WO2010017674A1 - 增强型轮胎气压监测系统及控制方法 - Google Patents

增强型轮胎气压监测系统及控制方法 Download PDF

Info

Publication number
WO2010017674A1
WO2010017674A1 PCT/CN2008/071954 CN2008071954W WO2010017674A1 WO 2010017674 A1 WO2010017674 A1 WO 2010017674A1 CN 2008071954 W CN2008071954 W CN 2008071954W WO 2010017674 A1 WO2010017674 A1 WO 2010017674A1
Authority
WO
WIPO (PCT)
Prior art keywords
main control
control system
brake
tire
tire pressure
Prior art date
Application number
PCT/CN2008/071954
Other languages
English (en)
French (fr)
Inventor
彭世益
彭彦钧
Original Assignee
桂林思超汽车科技优先公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林思超汽车科技优先公司 filed Critical 桂林思超汽车科技优先公司
Priority to PCT/CN2008/071954 priority Critical patent/WO2010017674A1/zh
Publication of WO2010017674A1 publication Critical patent/WO2010017674A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components

Definitions

  • the present invention relates to safety monitoring and control of a pneumatic tire for a vehicle, and more particularly to a technical solution of an enhanced tire pressure monitoring system (E-TPMS) comprising a TPMS (tire pressure monitoring system) and an existing brake servo mechanism.
  • E-TPMS enhanced tire pressure monitoring system
  • the TPMS (see Figure 7) using wireless communication is composed of multiple TPMS remote modules (a) and TPMS central monitors (b) installed on the tires.
  • the TPMS remote module (a) is set to detect the air pressure every 3s or more after sleep to ensure that the battery maintains the number of TPMS. The need for working hours per year.
  • the occupant's survival hope is based on the timely and effective safety deceleration measures within 2s ⁇ 3s after the tire bursts. Therefore, the function of the TPMS can only be located in the tire pressure warning, not the tire burst monitoring, and can not be used in the tire. Active rescue after the burst.
  • the object of the present invention solves the problem of: overcoming the deficiencies of the prior art, providing a real-time strong, non-monitoring dead zone time, with an ability to continuously monitor the tire bursting capability, and an enhanced tire pressure monitoring system combined with the existing brake servo mechanism of the original vehicle.
  • the system not only provides tire pressure and temperature monitoring, but more importantly, it can accurately obtain the puncture signal at the first moment after the puncture, and automatically control the output interface to perform safe and effective braking control on the puncture vehicle.
  • the enhanced tire pressure monitoring system is characterized in that: a plurality of wireless monitoring modules mounted on the wheel, a main control system installed in the vehicle body with wireless communication function, and an existing brake servo mechanism of the original vehicle.
  • the wireless monitoring module is composed of a TPMS remote module and a puncture sensor. It is used for the detection of tire burst monitoring, tire pressure and temperature, and sends the obtained signal to the main control system by RF.
  • the main control system consists of TPMS central monitor, vehicle speed input interface circuit, power supply circuit and brake control output interface circuit; wireless monitoring module and main control system transmit information by RF, the main control system according to tire burst signal, tire parameters, vehicle speed, etc. Relevant information Implement tire pressure monitoring, early warning or brake control of the existing brake servo mechanism of the original vehicle through the control interface.
  • a vacuum booster brake servo mechanism In the existing brake servo mechanism of the original vehicle, there is a vacuum booster brake servo mechanism, a compressed air brake servo mechanism, and a hydraulic booster brake servo mechanism that can realize electric control by changing a gas path or a liquid path through a solenoid valve;
  • line control actuators that can accept artificial foot brake analog signals, and ABS brakes that can send brake commands to control brakes via the data bus, as well as electronically controlled brake servos such as ESC brakes.
  • the main control system can correctly select the switch type, analog type, or bus type brake control output interface that is matched with it according to different control objects, so as to realize the brake control of the existing brake servo mechanism of the original vehicle.
  • the control method of the enhanced tire pressure monitoring system is characterized in that: when the tire air pressure is higher than the limit air pressure of the puncture sensor, the puncture sensor has no signal output, and the wireless monitoring module works in the normal TPMS mode, and each sleeps for 3 s or longer. After that, the tire is tested for relevant parameters such as air pressure and temperature.
  • the single-chip microcomputer of the wireless monitoring module sleeps after completing the relevant parameter set and transmitting the relevant parameters by RF; the main control system monitors each tire according to the received parameters.
  • the relevant parameters or alarms are transmitted through the information display and the audio circuit; when the tire bursts and the tire pressure is less than or equal to the limit pressure of the puncture sensor, the puncture sensor outputs a puncture signal, and the wireless monitoring module's MCU is immediately awakened by the puncture signal to work in the enhanced TPMS mode.
