WO2010016596A1 - Base station, communication terminal, communication system, base station control method, communication terminal control method, communication system control method, control program, and recording medium - Google Patents

Base station, communication terminal, communication system, base station control method, communication terminal control method, communication system control method, control program, and recording medium Download PDF

Info

Publication number
WO2010016596A1
WO2010016596A1 PCT/JP2009/064069 JP2009064069W WO2010016596A1 WO 2010016596 A1 WO2010016596 A1 WO 2010016596A1 JP 2009064069 W JP2009064069 W JP 2009064069W WO 2010016596 A1 WO2010016596 A1 WO 2010016596A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
lte
base station
sub
communication terminal
Prior art date
Application number
PCT/JP2009/064069
Other languages
French (fr)
Japanese (ja)
Inventor
磊 黄
仁茂 劉
銘 丁
晨 陳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2010016596A1 publication Critical patent/WO2010016596A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to a technical field of mobile communication, and in particular, a base station, a communication terminal, a communication system, a base station control method, a communication terminal control method, and a communication system to which LTE (Long-Term Evolution) -Advanced is applied.
  • the present invention relates to a control method, a control program, and a recording medium.
  • LTE-A LTE-Advanced
  • LTE-A should support a maximum system frequency bandwidth of 100 MHz.
  • the system frequency bandwidth of 100 MHz may be formed by one continuous frequency spectrum (continuous plural carriers), or may be formed by collecting a plurality of non-continuous frequency spectra (non-contiguous plural carriers). Also good.
  • the draft also describes that LTE and LTE-A can coexist on the same frequency spectrum. In this case, LTE-A needs to be compatible with conventional LTE-compatible user apparatuses (communication terminals and mobile station apparatuses).
  • the system frequency bandwidth of the LTE communication system is designed to a maximum of 20 MHz
  • the system frequency bandwidth of the LTE-compatible user device is also 20 MHz.
  • LTE-A design in particular, system frequency band segmentation, downlink broadcast channel (BCH: Broadcast CHannel) synchronization channel (SCH: Synchronization Channel) design, and system control signaling (PDCCH: Physical Downlink Control Channel) Issues with respect to design and the like.
  • BCH Broadcast CHannel
  • SCH Synchronization Channel
  • PDCCH Physical Downlink Control Channel
  • Non-Patent Document 2 the system frequency bandwidth of LTE-A is divided into a plurality of sub-frequency bands of 20 MHz (a plurality of carriers, one carrier is referred to as a component carrier CC), and the sub-frequency band of 20 MHz.
  • Each (CC) transmits a synchronization channel SCH and a broadcast channel BCH, thereby having compatibility with a 20 MHz LTE-compatible user apparatus.
  • Non-Patent Document 3 the LTE reference signal RS (Reference Signal), the synchronization channel SCH, the broadcast channel BCH, and the control channel PDCCH are transmitted in at least some CCs of LTE-A. It is ensured that the corresponding user apparatus preferably accesses the partial CC of LTE-A.
  • Huawei Company says that when the synchronization channel SCH and the broadcast channel BCH are transmitted in a plurality of CCs of LTE-A, the occupation rate of radio resources increases and the design of LTE-A becomes more complicated.
  • Non-Patent Document 5 At the meeting in Kansas, USA in May, NTT Docomo Co., Ltd. expressed the same viewpoint as Huawei Company (Non-patent Document 4). Meanwhile, at the conference, Texas Instruments Corporation in the United States announced that it would support Panasonic's proposal (Non-Patent Document 5).
  • Non-patent Document 6 the system frequency bandwidth of LTE-A is divided into multiple CCs, one of which is set as the main CC, and all other CCs are set as sub CCs.
  • the LTE synchronization channel SCH, broadcast channel BCH, and control channel PDCCH are transmitted in both the main CC and the sub CC.
  • LTE-A synchronization channel SCH, broadcast channel BCH, and control channel PDCCH are also transmitted in the main CC.
  • both the method proposed by Panasonic Corporation and the method proposed by Chukoh Co., Ltd. transmit LTE-related channels corresponding to each sub CC within a plurality of sub CCs. Any of these CCs must support access of LTE-compatible user equipment. This makes it difficult to design LTE-A and greatly increases the load on LTE-A.
  • LTE-A in which CC is several times the number of LTE, the same number of base stations as in LTE is provided when serving the same number of users as in LTE. Do not need. Therefore, when LTE-A covers the same number of user equipment as the number of user equipment in LTE, it can be covered with fewer base stations than LTE.
  • the Huawei company's method is to transmit the LTE channel related channel by at least one sub CC.
  • the Huawei company's method is to transmit the LTE channel related channel by at least one sub CC.
  • the operating system frequency bandwidth of an LTE-A capable user device that accesses an LTE-A system where the system frequency bandwidth is expected to reach 100 MHz may be less than 100 MHz. Further, it is necessary to make LTE-A compatible with a conventional user apparatus for LET.
  • how to design and standardize for LTE-A provides a highly efficient service to LTE-capable user equipment, has an operating system frequency bandwidth greater than LTE-capable user equipment, and a plurality of An object of the present invention is to solve the problem of not adversely affecting an LTE-A compatible user apparatus having a CC.
  • a base station includes a receiving unit that receives operation width information indicating an operable frequency bandwidth of a communication terminal from a communication terminal connected to the own station; A part of the frequency bandwidth of the connected communication system to which LTE-A is applied is determined as the main frequency band of the communication system, and a portion excluding the determined main frequency band in the frequency band of the communication system is determined Dividing into one or more sub frequency bands, selecting a sub frequency band corresponding to the communication terminal based on the operation range information, and combining the selected sub frequency band and the main frequency band to perform the communication The operating frequency band of the terminal is set, the sub frequency band to which the PDCCH is allocated is determined from the set operating frequency band, and the LTE PDC is determined in the determined sub frequency band.
  • Access control / scheduling means for performing H allocation, and transmission means for transmitting frequency band allocation information indicating an operating frequency band set by the access control / scheduling unit to the communication terminal of LTE, in the main frequency band Control signaling and channel design are both compatible with LTE, and the main frequency band includes LTE system information, LTE-A system information, and LTE broadcast by a broadcast channel compatible with LTE.
  • -A includes downlink control channel information commonly used in -A.
  • a main CC and a sub CC can be provided, and compatibility with LTE can be provided in the main CC, and a high-quality service can be provided to an LTE-compatible communication terminal.
  • the main CC includes information for all user devices, synchronization information, and common control information, and assigns an operating system frequency bandwidth (multiple CCs) to each LTE-A compatible communication terminal.
  • all CCs can be used effectively. Therefore, the above-described base station can easily realize compatibility with LTE-compatible communication terminals in a communication system to which LTE-A is applied, and LTE-compatible communication terminals and various LTE-A-compatible communication terminals.
  • a high-speed data communication service can be provided.
  • the present invention is efficient for LTE-A-compatible user equipment that is compatible with LTE-compatible user equipment and has a larger operable frequency bandwidth (one CC).
  • the present invention provides a downlink CC configuration method in which CC is allocated when an LTE-A-compatible user apparatus accesses the mobile communication system and notified to the user apparatus by an appropriate signaling mechanism.
  • a downlink CC configuration method in a communication system to which LTE-A of the present invention is applied a part of the LTE-A system frequency bandwidth is partially transferred by the base station to the main CC of LTE-A.
  • an allocation sub CC to which a PDCCH (Packet Data Control Channel) is allocated is determined from the operating frequency bandwidth for the user apparatus.
  • the control signaling and channel design in the main CC are both compatible with LTE, and in the main CC, in addition to LTE-defined system information broadcast by a broadcast channel compatible with LTE, LTE -A includes all the information, and the main CC includes downlink control channel information commonly used in LTE-A.
  • the user equipment For the sub-CC in the operating frequency bandwidth It performs processing for each sub-CC after sorting, is characterized by performing the PDCCH blind test defined in LTE.
  • the main CC is preferably located in the frequency band with the largest bandwidth.
  • the main CC is preferably located in the middle of the system frequency bandwidth of LTE-A.
  • the LTE-A system information preferably includes LTE-A frequency point information and sub-frequency bandwidth information.
  • the base station assigns a sub CC to the user apparatus based on the operable frequency bandwidth of the user apparatus.
  • the base station allocates a sub frequency band to the user apparatus based on the operable frequency bandwidth of the user apparatus and the load state of each sub CC.
  • signaling in a higher layer in the first subframe scheduled by the base station for the user apparatus in the frequency band allocation information is transmitted from the base station to the user apparatus.
  • the first subframe scheduled for the user apparatus is located in the main CC.
  • the main CC determination step and the sub CC classification step are performed in the initialization process of the system.
  • the frequency band allocation step is performed in a random access process of the user apparatus.
  • the user apparatus in the frequency band allocation step, preferably transmits operable frequency bandwidth information of the user apparatus to the base station according to RRC access billing information in a random access process.
  • the frequency band allocation information is preferably transmitted from the base station to the user equipment by contention resolution signaling in a random access process.
  • the base station of the present invention determines a part of the LTE-A frequency bandwidth as the main frequency band of LTE-A, and excludes the main frequency band in the LTE-A frequency band.
  • Control signaling in the main frequency band including an access control / scheduling unit that divides the portion into one or more sub-frequency bands, and a transmission / reception unit that receives information on the operable frequency bandwidth from the user apparatus.
  • the channel design are both compatible with LTE, and within the main frequency band, all system information defined in LTE-A, as well as system information defined by LTE, broadcasted by a broadcast channel compatible with LTE are included.
  • Information is included, and the main frequency band includes downlink signals commonly used in LTE-A.
  • Control channel information is included, and the access control / scheduling unit selects a sub-frequency band corresponding to the user apparatus based on information on an operable frequency band range of the user apparatus received from the user apparatus. Then, the selected sub frequency band and the main frequency band are combined and set as the operating frequency band of the user apparatus, and then the sub frequency band to which the PDCCH is allocated from the operating frequency band is set for the user apparatus.
  • the transmission / reception unit transmits frequency band allocation information to the user apparatus in a signaling manner, and the transmission / reception unit performs LTE-defined PDCCH allocation in a sub-frequency band to which the PDCCH is allocated. Yes.
  • the access control / scheduling unit allocates a sub CC to the user apparatus based on the operable frequency band range of the user apparatus.
  • the access control / scheduling unit allocates a sub frequency band to the user apparatus based on an operable frequency band range of the user apparatus and a current load state of each sub CC. .
  • the transmission / reception unit transmits the frequency band allocation information to the user apparatus by higher layer signaling in the first subframe scheduled for the user apparatus.
  • the transmission / reception unit transmits the frequency band information to the user apparatus by contention resolution signaling in a random access process.
  • the user apparatus is a user apparatus including a transmission / reception unit and a PDCCH detection unit, and the transmission / reception unit transmits information on an operable frequency bandwidth of the user device to a base station.
  • the PDCCH detection unit performs reordering processing on the sub CCs in the operating frequency band, and performs PDCCH blind detection defined in LTE for each sub CC after the reordering processing. .
  • the transmission / reception unit reports information on an operable frequency band range of the user apparatus to the base station based on RRC access request information in a random access process.
  • the main CC and the sub CC are provided, and the main CC provides compatibility with LTE. Can provide high quality service.
  • the main CC includes system information, synchronization information, and common control information for all communication terminals.
  • FIG. 1 is a schematic diagram of a mobile communication system to which LTE-A is applied. It is a block diagram of a base station included in the mobile communication system.
  • FIG. 2 is a block diagram of an LTE-A compatible terminal included in the mobile communication system.
  • Fig. 11 is a sequence diagram when CC allocation information is acquired in a stage where the LTE-A compatible terminal randomly accesses the mobile communication system.
  • FIG. 10 is a sequence diagram when the LTE-A compatible terminal acquires CC allocation information by higher layer signaling.
  • FIG. 11 is a sequence diagram when the LTE-A compatible terminal acquires CC allocation information by higher layer signaling.
  • FIG. 3 is an explanatory diagram showing a state in which a PDCCH is allocated to an LTE-A compatible terminal in the mobile communication system. It is the schematic of CC structure in LTE-A.
  • FIG. 3 is an explanatory diagram showing CCs assigned to LTE-compatible terminals and LTE-A-compatible terminals in the mobile communication system.
  • the following embodiment is applied to a mobile communication system to which LTE-A is applied. Note that the present invention is not limited to the applications described in these embodiments, and can be applied to other mobile communication systems.
  • FIG. 1 is a schematic diagram of a mobile communication system (communication system) 100 to which LTE-A is applied.
  • the mobile communication system 100 is a network to which LTE-A is applied.
  • the base station 101 is a service control center of the mobile communication system 100, and radio resources of user apparatuses such as an LTE compatible terminal (LTE communication terminal) 102 and an LTE-A compatible terminal (LTE-A communication terminal) 103 in the cell. Performs scheduling (resource allocation) and data transmission related to data services.
  • LTE communication terminal LTE communication terminal
  • LTE-A communication terminal LTE-A communication terminal
  • the LTE compatible terminal 102 is a user apparatus used in a network to which LTE is applied, and operates with one CC of the LTE standard according to an operation mechanism based on LTE uplink / downlink control signaling.
  • the LTE-A compatible terminal 103 operates in accordance with an operation mechanism based on the LTE-A standard in a plurality of CCs based on the LTE-A standard.
  • the mobile communication system 100 can provide data services corresponding to the two types of user devices (LTE compatible terminal 102 and LTE-A compatible terminal 103) described above. Note that the mobile communication system 100 shown in FIG. 1 is for explaining the schematic configuration of the present invention, and is not limited to the above configuration when the present invention is actually implemented in a mobile communication system. For example, although FIG. 1 shows one LTE-compatible terminal 102 and one LTE-A-compatible terminal 103, a plurality of base stations and a plurality of base stations may be used.
  • the mobile communication system 100 includes at least one base station 101.
  • the base station 101 In the cell of the base station 101, several LTE compatible terminals 102 and several LTE-A compatible terminals 103 are allocated.
  • the base station 101 controls each LTE-compatible terminal 102 and LTE-A-compatible terminal 103 allocated in the cell by radio resource scheduling and control signaling.
  • FIG. 2 is a block diagram showing a main configuration of the base station 101.
  • the base station 101 includes a transmission / reception unit (transmission unit, reception unit) 1010, an access control / scheduling unit (access control / scheduling unit) 1011, and a determination unit 1012.
  • the transmission / reception unit 1010 transmits / receives control signaling and user data to / from user devices in the cell.
  • the access control / scheduling unit 1011 controls access and assigns a CC to a newly accessed user apparatus.
  • the determination unit 1012 determines whether the user apparatus corresponds to an LTE compatible terminal or an LTE-A compatible terminal from the random access information of the user apparatus.
  • FIG. 3 is a block diagram illustrating a main configuration of the LTE-A compatible terminal 103.
  • the LTE-A compatible terminal 103 includes a transmission / reception unit (transmission / reception unit) 1030, a random access unit 1031, a filter adjustment unit 1032, an information acquisition unit 1033, and a PDCCH detection unit (PDCCH detection unit) 1034. It is a configuration.
  • the transmission / reception unit 1030 transmits / receives control signaling and user data to / from the base station 101.
  • the random access unit 1031 generates random access information according to the type of user device (LTE compatible terminal or LTE-A compatible terminal).
  • the filter adjustment unit 1032 preferably adjusts the parameters (center frequency, frequency bandwidth) of the reception frequency band filter based on CC allocation information from the base station.
  • the information acquisition unit 1033 is operable to determine whether a user apparatus that transmits and receives information via the base station 101 is an LTE compatible terminal or an LTE-A compatible terminal.
