WO2010016512A1 - Organic electroluminescent element, display device and illuminating device - Google Patents

Organic electroluminescent element, display device and illuminating device Download PDF

Info

Publication number
WO2010016512A1
WO2010016512A1 PCT/JP2009/063851 JP2009063851W WO2010016512A1 WO 2010016512 A1 WO2010016512 A1 WO 2010016512A1 JP 2009063851 W JP2009063851 W JP 2009063851W WO 2010016512 A1 WO2010016512 A1 WO 2010016512A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic electroluminescent
electroluminescent element
heat dissipation
electrode layer
Prior art date
Application number
PCT/JP2009/063851
Other languages
French (fr)
Japanese (ja)
Inventor
勘治朗 迫
邦夫 近藤
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2010016512A1 publication Critical patent/WO2010016512A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to, for example, an organic electroluminescent element used for a display device or a lighting device.
  • an organic electroluminescent element that emits light by forming a light emitting material made of an organic material in a layer and providing a pair of electrodes consisting of an anode and a cathode on the light emitting layer and applying a voltage. It attracts attention.
  • An organic electroluminescent element is produced by injecting holes and electrons from the anode and the cathode, respectively, by applying a voltage between the anode and the cathode, and the injected electrons and holes are combined in the light emitting layer. Uses energy to emit light.
  • the device utilizes a phenomenon in which light is generated when the light-emitting material of the light-emitting layer is excited by the energy of the coupling and returns from the excited state to the ground state again.
  • this organic electroluminescent element is used as a display device, since an organic substance is used as a light-emitting material, it is easy to generate light with high color purity by selecting an organic substance, and thus a wide color reproduction range can be obtained. There is the feature that it is. In addition, since it is self-luminous, it has the characteristics of high response speed and wide viewing angle. Further, because of its structure, it is easy to reduce the thickness, so that it has an advantage that a thin display device can be manufactured. Furthermore, since it is possible to emit white light and it is surface light emission, an application in which an organic electroluminescent element is incorporated in a lighting device has been proposed.
  • Patent Document 1 includes a dielectric layer inserted between a hole electrode injection layer and an electron injection electrode layer, and at least the dielectric layer and the electrode layer Cavity light emitting electroluminescent devices have been proposed that extend through one and apply an electroluminescent coating material to an internal cavity surface comprising a hole injection electrode region, an electron injection electrode region, and a dielectric region.
  • Patent Document 2 discloses a metal nitride or metal carbide in an organic electroluminescence element in which a carrier transport layer and a light emitting layer using at least an organic material are laminated between a hole injection electrode and an electron injection electrode. There has been proposed an organic electroluminescence element characterized in that a heat dissipation layer is provided.
  • the cavity light-emitting electroluminescent device described in JP-T-2003-522371 has a sufficient countermeasure against the problem that the device is deteriorated due to heat generated during light emission and the durability is not necessarily guaranteed. Not a structure.
  • the device when the device is used for illumination or the like, it is necessary to emit light with a large area and high luminance, so that the amount of heat generated per unit area becomes very large. Therefore, it is necessary to take further measures against heat generation.
  • the metal nitride or metal carbide is an opaque material, and light transmission is blocked, resulting in a decrease in light emission efficiency.
  • an object of the present invention is to provide an organic electroluminescence device having high luminance efficiency with less luminance unevenness due to uneven heat generation. Another object is to provide a display device having high contrast and resolution and high luminous efficiency. Furthermore, another object is to provide an illuminating device with less luminance unevenness and high light emission efficiency.
  • the organic electroluminescent element of the present invention comprises a first electrode layer, a second electrode layer, a dielectric layer formed between the first electrode layer and the second electrode layer, and at least a dielectric layer. It has a recess formed through, a light emitting portion formed in contact with the inner surface of the recess, and a heat dissipation layer that dissipates heat generated from the light emitting portion.
  • the heat dissipation layer is preferably formed between the first electrode layer and the second electrode layer.
  • the heat dissipation layer preferably has a thickness of 50 nm to 200 nm.
  • the heat dissipation layer is preferably formed in contact with at least one of the first electrode layer and the second electrode layer, and in this case, it preferably has a thickness of 0.2 ⁇ m to 1000 ⁇ m.
  • the heat dissipation layer is more preferably formed in accordance with the shape of the concave portion, and includes aluminum nitride, tantalum nitride, alumina, sapphire, beryllium oxide, magnesium oxide, diamond-like carbon, single crystal silicon, polycrystalline silicon, and amorphous silicon. More preferably, it contains at least one selected from silicon carbide and metal materials.
  • the heat dissipation layer preferably has a thermal conductivity of 10 W / (m ⁇ K) or more.
  • the recess preferably has a substantially cylindrical shape penetrating the first electrode layer, the second electrode layer, the dielectric layer, and the heat dissipation layer.
  • the first electrode layer, the second electrode layer, the dielectric layer it is preferable to form grooves that are substantially parallel to each other and penetrate through the heat dissipation layer, and preferably further penetrate at least one of the first electrode layer and the second electrode layer.
  • the light emitting part preferably contains a phosphorescent material
  • the phosphorescent material is preferably a phosphorescent polymer having a molecular weight of 1,000 to 2,000,000 in terms of weight average molecular weight. More preferably, the phosphor comprises a phosphorescent unit that emits phosphorescence and a carrier transporting unit that transports carriers in one molecule.
  • the first electrode layer and the second electrode layer are formed of an opaque material.
  • the display device of the present invention includes the organic electroluminescent element described above.
  • the lighting device of the present invention is characterized by including the organic electroluminescent element described above.
  • an organic electroluminescent device having high luminance efficiency and less luminance unevenness due to uneven heat generation.
  • FIG. 1 is a cross-sectional view illustrating a first example of an organic electroluminescent element to which the exemplary embodiment is applied.
  • An organic electroluminescent element 10 shown in FIG. 1 includes an anode layer 12 as a first electrode layer, a heat dissipation layer 13, an insulating dielectric layer 14, and a cathode as a second electrode layer on a substrate 11. A structure in which the layer 15 is sequentially laminated is adopted.
  • the recessed part 16 formed penetrating the anode layer 12, the thermal radiation layer 13, the dielectric material layer 14, and the cathode layer 15, and it is light-emitted by being formed in contact with the inner surface of the recessed part 16, and applying a voltage.
  • a light emitting unit 17 is included. In the light emitting portion 17, a light emitting material is applied to the inner surface of the recessed portion 16 without filling the entire recessed portion 16, thereby forming a second recessed portion 18.
  • the substrate 11 serves as a support for forming the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, the cathode layer 15, and the light emitting portion 17.
  • a material that satisfies the mechanical strength required for the organic electroluminescent element 10 is used for the substrate 11.
  • a material of the substrate 11 when light is to be extracted from the substrate 11 side of the organic electroluminescent element 10, it is necessary to be transparent to visible light.
  • glass such as soda glass and alkali-free glass
  • transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin
  • silicon and the like are examples of the like.
  • the material of the substrate 11 is not limited to a material transparent to visible light, and an opaque material can be used. Specifically, in addition to the above materials, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) ), Alloys thereof, or materials made of stainless steel can also be used.
  • the thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
  • the anode layer 12 applies voltage between the cathode layer 15 and injects holes into the light emitting portion 17.
  • the material used for the anode layer 12 is not particularly limited as long as it has electrical conductivity, but preferably has a sheet resistance of 1000 ⁇ or less in a temperature range of ⁇ 5 ° C. to 80 ° C. More preferably, it is 100 ⁇ or less. In addition, it is preferable that the electrical resistance does not change significantly with respect to the alkaline aqueous solution.
  • Metal oxides, metals, and alloys can be used as materials that satisfy such conditions.
  • examples of the metal oxide include ITO (indium tin oxide) and IZO (indium-zinc oxide).
  • the metal examples include stainless steel, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), and the like. .
  • An alloy containing these metals can also be used.
  • the thickness of the anode layer 12 is preferably 2 nm to 300 nm because high light transmittance is required when light is to be extracted from the substrate 11 side of the organic electroluminescent element 10. Further, when it is not necessary to extract light from the substrate 11 side of the organic electroluminescent element 10, it can be formed with a thickness of 2 nm to 2 mm, for example.
  • the heat dissipation layer 13 is for absorbing heat generated by the light emitting unit 17 to emit light and dissipating heat.
  • the organic electroluminescent element 10 shown in FIG. 1 it is formed between an anode layer 12 as a first electrode layer and a cathode layer 15 as a second electrode layer.
  • the heat dissipation layer 13 is preferably formed in contact with the light emitting portion 17.
  • the heat absorbed by the heat radiating layer 13 conducts heat in the heat radiating layer 13 and generates heat conduction mainly on the substrate 11 side, so that heat can be efficiently radiated from the substrate 11.
  • luminance unevenness due to non-uniform heat generation can be made difficult to occur.
  • the heat dissipation layer 13 preferably has a thermal conductivity at room temperature of 10 W / (m ⁇ K) or more, and more preferably 15 W / (m ⁇ K) or more.
  • the thermal conductivity at room temperature is less than 10 W / (m ⁇ K)
  • materials that can be used for the heat dissipation layer 13 include highly thermally conductive metal nitrides such as aluminum nitride and tantalum nitride; metal oxides such as alumina, sapphire, beryllium oxide, and magnesium oxide; diamond-like carbon (DLC: Diamond Like Carbon); single crystal silicon; polycrystalline silicon; amorphous silicon; silicon carbide.
  • a mixture of these may also be used.
  • a metal or metal alloy having excellent thermal conductivity can be used.
  • materials that are excellent in thermal conductivity but cannot be formed into a film by themselves because they are in powder form should be used after being mixed or dispersed in a resin and then formed into a film.
  • Can do for example, carbon tubes, particulate alumina, powdered diamond and the like mixed and dispersed in a polymer resin (polystyrene, polyimide, polypropylene, polyethylene, polyethylene terephthalate, polymethacrylic acid, polycarbonate), and the like.
  • polymer resin polystyrene, polyimide, polypropylene, polyethylene, polyethylene terephthalate, polymethacrylic acid, polycarbonate
  • metal materials are particularly excellent in thermal conductivity.
  • aluminum (Al), copper (Cu), tantalum (Ta), gold (having a thermal conductivity of 150 W / (m ⁇ K) or more ( Au), silver (Ag), magnesium (Mg) and the like can be used particularly preferably.
  • the thickness of the heat dissipation layer 13 is preferably 50 nm to 200 nm when the heat dissipation layer 13 is provided between the anode layer 12 and the cathode layer 15 as in the organic electroluminescent device 10 shown in FIG.
  • the heat dissipation layer 13 is 50 nm or less, the distance between the anode layer 12 and the cathode layer 15 becomes too narrow, and a short circuit is likely to occur between the anode layer 12 and the cathode layer 15, so that stable driving is difficult.
  • the heat dissipation layer 13 is provided between the anode layer 12 and the dielectric layer 14 as in the organic electroluminescent element 10 shown in FIG.
  • the thickness of the heat radiation layer 13 is provided. Is preferably in the range of 0.2 ⁇ m to 1000 ⁇ m, and more preferably in the range of 0.5 ⁇ m to 500 ⁇ m.
  • a thicker heat-dissipating layer 13 has higher heat conduction, which is preferable from the viewpoint of heat absorption and heat dissipation.
  • the dielectric layer 14 is provided between the anode layer 12 and the cathode layer 15, separates and insulates the anode layer 12 and the cathode layer 15 at a predetermined interval, and applies a voltage to the light emitting unit 17. It is. Therefore, the dielectric layer 14 needs to be a high resistivity material, and the electrical resistivity is required to be 10 8 ⁇ cm or more, preferably 10 12 ⁇ cm or more. Specific examples of the material include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; metal oxides such as silicon oxide and aluminum oxide, but other polymer compounds such as polyimide, polyvinylidene fluoride, and parylene. Can also be used.
  • the thickness of the dielectric layer 14 preferably does not exceed 1 ⁇ m in order to suppress the total thickness of the organic electroluminescent element 10.
  • the dielectric strength may not be sufficient for the voltage for driving the organic electroluminescent element 10.
  • the dielectric strength is preferably such that the current density of the current flowing between the anode layer 12 and the cathode layer 15 is 0.1 mA / cm 2 or less when the light emitting portion 17 is not formed, and 0.01 mA. / Cm 2 or less is more preferable.
  • the anode layer 12 and the anode layer 12 are not formed in a state where the light emitting portion 17 is not formed. It is necessary to satisfy the above current density when a voltage of about 7 V is applied between the cathode layers 15.
  • the thickness of the dielectric layer 14 satisfying this is preferably 10 nm to 500 nm, more preferably 50 nm to 200 nm.
  • the cathode layer 15 applies a voltage between the anode layer 12 and injects electrons into the light emitting portion 17.
  • the material used for the cathode layer 15 is not particularly limited as long as it has electrical conductivity like the anode layer 12, but a material having a low work function and being chemically stable is preferable. .
  • the work function is preferably ⁇ 2.9 eV or less in view of chemical stability. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified.
  • the thickness of the cathode layer 15 is preferably 10 nm to 1 ⁇ m, more preferably 50 nm to 500 nm.
  • a cathode buffer layer (not shown) may be provided adjacent to the cathode layer 15 for the purpose of increasing the electron injection efficiency by lowering the electron injection barrier from the cathode layer 15 to the light emitting portion 17.
  • the cathode buffer layer is required to have a work function lower than that of the cathode layer 15, and a metal material is preferably used.
  • a metal material is preferably used.
  • alkali metals Na, K, Rb, Cs
  • alkaline earth metals Sr, Ba, Ca, Mg
  • rare earth metals Pr, Sm, Eu, Yb
  • fluorides or chlorides of these metals A simple substance selected from oxides or a mixture of two or more can be used.
  • the thickness of the cathode buffer layer is preferably from 0.05 nm to 50 nm, more preferably from 0.1 nm to 20 nm, and even more preferably from 0.5 nm to 10 nm.
  • the concave portion 16 is for applying the light emitting portion 17 on the inner surface and taking out light from the light emitting portion 17.
  • the concave portion 16 is an anode layer 12 that is a first electrode layer, and a cathode layer 15 that is a second electrode layer.
  • the dielectric layer 14 and the heat dissipation layer 13 are formed so as to penetrate therethrough.
  • the light emitted from the light emitting portion 17 by providing the concave portion 16 in this manner propagates through the concave portion 16 and can be extracted in both directions on the substrate 11 side and the cathode layer 15 side.
  • the recess 16 is formed so as to penetrate the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15, in the anode layer 12 and the second electrode layer which are the first electrode layers. Light can be extracted even when a certain cathode layer 15 is formed of an opaque material.
  • the shape of the concave portion 16 can be, for example, a substantially cylindrical shape, but is not limited thereto, and may be a shape that forms a groove shape that is substantially parallel to each other.
  • the diameter is preferably 0.1 ⁇ m to 20 ⁇ m, and the distance between centers is preferably 0.2 ⁇ m to 40 ⁇ m. More preferably, the diameter is 0.1 ⁇ m to 10 ⁇ m, and the center-to-center distance is 0.2 ⁇ m to 20 ⁇ m.
  • the center-to-center spacing can be set to 0.3 ⁇ m to 1 ⁇ m, for example.
  • the groove width is preferably 0.1 ⁇ m to 20 ⁇ m, and the interval between the groove centers is preferably 0.3 ⁇ m to 40 ⁇ m.
  • the anode layer 12 and the cathode layer 15 penetrates by forming the recess 16, so that light is emitted strongly at the edge portions of the anode layer 12 and the cathode layer 15.
  • the light emission intensity at the center tends to be weak.
  • the central portion of the recess 16 is likely to be in a non-lighting state, and as a result, the luminance per unit area of the organic electroluminescent element 10 is likely to decrease.
  • the light emitting portion 17 is a light emitting material that emits light when a voltage is applied. As described above, the light emitting portion 17 is applied to the inner surface of the recess 16 so as to form the second recess 18 by providing the light emitting material in contact with the recess 16. The In the light emitting unit 17, the holes injected from the anode layer 12 and the electrons injected from the cathode layer 15 are recombined to emit light.
  • the material of the light emitting portion 17 either a low molecular compound or a high molecular compound can be used.
  • a low molecular compound or a high molecular compound can be used as the material of the light emitting portion 17.
  • the luminescent low molecular weight compound and the luminescent high molecular weight compound described in Hiroshi Omori: Applied Physics, Vol. 70, No. 12, pp. 1419-1425 (2001) can be exemplified.
  • a material excellent in applicability is preferable. That is, in the structure of the organic electroluminescent element 10 in the present embodiment, in order for the light emitting portion 17 to emit light stably in the recess 16, the light emitting portion 17 is in uniform contact with the inner surface of the recess 16 and the film thickness is uniformly formed. It is preferable that the coverage is improved. If the light emitting portion 17 is formed without using a material having excellent coating properties, the light emitting portion 17 is not in contact with the entire recess 16 or the film thickness of the inner surface of the recess 16 is not uniform. For this reason, variations in the brightness of light emitted from the recess 16 are likely to occur.
  • the coating method it is easy to embed ink containing a light-emitting material in the concave portion 16, and thus it is possible to form a film with improved coverage even on a surface having irregularities.
  • materials having a weight average molecular weight of 1,000 to 2,000,000 are preferably used mainly for the purpose of improving coating properties.
  • coating property improvement additives such as a leveling agent and a defoaming agent, can also be added, and binder resin with few charge trap ability can also be added.
  • examples of the material having excellent coatability include, for example, an arylamine compound having a predetermined structure and a molecular weight of 1500 to 6000 as disclosed in JP-A-2007-86639, and JP-A 2000-034476.
  • examples thereof include the predetermined polymeric fluorescent substances.
  • a light-emitting polymer compound is preferable in terms of simplifying the manufacturing process of the organic electroluminescent element 10, and a phosphorescent compound is preferable in terms of high light emission efficiency. Therefore, a phosphorescent polymer compound is particularly preferable.
  • the addition amount of the low molecular light emitting material is preferably 30 wt% or less.
  • the light-emitting polymer compound can be classified into a conjugated light-emitting polymer compound and a non-conjugated light-emitting polymer compound, and among them, the non-conjugated light-emitting polymer compound is preferable.
  • the light-emitting material used in this embodiment is particularly preferably a phosphorescent non-conjugated polymer compound (a light-emitting material that is both a phosphorescent polymer and a non-conjugated light-emitting polymer compound).
  • the light emitting portion 17 in the organic electroluminescent device 10 of the present invention is preferably a phosphorescent polymer (in which a phosphorescent unit emitting phosphorescence and a carrier transporting unit transporting carriers are included in one molecule ( A phosphorescent material).
  • the phosphorescent polymer can be obtained by copolymerizing a phosphorescent compound having a polymerizable substituent and a carrier transporting compound having a polymerizable substituent.
  • the phosphorescent compound is a metal complex containing a metal element selected from iridium (Ir), platinum (Pt), and gold (Au), and among them, an iridium complex is preferable.
  • Examples of the polymerizable substituent in the phosphorescent compound include a urethane (meth) acrylate group such as a vinyl group, an acrylate group, a methacrylate group, and a methacryloyloxyethyl carbamate group, a styryl group and a derivative thereof, a vinylamide group and a derivative thereof, and the like.
  • a urethane (meth) acrylate group such as a vinyl group, an acrylate group, a methacrylate group, and a methacryloyloxyethyl carbamate group
  • a styryl group and a derivative thereof a vinylamide group and a derivative thereof, and the like.
  • vinyl group, methacrylate group, styryl group and derivatives thereof are preferable.
  • These substituents may be bonded to the metal complex via an organic group having 1 to 20 carbon atoms which may have a hetero atom.
  • a carrier transporting compound having a polymerizable substituent is a compound in which one or more hydrogen atoms in an organic compound having one or both of a hole transporting property and an electron transporting property are substituted with a polymerizable substituent. Can be mentioned.
  • the polymerizable substituent in the carrier transporting compound is a vinyl group.
  • the vinyl group is a urethane (meth) acrylate group such as an acrylate group, a methacrylate group, or a methacryloyloxyethyl carbamate group, a styryl group and its derivative, a vinylamide group and its derivative.
  • a compound substituted with a polymerizable substituent such as may be used.
  • These polymerizable substituents may be bonded via an organic group having 1 to 20 carbon atoms which may have a hetero atom.
  • the polymerization method of the phosphorescent compound having a polymerizable substituent and the carrier transporting compound having a polymerizable substituent may be any of radical polymerization, cationic polymerization, anionic polymerization, and addition polymerization, but radical polymerization is preferred.
  • the molecular weight of the polymer is preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000 in terms of weight average molecular weight.
  • the molecular weight here is a molecular weight in terms of polystyrene measured using a GPC (gel permeation chromatography) method.
  • the phosphorescent polymer may be a copolymer of one phosphorescent compound and one carrier transporting compound, one phosphorescent compound and two or more carrier transporting compounds, or two.
  • the above phosphorescent compound may be copolymerized with a carrier transporting compound.
  • the arrangement of the monomer in the phosphorescent polymer may be any of random copolymer, block copolymer, and alternating copolymer, the number of repeating units of the phosphorescent compound structure is m, and the repeating unit of the carrier transporting compound structure
  • the number is n (m, n is an integer of 1 or more)
  • the ratio of the number of repeating units of the phosphorescent compound structure to the total number of repeating units, that is, the value of m / (m + n) is 0.001 to 0.00. 5 is preferable, and 0.001 to 0.2 is more preferable.
  • JP-A Nos. 2003-342325, 2003-119179, 2003-113246, and 2003-206320 JP-A-2003-147021, JP-A-2003-171391, JP-A-2004-346212, JP-A-2005-97589, and JP-A-2007-305734.
  • the light emitting portion 17 of the organic electroluminescent element 10 in the present embodiment preferably includes the above-described phosphorescent compound, but a hole transporting compound or an electron transporting compound is used for the purpose of supplementing the carrier transporting property of the light emitting portion 17. It may be included.
  • the hole transporting compound used for these purposes for example, TPD (N, N′-dimethyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4′diamine) , ⁇ -NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4,4 ′, 4 ′′ -tris (3-methylphenylphenylamino) And low molecular triphenylamine derivatives such as triphenylamine).
  • TPD N, N′-dimethyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4′diamine
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • m-MTDATA (4,4 ′, 4 ′′ -tris (3-
  • polyvinylcarbazole a triphenylamine derivative obtained by introducing a polymerizable functional group into a polymer; a polymer compound having a triphenylamine skeleton disclosed in JP-A-8-157575; polyparaphenylene vinylene, And polydialkylfluorene.
  • the electron transporting compound include low molecular weight materials such as quinolinol derivative metal complexes such as Alq3 (aluminum triskinolinolate), oxadiazole derivatives, triazole derivatives, imidazole derivatives, triazine derivatives, and triarylborane derivatives.
  • a polymer obtained by introducing a polymerizable functional group into the above low molecular electron transporting compound for example, a known electron transporting compound such as poly PBD disclosed in JP-A-10-1665 is exemplified. .
  • the light emitting portion 17 can be formed even when a light emitting low molecular weight compound is used as the light emitting material used for the light emitting portion 17 instead of the light emitting polymer compound described above.
  • the above-described light-emitting polymer compound can be added as a light-emitting material, and a hole-transporting compound or an electron-transporting compound can also be added.
  • the hole transporting compound in this case include, for example, TPD, ⁇ -NPD, m-MTDATA, phthalocyanine complex, DTDPFL, spiro-TPD, TPAC, PDA described in JP-A-2006-76901. Etc.
  • electron transport compound examples include BPhen, BCP, OXD-7, TAZ and the like described in JP-A-2006-76901.
  • a compound having a bipolar molecular structure having a hole transporting property and an electron transporting property in one molecule described in JP-A-2006-273792 can be used.
  • the light emitting portion 17 is in contact with the concave portion 16 to form the second concave portion 18 by providing the light emitting material, and although the bottom part of the 2nd recessed part 18 is formed so that it may be located in the location near the bottom part of the recessed part 16, it is not restricted to this.
  • FIGS. 2A to 2D are diagrams for explaining other forms of the shape of the light-emitting portion 17.
  • the depth of the second recess 18 is shallow, and the bottom of the second recess 18 is formed so as to be located closer to the top than the bottom of the recess 16. ing.
  • the second recess 18 is not formed, and the recess 16 is completely filled with the light emitting portion 17, and the upper surface of the light emitting portion 17 is the upper surface of the cathode layer 15. Is consistent with Furthermore, in the organic electroluminescent element 10c shown in FIG.
  • the second concave portion 18 is not formed, the concave portion 16 is completely filled with the light emitting portion 17, and the upper surface thereof has a convex shape.
  • the second recess 18 is formed, but the depth of the second recess 18 is shallow, and the bottom of the second recess 18 is the bottom of the recess 16.
  • the light emitting portion 17 is formed so as to be developed not only inside the concave portion 16 but also on the upper surface of the cathode layer 15.