  • the tire tire signal and tire pressure and temperature parameters are sent to the main control system by RF; when the vehicle is running below the safe speed, the main control system does not take the braking measures, only through the information display and the alarm circuit alarm, when the vehicle is driving Above the safe speed, the main control system is immediately Brake control over the output interface, the brake control of the vehicle braking servo, to reduce the speed to a safe speed or less, and by alarm information display and voice circuits.
  • the invention fully utilizes the prior art, and the wireless monitoring module uses the sensor integration circuit, the power supply mode and the sleep-wake mode of the existing common TPMS.
  • the power supply modes include: battery power supply, LF induction power supply, electromagnetic power generation device that uses wheels to generate vibration to obtain energy, and piezoelectric power generation device that converts electrical energy by mechanical energy; sleep-wake mode includes: heavy hammer motion sensor, piezoelectric vibration sensor, LF Signals, timers and acceleration sensors in TPMS sensor integrated circuits.
  • the wireless monitoring module and the main control system RF circuit are enhanced to the bidirectional RF transceiver circuit; when the wireless monitoring module works in the enhanced TPMS mode, the RF transceiver circuit is changed from the one-way transmission mode.
  • the related information including the puncture mark is repeatedly transmitted, and the repeated transmission is stopped when the response signal of the main control system is received; when the main control system receives the relevant information including the puncture mark, the RF transceiver circuit is one-way.
  • the receiving mode is changed to the two-way transmitting and receiving mode, and an answer signal is sent to the wireless monitoring module.
  • the enhanced and strong tire pressure monitoring system can normally detect the air pressure and temperature of the vehicle tire, so that the driver can know the technical state of the tire movement in time, so that the vehicle tire works.
  • a relatively normal range is beneficial to reduce fuel consumption and tire wear; more importantly, when the tire bursts, the system can automatically and timely capture safe braking measures when the driver has no time to respond.
  • the tire vehicle is effectively rescued and plays an active role in ensuring the safety of the tires.
  • FIG. 1 is a typical block diagram of an enhanced tire pressure monitoring system of the present invention
  • FIG. 1 Electrical block diagram of the wireless monitoring module;
  • Figure 3 Block diagram of the main control system;
  • Figure 4 Schematic diagram of brake servo control by controlling solenoid valve;
  • Figure 5 Brake control output interface and electronic brake servo linkage diagram; Figure 5a analog type 'motion control output interface and electronic brake servo linkage diagram; Figure 5b bus-type brake control output interface and electronic brake Servo connection diagram.
  • FIG. 6 Schematic diagram of the split-antenna RF power splitter;
  • Figure 7 Block diagram of the TPMS system.
  • the enhanced tire pressure monitoring system consists of a plurality of wheel mounted wireless monitoring* blocks (A), a main control system (B) mounted on the vehicle body, and an existing brake servo mechanism of the vehicle.
  • Correction page (Article 91)
  • the wireless monitoring mode storm (A) consists of a collector circuit SP12 including a barometric pressure sensor, a temperature sensor, an acceleration sensor and a voltage measuring circuit, and a single-chip microcomputer nRF9E5 with RF transceiver function, an antenna, and a pressure switch type tire tire sensor.
  • the acceleration sensor in SP12 is used to realize the function of the wake-up circuit.
  • the main control system (B) includes, the MC68HC908GT8, RF transceiver integrated circuit nRF905, antenna system, information display and audio circuit (2), power management circuit (3), brake control output interface (4) ), speed conversion circuit (5); information display and audio circuit (2) includes LCD screen and signal circuit; vehicle speed conversion circuit (5) is connected with vehicle speed signal circuit; brake control output interface (4) according to The mated brake servo selects the corresponding control method.
  • the main control system (B) selects the switch type brake control output interface (40) to control the following brake servo mechanism by controlling the solenoid valve (6): a. Vacuum assist brake servo mechanism; b. Hydraulic assist system Dynamic servo mechanism; c. Compressed air brake servo. '
  • the main control system (B) can send the brake pedal analog signal to the line-controlled ECU (10) via the analog brake control output interface (41).
  • the brake is implemented by the ECU (11) (Fig. 5a).
  • the main control system (B) can send a brake command (Fig. 5b) to the ECU (1 1) with ABS or ESC brake with electronic brake control via the bus type brake control output interface (42), by the ECU (11) Implement braking.