  • System of LTE communication system broadcast by user device capability such as system frequency bandwidth and number of CCs to be supported, information on user device category information (internal information), and broadcast channel BCH (708 in FIG.
  • the system information (external information) of the mobile communication system 100 including the information and the system information of the LTE-A communication system broadcasted by the additional broadcast channel BCH-A (707 in FIG. 7) is acquired.
  • the system information includes LTE-A communication system information such as LTE-A system frequency bandwidth, number of CCs, CC number, CC center frequency, CC frequency bandwidth, in addition to all LTE system information.
  • the PDCCH detection unit 1034 performs PDCCH blind detection according to the LTE standard for all CCs within the operating system frequency bandwidth.
  • the PDCCH blind detection method is described in 3GPP related standards.
  • FIGS. 2 and 3 show specific configurations of the base station 101 and the LTE-A compatible terminal 103 according to the embodiment of the present invention.
  • the present invention is It is obvious that the present invention is not limited to these specific configurations, and can be matched, divided, or combined with some or all of the configurations, or can be realized by software, hardware, or a combination thereof. is there.
  • the mobile communication system 100 of the present invention shows an LTE-A CC allocation method.
  • the system frequency bandwidth of LTE-A is indicated as Ba (MHz).
  • the system frequency bandwidth Ba of LTE-A can be set to 100 MHz from the draft of the resolution submitted at the recently opened LTE-A conference.
  • the frequency bandwidth of the LTE CC is indicated as B (MHz).
  • the range of B is 1.25 to 20 MHz.
  • B is set to 20 MHz.
  • Specific system frequency bandwidth, CC configuration, etc. of LTE-A are designed by a mobile phone service provider, and are notified to user devices (communication terminals) as LTE-A system information.
  • the access control / scheduling unit 1011 of the base station 101 uses B (unit: “MHz”) in the LTE-A system frequency band Ba (unit: “MHz”, which is 100 MHz in the present embodiment).
  • the frequency bandwidth is set to the main CC.
  • the center frequency of the main CC is on an integer multiple of 100 kHz (the channel interval of the LTE communication system, that is, the raster is 100 kHz).
  • the signal format in the main CC (703) is completely compatible with LTE. That is, within the 20 MHz frequency band, LTE broadcast channel BCH (708), synchronization channel SCH, and downlink control channel PDCCH completely follow the conventional LTE design according to 3GPP specifications.
  • the 20 MHz main CC (703) includes an LTE-A broadcast channel BCH-A (707).
  • the LTE-A broadcast channel BCH-A (707) is formed of an LTE broadcast channel BCH (708) and an additional broadcast channel BCH-A having system information specific to the LTE-A communication system.
  • the common search area (Common ⁇ ⁇ ⁇ Search Space) included in the PDCCH is in the main CC (703).
  • the LTE compatible terminal 102 obtains LTE system information configured by master information MIB (Master Information Block) and multiple system information SIBs (System Information Blocks) of the LTE communication system from the broadcast channel BCH of the LTE communication system. Can be acquired.
  • the LTE-A compatible terminal 103 combines BCH and BCH-A, that is, LTE-A communication system system information in BCH and master information MIB and system information in the LTE-A communication system in BCH-A.
  • LTE-A related information such as SIBs, system information specific to LTE-A communication system, and frequency allocation of LTE-A system frequency bandwidth, number of CCs, CC number, CC center frequency, CC frequency bandwidth LTE-A system information configured by information and the like can be acquired.
  • the main CC is arranged in a continuous CC having the largest frequency bandwidth.
  • a plurality of LTE-A CCs are continuous (continuous CC)
  • the main CC is arranged in the center CC among the plurality of CCs of the LTE-A.
  • the main CC is not limited to the central CC, and may be a CC near the center. Further, when the plurality of CCs are even numbers, any one of the vicinity of the two CCs in the center of the continuous CCs or a CC in the vicinity thereof may be used.
  • the center frequency of the main CC is an integer multiple of 100 kHz of the frequency so that the LTE compatible terminal 102 and the LTE-A compatible terminal 103 can perform initial cell search (SCH reception) in the main CC.
  • the access control / scheduling unit 1011 sets a portion excluding the B (MHz) portion of the LTE-A system frequency bandwidth as a sub CC.
  • the sub CC can be divided into a plurality of sections according to the design. In this embodiment, one section is set to 10 MHz, and the LTE-A system frequency band includes a total of eight sub CCs.
  • FIG. 4 is a sequence diagram showing a first example of a flow of control signaling transmission / reception between the LTE-A compatible terminal 103 and the base station 101 when the LTE-A compatible terminal 103 accesses the base station 101. is there.
  • the transmission / reception unit 1030 of the LTE-A compatible terminal 103 receives the synchronization channel SCH in the main CC, and performs system synchronization between the LTE-A compatible terminal 103 and the base station 101.
  • the information acquisition unit 1033 of the LTE-A compatible terminal 103 acquires the system information of the mobile communication system 100 through the broadcast channel BCH and the additional broadcast channel BCH-A in the main CC.
  • the LTE-A compatible terminal 103 compares the bandwidth of the mobile communication system 100 in the acquired system information with the operable frequency band range of the LTE-A compatible terminal 103.
  • the random access unit 1031 of the LTE-A compatible terminal 103 is defined by 3GPP. Random access according to the LTE standard.
  • the LTE-A compatible terminal 103 uses the newly defined LTE-A random number as follows. Access.
  • the LTE-A compatible terminal 103 transmits a random access channel (RACH) through an uplink CC (uplink CC paired with the main CC) corresponding to the main CC in the LTE-A system frequency bandwidth.
  • RACH random access channel
  • the base station 101 transmits random access response information (RACH message B) to the LTE-A compatible terminal 103 through the main CC (42).
  • the transmission / reception unit 1030 of the LTE-A compatible terminal 103 connects to RRC (Radio Resource Control) in the information (RACH message C) during the random access process through a common control channel (CCCH: Common Control Channel) in the random access channel.
  • RRC Radio Resource Control
  • CCCH Common Control Channel
  • Information on the operable system frequency bandwidth of the LTE-A compatible terminal 103 is added to the billing information and transmitted to the base station 101 (43).
  • the access control / scheduling unit 1011 of the base station 101 based on the acquired operable system frequency bandwidth of the LTE-A compatible terminal 103, the current load state of the mobile communication system 100, and the load state of each sub CC, The LTE-A system frequency bandwidth to be allocated to the LTE-A compatible terminal 103 and the main CC are determined.
  • FIG. 8 shows one specific example of LTE-A system frequency bandwidth allocated to the LTE-A compatible terminal 103B and main CC allocation.
  • the operable system frequency bandwidth of the LTE-A compatible terminal 103B is 60 MHz, and in addition to including one fixed 20 MHz main CC (805) in the 60 MHz, four 10 MHz Of sub-CCs (806, 807, 808, 809).
  • the access control / scheduling unit 1011 of the base station 101 acquires the number of user devices allocated in each sub CC, and allocates the four sub CCs with the smallest number of user devices allocated to the LTE-A compatible terminal 103 by rearrangement. .
  • Other sub CCs may be assigned. Other methods may be used for the CC allocation method.
  • the base station 101 adds allocation information to the LTE-A compatible terminal 103 to contention resolution information (downlink control signaling, Contention Resolution, RACH message D), which is information during the random access process, and transmits the information to the base station. .
  • the filter adjustment unit 1032 of the LTE-A compatible terminal 103 preferably adjusts the reception frequency band filter parameters (center frequency, frequency bandwidth) and receives downlink information. To do.
  • FIG. 5 is a sequence diagram showing a second example of the flow of control signaling transmission / reception between the LTE-A compatible terminal 103 and the base station 101 when the LTE-A compatible terminal 103 accesses the base station 101. is there.
  • the access control / scheduling unit 1011 of the base station 101 performs the procedure 503 based on the acquired operable system frequency bandwidth of the LTE-A compatible terminal 103, the current load state of the mobile communication system 100, and the load state of each CC.
  • the system frequency bandwidth to be allocated to the LTE-A compatible terminals 102 and 103 (A to D) and the main CC are determined.
  • FIG. 8 is an explanatory diagram showing an example of assigning CCs to the LTE compatible terminal 102 and the plurality of LTE-A compatible terminals 103. A second example of assignment will be described with reference to FIG. In the example shown in FIG. 8, CC allocation states are shown for the LTE compatible terminal 102 and the four LTE-A compatible terminals 103 (A to D).
  • the LTE compatible terminal 102 with an operable system frequency bandwidth of 20 MHz is assigned a main CC (805) of 20 MHz.
  • the LTE-A compatible terminal 103A having an operating system frequency band of 40 MHz is assigned two 10 MHz sub CCs (801, 802) in addition to the main CC (805).
  • CC (803,808) may be sufficient as sub CC allocated.
  • the LTE-A compatible terminal 103B having an operable system frequency bandwidth of 60 MHz is assigned four 10 MHz sub CCs (801, 802, 808, 809) in addition to the 20 MHz main CC (805). .
  • Other sub CC combinations may be used. The same applies to the LTE-A compatible terminals 103 (C, D).
  • the transmitting / receiving unit 1010 of the base station 101 transmits contention resolution information (downlink control signaling, Contention Resolution, RACH message D), which is information during the random access process (504).
  • contention resolution information downlink control signaling, Contention Resolution, RACH message D
  • the access control / scheduling unit 1011 of the base station 101 performs resource allocation of CC allocation information to the LTE-A compatible terminal 103 in the first scheduling subframe through the PDCCH of the main CC, and performs scheduling information ( (Point, size, etc. information indicating the resource of CC allocation information) is transmitted (505). Further, the access control / scheduling unit 1011 performs higher layer signaling to the CC allocation information resource through the main CC, and transmits the CC allocation information of the LTE-A compatible terminal 103 (506).
  • the PDCCH detection unit 1034 of the LTE-A compatible terminal 103 performs scheduling information on resources of CC allocation information in the PDCCH in the main CC (information such as points and sizes indicating the resources of the CC allocation information) ) To read the PDSCH data corresponding to the downlink data shared channel (PDSCH: PhysicalPhysDownlink Shared Channel) resource, and obtain the CC allocation information.
  • PDSCH PhysicalPhysDownlink Shared Channel
  • the LTE-A compatible terminal 103 operates in the assigned CC in the scheduling subframe subsequent to the first scheduling subframe.
  • the filter adjustment unit 1032 adjusts the parameters of the filter based on the acquired CC allocation information so that the information from the base station 101 can be suitably received.
  • the CC assignment information includes CC (CC center frequency, CC number, etc.) information including a plurality of CCs assigned to the LTE-A compatible terminal 103 and PDCCH.
  • the common search area (Common Search Space) in the PDCCH is arranged in the main CC.
  • the common search area in the LTE-A PDCCH can be used in multiple.
  • an LTE-A PDCCH common search area can be newly defined in the main CC.
  • FIG. 6 is an explanatory diagram showing a state when the PDCCH is distributed to the LTE-A compatible terminal 103.
  • FIG. 6A is a diagram illustrating a CC to which a PDCCH is allocated
  • FIG. 6B is a flowchart illustrating a flow of detecting a PDCCH.
  • the base station 101 allocates a specific CC to the LTE-A compatible terminal 103 by a specified calculation method, and performs LTE PDCCH distribution in the specific CC.
  • the PDCCH detection unit 1034 of the LTE-A compatible terminal 103 performs rearrangement processing on the sub CCs within the corresponding operating system frequency bandwidth.
  • the rearrangement processing refers to rearranging the CC processing procedures according to a certain rule, for example, rearrangement processing in the order of CC numbers.
  • the sub CCs (601 to 603) shown in (a) of FIG. 6 are the results of rearrangement in the order of the sub CCs 601, 602, and 603 by the rearrangement process. Also, the flow of performing PDCCH detection in this order is shown in FIG.
  • the PDCCH detection unit 1034 performs LTE PDCCH blind detection in the newly defined downlink control information (DCI) format based on the rearranged order (S611). Specifically, first, PDCCH detection is performed on the sub CC (601) (S612), and if no PDCCH is detected (not detected in S612), detection is performed on the next sub CC (602). (S613). When the PDCCH is not detected in the sub CC (602) (not detected in S613), the PDCCH is detected in the next sub CC (603) (S614). In this way, the operation continues until the detection of PDCCH in all the sub CCs (601 to 603) is completed.
  • DCI downlink control information
  • the PDCCH detection is terminated at that time ( S615).
  • the PDCCH detection is terminated as it is (S615).
  • the flow at this time is shown by a broken line in FIG.
  • the present invention is not limited to this.
  • the PDCCH includes all resource allocation information in the operating system frequency bandwidth of the LTE-A compatible terminal 103.
  • the PDCCH in each sub CC includes corresponding PDSCH related information in the CC in the format of downlink control information (DCI) by a method compatible with LTE.
  • DCI downlink control information
  • FIG. 7 is a schematic diagram of channel mapping in LTE-A.
  • the vertical axis represents frequency and the horizontal axis represents time.
  • LTE-A includes a 20 MHz main CC (703) and a 10 MHz sub CC (701, 702, 704, 705).
  • four sub CCs are shown, it is not restricted to this.
  • the number of sub CCs is changed according to the operating system frequency bandwidth.
  • the main CC (703) and the sub CCs (701, 702, 704, 705) all include the PDCCH in the first symbol. Further, the common search area 706 is included in the PDCCH of the main CC.
  • a symbol next to the symbol including the PDCCH of the main CC (703) includes an area 707 including BCH / SCH and BCH-A.
  • the LTE compatible terminal 102 and the LTE-A compatible terminal 103 both access the mobile communication system 100 to which LTE-A is appropriately applied, and LTE- A high-speed data service provided by A can be received. Further, the above-described design is simple and highly efficient, is not complicated in design, and satisfies the requirements of user devices.
  • each block of the base station 101 and the LTE-A compatible terminal 103 in particular, the transmission / reception unit 1010 of the base station 101, the access control / scheduling unit 1011, the determination unit 1012, and the transmission / reception unit 1030 of the LTE-A compatible terminal 103,
  • the random access unit 1031, the filter adjustment unit 1032, the information acquisition unit 1033, and the PDCCH detection unit 1034 may be configured by hardware logic, or realized by software using a CPU (central processing unit) as follows. Also good.
  • the base station 101 and the LTE-A compatible terminal 103 include a CPU that executes instructions of a control program for realizing each function, a ROM (read only memory) that stores the program, and a RAM (random access memory) that develops the program. ),
  • a storage device such as a memory for storing the program and various data.
  • the object of the present invention is to enable a computer to read program codes (execution format program, intermediate code program, source program) of control programs for the base station 101 and the LTE-A compatible terminal 103, which are software for realizing the functions described above.
  • the computer or CPU or MPU (microprocessor unit)
  • Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, a CD-ROM (compact disk-read-only memory) / MO (magneto-optical) / Disc system including optical disc such as MD (Mini Disc) / DVD (digital versatile disc) / CD-R (CD Recordable), card system such as IC card (including memory card) / optical card, or mask ROM / EPROM ( A semiconductor memory system such as erasable, programmable, read-only memory, EEPROM (electrically erasable, programmable, read-only memory) / flash ROM, or the like can be used.
  • a tape system such as a magnetic tape and a cassette tape
  • a magnetic disk such as a floppy (registered trademark) disk / hard disk
  • the base station 101 and the LTE-A compatible terminal 103 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet an intranet, an extranet, a LAN (local area network), an ISDN (integrated services network, digital network), a VAN (value-added network), and a CATV (community antenna) television communication.
  • a network, a virtual private network, a telephone line network, a mobile communication network, a satellite communication network, etc. can be used.
  • the transmission medium constituting the communication network is not particularly limited.
  • IEEE institute of electrical and electronic engineering
  • USB power line carrier
  • cable TV line cable TV line
  • telephone line ADSL (asynchronous digital subscriber loop) loop Wireless
  • IrDA infrared data association
  • remote control Bluetooth (registered trademark)
  • 802.11 wireless high data rate
  • mobile phone network satellite line, terrestrial digital network, etc.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • a communication device that supports only LTE can be compatible with a communication system to which LTE-A is applied, it is suitable for a communication system that supports LTE-A.
  • Mobile communication system (communication system) 101 Base station 102 LTE compatible terminal (communication terminal) 103 LTE-A compatible terminal (communication terminal) 1010 Transmission / reception unit (transmission means, reception means) 1011 Access control / scheduling unit (access control / scheduling means) 1030 Transmission / reception unit (transmission / reception means) 1034 PDCCH detector (PDCCH detector)