  • the organic electroluminescent elements 10a, 10b, 10c, and 10d shown in FIGS. 2A to 2D the light emitted from the light emitting section 17 propagates inside the light emitting section 17, and the organic electroluminescent elements described above are used. 10, it can be taken out from both the substrate 11 side and the cathode layer 15 side.
  • the shape of the light emitting portion 17 described in FIG. 1 and FIGS. 2A to 2D can be selected depending on the cross-sectional structures of the anode layer 12 and the cathode layer 15, for example.
  • the second recess 18 is preferably formed when the cathode layer 15 is penetrated by the recess 16 and the upper part is opened.
  • the cathode layer 15 is formed after the light emitting portion 17 is formed. Therefore, it is preferable to form the second recess 18 small or not because the coverage is improved when the cathode layer 15 is formed.
  • the heat dissipation layer 13 is provided between the anode layer 12 and the dielectric layer 14.
  • the present invention is not limited to this, and there is no particular limitation on the location.
  • FIG. 3 is a cross-sectional view illustrating a second example of an organic electroluminescent element to which the exemplary embodiment is applied.
  • the organic electroluminescent device 20 shown in FIG. 3 is different from the organic electroluminescent device 10 shown in FIG. 1 in that a heat dissipation layer 13 is provided between the substrate 11 and the anode layer 12 and is in contact with the anode layer 12. Is formed. Even in such a structure, the heat generated from the light emitting portion 17 is absorbed by the heat dissipation layer 13, and the heat transferred through the heat dissipation layer 13 is dissipated mainly from the substrate 11 side.
  • the heat dissipation layer 13 is provided only in one layer, but the invention is not limited to this, and a plurality of layers may be provided. .
  • FIG. 4 is a cross-sectional view illustrating a third example of the organic electroluminescent element to which the exemplary embodiment is applied.
  • the heat dissipation layer 13 is provided between the substrate 11 and the anode layer 12, is formed in contact with the anode layer 12, and is laminated on the cathode layer 15. Are further provided in contact with each other. In this case, two layers of the heat dissipation layer 13 are formed.
  • the heat dissipating layer 13 provided between the substrate 11 and the anode layer 12 dissipates heat mainly on the substrate 11 side, and the heat dissipating layer 13 laminated on the cathode layer 15 mainly directly from the heat dissipating layer 13. Heat can be dissipated.
  • the heat radiation layer 13 may be provided between the anode layer 12 and the cathode layer 15 and at a plurality of locations outside the anode layer 12 and the cathode layer 15.
  • the recess 16 includes the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15.
  • the present invention is not limited to this.
  • the light emitting portion 17 it is sufficient that at least the dielectric layer 14 penetrates through the recess 16.
  • the recess 16 desirably has a structure that penetrates at least one of the anode layer 12 and the cathode layer 15.
  • FIG. 5 is a cross-sectional view illustrating a fourth example of an organic electroluminescent element to which the present exemplary embodiment is applied.
  • the recess 16 penetrates the heat dissipation layer 13, the anode layer 12, and the dielectric layer 14, but does not penetrate the cathode layer 15.
  • the recessed part 16 is filled with the light emission part 17, and the 2nd recessed part 18 is not formed.
  • the cathode layer 15 is formed in a so-called solid film shape so as to be laminated on the dielectric layer 14. By forming the cathode layer 15 in this way, the recess 16 is covered.
  • the light emitting part 17 is not applied to the inner surface of the recessed part 16 so as to form the second recessed part 18, the light emitted by the light emitting part 17 propagates inside the light emitting part 17, and the above-described organic electroluminescent element 10, Similarly to 20 and 30, it can be taken out from both the substrate 11 side and the cathode layer 15 side.
  • the cathode layer 15 is a solid film and covers the light emitting portion 17, light is extracted from the cathode layer 15 side unless the cathode layer 15 is transparent to visible light. It is not possible.
  • FIG. 6 is a cross-sectional view illustrating a fifth example of the organic electroluminescent element to which the exemplary embodiment is applied.
  • the recess 16 penetrates the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15, but does not penetrate the anode layer 12.
  • the light emitting unit 17 forms a second recess 18. Even when the anode layer 12 is formed in this way, the light emitted from the light emitting portion 17 can be extracted from both the substrate 11 side and the cathode layer 15 side. However, when it is desired to extract light from the anode layer 12 side, the anode layer 12 cannot extract light from the substrate 11 side unless it is transparent to visible light.
  • FIG. 7 is a cross-sectional view illustrating a sixth example of an organic electroluminescent element to which the present exemplary embodiment is applied.
  • the recess 16 penetrates the heat dissipation layer 13 and the dielectric layer 14, but does not penetrate the anode layer 12 and the cathode layer 15.
  • the recessed part 16 is filled with the light emission part 17, and the 2nd recessed part 18 is not formed.
  • the anode layer 12 is formed in a so-called solid film shape so as to be laminated on the substrate 11.
  • the cathode layer 15 is formed in a so-called solid film shape so as to be laminated on the dielectric layer 14, and has a structure covering the recess 16.
  • the anode layer 12 and the cathode layer 15 are formed in this way, the light emitted from the light emitting portion 17 can be extracted from both the substrate 11 side and the cathode layer 15 side.
  • the anode layer 12 needs to be transparent to visible light.
  • the cathode layer 15 needs to be transparent to visible light.
  • the heat dissipation layer 13 when the heat dissipation layer 13 is provided between the anode layer 12 and the cathode layer 15, the heat dissipation layer 13 is in contact with at least one of the anode layer 12 and the cathode layer 15.
  • the present invention is not limited to this, and it may not be in contact.
  • FIG. 8 is a cross-sectional view illustrating a seventh example of an organic electroluminescent element to which the present exemplary embodiment is applied.
  • the organic electroluminescent element 70 shown in FIG. 8 two dielectric layers are formed, and the heat dissipation layer 13 is formed between the dielectric layers 14a and 14b having the two-layer structure. Even in such a structure, the heat generated from the light emitting portion 17 is absorbed by the heat dissipation layer 13, and the heat transferred through the heat dissipation layer 13 can be dissipated from the substrate 11 and the cathode layer 15 side.
  • FIG. 9 is a cross-sectional view illustrating an eighth example of an organic electroluminescent element to which the present exemplary embodiment is applied.
  • an anode layer 12, a heat dissipation layer 13, and a dielectric layer 14 are sequentially formed on a substrate 11.
  • the light emitting material that forms the light emitting portion 17 is also developed from the recess 16 to the upper surface of the dielectric layer 14. That is, the light emitting material forming the light emitting portion 17 is continuously extended from the concave portion 16 between the dielectric layer 14 and the cathode layer 15. Further, the cathode layer 15 is formed so as to be further laminated on the light emitting material, and is formed in a so-called solid film shape.
  • the heat generated from the light emitting portion 17 is absorbed by the heat dissipation layer 13, and the heat transferred through the heat dissipation layer 13 can be dissipated from the substrate 11 and the cathode layer 15 side.
  • the conventional sandwich composed of the anode layer, the light emitting portion, the cathode layer, etc., without providing the recesses 16 with respect to the position and number of the heat radiation layers 13.
  • the degree of freedom is higher than that of the organic electroluminescent device having the structure. That is, in the organic electroluminescence device having a sandwich structure, the entire surface is a light emitting area, and therefore a heat dissipation layer can be inserted only on the back surface of the back electrode, and even when inserted, only a small area can be inserted from the viewpoint of light emission efficiency. Moreover, even if only a small area is inserted, the luminous efficiency is reduced.
  • the organic electroluminescent element of the present embodiment it is possible to provide a heat dissipation layer in any region other than the portion where the recess 16 is provided. That is, the heat dissipation layer can be formed in conformity with the shape of the recess, so that the effect of heat dissipation is high, and it is easy to prevent unevenness in the heat generation from occurring in the organic electroluminescent element and uneven brightness. And it becomes easy to raise luminous efficiency. Further, since a part of the heat radiation layer 13 is in direct contact with the light emitting unit 17, it is possible to effectively dissipate heat from the light emitting unit 17. Furthermore, there is no restriction
  • the anode layer is formed on the lower side when the substrate 11 side is the lower side.
  • the present invention is not limited to this, but the anode layer 12 and the cathode layer 15 are not limited to this.
  • An exchanged structure may be used. That is, when the substrate 11 side is the lower side, the cathode layer 15 may be formed on the lower side, and the anode layer 12 may be formed on the upper side with the dielectric layer 14 interposed therebetween.
  • the heat dissipation layer 13 is on the lower side and the dielectric layer 14 is formed on the upper side.
  • the body layer 14 may be on the lower side and the heat dissipation layer 13 may be on the upper side.
  • FIG. 10A to 10F are diagrams illustrating a method for manufacturing the organic electroluminescent element 10 to which the exemplary embodiment is applied.
  • the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15 are formed in this order on the substrate 11 (FIG. 10A).
  • resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, or the like can be used.
  • a coating film forming method that is, a method in which a target material is dissolved in a solvent and applied to a substrate and drying is possible
  • a spin coating method a dip coating method, an ink jet method, a printing method, a spray method
  • a method such as a dispenser method.
  • the cathode buffer layer can also be formed by the same method.
  • the recess 16 is formed so as to penetrate the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15.
  • a method using lithography can be used. In order to do this, first, a resist solution is applied on the cathode layer 15, and the excess resist solution is removed by spin coating or the like to form a resist layer 61 (FIG. 10B).
  • the exposed portion of the cathode layer 15 is removed by etching, and a recess 16 is formed so as to penetrate the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15 (FIG. 10E).
  • etching either dry etching or wet etching can be used.
  • the shape of the recess 16 can be controlled by combining isotropic etching and anisotropic etching.
  • dry etching reactive ion etching (RIE) or inductively coupled plasma etching can be used.
  • RIE reactive ion etching
  • wet etching a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used.
  • the remaining resist layer 61 is removed using a resist removing solution or the like, and the light emitting portion 17 is formed, whereby the organic electroluminescent element 10 can be manufactured (FIG. 10F).
  • the above-described coating method is used for forming the light emitting portion 17.
  • an ink in which a light emitting material constituting the light emitting unit 17 is dispersed in a predetermined solvent such as an organic solvent or water is applied.
  • various methods such as spin coating, spray coating, dip coating, ink jet, slit coating, dispenser, and printing can be used.
  • the ink is dried by heating or evacuating, and the light emitting material adheres to the inner surface of the recess 16 to form the light emitting portion 17.
  • the organic electroluminescent element 10 stably for a long period of time and to attach a protective layer or a protective cover (not shown) for protecting the organic electroluminescent element 10 from the outside.
  • a protective layer polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used.
  • the protective cover a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used. It is preferable that the protective cover is sealed with a thermosetting resin or a photo-curing resin and bonded to the element substrate.
  • a spacer because a predetermined space can be maintained and the organic electroluminescent element 10 can be prevented from being damaged. If an inert gas such as nitrogen or argon is sealed in this space, the cathode layer 15 can be easily prevented from being oxidized. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic electroluminescent element 10.
  • FIG. 11 is a diagram illustrating an example of a display device using the organic electroluminescent element in this embodiment.
  • a display device 200 shown in FIG. 11 is a so-called passive matrix display device, and includes a display device substrate 202, an anode wiring 204, an anode auxiliary wiring 206, a cathode wiring 208, an insulating film 210, a cathode partition wall 212, and an organic electroluminescent element. 214, a counter substrate 216, and a sealing material 218.
  • the display device substrate 202 for example, a transparent substrate such as a rectangular glass substrate can be used.
  • the thickness of the display device substrate 202 is not particularly limited, but for example, a thickness of 0.1 mm to 1 mm can be used.
  • a plurality of anode wirings 204 are formed on the display device substrate 202.
  • the anode wirings 204 are arranged in parallel at a constant interval.
  • the anode wiring 204 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used.
  • the thickness of the anode wiring 204 can be set to 100 nm to 150 nm, for example.
  • An anode auxiliary wiring 206 is formed on the end of each anode wiring 204.
  • the anode auxiliary wiring 206 is electrically connected to the anode wiring 204.
  • the anode auxiliary wiring 206 functions as a terminal for connecting to the external wiring on the end portion side of the display device substrate 202, and the anode auxiliary wiring 206 is connected from an external driving circuit (not shown). A current can be supplied to the anode wiring 204 through the wiring.
  • the anode auxiliary wiring 206 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
  • a plurality of cathode wirings 208 are provided on the display device substrate 202.
  • the plurality of cathode wirings 208 are arranged so as to be parallel to each other and orthogonal to the anode wiring 204.
  • As the cathode wiring 208 Al or an Al alloy can be used.
  • the thickness of the cathode wiring 208 is, for example, 100 nm to 150 nm.
  • a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 208 and is electrically connected to the cathode wiring 208. Therefore, current can flow between the cathode wiring 208 and the cathode auxiliary wiring.
  • An insulating film 210 is formed on the display device substrate 202 so as to cover the anode wiring 204.
  • the insulating film 210 is provided with a rectangular opening 220 so as to expose a part of the anode wiring 204.
  • the plurality of openings 220 are arranged in a matrix on the anode wiring 204.
  • an organic electroluminescent element 214 is provided between the anode wiring 204 and the cathode wiring 208 as described later. That is, each opening 220 is a pixel. Accordingly, a display area is formed corresponding to the opening 220.
  • the film thickness of the insulating film 210 can be, for example, 200 nm to 300 nm, and the size of the opening 220 can be, for example, 300 ⁇ m ⁇ 300 ⁇ m.
  • An organic electroluminescent element 214 is formed at a location corresponding to the position of the opening 220 on the anode wiring 204.
  • the organic electroluminescent element 214 since the anode wiring 204 replaces the substrate 11, the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, the cathode layer 15, and the light emitting portion are directly formed on the insulating film 210. 17 (see FIG. 1) is formed.
  • the organic electroluminescent element 214 is sandwiched between the anode wiring 204 and the cathode wiring 208 in the opening 220.
  • the thickness of the organic electroluminescent element 214 can be set to, for example, 150 nm to 200 nm.
  • a plurality of cathode partitions 212 are formed on the insulating film 210 along a direction perpendicular to the anode wiring 204.
  • the cathode partition 212 plays a role in spatially separating the plurality of cathode wirings 208 so that the wirings of the cathode wirings 208 are not electrically connected to each other. Accordingly, the cathode wiring 208 is disposed between the adjacent cathode partition walls 212.
  • a cathode partition with a height of 2 to 3 ⁇ m and a width of 10 ⁇ m can be used.
  • the display device substrate 202 is bonded to the counter substrate 216 via a sealing material 218. Thereby, the space in which the organic electroluminescent element 214 is provided can be sealed, and the organic electroluminescent element 214 can be prevented from being deteriorated by moisture in the air.
  • a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used as the counter substrate 216.
  • a current is supplied to the organic electroluminescent element 214 via the anode auxiliary wiring 206 and the cathode auxiliary wiring (not shown) by a driving device (not shown), the light emitting unit 17 is caused to emit light, and the recess 16 Can emit light.
  • An image can be displayed on the display device 200 by controlling light emission and non-light emission of the organic electroluminescence element 214 corresponding to the above-described pixel by the control device.
  • FIG. 12 is a diagram illustrating an example of a lighting device including the organic electroluminescent element in the present embodiment.
  • the lighting device 300 shown in FIG. 12 is installed adjacent to the organic electroluminescent element 10 and the substrate 11 (see FIG. 1) of the organic electroluminescent element 10 and connected to the anode layer 12 (see FIG. 1).
  • the lighting circuit 301 has a DC power supply (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 12 and the cathode layer 15 of the organic electroluminescent element 10 through the terminal 302 and the terminal 303. And the organic electroluminescent element 10 is driven, the light emission part 17 (refer FIG. 1) is light-emitted, light is radiate
  • the light emitting unit 17 may be made of a light emitting material that emits white light, and the organic electroluminescent element 10 using a light emitting material that emits green light (G), blue light (B), and red light (R). A plurality of them may be provided, and the combined light may be white.
  • the lighting device 300 of the present embodiment when light is emitted with the diameter and interval of the recesses 16 (see FIG. 1) being reduced, it appears to the human eye to emit light.
  • E-2 iridium complex having a polymerizable substituent
  • E-54 hole transporting compound
  • E-66 Electron transporting compound
  • the reaction solution was dropped into acetone to cause precipitation, and the reprecipitation purification with dehydrated toluene-acetone was repeated three times to purify the phosphorescent polymer compound.
  • dehydrated toluene and acetone those obtained by further distilling a high-purity grade manufactured by Wako Pure Chemical Industries, Ltd. were used.
  • the solvent after the third reprecipitation purification was analyzed by high performance liquid chromatography, it was confirmed that no substance having absorption at 400 nm or more was detected in the solvent. That is, this means that the solvent contains almost no impurities, which means that the phosphorescent polymer compound has been sufficiently purified.
  • the purified phosphorescent polymer compound was vacuum dried at room temperature for 2 days. As a result, it was confirmed by high performance liquid chromatography (detection wavelength 254 nm) that the phosphorescent polymer compound (ELP) obtained had a purity exceeding 99.9%.
  • the organic electroluminescent element 80 shown in FIG. 9 was produced by the following method. Specifically, a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.) is first formed on a glass substrate (25 mm square, 1 mm thickness) made of quartz glass having a 150 nm thick ITO (Indium Tin Oxide) film on the surface. Were used to form an alumina (Al 2 O 3 ) layer of 30 nm and a silicon dioxide (SiO 2 ) layer of 100 nm.
  • the glass substrate corresponds to the substrate 11.
  • the ITO film corresponds to the anode layer 12
  • the alumina (Al 2 O 3 ) layer corresponds to the heat dissipation layer 13
  • the silicon dioxide layer corresponds to the dielectric layer 14.
  • a photoresist (AZ 1500 made by AZ Electronic Materials Co., Ltd.) was formed to a thickness of about 1 ⁇ m by spin coating. After exposure to ultraviolet, TMAH (Tetra methyl ammonium hydroxide: (CH3) 4 NOH) developed with 1.2% solution, the patterned resist layer. Thereafter, heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
  • TMAH Tetra methyl ammonium hydroxide: (CH3) 4 NOH
  • the silicon dioxide layer and the alumina (Al 2 O 3 ) layer were patterned by dry etching using a reactive ion etching apparatus (RIE-200iP manufactured by Samco Corporation).
  • RIE-200iP reactive ion etching apparatus
  • the resist residue was removed with a resist removing solution, and the ITO film was patterned by dry etching using the reactive ion etching apparatus described above.
  • the concave portion 16 penetrating the dielectric layer 14, the heat dissipation layer 13, and the anode layer 12 was formed.
  • this recessed part 16 was a cylindrical shape with a diameter of 2 micrometers (um), and the distance between the edges of the recessed part 16 became 2 micrometers.
  • the glass substrate was washed by spraying pure water and dried using a spin dryer.
  • the solution A was applied by a spin coating method (rotation speed: 3000 rpm), and then allowed to stand at 120 ° C. for 1 hour in a nitrogen atmosphere and dried to form the light emitting portion 17.
  • the organic electroluminescent element 80 was able to be manufactured by the above process.
  • Example 2 In contrast to Example 1, the alumina (Al 2 O 3 ) layer, which is the heat dissipation layer 13, was changed to 50 nm (Example 2), 200 nm (Example 3), and 250 nm (Example 4). A light emitting device 80 was manufactured.
  • Example 6 In contrast to Example 1, an AlN (aluminum nitride) layer (Example 5) and a Ti (titanium) layer (Example 6) were formed as the heat dissipation layer 13 and the film thickness was set to 50 nm. An organic electroluminescent element 80 was produced.
  • the organic electroluminescent element 10d shown in FIG. 2D was produced by the following method. Specifically, first, on a silicon substrate (25 mm square, 1 mm thickness) having an ITO (Indium Tin Oxide) film having a thickness of 150 nm on the surface, a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.) was used. An alumina (Al 2 O 3 ) layer was deposited to 100 nm, a silicon dioxide (SiO 2 ) layer was deposited to 50 nm, and an aluminum (Al) layer was deposited to 100 nm.
  • the silicon substrate corresponds to the substrate 11.
  • the ITO film corresponds to the anode layer 12
  • the alumina (Al 2 O 3 ) layer corresponds to the heat dissipation layer 13
  • the silicon dioxide layer corresponds to the dielectric layer 14
  • the aluminum layer corresponds to the cathode layer 15.
  • a photoresist (AZ1500 manufactured by AZ Electronic Materials Co., Ltd.) was formed to a thickness of about 1 ⁇ m by spin coating. After exposure with ultraviolet rays, the resist layer was patterned by developing with a 1.2% solution of TMAH (Tetra methyl ammonium hydroxide: (CH3) 4NOH). Thereafter, heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
  • TMAH Tetra methyl ammonium hydroxide: (CH3) 4NOH
  • the aluminum layer, the silicon dioxide layer and the alumina layer were patterned by dry etching using a reactive ion etching apparatus (RIE-200iP manufactured by Samco Corporation).
  • RIE-200iP reactive ion etching apparatus
  • the ITO film was patterned using the reactive ion etching apparatus.
  • the resist residue was removed with a resist removing solution.
  • the concave portion 16 penetrating the cathode layer 15, the dielectric layer 14, the heat dissipation layer 13, and the anode layer 12 was formed. And this recessed part 16 was a cylindrical shape with a diameter of 2.5 micrometers (um), and the distance between the edges of the recessed part 16 became 1.5 micrometers.
  • the glass substrate was washed by spraying pure water and dried using a spin dryer.
  • the solution A was applied by a spin coating method (rotation speed: 3000 rpm), and then allowed to stand at 120 ° C. for 1 hour in a nitrogen atmosphere and dried to form the light emitting portion 17.
  • the organic electroluminescent element 10d was able to be manufactured through the above steps.
  • the organic electroluminescent element 30 shown in FIG. 4 was produced by the following method. Specifically, an alumina (Al 2 O 3 ) layer is formed on a glass substrate (25 mm square, 1 mm thickness) made of soda glass by using a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.) with a thickness of 50 nm. The film was 150 nm, the silicon dioxide (SiO 2 ) layer was 100 nm, the alumina (Al 2 O 3 ) layer was 50 nm, the aluminum (Al) layer was 150 nm, and the alumina (Al 2 O 3 ) layer was 50 nm in this order.
  • a alumina (Al 2 O 3 ) layer is formed on a glass substrate (25 mm square, 1 mm thickness) made of soda glass by using a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.) with a thickness of 50 nm.
  • the glass substrate corresponds to the substrate 11.
  • the alumina (Al 2 O 3 ) layer corresponds to the heat dissipation layer 13
  • the ITO film corresponds to the anode layer 12
  • the silicon dioxide layer corresponds to the dielectric layer 14
  • the aluminum layer corresponds to the cathode 15.
  • a photoresist (AZ 1500 made by AZ Electronic Materials Co., Ltd.) was formed to a thickness of about 1 ⁇ m by spin coating. After exposure with ultraviolet rays, the resist layer was patterned by developing with a 1.2% solution of TMAH (Tetra methyl ammonium hydroxide: (CH 3 ) 4 NOH). Thereafter, heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
  • TMAH Tetra methyl ammonium hydroxide: (CH 3 ) 4 NOH
  • an alumina (Al 2 O 3 ) layer, an aluminum layer, and a silicon dioxide layer were patterned by dry etching using a reactive ion etching apparatus (RIE-200iP manufactured by Samco Corporation).
  • RIE-200iP reactive ion etching apparatus
  • the ITO film was patterned using the reactive ion etching apparatus.
  • the alumina (Al 2 O 3 ) layer was patterned using the reactive ion etching apparatus.
  • the resist residue was removed with a resist removing solution.
  • the cathode 15, the dielectric layer 14, the heat dissipation layer 13, the anode layer 12, and the recess 16 penetrating the heat dissipation layer 13 were formed.
  • this recessed part 16 was a cylindrical shape with a diameter of 3 micrometers (um), and the distance between the edges of the recessed part 16 became 1 micrometer.
  • the glass substrate was washed by spraying pure water and dried using a spin dryer.
  • the organic electroluminescent element 30 was able to be manufactured by the above process.
  • Example 1 An organic electroluminescent element was produced in the same manner as in Example 1 except that the alumina (Al 2 O 3 ) layer as the heat dissipation layer 13 was not formed.
  • Example 7 (Comparative Example 2) In Example 7, instead of forming an alumina (Al 2 O 3 ) layer of 100 nm and a silicon dioxide (SiO 2 ) layer of 50 nm, a silicon dioxide layer of 150 nm was formed. That is, the organic electroluminescent element was produced without forming the heat dissipation layer 13.
  • the luminance distribution is an organic electroluminescence device having a light emitting surface of 5 mm ⁇ , and the light emitting surface is divided into three equal parts vertically and horizontally, and the numerical value is a ratio between the luminance at the center and the luminance at the four corners.
  • Each measurement area was circular with a diameter of approximately 0.5 mm.
  • a luminance meter Topiccon Co., Ltd., BM-9, viewing angle 0.2 degree was used for the luminance.
  • the luminance immediately after energization was measured within 5 seconds after the start of energization of the organic electroluminescent element. Further, the luminance after lighting for a certain time was measured 3 minutes after lighting.
  • the brightness unevenness is improved in each of Examples 1 to 8 as compared to Comparative Examples 1 and 2. That is, by providing the heat dissipation layer 13, the temperature distribution is made uniform and luminance unevenness is suppressed. Further, when Examples 1 to 4 are compared, the power efficiency tends to decrease as the alumina film thickness increases. From Table 1, it can be seen that the film thickness of the heat dissipation layer 13 is preferably about 50 nm to 200 nm when the luminance unevenness and the power efficiency values of Examples 1 to 4 are compared.