  • the specific embodiment 1 selects the switch type brake output interface (40) through the control solenoid valve (6) and the improved vacuum assist brake (7) servo mechanism (already applied for a patent) Mating.
  • the wireless monitoring module (A) when the vehicle is in non-driving state, the wireless monitoring module (A) is in a dormant state; when the vehicle is in a running state, the nRF9E5 receives a signal from the SP12 acceleration sensor to enter a working state; when the tire pressure is higher than the puncture The sensor limits the air pressure, the puncture sensor has no signal output, and the wireless monitoring module (A) works in the normal TPMS mode. After each sleep for 3s or longer, the tire is subjected to a related correction page (Article 91).
  • the single-chip microcomputer nRF9E5 obtains the relevant parameters such as air pressure, temperature, acceleration and voltage from P12, and sends the parameters to the main control system through the RF transceiver circuit to sleep; the main control system (B) single-chip MC68HC908GT8 through the RF transceiver circuit nRF905 After receiving the relevant parameters of each tire, the MC68HC908GT8 displays relevant information through the LCD TG12864 in the information display and audio circuit (3); when the tire parameters are abnormal, the main control system (B) MC68HC908GT8 through the information display and audio circuit (3) The LCD screen TG12864 displays relevant information and alarms through the signal circuit WTV040-20S.
  • the brake control output interface (40) still has no output, and the driver can apply the braking force P to the vacuum assist brake mechanism for normal braking. Operation; When the tire bursts, the tire pressure is less than or equal to the rated air pressure of the puncture sensor, the puncture sensor outputs a puncture signal, and the wireless monitoring module (A) is immediately woken up by the puncture signal to work in the enhanced TMPS (E-TMPS) mode, the RF circuit from The one-way transmission mode is changed to the two-way transmission and reception mode, and the single-chip microcomputer nRF9E5 will burst the tire mark.
  • E-TMPS enhanced TMPS
  • Zhihe detects that the relevant parameters are repeatedly sent to the main control system (B) until the response signal of the main control system (B) is received; the main control system (B) MCU MC68HC908GT8 3 ⁇ 4 ⁇ U contains the information of the puncture mark and sends a response signal.
  • the main control system (B) MC68HC908GT8 is displayed through the information display and the TG12864 LCD screen in the audio circuit (3), and simultaneously The circuit alarm is alarmed; at this time, the brake control output interface (40) still has no output, and the driver can perform normal braking operation; when the vehicle is driving above the safe speed, the main control system (B) MC68HC908GT8 is controlled by the switch type brake.
  • the output interface (40) drives the solenoid valve (6); at this time, the solenoid valve (6) closes the vacuum source V to the vacuum channel of the operating chamber (7b), opens the passage of the atmosphere N to the operating chamber (7b), and the atmosphere N enters the operating chamber.
  • the normally open passage of the solenoid valve (6) is connected to the brake release pressure passage of the hydraulic assist brake (8) and the low pressure end L of the hydraulic source, and the normally closed passage is connected to the hydraulic assist brake (8).
  • the high pressure end H of the hydraulic source is a normally closed passage opened by the electromagnetic valve (6), and the pressure is released to the hydraulic assisting chamber (8a) via the brake release pressure passage of the hydraulic assist brake (8), and the assist of the hydraulic assist brake (8)
  • the piston pushes the brake master cylinder to output pressure to the brake cylinder Sp to perform braking.
  • the normally closed passage of the solenoid valve (6) of the compressed air brake servo (which has been separately patented) is connected between the compressed air source H and the brake master cylinder (9) brake release exhaust passage.
  • 4 ' solenoid valve (6) normally open channel connected to the brake master cylinder (9) brake release exhaust passage between the atmosphere and the atmosphere N, so that the brake cylinder Sp and the atmosphere pass; when the main control system through the switch type Brake control output interface (40) drives current, solenoid valve (6) normally open channel is closed, normally closed channel is open, compressed air source high pressure terminal H is normally closed channel opened by solenoid valve (6), via brake master cylinder
  • the brake release pressure passage of (9) is injected into the brake output passage to apply brake pressure.
  • FIG. 6 shows the electrical schematic of a two-fold RF power splitter, where: Cl, C2, L1, L2, and R1 form a power distribution network, and the RF interface of the main control system (B) is connected to the M0 terminal through a cable.
  • S1 and S2 can be connected to one antenna respectively, or the M0 end of the one-two RF power splitter of the next layer can be connected to the S1 or S2 end to meet the needs of connecting more antennas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Measuring Fluid Pressure (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

