印刷电路板走线检查方法、装置、设备、存储介质
WO2017003315A1 (en) Method, apparatus and computer program product for evaluating data storage systems for energy efficiency
CN115343668A (zh) 基于虚拟线损和最小二乘法的电表误差求解方法和系统
CN108761187A (zh) 一种基底电流测试方法、系统及终端设备
Kim et al. Cross-layer modeling and optimization for electromigration induced reliability
CN114136530A (zh) 确定变流器进出口空气压力差的方法及装置
US7043705B2 (en) Estimating current density parameters on signal leads of an integrated circuit
CN111858268A (zh) 一种基于能耗测试确定能效等级的方法
CN112098920B (zh) 智能电能表剩余电流监测功能的测试装置、方法及系统
US10184977B2 (en) Devices and methods for testing integrated circuits
CN112417794B (zh) 一种散射参数计算方法
CN108964028A (zh) 电网脆弱节点的定位方法、装置、存储介质及电子设备
CN109032325A (zh) 一种控制器功耗的获取方法、系统、装置及可读存储介质
US20170228484A1 (en) System and method for layout simplification
US20080189090A1 (en) System and Method for Determining a Guard Band for an Operating Voltage of an Integrated Circuit Device
US11442084B2 (en) Current sensor circuitry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806305

Country of ref document: EP

Kind code of ref document: A1