Abstract

Disclosed is an organic electroluminescent element (10) comprising: an anode layer (12); a cathode layer (15); a dielectric layer (14) arranged between the anode layer (12) and the cathode layer (15); a recessed part (16) so formed as to penetrate at least the dielectric layer (14); a light-emitting part (17) so formed as to be in contact with the inner surface of the recessed part (16); and a heat dissipating layer (13) containing alumina or the like, which is formed, for example, between the anode layer (12) and the cathode layer (15) for the purpose of dissipating the heat generated in the light-emitting part (17).  The organic electroluminescent element is reduced in luminance variations due to uneven heat generation and has high luminous efficiency.

Description

有機電界発光素子、表示装置および照明装置Organic electroluminescent element, display device and lighting device
 本発明は、例えば、表示装置や照明装置に用いられる有機電界発光素子等に関する。 The present invention relates to, for example, an organic electroluminescent element used for a display device or a lighting device.
 近年、エレクトロルミネセンスを用いたデバイスが重要度を増している。このようなデバイスとして、特に有機物質からなる発光材料を層状に形成し、この発光層に陽極と陰極とからなる一対の電極を設けて電圧を印加することで発光を行わせる有機電界発光素子が注目を集めている。有機電界発光素子は、陽極と陰極の間に電圧を印加することで、陽極と陰極からそれぞれ正孔と電子を注入し、注入された電子と正孔とが、発光層で結合することにより生じるエネルギーを利用して発光を行う。即ち、この結合によるエネルギーで発光層の発光材料が励起され、励起状態から再び基底状態に戻る際に光を発生する現象を利用したデバイスである。
 この有機電界発光素子を表示装置として使用した場合、発光材料として有機物質を利用しているため、有機物質の選択によって色純度の高い光を発生させやすく、そのため色再現域を広くとることが可能であるという特徴がある。また自己発光であるため応答速度が速く、視野角が広いという特徴も有する。またその構造上、薄型化が容易であるため、薄い表示装置を製造できるという利点も有する。更に、白色での発光も可能であり、面発光であることから有機電界発光素子を照明装置に組み込んで利用する用途も提案されている。
In recent years, devices using electroluminescence have increased in importance. As such a device, there is an organic electroluminescent element that emits light by forming a light emitting material made of an organic material in a layer and providing a pair of electrodes consisting of an anode and a cathode on the light emitting layer and applying a voltage. It attracts attention. An organic electroluminescent element is produced by injecting holes and electrons from the anode and the cathode, respectively, by applying a voltage between the anode and the cathode, and the injected electrons and holes are combined in the light emitting layer. Uses energy to emit light. That is, the device utilizes a phenomenon in which light is generated when the light-emitting material of the light-emitting layer is excited by the energy of the coupling and returns from the excited state to the ground state again.
When this organic electroluminescent element is used as a display device, since an organic substance is used as a light-emitting material, it is easy to generate light with high color purity by selecting an organic substance, and thus a wide color reproduction range can be obtained. There is the feature that it is. In addition, since it is self-luminous, it has the characteristics of high response speed and wide viewing angle. Further, because of its structure, it is easy to reduce the thickness, so that it has an advantage that a thin display device can be manufactured. Furthermore, since it is possible to emit white light and it is surface light emission, an application in which an organic electroluminescent element is incorporated in a lighting device has been proposed.
 このような有機電界発光素子の構造として、例えば、特許文献1には、正孔電極注入層と電子注入電極層との間に挿入される誘電体層を備え、少なくとも誘電体層および電極層の一つを通って延び、正孔注入電極領域、電子注入電極領域および誘電体領域を備える内部キャビティ表面にエレクトロルミネセンスコーティング材料を塗布するキャビティ発光エレクトロルミネセンスデバイスが提案されている。
 また、特許文献2には、ホール注入電極と電子注入電極との間に、少なくとも有機材料を用いたキャリア輸送層と発光層とが積層されてなる有機エレクトロルミネッセンス素子において、金属窒化物又は金属炭化物からなる放熱層が設けられたことを特徴とする有機エレクトロルミネッセンス素子が提案されている。
As a structure of such an organic electroluminescent element, for example, Patent Document 1 includes a dielectric layer inserted between a hole electrode injection layer and an electron injection electrode layer, and at least the dielectric layer and the electrode layer Cavity light emitting electroluminescent devices have been proposed that extend through one and apply an electroluminescent coating material to an internal cavity surface comprising a hole injection electrode region, an electron injection electrode region, and a dielectric region.
Further, Patent Document 2 discloses a metal nitride or metal carbide in an organic electroluminescence element in which a carrier transport layer and a light emitting layer using at least an organic material are laminated between a hole injection electrode and an electron injection electrode. There has been proposed an organic electroluminescence element characterized in that a heat dissipation layer is provided.
特表2003-522371号公報Special table 2003-522371 特開平8-185982号公報JP-A-8-185982
 しかしながら、特表2003-522371号公報に記載されているキャビティ発光エレクトロルミネセンスデバイスは、発光の際に生ずる発熱によりデバイスの劣化が生じ耐久性が必ずしも保証されないという問題に対し、対策が十分施された構造ではない。特に、デバイスを照明等に使用した場合は、大面積かつ高輝度で発光することが必要なため、単位面積当たりの発熱量が非常に多くなる。そのため更なる発熱対策が必要である。
 また、金属窒化物又は金属炭化物からなる放熱層が設けられた有機エレクトロルミネッセンス素子は、金属窒化物又は金属炭化物が不透明材料であり、光透過を遮断するため発光効率の低下が生じる。
However, the cavity light-emitting electroluminescent device described in JP-T-2003-522371 has a sufficient countermeasure against the problem that the device is deteriorated due to heat generated during light emission and the durability is not necessarily guaranteed. Not a structure. In particular, when the device is used for illumination or the like, it is necessary to emit light with a large area and high luminance, so that the amount of heat generated per unit area becomes very large. Therefore, it is necessary to take further measures against heat generation.
In addition, in an organic electroluminescence element provided with a heat dissipation layer made of metal nitride or metal carbide, the metal nitride or metal carbide is an opaque material, and light transmission is blocked, resulting in a decrease in light emission efficiency.
 上記課題に鑑み、本発明の目的は、不均一な発熱による輝度ムラが少なく、高い発光効率を有する有機電界発光素子を提供することである。
 また、他の目的は、高いコントラストおよび解像度を有し、高い発光効率を有する表示装置を提供することである。
 更に、他の目的は、輝度ムラが少なく、高い発光効率を有する照明装置を提供することである。
In view of the above-described problems, an object of the present invention is to provide an organic electroluminescence device having high luminance efficiency with less luminance unevenness due to uneven heat generation.
Another object is to provide a display device having high contrast and resolution and high luminous efficiency.
Furthermore, another object is to provide an illuminating device with less luminance unevenness and high light emission efficiency.
 本発明の有機電界発光素子は、第1の電極層と、第2の電極層と、第1の電極層と第2の電極層の間に形成される誘電体層と、少なくとも誘電体層を貫通して形成される凹部と、凹部の内面と接触して形成される発光部と、発光部から発生する熱を放熱する放熱層と、を有することを特徴とする。 The organic electroluminescent element of the present invention comprises a first electrode layer, a second electrode layer, a dielectric layer formed between the first electrode layer and the second electrode layer, and at least a dielectric layer. It has a recess formed through, a light emitting portion formed in contact with the inner surface of the recess, and a heat dissipation layer that dissipates heat generated from the light emitting portion.
 ここで、放熱層は、第1の電極層と第2の電極層の間に形成されることが好ましく、またこの場合、放熱層は、50nm~200nmの厚さを有することが好ましい。
 更に、放熱層は、第1の電極層および第2の電極層の少なくとも1つと接触して形成されることが好ましく、またこの場合、0.2μm~1000μmの厚さを有することが好ましい。
 そして、放熱層は、凹部の形状に合わせて形成されることが更に好ましく、窒化アルミニウム、窒化タンタル、アルミナ、サファイア、酸化ベリリウム、酸化マグネシウム、ダイヤモンドライクカーボン、単結晶シリコン、多結晶シリコン、アモルファスシリコン、炭化ケイ素、金属材料から選ばれる少なくとも1つを含むことが更に好ましい。
Here, the heat dissipation layer is preferably formed between the first electrode layer and the second electrode layer. In this case, the heat dissipation layer preferably has a thickness of 50 nm to 200 nm.
Further, the heat dissipation layer is preferably formed in contact with at least one of the first electrode layer and the second electrode layer, and in this case, it preferably has a thickness of 0.2 μm to 1000 μm.
The heat dissipation layer is more preferably formed in accordance with the shape of the concave portion, and includes aluminum nitride, tantalum nitride, alumina, sapphire, beryllium oxide, magnesium oxide, diamond-like carbon, single crystal silicon, polycrystalline silicon, and amorphous silicon. More preferably, it contains at least one selected from silicon carbide and metal materials.
 また、放熱層は、熱伝導率が10W/(m・K)以上であることが好ましい。 The heat dissipation layer preferably has a thermal conductivity of 10 W / (m · K) or more.
 更に、凹部は、第1の電極層、第2の電極層、誘電体層および放熱層を貫通する略円柱形状であることが好ましく、第1の電極層、第2の電極層、誘電体層および放熱層を貫通する互いに略平行である溝形状をなすことが好ましく、第1の電極層と第2の電極層の少なくとも一方を更に貫通することが好ましい。 Further, the recess preferably has a substantially cylindrical shape penetrating the first electrode layer, the second electrode layer, the dielectric layer, and the heat dissipation layer. The first electrode layer, the second electrode layer, the dielectric layer In addition, it is preferable to form grooves that are substantially parallel to each other and penetrate through the heat dissipation layer, and preferably further penetrate at least one of the first electrode layer and the second electrode layer.
 更に、発光部は、燐光発光材料を含むことが好ましく、燐光発光材料は、分子量が重量平均分子量で1,000~2,000,000の燐光発光性高分子であることが好ましく、燐光発光材料は、燐光を発光する燐光発光性単位とキャリアを輸送するキャリア輸送性単位とを一つの分子内に備えることが更に好ましい。 Further, the light emitting part preferably contains a phosphorescent material, and the phosphorescent material is preferably a phosphorescent polymer having a molecular weight of 1,000 to 2,000,000 in terms of weight average molecular weight. More preferably, the phosphor comprises a phosphorescent unit that emits phosphorescence and a carrier transporting unit that transports carriers in one molecule.
 更に、第1の電極層および第2の電極層は、不透明材料により形成されることが好ましい。 Furthermore, it is preferable that the first electrode layer and the second electrode layer are formed of an opaque material.
 また本発明の表示装置は、上記の有機電界発光素子を備えることを特徴とする。 The display device of the present invention includes the organic electroluminescent element described above.
 また本発明の照明装置は、上記の有機電界発光素子を備えることを特徴とする。 The lighting device of the present invention is characterized by including the organic electroluminescent element described above.
 本発明によれば、不均一な発熱による輝度ムラが少なく、高い発光効率を有する有機電界発光素子等を提供できる。 According to the present invention, it is possible to provide an organic electroluminescent device having high luminance efficiency and less luminance unevenness due to uneven heat generation.
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
 図1は、本実施の形態が適用される有機電界発光素子の第1の例を説明した断面図である。
 図1に示した有機電界発光素子10は、基板11上に第1の電極層である陽極層12と、放熱層13と、絶縁性の誘電体層14と、第2の電極層である陰極層15とが順に積層した構造を採る。また、陽極層12、放熱層13、誘電体層14、陰極層15を貫通して形成される凹部16を有し、そして凹部16の内面と接触して形成され電圧を印加することで発光する発光部17を有する。この発光部17は、凹部16の全体を埋めずに凹部16の内面に発光材料が塗布され、第2凹部18を形成する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view illustrating a first example of an organic electroluminescent element to which the exemplary embodiment is applied.
An organic electroluminescent element 10 shown in FIG. 1 includes an anode layer 12 as a first electrode layer, a heat dissipation layer 13, an insulating dielectric layer 14, and a cathode as a second electrode layer on a substrate 11. A structure in which the layer 15 is sequentially laminated is adopted. Moreover, it has the recessed part 16 formed penetrating the anode layer 12, the thermal radiation layer 13, the dielectric material layer 14, and the cathode layer 15, and it is light-emitted by being formed in contact with the inner surface of the recessed part 16, and applying a voltage. A light emitting unit 17 is included. In the light emitting portion 17, a light emitting material is applied to the inner surface of the recessed portion 16 without filling the entire recessed portion 16, thereby forming a second recessed portion 18.
 基板11は、陽極層12、放熱層13、誘電体層14、陰極層15、発光部17を形成する支持体となるものである。基板11には、有機電界発光素子10に要求される機械的強度を満たす材料が用いられる。
 基板11の材料としては、有機電界発光素子10の基板11側から光を取り出したい場合は、可視光に対して透明であることが必要である。具体的には、ソーダガラス、無アルカリガラスなどのガラス;アクリル樹脂、メタクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ナイロン樹脂などの透明プラスチック;シリコンなどである。
 有機電界発光素子10の基板11側から光を取り出す必要がない場合は、基板11の材料としては、可視光に対して透明であるものに限られず、不透明なものも使用できる。具体的には、上記材料に加えて、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、もしくはニオブ(Nb)の単体、またはこれらの合金、あるいはステンレスなどからなる材料も使用することができる。
 基板11の厚さは、要求される機械的強度にもよるが、好ましくは、0.1mm~10mm、より好ましくは0.25mm~2mmである。
The substrate 11 serves as a support for forming the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, the cathode layer 15, and the light emitting portion 17. A material that satisfies the mechanical strength required for the organic electroluminescent element 10 is used for the substrate 11.
As a material of the substrate 11, when light is to be extracted from the substrate 11 side of the organic electroluminescent element 10, it is necessary to be transparent to visible light. Specifically, glass such as soda glass and alkali-free glass; transparent plastic such as acrylic resin, methacrylic resin, polycarbonate resin, polyester resin, and nylon resin; silicon and the like.
When it is not necessary to extract light from the substrate 11 side of the organic electroluminescent element 10, the material of the substrate 11 is not limited to a material transparent to visible light, and an opaque material can be used. Specifically, in addition to the above materials, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), or niobium (Nb) ), Alloys thereof, or materials made of stainless steel can also be used.
The thickness of the substrate 11 is preferably 0.1 mm to 10 mm, more preferably 0.25 mm to 2 mm, although it depends on the required mechanical strength.
 陽極層12は、陰極層15との間で電圧を印加し、発光部17に正孔を注入する。陽極層12に使用される材料としては、電気伝導性を有するものであれば、特に限定されるものではないが、-5℃~80℃の温度範囲で面抵抗が1000Ω以下であることが好ましく、100Ω以下であることが更に好ましい。加えて、アルカリ性水溶液に対し、電気抵抗が顕著に変化しないことが好ましい。このような条件を満たす材料として、金属酸化物、金属、合金が使用できる。ここで、金属酸化物としては、例えば、ITO(酸化インジウムスズ)、IZO(インジウム-亜鉛酸化物)が挙げられる。また金属としては、ステンレス、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、タングステン(W)、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)等が挙げられる。そしてこれらの金属を含む合金も使用できる。陽極層12の厚さは、有機電界発光素子10の基板11側から光を取り出したい場合は、高い光透過率を要求されるため、2nm~300nmであることが好ましい。また有機電界発光素子10の基板11側から光を取り出す必要がない場合は、例えば、2nm~2mmで形成することができる。 The anode layer 12 applies voltage between the cathode layer 15 and injects holes into the light emitting portion 17. The material used for the anode layer 12 is not particularly limited as long as it has electrical conductivity, but preferably has a sheet resistance of 1000Ω or less in a temperature range of −5 ° C. to 80 ° C. More preferably, it is 100Ω or less. In addition, it is preferable that the electrical resistance does not change significantly with respect to the alkaline aqueous solution. Metal oxides, metals, and alloys can be used as materials that satisfy such conditions. Here, examples of the metal oxide include ITO (indium tin oxide) and IZO (indium-zinc oxide). Examples of the metal include stainless steel, copper (Cu), silver (Ag), gold (Au), platinum (Pt), tungsten (W), titanium (Ti), tantalum (Ta), niobium (Nb), and the like. . An alloy containing these metals can also be used. The thickness of the anode layer 12 is preferably 2 nm to 300 nm because high light transmittance is required when light is to be extracted from the substrate 11 side of the organic electroluminescent element 10. Further, when it is not necessary to extract light from the substrate 11 side of the organic electroluminescent element 10, it can be formed with a thickness of 2 nm to 2 mm, for example.
 放熱層13は、発光部17が発光することにより発生する熱を吸収し、放熱を行うためのものである。図1に示した有機電界発光素子10では、第1の電極層である陽極層12と第2の電極層である陰極層15の間に形成されている。そして、熱を効率よく吸収する観点から放熱層13は、発光部17と接触して形成されることが好ましい。放熱層13で吸収された熱は放熱層13中を熱伝導すると共に、主に基板11の側に熱伝導を生じ、基板11から効率よく放熱を行うことができる。その結果、有機電界発光素子10の面内において、不均一な発熱による輝度ムラを生じにくくすることができる。 The heat dissipation layer 13 is for absorbing heat generated by the light emitting unit 17 to emit light and dissipating heat. In the organic electroluminescent element 10 shown in FIG. 1, it is formed between an anode layer 12 as a first electrode layer and a cathode layer 15 as a second electrode layer. From the viewpoint of efficiently absorbing heat, the heat dissipation layer 13 is preferably formed in contact with the light emitting portion 17. The heat absorbed by the heat radiating layer 13 conducts heat in the heat radiating layer 13 and generates heat conduction mainly on the substrate 11 side, so that heat can be efficiently radiated from the substrate 11. As a result, in the surface of the organic electroluminescent element 10, luminance unevenness due to non-uniform heat generation can be made difficult to occur.
 放熱層13としては、室温における熱伝導率が、10W/(m・K)以上であることが好ましく、15W/(m・K)以上であることが更に好ましい。室温における熱伝導率が、10W/(m・K)未満であると効率的な放熱を行いにくくなる。
 放熱層13に使用できる材料として、具体的には、窒化アルミニウム、窒化タンタル等の高熱伝導性の金属窒化物;アルミナ、サファイア、酸化ベリリウム、酸化マグネシウム等の金属酸化物;ダイヤモンドライクカーボン(DLC:Diamond Like Carbon);単結晶シリコン;多結晶シリコン;アモルファスシリコン;炭化ケイ素などが挙げられる。またこれらの混合物でもよい。あるいは、熱伝導性に優れる金属あるいは金属合金も使用可能である。例えば、マンガン(Mn)、ニッケル(Ni)、アルミニウム(Al)、銅(Cu)、亜鉛(Zn)、インジウム(In)、タンタル(Ta)、ニオブ(Nb)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、金(Au)、銀(Ag)、鉄(Fe)、白金(Pt)、ジルコニウム(Zr)、ゲルマニウム(Ge)、マグネシウム(Mg)等の単体またはこれらの合金が例示される。あるいは、熱伝導性に優れるが、そのもの単体が粉末状であるために、そのもの単体では膜状に形成できない材料は、樹脂などに混合あるいは分散するなどした後に、膜状に成形することで用いることができる。例えば、カーボンチューブ、粒子状アルミナ、粉体ダイヤモンドなどを高分子樹脂(ポリスチレン、ポリイミド、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリメタクルリレート、ポリカーボネート)に混合・分散したもの等が挙げられる。この中でも、特に金属材料は熱伝導性に優れた材料が多く、例えば、150W/(m・K)以上の熱伝導率を有するアルミニウム(Al)、銅(Cu)、タンタル(Ta)、金(Au)、銀(Ag)、マグネシウム(Mg)などは特に好ましく用いることができる。
The heat dissipation layer 13 preferably has a thermal conductivity at room temperature of 10 W / (m · K) or more, and more preferably 15 W / (m · K) or more. When the thermal conductivity at room temperature is less than 10 W / (m · K), it is difficult to perform efficient heat dissipation.
Specific examples of materials that can be used for the heat dissipation layer 13 include highly thermally conductive metal nitrides such as aluminum nitride and tantalum nitride; metal oxides such as alumina, sapphire, beryllium oxide, and magnesium oxide; diamond-like carbon (DLC: Diamond Like Carbon); single crystal silicon; polycrystalline silicon; amorphous silicon; silicon carbide. A mixture of these may also be used. Alternatively, a metal or metal alloy having excellent thermal conductivity can be used. For example, manganese (Mn), nickel (Ni), aluminum (Al), copper (Cu), zinc (Zn), indium (In), tantalum (Ta), niobium (Nb), tungsten (W), titanium (Ti ), Molybdenum (Mo), gold (Au), silver (Ag), iron (Fe), platinum (Pt), zirconium (Zr), germanium (Ge), magnesium (Mg), etc., or alloys thereof Is done. Alternatively, materials that are excellent in thermal conductivity but cannot be formed into a film by themselves because they are in powder form should be used after being mixed or dispersed in a resin and then formed into a film. Can do. For example, carbon tubes, particulate alumina, powdered diamond and the like mixed and dispersed in a polymer resin (polystyrene, polyimide, polypropylene, polyethylene, polyethylene terephthalate, polymethacrylic acid, polycarbonate), and the like. Among these materials, many metal materials are particularly excellent in thermal conductivity. For example, aluminum (Al), copper (Cu), tantalum (Ta), gold (having a thermal conductivity of 150 W / (m · K) or more ( Au), silver (Ag), magnesium (Mg) and the like can be used particularly preferably.
 放熱層13の厚さとしては、図1で示した有機電界発光素子10のように陽極層12と陰極層15の間に放熱層13を設ける場合は、50nm~200nmであるのが好ましい。放熱層13が50nm以下であると、陽極層12と陰極層15の間隔が狭くなりすぎ、陽極層12と陰極層15との間でショートが生じやすくなり、そのため安定駆動しにくくなる。なお、図1に示した有機電界発光素子10のように、陽極層12と誘電体層14の間に放熱層13を設ける場合で、放熱層13が金属材料等の導電性の材料で構成するときは、放熱層13の仕事関数は、陽極層12の仕事関数よりも高いことが好ましい。このようにすることで、陽極層12と発光部17の間で優先的に正孔の注入が生じやすくなるため、ショートが生じるのを防止しやすくなる。また、放熱層13を陽極層12と誘電体層14の間ではなく、誘電体層14と陰極層15の間に設ける形態では、放熱層13の仕事関数は、陰極層15の仕事関数よりも低いことが好ましい。このようにすることで、陰極層15と発光部17の間で優先的に電子の注入が生じやすくなるため、同様にショートが生じるのを防止しやすくなる。そして、放熱層13が200nm以上であると、駆動電圧が高くなりすぎる場合がある。
 また、図3~図5において後述する有機電界発光素子20,30,40のように陽極層12と陰極層15の間ではなく、外側に放熱層13を設ける場合は、放熱層13の厚さは、0.2μm~1000μmの範囲であることが好ましく、0.5μm~500μmの範囲であることが更に好ましい。放熱層13は厚い方が熱伝導がより高くなり、熱の吸収および放熱という点からは好ましいが、1000μmより厚くなると後述する凹部16の作製精度が低下しやすくなる。
The thickness of the heat dissipation layer 13 is preferably 50 nm to 200 nm when the heat dissipation layer 13 is provided between the anode layer 12 and the cathode layer 15 as in the organic electroluminescent device 10 shown in FIG. When the heat dissipation layer 13 is 50 nm or less, the distance between the anode layer 12 and the cathode layer 15 becomes too narrow, and a short circuit is likely to occur between the anode layer 12 and the cathode layer 15, so that stable driving is difficult. In the case where the heat dissipation layer 13 is provided between the anode layer 12 and the dielectric layer 14 as in the organic electroluminescent element 10 shown in FIG. 1, the heat dissipation layer 13 is made of a conductive material such as a metal material. In some cases, the work function of the heat dissipation layer 13 is preferably higher than the work function of the anode layer 12. By doing so, it becomes easy to preferentially inject holes between the anode layer 12 and the light emitting portion 17, so that it is easy to prevent a short circuit from occurring. Further, in a form in which the heat dissipation layer 13 is provided not between the anode layer 12 and the dielectric layer 14 but between the dielectric layer 14 and the cathode layer 15, the work function of the heat dissipation layer 13 is higher than the work function of the cathode layer 15. Preferably it is low. By doing so, it becomes easy to preferentially inject electrons between the cathode layer 15 and the light emitting portion 17, and thus it becomes easy to prevent a short circuit from occurring similarly. If the heat dissipation layer 13 is 200 nm or more, the drive voltage may be too high.