Abstract

A mobile communication system (100) which supports an LTE communication terminal (102) and an LTE-A communication terminal (103).  The frequency band width of the mobile communication system (100) is divided into a main frequency band and one or more sub frequency bands.  When a base station (101) receives operation width information showing an operable frequency band width of the communication terminal (102, 103) from the communication terminal (102, 103), the base station (101) sets the main frequency band and a sub frequency band selected by the base station (101) as the operation frequency band of the communication terminal to the communication terminal (102, 103), determines, out of the set operation frequency band, a sub frequency band to which PDCCH is assigned, and assigns the PDCCH of LTE to the determined sub frequency band.

Description

基地局、通信端末、通信システム、基地局の制御方法、通信端末の制御方法、通信システムの制御方法、制御プログラム、および記録媒体Base station, communication terminal, communication system, base station control method, communication terminal control method, communication system control method, control program, and recording medium
 本発明は、移動通信の技術分野に関し、特に、LTE(Long-Term Evolution)-Advancedが適用された基地局、通信端末、通信システム、基地局の制御方法、通信端末の制御方法、通信システムの制御方法、制御プログラム、および記録媒体に関するものである。 The present invention relates to a technical field of mobile communication, and in particular, a base station, a communication terminal, a communication system, a base station control method, a communication terminal control method, and a communication system to which LTE (Long-Term Evolution) -Advanced is applied. The present invention relates to a control method, a control program, and a recording medium.
 2008年4月7~8日に、中国の深セン市で3GPP(The 3rd Generation Partner Project)組織のIMT Advanced Workshop会議が開かれ、LTE-Advanced(以降LTE-Aと称する)の要求条件と可能な関連技術の提案が討論された。この会議において、多数の会社から、LTE-Aにおけるシステム周波数帯域幅に関する問題および周波数スペクトル(キャリア)の集合(Carrier Aggregation)に関する問題が提出された。この討論および協議を経た後、会議の議長より、LTE-Aにおける要求条件の草案が提出された(非特許文献1)。 April 7-8, 2008, 3GPP (The 3 rd Generation Partner Project) in Shenzhen City of China organization IMT Advanced Workshop meeting is opened, possible with the requirements of the LTE-Advanced (hereinafter referred to as LTE-A) Proposals for related technologies were discussed. At this meeting, a number of companies submitted problems regarding system frequency bandwidth in LTE-A and problems related to frequency spectrum (carrier) aggregation (Carrier Aggregation). After this discussion and discussion, the chair of the meeting submitted a draft requirement for LTE-A (Non-patent Document 1).
 該草案には、LTE-Aは最大で100MHzのシステム周波数帯域幅をサポートすべきであると明確に記載されている。なお、100MHzのシステム周波数帯域幅は、一つの連続の周波数スペクトル(連続の複数キャリア)により形成されてもよいし、複数の連続しない周波数スペクトル(非連続の複数キャリア)が集められて形成されてもよい。また、該草案には、LTEとLTE-Aとが同一の周波数スペクトル上で共存可能であると記載されている。この場合、LTE-Aが従来のLTE対応ユーザ装置(通信端末、移動局装置)に対し互換性を有する必要が生じる。 The draft clearly states that LTE-A should support a maximum system frequency bandwidth of 100 MHz. The system frequency bandwidth of 100 MHz may be formed by one continuous frequency spectrum (continuous plural carriers), or may be formed by collecting a plurality of non-continuous frequency spectra (non-contiguous plural carriers). Also good. The draft also describes that LTE and LTE-A can coexist on the same frequency spectrum. In this case, LTE-A needs to be compatible with conventional LTE-compatible user apparatuses (communication terminals and mobile station apparatuses).
 システム周波数帯域幅をより広帯域化するのは、LTE-Aが期待するより高いピークデータ伝送速度を得るためである。また、LTE-AにLTE対応ユーザ装置への互換性を持たせるのは、LTEからLTE-Aへの移行を円滑に行うためである。 The reason why the system frequency bandwidth is made wider is to obtain a higher peak data transmission rate than expected by LTE-A. In addition, the reason why LTE-A is compatible with LTE-compatible user equipment is to make a smooth transition from LTE to LTE-A.
 これにより、LTE-Aの初期ネットワークの構築にもメリットがある。なぜなら、LTE-Aの初期ネットワークにおいては、従来のLTE対応ユーザ装置の数がLTE-A対応ユーザ装置より大幅に上回ると予測されるところ、LTE対応ユーザ装置にLTE-Aのネットワークへの好適なアクセスを確保すれば、より多数のユーザ装置がアクセス可能なネットワークを構築できるため、より多数のユーザ装置に対しデータサービスを提供することが可能となるからである。 This also has an advantage in the construction of the LTE-A initial network. This is because, in the LTE-A initial network, the number of conventional LTE-compatible user devices is expected to be significantly greater than that of LTE-A-compatible user devices. This is because, if access is secured, a network that can be accessed by a larger number of user devices can be constructed, so that data services can be provided to a larger number of user devices.
 なお、LTE通信システムのシステム周波数帯域幅は最大20MHzに設計されているため、LTE対応ユーザ装置のシステム周波数帯域幅も20MHzである。そして、システム周波数帯域幅が、最大100MHzのLTE-A通信システムにおいて、最大システム周波数帯域幅が20MHzのLTE対応ユーザ装置に互換性サービスを提供するためには、以下の点に問題を生じる。すなわち、LTE-Aの設計、特に、システム周波数帯域の区分、下りリンクにおけるブロードキャストチャネル(BCH:Broadcast CHannel)の同期チャネル(SCH:Synchronization Channel)の設計、およびシステム制御シグナリング(PDCCH:Physical Downlink Control Channel)の設計などの点について問題を生じる。 In addition, since the system frequency bandwidth of the LTE communication system is designed to a maximum of 20 MHz, the system frequency bandwidth of the LTE-compatible user device is also 20 MHz. In the LTE-A communication system with a maximum system frequency bandwidth of 100 MHz, in order to provide a compatibility service to an LTE-compatible user apparatus with a maximum system frequency bandwidth of 20 MHz, the following problems arise. That is, LTE-A design, in particular, system frequency band segmentation, downlink broadcast channel (BCH: Broadcast CHannel) synchronization channel (SCH: Synchronization Channel) design, and system control signaling (PDCCH: Physical Downlink Control Channel) ) Issues with respect to design and the like.
 上記の問題について、パナソニック株式会社は、2008年4月に中国の深セン市で開かれた会議において、以下の解決方法を提案した(非特許文献2)。この解決方法よると、LTE-Aのシステム周波数帯域幅は20MHzの複数のサブ周波数帯域(複数のキャリア、1つのキャリアはコンポネントキャリアCC(Component Carrier)と称する)に区分され、20MHzのサブ周波数帯域(CC)のそれぞれで同期チャネルSCHおよびブロードキャストチャネルBCHを伝送することにより、20MHzのLTE対応ユーザ装置との互換性を有している。 Regarding the above problems, Panasonic Corporation proposed the following solution at a meeting held in Shenzhen, China in April 2008 (Non-Patent Document 2). According to this solution, the system frequency bandwidth of LTE-A is divided into a plurality of sub-frequency bands of 20 MHz (a plurality of carriers, one carrier is referred to as a component carrier CC), and the sub-frequency band of 20 MHz. Each (CC) transmits a synchronization channel SCH and a broadcast channel BCH, thereby having compatibility with a 20 MHz LTE-compatible user apparatus.
 また、華為会社(Huawei Technologies corporation)は、上記同会議において、他の解決方法を提案した(非特許文献3)。華為会社の方法は、LTEの参照信号RS(Reference Signal)、同期チャネルSCH、ブロードキャストチャネルBCHおよび制御チャネルPDCCHは、少なくとも、LTE-Aの一部のCC内で伝送され、これらのチャネルは、LTE対応ユーザ装置がLTE-Aの該一部のCC内に好適にアクセスすることを確保するものである。また、華為会社は、LTE-Aの複数のCC内で同期チャネルSCHとブロードキャストチャネルBCH伝送すると、無線リソースの占有率が増大し、LTE-Aの設計がより複雑になるとしている。 In addition, Huawei Technologies Corporation proposed another solution at the same meeting (Non-Patent Document 3). In the Huawei company method, the LTE reference signal RS (Reference Signal), the synchronization channel SCH, the broadcast channel BCH, and the control channel PDCCH are transmitted in at least some CCs of LTE-A. It is ensured that the corresponding user apparatus preferably accesses the partial CC of LTE-A. In addition, Huawei Company says that when the synchronization channel SCH and the broadcast channel BCH are transmitted in a plurality of CCs of LTE-A, the occupation rate of radio resources increases and the design of LTE-A becomes more complicated.
 5月の米国カンザス州の会議で、NTTドコモ株式会社も上記華為会社と同じ観点を表明した(非特許文献4)。一方、同会議で、米国のテキサス・インスツルメンツ会社(Texas Instruments corporation)は、パナソニック株式会社の提案を支持すると表明した(非特許文献5)。 At the meeting in Kansas, USA in May, NTT Docomo Co., Ltd. expressed the same viewpoint as Huawei Company (Non-patent Document 4). Meanwhile, at the conference, Texas Instruments Corporation in the United States announced that it would support Panasonic's proposal (Non-Patent Document 5).
 中興会社(ZTE corporation)は、同会議で、他の方法を提案した(非特許文献6)。中興会社が提案した方法は、LTE-Aのシステム周波数帯域幅を複数CCに分割して、その中のいずれか1つのCCをメインCCに設定し、その他のすべてのCCはサブCCに設定して、メインCCおよびサブCCのいずれにおいてもLTEの同期チャネルSCH、ブロードキャストチャネルBCH、および制御チャネルPDCCHを伝送するものである。また、メインCC内には、LTE-Aの同期チャネルSCH、ブロードキャストチャネルBCH、および制御チャネルPDCCHも伝送するものである。 ZTE Corporation proposed another method at the same meeting (Non-patent Document 6). In the method proposed by Chukosha, the system frequency bandwidth of LTE-A is divided into multiple CCs, one of which is set as the main CC, and all other CCs are set as sub CCs. Thus, the LTE synchronization channel SCH, broadcast channel BCH, and control channel PDCCH are transmitted in both the main CC and the sub CC. In addition, LTE-A synchronization channel SCH, broadcast channel BCH, and control channel PDCCH are also transmitted in the main CC.
 上述した三つの方法において、パナソニック株式会社が提案した方法と中興会社が提案した方法は、いずれも複数のサブCC内において、それぞれのサブCCに対応するLTE関連チャネルを伝送するので、LTE-AのいずれのCCもLTE対応ユーザ装置のアクセスをサポートしていることが必要となる。これは、LTE-Aの設計が困難となるとともに、LTE-Aの負荷も大幅に増加する。LTE-Aの実際の使用から考えると、CCがLTEの数倍であるLTE-Aでは、LTEにおけるユーザ数と同じ数のユーザにサービスを提供する場合に、LTEのときと同じ数の基地局を必要としない。したがって、LTEにおけるユーザ装置の数と同じ数のユーザ装置を、LTE-Aでカバーする場合、LTEと比較して少ない基地局でカバーすることができる。 Of the three methods described above, both the method proposed by Panasonic Corporation and the method proposed by Chukoh Co., Ltd. transmit LTE-related channels corresponding to each sub CC within a plurality of sub CCs. Any of these CCs must support access of LTE-compatible user equipment. This makes it difficult to design LTE-A and greatly increases the load on LTE-A. Considering the actual use of LTE-A, in LTE-A in which CC is several times the number of LTE, the same number of base stations as in LTE is provided when serving the same number of users as in LTE. Do not need. Therefore, when LTE-A covers the same number of user equipment as the number of user equipment in LTE, it can be covered with fewer base stations than LTE.
 また、華為会社の方法は、少なくとも1つのサブCCによってLTEチャネル関連チャネルを伝送するものである。しかしながら、その方法を具体的にどのように実現するかについては、言及されていない。 Also, the Huawei company's method is to transmit the LTE channel related channel by at least one sub CC. However, there is no mention of how to implement the method specifically.
 以上のように、LTE-AのCC全体を適切に活用して、LTE-A対応ユーザ装置にサービスを提供するとともに、従来のLTE対応ユーザ装置への互換性も持たせる技術が期待されている。 As described above, there is a demand for a technology that appropriately utilizes the entire CC of LTE-A to provide a service to an LTE-A-compatible user device and also has compatibility with a conventional LTE-compatible user device. .
 本発明は、LTE-Aついて、複数のCCを有するLTE-A対応ユーザ装置を導入する問題、およびLET対応ユーザ装置への互換性を持たせる問題を効率よく解決することにある。具体的には、下記のとおりである。システム周波数帯域幅が100MHzに達すると予測されるLTE-AシステムにアクセスするLTE-A対応ユーザ装置の動作システム周波数帯域幅は、100MHzより小さい場合もある。また、LTE-Aに、従来のLET対応ユーザ装置への互換性を持たせる必要がある。したがって、LTE-Aに対してどのように設計および標準化することにより、LTE対応ユーザ装置に高効率のサービスを提供するとともに、LTE対応ユーザ装置より大きい動作システム周波数帯域幅を有し、かつ複数のCCを有するLTE-A対応ユーザ装置に悪影響を与えないようにするかという課題を解決するものである。 It is an object of the present invention to efficiently solve the problem of introducing an LTE-A-compatible user apparatus having a plurality of CCs and the compatibility of the LTE-A compatible user apparatus with LTE-A. Specifically, it is as follows. The operating system frequency bandwidth of an LTE-A capable user device that accesses an LTE-A system where the system frequency bandwidth is expected to reach 100 MHz may be less than 100 MHz. Further, it is necessary to make LTE-A compatible with a conventional user apparatus for LET. Thus, how to design and standardize for LTE-A provides a highly efficient service to LTE-capable user equipment, has an operating system frequency bandwidth greater than LTE-capable user equipment, and a plurality of An object of the present invention is to solve the problem of not adversely affecting an LTE-A compatible user apparatus having a CC.
 上記課題を解決するために、本発明に係る基地局は、自局と接続された通信端末から、該通信端末の動作可能周波数帯域幅を示す動作幅情報を受信する受信手段と、自局と接続された、LTE-Aが適用された通信システムの周波数帯域幅の一部を該通信システムのメイン周波数帯域と決定し、該通信システムの周波数帯域において、決定したメイン周波数帯域を除いた部分を、1つ以上のサブ周波数帯域に区分し、上記動作範囲情報に基づいて、上記通信端末に対応するサブ周波数帯域を選択し、選択したサブ周波数帯域と上記メイン周波数帯域とを結合して上記通信端末の動作周波数帯域を設定し、設定した動作周波数帯域からPDCCHが割り当てられるサブ周波数帯域を決定し、決定したサブ周波数帯域において、LTEのPDCCH割り当てを行うアクセス制御/スケジューリング手段と、上記アクセス制御/スケジューリング部が設定した動作周波数帯域を示す周波数帯域割当情報をLTEの上記通信端末に送信する送信手段と、を備え、上記メイン周波数帯域における制御シグナリングおよびチャネル設計は、いずれもLTEと互換性があり、上記メイン周波数帯域には、LTEと互換性があるブロードキャストチャネルによりブロードキャストされたLTEのシステム情報と、LTE-Aのシステム情報と、LTE-Aにおいて共通に用いられる下りリンク制御チャネル情報とが含まれていることを特徴としている。 In order to solve the above-described problem, a base station according to the present invention includes a receiving unit that receives operation width information indicating an operable frequency bandwidth of a communication terminal from a communication terminal connected to the own station; A part of the frequency bandwidth of the connected communication system to which LTE-A is applied is determined as the main frequency band of the communication system, and a portion excluding the determined main frequency band in the frequency band of the communication system is determined Dividing into one or more sub frequency bands, selecting a sub frequency band corresponding to the communication terminal based on the operation range information, and combining the selected sub frequency band and the main frequency band to perform the communication The operating frequency band of the terminal is set, the sub frequency band to which the PDCCH is allocated is determined from the set operating frequency band, and the LTE PDC is determined in the determined sub frequency band. Access control / scheduling means for performing H allocation, and transmission means for transmitting frequency band allocation information indicating an operating frequency band set by the access control / scheduling unit to the communication terminal of LTE, in the main frequency band Control signaling and channel design are both compatible with LTE, and the main frequency band includes LTE system information, LTE-A system information, and LTE broadcast by a broadcast channel compatible with LTE. -A includes downlink control channel information commonly used in -A.
 これにより、メインCCおよびサブCCを設け、メインCCにおいてLTEに対する互換性を付与することができ、LTE対応の通信端末に高質のサービスを提供することができる。また、メインCC内に、すべてのユーザ装置向けの情報、同期情報および共通制御情報が含まれており、それぞれのLTE-A対応の通信端末に動作システム周波数帯域幅(複数のCC)を割り当てることにより、すべてのCCを有効に利用することができる。したがって、上述した基地局では、簡易に、LTE-Aが適用された通信システムにおいて、LTE対応の通信端末に対する互換性を実現することができ、LTE対応通信端末および多種のLTE-A対応通信端末に対し、高速のデータ通信サービスを提供することができる。 Thereby, a main CC and a sub CC can be provided, and compatibility with LTE can be provided in the main CC, and a high-quality service can be provided to an LTE-compatible communication terminal. The main CC includes information for all user devices, synchronization information, and common control information, and assigns an operating system frequency bandwidth (multiple CCs) to each LTE-A compatible communication terminal. Thus, all CCs can be used effectively. Therefore, the above-described base station can easily realize compatibility with LTE-compatible communication terminals in a communication system to which LTE-A is applied, and LTE-compatible communication terminals and various LTE-A-compatible communication terminals. On the other hand, a high-speed data communication service can be provided.
 また、上記課題を解決するために、本発明は、LTE対応ユーザ装置に対して効率よく互換性を有するとともに、動作可能周波数帯域幅(1つのCC)がより大きいLTE-A対応ユーザ装置に高速のデータサービスを提供できる、LTE-Aが適用された移動通信システムに用いられる方法および該移動通信システムに含まれる装置である。特に、LTE-A対応ユーザ装置が上記移動通信システムにアクセスする段階で、CCの割り当てを行い、適切なシグナリングメカニズムによってユーザ装置に通知する下りリンクCC構成方法を提供するものである。 In addition, in order to solve the above-described problems, the present invention is efficient for LTE-A-compatible user equipment that is compatible with LTE-compatible user equipment and has a larger operable frequency bandwidth (one CC). A method used in a mobile communication system to which LTE-A is applied and an apparatus included in the mobile communication system. In particular, the present invention provides a downlink CC configuration method in which CC is allocated when an LTE-A-compatible user apparatus accesses the mobile communication system and notified to the user apparatus by an appropriate signaling mechanism.