增强型轮胎气压监测系统及控制方法 技术领域
本发明涉及车辆用充气型轮胎的安全监测与控制,特别是利用 TPMS (轮胎气 压监测系统)、 原车已有制动伺服机构构成的增强型轮胎气压监测系统(E-TPMS) 的技术方案。
背景技术
实现轮胎爆裂事故零伤害是人们梦寐以求的夙愿。 在现有可用于运动轮胎 的气压检测技术中,釆用无线通讯方式的 TPMS (见图 7)由多个安装于轮胎的 TPMS 远程模块(a)和 TPMS 中央监视器(b)组成, 为权衡其远程模块(a)重量和电池维 持时间的矛盾, 不得不牺牲 TPMS的实时性, 将 TPMS远程模块 (a)设定在每休眠 3s甚至更长时间后检测一次气压, 以保证电池维持 TPMS数年工作时间的需要。 而乘员生存希望就寄托于轮胎爆裂后的 2s~3s 时间内能及时有效的釆取安全减 速措施, 因此, TPMS 的功能只能定位于轮胎气压预警, 而不是轮胎爆裂监测, 更不能用于轮胎爆裂后的主动救助。
中国专利申请号 200510078211. 8公开的 "轮胎气压监测系统功能改进与扩 展技术方案" 明知必须在爆胎后 2s~3s时间内釆取制动措施, 却在没有对 TPMS 远程模块在实时性以及能源维持方面作任何实质性的改善的情况下, 便将 TPMS 系统用作轮胎爆裂的监测和主动救助; 若把轮胎爆裂后乘员生还的希望寄托于 该技术方案, 这无疑是十分危险的事情, 该技术方案用于作为安全救助产品的 轮胎爆裂监测与制动控制, 本身存在如此大的技术漏洞, 根本无实用性可言。
若将原设计电池使用寿命为 3年的 TPMS子系统的气压检测周期由 3s缩短 到每 100ms检测一次, 轮胎爆裂的最大监测盲区时间近 100ms , 而 TPMS子系统 能量消耗则是原来的 30倍, 电池维持时间将远远低于原设计维持时间的 1 / 30 , 根据电池放电率特性可知, 过分放电将严重缩短电池寿命。 显然, 现有 TPMS无 论是实时性, 还是工作寿命均不能满足爆胎检测的所应具备的可靠性要求。 发明内容
本发明目的技术解决问题是: 克服现有技术的不足, 提供一种实时性强, 无监测盲区时间, 具备连续监测轮胎爆裂能力, 结合原车已有制动伺服机构的 增强型轮胎气压监测系统; 该系统不仅能提供轮胎气压和温度的监测, 更重要 的是要在爆胎后的第一时刻准确获得爆胎信号, 自动控制输出接口对爆胎车辆 进行安全有效的制动控制。
本发明是这样实现的: 增强型轮胎气压监测系统, 其特征在于: 由安装于 车轮的多个无线监测模块、 安装于车体具备无线通讯功能的主控系统和原车已 有制动伺服机构三部分组成;无线监测模块由 TPMS远程模块和爆胎传感器构成, 用于轮胎爆裂监测、 轮胎气压和温度等参数的检测, 并以 RF方式将获得的信号 发送给主控系统; 主控系统由 TPMS中央监视器、 车速输入接口电路、 电源电路 和制动控制输出接口电路构成; 无线监测模块与主控系统之间以 R F方式传递信 息, 主控系统根据轮胎爆裂信号、 轮胎参数、 车辆速度等相关信息实施轮胎气 压监测、 预警或通过控制接口对原车已有制动伺服机构实施制动控制。
原车已有制动伺服机构中, 有可通过电磁阀改变气路或液路实现电控制动 的真空助力器制动伺服机构、 压缩空气制动伺服机构、 液压助力器制动伺服机 构; 有可接受人工脚踏制动模拟信号的线控制动器, 和可以通过数据总线发送 制动指令控制制动的 ABS制动器以及 ESC制动器等电子控制制动伺服机构。
主控系统则可根据不同的控制对象, 正确选择与之配接的开关型、 模拟型、 或总线型制动控制输出接口, 实现对原车已有制动伺服机构的制动控制。 增强型轮胎气压监测系统的控制方法, 其特征在于: 当轮胎气压高于爆胎 传感器限定气压,爆胎传感器无信号输出,无线监测模块工作于普通 TPMS模式, 每休眠 3 s或更长的时间后, 对轮胎进行一次气压、 温度等相关参数的检测, 无 线监测模块的单片机在完成相关参数釆集和以 RF方式发送相关参数后休眠; 主 控系统根据接受到的参数对各轮胎实施监测, 通过信息显示及声讯电路传递相 关参数或报警; 当轮胎爆裂, 轮胎气压小于等于爆胎传感器限定气压时, 爆胎 传感器输出爆胎信号, 无线监测模块的单片机立即被爆胎信号唤醒工作于增强 TPMS模式, 将爆胎信号及轮胎气压和温度参数以 RF方式发送给主控系统; 当车 辆行驶于安全车速以下, 主控系统不釆取制动措施, 仅通过信息显示及声讯电 路报警, 当车辆行驶于安全车速以上, 主控系统则立即通过制动控制输出接口, 对车辆制动伺服机构进行制动控制, 将车速降低到安全车速以下, 并通过信息 显示及声讯电路报警。