In the case where the heat radiation layer 13 is provided outside the anode layer 12 and the cathode layer 15 as in the organic electroluminescent elements 20, 30, and 40 described later in FIGS. 3 to 5, the thickness of the heat radiation layer 13 is provided. Is preferably in the range of 0.2 μm to 1000 μm, and more preferably in the range of 0.5 μm to 500 μm. A thicker heat-dissipating layer 13 has higher heat conduction, which is preferable from the viewpoint of heat absorption and heat dissipation.
 誘電体層14は、陽極層12と陰極層15の間に設けられ、陽極層12と陰極層15とを所定の間隔にて分離し絶縁すると共に、発光部17に電圧を印加するためのものである。このため誘電体層14は高抵抗率材料であることが必要であり、電気抵抗率としては、10Ωcm以上、好ましくは1012Ωcm以上有することが要求される。具体的な材料としては、窒化ケイ素、窒化ホウ素、窒化アルミニウム等の金属窒化物;酸化珪素、酸化アルミニウム等の金属酸化物が挙げられるが、他にポリイミド、ポリフッ化ビニリデン、パリレン等の高分子化合物も使用可能である。誘電体層14の厚さとしては、有機電界発光素子10全体の厚さを抑えるために1μmを越えないことが好ましい。また、陽極層12と陰極層15との間隔が狭い方が、発光のために必要な電圧が低くて済むので、この観点からも誘電体層14は薄い方がより好ましい。但し、薄すぎると有機電界発光素子10を駆動するための電圧に対し、絶縁耐力が十分でなくなるおそれがある。ここで絶縁耐力は、発光部17が形成されていない状態で、陽極層12と陰極層15の間に流れる電流の電流密度が、0.1mA/cm以下であることが好ましく、0.01mA/cm以下であることがより好ましい。また有機電界発光素子10の駆動電圧に対し、2Vを超えた電圧に耐えることが好ましいため、例えば、駆動電圧が5Vである場合は、発光部17が形成されていない状態で、陽極層12と陰極層15の間に約7Vの電圧を印加した場合に上記の電流密度を満たすことが必要である。これを満たす誘電体層14の厚さとしては、好ましくは、10nm~500nm、更に好ましくは50nm~200nmで作製するのがよい。 The dielectric layer 14 is provided between the anode layer 12 and the cathode layer 15, separates and insulates the anode layer 12 and the cathode layer 15 at a predetermined interval, and applies a voltage to the light emitting unit 17. It is. Therefore, the dielectric layer 14 needs to be a high resistivity material, and the electrical resistivity is required to be 10 8 Ωcm or more, preferably 10 12 Ωcm or more. Specific examples of the material include metal nitrides such as silicon nitride, boron nitride, and aluminum nitride; metal oxides such as silicon oxide and aluminum oxide, but other polymer compounds such as polyimide, polyvinylidene fluoride, and parylene. Can also be used. The thickness of the dielectric layer 14 preferably does not exceed 1 μm in order to suppress the total thickness of the organic electroluminescent element 10. In addition, the narrower the distance between the anode layer 12 and the cathode layer 15, the lower the voltage required for light emission, so the thinner dielectric layer 14 is more preferable from this viewpoint. However, if the thickness is too thin, the dielectric strength may not be sufficient for the voltage for driving the organic electroluminescent element 10. Here, the dielectric strength is preferably such that the current density of the current flowing between the anode layer 12 and the cathode layer 15 is 0.1 mA / cm 2 or less when the light emitting portion 17 is not formed, and 0.01 mA. / Cm 2 or less is more preferable. In addition, since it is preferable to withstand a voltage exceeding 2 V with respect to the driving voltage of the organic electroluminescent element 10, for example, when the driving voltage is 5 V, the anode layer 12 and the anode layer 12 are not formed in a state where the light emitting portion 17 is not formed. It is necessary to satisfy the above current density when a voltage of about 7 V is applied between the cathode layers 15. The thickness of the dielectric layer 14 satisfying this is preferably 10 nm to 500 nm, more preferably 50 nm to 200 nm.
 陰極層15は、陽極層12との間で電圧を印加し、発光部17に電子を注入する。陰極層15に使用される材料としては、陽極層12と同様に電気伝導性を有するものであれば、特に限定されるものではないが、仕事関数が低く、かつ化学的に安定なものが好ましい。仕事関数は、化学的安定性を考慮すると-2.9eV以下であることが好ましい。具体的には、Al、MgAg合金、AlLiやAlCaなどのAlとアルカリ金属の合金等の材料を例示することができる。陰極層15の厚さは10nm~1μmが好ましく、50nm~500nmがより好ましい。 The cathode layer 15 applies a voltage between the anode layer 12 and injects electrons into the light emitting portion 17. The material used for the cathode layer 15 is not particularly limited as long as it has electrical conductivity like the anode layer 12, but a material having a low work function and being chemically stable is preferable. . The work function is preferably −2.9 eV or less in view of chemical stability. Specifically, materials such as Al, MgAg alloy, Al and alkali metal alloys such as AlLi and AlCa can be exemplified. The thickness of the cathode layer 15 is preferably 10 nm to 1 μm, more preferably 50 nm to 500 nm.
 また、陰極層15から発光部17への電子の注入障壁を下げて電子の注入効率を上げる目的で、図示しない陰極バッファー層を、陰極層15に隣接して設けてもよい。陰極バッファー層は、陰極層15より仕事関数の低いことが必要であり、金属材料が好適に用いられる。例えば、アルカリ金属(Na、K、Rb、Cs)、アルカリ土類金属(Sr、Ba、Ca、Mg)、希土類金属(Pr、Sm、Eu、Yb)、あるいはこれら金属のフッ化物、塩化物、酸化物から選ばれる単体あるいは2つ以上の混合物を使用することができる。陰極バッファー層の厚さは0.05nm~50nmが好ましく、0.1nm~20nmがより好ましく、0.5nm~10nmがより一層好ましい。 Further, a cathode buffer layer (not shown) may be provided adjacent to the cathode layer 15 for the purpose of increasing the electron injection efficiency by lowering the electron injection barrier from the cathode layer 15 to the light emitting portion 17. The cathode buffer layer is required to have a work function lower than that of the cathode layer 15, and a metal material is preferably used. For example, alkali metals (Na, K, Rb, Cs), alkaline earth metals (Sr, Ba, Ca, Mg), rare earth metals (Pr, Sm, Eu, Yb), or fluorides or chlorides of these metals, A simple substance selected from oxides or a mixture of two or more can be used. The thickness of the cathode buffer layer is preferably from 0.05 nm to 50 nm, more preferably from 0.1 nm to 20 nm, and even more preferably from 0.5 nm to 10 nm.
 凹部16は、発光部17をその内面に塗布し、かつ発光部17からの光を取り出すためのものであり、第1の電極層である陽極層12、第2の電極層である陰極層15、誘電体層14、および放熱層13を貫通するように形成する。このように凹部16を設けることにより発光部17から発せられた光は、凹部16の内部を伝搬し、基板11側および陰極層15の側の両方向において取り出すことができる。ここで、凹部16は、陽極層12、放熱層13、誘電体層14、陰極層15を貫通して形成されているため、第1の電極層である陽極層12および第2の電極層である陰極層15が不透明材料により形成されるときでも光を取り出すことが可能である。 The concave portion 16 is for applying the light emitting portion 17 on the inner surface and taking out light from the light emitting portion 17. The concave portion 16 is an anode layer 12 that is a first electrode layer, and a cathode layer 15 that is a second electrode layer. The dielectric layer 14 and the heat dissipation layer 13 are formed so as to penetrate therethrough. The light emitted from the light emitting portion 17 by providing the concave portion 16 in this manner propagates through the concave portion 16 and can be extracted in both directions on the substrate 11 side and the cathode layer 15 side. Here, since the recess 16 is formed so as to penetrate the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15, in the anode layer 12 and the second electrode layer which are the first electrode layers. Light can be extracted even when a certain cathode layer 15 is formed of an opaque material.
 ここで、凹部16の形状は、例えば略円柱形状とすることができるが、これに限られるものではなく、互いに略平行である溝形状をなす形状とすることもできる。凹部16を略円柱形状とした場合、その直径は0.1μm~20μm、中心間間隔は0.2μm~40μmであることが好ましい。そして、直径は0.1μm~10μm、中心間間隔は0.2μm~20μmであることがより好ましい。本実施の形態において、凹部16の直径を0.2μmとした場合は、中心間間隔は、例えば、0.3μm~1μmとすることができる。凹部16を互いに略平行である溝形状とした場合は、溝幅は、0.1μm~20μm、溝中心部の間隔は、0.3μm~40μmであることが好ましい。
 図1に示した有機電界発光素子10の構造では、陽極層12と陰極層15のうち少なくとも一方は凹部16を形成することで貫通するので、陽極層12と陰極層15のエッジ部で強く発光し中央部の発光強度は弱くなりやすい。よって、この観点から凹部16の直径や溝幅が20μm以上であると、凹部16の中央部は無点灯状態となりやすく、結果として有機電界発光素子10の単位面積あたりの輝度が低下しやすくなる。
Here, the shape of the concave portion 16 can be, for example, a substantially cylindrical shape, but is not limited thereto, and may be a shape that forms a groove shape that is substantially parallel to each other. When the recess 16 has a substantially cylindrical shape, the diameter is preferably 0.1 μm to 20 μm, and the distance between centers is preferably 0.2 μm to 40 μm. More preferably, the diameter is 0.1 μm to 10 μm, and the center-to-center distance is 0.2 μm to 20 μm. In the present embodiment, when the diameter of the recess 16 is 0.2 μm, the center-to-center spacing can be set to 0.3 μm to 1 μm, for example. When the recesses 16 are formed in a substantially parallel groove shape, the groove width is preferably 0.1 μm to 20 μm, and the interval between the groove centers is preferably 0.3 μm to 40 μm.
In the structure of the organic electroluminescent element 10 shown in FIG. 1, at least one of the anode layer 12 and the cathode layer 15 penetrates by forming the recess 16, so that light is emitted strongly at the edge portions of the anode layer 12 and the cathode layer 15. However, the light emission intensity at the center tends to be weak. Therefore, from this point of view, when the diameter and groove width of the recess 16 are 20 μm or more, the central portion of the recess 16 is likely to be in a non-lighting state, and as a result, the luminance per unit area of the organic electroluminescent element 10 is likely to decrease.
 発光部17は、電圧を印加することで発光する発光材料であり、上述の通り凹部16に接触して発光材料が設けられることにより第2凹部18を形成するように凹部16の内面に塗布される。発光部17において、陽極層12から注入された正孔と陰極層15から注入された電子とが再結合し、発光が生じる。 The light emitting portion 17 is a light emitting material that emits light when a voltage is applied. As described above, the light emitting portion 17 is applied to the inner surface of the recess 16 so as to form the second recess 18 by providing the light emitting material in contact with the recess 16. The In the light emitting unit 17, the holes injected from the anode layer 12 and the electrons injected from the cathode layer 15 are recombined to emit light.
 発光部17の材料としては、低分子化合物及び高分子化合物のいずれをも使用することができる。例えば、大森裕:応用物理、第70巻、第12号、1419-1425頁(2001年)に記載されている発光性低分子化合物及び発光性高分子化合物などを例示することができる。 As the material of the light emitting portion 17, either a low molecular compound or a high molecular compound can be used. For example, the luminescent low molecular weight compound and the luminescent high molecular weight compound described in Hiroshi Omori: Applied Physics, Vol. 70, No. 12, pp. 1419-1425 (2001) can be exemplified.
 但し、本実施の形態では、塗布性に優れた材料が好ましい。即ち本実施の形態における有機電界発光素子10の構造では、発光部17が凹部16内で安定に発光するためには発光部17が凹部16の内面に均一に接し、膜厚が均等に成膜されること、即ちカバレッジ性が向上することが好ましい。塗布性に優れた材料を使用せずに発光部17を形成すると、凹部16全体に発光部17が一様に接していない、あるいは凹部16内面の膜厚が均一でない成膜状態になりやすい。そのため凹部16から出射する光の輝度のばらつき等を生じやすくなる。
 また、凹部16内に発光部17を均一に形成するためには、塗布法で行うことが好ましい。即ち、塗布法では、凹部16に発光材料を含むインクを埋め込むことが容易であるため凹凸を有する面においてもカバレッジ性を高めて成膜することが可能である。塗布法においては塗布性を向上させる目的で、主に重量平均分子量が1,000~2,000,000である材料が好適に用いられる。また、塗布性を向上させるためレベリング剤、脱泡剤などの塗布性向上添加剤を添加したり、電荷トラップ能力の少ないバインダー樹脂を添加することもできる。
However, in this embodiment, a material excellent in applicability is preferable. That is, in the structure of the organic electroluminescent element 10 in the present embodiment, in order for the light emitting portion 17 to emit light stably in the recess 16, the light emitting portion 17 is in uniform contact with the inner surface of the recess 16 and the film thickness is uniformly formed. It is preferable that the coverage is improved. If the light emitting portion 17 is formed without using a material having excellent coating properties, the light emitting portion 17 is not in contact with the entire recess 16 or the film thickness of the inner surface of the recess 16 is not uniform. For this reason, variations in the brightness of light emitted from the recess 16 are likely to occur.
Moreover, in order to form the light emission part 17 uniformly in the recessed part 16, it is preferable to carry out by the apply | coating method. That is, in the coating method, it is easy to embed ink containing a light-emitting material in the concave portion 16, and thus it is possible to form a film with improved coverage even on a surface having irregularities. In the coating method, materials having a weight average molecular weight of 1,000 to 2,000,000 are preferably used mainly for the purpose of improving coating properties. Moreover, in order to improve applicability | paintability, coating property improvement additives, such as a leveling agent and a defoaming agent, can also be added, and binder resin with few charge trap ability can also be added.
 具体的に、塗布性に優れる材料としては、例えば、特開2007-86639号公報に挙げられている所定の構造を有する分子量1500以上6000以下のアリールアミン化合物や、特開2000-034476号公報に挙げられている所定の高分子蛍光体などが挙げられる。
 ここで、塗布性に優れた材料の中でも、有機電界発光素子10の製造のプロセスが簡素化されるという点で発光性高分子化合物が好ましく、発光効率が高い点で燐光発光性化合物が好ましい。従って、特に燐光発光性高分子化合物が好ましい。なお、複数の材料同士を混合、あるいは塗布性を損なわない範囲で低分子発光材料(例えば、分子量1000以下)を添加することも可能である。この際の低分子発光材料の添加量は30wt%以下が好ましい。
 また、発光性高分子化合物は、共役発光性高分子化合物と非共役発光性高分子化合物とに分類することもできるが、中でも非共役発光性高分子化合物が好ましい。
 上記の理由から、本実施の形態で用いられる発光材料としては、燐光発光性非共役高分子化合物(燐光発光性高分子であり、かつ非共役発光性高分子化合物でもある発光材料)が特に好ましい。
Specifically, examples of the material having excellent coatability include, for example, an arylamine compound having a predetermined structure and a molecular weight of 1500 to 6000 as disclosed in JP-A-2007-86639, and JP-A 2000-034476. Examples thereof include the predetermined polymeric fluorescent substances.
Here, among materials having excellent coating properties, a light-emitting polymer compound is preferable in terms of simplifying the manufacturing process of the organic electroluminescent element 10, and a phosphorescent compound is preferable in terms of high light emission efficiency. Therefore, a phosphorescent polymer compound is particularly preferable. In addition, it is also possible to add a low molecular light emitting material (for example, molecular weight 1000 or less) in the range which does not impair the applicability | paintability by mixing several materials. In this case, the addition amount of the low molecular light emitting material is preferably 30 wt% or less.
The light-emitting polymer compound can be classified into a conjugated light-emitting polymer compound and a non-conjugated light-emitting polymer compound, and among them, the non-conjugated light-emitting polymer compound is preferable.
For the above reason, the light-emitting material used in this embodiment is particularly preferably a phosphorescent non-conjugated polymer compound (a light-emitting material that is both a phosphorescent polymer and a non-conjugated light-emitting polymer compound). .
 本発明の有機電界発光素子10における発光部17は、好ましくは、燐光を発光する燐光発光性単位とキャリアを輸送するキャリア輸送性単位とを一つの分子内に備えた、燐光発光性高分子(燐光発光材料)を少なくとも含む。燐光発光性高分子は、重合性置換基を有する燐光発光性化合物と、重合性置換基を有するキャリア輸送性化合物とを共重合することによって得られる。燐光発光性化合物はイリジウム(Ir)、白金(Pt)および金(Au)の中から一つ選ばれる金属元素を含む金属錯体であり、中でもイリジウム錯体が好ましい。 The light emitting portion 17 in the organic electroluminescent device 10 of the present invention is preferably a phosphorescent polymer (in which a phosphorescent unit emitting phosphorescence and a carrier transporting unit transporting carriers are included in one molecule ( A phosphorescent material). The phosphorescent polymer can be obtained by copolymerizing a phosphorescent compound having a polymerizable substituent and a carrier transporting compound having a polymerizable substituent. The phosphorescent compound is a metal complex containing a metal element selected from iridium (Ir), platinum (Pt), and gold (Au), and among them, an iridium complex is preferable.
 燐光発光性化合物における重合性置換基としては、例えば、ビニル基、アクリレート基、メタクリレート基、メタクリロイルオキシエチルカルバメート基等のウレタン(メタ)アクリレート基、スチリル基及びその誘導体、ビニルアミド基及びその誘導体などが挙げられ、中でもビニル基、メタクリレート基、スチリル基及びその誘導体が好ましい。これらの置換基は、ヘテロ原子を有してもよい炭素数1~20の有機基を介して金属錯体に結合していてもよい。
 重合性置換基を有するキャリア輸送性化合物は、ホール輸送性および電子輸送性の内のいずれか一方または両方の機能を有する有機化合物における一つ以上の水素原子を重合性置換基で置換した化合物を挙げることができる。
Examples of the polymerizable substituent in the phosphorescent compound include a urethane (meth) acrylate group such as a vinyl group, an acrylate group, a methacrylate group, and a methacryloyloxyethyl carbamate group, a styryl group and a derivative thereof, a vinylamide group and a derivative thereof, and the like. Among them, vinyl group, methacrylate group, styryl group and derivatives thereof are preferable. These substituents may be bonded to the metal complex via an organic group having 1 to 20 carbon atoms which may have a hetero atom.
A carrier transporting compound having a polymerizable substituent is a compound in which one or more hydrogen atoms in an organic compound having one or both of a hole transporting property and an electron transporting property are substituted with a polymerizable substituent. Can be mentioned.
 キャリア輸送性化合物における重合性置換基はビニル基であるが、ビニル基をアクリレート基、メタクリレート基、メタクリロイルオキシエチルカルバメート基等のウレタン(メタ)アクリレート基、スチリル基及びその誘導体、ビニルアミド基及びその誘導体などの重合性置換基で置換した化合物であってもよい。また、これらの重合性置換基は、ヘテロ原子を有してもよい炭素数1~20の有機基を介して結合していてもよい。 The polymerizable substituent in the carrier transporting compound is a vinyl group. The vinyl group is a urethane (meth) acrylate group such as an acrylate group, a methacrylate group, or a methacryloyloxyethyl carbamate group, a styryl group and its derivative, a vinylamide group and its derivative. A compound substituted with a polymerizable substituent such as may be used. These polymerizable substituents may be bonded via an organic group having 1 to 20 carbon atoms which may have a hetero atom.
 重合性置換基を有する燐光発光性化合物と、重合性置換基を有するキャリア輸送性化合物の重合方法は、ラジカル重合、カチオン重合、アニオン重合、付加重合のいずれでもよいが、ラジカル重合が好ましい。また、重合体の分子量は重量平均分子量で1,000~2,000,000が好ましく、5,000~1,000,000がより好ましい。ここでの分子量はGPC(ゲルパーミエーションクロマトグラフィー)法を用いて測定されるポリスチレン換算分子量である。 The polymerization method of the phosphorescent compound having a polymerizable substituent and the carrier transporting compound having a polymerizable substituent may be any of radical polymerization, cationic polymerization, anionic polymerization, and addition polymerization, but radical polymerization is preferred. The molecular weight of the polymer is preferably 1,000 to 2,000,000, more preferably 5,000 to 1,000,000 in terms of weight average molecular weight. The molecular weight here is a molecular weight in terms of polystyrene measured using a GPC (gel permeation chromatography) method.
 燐光発光性高分子は、一つの燐光発光性化合物と一つのキャリア輸送性化合物、一つの燐光発光性化合物と二つ以上のキャリア輸送性化合物を共重合したものであってもよく、また二つ以上の燐光発光性化合物をキャリア輸送性化合物と共重合したものであってもよい。 The phosphorescent polymer may be a copolymer of one phosphorescent compound and one carrier transporting compound, one phosphorescent compound and two or more carrier transporting compounds, or two. The above phosphorescent compound may be copolymerized with a carrier transporting compound.
 燐光発光性高分子におけるモノマーの配列は、ランダム共重合体、ブロック共重合体、交互共重合体のいずれでもよく、燐光発光性化合物構造の繰り返し単位数をm、キャリア輸送性化合物構造の繰り返し単位数をnとしたとき(m、nは1以上の整数)、全繰り返し単位数に対する燐光発光性化合物構造の繰り返し単位数の割合、すなわちm/(m+n)の値は、0.001~0.5が好ましく、0.001~0.2がより好ましい。 The arrangement of the monomer in the phosphorescent polymer may be any of random copolymer, block copolymer, and alternating copolymer, the number of repeating units of the phosphorescent compound structure is m, and the repeating unit of the carrier transporting compound structure When the number is n (m, n is an integer of 1 or more), the ratio of the number of repeating units of the phosphorescent compound structure to the total number of repeating units, that is, the value of m / (m + n) is 0.001 to 0.00. 5 is preferable, and 0.001 to 0.2 is more preferable.
 燐光発光性高分子のさらに具体的な例と合成法は、例えば特開2003-342325号公報、特開2003-119179号公報、特開2003-113246号公報、特開2003-206320号公報、特開2003-147021号公報、特開2003-171391号公報、特開2004-346312号公報、特開2005-97589号公報、特開2007-305734号公報に開示されている。 More specific examples and synthesis methods of phosphorescent polymers are disclosed in, for example, JP-A Nos. 2003-342325, 2003-119179, 2003-113246, and 2003-206320. JP-A-2003-147021, JP-A-2003-171391, JP-A-2004-346212, JP-A-2005-97589, and JP-A-2007-305734.
 本実施の形態における有機電界発光素子10の発光部17は、好ましくは前述した燐光発光性化合物を含むが、発光部17のキャリア輸送性を補う目的で正孔輸送性化合物や電子輸送性化合物が含まれていてもよい。これらの目的で用いられる正孔輸送性化合物としては、例えば、TPD(N,N’-ジメチル-N,N’-(3-メチルフェニル)-1,1’-ビフェニル-4,4’ジアミン)、α-NPD(4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル)、m-MTDATA(4、4’,4’’-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン)などの低分子トリフェニルアミン誘導体が挙げられる。更に、ポリビニルカルバゾール、トリフェニルアミン誘導体に重合性官能基を導入して高分子化したもの;特開平8-157575号公報に開示されているトリフェニルアミン骨格の高分子化合物;ポリパラフェニレンビニレン、ポリジアルキルフルオレンなどが挙げられる。また、電子輸送性化合物としては、例えば、Alq3(アルミニウムトリスキノリノレート)などのキノリノール誘導体金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、トリアジン誘導体、トリアリールボラン誘導体などの低分子材料が挙げられる。更に上記の低分子電子輸送性化合物に重合性官能基を導入して高分子化したもの、例えば特開平10-1665号公報に開示されているポリPBDなどの既知の電子輸送性化合物が挙げられる。 The light emitting portion 17 of the organic electroluminescent element 10 in the present embodiment preferably includes the above-described phosphorescent compound, but a hole transporting compound or an electron transporting compound is used for the purpose of supplementing the carrier transporting property of the light emitting portion 17. It may be included. As the hole transporting compound used for these purposes, for example, TPD (N, N′-dimethyl-N, N ′-(3-methylphenyl) -1,1′-biphenyl-4,4′diamine) , Α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl), m-MTDATA (4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) And low molecular triphenylamine derivatives such as triphenylamine). In addition, polyvinylcarbazole, a triphenylamine derivative obtained by introducing a polymerizable functional group into a polymer; a polymer compound having a triphenylamine skeleton disclosed in JP-A-8-157575; polyparaphenylene vinylene, And polydialkylfluorene. Examples of the electron transporting compound include low molecular weight materials such as quinolinol derivative metal complexes such as Alq3 (aluminum triskinolinolate), oxadiazole derivatives, triazole derivatives, imidazole derivatives, triazine derivatives, and triarylborane derivatives. Can be mentioned. Further, a polymer obtained by introducing a polymerizable functional group into the above low molecular electron transporting compound, for example, a known electron transporting compound such as poly PBD disclosed in JP-A-10-1665 is exemplified. .