 本発明のLTE-Aが適用された通信システムにおける下りリンクCC構成方法は、上記課題を解決するために、基地局によりLTE-Aのシステム周波数帯域幅内の一部をLTE-AのメインCCに決定するメインCC決定ステップと、LTE-Aのシステム周波数帯域幅(複数のCC)におけるメインCCを除いた部分を、1つ以上のサブCCに区分するサブCC区分ステップと、ユーザ装置から受信した該ユーザ装置の動作可能周波数帯域幅の情報に基づいて、該ユーザ装置に対応するサブCCを選択し、選択したサブCCとメインCCとを結合して該ユーザ装置の動作周波数帯域幅と設定し、その後、該ユーザ装置に対して、上記動作周波数帯域幅からPDCCH(Packet Data Control Channel)が割り当てされる割当サブCCを決定して、該割当サブCCを示すCC割当情報をシグナリング方式で上記ユーザ装置に送信するCC割当ステップと、上記PDCCHが割り当てされる割当サブCCにおいて、LTEのPDCCH割り当てを行う送信ステップと、を含み、上記メインCC内の制御シグナリングおよびチャネル設計は、いずれもLTEと互換性があり、上記メインCC内には、LTEと互換性があるブロードキャストチャネルによりブロードキャストされた、LTEで定義したシステム情報のほか、LTE-Aのすべての情報が含まれており、かつ、上記メインCC内には、LTE-Aにおいて共通に用いられる下りリンク制御チャネル情報が含まれており、上記伝送ステップにおいて、上記ユーザ装置は、上記動作周波数帯域幅における上記サブCCに対してソート処理を行い、ソート処理後の各サブCCに対して、LTEで定義したPDCCHブラインドテストを行うことを特徴としている。 In order to solve the above-described problem, a downlink CC configuration method in a communication system to which LTE-A of the present invention is applied, a part of the LTE-A system frequency bandwidth is partially transferred by the base station to the main CC of LTE-A. A main CC determination step for determining a portion of the system frequency bandwidth (multiple CCs) of LTE-A excluding the main CC, and a sub CC partitioning step for partitioning into one or more sub CCs, and receiving from the user equipment Based on the information on the operable frequency bandwidth of the user device, the sub CC corresponding to the user device is selected, and the selected sub CC and the main CC are combined to set the operating frequency bandwidth of the user device. Thereafter, an allocation sub CC to which a PDCCH (Packet Data Control Channel) is allocated is determined from the operating frequency bandwidth for the user apparatus. A CC allocation step of transmitting CC allocation information indicating the allocation sub CC to the user apparatus in a signaling manner, and a transmission step of performing LTE PDCCH allocation in the allocation sub CC to which the PDCCH is allocated, The control signaling and channel design in the main CC are both compatible with LTE, and in the main CC, in addition to LTE-defined system information broadcast by a broadcast channel compatible with LTE, LTE -A includes all the information, and the main CC includes downlink control channel information commonly used in LTE-A. In the transmission step, the user equipment For the sub-CC in the operating frequency bandwidth, It performs processing for each sub-CC after sorting, is characterized by performing the PDCCH blind test defined in LTE.
 本発明の通信システムでは、LTE-Aのシステム周波数帯域幅が複数の離散したCCにより構成されている場合、上記メインCCは、帯域幅が一番大きい周波数帯域内に位置されることが好ましい。 In the communication system of the present invention, when the system frequency bandwidth of LTE-A is composed of a plurality of discrete CCs, the main CC is preferably located in the frequency band with the largest bandwidth.
 本発明の通信システムでは、LTE-Aのシステム周波数帯域幅が連続している場合、上記メインCCは、上記LTE-Aのシステム周波数帯域幅の真ん中に位置されることが好ましい。 In the communication system of the present invention, when the system frequency bandwidth of LTE-A is continuous, the main CC is preferably located in the middle of the system frequency bandwidth of LTE-A.
 本発明の通信システムでは、上記LTE-Aのシステム情報は、LTE-Aの周波数ポイント情報およびサブ周波数帯域の帯域幅情報を含むことが好ましい。 In the communication system of the present invention, the LTE-A system information preferably includes LTE-A frequency point information and sub-frequency bandwidth information.
 本発明の通信システムでは、基地局は、上記ユーザ装置の動作可能周波数帯域幅に基づいて、該ユーザ装置にサブCCを割り当てすることが好ましい。 In the communication system of the present invention, it is preferable that the base station assigns a sub CC to the user apparatus based on the operable frequency bandwidth of the user apparatus.
 本発明の通信システムでは、基地局は、上記ユーザ装置の動作可能周波数帯域幅および各サブCCの負荷状態に基づいて、該ユーザ装置にサブ周波数帯域を割り当てることが好ましい。 In the communication system of the present invention, it is preferable that the base station allocates a sub frequency band to the user apparatus based on the operable frequency bandwidth of the user apparatus and the load state of each sub CC.
 本発明の通信システムでは、上記周波数帯域割当情報内の、基地局が上記ユーザ装置にスケジューリングした第一番目のサブフレームにおける高位レイヤのシグナリングが、基地局からユーザ装置に伝送されることが好ましい。 In the communication system of the present invention, it is preferable that signaling in a higher layer in the first subframe scheduled by the base station for the user apparatus in the frequency band allocation information is transmitted from the base station to the user apparatus.
 本発明の通信システムでは、上記ユーザ装置にスケジューリングされた第一番目のサブフレームは、メインCCに位置されることが好ましい。 In the communication system of the present invention, it is preferable that the first subframe scheduled for the user apparatus is located in the main CC.
 本発明の通信システムでは、上記メインCC決定ステップおよび上記サブCC区分ステップは、システムの初期化過程で行われることが好ましい。 In the communication system of the present invention, it is preferable that the main CC determination step and the sub CC classification step are performed in the initialization process of the system.
 本発明の通信システムでは、上記周波数帯域割当ステップは、ユーザ装置のランダムアクセス過程で行われることが好ましい。 In the communication system of the present invention, it is preferable that the frequency band allocation step is performed in a random access process of the user apparatus.
 本発明の通信システムでは、上記周波数帯域割当ステップにおいて、上記ユーザ装置は、ランダムアクセス過程におけるRRCアクセス請求情報によって、該ユーザ装置の動作可能周波数帯域幅情報を基地局に送信することが好ましい。 In the communication system of the present invention, in the frequency band allocation step, the user apparatus preferably transmits operable frequency bandwidth information of the user apparatus to the base station according to RRC access billing information in a random access process.
 本発明の通信システムでは、上記周波数帯域割当段階おいて、上記周波数帯域割当情報は、ランダムアクセス過程における競合解決シグナリングによって、基地局からユーザ装置に伝送されることが好ましい。 In the communication system of the present invention, in the frequency band allocation step, the frequency band allocation information is preferably transmitted from the base station to the user equipment by contention resolution signaling in a random access process.
 本発明の基地局は、上記課題を解決するために、LTE-Aの周波数帯域幅内の一部をLTE-Aのメイン周波数帯域に決定し、LTE-Aの周波数帯域におけるメイン周波数帯域を除いた部分を、1つ以上のサブ周波数帯域に区分するアクセス制御/スケジューリング部と、ユーザ装置からの動作可能周波数帯域幅の情報を受信する送受信部と、を含み、上記メイン周波数帯域内の制御シグナリングおよびチャネル設計は、いずれもLTEと互換性があり、上記メイン周波数帯域内には、LTEと互換性があるブロードキャストチャネルによりブロードキャストされた、LTEで定義したシステム情報のほか、LTE-Aのすべての情報が含まれており、かつ、上記メイン周波数帯域内には、LTE-Aにおいて共通に用いられる下りリンク制御チャネル情報が含まれており、上記アクセス制御/スケジューリング部は、上記ユーザ装置から受信した該ユーザ装置の動作可能周波数帯域範囲の情報に基づいて、該ユーザ装置に対応するサブ周波数帯域を選択し、選択したサブ周波数帯域とメイン周波数帯域とを結合して該ユーザ装置の動作周波数帯域と設定し、その後、該ユーザ装置に対して、上記動作周波数帯域からPDCCHが割り当てされるサブ周波数帯域を決定して、送受信部により周波数帯域割当情報をシグナリング方式で上記ユーザ装置に送信し、上記送受信部は、上記PDCCHが割り当てされるサブ周波数帯域において、LTEで定義したPDCCH割当を行うことを特徴としている。 In order to solve the above problems, the base station of the present invention determines a part of the LTE-A frequency bandwidth as the main frequency band of LTE-A, and excludes the main frequency band in the LTE-A frequency band. Control signaling in the main frequency band, including an access control / scheduling unit that divides the portion into one or more sub-frequency bands, and a transmission / reception unit that receives information on the operable frequency bandwidth from the user apparatus. And the channel design are both compatible with LTE, and within the main frequency band, all system information defined in LTE-A, as well as system information defined by LTE, broadcasted by a broadcast channel compatible with LTE are included. Information is included, and the main frequency band includes downlink signals commonly used in LTE-A. Control channel information is included, and the access control / scheduling unit selects a sub-frequency band corresponding to the user apparatus based on information on an operable frequency band range of the user apparatus received from the user apparatus. Then, the selected sub frequency band and the main frequency band are combined and set as the operating frequency band of the user apparatus, and then the sub frequency band to which the PDCCH is allocated from the operating frequency band is set for the user apparatus. The transmission / reception unit transmits frequency band allocation information to the user apparatus in a signaling manner, and the transmission / reception unit performs LTE-defined PDCCH allocation in a sub-frequency band to which the PDCCH is allocated. Yes.
 本発明の基地局では、上記アクセス制御/スケジューリング部は、上記ユーザ装置の動作可能周波数帯域範囲に基づいて、該ユーザ装置にサブCCを割り当てすることが好ましい。 In the base station of the present invention, it is preferable that the access control / scheduling unit allocates a sub CC to the user apparatus based on the operable frequency band range of the user apparatus.
 本発明の基地局では、上記アクセス制御/スケジューリング部は、上記ユーザ装置の動作可能周波数帯域範囲および各サブCCの現在の負荷状態に基づいて、上記ユーザ装置にサブ周波数帯域を割り当てすることが好ましい。 In the base station of the present invention, it is preferable that the access control / scheduling unit allocates a sub frequency band to the user apparatus based on an operable frequency band range of the user apparatus and a current load state of each sub CC. .
 本発明の基地局では、上記送受信部は、上記ユーザ装置にスケジューリングした第1番目のサブフレームにおける高位レイヤのシグナリングによって、上記周波数帯域割当情報をユーザ装置に送信することが好ましい。 In the base station of the present invention, it is preferable that the transmission / reception unit transmits the frequency band allocation information to the user apparatus by higher layer signaling in the first subframe scheduled for the user apparatus.
 本発明の基地局では、上記送受信部は、ランダムアクセス過程における競合解決シグナリングによって、上記周波数帯域情報をユーザ装置に送信することが好ましい。 In the base station of the present invention, it is preferable that the transmission / reception unit transmits the frequency band information to the user apparatus by contention resolution signaling in a random access process.
 本発明のユーザ装置は、上記課題を解決するために、送受信部とPDCCH検出部とを備えるユーザ装置であって、上記送受信部は、上記ユーザ装置の動作可能周波数帯域幅の情報を基地局に送信し、上記PDCCH検出部は、動作周波数帯域におけるサブCCに対して並べ替え処理を行い、並べ替え処理後の各サブCCに対して、LTEで定義したPDCCHブラインド検出を行うことを特徴としている。 In order to solve the above-described problem, the user apparatus according to the present invention is a user apparatus including a transmission / reception unit and a PDCCH detection unit, and the transmission / reception unit transmits information on an operable frequency bandwidth of the user device to a base station. The PDCCH detection unit performs reordering processing on the sub CCs in the operating frequency band, and performs PDCCH blind detection defined in LTE for each sub CC after the reordering processing. .
 本発明のユーザ装置では、上記送受信部は、ランダムアクセス過程におけるRRCアクセス請求情報によって、基地局にユーザ装置の動作可能周波数帯域範囲の情報を報告することが好ましい。 In the user apparatus of the present invention, it is preferable that the transmission / reception unit reports information on an operable frequency band range of the user apparatus to the base station based on RRC access request information in a random access process.
 上述したように、本発明の通信システムおよび該通信システムに含まれる基地局、通信端末では、メインCCおよびサブCCを設けて、メインCCによりLTEへの互換性を付与するため、LTE対応ユーザ装置に高質のサービスを提供することができる。また、メインCCに、すべての通信端末向けのシステム情報、同期情報および共通制御情報が含まれている。基地局によってCCの割り当てを行い、かつ、それぞれのLTE-A対応通信端末に動作システム周波数帯域幅を割り当てすることにより、すべてのサブCCを十分で有効に利用できる。上述したLTE-Aの設計によると、簡易に、LTE-AのLTE対応通信端末に対する互換性を実現することができ、かつ、LTE対応通信端末および様々な動作システム周波数帯域幅を持つ多種のLTE-A対応通信端末に高速のデータ通信サービスを提供することができる。 As described above, in the communication system of the present invention and the base station and communication terminal included in the communication system, the main CC and the sub CC are provided, and the main CC provides compatibility with LTE. Can provide high quality service. The main CC includes system information, synchronization information, and common control information for all communication terminals. By assigning CCs by the base station and assigning an operating system frequency bandwidth to each LTE-A compatible communication terminal, all sub CCs can be used sufficiently and effectively. According to the above-described LTE-A design, it is possible to easily realize compatibility with LTE-A communication terminals of LTE-A, and various types of LTE having LTE-compatible communication terminals and various operating system frequency bandwidths. -A high-speed data communication service can be provided to A-compatible communication terminals.
 以下に、添付した図面に基づいて、本発明の好ましい実施例について説明する。これにより、本発明の上述の目的、特徴および長所がより明瞭になる。
LTE-Aが適用された移動通信システムの概略図である。 上記移動通信システムに含まれる基地局のブロック図である。 上記移動通信システムに含まれるLTE-A対応端末のブロック図である。 上記LTE-A対応端末が移動通信システムにランダムにアクセスする段階においてCC割当情報を取得するときのシーケンス図である。 上記LTE-A対応端末が高位レイヤのシグナリングによってCC割当情報を取得するときのシーケンス図である。 上記移動通信システムにおいて、LTE-A対応端末にPDCCHを割り当てる様子を示す説明図である。 LTE-AにおけるCC構成の概略図である。 LTE対応端末およびLTE-A対応端末が上記移動通信システムにおいて、割り当てられたCCを示す説明図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. This makes the above objects, features and advantages of the present invention clearer.
1 is a schematic diagram of a mobile communication system to which LTE-A is applied. It is a block diagram of a base station included in the mobile communication system. FIG. 2 is a block diagram of an LTE-A compatible terminal included in the mobile communication system. [Fig. 11] Fig. 11 is a sequence diagram when CC allocation information is acquired in a stage where the LTE-A compatible terminal randomly accesses the mobile communication system. FIG. 10 is a sequence diagram when the LTE-A compatible terminal acquires CC allocation information by higher layer signaling. FIG. 3 is an explanatory diagram showing a state in which a PDCCH is allocated to an LTE-A compatible terminal in the mobile communication system. It is the schematic of CC structure in LTE-A. FIG. 3 is an explanatory diagram showing CCs assigned to LTE-compatible terminals and LTE-A-compatible terminals in the mobile communication system.
 以下に、図面を参照しながら、本発明の好ましい実施の形態の一例について詳細に説明する。なお、本発明において必要でない細部および機能については、その説明を略して、本発明に対する理解を混乱させることを避ける。 Hereinafter, an example of a preferred embodiment of the present invention will be described in detail with reference to the drawings. It should be noted that details and functions that are not necessary in the present invention are omitted from the description to avoid confusing understanding of the present invention.
 以下に示す実施の形態は、LTE-Aが適用された移動通信システムに適用される。なお、本発明は、これらの実施の形態に記載された応用に限定されず、その他の移動通信システムにも適用可能である。 The following embodiment is applied to a mobile communication system to which LTE-A is applied. Note that the present invention is not limited to the applications described in these embodiments, and can be applied to other mobile communication systems.
 図1は、LTE-Aが適用された移動通信システム(通信システム)100の概略図である。移動通信システム100は、LTE-Aが適用されたネットワークである。基地局101は、移動通信システム100のサービス制御センターであり、セル内のLTE対応端末(LTE通信端末)102、およびLTE-A対応端末(LTE-A通信端末)103等のユーザ装置の無線リソーススケジューリング(リソース割り当て)、およびデータサービスに係るデータの伝送を行う。 FIG. 1 is a schematic diagram of a mobile communication system (communication system) 100 to which LTE-A is applied. The mobile communication system 100 is a network to which LTE-A is applied. The base station 101 is a service control center of the mobile communication system 100, and radio resources of user apparatuses such as an LTE compatible terminal (LTE communication terminal) 102 and an LTE-A compatible terminal (LTE-A communication terminal) 103 in the cell. Performs scheduling (resource allocation) and data transmission related to data services.
 LTE対応端末102は、LTEが適用されたネットワークにおいて使われていたユーザ装置であり、LTEの上り・下り制御シグナリングによる動作メカニズムに従って、LTEの規格の1つのCCで動作する。LTE-A対応端末103は、LTE-Aの規格の複数のCCにおいて、LTE-Aの規格による動作メカニズムに従って動作する。移動通信システム100では、上述した2種類のユーザ装置(LTE対応端末102、LTE-A対応端末103)に、それぞれに対応するデータサービスを提供することができる。なお、図1に示す移動通信システム100は、本発明を概略的な構成を説明するものであり、本発明を実際に移動通信システムで実施する場合、上記の構成に限定されない。例えば、図1では、LTE対応端末102およびLTE-A対応端末103は、1台ずつ記載しているが、それぞれ複数台、および複数の基地局であってもよい。 The LTE compatible terminal 102 is a user apparatus used in a network to which LTE is applied, and operates with one CC of the LTE standard according to an operation mechanism based on LTE uplink / downlink control signaling. The LTE-A compatible terminal 103 operates in accordance with an operation mechanism based on the LTE-A standard in a plurality of CCs based on the LTE-A standard. The mobile communication system 100 can provide data services corresponding to the two types of user devices (LTE compatible terminal 102 and LTE-A compatible terminal 103) described above. Note that the mobile communication system 100 shown in FIG. 1 is for explaining the schematic configuration of the present invention, and is not limited to the above configuration when the present invention is actually implemented in a mobile communication system. For example, although FIG. 1 shows one LTE-compatible terminal 102 and one LTE-A-compatible terminal 103, a plurality of base stations and a plurality of base stations may be used.
 図1に示すように、移動通信システム100は、少なくとも1つの基地局101を含む。基地局101のセル内には、いくつかのLTE対応端末102およびいくつかLTE-A対応端末103が割り当てられている。基地局101は、そのセル内に割り当てられている各LTE対応端末102およびLTE-A対応端末103に対して、無線リソーススケジューリングおよび制御シグナリングによる制御を行う。 As shown in FIG. 1, the mobile communication system 100 includes at least one base station 101. In the cell of the base station 101, several LTE compatible terminals 102 and several LTE-A compatible terminals 103 are allocated. The base station 101 controls each LTE-compatible terminal 102 and LTE-A-compatible terminal 103 allocated in the cell by radio resource scheduling and control signaling.
 本発明の基地局101の構成を、図2を用いて説明する。図2は、基地局101の要部構成を示すブロック図である。図2に示すように、基地局101は、送受信部(送信手段、受信手段)1010、アクセス制御/スケジューリング部(アクセス制御/スケジューリング手段)1011、および判定部1012を含む構成である。 The configuration of the base station 101 of the present invention will be described with reference to FIG. FIG. 2 is a block diagram showing a main configuration of the base station 101. As shown in FIG. 2, the base station 101 includes a transmission / reception unit (transmission unit, reception unit) 1010, an access control / scheduling unit (access control / scheduling unit) 1011, and a determination unit 1012.
 送受信部1010は、セル内のユーザ装置との間で制御シグナリングおよびユーザデータの送受信を行う。アクセス制御/スケジューリング部1011は、新たにアクセスしてきたユーザ装置に対して、アクセスの制御およびCCの割り当てを行う。判定部1012は、ユーザ装置のランダムアクセス情報から、該ユーザ装置がLTE対応端末とLTE-A対応端末とのいずれに該当するかの判断を行う。 The transmission / reception unit 1010 transmits / receives control signaling and user data to / from user devices in the cell. The access control / scheduling unit 1011 controls access and assigns a CC to a newly accessed user apparatus. The determination unit 1012 determines whether the user apparatus corresponds to an LTE compatible terminal or an LTE-A compatible terminal from the random access information of the user apparatus.