本发明充分利用已有技术, 无线监测模块釆用现有普通 TPMS的传感器集成 电路、 供电方式和休眠一唤醒工作模式。 供电方式包括: 电池供电、 LF感应供 电、 利用车轮行驶产生振动获取能量的电磁发电装置和机械能转化电能的压电 发电装置; 休眠一唤醒方式包括: 重锤式运动传感器、 压电振动传感器、 LF信 号、 定时器和利用 TPMS传感器集成电路中的加速度传感器。
为提高轮胎爆裂的危险信息传递的准确性和可靠性, 无线监测模块和主控 系统 RF电路增强为双向 RF收发电路; 无线监测模块工作于增强 TPMS模式时, RF 收发电路由单向发送模式转变为双向收发模式, 重复发送包含爆胎标志的相 关信息, 在接收到主控系统应答信号时停止重复发送; 主控系统在接收到的包 含爆胎标志的相关信息时, RF 收发电路由单向接收模式转变为双向收发模式, 向无线监测模块发送应答信号。 本发明带来的显著有益 舉在于: 增.强型轮胎气压监测系统, 正常情况下 能对车辆轮胎的气压和温度进行检测, 让驾驶人员及时了解轮胎运动中的技术 状态, 使车辆轮胎工作在一个比较正常的范围, 有利于降低燃油消耗和轮胎磨 损; 更重要的是在轮胎出现爆裂时, 该系统能在驾驶人员来不及作出反应的时 刻, 自动及时准确地釆取安全制动措施, 对爆胎车辆进行有效救助, 为保障与 轮胎相关的行车安全发挥积极作用。
附图说明
图 1 本发明的增强型轮胎气压监测系统典型框图;
图 2 无线监测模块电原理框图; 图 3 主控系统原理框图;
图 4 通过控制电磁阀实现制动伺服控制原理图; 图 4a电磁阀与真空助力制 动伺服机构配接图; 图 4b电磁阀与液压助力制动伺服机构配接图; 图 4c电磁 阀与压缩空气制动伺服机构配接图。
图 5 制动控制输出接口与电子制动伺服机构配接图;图 5a模拟型制'动控制 输出接口与电子制动伺服机构配接图; 图 5b总线型制动控制输出接口与电子制 动伺服机构配接图。
图 6 —分二天线 RF功率分配器原理图; 图 7 TPMS系统框图。
具体实施方式
现代半导体技术集成的发展, 使得多个功能可以包含在一个集成电路中, 在本发明实施的设计中, 正确选择集成电路可达到简化电路、 减小体积和重量 的效果。
下面结合图 1、 图 、 图 3, 以及图 4、 图 5对实施例 1进行详细描述。 如图 1 所示, 增强型轮胎气压监测系统由多个安装于车轮的无线监测 *块 (A)、 安装于车体的主控系统 (B)和车辆已有制动伺服机构组成。 更正页 (细则第 91条) 如图 2所示, 无线监测模暴 (A)由包 了气压传感器、 温度传感器、 加速度 传感器和电压测量电路的集 电路 SP12 , 和具备 RF收发功能的单片机 nRF9E5、 天线、 压力开关型爆胎传感器(1)、 3. 6V锂电池 B1组成; 其中, SP12中的加速 度传感器用于实现唤醒电路的功能。
如图 3所示, 主控系统(B)包含了、 单片机 MC68HC908GT8、 RF收发集成电 路 nRF905、 天线系统、 信息显示及声讯电路 (2)、 电源管理电路(3)、 制动控制 输出接口(4)、 车速转换电路 (5) ; 信息显示及声讯电路 (2)包含了液晶屏和讯响 电路; 车速转换电路 (5)与车辆的车速信号电路连接; 制动控制输出接口(4)根 据与之配接的制动伺服机构选取相对应的控制方式。
主控系统(B)选用开关型制动控制输出接口(40)通过控制电磁阀(6) , 可实 现对以下制动伺服机构的控制: a、 真空助力制动伺服机构; b、 液压助力制动 伺服机构; c、 压缩空气制动伺服机构。 '
主控系统 (B)通过模拟型制动控制输出接口(41) , 可对线控制动的 ECU (10) 发送制动踏板模拟信号^ 由 ECU (11)实施制动(图 5a)。
主控系统 (B)通过总线型制动控制输出接口(42), 可向具备电子制动控制的 ABS或 ESC制动器的 ECU (1 1)发送制动指令(图 5b) , 由 ECU (11)实施制动。
为了清楚地对实施例 1进行详细描述, 特约定实施例 1选用开关型制动输 出接口(40)通过控制电磁阀(6)与改进的真空助力制动器(7)伺服机构(已另案 申请专利)配接。