 また、発光部17に使用する発光材料として上述した発光性高分子化合物ではなく発光性低分子化合物を使用する場合でも、発光部17の形成は可能である。そして、発光材料として上述した発光性高分子化合物を添加することも可能であり、正孔輸送性化合物、電子輸送性化合物を添加することも可能である。
 この場合の正孔輸送性化合物の具体例としては、例えば、特開2006-76901号公報に記載されているTPD、α-NPD、m-MTDATA、フタロシアニン錯体、DTDPFL、spiro-TPD、TPAC、PDA等が挙げられる。
Further, the light emitting portion 17 can be formed even when a light emitting low molecular weight compound is used as the light emitting material used for the light emitting portion 17 instead of the light emitting polymer compound described above. In addition, the above-described light-emitting polymer compound can be added as a light-emitting material, and a hole-transporting compound or an electron-transporting compound can also be added.
Specific examples of the hole transporting compound in this case include, for example, TPD, α-NPD, m-MTDATA, phthalocyanine complex, DTDPFL, spiro-TPD, TPAC, PDA described in JP-A-2006-76901. Etc.
 電子輸送性化合物の具体例としては、例えば、特開2006-76901号公報に記載されているBPhen、BCP、OXD-7、TAZ等が挙げられる。 Specific examples of the electron transport compound include BPhen, BCP, OXD-7, TAZ and the like described in JP-A-2006-76901.
 また、例えば、特開平2006-273792号公報に記載の一分子内に正孔輸送性及び電子輸送性を有するバイポーラー型分子構造を有する化合物でも使用可能である。 Also, for example, a compound having a bipolar molecular structure having a hole transporting property and an electron transporting property in one molecule described in JP-A-2006-273792 can be used.
 以上詳述した有機電界発光素子10は、図1に示した有機電界発光素子10では、発光部17が凹部16に接触して発光材料が設けられることにより第2凹部18を形成し、そして、第2凹部18の底部は、凹部16の底部に近い箇所に位置するように形成されているが、これに限られるものではない。 In the organic electroluminescent element 10 described in detail above, in the organic electroluminescent element 10 shown in FIG. 1, the light emitting portion 17 is in contact with the concave portion 16 to form the second concave portion 18 by providing the light emitting material, and Although the bottom part of the 2nd recessed part 18 is formed so that it may be located in the location near the bottom part of the recessed part 16, it is not restricted to this.
 図2(a)~(d)は、発光部17の形状の他の形態を説明した図である。
 図2(a)に示した有機電界発光素子10aでは、第2凹部18の深さは浅く、第2凹部18の底部は、凹部16の底部よりも頂部に近い箇所に位置するように形成されている。また、図2(b)に示した有機電界発光素子10bでは、第2凹部18は、形成されず、発光部17により凹部16は全て充填され、発光部17の上面は、陰極層15の上面と一致している。更に、図2(c)に示した有機電界発光素子10cでは、第2凹部18は、形成されず、発光部17により凹部16は全て充填され、かつその上面を凸形状としている。更に、図2(d)に示した有機電界発光素子10dでは、第2凹部18は、形成されているが、第2凹部18の深さは浅く、第2凹部18の底部は、凹部16の底部よりも頂部に近い箇所に位置するように形成されており、かつ発光部17は凹部16の内部のみならず陰極層15の上面にも展開し、形成されている。
 図2(a)~(d)に示した有機電界発光素子10a,10b,10c,10dにおいても、発光部17により発せられた光は、発光部17内部を伝搬し、上述の有機電界発光素子10と同様に、基板11の側および陰極層15の側の両方から取り出しが可能である。
FIGS. 2A to 2D are diagrams for explaining other forms of the shape of the light-emitting portion 17.
In the organic electroluminescent element 10 a shown in FIG. 2A, the depth of the second recess 18 is shallow, and the bottom of the second recess 18 is formed so as to be located closer to the top than the bottom of the recess 16. ing. Further, in the organic electroluminescent element 10 b shown in FIG. 2B, the second recess 18 is not formed, and the recess 16 is completely filled with the light emitting portion 17, and the upper surface of the light emitting portion 17 is the upper surface of the cathode layer 15. Is consistent with Furthermore, in the organic electroluminescent element 10c shown in FIG. 2C, the second concave portion 18 is not formed, the concave portion 16 is completely filled with the light emitting portion 17, and the upper surface thereof has a convex shape. Further, in the organic electroluminescent element 10 d shown in FIG. 2D, the second recess 18 is formed, but the depth of the second recess 18 is shallow, and the bottom of the second recess 18 is the bottom of the recess 16. The light emitting portion 17 is formed so as to be developed not only inside the concave portion 16 but also on the upper surface of the cathode layer 15.
Also in the organic electroluminescent elements 10a, 10b, 10c, and 10d shown in FIGS. 2A to 2D, the light emitted from the light emitting section 17 propagates inside the light emitting section 17, and the organic electroluminescent elements described above are used. 10, it can be taken out from both the substrate 11 side and the cathode layer 15 side.
 図1および図2(a)~(d)で説明を行った発光部17の形状は、例えば、陽極層12および陰極層15の断面構造により選択することができる。
 例えば、図1で説明した有機電界発光素子10のように、陰極層15が凹部16により貫通され、上部が開放された形状の場合は、第2凹部18を形成することが好ましい。また後述する図5のような有機電界発光素子40のように発光部17が陰極層15により覆われるような構造では、発光部17を形成した後、陰極層15が形成される。そのため第2凹部18を小さく形成するか、または形成しない方が、陰極層15を形成する際にカバレッジ性が向上するために好ましい。
The shape of the light emitting portion 17 described in FIG. 1 and FIGS. 2A to 2D can be selected depending on the cross-sectional structures of the anode layer 12 and the cathode layer 15, for example.
For example, as in the organic electroluminescent device 10 described with reference to FIG. 1, the second recess 18 is preferably formed when the cathode layer 15 is penetrated by the recess 16 and the upper part is opened. Further, in a structure in which the light emitting portion 17 is covered with the cathode layer 15 as in an organic electroluminescent element 40 as shown in FIG. 5 described later, the cathode layer 15 is formed after the light emitting portion 17 is formed. Therefore, it is preferable to form the second recess 18 small or not because the coverage is improved when the cathode layer 15 is formed.
 また、有機電界発光素子10では、放熱層13が、陽極層12と誘電体層14の間に設けられていたが、これに限られるものではなく、設ける箇所については特に制限はない。 In the organic electroluminescent element 10, the heat dissipation layer 13 is provided between the anode layer 12 and the dielectric layer 14. However, the present invention is not limited to this, and there is no particular limitation on the location.
 図3は、本実施の形態が適用される有機電界発光素子の第2の例を説明した断面図である。
 図3に示した有機電界発光素子20は、図1に示した有機電界発光素子10に対し、放熱層13が基板11と陽極層12との間に設けられており、陽極層12と接触して形成されている。このような構造でも発光部17から発生した熱は、放熱層13により吸収され、放熱層13中を伝熱した熱は、主に基板11の側から放熱される。
FIG. 3 is a cross-sectional view illustrating a second example of an organic electroluminescent element to which the exemplary embodiment is applied.
The organic electroluminescent device 20 shown in FIG. 3 is different from the organic electroluminescent device 10 shown in FIG. 1 in that a heat dissipation layer 13 is provided between the substrate 11 and the anode layer 12 and is in contact with the anode layer 12. Is formed. Even in such a structure, the heat generated from the light emitting portion 17 is absorbed by the heat dissipation layer 13, and the heat transferred through the heat dissipation layer 13 is dissipated mainly from the substrate 11 side.
 また、図1に示した有機電界発光素子10および図3に示した有機電界発光素子20では、放熱層13は、一層のみ設けていたがこれに限られるものではなく、複数層設けてもよい。 Further, in the organic electroluminescent device 10 shown in FIG. 1 and the organic electroluminescent device 20 shown in FIG. 3, the heat dissipation layer 13 is provided only in one layer, but the invention is not limited to this, and a plurality of layers may be provided. .
 図4は、本実施の形態が適用される有機電界発光素子の第3の例を説明した断面図である。
 図4に示した有機電界発光素子30は、放熱層13が基板11と陽極層12との間に設けられ、陽極層12と接触して形成されていると共に、陰極層15の上に積層し、接触する形で更に設けられている。放熱層13はこの場合二層形成される。基板11と陽極層12との間に設けられた放熱層13は、主に基板11の側に放熱を行い、陰極層15の上に積層する放熱層13は、主にこの放熱層13から直接放熱を行うことができる。
 また、図示はしないが、放熱層13を、陽極層12と陰極層15の間と、陽極層12と陰極層15の外側の複数箇所に設けるような形態でもよい。
FIG. 4 is a cross-sectional view illustrating a third example of the organic electroluminescent element to which the exemplary embodiment is applied.
In the organic electroluminescent element 30 shown in FIG. 4, the heat dissipation layer 13 is provided between the substrate 11 and the anode layer 12, is formed in contact with the anode layer 12, and is laminated on the cathode layer 15. Are further provided in contact with each other. In this case, two layers of the heat dissipation layer 13 are formed. The heat dissipating layer 13 provided between the substrate 11 and the anode layer 12 dissipates heat mainly on the substrate 11 side, and the heat dissipating layer 13 laminated on the cathode layer 15 mainly directly from the heat dissipating layer 13. Heat can be dissipated.
Although not shown, the heat radiation layer 13 may be provided between the anode layer 12 and the cathode layer 15 and at a plurality of locations outside the anode layer 12 and the cathode layer 15.
 また、図1~図4で説明した有機電界発光素子10,10a,10b,10c,10d,20,30は、凹部16は、陽極層12、放熱層13、誘電体層14、陰極層15を貫通して形成されていたがこれに限るものではない。発光部17が発光するためには少なくとも誘電体層14が凹部16により貫通すれば足りるが、凹部16は、陽極層12と陰極層15のうち少なくとも一方を貫通して形成される構造が望ましい。 Further, in the organic electroluminescent elements 10, 10a, 10b, 10c, 10d, 20, 30 described with reference to FIGS. 1 to 4, the recess 16 includes the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15. However, the present invention is not limited to this. In order for the light emitting portion 17 to emit light, it is sufficient that at least the dielectric layer 14 penetrates through the recess 16. However, the recess 16 desirably has a structure that penetrates at least one of the anode layer 12 and the cathode layer 15.
 図5は、本実施の形態が適用される有機電界発光素子の第4の例を説明した断面図である。
 図5に示した有機電界発光素子40は、凹部16が放熱層13、陽極層12、誘電体層14を貫通するが、陰極層15を貫通していない。そして、凹部16が発光部17により埋められ、第2凹部18は形成されていない。また、陰極層15は、誘電体層14の上に積層する形でいわゆるベタ膜状に形成されている。このように陰極層15を形成することで、凹部16を覆う構造としている。第2凹部18を形成するように発光部17を凹部16の内面に塗布しなくても、発光部17により発せられた光は、発光部17内部を伝搬し、上述の有機電界発光素子10,20,30と同様に、基板11の側および陰極層15の側の両方から取り出しが可能である。但し、この有機電界発光素子40の場合は、陰極層15がベタ膜として、発光部17を覆っているため、陰極層15が可視光に対し透明でないと、陰極層15の側から光を取り出すことはできない。
FIG. 5 is a cross-sectional view illustrating a fourth example of an organic electroluminescent element to which the present exemplary embodiment is applied.
In the organic electroluminescent element 40 shown in FIG. 5, the recess 16 penetrates the heat dissipation layer 13, the anode layer 12, and the dielectric layer 14, but does not penetrate the cathode layer 15. And the recessed part 16 is filled with the light emission part 17, and the 2nd recessed part 18 is not formed. Further, the cathode layer 15 is formed in a so-called solid film shape so as to be laminated on the dielectric layer 14. By forming the cathode layer 15 in this way, the recess 16 is covered. Even if the light emitting part 17 is not applied to the inner surface of the recessed part 16 so as to form the second recessed part 18, the light emitted by the light emitting part 17 propagates inside the light emitting part 17, and the above-described organic electroluminescent element 10, Similarly to 20 and 30, it can be taken out from both the substrate 11 side and the cathode layer 15 side. However, in the case of this organic electroluminescent element 40, since the cathode layer 15 is a solid film and covers the light emitting portion 17, light is extracted from the cathode layer 15 side unless the cathode layer 15 is transparent to visible light. It is not possible.
 また、図6は、本実施の形態が適用される有機電界発光素子の第5の例を説明した断面図である。
 図6に示した有機電界発光素子50は、凹部16が放熱層13、誘電体層14、陰極層15を貫通するが、陽極層12を貫通していない。そして発光部17は第2凹部18を形成する。このように陽極層12を形成する場合でも、発光部17から発せられた光は、基板11の側および陰極層15の側の両方から取り出し可能である。但し、陽極層12の側から光を取り出したい場合は、陽極層12は、可視光に対し透明でないと、基板11の側から光を取り出すことはできない。
FIG. 6 is a cross-sectional view illustrating a fifth example of the organic electroluminescent element to which the exemplary embodiment is applied.
In the organic electroluminescent device 50 shown in FIG. 6, the recess 16 penetrates the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15, but does not penetrate the anode layer 12. The light emitting unit 17 forms a second recess 18. Even when the anode layer 12 is formed in this way, the light emitted from the light emitting portion 17 can be extracted from both the substrate 11 side and the cathode layer 15 side. However, when it is desired to extract light from the anode layer 12 side, the anode layer 12 cannot extract light from the substrate 11 side unless it is transparent to visible light.
 更に、図7は、本実施の形態が適用される有機電界発光素子の第6の例を説明した断面図である。
 図7に示した有機電界発光素子60は、凹部16が、放熱層13、誘電体層14を貫通するが、陽極層12および陰極層15は貫通していない。そして、凹部16が発光部17により埋められ、第2凹部18は形成されていない。また、陽極層12は、基板11の上に積層する形でいわゆるベタ膜状に形成されている。更に陰極層15は、誘電体層14の上に積層する形でいわゆるベタ膜状に形成されており、凹部16を覆う構造としている。このように陽極層12、陰極層15を形成する場合でも、発光部17から発せられた光は、基板11の側および陰極層15の側の両方から取り出し可能である。但し、基板11の側から光を取り出したい場合は、陽極層12は、可視光に対し透明である必要がある。同様に陰極層15の側から光を取り出したい場合は、陰極層15は、可視光に対し透明である必要がある。
Further, FIG. 7 is a cross-sectional view illustrating a sixth example of an organic electroluminescent element to which the present exemplary embodiment is applied.
In the organic electroluminescent element 60 shown in FIG. 7, the recess 16 penetrates the heat dissipation layer 13 and the dielectric layer 14, but does not penetrate the anode layer 12 and the cathode layer 15. And the recessed part 16 is filled with the light emission part 17, and the 2nd recessed part 18 is not formed. Further, the anode layer 12 is formed in a so-called solid film shape so as to be laminated on the substrate 11. Further, the cathode layer 15 is formed in a so-called solid film shape so as to be laminated on the dielectric layer 14, and has a structure covering the recess 16. Even when the anode layer 12 and the cathode layer 15 are formed in this way, the light emitted from the light emitting portion 17 can be extracted from both the substrate 11 side and the cathode layer 15 side. However, in order to extract light from the substrate 11 side, the anode layer 12 needs to be transparent to visible light. Similarly, when it is desired to extract light from the cathode layer 15 side, the cathode layer 15 needs to be transparent to visible light.
 また、図1に示した有機電界発光素子10では、放熱層13を陽極層12と陰極層15の間に設ける場合で、放熱層13は、陽極層12および陰極層15の少なくとも1つと接触して形成されていたが、これに限られるものではなく、接触しなくてもかまわない。 Further, in the organic electroluminescent device 10 shown in FIG. 1, when the heat dissipation layer 13 is provided between the anode layer 12 and the cathode layer 15, the heat dissipation layer 13 is in contact with at least one of the anode layer 12 and the cathode layer 15. However, the present invention is not limited to this, and it may not be in contact.
 図8は、本実施の形態が適用される有機電界発光素子の第7の例を説明した断面図である。
 図8に示した有機電界発光素子70は、誘電体層が二層形成され、この二層構造の誘電体層14aと誘電体層14bの間に放熱層13が形成されている。このような構造でも発光部17から発生した熱は、放熱層13により吸収され、放熱層13中を伝熱した熱は、基板11、陰極層15の側から放熱させることができる。
FIG. 8 is a cross-sectional view illustrating a seventh example of an organic electroluminescent element to which the present exemplary embodiment is applied.
In the organic electroluminescent element 70 shown in FIG. 8, two dielectric layers are formed, and the heat dissipation layer 13 is formed between the dielectric layers 14a and 14b having the two-layer structure. Even in such a structure, the heat generated from the light emitting portion 17 is absorbed by the heat dissipation layer 13, and the heat transferred through the heat dissipation layer 13 can be dissipated from the substrate 11 and the cathode layer 15 side.
 また、図9は、本実施の形態が適用される有機電界発光素子の第8の例を説明した断面図である。
 図9に示した有機電界発光素子80は、基板11上に陽極層12、放熱層13、誘電体層14が順に形成されている。そして、発光部17を形成する発光材料は、凹部16から誘電体層14の上面にも展開して形成されている。即ち、発光部17を形成する発光材料が、凹部16から誘電体層14と陰極層15の間に更に延伸して連続形成されている。また、陰極層15は、この発光材料上に更に積層する形で形成されており、いわゆるベタ膜状に成膜されている。このような構造でも発光部17から発生した熱は、放熱層13により吸収され、放熱層13中を伝熱した熱は、基板11、陰極層15の側から放熱させることができる。
FIG. 9 is a cross-sectional view illustrating an eighth example of an organic electroluminescent element to which the present exemplary embodiment is applied.
In the organic electroluminescent element 80 shown in FIG. 9, an anode layer 12, a heat dissipation layer 13, and a dielectric layer 14 are sequentially formed on a substrate 11. The light emitting material that forms the light emitting portion 17 is also developed from the recess 16 to the upper surface of the dielectric layer 14. That is, the light emitting material forming the light emitting portion 17 is continuously extended from the concave portion 16 between the dielectric layer 14 and the cathode layer 15. Further, the cathode layer 15 is formed so as to be further laminated on the light emitting material, and is formed in a so-called solid film shape. Even in such a structure, the heat generated from the light emitting portion 17 is absorbed by the heat dissipation layer 13, and the heat transferred through the heat dissipation layer 13 can be dissipated from the substrate 11 and the cathode layer 15 side.
 以上詳述したように、本実施の形態の有機電界発光素子では、放熱層13の位置や個数について、凹部16を設けず陽極層、発光部、陰極層等を積層して構成する従来のサンドイッチ構造の有機電界発光素子よりも自由度が高い。即ち、サンドイッチ構造の有機電界発光素子では全面が発光エリアになるため背面電極裏面にしか放熱層を挿入できず、また挿入した場合も、発光効率の観点からわずかな面積しか挿入できない。またわずかな面積しか挿入しなくても発光効率の低下が生じる。対して、本実施の形態の有機電界発光素子においては、凹部16が設けられている箇所以外の領域のどの領域においても放熱層を設けることが可能である。即ち、放熱層を凹部の形状に合わせて形成することができ、そのため放熱の効果が高く、有機電界発光素子に不均一な発熱が生じ、輝度ムラが生じるのを防止しやすくなる。そして、発光効率を高めやすくなる。また、放熱層13の一部は発光部17と直接接しているため効果的に発光部17から放熱させることが可能である。更に、放熱層13を設ける箇所に特に制限はなく、複数箇所に設けることができるためより放熱効果を高めやすい。 As described above in detail, in the organic electroluminescent device of the present embodiment, the conventional sandwich composed of the anode layer, the light emitting portion, the cathode layer, etc., without providing the recesses 16 with respect to the position and number of the heat radiation layers 13. The degree of freedom is higher than that of the organic electroluminescent device having the structure. That is, in the organic electroluminescence device having a sandwich structure, the entire surface is a light emitting area, and therefore a heat dissipation layer can be inserted only on the back surface of the back electrode, and even when inserted, only a small area can be inserted from the viewpoint of light emission efficiency. Moreover, even if only a small area is inserted, the luminous efficiency is reduced. On the other hand, in the organic electroluminescent element of the present embodiment, it is possible to provide a heat dissipation layer in any region other than the portion where the recess 16 is provided. That is, the heat dissipation layer can be formed in conformity with the shape of the recess, so that the effect of heat dissipation is high, and it is easy to prevent unevenness in the heat generation from occurring in the organic electroluminescent element and uneven brightness. And it becomes easy to raise luminous efficiency. Further, since a part of the heat radiation layer 13 is in direct contact with the light emitting unit 17, it is possible to effectively dissipate heat from the light emitting unit 17. Furthermore, there is no restriction | limiting in particular in the location in which the thermal radiation layer 13 is provided, Since it can provide in several places, it is easy to improve the thermal radiation effect.
 また、従来のサンドイッチ構造の有機電界発光素子で、発光効率の低下を生じさせないために透明な材料を放熱層として使用することも考えられるが、透明で熱伝導性の高い材料はサファイアや石英などの高価な材料であり適用するには実用性が低い。対して、本実施の形態の有機電界発光素子では、不透明材料を用いることができるため、材料選定の自由度が高く、安価な材料を用いることが可能である。 In addition, it is possible to use a transparent material as a heat dissipation layer in order to prevent a decrease in luminous efficiency in a conventional organic electroluminescent device with a sandwich structure, but transparent and highly heat conductive materials such as sapphire and quartz It is an expensive material and is not practical for application. On the other hand, in the organic electroluminescent element of this embodiment, since an opaque material can be used, it is possible to use an inexpensive material with a high degree of freedom in material selection.
 なお、以上詳述した有機電界発光素子10,10a,10b,10c,10d,20,30,40,50,60,70,80では、基板11側を下側とした場合に下側に陽極層12を形成し、誘電体層14を挟み込み対向する形で上側に陰極層15を形成する場合を例示して説明を行ったが、これに限られるものではなく、陽極層12と陰極層15を入れ替えた構造でもよい。即ち、基板11側を下側とした場合に下側に陰極層15を形成し、誘電体層14を挟み込み対向する形で上側に陽極層12を形成する形態でもよい。
 また、有機電界発光素子10,10a,10b,10c,10d,50,60,80では、放熱層13を下側にし、上側に誘電体層14を形成していたが、逆の構成である誘電体層14を下側にし、放熱層13を上側にする構成としてもよい。
In the organic electroluminescent elements 10, 10a, 10b, 10c, 10d, 20, 30, 40, 50, 60, 70, 80 described in detail above, the anode layer is formed on the lower side when the substrate 11 side is the lower side. However, the present invention is not limited to this, but the anode layer 12 and the cathode layer 15 are not limited to this. An exchanged structure may be used. That is, when the substrate 11 side is the lower side, the cathode layer 15 may be formed on the lower side, and the anode layer 12 may be formed on the upper side with the dielectric layer 14 interposed therebetween.
Further, in the organic electroluminescent elements 10, 10a, 10b, 10c, 10d, 50, 60, 80, the heat dissipation layer 13 is on the lower side and the dielectric layer 14 is formed on the upper side. The body layer 14 may be on the lower side and the heat dissipation layer 13 may be on the upper side.
 次に、有機電界発光素子の製造方法について、図1で説明を行った有機電界発光素子10の場合を例に取り説明を行う。
 図10(a)~(f)は、本実施の形態が適用される有機電界発光素子10の製造方法について説明した図である。