 本発明に係るLTE-A対応端末103の構成を、図3を用いて説明する。図3は、LTE-A対応端末103の要部構成を示すブロック図である。図3に示すように、LTE-A対応端末103は、送受信部(送受信手段)1030、ランダムアクセス部1031、フィルタ調整部1032、情報取得部1033、およびPDCCH検出部(PDCCH検出手段)1034を含む構成である。 The configuration of the LTE-A compatible terminal 103 according to the present invention will be described with reference to FIG. FIG. 3 is a block diagram illustrating a main configuration of the LTE-A compatible terminal 103. As shown in FIG. 3, the LTE-A compatible terminal 103 includes a transmission / reception unit (transmission / reception unit) 1030, a random access unit 1031, a filter adjustment unit 1032, an information acquisition unit 1033, and a PDCCH detection unit (PDCCH detection unit) 1034. It is a configuration.
 送受信部1030は、基地局101との間で制御シグナリングおよびユーザデータの送受信を行う。ランダムアクセス部1031は、ユーザ装置の種類(LTE対応端末かLTE-A対応端末)に応じてランダムアクセス情報を生成する。フィルタ調整部1032は、基地局からのCCの割り当て情報に基づいて、好適に受信周波数帯域フィルタのパラメータ(中心周波数、周波数帯域幅)を調整する。情報取得部1033は、基地局101を介して情報の送受信を行っているユーザ装置がLTE対応端末とLTE-A対応端末とのいずれであるかを判定するために、該ユーザ装置の動作可能なシステム周波数帯域幅および対応可能なCC数などユーザ装置能力、ユーザ装置カテゴリー情報に係る情報(内部情報)、及びメインCC内のブロードキャストチャネルBCH(図7の708)により報知されたLTE通信システムのシステム情報と、追加ブロードキャストチャネルBCH-A(図7の707)により報知されたLTE-A通信システムのシステム情報を含む移動通信システム100のシステム情報(外部情報)を取得する。システム情報には、LTEのすべてのシステム情報のほかに、LTE-Aのシステム周波数帯域幅、CC数、CC番号、CC中心周波数、CCの周波数帯域幅などLTE-A通信システムの情報を含む。 The transmission / reception unit 1030 transmits / receives control signaling and user data to / from the base station 101. The random access unit 1031 generates random access information according to the type of user device (LTE compatible terminal or LTE-A compatible terminal). The filter adjustment unit 1032 preferably adjusts the parameters (center frequency, frequency bandwidth) of the reception frequency band filter based on CC allocation information from the base station. The information acquisition unit 1033 is operable to determine whether a user apparatus that transmits and receives information via the base station 101 is an LTE compatible terminal or an LTE-A compatible terminal. System of LTE communication system broadcast by user device capability such as system frequency bandwidth and number of CCs to be supported, information on user device category information (internal information), and broadcast channel BCH (708 in FIG. 7) in main CC The system information (external information) of the mobile communication system 100 including the information and the system information of the LTE-A communication system broadcasted by the additional broadcast channel BCH-A (707 in FIG. 7) is acquired. The system information includes LTE-A communication system information such as LTE-A system frequency bandwidth, number of CCs, CC number, CC center frequency, CC frequency bandwidth, in addition to all LTE system information.
 PDCCH検出部1034は、動作システム周波数帯域幅内のすべてのCCに対して、LTEの規格によるPDCCHブラインド検出を行う。PDCCHブラインド検出方法は3GPP関連規格書に記載されている。 The PDCCH detection unit 1034 performs PDCCH blind detection according to the LTE standard for all CCs within the operating system frequency bandwidth. The PDCCH blind detection method is described in 3GPP related standards.
 なお、図2および図3には、本発明の実施の形態に係る基地局101およびLTE-A対応端末103の具体的な構成が示されているが、本分野の当業者にとって、本発明がこれらの具体的な構成に限定されず、その中の一部又は全部の構成に対して整合、分割又は組合せをすることができ、あるいは、ソフトウェア、ハードウェア又はそれらの組合せにより実現できることは明らかである。 2 and 3 show specific configurations of the base station 101 and the LTE-A compatible terminal 103 according to the embodiment of the present invention. For those skilled in the art, the present invention is It is obvious that the present invention is not limited to these specific configurations, and can be matched, divided, or combined with some or all of the configurations, or can be realized by software, hardware, or a combination thereof. is there.
 次に、図4~図8を参照しながら、本発明の実施の形態に係るLTE-Aが適用された移動通信システム100の下りリンクCC構成方法について詳細に説明する。 Next, a downlink CC configuration method of the mobile communication system 100 to which LTE-A according to the embodiment of the present invention is applied will be described in detail with reference to FIGS.
 本発明の移動通信システム100は、LTE-AのCCの割当方法を示すものである。ここで、LTE-Aのシステム周波数帯域幅をBa(MHz)と示す。なお、具体的には、最近に開かれたLTE-A会議で提出された決議の草案より、LTE-Aのシステム周波数帯域幅Baは100MHzに設定することができる。一方、LTEのCCの周波数帯域幅はB(MHz)と示す。なお、現在のLTEの決議によると、Bの範囲は1.25~20MHzである。本実施の形態ではBは20MHzに設定する。具体的なLTE-Aのシステム周波数帯域幅、及びCC構成などは携帯電話サービス提供業者によって設計され、LTE-Aシステム情報としてユーザ装置(通信端末)に報知されている。 The mobile communication system 100 of the present invention shows an LTE-A CC allocation method. Here, the system frequency bandwidth of LTE-A is indicated as Ba (MHz). Specifically, the system frequency bandwidth Ba of LTE-A can be set to 100 MHz from the draft of the resolution submitted at the recently opened LTE-A conference. On the other hand, the frequency bandwidth of the LTE CC is indicated as B (MHz). According to the current LTE resolution, the range of B is 1.25 to 20 MHz. In the present embodiment, B is set to 20 MHz. Specific system frequency bandwidth, CC configuration, etc. of LTE-A are designed by a mobile phone service provider, and are notified to user devices (communication terminals) as LTE-A system information.
 まず、基地局101のアクセス制御/スケジューリング部1011は、LTE-Aのシステム周波数帯域Ba(単位は「MHz」。本実施の形態では100MHzである)内のB(単位は「MHz」。本実施の形態では20MHzである)周波数帯域幅をメインCCと設定する。このメインCCの中心周波数は100kHzの整数倍の周波数上にある(LTE通信システムのチャネル間隔、すなわちrasterが100kHzである)。図7に示したように、メインCC(703)内の信号形式は、LTEと完全に互換性を有する。すなわち、20MHzの周波数帯域内では、LTEのブロードキャストチャネルBCH(708)、同期チャネルSCH、および下り制御チャネルPDCCHは、3GPPの仕様書に従って従来のLTEの設計に完全に従う。また、20MHzのメインCC(703)内には、LTE-AのブロードキャストチャネルBCH-A(707)が含まれる。LTE-AのブロードキャストチャネルBCH-A(707)は、LTEのブロードキャストチャネルBCH(708)と、LTE-A通信システム特有のシステム情報を持つ追加ブロードキャストチャネルBCH-Aから形成されている。またPDCCHに含まれる共通サーチエリア(Common Search Space)はメインCC(703)にある。 First, the access control / scheduling unit 1011 of the base station 101 uses B (unit: “MHz”) in the LTE-A system frequency band Ba (unit: “MHz”, which is 100 MHz in the present embodiment). The frequency bandwidth is set to the main CC. The center frequency of the main CC is on an integer multiple of 100 kHz (the channel interval of the LTE communication system, that is, the raster is 100 kHz). As shown in FIG. 7, the signal format in the main CC (703) is completely compatible with LTE. That is, within the 20 MHz frequency band, LTE broadcast channel BCH (708), synchronization channel SCH, and downlink control channel PDCCH completely follow the conventional LTE design according to 3GPP specifications. The 20 MHz main CC (703) includes an LTE-A broadcast channel BCH-A (707). The LTE-A broadcast channel BCH-A (707) is formed of an LTE broadcast channel BCH (708) and an additional broadcast channel BCH-A having system information specific to the LTE-A communication system. The common search area (Common エ リ ア Search Space) included in the PDCCH is in the main CC (703).
 そして、LTE対応端末102は、LTE通信システムのブロードキャストチャネルBCHにから、LTE通信システムのマスター情報MIB(Master Information Block)と複数システム情報 SIBs(System Information Blocks)により構成されているLTEのシステム情報を取得することができる。また、LTE-A対応端末103は、BCHとBCH-Aとを結合して、すなわちBCHにあるLTE―A通信システムシステム情報とBCH-AにあるLTE―A通信システムのマスター情報MIBとシステム情報SIBsなどLTE-A関連情報と結合して、LTE-A通信システム特有のシステム情報、およびLTE-Aのシステム周波数帯域幅、CC数、CC番号、CC中心周波数、CCの周波数帯域幅の周波数割り当て情報などにより構成されているLTE-Aのシステム情報を取得することができる。 Then, the LTE compatible terminal 102 obtains LTE system information configured by master information MIB (Master Information Block) and multiple system information SIBs (System Information Blocks) of the LTE communication system from the broadcast channel BCH of the LTE communication system. Can be acquired. The LTE-A compatible terminal 103 combines BCH and BCH-A, that is, LTE-A communication system system information in BCH and master information MIB and system information in the LTE-A communication system in BCH-A. Combined with LTE-A related information such as SIBs, system information specific to LTE-A communication system, and frequency allocation of LTE-A system frequency bandwidth, number of CCs, CC number, CC center frequency, CC frequency bandwidth LTE-A system information configured by information and the like can be acquired.
 なお、LTE-Aのシステム周波数帯域幅はCCが離散した複数のCC(非連続CC)により構成されている場合、メインCCは、周波数帯域幅が一番大きい連続CC内に配置される。また、LTE-Aの複数のCCが連続している(連続CC)場合、上記メインCCは、上記LTE-Aの連続している複数のCCのうち、中央のCCに配置される。なお、メインCCは中央のCCに限られるものではなく、中央近傍のCCでもよい。また、複数のCCが偶数の場合、連続している複数のCCの中央の2つのCC近傍の何れか一方、あるいはその近傍のCCでもよい。ただし、LTE対応端末102とLTE-A対応端末103がメインCCで初期セルサーチ(SCH受信)ができように、メインCCの中心周波数は周波数の100kHzの整数倍にある。 In addition, when the system frequency bandwidth of LTE-A is configured by a plurality of CCs (non-continuous CCs) with discrete CCs, the main CC is arranged in a continuous CC having the largest frequency bandwidth. When a plurality of LTE-A CCs are continuous (continuous CC), the main CC is arranged in the center CC among the plurality of CCs of the LTE-A. The main CC is not limited to the central CC, and may be a CC near the center. Further, when the plurality of CCs are even numbers, any one of the vicinity of the two CCs in the center of the continuous CCs or a CC in the vicinity thereof may be used. However, the center frequency of the main CC is an integer multiple of 100 kHz of the frequency so that the LTE compatible terminal 102 and the LTE-A compatible terminal 103 can perform initial cell search (SCH reception) in the main CC.
 また、アクセス制御/スケジューリング部1011は、LTE-Aのシステム周波数帯域幅のうちB(MHz)の部分を除いた部分を、サブCCと設定する。サブCCは、設計に応じて、複数のセクションに区分することができる。本実施の形態では、1つのセクションを10MHzに設定しており、LTE-Aのシステム周波数帯域は、全部で8つのサブCCを含む構成になる。 Also, the access control / scheduling unit 1011 sets a portion excluding the B (MHz) portion of the LTE-A system frequency bandwidth as a sub CC. The sub CC can be divided into a plurality of sections according to the design. In this embodiment, one section is set to 10 MHz, and the LTE-A system frequency band includes a total of eight sub CCs.
 次に、図4を用いて、LTE-A対応端末103が基地局101にアクセスするときの流れについて説明する。図4は、LTE-A対応端末103が基地局101にアクセスするときの、LTE-A対応端末103と基地局101との間における制御シグナリングの送受信の流れの第1の例を示すシーケンス図である。 Next, a flow when the LTE-A compatible terminal 103 accesses the base station 101 will be described with reference to FIG. FIG. 4 is a sequence diagram showing a first example of a flow of control signaling transmission / reception between the LTE-A compatible terminal 103 and the base station 101 when the LTE-A compatible terminal 103 accesses the base station 101. is there.
 LTE-A対応端末103の送受信部1030は、メインCC内の同期チャネルSCHを受信し、LTE-A対応端末103と基地局101間のシステム同期を行う。 The transmission / reception unit 1030 of the LTE-A compatible terminal 103 receives the synchronization channel SCH in the main CC, and performs system synchronization between the LTE-A compatible terminal 103 and the base station 101.
 その後、LTE-A対応端末103の情報取得部1033は、メインCC内のブロードキャストチャネルBCHおよび追加ブロードキャストチャネルBCH-Aにより移動通信システム100のシステム情報を取得する。 Thereafter, the information acquisition unit 1033 of the LTE-A compatible terminal 103 acquires the system information of the mobile communication system 100 through the broadcast channel BCH and the additional broadcast channel BCH-A in the main CC.
 次に、LTE-A対応端末103は、取得したシステム情報における移動通信システム100の帯域幅とLTE-A対応端末103の動作可能周波数帯域範囲とを比較する。移動通信システム100のシステム周波数帯域幅がLTE-A対応端末103の動作可能システム周波数帯域幅以下(小さいまたは等しい)の場合、LTE-A対応端末103のランダムアクセス部1031は、3GPPにより規定されているLTE規格によるランダムアクセスを行う。逆に、移動通信システム100のシステム周波数帯域幅がLTE-A対応端末103の動作可能システム周波数帯域幅より大きい場合、LTE-A対応端末103は、次のように新規定義したLTE-Aのランダムアクセスを行う。 Next, the LTE-A compatible terminal 103 compares the bandwidth of the mobile communication system 100 in the acquired system information with the operable frequency band range of the LTE-A compatible terminal 103. When the system frequency bandwidth of the mobile communication system 100 is equal to or smaller than the operable system frequency bandwidth of the LTE-A compatible terminal 103 (smaller or equal), the random access unit 1031 of the LTE-A compatible terminal 103 is defined by 3GPP. Random access according to the LTE standard. On the other hand, when the system frequency bandwidth of the mobile communication system 100 is larger than the operable system frequency bandwidth of the LTE-A compatible terminal 103, the LTE-A compatible terminal 103 uses the newly defined LTE-A random number as follows. Access.
 すなわち、図4に示すように、まず、LTE-A対応端末103は、LTE-Aシステム周波数帯域幅におけるメインCCに対応する上りCC(メインCCとペアの上りCC)を通じて、ランダムアクセスチャネル(RACH:Random Access CHannel)によってランダムアクセス請求情報(RACHのメッセージA)を送信する(41)。次に、基地局101は、メインCCを通じて、LTE-A対応端末103に対し、ランダムアクセス応答情報(RACHのメッセージB)を送信する(42)。 That is, as shown in FIG. 4, first, the LTE-A compatible terminal 103 transmits a random access channel (RACH) through an uplink CC (uplink CC paired with the main CC) corresponding to the main CC in the LTE-A system frequency bandwidth. : Random Access CHannel), random access request information (RACH message A) is transmitted (41). Next, the base station 101 transmits random access response information (RACH message B) to the LTE-A compatible terminal 103 through the main CC (42).
 LTE-A対応端末103の送受信部1030は、ランダムアクセスチャネル内の共通制御チャネル(CCCH:Common Control CHannel)を通じて、ランダムアクセス過程中の情報(RACHのメッセージC)内のRRC(Radio Resource Control)接続請求情報に、LTE-A対応端末103の動作可能システム周波数帯域幅の情報(LTE-A対応端末能力またはカテゴリー情報)を付加して、基地局101に送信する(43)。 The transmission / reception unit 1030 of the LTE-A compatible terminal 103 connects to RRC (Radio Resource Control) in the information (RACH message C) during the random access process through a common control channel (CCCH: Common Control Channel) in the random access channel. Information on the operable system frequency bandwidth of the LTE-A compatible terminal 103 (LTE-A compatible terminal capability or category information) is added to the billing information and transmitted to the base station 101 (43).
 そして、基地局101のアクセス制御/スケジューリング部1011は、取得したLTE-A対応端末103の動作可能システム周波数帯域幅、現在の移動通信システム100の負荷状態および各サブCCの負荷状態に基づいて、LTE-A対応端末103に割り当てるLTE―Aシステム周波数帯域幅、およびメインCCを決定する。 Then, the access control / scheduling unit 1011 of the base station 101, based on the acquired operable system frequency bandwidth of the LTE-A compatible terminal 103, the current load state of the mobile communication system 100, and the load state of each sub CC, The LTE-A system frequency bandwidth to be allocated to the LTE-A compatible terminal 103 and the main CC are determined.
 図8は、LTE-A対応端末103Bに割り当てるLTE―Aシステム周波数帯域幅、およびメインCC割り当ての1つ具体例である。割り当ての第1の例として、例えばLTE-A対応端末103Bの動作可能システム周波数帯域幅は60MHzであり、その60MHzに1つ固定の20MHzのメインCC(805)を含む以外に、4個の10MHzのサブCC(806,807,808,809)を含む。基地局101のアクセス制御/スケジューリング部1011は、各サブCC内のユーザ装置の割り当て数を取得し、並べ替えによりユーザ装置の割り当て数の最小の4つサブCCをLTE-A対応端末103に割り当てる。なお、他のサブCCを割り当ててもよい。CCの割り当て方法について他の方法でもよい。 FIG. 8 shows one specific example of LTE-A system frequency bandwidth allocated to the LTE-A compatible terminal 103B and main CC allocation. As a first example of allocation, for example, the operable system frequency bandwidth of the LTE-A compatible terminal 103B is 60 MHz, and in addition to including one fixed 20 MHz main CC (805) in the 60 MHz, four 10 MHz Of sub-CCs (806, 807, 808, 809). The access control / scheduling unit 1011 of the base station 101 acquires the number of user devices allocated in each sub CC, and allocates the four sub CCs with the smallest number of user devices allocated to the LTE-A compatible terminal 103 by rearrangement. . Other sub CCs may be assigned. Other methods may be used for the CC allocation method.
 基地局101は、ランダムアクセス過程中の情報である競合解決情報(下り制御シグナリング、Contention Resolution、RACHのメッセージD)にLTE-A対応端末103への割り当て情報を付加して、基地局に送信する。LTE-A対応端末103のフィルタ調整部1032は、基地局からのCCの割り当て情報に基づいて、好適に受信周波数帯域フィルタのパラメータ(中心周波数、周波数帯域幅)を調整し、下りリンク情報を受信する。 The base station 101 adds allocation information to the LTE-A compatible terminal 103 to contention resolution information (downlink control signaling, Contention Resolution, RACH message D), which is information during the random access process, and transmits the information to the base station. . Based on the CC allocation information from the base station, the filter adjustment unit 1032 of the LTE-A compatible terminal 103 preferably adjusts the reception frequency band filter parameters (center frequency, frequency bandwidth) and receives downlink information. To do.
 上記と同様に、移動通信システム100のシステム周波数帯域幅がLTE-A対応端末103の動作可能システム周波数帯域幅より大きい場合、LTE-A対応端末103は、図5のような新規定義したLTE-Aのランダムアクセスを行う。図5は、LTE-A対応端末103が基地局101にアクセスするときの、LTE-A対応端末103と基地局101との間における制御シグナリングの送受信の流れの第2の例を示すシーケンス図である。 Similarly to the above, when the system frequency bandwidth of the mobile communication system 100 is larger than the operable system frequency bandwidth of the LTE-A compatible terminal 103, the LTE-A compatible terminal 103 uses the newly defined LTE- A random access is performed. FIG. 5 is a sequence diagram showing a second example of the flow of control signaling transmission / reception between the LTE-A compatible terminal 103 and the base station 101 when the LTE-A compatible terminal 103 accesses the base station 101. is there.
 図5に示した手順501,502,503は、図4に示した手順41、42、43と同じであるので、ここでの詳細な記述は省略する。 Since the procedures 501, 502, and 503 shown in FIG. 5 are the same as the procedures 41, 42, and 43 shown in FIG. 4, a detailed description thereof is omitted here.