如图 2所示, 当车辆处于非行驶状态下, 无线监测模块 (A)处于休眠状态; 当车辆处于行驶状态时, nRF9E5从 SP12的加速度传感器得到信号进入工作状态; 当轮胎气压高于爆胎传感器限定气压, 爆胎传感器无信号输出, 无线监测模块 (A)工作于普通 TPMS模式, 每休眠 3s或更长的时间后, 对轮胎进行一次相关参 更正页 (细则第 91条) 数检测; 单片机 nRF9E5在完成从 P12得到气压、 温度、 加速度、 电压等相关 参数釆集, 通过 RF 收发电路将参数发送给主控系统后休眠; 主控系统(B)单片 机 MC68HC908GT8 通过 RF 收发电路 nRF905 接收到各个轮胎的相关参数, MC68HC908GT8通过信息显示及声讯电路(3)中的液晶屏 TG12864显示相关信息; 当轮胎参数异常时, 主控系统(B)单片机 MC68HC908GT8 通过信息显示及声讯电 路(3)中的液晶屏 TG12864显示相关信息, 同时通过讯响电路 WTV040-20S报警, 此时制动控制输出接口(40)仍然无输出, 驾驶人员可对真空助力制动机构施加 制动力 P进行正常制动操作; 当轮胎爆裂, 轮胎气压小于等于爆胎传感器限定 气压时, 爆胎传感器输出爆胎信号, 无线监测模块 (A)立即被爆胎信号唤醒工作 于增强 TMPS (E-TMPS)模式, RF电路从单向发射模式转变为双向收发模式, 单片 机 nRF9E5 将爆胎标志和检测到相关参数重复发送给主控系统 (B), 直到接收到 主控系统 (B)的应答信号为止; 主控系统(B)单片机 MC68HC908GT8 ¾^U含爆胎 标志的信息后发出应答信号, 且立即根据此时的车速判断是否采取制动措施; 当车辆行驶在安全速度以下, 主控系统 (B)单片机 MC68HC908GT8 通过信息显示 及声讯电路(3)中的 TG12864液晶屏显示, 同时通过讯响电路报警; 此时制动控 制输出接口(40)仍然无输出, 驾驶人员可进行正常制动操作; 当车辆行驶在安 全速度以上, 主控系统(B)单片机 MC68HC908GT8 则通过开关型制动控制输出接 口(40)驱动电磁阀(6) ; 此时电磁阀(6)关闭真空源 V至操作腔(7b)的真空通道, 开启大气 N至操作腔(7b)的通道, 大气 N进入操作腔(7b), 使得真空助力器膜 片两侧产生气压差; 真空助力器膜片在大气 N压力推动下向真空腔(7a)位移产 生制动力; 与此同时, 主控系统(B)单片机 MC68HC908GT8 通过信息显示及声讯 电路(3)中的 TG12864液晶屏显示,同时通过讯响电路报警; 当车辆停止行驶时, nRF9E5单片机从 SP12的加速度值判定车辆已处于非行驶状态,无线监测模块 (A)
6 更正页 (细则第 91条) 重新进入休眠状态。
当釆用其它制动伺服机构,选择适当的制动输出接口, 分别参照图 4、 图 5 的配接方式实现制动。 如图 4b所示, 电磁阀(6)的常开通道连接于液压助力制 动器 (8)的制动解除排压通道与液压源的低压端 L, 常闭通道中接于液压助力制 动器(8)的制动解除排压通道与液压源高压端 H; 当主控系统 (A)通过开关型制动 控制输出接口(40)驱动电流, 电磁闽 (6)的常开通道关闭, 常闭通道开启, 液压 源高压端 H 由电磁阀(6)开启的常闭通道, 经液压助力制动器 (8)的制动解除排 压通道向液压助力腔(8a)注入压力, 液压助力制动器(8)的助力活塞推动制动主 缸向制动分泵 Sp输出压力实施制动。
如图 4c所示, 压缩空气制动伺服机构(已另案申请专利)的电磁阀(6)的常 闭通道连接于压缩空气源 H 与制动总泵(9)制动解除排气通道之间, 4 '电磁阀(6) 常开通道连接于制动总泵 (9)制动解除排气通道经与大气 N之间, 使得制动分泵 Sp与大气相通; 当主控系统通过开关型制动控制输出接口(40)驱动电流, 电磁 阀(6)的常开通道关闭, 常闭通道开启, 压缩空气源高压端 H 由电磁阀(6)开启 的常闭通道, 经制动总泵 (9)的制动解除排压通道向制动输出的通道注入制动气 压实施制动。
为进一步加强本发明的无线通讯的效果, 可在轮胎附近放置天线的多天线, 主控系统 (B)釆用 RF功率分配器进行多天线连接。 如图 6所示的是一分二的 RF 功率分配器电原理图, 其中: Cl、 C2、 Ll、 L2和 R1组成功率分配网络, 主控系 统(B)的 RF接口通过电缆与 M0端连接, S1和 S2可分别连接一个天线, 也可将 下一层的一分二 RF功率分配器的 M0端连接至 S1或 S2端, 以满足连接更多的 天线的需要。 对长车身车辆提高数据传送可靠性和通讯效果改善明显。
更正页 (细则第 91条)