 まず、基板11上に陽極層12、放熱層13、誘電体層14、陰極層15を順に積層する形で形成する(図10(a))。これらの層を形成するには、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などを用いることができる。また、塗布成膜方法、即ち、目的とする材料を溶剤に溶解させた状態で基板に塗布し乾燥する方法が可能な場合は、スピンコーティング法、ディップコーティング法、インクジェット法、印刷法、スプレー法、ディスペンサー法などの方法を用いて成膜することも可能である。なお陰極バッファー層を設けたい場合も同様の方法で形成することができる。
Next, a method for manufacturing an organic electroluminescent element will be described by taking the case of the organic electroluminescent element 10 described in FIG. 1 as an example.
10A to 10F are diagrams illustrating a method for manufacturing the organic electroluminescent element 10 to which the exemplary embodiment is applied.
First, the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15 are formed in this order on the substrate 11 (FIG. 10A). In order to form these layers, resistance heating vapor deposition, electron beam vapor deposition, sputtering, ion plating, or the like can be used. In addition, when a coating film forming method, that is, a method in which a target material is dissolved in a solvent and applied to a substrate and drying is possible, a spin coating method, a dip coating method, an ink jet method, a printing method, a spray method It is also possible to form a film using a method such as a dispenser method. The cathode buffer layer can also be formed by the same method.
 次に、陽極層12、放熱層13、誘電体層14、陰極層15を貫通する形で凹部16の形成を行うが、凹部16を形成するには例えば、リソグラフィーを用いた方法が使用できる。これを行うには、まず陰極層15の上にレジスト液を塗布し、スピンコート等により余分なレジスト液を除去して、レジスト層61を形成する(図10(b))。 Next, the recess 16 is formed so as to penetrate the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15. To form the recess 16, for example, a method using lithography can be used. In order to do this, first, a resist solution is applied on the cathode layer 15, and the excess resist solution is removed by spin coating or the like to form a resist layer 61 (FIG. 10B).
 そして、凹部16を形成するための所定のパターンが描画されたマスク(図示せず)をかぶせ、紫外線(UV:Ultra Violet)、電子線(EB:Electron Beam)等により露光を行うと、レジスト層61に凹部16に対応した所定のパターン62が露光される(図10(c))。 Then, when a mask (not shown) on which a predetermined pattern for forming the concave portion 16 is drawn is applied, and exposure is performed with ultraviolet rays (UV: Ultra Violet), electron beams (EB: Electron Beam), etc., the resist layer A predetermined pattern 62 corresponding to the concave portion 16 is exposed on 61 (FIG. 10C).
 次に、現像液を用いてレジスト層61の露光部分を除去すると、パターン62の部分のレジスト層61が除去される(図10(d))。 Next, when the exposed portion of the resist layer 61 is removed using a developing solution, the resist layer 61 in the portion of the pattern 62 is removed (FIG. 10D).
 次に、露出した陰極層15の部分をエッチング除去し、陽極層12、放熱層13、誘電体層14、陰極層15を貫通する形で凹部16を形成する(図10(e))。エッチングは、ドライエッチングとウェットエッチングの何れをも使用することができる。またこの際に等方性エッチングと異方性エッチングを組合せることで、凹部16の形状の制御を行うことができる。ドライエッチングとしては、反応性イオンエッチング(RIE:Reactive Ion Etching)や誘導結合プラズマエッチングが利用でき、またウェットエッチングとしては、希塩酸や希硫酸への浸漬を行う方法などが利用できる。 Next, the exposed portion of the cathode layer 15 is removed by etching, and a recess 16 is formed so as to penetrate the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, and the cathode layer 15 (FIG. 10E). As the etching, either dry etching or wet etching can be used. At this time, the shape of the recess 16 can be controlled by combining isotropic etching and anisotropic etching. As dry etching, reactive ion etching (RIE) or inductively coupled plasma etching can be used. As wet etching, a method of immersing in dilute hydrochloric acid or dilute sulfuric acid can be used.
 次に、残ったレジスト層61をレジスト除去液等を用いて除去し、発光部17を形成することで有機電界発光素子10が製造できる(図10(f))。発光部17の形成には、前述の塗布法が用いられる。まず発光部17を構成する発光材料を、有機溶媒や水等の所定の溶媒に分散させたインクを塗布する。塗布を行う際にはスピンコーティング、スプレーコーティング、ディップコーティング法、インクジェット法、スリットコーティング法、ディスペンサー法、印刷等の種々の方法を使用することができる。塗布を行った後は、加熱あるいは真空引きを行うことでインクを乾燥させ、発光材料が凹部16の内面に固着し、発光部17が形成される。 Next, the remaining resist layer 61 is removed using a resist removing solution or the like, and the light emitting portion 17 is formed, whereby the organic electroluminescent element 10 can be manufactured (FIG. 10F). The above-described coating method is used for forming the light emitting portion 17. First, an ink in which a light emitting material constituting the light emitting unit 17 is dispersed in a predetermined solvent such as an organic solvent or water is applied. When applying, various methods such as spin coating, spray coating, dip coating, ink jet, slit coating, dispenser, and printing can be used. After the application, the ink is dried by heating or evacuating, and the light emitting material adheres to the inner surface of the recess 16 to form the light emitting portion 17.
 また、これら一連の工程後、有機電界発光素子10を長期安定的に用い、有機電界発光素子10を外部から保護するための保護層や保護カバー(図示せず)を装着することが好ましい。保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物、窒化ケイ素、酸化ケイ素等のシリコン化合物などを用いることができる。そして、これらの積層体も用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板、金属などを用いることができる。この保護カバーは、熱硬化性樹脂や光硬化性樹脂で素子基板と貼り合わせて密閉する方法を採ることが好ましい。またこの際に、スペーサを用いることで所定の空間を維持することができ、有機電界発光素子10が傷つくのを防止できるため好ましい。そして、この空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極層15の酸化を防止しやすくなる。更に酸化バリウム等の乾燥剤をこの空間内に設置することにより上記一連の製造工程で吸着した水分が有機電界発光素子10にダメージを与えるのを抑制しやすくなる。 Further, after these series of steps, it is preferable to use the organic electroluminescent element 10 stably for a long period of time and to attach a protective layer or a protective cover (not shown) for protecting the organic electroluminescent element 10 from the outside. As the protective layer, polymer compounds, metal oxides, metal fluorides, metal borides, silicon compounds such as silicon nitride and silicon oxide, and the like can be used. And these laminated bodies can also be used. Further, as the protective cover, a glass plate, a plastic plate whose surface has been subjected to low water permeability treatment, a metal, or the like can be used. It is preferable that the protective cover is sealed with a thermosetting resin or a photo-curing resin and bonded to the element substrate. At this time, it is preferable to use a spacer because a predetermined space can be maintained and the organic electroluminescent element 10 can be prevented from being damaged. If an inert gas such as nitrogen or argon is sealed in this space, the cathode layer 15 can be easily prevented from being oxidized. Further, by installing a desiccant such as barium oxide in this space, it becomes easy to suppress the moisture adsorbed in the series of manufacturing steps from damaging the organic electroluminescent element 10.
 次に、以上詳述した有機電界発光素子を備える表示装置について説明を行う。
 図11は、本実施の形態における有機電界発光素子を用いた表示装置の一例を説明した図である。
 図11に示した表示装置200は、いわゆるパッシブマトリクス型の表示装置であり、表示装置基板202、陽極配線204、陽極補助配線206、陰極配線208、絶縁膜210、陰極隔壁212、有機電界発光素子214、対向基板216、シール材218とを備えている。
Next, a display apparatus provided with the organic electroluminescent element detailed above will be described.
FIG. 11 is a diagram illustrating an example of a display device using the organic electroluminescent element in this embodiment.
A display device 200 shown in FIG. 11 is a so-called passive matrix display device, and includes a display device substrate 202, an anode wiring 204, an anode auxiliary wiring 206, a cathode wiring 208, an insulating film 210, a cathode partition wall 212, and an organic electroluminescent element. 214, a counter substrate 216, and a sealing material 218.
 表示装置基板202としては、例えば、矩形状のガラス基板等の透明基板を用いることができる。表示装置基板202の厚みは、特に限定されないが、例えば0.1mm~1mmのものを用いることができる。 As the display device substrate 202, for example, a transparent substrate such as a rectangular glass substrate can be used. The thickness of the display device substrate 202 is not particularly limited, but for example, a thickness of 0.1 mm to 1 mm can be used.
 表示装置基板202上には、複数の陽極配線204が形成されている。陽極配線204は、一定の間隔を隔てて平行に配置される。陽極配線204は、透明導電膜により構成され、例えばITO(Indium Tin Oxide)を用いることができる。また陽極配線204の厚さは例えば、100nm~150nmとすることができる。そして、それぞれの陽極配線204の端部の上には、陽極補助配線206が形成される。陽極補助配線206は陽極配線204と電気的に接続されている。このように構成することにより、陽極補助配線206は、表示装置基板202の端部側において外部配線と接続するための端子として機能し、外部に設けられた図示しない駆動回路から陽極補助配線206を介して陽極配線204に電流を供給することができる。陽極補助配線206は、例えば、厚さ500nm~600nmの金属膜によって構成される。 A plurality of anode wirings 204 are formed on the display device substrate 202. The anode wirings 204 are arranged in parallel at a constant interval. The anode wiring 204 is made of a transparent conductive film, and for example, ITO (Indium Tin Oxide) can be used. The thickness of the anode wiring 204 can be set to 100 nm to 150 nm, for example. An anode auxiliary wiring 206 is formed on the end of each anode wiring 204. The anode auxiliary wiring 206 is electrically connected to the anode wiring 204. With this configuration, the anode auxiliary wiring 206 functions as a terminal for connecting to the external wiring on the end portion side of the display device substrate 202, and the anode auxiliary wiring 206 is connected from an external driving circuit (not shown). A current can be supplied to the anode wiring 204 through the wiring. The anode auxiliary wiring 206 is made of a metal film having a thickness of 500 nm to 600 nm, for example.
 また、表示装置基板202上には、複数の陰極配線208が設けられている。複数の陰極配線208は、それぞれが平行となるよう、かつ、陽極配線204と直交するように配設されている。陰極配線208には、Al又はAl合金を使用することができる。陰極配線208の厚さは、例えば、100nm~150nmである。また、陰極配線208の端部には、陽極配線204に対する陽極補助配線206と同様に、図示しない陰極補助配線が設けられ、陰極配線208と電気的に接続されている。よって、陰極配線208と陰極補助配線との間に電流を流すことができる。 Further, a plurality of cathode wirings 208 are provided on the display device substrate 202. The plurality of cathode wirings 208 are arranged so as to be parallel to each other and orthogonal to the anode wiring 204. As the cathode wiring 208, Al or an Al alloy can be used. The thickness of the cathode wiring 208 is, for example, 100 nm to 150 nm. Further, similarly to the anode auxiliary wiring 206 for the anode wiring 204, a cathode auxiliary wiring (not shown) is provided at the end of the cathode wiring 208 and is electrically connected to the cathode wiring 208. Therefore, current can flow between the cathode wiring 208 and the cathode auxiliary wiring.
 表示装置基板202上には、陽極配線204を覆うように絶縁膜210が形成される。絶縁膜210には、陽極配線204の一部を露出するように矩形状の開口部220が設けられている。複数の開口部220は、陽極配線204の上にマトリクス状に配置されている。この開口部220において、後述するように陽極配線204と陰極配線208の間に有機電界発光素子214が設けられる。すなわち、それぞれの開口部220が画素となる。従って、開口部220に対応して表示領域が形成される。ここで、絶縁膜210の膜厚は、例えば、200nm~300nmとすることができ、開口部220の大きさは、例えば、300μm×300μmとすることができる。 An insulating film 210 is formed on the display device substrate 202 so as to cover the anode wiring 204. The insulating film 210 is provided with a rectangular opening 220 so as to expose a part of the anode wiring 204. The plurality of openings 220 are arranged in a matrix on the anode wiring 204. In the opening 220, an organic electroluminescent element 214 is provided between the anode wiring 204 and the cathode wiring 208 as described later. That is, each opening 220 is a pixel. Accordingly, a display area is formed corresponding to the opening 220. Here, the film thickness of the insulating film 210 can be, for example, 200 nm to 300 nm, and the size of the opening 220 can be, for example, 300 μm × 300 μm.
 陽極配線204上の開口部220の位置に対応した箇所に、有機電界発光素子214が形成されている。なお、ここで有機電界発光素子214は、陽極配線204が基板11の代わりとなるため、絶縁膜210の上に直接、陽極層12、放熱層13、誘電体層14、陰極層15、発光部17(図1参照)が形成されている。有機電界発光素子214は、開口部220において陽極配線204と陰極配線208とに挟持されている。すなわち、有機電界発光素子214の陽極層12が陽極配線204と接触し、陰極層15が陰極配線208と接触する。有機電界発光素子214の厚さは、例えば、150nm~200nmとすることができる。 An organic electroluminescent element 214 is formed at a location corresponding to the position of the opening 220 on the anode wiring 204. Here, in the organic electroluminescent element 214, since the anode wiring 204 replaces the substrate 11, the anode layer 12, the heat dissipation layer 13, the dielectric layer 14, the cathode layer 15, and the light emitting portion are directly formed on the insulating film 210. 17 (see FIG. 1) is formed. The organic electroluminescent element 214 is sandwiched between the anode wiring 204 and the cathode wiring 208 in the opening 220. That is, the anode layer 12 of the organic electroluminescent element 214 is in contact with the anode wiring 204, and the cathode layer 15 is in contact with the cathode wiring 208. The thickness of the organic electroluminescent element 214 can be set to, for example, 150 nm to 200 nm.
 絶縁膜210の上には、複数の陰極隔壁212が陽極配線204と垂直な方向に沿って形成されている。陰極隔壁212は、陰極配線208の配線同士が導通しないように、複数の陰極配線208を空間的に分離するための役割を担っている。従って、隣接する陰極隔壁212の間にそれぞれ陰極配線208が配置される。陰極隔壁212の大きさとしては、例えば、高さが2μm~3μm、幅が10μmのものを用いることができる。 A plurality of cathode partitions 212 are formed on the insulating film 210 along a direction perpendicular to the anode wiring 204. The cathode partition 212 plays a role in spatially separating the plurality of cathode wirings 208 so that the wirings of the cathode wirings 208 are not electrically connected to each other. Accordingly, the cathode wiring 208 is disposed between the adjacent cathode partition walls 212. As the size of the cathode partition wall 212, for example, a cathode partition with a height of 2 to 3 μm and a width of 10 μm can be used.
 表示装置基板202は、対向基板216とシール材218を介して貼り合わせられている。これにより、有機電界発光素子214が設けられた空間を封止することができ、有機電界発光素子214が空気中の水分により劣化するのを防ぐことができる。対向基板216としては、例えば、厚さが0.7mm~1.1mmのガラス基板を使用することができる。 The display device substrate 202 is bonded to the counter substrate 216 via a sealing material 218. Thereby, the space in which the organic electroluminescent element 214 is provided can be sealed, and the organic electroluminescent element 214 can be prevented from being deteriorated by moisture in the air. As the counter substrate 216, for example, a glass substrate having a thickness of 0.7 mm to 1.1 mm can be used.
 このような構造の表示装置200において、図示しない駆動装置により、陽極補助配線206、図示しない陰極補助配線を介して、有機電界発光素子214に電流を供給し、発光部17を発光させ、凹部16から光を出射させることができる。そして、上述の画素に対応した有機電界発光素子214の発光、非発光を制御装置により制御することにより、表示装置200に画像を表示させることができる。 In the display device 200 having such a structure, a current is supplied to the organic electroluminescent element 214 via the anode auxiliary wiring 206 and the cathode auxiliary wiring (not shown) by a driving device (not shown), the light emitting unit 17 is caused to emit light, and the recess 16 Can emit light. An image can be displayed on the display device 200 by controlling light emission and non-light emission of the organic electroluminescence element 214 corresponding to the above-described pixel by the control device.
 次に、有機電界発光素子10を用いた照明装置について説明を行う。
 図12は、本実施の形態における有機電界発光素子を備える照明装置の一例を説明した図である。
 図12に示した照明装置300は、上述した有機電界発光素子10と、有機電界発光素子10の基板11(図1参照)に隣接して設置され陽極層12(図1参照)に接続される端子302と、基板11(図1参照)に隣接して設置され有機電界発光素子10の陰極層15(図1参照)に接続される端子303と、端子302と端子303とに接続し有機電界発光素子10を駆動するための点灯回路301とから構成される。
Next, a lighting device using the organic electroluminescent element 10 will be described.
FIG. 12 is a diagram illustrating an example of a lighting device including the organic electroluminescent element in the present embodiment.
The lighting device 300 shown in FIG. 12 is installed adjacent to the organic electroluminescent element 10 and the substrate 11 (see FIG. 1) of the organic electroluminescent element 10 and connected to the anode layer 12 (see FIG. 1). A terminal 302, a terminal 303 installed adjacent to the substrate 11 (see FIG. 1) and connected to the cathode layer 15 (see FIG. 1) of the organic electroluminescent element 10, and an organic electric field connected to the terminals 302 and 303. And a lighting circuit 301 for driving the light emitting element 10.
 点灯回路301は、図示しない直流電源と図示しない制御回路を内部に有し、端子302と端子303を通して、有機電界発光素子10の陽極層12と陰極層15との間に電流を供給する。そして、有機電界発光素子10を駆動し、発光部17(図1参照)を発光させて、凹部16から光を出射させ、照明光として利用する。発光部17は白色光を出射する発光材料より構成されていてもよく、また緑色光(G)、青色光(B)、赤色光(R)を出射する発光材料を使用した有機電界発光素子10をそれぞれ複数個設け、その合成光が白色となるようにしてもよい。なお、本実施の形態の照明装置300では、凹部16(図1参照)の径と間隔を小さくして発光させた場合、人間の目には面発光しているように見える。 The lighting circuit 301 has a DC power supply (not shown) and a control circuit (not shown) inside, and supplies a current between the anode layer 12 and the cathode layer 15 of the organic electroluminescent element 10 through the terminal 302 and the terminal 303. And the organic electroluminescent element 10 is driven, the light emission part 17 (refer FIG. 1) is light-emitted, light is radiate | emitted from the recessed part 16, and it uses as illumination light. The light emitting unit 17 may be made of a light emitting material that emits white light, and the organic electroluminescent element 10 using a light emitting material that emits green light (G), blue light (B), and red light (R). A plurality of them may be provided, and the combined light may be white. In the lighting device 300 of the present embodiment, when light is emitted with the diameter and interval of the recesses 16 (see FIG. 1) being reduced, it appears to the human eye to emit light.
(実施例1)
[燐光発光性高分子化合物の作製]
 下記の式E-2で表される化合物(重合性置換基を有するイリジウム錯体)、式E-54で表される化合物(正孔輸送性化合物)、および式E-66で表される化合物(電子輸送性化合物)をE-2:E-54:E-66=1:4:5(質量比)の割合で脱水トルエンに溶解させ、更に重合開始剤として、V-601(和光純薬工業株式会社製)を溶解させた。そして、凍結脱気操作を行った後に真空密閉し、70℃で100時間攪拌して重合反応を行なった。反応後、反応液をアセトン中に滴下して沈殿を生じさせ、更に、この脱水トルエン-アセトンでの再沈殿精製を3回繰り返して燐光発光性高分子化合物を精製した。ここで、脱水トルエンおよびアセトンとしては、和光純薬工業株式会社製の高純度グレードのものを更に蒸留したものを用いた。
 3回目の再沈殿精製後の溶剤を高速液体クロマトグラフィーで分析したところ、溶剤中に400nm以上での吸収を有する物質が検出されないことを確認した。即ち、このことは溶剤中に、不純物がほとんど含まれないということであり、燐光発光性高分子化合物を十分に精製できていることを意味する。そして、精製された燐光発光性高分子化合物を、室温で2日間かけて真空乾燥させた。その結果得られた燐光発光性高分子化合物(ELP)は、純度が99.9%を超えることを高速液体クロマトグラフィー(検出波長254nm)により確認した。
Example 1
[Preparation of phosphorescent polymer compound]
A compound represented by the following formula E-2 (iridium complex having a polymerizable substituent), a compound represented by formula E-54 (hole transporting compound), and a compound represented by formula E-66 ( Electron transporting compound) is dissolved in dehydrated toluene at a ratio of E-2: E-54: E-66 = 1: 4: 5 (mass ratio), and V-601 (Wako Pure Chemical Industries, Ltd.) is used as a polymerization initiator. (Made by Corporation) was dissolved. And after performing freeze deaeration operation, it vacuum-sealed and stirred at 70 degreeC for 100 hours, and the polymerization reaction was performed. After the reaction, the reaction solution was dropped into acetone to cause precipitation, and the reprecipitation purification with dehydrated toluene-acetone was repeated three times to purify the phosphorescent polymer compound. Here, as dehydrated toluene and acetone, those obtained by further distilling a high-purity grade manufactured by Wako Pure Chemical Industries, Ltd. were used.
When the solvent after the third reprecipitation purification was analyzed by high performance liquid chromatography, it was confirmed that no substance having absorption at 400 nm or more was detected in the solvent. That is, this means that the solvent contains almost no impurities, which means that the phosphorescent polymer compound has been sufficiently purified. The purified phosphorescent polymer compound was vacuum dried at room temperature for 2 days. As a result, it was confirmed by high performance liquid chromatography (detection wavelength 254 nm) that the phosphorescent polymer compound (ELP) obtained had a purity exceeding 99.9%.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
[発光材料溶液の調製]
 このように作製した発光性高分子化合物(重量平均分子量=52000)3重量部を97重量部のトルエンに溶解させ、発光材料溶液(以下、「溶液A」ともいう。)を調製した。
[Preparation of luminescent material solution]
3 parts by weight of the light-emitting polymer compound thus prepared (weight average molecular weight = 52000) was dissolved in 97 parts by weight of toluene to prepare a light-emitting material solution (hereinafter also referred to as “solution A”).
[有機電界発光素子の作製]
 有機電界発光素子として、図9で示した有機電界発光素子80を、以下の方法で作製した。
 具体的には、まず表面に膜厚150nmのITO(Indium Tin Oxide)膜を有する石英ガラスからなるガラス基板(25mm角、厚さ1mm)上に、スパッタ装置(キヤノンアネルバ株式会社製E-401s)を用いて、アルミナ(Al)層を30nm、二酸化ケイ素(SiO)層を100nm成膜した。ここで、ガラス基板は、基板11に対応する。またITO膜は陽極層12に、アルミナ(Al)層は放熱層13に、二酸化ケイ素層は誘電体層14に対応する。
[Production of organic electroluminescence device]
As the organic electroluminescent element, the organic electroluminescent element 80 shown in FIG. 9 was produced by the following method.
Specifically, a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.) is first formed on a glass substrate (25 mm square, 1 mm thickness) made of quartz glass having a 150 nm thick ITO (Indium Tin Oxide) film on the surface. Were used to form an alumina (Al 2 O 3 ) layer of 30 nm and a silicon dioxide (SiO 2 ) layer of 100 nm. Here, the glass substrate corresponds to the substrate 11. The ITO film corresponds to the anode layer 12, the alumina (Al 2 O 3 ) layer corresponds to the heat dissipation layer 13, and the silicon dioxide layer corresponds to the dielectric layer 14.
 次に、フォトレジスト(AZエレクトロニックマテリアルズ株式会社製AZ1500)をスピンコート法により約1μm成膜した。紫外線による露光後、TMAH(Tetra methyl ammonium hydroxide:(CH3)NOH)1.2%液により現像し、レジスト層をパターン化した。そしてこの後に、130℃で10分間熱を加えた(ポストベイク処理)。 Next, a photoresist (AZ 1500 made by AZ Electronic Materials Co., Ltd.) was formed to a thickness of about 1 μm by spin coating. After exposure to ultraviolet, TMAH (Tetra methyl ammonium hydroxide: (CH3) 4 NOH) developed with 1.2% solution, the patterned resist layer. Thereafter, heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
 次に反応性イオンエッチング装置(サムコ株式会社製RIE-200iP)を用いてドライエッチングすることで二酸化ケイ素層およびアルミナ(Al)層のパターン化を行った。ここでエッチング条件としては、反応ガスとしてCHFを使用し、圧力0.3Pa、出力Bias/ICP=60/100(W)で、16分間反応させた。 Next, the silicon dioxide layer and the alumina (Al 2 O 3 ) layer were patterned by dry etching using a reactive ion etching apparatus (RIE-200iP manufactured by Samco Corporation). Here, as etching conditions, CHF 3 was used as a reaction gas, and the reaction was performed at a pressure of 0.3 Pa and an output Bias / ICP = 60/100 (W) for 16 minutes.
 そしてレジスト除去液によりレジスト残渣を除去し、上述した反応性イオンエッチング装置を用いてドライエッチングすることでITO膜のパターン化を行った。ここでエッチング条件としては、反応ガスとしてClとSiClの混合ガスを使用し、圧力1Pa、出力Bias/ICP=180/100(W)で、7分間反応させた。以上の2段階のドライエッチング処理により、誘電体層14、放熱層13、および陽極層12を貫通する凹部16が形成された。そしてこの凹部16は、直径2μm(um)の円柱形状であり、凹部16のエッジ間の距離は2μmとなった。 Then, the resist residue was removed with a resist removing solution, and the ITO film was patterned by dry etching using the reactive ion etching apparatus described above. Here, as etching conditions, a mixed gas of Cl 2 and SiCl 4 was used as a reaction gas, and the reaction was performed at a pressure of 1 Pa and an output Bias / ICP = 180/100 (W) for 7 minutes. By the two-stage dry etching process described above, the concave portion 16 penetrating the dielectric layer 14, the heat dissipation layer 13, and the anode layer 12 was formed. And this recessed part 16 was a cylindrical shape with a diameter of 2 micrometers (um), and the distance between the edges of the recessed part 16 became 2 micrometers.
 次にガラス基板に純水を吹きかけることにより洗浄を行ない、スピン乾燥装置を用いて乾燥させた。 Next, the glass substrate was washed by spraying pure water and dried using a spin dryer.
 次に、溶液Aをスピンコート法(回転数:3000rpm)により塗布し、次いで窒素雰囲気下、120℃で1時間放置し乾燥することで、発光部17を形成した。 Next, the solution A was applied by a spin coating method (rotation speed: 3000 rpm), and then allowed to stand at 120 ° C. for 1 hour in a nitrogen atmosphere and dried to form the light emitting portion 17.
 そして真空蒸着室に投入し、真空蒸着装置で発光部17上に陰極バッファ層として厚さ1.0nmのナトリウム(Na)膜を形成した。続いて陰極層15として、厚さ150nmのアルミニウム(Al)膜を形成した。以上の工程により有機電界発光素子80を作製することができた。 Then, it was put into a vacuum vapor deposition chamber, and a sodium (Na) film having a thickness of 1.0 nm was formed as a cathode buffer layer on the light emitting unit 17 by a vacuum vapor deposition device. Subsequently, an aluminum (Al) film having a thickness of 150 nm was formed as the cathode layer 15. The organic electroluminescent element 80 was able to be manufactured by the above process.
(実施例2~4)
 実施例1に対し、放熱層13であるアルミナ(Al)層を50nm(実施例2)、200nm(実施例3)、250nm(実施例4)としたこと以外は同様にして有機電界発光素子80を作製した。
(Examples 2 to 4)
In contrast to Example 1, the alumina (Al 2 O 3 ) layer, which is the heat dissipation layer 13, was changed to 50 nm (Example 2), 200 nm (Example 3), and 250 nm (Example 4). A light emitting device 80 was manufactured.
(実施例5~6)
 実施例1に対し、放熱層13として、AlN(窒化アルミニウム)層(実施例5)、Ti(チタン)層(実施例6)を形成し、膜厚を50nmとしたこと以外は、同様にして有機電界発光素子80を作製した。
(Examples 5 to 6)
In contrast to Example 1, an AlN (aluminum nitride) layer (Example 5) and a Ti (titanium) layer (Example 6) were formed as the heat dissipation layer 13 and the film thickness was set to 50 nm. An organic electroluminescent element 80 was produced.
(実施例7)
 有機電界発光素子として、図2(d)で示した有機電界発光素子10dを、以下の方法で作製した。
 具体的には、まず表面に膜厚150nmのITO(Indium Tin Oxide)膜を有するシリコン基板(25mm角、厚さ1mm)上に、スパッタ装置(キヤノンアネルバ株式会社製E-401s)を用いて、アルミナ(Al)層を100nm、二酸化ケイ素(SiO)層を50nm、アルミニウム(Al)層を100nm成膜した。ここで、シリコン基板は、基板11に対応する。またITO膜は陽極層12に、アルミナ(Al)層は放熱層13に、二酸化ケイ素層は誘電体層14に、アルミニウム層は陰極層15に対応する。
(Example 7)
As the organic electroluminescent element, the organic electroluminescent element 10d shown in FIG. 2D was produced by the following method.
Specifically, first, on a silicon substrate (25 mm square, 1 mm thickness) having an ITO (Indium Tin Oxide) film having a thickness of 150 nm on the surface, a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.) was used. An alumina (Al 2 O 3 ) layer was deposited to 100 nm, a silicon dioxide (SiO 2 ) layer was deposited to 50 nm, and an aluminum (Al) layer was deposited to 100 nm. Here, the silicon substrate corresponds to the substrate 11. The ITO film corresponds to the anode layer 12, the alumina (Al 2 O 3 ) layer corresponds to the heat dissipation layer 13, the silicon dioxide layer corresponds to the dielectric layer 14, and the aluminum layer corresponds to the cathode layer 15.
 次に、フォトレジスト(AZエレクトロニックマテリアルズ株式会社製AZ1500)をスピンコート法により約1μm成膜した。紫外線による露光後、TMAH(Tetra methyl ammonium hydroxide:(CH3)4NOH)1.2%液により現像し、レジスト層をパターン化した。そしてこの後に、130℃で10分間熱を加えた(ポストベイク処理)。 Next, a photoresist (AZ1500 manufactured by AZ Electronic Materials Co., Ltd.) was formed to a thickness of about 1 μm by spin coating. After exposure with ultraviolet rays, the resist layer was patterned by developing with a 1.2% solution of TMAH (Tetra methyl ammonium hydroxide: (CH3) 4NOH). Thereafter, heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
 次に反応性イオンエッチング装置(サムコ株式会社製RIE-200iP)を用いてドライエッチングすることでアルミニウム層、二酸化ケイ素層およびアルミナ層のパターン化を行った。ここでエッチング条件としては、反応ガスとしてCHF3を使用し、圧力0.3Pa、出力Bias/ICP=60/100(W)で、20分間反応させた。 Next, the aluminum layer, the silicon dioxide layer and the alumina layer were patterned by dry etching using a reactive ion etching apparatus (RIE-200iP manufactured by Samco Corporation). Here, as etching conditions, CHF3 was used as a reaction gas, and the reaction was performed at a pressure of 0.3 Pa and an output Bias / ICP = 60/100 (W) for 20 minutes.
 続いて、上記反応性イオンエッチング装置を用いて、ITO膜のパターン化を行った。反応ガスとしてClとSiClの混合ガスを使用し、圧力1Pa、出力Bias/ICP=180/100(W)で、7分間反応させた。
 そしてレジスト除去液によりレジスト残渣を除去した。
 以上の2段階のドライエッチング処理により、陰極層15、誘電体層14、放熱層13、および陽極層12を貫通する凹部16が形成された。そしてこの凹部16は、直径2.5μm(um)の円柱形状であり、凹部16のエッジ間の距離は1.5μmとなった。
Subsequently, the ITO film was patterned using the reactive ion etching apparatus. A mixed gas of Cl 2 and SiCl 4 was used as a reaction gas, and the reaction was performed at a pressure of 1 Pa and an output Bias / ICP = 180/100 (W) for 7 minutes.
Then, the resist residue was removed with a resist removing solution.
By the two-stage dry etching process described above, the concave portion 16 penetrating the cathode layer 15, the dielectric layer 14, the heat dissipation layer 13, and the anode layer 12 was formed. And this recessed part 16 was a cylindrical shape with a diameter of 2.5 micrometers (um), and the distance between the edges of the recessed part 16 became 1.5 micrometers.
 次にガラス基板に純水を吹きかけることにより洗浄を行ない、スピン乾燥装置を用いて乾燥させた。 Next, the glass substrate was washed by spraying pure water and dried using a spin dryer.
 次に、溶液Aをスピンコート法(回転数:3000rpm)により塗布し、次いで窒素雰囲気下、120℃で1時間放置し乾燥することで、発光部17を形成した。以上の工程により有機電界発光素子10dを作製することができた。 Next, the solution A was applied by a spin coating method (rotation speed: 3000 rpm), and then allowed to stand at 120 ° C. for 1 hour in a nitrogen atmosphere and dried to form the light emitting portion 17. The organic electroluminescent element 10d was able to be manufactured through the above steps.
(実施例8)
 有機電界発光素子として、図4で示した有機電界発光素子30を、以下の方法で作製した。
 具体的には、ソーダガラスからなるガラス基板(25mm角、厚さ1mm)上に、スパッタ装置(キヤノンアネルバ株式会社製E-401s)を用いて、アルミナ(Al)層を50nm、ITO膜を150nm、二酸化ケイ素(SiO)層を100nm、アルミナ(Al)層を50nm、アルミニウム(Al)層を150nm、アルミナ(Al)層を50nmこの順で成膜した。ここで、ガラス基板は、基板11に対応する。またアルミナ(Al)層は放熱層13に、ITO膜は陽極層12に、二酸化ケイ素層は誘電体層14、アルミニウム層は陰極15に対応する。
(Example 8)
As the organic electroluminescent element, the organic electroluminescent element 30 shown in FIG. 4 was produced by the following method.
Specifically, an alumina (Al 2 O 3 ) layer is formed on a glass substrate (25 mm square, 1 mm thickness) made of soda glass by using a sputtering apparatus (E-401s manufactured by Canon Anelva Co., Ltd.) with a thickness of 50 nm. The film was 150 nm, the silicon dioxide (SiO 2 ) layer was 100 nm, the alumina (Al 2 O 3 ) layer was 50 nm, the aluminum (Al) layer was 150 nm, and the alumina (Al 2 O 3 ) layer was 50 nm in this order. Here, the glass substrate corresponds to the substrate 11. The alumina (Al 2 O 3 ) layer corresponds to the heat dissipation layer 13, the ITO film corresponds to the anode layer 12, the silicon dioxide layer corresponds to the dielectric layer 14, and the aluminum layer corresponds to the cathode 15.
 次に、フォトレジスト(AZエレクトロニックマテリアルズ株式会社製AZ1500)をスピンコート法により約1μm成膜した。紫外線による露光後、TMAH(Tetra methyl ammonium hydroxide:(CHNOH)1.2%液により現像し、レジスト層をパターン化した。そしてこの後に、130℃で10分間熱を加えた(ポストベイク処理)。 Next, a photoresist (AZ 1500 made by AZ Electronic Materials Co., Ltd.) was formed to a thickness of about 1 μm by spin coating. After exposure with ultraviolet rays, the resist layer was patterned by developing with a 1.2% solution of TMAH (Tetra methyl ammonium hydroxide: (CH 3 ) 4 NOH). Thereafter, heat was applied at 130 ° C. for 10 minutes (post-baking treatment).
 次に反応性イオンエッチング装置(サムコ株式会社製RIE-200iP)を用いてドライエッチングすることで、アルミナ(Al)層、アルミニウム層、および二酸化ケイ素層のパターン化を行った。ここでエッチング条件としては、反応ガスとしてCHFを使用し、圧力0.3Pa、出力Bias/ICP=60/100(W)で、19分間反応させた。 Next, an alumina (Al 2 O 3 ) layer, an aluminum layer, and a silicon dioxide layer were patterned by dry etching using a reactive ion etching apparatus (RIE-200iP manufactured by Samco Corporation). Here, as etching conditions, CHF 3 was used as a reaction gas, and the reaction was performed at a pressure of 0.3 Pa and an output Bias / ICP = 60/100 (W) for 19 minutes.
 続いて、上記反応性イオンエッチング装置を用いて、ITO膜のパターン化を行った。ここでエッチング条件としては、反応ガスとしてClとSiClの混合ガスを使用し、圧力1Pa、出力Bias/ICP=180/100(W)で、7分間反応させた。
 更に、上記反応性イオンエッチング装置を用いて、アルミナ(Al)層のパターン化を行った。ここでエッチング条件としては、反応ガスとしてCHFを使用し、圧力0.2Pa、出力Bias/ICP=60/100(W)で、5分間反応させた。
Subsequently, the ITO film was patterned using the reactive ion etching apparatus. Here, as etching conditions, a mixed gas of Cl 2 and SiCl 4 was used as a reaction gas, and the reaction was performed at a pressure of 1 Pa and an output Bias / ICP = 180/100 (W) for 7 minutes.
Furthermore, the alumina (Al 2 O 3 ) layer was patterned using the reactive ion etching apparatus. Here, as etching conditions, CHF 3 was used as a reaction gas, and the reaction was performed at a pressure of 0.2 Pa and an output Bias / ICP = 60/100 (W) for 5 minutes.
 そしてレジスト除去液によりレジスト残渣を除去した。以上の3段階のドライエッチング処理により、陰極15、誘電体層14、放熱層13、陽極層12、および放熱層13を貫通する凹部16が形成された。そしてこの凹部16は、直径3μm(um)の円柱形状であり、凹部16のエッジ間の距離は1μmとなった。 Then, the resist residue was removed with a resist removing solution. Through the above three-stage dry etching process, the cathode 15, the dielectric layer 14, the heat dissipation layer 13, the anode layer 12, and the recess 16 penetrating the heat dissipation layer 13 were formed. And this recessed part 16 was a cylindrical shape with a diameter of 3 micrometers (um), and the distance between the edges of the recessed part 16 became 1 micrometer.
 次にガラス基板に純水を吹きかけることにより洗浄を行ない、スピン乾燥装置を用いて乾燥させた。 Next, the glass substrate was washed by spraying pure water and dried using a spin dryer.
 次に、溶液Aをスピンコート法(回転数:3000rpm)により塗布し、次いで窒素雰囲気下、120℃で1時間放置し乾燥することで、発光部17を形成した。以上の工程により有機電界発光素子30を作製することができた。 Next, the solution A was applied by a spin coating method (rotation speed: 3000 rpm), and then allowed to stand at 120 ° C. for 1 hour in a nitrogen atmosphere and dried to form the light emitting portion 17. The organic electroluminescent element 30 was able to be manufactured by the above process.
(比較例1)
 実施例1に対し、放熱層13であるアルミナ(Al)層を形成しなかったこと以外は同様にして有機電界発光素子を作製した。
(Comparative Example 1)
An organic electroluminescent element was produced in the same manner as in Example 1 except that the alumina (Al 2 O 3 ) layer as the heat dissipation layer 13 was not formed.
(比較例2)
 実施例7で、アルミナ(Al)層を100nm、二酸化ケイ素(SiO)層を50nm形成する代わりに、二酸化ケイ素層を150nm形成した。即ち、放熱層13を形成せずに有機電界発光素子の作製を行なった。
(Comparative Example 2)
In Example 7, instead of forming an alumina (Al 2 O 3 ) layer of 100 nm and a silicon dioxide (SiO 2 ) layer of 50 nm, a silicon dioxide layer of 150 nm was formed. That is, the organic electroluminescent element was produced without forming the heat dissipation layer 13.
[有機電界発光素子の評価]
 実施例1~8、比較例1~2で作製した各有機電界発光素子について、輝度ムラおよび電力効率の評価を次の方法により行なった。
[Evaluation of organic electroluminescence device]
For each of the organic electroluminescent devices prepared in Examples 1 to 8 and Comparative Examples 1 and 2, the luminance unevenness and the power efficiency were evaluated by the following methods.
(輝度ムラの評価)
 (1)定電圧印加状態での有機電界発光素子の発光強度と有機電界発光素子の温度には相関性がある。即ち、有機電界発光素子の発光面内で温度分布が生じることにより、発光面の輝度分布(輝度ムラ)を引き起こす。
 (2)この事実から、有機電界発光素子の通電直後(温度は面内で均一)の輝度分布に対して、一定時間点灯後(温度が定常状態に達しており、放熱効果の大小に応じて温度の面内分布を生じている)の輝度分布の変化分を温度分布の大小を示す指標とした。
 (3)具体的な測定方法としては、輝度分布は、発光面5mm□である有機電界発光素子を用い、発光面を縦横3等分し、中央の輝度と、四隅の輝度との比で数値化した。それぞれの測定面積はおよそ直径0.5mmの円形とした。ここで、輝度は、輝度計(株式会社トプコン製、BM-9、視野角0.2度)を用いた。そして、通電直後の輝度は有機電界発光素子に通電開始後5秒以内に測定した。また、一定時間点灯後の輝度は、点灯後3分後に測定した。
 (4)通電直後の中央の輝度と四隅の輝度との比と、一定時間点灯後の中央の輝度と四隅の輝度との比を算出し、更に後者の比を前者の比で割った数値を、有機電界発光素子の熱上昇による輝度ムラの程度の指標とした。つまり、通常の有機電界発光素子では通電直後の中央の輝度と四隅の輝度との比(中央/隅)はほぼ1であるが、点灯により温度が蓄熱されると、中央分の温度>隅の温度となる。よって、一定時間点灯後では中央の輝度>隅の輝度となる。そしてこのとき中央の輝度と四隅の輝度との比(中央/隅)は、例えば、1.4であったとすると、1.4/1=1.4が有機電界発光素子の熱上昇による輝度ムラの程度の指標とすることができる。通常、この値は1より大きくなり、1に近いほど発光面内の温度分布が小さく、輝度ムラが小さいということであるため好ましい。なお、この数値が1であるということは有機電界発光素子の発光面内の温度が均一ということを意味する。
(Evaluation of uneven brightness)
(1) There is a correlation between the light emission intensity of the organic electroluminescent element and the temperature of the organic electroluminescent element in a state where a constant voltage is applied. That is, a temperature distribution is generated in the light emitting surface of the organic electroluminescent element, thereby causing a luminance distribution (luminance unevenness) on the light emitting surface.
(2) From this fact, the brightness distribution immediately after energization of the organic electroluminescent element (temperature is uniform in the plane) after lighting for a certain period of time (temperature has reached a steady state, depending on the magnitude of the heat dissipation effect) The change in luminance distribution (which produces an in-plane temperature distribution) was used as an index indicating the magnitude of the temperature distribution.
(3) As a specific measurement method, the luminance distribution is an organic electroluminescence device having a light emitting surface of 5 mm □, and the light emitting surface is divided into three equal parts vertically and horizontally, and the numerical value is a ratio between the luminance at the center and the luminance at the four corners. Turned into. Each measurement area was circular with a diameter of approximately 0.5 mm. Here, a luminance meter (Topcon Co., Ltd., BM-9, viewing angle 0.2 degree) was used for the luminance. The luminance immediately after energization was measured within 5 seconds after the start of energization of the organic electroluminescent element. Further, the luminance after lighting for a certain time was measured 3 minutes after lighting.
(4) Calculate the ratio of the central luminance and the luminance at the four corners immediately after energization, the ratio between the central luminance and the luminance at the four corners after lighting for a certain period of time, and further divide the latter ratio by the former ratio. This was used as an index of the degree of luminance unevenness due to the heat rise of the organic electroluminescent element. That is, in a normal organic electroluminescent device, the ratio of the central luminance immediately after energization to the luminance at the four corners (center / corner) is approximately 1, but when the temperature is stored by lighting, the temperature of the central portion is larger than the corner temperature. It becomes temperature. Therefore, after lighting for a certain time, the luminance at the center> the luminance at the corner. At this time, if the ratio of the luminance at the center to the luminance at the four corners (center / corner) is 1.4, for example, 1.4 / 1 = 1.4 is luminance unevenness due to the heat rise of the organic electroluminescent element. It can be used as an index of the degree. Usually, this value is larger than 1, and a value closer to 1 is preferable because the temperature distribution in the light emitting surface is small and luminance unevenness is small. In addition, that this numerical value is 1 means that the temperature in the light emission surface of an organic electroluminescent element is uniform.
(電力効率の評価)
 有機電界発光素子の発光効率が低くなると、一定の輝度を実現するために多くの電力を必要となる。そして、投入した電力の一部は熱となるために、投入電力が大きいほど、発熱量が大きく、結果として温度分布が大きくなる。そして、有機電界発光素子において、放熱層を設ける等により構造を変化させた場合、発光効率は低下し、結果として発熱量が大きくなる。放熱層が厚くなるほど放熱性がよくなるので、一定の厚さまでは温度分布が生じるのを抑制することができるが、一定膜厚を超えると発熱が勝り、温度分布が生じやすくなる。
 そこで、有機電界発光素子に一定の電圧を印加し、輝度をこのとき流れた電力(=電圧×電流)で割った数値である電力効率を考え、これを発光効率の指標とした。
 結果を以下の表1に示す。なお電力効率は、実施例1を1として規格化して表示している。
(Evaluation of power efficiency)
When the luminous efficiency of the organic electroluminescent device is lowered, a large amount of electric power is required to realize a certain luminance. Since part of the input power becomes heat, the greater the input power, the greater the amount of heat generated, resulting in a larger temperature distribution. In the organic electroluminescence device, when the structure is changed by providing a heat dissipation layer or the like, the light emission efficiency is lowered, and as a result, the heat generation amount is increased. Since the heat dissipation becomes better as the heat dissipation layer becomes thicker, it is possible to suppress the temperature distribution from occurring at a certain thickness. However, if the thickness exceeds the certain thickness, the heat generation is superior and the temperature distribution tends to occur.
Therefore, a constant voltage was applied to the organic electroluminescent element, and the power efficiency, which is a numerical value obtained by dividing the luminance by the power (= voltage × current) flowing at this time, was considered, and this was used as an index of the luminous efficiency.
The results are shown in Table 1 below. The power efficiency is normalized and displayed with Example 1 as 1.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1からわかるように、比較例1~2に対し、実施例1~8は、いずれも輝度ムラが改善されている。即ち、放熱層13を設けることで、温度分布が均一化し、輝度ムラが抑制されている。また、実施例1~4を比較すると、アルミナの膜厚が増加するに従って、電力効率は、低くなる傾向にある。表1より、実施例1~4の輝度ムラおよび電力効率の数値を比較すると、放熱層13の膜厚は、50nm~200nm程度が好ましいことがわかる。
 また放熱層13を構成する材料を変更し、膜厚を50nmとした実施例2、5、6を比較すると、熱伝導率の高いアルミナ(熱伝導率29W/(m・K))、AlN(130W/(m・K))、Ti(240W/(m・K))ともに輝度ムラが抑制されており、放熱効果があることがわかる。
 更に、実施例7、8のように有機電界発光素子の層構成を変更したものについても放熱層13を形成することで、輝度ムラが抑制されており、放熱効果があることがわかる。
As can be seen from Table 1, the brightness unevenness is improved in each of Examples 1 to 8 as compared to Comparative Examples 1 and 2. That is, by providing the heat dissipation layer 13, the temperature distribution is made uniform and luminance unevenness is suppressed. Further, when Examples 1 to 4 are compared, the power efficiency tends to decrease as the alumina film thickness increases. From Table 1, it can be seen that the film thickness of the heat dissipation layer 13 is preferably about 50 nm to 200 nm when the luminance unevenness and the power efficiency values of Examples 1 to 4 are compared.
Further, when Examples 2, 5 and 6 in which the material constituting the heat radiation layer 13 is changed and the film thickness is 50 nm are compared, alumina having a high thermal conductivity (thermal conductivity 29 W / (m · K)), AlN ( 130 W / (m · K)) and Ti (240 W / (m · K)) are suppressed in luminance unevenness, and it can be seen that there is a heat dissipation effect.
Furthermore, it can be seen that even in the case where the layer configuration of the organic electroluminescent element is changed as in Examples 7 and 8, the formation of the heat dissipation layer 13 suppresses unevenness in luminance and has a heat dissipation effect.
本実施の形態が適用される有機電界発光素子の第1の例を説明した断面図である。It is sectional drawing explaining the 1st example of the organic electroluminescent element to which this Embodiment is applied. 発光部の形状の他の形態を説明した図である。It is a figure explaining the other form of the shape of the light emission part. 本実施の形態が適用される有機電界発光素子の第2の例を説明した断面図である。It is sectional drawing explaining the 2nd example of the organic electroluminescent element to which this Embodiment is applied. 本実施の形態が適用される有機電界発光素子の第3の例を説明した断面図である。It is sectional drawing explaining the 3rd example of the organic electroluminescent element to which this Embodiment is applied. 実施の形態が適用される有機電界発光素子の第4の例を説明した断面図である。It is sectional drawing explaining the 4th example of the organic electroluminescent element to which embodiment is applied. 本実施の形態が適用される有機電界発光素子の第5の例を説明した断面図である。It is sectional drawing explaining the 5th example of the organic electroluminescent element to which this Embodiment is applied. 本実施の形態が適用される有機電界発光素子の第6の例を説明した断面図である。It is sectional drawing explaining the 6th example of the organic electroluminescent element to which this Embodiment is applied. 本実施の形態が適用される有機電界発光素子の第7の例を説明した断面図である。It is sectional drawing explaining the 7th example of the organic electroluminescent element to which this Embodiment is applied. 本実施の形態が適用される有機電界発光素子の第8の例を説明した断面図である。It is sectional drawing explaining the 8th example of the organic electroluminescent element to which this Embodiment is applied. 本実施の形態が適用される有機電界発光素子の製造方法について説明した図である。It is a figure explaining the manufacturing method of the organic electroluminescent element to which this Embodiment is applied. 本実施の形態における有機電界発光素子を備える表示装置の一例を説明した図である。It is a figure explaining an example of a display apparatus provided with the organic electroluminescent element in this Embodiment. 本実施の形態における有機電界発光素子を備える照明装置の一例を説明した図である。It is a figure explaining an example of an illuminating device provided with the organic electroluminescent element in this Embodiment.
10,20,30,40,50,60,70,80…有機電界発光素子、11…基板、12…陽極層、13…放熱層、14…誘電体層、15…陰極層、16…凹部、17…発光部、18…第2凹部、200…表示装置、300…照明装置
 
DESCRIPTION OF SYMBOLS 10, 20, 30, 40, 50, 60, 70, 80 ... Organic electroluminescent element, 11 ... Board | substrate, 12 ... Anode layer, 13 ... Radiation layer, 14 ... Dielectric layer, 15 ... Cathode layer, 16 ... Recessed part, 17 ... Light-emitting part, 18 ... 2nd recessed part, 200 ... Display apparatus, 300 ... Illumination device

Claims (17)

  1.  第1の電極層と、
     第2の電極層と、
     前記第1の電極層と前記第2の電極層の間に形成される誘電体層と、
     少なくとも前記誘電体層を貫通して形成される凹部と、
     前記凹部の内面と接触して形成される発光部と、
     前記発光部から発生する熱を放熱する放熱層と、
     を有することを特徴とする有機電界発光素子。
    A first electrode layer;
    A second electrode layer;
    A dielectric layer formed between the first electrode layer and the second electrode layer;
    A recess formed through at least the dielectric layer;
    A light emitting part formed in contact with the inner surface of the recess;
    A heat dissipating layer for dissipating heat generated from the light emitting part,
    An organic electroluminescent device comprising:
  2.  前記放熱層は、前記第1の電極層と前記第2の電極層の間に形成されることを特徴とする請求項1に記載の有機電界発光素子。 The organic electroluminescence device according to claim 1, wherein the heat dissipation layer is formed between the first electrode layer and the second electrode layer.
  3.  前記放熱層は、50nm~200nmの厚さを有することを特徴とする請求項2に記載の有機電界発光素子。 3. The organic electroluminescence device according to claim 2, wherein the heat dissipation layer has a thickness of 50 nm to 200 nm.
  4.  前記放熱層は、前記第1の電極層および前記第2の電極層の少なくとも1つと接触して形成されることを特徴とする請求項1に記載の有機電界発光素子。 The organic electroluminescence device according to claim 1, wherein the heat dissipation layer is formed in contact with at least one of the first electrode layer and the second electrode layer.
  5.  前記放熱層は、0.2μm~1000μmの厚さを有することを特徴とする請求項4に記載の有機電界発光素子。 5. The organic electroluminescent device according to claim 4, wherein the heat dissipation layer has a thickness of 0.2 μm to 1000 μm.
  6.  前記放熱層は、前記凹部の形状に合わせて形成されることを特徴とする請求項1乃至5の何れか1項に記載の有機電界発光素子。 The organic electroluminescence device according to any one of claims 1 to 5, wherein the heat dissipation layer is formed in accordance with the shape of the recess.
  7.  前記放熱層は、窒化アルミニウム、窒化タンタル、アルミナ、サファイア、酸化ベリリウム、酸化マグネシウム、ダイヤモンドライクカーボン、単結晶シリコン、多結晶シリコン、アモルファスシリコン、炭化ケイ素、金属材料から選ばれる少なくとも1つを含むことを特徴とする請求項1乃至6の何れか1項に記載の有機電界発光素子。 The heat dissipation layer includes at least one selected from aluminum nitride, tantalum nitride, alumina, sapphire, beryllium oxide, magnesium oxide, diamond-like carbon, single crystal silicon, polycrystalline silicon, amorphous silicon, silicon carbide, and a metal material. The organic electroluminescent element according to claim 1, wherein:
  8.  前記放熱層は、熱伝導率が10W/(m・K)以上であることを特徴とする請求項1乃至7の何れか1項に記載の有機電界発光素子。 The organic electroluminescence device according to any one of claims 1 to 7, wherein the heat dissipation layer has a thermal conductivity of 10 W / (m · K) or more.
  9.  前記凹部は、前記第1の電極層、前記第2の電極層、前記誘電体層および前記放熱層を貫通する略円柱形状であることを特徴とする請求項1乃至8の何れか1項に記載の有機電界発光素子。 The said recessed part is a substantially cylindrical shape which penetrates the said 1st electrode layer, the said 2nd electrode layer, the said dielectric material layer, and the said heat dissipation layer, The any one of Claim 1 thru | or 8 characterized by the above-mentioned. The organic electroluminescent element as described.
  10.  前記凹部は、前記第1の電極層、前記第2の電極層、前記誘電体層および前記放熱層を貫通する互いに略平行である溝形状をなすことを特徴とする請求項1乃至8の何れか1項に記載の有機電界発光素子。 9. The concave portion according to claim 1, wherein the concave portion has a groove shape that penetrates the first electrode layer, the second electrode layer, the dielectric layer, and the heat dissipation layer and is substantially parallel to each other. 2. The organic electroluminescent element according to item 1.
  11.  前記凹部は、前記第1の電極層と前記第2の電極層の少なくとも一方を更に貫通することを特徴とする請求項1乃至10の何れか1項に記載の有機電界発光素子。 The organic electroluminescent element according to any one of claims 1 to 10, wherein the recess further penetrates at least one of the first electrode layer and the second electrode layer.
  12.  前記発光部は、燐光発光材料を含むことを特徴とする請求項1乃至11の何れか1項に記載の有機電界発光素子。 The organic electroluminescent element according to any one of claims 1 to 11, wherein the light emitting part includes a phosphorescent light emitting material.
  13.  前記燐光発光材料は、分子量が重量平均分子量で1,000~2,000,000の燐光発光性高分子であることを特徴とする請求項12に記載の有機電界発光素子。 13. The organic electroluminescent device according to claim 12, wherein the phosphorescent material is a phosphorescent polymer having a molecular weight of 1,000 to 2,000,000 in terms of weight average molecular weight.
  14.  前記燐光発光材料は、燐光を発光する燐光発光性単位とキャリアを輸送するキャリア輸送性単位とを一つの分子内に備えることを特徴とする請求項12または13に記載の有機電界発光素子。 14. The organic electroluminescent element according to claim 12, wherein the phosphorescent material comprises a phosphorescent unit that emits phosphorescence and a carrier transport unit that transports carriers in one molecule.
  15.  前記第1の電極層および前記第2の電極層は、不透明材料により形成されることを特徴とする請求項1乃至14の何れか1項に記載の有機電界発光素子。 The organic electroluminescent element according to any one of claims 1 to 14, wherein the first electrode layer and the second electrode layer are made of an opaque material.
  16.  請求項1乃至15の何れか1項に記載の有機電界発光素子を備えることを特徴とする表示装置。 A display device comprising the organic electroluminescent element according to any one of claims 1 to 15.
  17.  請求項1乃至15の何れか1項に記載の有機電界発光素子を備えることを特徴とする照明装置。 A lighting device comprising the organic electroluminescent element according to any one of claims 1 to 15.
PCT/JP2009/063851 2008-08-06 2009-08-05 Organic electroluminescent element, display device and illuminating device WO2010016512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008203631 2008-08-06
JP2008-203631 2008-08-06

Publications (1)

Publication Number Publication Date
WO2010016512A1 true WO2010016512A1 (en) 2010-02-11

Family

ID=41663730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063851 WO2010016512A1 (en) 2008-08-06 2009-08-05 Organic electroluminescent element, display device and illuminating device

Country Status (2)

Country Link
TW (1) TW201014444A (en)
WO (1) WO2010016512A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148478A1 (en) 2010-05-26 2011-12-01 昭和電工株式会社 Light-emitting element, image display device, and lighting device
WO2012147390A1 (en) 2011-04-28 2012-11-01 昭和電工株式会社 Organic light-emitting element, production method for organic light-emitting element, display device, and illumination device
WO2012157303A1 (en) 2011-05-19 2012-11-22 昭和電工株式会社 Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
WO2013002198A1 (en) 2011-06-27 2013-01-03 昭和電工株式会社 Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
WO2013069570A1 (en) 2011-11-09 2013-05-16 昭和電工株式会社 Light-emitting device and method of manufacturing light-emitting device
WO2013073670A1 (en) 2011-11-18 2013-05-23 昭和電工株式会社 Organic light-emitting element and method for producing organic light-emitting element
WO2013129615A1 (en) 2012-02-29 2013-09-06 昭和電工株式会社 Method for producing organic electroluminescent element
WO2013129613A1 (en) 2012-02-29 2013-09-06 昭和電工株式会社 Method of manufacturing organic electroluminescent element
US9644048B2 (en) 2009-10-27 2017-05-09 Samsung Electronics Co., Ltd Composition for anode buffer layer, high-molecular weight compound for anode buffer layer, organic electroluminescence element, and production process and uses of the same
CN108695438A (en) * 2017-04-12 2018-10-23 Tcl集团股份有限公司 A kind of QLED devices, display device and preparation method thereof
CN111903186A (en) * 2018-03-29 2020-11-06 索尼公司 Display device and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933817B (en) * 2020-07-27 2022-09-13 合肥维信诺科技有限公司 Display panel and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185982A (en) * 1994-12-28 1996-07-16 Sanyo Electric Co Ltd Organic electroluminescent element
JPH08288068A (en) * 1995-04-14 1996-11-01 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2002063985A (en) * 2000-08-22 2002-02-28 Nec Corp Organic electroluminescence element
JP2003007450A (en) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd Light-emitting element, display device and illumination device
JP2003522371A (en) * 1999-07-20 2003-07-22 エスアールアイ インターナショナル Cavity emitting electroluminescent device and method for forming the device
JP2006236744A (en) * 2005-02-24 2006-09-07 Seiko Epson Corp Organic el device, its manufacturing method, and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08185982A (en) * 1994-12-28 1996-07-16 Sanyo Electric Co Ltd Organic electroluminescent element
JPH08288068A (en) * 1995-04-14 1996-11-01 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
JP2003522371A (en) * 1999-07-20 2003-07-22 エスアールアイ インターナショナル Cavity emitting electroluminescent device and method for forming the device
JP2002063985A (en) * 2000-08-22 2002-02-28 Nec Corp Organic electroluminescence element
JP2003007450A (en) * 2001-06-20 2003-01-10 Matsushita Electric Ind Co Ltd Light-emitting element, display device and illumination device
JP2006236744A (en) * 2005-02-24 2006-09-07 Seiko Epson Corp Organic el device, its manufacturing method, and electronic equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9644048B2 (en) 2009-10-27 2017-05-09 Samsung Electronics Co., Ltd Composition for anode buffer layer, high-molecular weight compound for anode buffer layer, organic electroluminescence element, and production process and uses of the same
WO2011148478A1 (en) 2010-05-26 2011-12-01 昭和電工株式会社 Light-emitting element, image display device, and lighting device
WO2012147390A1 (en) 2011-04-28 2012-11-01 昭和電工株式会社 Organic light-emitting element, production method for organic light-emitting element, display device, and illumination device
CN103535115A (en) * 2011-05-19 2014-01-22 昭和电工株式会社 Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
WO2012157303A1 (en) 2011-05-19 2012-11-22 昭和電工株式会社 Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
CN103621178A (en) * 2011-06-27 2014-03-05 昭和电工株式会社 Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
WO2013002198A1 (en) 2011-06-27 2013-01-03 昭和電工株式会社 Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
WO2013069570A1 (en) 2011-11-09 2013-05-16 昭和電工株式会社 Light-emitting device and method of manufacturing light-emitting device
US9099598B2 (en) 2011-11-09 2015-08-04 Showa Denko K.K. Light-emitting device and method for manufacturing light-emitting device
WO2013073670A1 (en) 2011-11-18 2013-05-23 昭和電工株式会社 Organic light-emitting element and method for producing organic light-emitting element
WO2013129615A1 (en) 2012-02-29 2013-09-06 昭和電工株式会社 Method for producing organic electroluminescent element
WO2013129613A1 (en) 2012-02-29 2013-09-06 昭和電工株式会社 Method of manufacturing organic electroluminescent element
CN108695438A (en) * 2017-04-12 2018-10-23 Tcl集团股份有限公司 A kind of QLED devices, display device and preparation method thereof
CN108695438B (en) * 2017-04-12 2019-12-13 Tcl集团股份有限公司 QLED device, display device and preparation method thereof
CN111903186A (en) * 2018-03-29 2020-11-06 索尼公司 Display device and electronic device

Also Published As

Publication number Publication date
TW201014444A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
WO2010016512A1 (en) Organic electroluminescent element, display device and illuminating device
JP5523363B2 (en) LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, IMAGE DISPLAY DEVICE, AND LIGHTING DEVICE
JP4882037B1 (en) ORGANIC LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT
JP4913927B1 (en) ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2011081057A1 (en) Electroluminescent element, method for manufacturing electroluminescent element, display device and illuminating device
JP2007305734A (en) Indicating element and its manufacturing method
WO2010067861A1 (en) Organic electroluminescent element, display device, and lighting device
WO2010032758A1 (en) Organic electroluminescent element, display device and illuminating device
WO2010061898A1 (en) Organic electroluminescent element, display device and illuminating device
JP4727455B2 (en) Display element
WO2012029156A1 (en) Electroluminescent element, electroluminescent element manufacturing method, display device, and illumination device
WO2010032757A1 (en) Organic electroluminescent element, display device and illuminating device
WO2012147390A1 (en) Organic light-emitting element, production method for organic light-emitting element, display device, and illumination device
JP2007234526A (en) Display element
WO2011148478A1 (en) Light-emitting element, image display device, and lighting device
US20110227107A1 (en) Light-emitting element, image display device and illuminating device
JP2017054869A (en) Organic electroluminescent element and vehicle lamp
WO2013002198A1 (en) Organic light-emitting element, method for making organic light-emitting element, display device and illumination device
JP2011081948A (en) Organic electroluminescent element, method of manufacturing organic electroluminescent element, display device, and lighting system
JP2012243517A (en) Organic light-emitting element, method for manufacturing the same, display device, and lighting device
JP5553625B2 (en) Electroluminescent device, display device and lighting device
WO2008136583A1 (en) Organic light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09804995

Country of ref document: EP

Kind code of ref document: A1