 基地局101のアクセス制御/スケジューリング部1011は、手順503により、取得したLTE-A対応端末103の動作可能システム周波数帯域幅、現在の移動通信システム100の負荷状態および各CCの負荷状態に基づいて、LTE-A対応端末102、103(A~D)に割り当てるシステム周波数帯域幅、およびメインCCを決定する。 The access control / scheduling unit 1011 of the base station 101 performs the procedure 503 based on the acquired operable system frequency bandwidth of the LTE-A compatible terminal 103, the current load state of the mobile communication system 100, and the load state of each CC. The system frequency bandwidth to be allocated to the LTE-A compatible terminals 102 and 103 (A to D) and the main CC are determined.
 図8は、LTE対応端末102および複数のLTE-A対応端末103にCCを割り当てる一例を示す説明図である。割り当ての第2の例として、図8を用いて説明する。図8に示す例では、LTE対応端末102、および4台のLTE-A対応端末103(A~D)について、CCの割り当て状態を示している。 FIG. 8 is an explanatory diagram showing an example of assigning CCs to the LTE compatible terminal 102 and the plurality of LTE-A compatible terminals 103. A second example of assignment will be described with reference to FIG. In the example shown in FIG. 8, CC allocation states are shown for the LTE compatible terminal 102 and the four LTE-A compatible terminals 103 (A to D).
 動作可能システム周波数帯域幅が20MHzであるLTE対応端末102は、20MHzのメインCC(805)が割り当てられている。また、動作システム周波数帯域が40MHzであるLTE-A対応端末103Aは、メインCC(805)に加え、2つの10MHzのサブCC(801、802)が割り当てられている。なお、割り当てられるサブCCは、CC(803、808)であってもよい。また、動作可能システム周波数帯域幅が60MHzであるLTE-A対応端末103Bは、20MHzのメインCC(805)に加え、4つの10MHzのサブCC(801、802、808、809)が割り当てられている。なお他のサブCCの組み合わせでもよい。以下、LTE-A対応端末103(C、D)についても同様である。 The LTE compatible terminal 102 with an operable system frequency bandwidth of 20 MHz is assigned a main CC (805) of 20 MHz. In addition, the LTE-A compatible terminal 103A having an operating system frequency band of 40 MHz is assigned two 10 MHz sub CCs (801, 802) in addition to the main CC (805). In addition, CC (803,808) may be sufficient as sub CC allocated. The LTE-A compatible terminal 103B having an operable system frequency bandwidth of 60 MHz is assigned four 10 MHz sub CCs (801, 802, 808, 809) in addition to the 20 MHz main CC (805). . Other sub CC combinations may be used. The same applies to the LTE-A compatible terminals 103 (C, D).
 その後、基地局101の送受信部1010は、ランダムアクセス過程中の情報である競合解決情報(下り制御シグナリング、Contention Resolution、RACHのメッセージD)を送信する(504)。 Thereafter, the transmitting / receiving unit 1010 of the base station 101 transmits contention resolution information (downlink control signaling, Contention Resolution, RACH message D), which is information during the random access process (504).
 基地局101のアクセス制御/スケジューリング部1011は、メインCCのPDCCHを通じて、第1番目のスケジューリングサブフレーム内で、LTE-A対応端末103に対して、CC割当情報のリソーススケジューリングを行い、スケジューリング情報(CC割当情報のリソースを指すポイント、サイズなど情報)を送信する(505)。さらに、アクセス制御/スケジューリング部1011は、メインCCを通じて、CC割当情報のリソースに上位レイヤのシグナリングを行い、LTE-A対応端末103のCC割当情報を送信する(506)。 The access control / scheduling unit 1011 of the base station 101 performs resource allocation of CC allocation information to the LTE-A compatible terminal 103 in the first scheduling subframe through the PDCCH of the main CC, and performs scheduling information ( (Point, size, etc. information indicating the resource of CC allocation information) is transmitted (505). Further, the access control / scheduling unit 1011 performs higher layer signaling to the CC allocation information resource through the main CC, and transmits the CC allocation information of the LTE-A compatible terminal 103 (506).
 LTE-A対応端末103のPDCCH検出部1034は、第1番目のスケジューリングサブフレーム内で、メインCCにおけるPDCCHにあるCC割当情報のリソースのスケジューリング情報(CC割当情報のリソースを指すポイント、サイズなど情報)に基づいて、下りリンクデータ共用チャネル(PDSCH:Physical Downlink Shared Channel)リソースに対応するPDSCHデータを読み取って、そのCC割当情報を取得する。 In the first scheduling subframe, the PDCCH detection unit 1034 of the LTE-A compatible terminal 103 performs scheduling information on resources of CC allocation information in the PDCCH in the main CC (information such as points and sizes indicating the resources of the CC allocation information) ) To read the PDSCH data corresponding to the downlink data shared channel (PDSCH: PhysicalPhysDownlink Shared Channel) resource, and obtain the CC allocation information.
 次に、LTE-A対応端末103は、上記の第1番目のスケジューリングサブフレームに続くスケジューリングサブフレームで、割り当てられたCC内において動作する。この場合、フィルタ調整部1032は、基地局101からの情報を好適に受信できるように、取得したCC割当情報に基づいて、フィルタ器のパラメータを調整する。CC割当情報には、LTE-A対応端末103に割り当てられた複数のCCとPDCCHとを含むCC(CCの中心周波数、CC番号など)情報が含まれている。 Next, the LTE-A compatible terminal 103 operates in the assigned CC in the scheduling subframe subsequent to the first scheduling subframe. In this case, the filter adjustment unit 1032 adjusts the parameters of the filter based on the acquired CC allocation information so that the information from the base station 101 can be suitably received. The CC assignment information includes CC (CC center frequency, CC number, etc.) information including a plurality of CCs assigned to the LTE-A compatible terminal 103 and PDCCH.
 上記と同様に、移動通信システム100のシステム周波数帯域幅がLTE-A対応端末103の動作可能システム周波数帯域幅より大きい場合、本発明の実施の形態に係る移動通信システム100における、下りリンクの制御シグナリングの伝送方法について説明する。 Similarly to the above, when the system frequency bandwidth of mobile communication system 100 is larger than the operable system frequency bandwidth of LTE-A compatible terminal 103, downlink control in mobile communication system 100 according to the embodiment of the present invention A signaling transmission method will be described.
 LTE-AシステムにおいてPDCCHにある共通サーチ領域(Common Search Space)は、メインCC内に配置される。なお、LTE-AのPDCCHにある共通サーチ領域として、LTEのPDCCHの共通サーチ領域を多重使用することができる。また、メインCC内でLTE-AのPDCCH共通サーチ領域を新たに定義することもできる。 In the LTE-A system, the common search area (Common Search Space) in the PDCCH is arranged in the main CC. Note that, as the common search area in the LTE-A PDCCH, the common search area of the LTE PDCCH can be used in multiple. In addition, an LTE-A PDCCH common search area can be newly defined in the main CC.
 以下、LTE-AのPDCCH割当過程を図6を用いて説明する。図6は、LTE-A対応端末103にPDCCHを分配するときの様子を示す説明図である。図6の(a)は、PDCCHが割り当てられるCCを示す図であり、図6の(b)は、PDCCHを検出する流れを示すフローチャートである。 Hereinafter, the PDCCH allocation process of LTE-A will be described with reference to FIG. FIG. 6 is an explanatory diagram showing a state when the PDCCH is distributed to the LTE-A compatible terminal 103. FIG. 6A is a diagram illustrating a CC to which a PDCCH is allocated, and FIG. 6B is a flowchart illustrating a flow of detecting a PDCCH.
 基地局101は、ある規定した計算方法によって、LTE-A対応端末103に特定のCCを割り当て、該特定のCCにおいて、LTEのPDCCH分配を行う。 The base station 101 allocates a specific CC to the LTE-A compatible terminal 103 by a specified calculation method, and performs LTE PDCCH distribution in the specific CC.
 具体的には、LTE-A対応端末103のPDCCH検出部1034は、対応する動作システム周波数帯域幅内のサブCCに対して並べ替え処理を行う。ここで、並べ替え処理とは、一定のルールでCCの処理手順を並び替える、例えばCC番号順に並べ替え処理することをいう。 Specifically, the PDCCH detection unit 1034 of the LTE-A compatible terminal 103 performs rearrangement processing on the sub CCs within the corresponding operating system frequency bandwidth. Here, the rearrangement processing refers to rearranging the CC processing procedures according to a certain rule, for example, rearrangement processing in the order of CC numbers.
 そして、図6の(a)に示す、サブCC(601~603)は、並べ替え処理により、各サブCCの601、602、603の順に並べ替えられた結果である。また、この順にPDCCH検出を行う流れが図6の(b)に示されている。 Then, the sub CCs (601 to 603) shown in (a) of FIG. 6 are the results of rearrangement in the order of the sub CCs 601, 602, and 603 by the rearrangement process. Also, the flow of performing PDCCH detection in this order is shown in FIG.
 そして、PDCCH検出部1034は、並べ替えかれた順に基づいて、新たに定義された下りリンク制御情報(DCI)のフォーマットで、LTEのPDCCHブラインド検出を行う(S611)。具体的には、まず、サブCC(601)に対し、PDCCHの検出を行い(S612)、PDCCHが検出されなかった場合(S612で未検出)、その次のサブCC(602)で検出を行う(S613)。サブCC(602)でPDCCHが検出されなかった場合(S613で未検出)、さらにその次のサブCC(603)でPDCCHの検出を行う(S614)。このようにして、すべてのサブCC(601~603)におけるPDCCHの検出が終わるまで動作を続けるが、その過程において、対応するPDCCHが検出された場合は、その時点で、PDCCH検出を終了する(S615)。例えば、サブCC(602)でPDCCHが検出された場合は(S613で検出)、そのままPDCCH検出を終了する(S615)。このときの流れを図6の(b)に破線で示す。なお、ここでは、サブCCは3つの場合を説明したが、これに限られるものではない。 Then, the PDCCH detection unit 1034 performs LTE PDCCH blind detection in the newly defined downlink control information (DCI) format based on the rearranged order (S611). Specifically, first, PDCCH detection is performed on the sub CC (601) (S612), and if no PDCCH is detected (not detected in S612), detection is performed on the next sub CC (602). (S613). When the PDCCH is not detected in the sub CC (602) (not detected in S613), the PDCCH is detected in the next sub CC (603) (S614). In this way, the operation continues until the detection of PDCCH in all the sub CCs (601 to 603) is completed. In the process, when the corresponding PDCCH is detected, the PDCCH detection is terminated at that time ( S615). For example, when the PDCCH is detected in the sub CC (602) (detected in S613), the PDCCH detection is terminated as it is (S615). The flow at this time is shown by a broken line in FIG. Here, although the case where there are three sub CCs has been described, the present invention is not limited to this.
 また、PDCCHは、LTE-A対応端末103の動作システム周波数帯域幅におけるすべてのリソース割当情報を含む。 Also, the PDCCH includes all resource allocation information in the operating system frequency bandwidth of the LTE-A compatible terminal 103.
 また、各サブCC内のPDCCHは、LTEと互換性を有する方式によって、下りリンク制御情報(DCI)のフォーマットで該CC内の対応するPDSCH関連情報を含む。 Also, the PDCCH in each sub CC includes corresponding PDSCH related information in the CC in the format of downlink control information (DCI) by a method compatible with LTE.
 次に、図7を用いて、LTE-Aにおけるチャネルマッピングについて説明する。図7は、LTE-Aにおけるチャネルマッピング概略図である。図7において、縦軸が周波数、横軸が時間を示している。そして、図7に示すように、LTE-Aでは、20MHzのメインCC(703)と、10MHzのサブCC(701、702、704、705)が含まれている。なお、ここでは、4つのサブCCを示しているが、これに限られるものではない。動作システム周波数帯域幅に応じて、サブCCの数は変更される。 Next, channel mapping in LTE-A will be described using FIG. FIG. 7 is a schematic diagram of channel mapping in LTE-A. In FIG. 7, the vertical axis represents frequency and the horizontal axis represents time. As shown in FIG. 7, LTE-A includes a 20 MHz main CC (703) and a 10 MHz sub CC (701, 702, 704, 705). Here, although four sub CCs are shown, it is not restricted to this. The number of sub CCs is changed according to the operating system frequency bandwidth.
 そして、図7に示すように、メインCC(703)、およびサブCC(701、702、704、705)のいずれも、最初のシンボルにPDCCHが含まれている。また、メインCCのPDCCHには、共通サーチ領域706が含まれている。 As shown in FIG. 7, the main CC (703) and the sub CCs (701, 702, 704, 705) all include the PDCCH in the first symbol. Further, the common search area 706 is included in the PDCCH of the main CC.
 また、メインCC(703)のPDCCHが含まれているシンボルの次のシンボルには、BCH/SCHおよびBCH-Aが含まれている領域707が含まれている。 In addition, a symbol next to the symbol including the PDCCH of the main CC (703) includes an area 707 including BCH / SCH and BCH-A.
 以上のように、上述した下りリンクの形成方法により、LTE対応端末102とLTE-A対応端末103とは、いずれも適切にLTE-Aが適用された移動通信システム100にアクセスして、LTE-Aが提供する高速のデータサービスを受けることができる。また、上述した設計は、簡単で高効率であり、設計が複雑でなく、ユーザ装置の要求を満たすものである。 As described above, according to the downlink forming method described above, the LTE compatible terminal 102 and the LTE-A compatible terminal 103 both access the mobile communication system 100 to which LTE-A is appropriately applied, and LTE- A high-speed data service provided by A can be received. Further, the above-described design is simple and highly efficient, is not complicated in design, and satisfies the requirements of user devices.
 なお、上述した実施の形態は、好ましい例について説明したものであり、本分野の当業者は、本発明の趣旨と範囲を逸しない限り、その他の各種の変更、取替えおよび追加を行うことができる。そのため、本発明の範囲は、上記の特定の実施の形態に限定されるものではなく、添付の請求の範囲により決定すべきである。 The above-described embodiment has been described with reference to a preferred example, and those skilled in the art can make various other changes, replacements, and additions without departing from the spirit and scope of the present invention. . Therefore, the scope of the present invention should not be limited to the specific embodiments described above, but should be determined by the appended claims.
 最後に、基地局101およびLTE-A対応端末103の各ブロック、特に基地局101の送受信部1010、アクセス制御/スケジューリング部1011、判定部1012、および、LTE-A対応端末103の送受信部1030、ランダムアクセス部1031、フィルタ調整部1032、情報取得部1033、PDCCH検出部1034は、ハードウェアロジックによって構成してもよいし、次のようにCPU(central processing unit)を用いてソフトウェアによって実現してもよい。 Finally, each block of the base station 101 and the LTE-A compatible terminal 103, in particular, the transmission / reception unit 1010 of the base station 101, the access control / scheduling unit 1011, the determination unit 1012, and the transmission / reception unit 1030 of the LTE-A compatible terminal 103, The random access unit 1031, the filter adjustment unit 1032, the information acquisition unit 1033, and the PDCCH detection unit 1034 may be configured by hardware logic, or realized by software using a CPU (central processing unit) as follows. Also good.
 すなわち、基地局101およびLTE-A対応端末103は、各機能を実現する制御プログラムの命令を実行するCPU、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラムおよび各種データを格納するメモリ等の記憶装置(記録媒体)などをそれぞれ備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである基地局101およびLTE-A対応端末103の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記の基地局101およびLTE-A対応端末103にそれぞれ供給し、そのコンピュータ(またはCPUやMPU(microprocessor unit))が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。 That is, the base station 101 and the LTE-A compatible terminal 103 include a CPU that executes instructions of a control program for realizing each function, a ROM (read only memory) that stores the program, and a RAM (random access memory) that develops the program. ), A storage device (recording medium) such as a memory for storing the program and various data. The object of the present invention is to enable a computer to read program codes (execution format program, intermediate code program, source program) of control programs for the base station 101 and the LTE-A compatible terminal 103, which are software for realizing the functions described above. Are supplied to the base station 101 and the LTE-A compatible terminal 103, and the computer (or CPU or MPU (microprocessor unit)) reads and executes the program code recorded on the recording medium. Can also be achieved.
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM(compact disc read-only memory)/MO(magneto-optical)/MD(Mini Disc)/DVD(digital versatile disk)/CD-R(CD Recordable)等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM(erasable programmable read-only memory)/EEPROM(electrically erasable and programmable read-only memory)/フラッシュROM等の半導体メモリ系などを用いることができる。 Examples of the recording medium include a tape system such as a magnetic tape and a cassette tape, a magnetic disk such as a floppy (registered trademark) disk / hard disk, a CD-ROM (compact disk-read-only memory) / MO (magneto-optical) / Disc system including optical disc such as MD (Mini Disc) / DVD (digital versatile disc) / CD-R (CD Recordable), card system such as IC card (including memory card) / optical card, or mask ROM / EPROM ( A semiconductor memory system such as erasable, programmable, read-only memory, EEPROM (electrically erasable, programmable, read-only memory) / flash ROM, or the like can be used.
 また、基地局101およびLTE-A対応端末103を通信ネットワークと接続可能に構成し、上記プログラムコードを通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN(local area network)、ISDN(integrated services digital network)、VAN(value-added network)、CATV(community antenna television)通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE(institute of electrical and electronic engineers)1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL(asynchronous digital subscriber loop)回線等の有線でも、IrDA(infrared data association)やリモコンのような赤外線、Bluetooth(登録商標)、802.11無線、HDR(high data rate)、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。 Alternatively, the base station 101 and the LTE-A compatible terminal 103 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. For example, the Internet, an intranet, an extranet, a LAN (local area network), an ISDN (integrated services network, digital network), a VAN (value-added network), and a CATV (community antenna) television communication. A network, a virtual private network, a telephone line network, a mobile communication network, a satellite communication network, etc. can be used. Further, the transmission medium constituting the communication network is not particularly limited. For example, IEEE (institute of electrical and electronic engineering) (1394), USB, power line carrier, cable TV line, telephone line, ADSL (asynchronous digital subscriber loop) loop Wireless such as IrDA (infrared data association) or remote control, Bluetooth (registered trademark), 802.11 wireless, HDR (high data rate), mobile phone network, satellite line, terrestrial digital network, etc. But it is available. The present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
 本発明によれば、LTEのみに対応した通信装置に、LTE-Aが適用された通信システムとの互換性を持たせることができるので、LTE-Aに対応した通信システムに好適である。 According to the present invention, since a communication device that supports only LTE can be compatible with a communication system to which LTE-A is applied, it is suitable for a communication system that supports LTE-A.
 100 移動通信システム(通信システム)
 101 基地局
 102 LTE対応端末(通信端末)
 103 LTE-A対応端末(通信端末)
1010 送受信部(送信手段、受信手段)
1011 アクセス制御/スケジューリング部(アクセス制御/スケジューリング手段)
1030 送受信部(送受信手段)
1034 PDCCH検出部(PDCCH検出手段)
100 Mobile communication system (communication system)
101 Base station 102 LTE compatible terminal (communication terminal)
103 LTE-A compatible terminal (communication terminal)
1010 Transmission / reception unit (transmission means, reception means)
1011 Access control / scheduling unit (access control / scheduling means)
1030 Transmission / reception unit (transmission / reception means)
1034 PDCCH detector (PDCCH detector)