Claims

权利要求
1、 增强型轮胎气压监测系统, 其特征在于: 由安装于车轮的多个无线监测 模块、 安装于车体具备无线通讯功能的主控系统和原车已有制动伺服机构三部 分组成;无线监测模块由 TPMS远程模块和爆胎传感器构成,用于轮胎爆裂监测、 轮胎气压和温度等参数的检测, 并以 RF方式将获得的信号发送给主控系统; 主 控系统由 TPMS中央监视器、 车速输入接口电路、 电源管理电路和制动控制输出 接口构成; 无线监测模块与主控系统之间以 RF方式传递信息, 主控系统根据轮 胎爆裂信号、 轮胎参数、 车辆速度等相关信息实施轮胎气压监测、 预警或通过 控制接口对原车已有制动伺服机构实施制动控制。
2、 增强型轮胎气压监测系统的控制方法, 其特征在于: 当轮胎气压高于爆 胎传感器限定气压, 爆胎传感器无信号输出, 无线监测模块工作于普通 TPMS模 式, 每休眠 3 s或更长的时间后, 对轮胎进行一次气压、 温度等相关参数的检测, 无线监测模块的单片机在完成相关参数釆集和以 RF方式发送相关参数后休眠; 主控系统根据接受到的参数对各轮胎实施监测, 通过信息显示及声讯电路传递 相关参数或报警; 当轮胎爆裂, 轮胎气压小于等于爆胎传感器限定气压时, 爆 胎传感器输出爆胎信号, 无线监测模块的单片机立即被爆胎信号唤醒工作于增 强 TPMS模式, 将爆胎信号及轮胎气压和温度参数以 RF方式发送给主控系统; 当车辆行驶于安全车速以下, 主控系统不釆取制动措施, 仅通过信息显示及声 讯电路报警, 当车辆行驶于安全车速以上, 主控系统则立即通过制动控制输出 接口, 对车辆制动伺服机构进行制动控制, 将车速降低到安全车速以下, 并通 过信息显示及声讯电路报警。
3、 根据权利要求 1所述的增强型轮胎气压监测系统, 其特征在于: 无线监 测模块釆用现有普通 TPMS的传感器集成电路、供电方式和休眠一唤醒工作模式。
4、 根据权利要求 1所述的增强型轮胎气压监测系统, 其特征在于: 无线监 测模块和主控系统增强为双向 RF收发电路。
5、 根据权利要求 2所述的增强型轮胎气压监测系统的控制方法, 其特征在 于: 无线监测模块工作于增强 TPMS模式时, RF收发电路由单向发送模式转变为 双向收发模式, 重复发送包含爆胎标志的相关信息, 在接收到主控系统应答信 号时停止重复发送; 主控系统在接收到的包含爆胎标志的相关信息时, RF 收发 电路由单向接收模式转变为双向收发模式, 向无线监测模块发送应答信号。
6、 根据权利要求 1、 3、 4所述的增强型轮胎气压监测系统, 其特征在于: 主控系统的制动控制输出接口通过控制电磁阀实现对以下制动伺
Figure imgf000011_0001
b、 液压助力制动伺
c、 压; ,制动伺
7、 根据权利要求 1、 3、 4所述的增强型轮胎气压监测系统, 其特征在于: 主控系统通过模拟型制动控制输出接口向线控制动的 ECU发送制动踏板模拟制 动信号, 由 ECU实施制动。
8、 根据权利要求 1、 3、 4所述的增强型轮胎气压监测系统, 其特征在于: 主控系统通过总线型制动控制输出接口向具备电子制动控制的 ECU发送制动指 令, 由 ECU实施制动。
9、 根据权利要求 1、 3、 4所述的增强型轮胎气压监测系统, 其特征在于: 主控系统釆用 RF功率分配器进行多天线连接。
PCT/CN2008/071954 2008-08-12 2008-08-12 增强型轮胎气压监测系统及控制方法 WO2010017674A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/071954 WO2010017674A1 (zh) 2008-08-12 2008-08-12 增强型轮胎气压监测系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/071954 WO2010017674A1 (zh) 2008-08-12 2008-08-12 增强型轮胎气压监测系统及控制方法

Publications (1)

Publication Number Publication Date
WO2010017674A1 true WO2010017674A1 (zh) 2010-02-18

Family

ID=41668642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071954 WO2010017674A1 (zh) 2008-08-12 2008-08-12 增强型轮胎气压监测系统及控制方法

Country Status (1)

Country Link
WO (1) WO2010017674A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074460A1 (zh) * 2013-11-19 2015-05-28 浙江吉利汽车研究院有限公司 一种车辆爆胎分级制动控制装置及控制方法
US9302554B2 (en) 2014-05-02 2016-04-05 Brian Reiss Air pressure control system
US9481215B2 (en) 2014-05-02 2016-11-01 Brian Reiss Air pressure control system
CN112606821A (zh) * 2021-01-07 2021-04-06 南京工业大学 一种应对汽车突然爆胎的智能处理系统及其控制方法
CN112880708A (zh) * 2021-03-04 2021-06-01 杭州时域电子科技有限公司 一种电池供电的微功耗无线传感器的参数配置方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270895A (zh) * 2000-01-28 2000-10-25 傅建中 汽车高速运行轮胎突爆自动紧急制动系统
JP2004090772A (ja) * 2002-08-30 2004-03-25 Bridgestone Corp 車輪状態監視システム
CN1872573A (zh) * 2005-06-03 2006-12-06 泰安明泰电子科技有限公司 汽车轮胎压力监测系统
CN1876409A (zh) * 2005-06-09 2006-12-13 傅建中 轮胎气压监测系统功能改进与扩展技术方案
WO2007086391A1 (ja) * 2006-01-30 2007-08-02 Sanyo Electric Co., Ltd. タイヤ圧力検知システム及びタイヤ圧力検知装置
CN101311693A (zh) * 2007-05-25 2008-11-26 桂林思超汽车科技有限公司 增强型轮胎气压监测系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270895A (zh) * 2000-01-28 2000-10-25 傅建中 汽车高速运行轮胎突爆自动紧急制动系统
JP2004090772A (ja) * 2002-08-30 2004-03-25 Bridgestone Corp 車輪状態監視システム
CN1872573A (zh) * 2005-06-03 2006-12-06 泰安明泰电子科技有限公司 汽车轮胎压力监测系统
CN1876409A (zh) * 2005-06-09 2006-12-13 傅建中 轮胎气压监测系统功能改进与扩展技术方案
WO2007086391A1 (ja) * 2006-01-30 2007-08-02 Sanyo Electric Co., Ltd. タイヤ圧力検知システム及びタイヤ圧力検知装置
CN101311693A (zh) * 2007-05-25 2008-11-26 桂林思超汽车科技有限公司 增强型轮胎气压监测系统及控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015074460A1 (zh) * 2013-11-19 2015-05-28 浙江吉利汽车研究院有限公司 一种车辆爆胎分级制动控制装置及控制方法
US10053069B2 (en) 2013-11-19 2018-08-21 Zhejiang Geely Automobile Research Institute Co., Ltd Graded braking control device and control method for vehicle tire burst
US9302554B2 (en) 2014-05-02 2016-04-05 Brian Reiss Air pressure control system
US9481215B2 (en) 2014-05-02 2016-11-01 Brian Reiss Air pressure control system
CN112606821A (zh) * 2021-01-07 2021-04-06 南京工业大学 一种应对汽车突然爆胎的智能处理系统及其控制方法
CN112606821B (zh) * 2021-01-07 2024-05-24 南京工业大学 一种应对汽车突然爆胎的智能处理系统及其控制方法
CN112880708A (zh) * 2021-03-04 2021-06-01 杭州时域电子科技有限公司 一种电池供电的微功耗无线传感器的参数配置方法

Similar Documents

Publication Publication Date Title
WO2010017674A1 (zh) 增强型轮胎气压监测系统及控制方法
CN101508288B (zh) 一种气压电控辅助制动装置
WO2006131078A1 (fr) Systeme de suivi du comportement d'un pneumatique
WO2009124504A1 (zh) 一种爆胎监测方法及一种爆胎监控装置
CN104875732A (zh) 一种半挂汽车列车制动控制系统及方法
CN102009646A (zh) 一种用于蓄电池电力工程车制动系统分配阀的控制系统
CN101508287B (zh) 基于单轴控制的具有故障互补控制的电空制动方法及系统
CN104595161A (zh) 一种混合动力汽车双空气压缩机系统及控制方法
CN108515954A (zh) 商用车双模式气压制动系统
CN2815798Y (zh) 汽车防抱死制动系统电子控制器
CN101311693B (zh) 增强型轮胎气压监测系统及控制方法
CN101046916A (zh) 车辆轮胎安全监控系统及控制方法
CN107628014A (zh) 空重车调整装置及气压调整方法
CN109501790A (zh) 挂车制动压力延迟补偿与车轮滑移率联合控制系统及方法
CN102632776A (zh) 一种车辆轮胎气压监测及自动充气装置
CN202623841U (zh) 一种和客车车门状态联动的车身升降系统
CN205854119U (zh) 一种纯电动客车气压制动系统
CN108622060B (zh) 一种电控气制动桥阀
CN201901127U (zh) 一种用于蓄电池电力工程车制动系统分配阀的控制系统
CN105799432A (zh) 爆胎及胎压监测方法及模块
CN203391574U (zh) 一种基于胎压监测的行车安全控制系统
CN2928613Y (zh) 双管路气液制动系统
CN200948788Y (zh) 车辆轮胎安全监控装置
CN207902422U (zh) 一种制动系统压力的监控系统
CN204572398U (zh) 一种混合动力汽车双空气压缩机系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/05/2011)

122 Ep: pct application non-entry in european phase

Ref document number: 08783947

Country of ref document: EP

Kind code of ref document: A1