Claims (19)

  1.  自局と接続された通信端末から、該通信端末の動作可能周波数帯域幅を示す動作幅情報を受信する受信手段と、
     自局を含む、LTE-Aが適用された通信システムの周波数帯域幅の一部を該通信システムのメイン周波数帯域と決定し、該通信システムの周波数帯域幅において、決定したメイン周波数帯域を除いた部分を、1つ以上のサブ周波数帯域に区分し、上記動作幅情報に基づいて、上記通信端末に対応するサブ周波数帯域を選択し、選択したサブ周波数帯域と上記メイン周波数帯域とを結合して上記通信端末の動作周波数帯域を設定し、設定した動作周波数帯域からPDCCHが割り当てられるサブ周波数帯域を決定し、決定したサブ周波数帯域において、LTEのPDCCH割り当てを行うアクセス制御/スケジューリング手段と、
     上記アクセス制御/スケジューリング手段が設定した動作周波数帯域を示す周波数帯域割当情報を上記通信端末に送信する送信手段と、を備え、
     上記メイン周波数帯域における制御シグナリングおよびチャネル設計は、いずれもLTEと互換性があり、
     上記メイン周波数帯域には、LTEと互換性があるブロードキャストチャネルによりブロードキャストされたLTEのシステム情報と、LTE-Aのシステム情報と、LTE-Aにおいて共通に用いられる下りリンク制御チャネル情報とが含まれていることを特徴とする基地局。
    Receiving means for receiving operation width information indicating an operable frequency bandwidth of the communication terminal from a communication terminal connected to the own station;
    A part of the frequency bandwidth of the communication system to which LTE-A is applied including its own station is determined as the main frequency band of the communication system, and the determined main frequency band is excluded from the frequency bandwidth of the communication system The portion is divided into one or more sub-frequency bands, a sub-frequency band corresponding to the communication terminal is selected based on the operation width information, and the selected sub-frequency band and the main frequency band are combined. An access control / scheduling unit configured to set an operating frequency band of the communication terminal, determine a sub-frequency band to which a PDCCH is allocated from the set operating frequency band, and perform LTE PDCCH allocation in the determined sub-frequency band;
    Transmitting means for transmitting frequency band allocation information indicating an operating frequency band set by the access control / scheduling means to the communication terminal,
    The control signaling and channel design in the main frequency band are both compatible with LTE,
    The main frequency band includes LTE system information broadcast by a broadcast channel compatible with LTE, LTE-A system information, and downlink control channel information commonly used in LTE-A. A base station characterized by
  2.  上記アクセス制御/スケジューリング手段は、上記通信システムの周波数帯域が離散した複数の周波数帯域により構成されている場合、上記メイン周波数帯域を、上記の離散した複数の周波数帯域のうち、帯域幅が一番大きい周波数帯域内に決定することを特徴とする請求項1に記載の基地局。 The access control / scheduling means, when the frequency band of the communication system is configured by a plurality of discrete frequency bands, has the highest bandwidth among the plurality of discrete frequency bands. The base station according to claim 1, wherein the base station is determined within a large frequency band.
  3.  上記アクセス制御/スケジューリング手段は、上記通信システムの複数の周波数帯域が連続している場合、上記メイン周波数帯域を、上記通信システムの複数の周波数帯域のうち、中央の周波数帯域に決定することを特徴とする請求項1に記載の基地局。 The access control / scheduling means determines the main frequency band as a central frequency band among the plurality of frequency bands of the communication system when a plurality of frequency bands of the communication system are continuous. The base station according to claim 1.
  4.  上記LTE-Aのシステム情報は、LTE-Aのシステム周波数帯域幅、周波数帯域の数、周波数帯域の番号、周波数帯域の中心周波数、周波数帯域の帯域幅を含むことを特徴とする請求項1に記載の基地局。 The LTE-A system information includes an LTE-A system frequency bandwidth, the number of frequency bands, a frequency band number, a center frequency of the frequency band, and a bandwidth of the frequency band. The listed base station.
  5.  上記アクセス制御/スケジューリング手段は、上記通信端末の動作可能周波数帯域幅および上記サブ周波数帯域の負荷状態に基づいて、上記通信端末に割り当てるサブ周波数帯域を選択することを特徴とする請求項1に記載の基地局。 The access control / scheduling means selects a sub frequency band to be allocated to the communication terminal based on an operable frequency bandwidth of the communication terminal and a load state of the sub frequency band. Base station.
  6.  上記送信手段は、上記アクセス制御/スケジューリング手段が選択した第1番目のサブフレームにおける高位レイヤのシグナリングによって、上記周波数帯域割当情報を上記通信端末に送信することを特徴とする請求項1に記載の基地局。 The said transmission means transmits the said frequency band allocation information to the said communication terminal by the signaling of the higher layer in the 1st sub-frame which the said access control / scheduling means selected. base station.
  7.  上記送信手段は、ランダムアクセス過程における競合解決シグナリングによって、上記周波数帯域割当情報を上記通信端末に送信することを特徴とする請求項1に記載の基地局。 The base station according to claim 1, wherein the transmission means transmits the frequency band allocation information to the communication terminal by contention resolution signaling in a random access process.
  8.  上記送信手段は、上記第1番目のサブフレームを、上記メイン周波数帯域に配置することを特徴とする請求項6に記載の基地局。 The base station according to claim 6, wherein the transmission means arranges the first subframe in the main frequency band.
  9.  上記アクセス制御/スケジューリング手段は、上記メイン周波数帯域の決定および上記サブ周波数帯域の区分を、自局と上記通信端末との接続を確立する段階で行うことを特徴とする請求項1に記載の基地局。 The base station according to claim 1, wherein the access control / scheduling means determines the main frequency band and classifies the sub frequency band at a stage of establishing a connection between the local station and the communication terminal. Bureau.
  10.  上記送信手段は、上記周波数帯域割当情報の送信を、上記通信端末のランダムアクセス過程で行うことを特徴とする請求項1に記載の基地局。 The base station according to claim 1, wherein the transmitting means transmits the frequency band allocation information in a random access process of the communication terminal.
  11.  自端末と接続され、LTE-Aが適用された通信システムに含まれている基地局に、自端末の動作可能周波数帯域範囲を示す情報を送信し、該基地局から自端末の動作周波数帯域を示す情報を受信する送受信手段と、
     上記送受信手段が受信した動作周波数帯域の情報が示す動作周波数帯域における複数のサブ周波数帯域に対して並べ替え処理を行い、並べ替え処理後の各サブ周波数帯域に対して、LTEのPDCCHブラインド検出を行うことによりPDCCHを検出するPDCCH検出手段と、を備えていることを特徴とする通信端末。
    Information indicating the operable frequency band range of the own terminal is transmitted to a base station connected to the own terminal and included in a communication system to which LTE-A is applied, and the operating frequency band of the own terminal is transmitted from the base station. Transmitting and receiving means for receiving the indicated information;
    Reordering processing is performed on a plurality of sub-frequency bands in the operating frequency band indicated by the operating frequency band information received by the transmission / reception means, and LTE PDCCH blind detection is performed on each sub-frequency band after the reordering process. And a PDCCH detecting means for detecting PDCCH by performing the communication terminal.
  12.  上記送受信手段は、ランダムアクセス過程におけるRRC(Radio Resource Control)アクセス請求情報によって、上記基地局に自端末の動作可能周波数帯域範囲の情報を送信することを特徴とする請求項11に記載の通信端末。 12. The communication terminal according to claim 11, wherein the transmission / reception means transmits information on an operable frequency band range of the terminal to the base station based on RRC (Radio Resource Control) access request information in a random access process. .
  13.  請求項1~10のいずれか1項に記載の基地局と、請求項11または12に記載の通信端末とを含む通信システム。 A communication system including the base station according to any one of claims 1 to 10 and the communication terminal according to claim 11 or 12.
  14.  請求項1~10のいずれか1項に記載の基地局を動作させる基地局制御プログラムであって、コンピュータを上記の各手段として機能させるための基地局制御プログラム。 A base station control program for operating the base station according to any one of claims 1 to 10, for causing a computer to function as each means described above.
  15.  請求項11、または12に記載の通信端末を動作させる通信端末制御プログラムであって、コンピュータを上記の各手段として機能させるための通信端末制御プログラム。 A communication terminal control program for operating the communication terminal according to claim 11 or 12, for causing a computer to function as each of the above means.
  16.  請求項14に記載の基地局制御プログラムおよび請求項15に記載の通信端末制御プログラムの少なくとも何れか一方を記録したコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium recording at least one of the base station control program according to claim 14 and the communication terminal control program according to claim 15.
  17.  自局と接続された通信端末から、該通信端末の動作可能周波数帯域幅を示す動作幅情報を受信する受信ステップと、
     自局を含む、LTE-Aが適用された通信システムの周波数帯域幅の一部を該通信システムのメイン周波数帯域と決定し、該通信システムの周波数帯域において、決定したメイン周波数帯域を除いた部分を、1つ以上のサブ周波数帯域に区分し、上記動作幅情報に基づいて、上記通信端末に対応するサブ周波数帯域を選択し、選択したサブ周波数帯域と上記メイン周波数帯域とを結合して上記通信端末の動作周波数帯域を設定し、設定した動作周波数帯域からPDCCHが割り当てられるサブ周波数帯域を決定し、決定したサブ周波数帯域において、LTEのPDCCH割り当てを行うアクセス制御/スケジューリングステップと、
     上記アクセス制御/スケジューリングステップで設定した動作周波数帯域を示す周波数帯域割当情報を上記通信端末に送信する送信ステップと、を含み、
     上記メイン周波数帯域における制御シグナリングおよびチャネル設計は、いずれもLTEと互換性があり、
     上記メイン周波数帯域には、LTEと互換性があるブロードキャストチャネルによりブロードキャストされたLTEのシステム情報と、LTE-Aのシステム情報と、LTE-Aにおいて共通に用いられる下りリンク制御チャネル情報とが含まれていることを特徴とする基地局の制御方法。
    A receiving step of receiving operation width information indicating an operable frequency bandwidth of the communication terminal from a communication terminal connected to the own station;
    A part of the frequency bandwidth of the communication system to which LTE-A is applied, including the local station, is determined as the main frequency band of the communication system, and the determined main frequency band is excluded from the frequency band of the communication system Are divided into one or more sub-frequency bands, and based on the operation width information, a sub-frequency band corresponding to the communication terminal is selected, and the selected sub-frequency band and the main frequency band are combined to An access control / scheduling step for setting an operating frequency band of a communication terminal, determining a sub-frequency band to which a PDCCH is allocated from the set operating frequency band, and performing LTE PDCCH allocation in the determined sub-frequency band;
    Transmitting the frequency band allocation information indicating the operating frequency band set in the access control / scheduling step to the communication terminal, and
    The control signaling and channel design in the main frequency band are both compatible with LTE,
    The main frequency band includes LTE system information broadcast by a broadcast channel compatible with LTE, LTE-A system information, and downlink control channel information commonly used in LTE-A. A control method for a base station.
  18.  自端末と接続され、LTE-Aが適用された通信システムに含まれている基地局に、自端末の動作可能周波数帯域幅の情報を送信する送信ステップと、
     上記基地局から自端末の動作周波数帯域を受信する受信ステップと、
     上記受信ステップで受信した動作周波数帯域におけるサブ周波数帯域に対して並べ替え処理を行い、並べ替え処理後の各サブ周波数帯域に対して、LTEのPDCCHブラインド検出を行うことによりPDCCHを検出するPDCCH検出ステップと、を含むことを特徴とする通信端末の制御方法。
    A transmission step of transmitting information on the operable frequency bandwidth of the own terminal to a base station included in a communication system to which LTE-A is applied, connected to the own terminal;
    A receiving step of receiving the operating frequency band of the terminal from the base station;
    PDCCH detection for detecting PDCCH by performing rearrangement processing on sub-frequency bands in the operating frequency band received in the reception step, and performing LTE PDCCH blind detection on each sub-frequency band after the rearrangement processing And a communication terminal control method.
  19.  基地局と接続された通信端末から、該通信端末の動作可能周波数帯域幅を示す動作範囲情報を受信する受信ステップと、
     基地局を含む、LTE-Aが適用された通信システムの周波数帯域幅の一部を該通信システムのメイン周波数帯域と決定し、該通信システムの周波数帯域において、決定したメイン周波数帯域を除いた部分を、1つ以上のサブ周波数帯域に区分し、上記動作幅情報に基づいて、上記通信端末に対応するサブ周波数帯域を選択し、選択したサブ周波数帯域と上記メイン周波数帯域とを結合して上記通信端末の動作周波数帯域を設定し、設定した動作周波数帯域からPDCCHが割り当てられるサブ周波数帯域を決定し、決定したサブ周波数帯域において、LTEのPDCCH割り当てを行うアクセス制御/スケジューリングステップと、
     上記アクセス制御/スケジューリングステップで設定した動作周波数帯域を示す周波数帯域割当情報を上記通信端末に送信する送信ステップと、を含み、
     上記メイン周波数帯域における制御シグナリングおよびチャネル設計は、いずれもLTEと互換性があり、
     上記メイン周波数帯域には、LTEと互換性があるブロードキャストチャネルによりブロードキャストされたLTEのシステム情報と、LTE-Aのシステム情報と、LTE-Aにおいて共通に用いられる下りリンク制御チャネル情報とが含まれており、
     上記送信ステップで上記通信端末が受信した動作周波数帯域におけるサブ周波数帯域に対して並べ替え処理を行い、並べ替え処理後の各サブ周波数帯域に対して、LTEのPDCCHブラインド検出を行うことによりPDCCHを検出するPDCCH検出ステップと、を含むことを特徴とする通信システムの制御方法。
    A receiving step of receiving operating range information indicating an operable frequency bandwidth of the communication terminal from a communication terminal connected to the base station;
    A part of a frequency bandwidth of a communication system to which LTE-A is applied including a base station is determined as a main frequency band of the communication system, and a portion excluding the determined main frequency band in the frequency band of the communication system Are divided into one or more sub-frequency bands, and based on the operation width information, a sub-frequency band corresponding to the communication terminal is selected, and the selected sub-frequency band and the main frequency band are combined to An access control / scheduling step for setting an operating frequency band of a communication terminal, determining a sub-frequency band to which a PDCCH is allocated from the set operating frequency band, and performing LTE PDCCH allocation in the determined sub-frequency band;
    Transmitting the frequency band allocation information indicating the operating frequency band set in the access control / scheduling step to the communication terminal, and
    The control signaling and channel design in the main frequency band are both compatible with LTE,
    The main frequency band includes LTE system information broadcast by a broadcast channel compatible with LTE, LTE-A system information, and downlink control channel information commonly used in LTE-A. And
    A reordering process is performed on sub frequency bands in the operating frequency band received by the communication terminal in the transmission step, and a PDCCH is detected by performing LTE PDCCH blind detection on each sub frequency band after the reordering process. And a PDCCH detection step for detecting the communication system.
PCT/JP2009/064069 2008-08-07 2009-08-07 Base station, communication terminal, communication system, base station control method, communication terminal control method, communication system control method, control program, and recording medium WO2010016596A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810129700.5 2008-08-07
CN 200810129700 CN101646198B (en) 2008-08-07 2008-08-07 Implementation method for downlink of LTE-Advanced system, base station and user equipment

Publications (1)

Publication Number Publication Date
WO2010016596A1 true WO2010016596A1 (en) 2010-02-11

Family

ID=41657861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064069 WO2010016596A1 (en) 2008-08-07 2009-08-07 Base station, communication terminal, communication system, base station control method, communication terminal control method, communication system control method, control program, and recording medium

Country Status (2)

Country Link
CN (1) CN101646198B (en)
WO (1) WO2010016596A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147150A1 (en) * 2010-05-25 2011-12-01 中兴通讯股份有限公司 Method and device for de-mapping in lte downlink control channel
JP2013522950A (en) * 2010-03-12 2013-06-13 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート Method and apparatus for transmitting and receiving data in a MIMO system
JP2013534799A (en) * 2010-08-13 2013-09-05 電信科学技術研究院 Processing method and equipment of a kind of carrier polymerization ability
CN105264994A (en) * 2014-05-12 2016-01-20 华为技术有限公司 Downlink signal transmission method, base station and user equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102740485A (en) * 2011-04-02 2012-10-17 中兴通讯股份有限公司 Method, user equipment, and base station of resource scheduling
CN102316535B (en) * 2011-09-30 2014-04-02 电信科学技术研究院 Transmission method for downlink control information and equipment
KR20140109412A (en) 2011-12-28 2014-09-15 후지쯔 가부시끼가이샤 Mapping method and device for search space of downlink control channel
WO2014005282A1 (en) * 2012-07-03 2014-01-09 华为技术有限公司 Information transmission method, user equipment, and network device
CN108738145B (en) * 2017-04-24 2021-05-25 中国移动通信有限公司研究院 Scheduling method, terminal, base station and electronic equipment for uplink transmission
CN109152047A (en) * 2017-06-19 2019-01-04 中兴通讯股份有限公司 Resource allocation methods and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227717B (en) * 2008-01-05 2012-07-04 中兴通讯股份有限公司 User equipment, base station and method for testing and presenting PUCCH transmission state

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Summary of LTE Advanced Requirements presented at the workshop, REV- 080058", 3GPP TSG RAN REV-080058, 7 April 2008 (2008-04-07) *
HUAWEI: "Framework for LTE-Advanced air-interface technology development", 3GPP REV-080020, 7 April 2008 (2008-04-07) *
NTT DOCOMO, INC: "Proposals for LTE-Advanced Technologies", 3GPP TSG RAN WG1 MEETING #53 R1-081948, - 5 May 2008 (2008-05-05) *
PANASONIC: "Technical proposals and considerations for LTE advanced", 3GPP REV-080007, 7 April 2008 (2008-04-07) *
TEXAS INSTRUMENTS: "Enhancements for LTE- Advanced", 3GPP TSG RAN WG1 #53 R1-081979, 5 May 2008 (2008-05-05) *
ZTE: "Technical points for LTE-advanced", 3GPP TSG RANI #53 R1-081773, 5 May 2008 (2008-05-05) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522950A (en) * 2010-03-12 2013-06-13 エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート Method and apparatus for transmitting and receiving data in a MIMO system
US8654881B2 (en) 2010-03-12 2014-02-18 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data in a MIMO system
US9900067B2 (en) 2010-03-12 2018-02-20 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data in a MIMO system
US10374668B2 (en) 2010-03-12 2019-08-06 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data in a MIMO system
US10931337B2 (en) 2010-03-12 2021-02-23 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data in a MIMO system
US11496187B2 (en) 2010-03-12 2022-11-08 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving data in a MIMO system
WO2011147150A1 (en) * 2010-05-25 2011-12-01 中兴通讯股份有限公司 Method and device for de-mapping in lte downlink control channel
US9048996B2 (en) 2010-05-25 2015-06-02 Zte Corporation Method and device for de-mapping on LTE downlink control channel
JP2013534799A (en) * 2010-08-13 2013-09-05 電信科学技術研究院 Processing method and equipment of a kind of carrier polymerization ability
US9615245B2 (en) 2010-08-13 2017-04-04 China Academy Of Telecommunications Technology Method and device for processing carrier aggregation capability
CN105264994A (en) * 2014-05-12 2016-01-20 华为技术有限公司 Downlink signal transmission method, base station and user equipment

Also Published As

Publication number Publication date
CN101646198B (en) 2013-10-30
CN101646198A (en) 2010-02-10

Similar Documents

Publication Publication Date Title
WO2010016596A1 (en) Base station, communication terminal, communication system, base station control method, communication terminal control method, communication system control method, control program, and recording medium
US10382969B2 (en) Resource allocation design for low cost machine-type communication UE
RU2577318C2 (en) Resource assignment for single and multiple cluster transmission
CN107302426B (en) Mobile terminal and method for operating the same
KR102084502B1 (en) Telecommunications systems and methods for machine type communication
EP3000270B1 (en) Systems and methods in wireless communication system
CN106576292B (en) Method and apparatus for scanning for access point in wireless LAN system
KR20170070034A (en) Techniques for transmitting a sounding reference signal or scheduling request over an unlicensed radio frequency spectrum band
US10356770B2 (en) Techniques for using an enhanced physical control format indicator channel to identify characteristics of a control region including a set of physical downlink control channels
JP5554880B2 (en) Method and apparatus for transmitting / receiving channel transmission power information in a wireless communication system
US11343843B2 (en) Variable-length transmission schemes
JP7012711B2 (en) Send system information block
CN111066279A (en) UE capability constraint indication for high order modulation
CN114175703A (en) Terminal device
TW201844045A (en) Enhancements to logic channel prioritization procedure with multiple numerologies
CN113193898B (en) Mapping uplink control information on shortened uplink shared channel
US20240121040A1 (en) Resource indication method and apparatus
US20230133612A1 (en) Sidelink interlace configuration
EP4250854A1 (en) User equipment and base station that communicate with each other and operating method thereof
EP3890227A1 (en) Communication method and apparatus
CN116367186A (en) Communication method and device
KR20230117241A (en) Information transmission method, communication device, computer readable storage medium and chip
KR20240051123A (en) Selection of different initial bandwidth fractions for reduced functionality user equipment
CN117941453A (en) Method and apparatus for performing random access by user equipment with reduced performance in a wireless mobile communication system using multiple search spaces and multiple control resource sets
CN117941419A (en) Method and apparatus for determining intra-frequency cell reselection parameters by reduced performance user equipment via system information block 1 in a wireless mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09805078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09805078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP