WO2010016261A1 - 周波数帯域割当方法及び送信装置 - Google Patents

周波数帯域割当方法及び送信装置 Download PDF

Info

Publication number
WO2010016261A1
WO2010016261A1 PCT/JP2009/003778 JP2009003778W WO2010016261A1 WO 2010016261 A1 WO2010016261 A1 WO 2010016261A1 JP 2009003778 W JP2009003778 W JP 2009003778W WO 2010016261 A1 WO2010016261 A1 WO 2010016261A1
Authority
WO
WIPO (PCT)
Prior art keywords
lte
band
pucch
communication system
uplink
Prior art date
Application number
PCT/JP2009/003778
Other languages
English (en)
French (fr)
Inventor
綾子 堀内
平松 勝彦
中尾 正悟
湯田 泰明
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/057,254 priority Critical patent/US8588173B2/en
Priority to CN2009801291088A priority patent/CN102106180A/zh
Priority to JP2010523764A priority patent/JP5366951B2/ja
Priority to EP09804748.3A priority patent/EP2312899A4/en
Publication of WO2010016261A1 publication Critical patent/WO2010016261A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0066Requirements on out-of-channel emissions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/143Two-way operation using the same type of signal, i.e. duplex for modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning

Definitions

  • the present invention relates to an LTE system and an uplink frequency band allocation method of an LTE + system in a mixed system in which an LTE (Long-Term Evolution-Advanced) system and an LTE + (Long Term Evolution-Advanced) system coexist, and transmission applied to the mixed system Relates to the device.
  • LTE Long-Term Evolution-Advanced
  • LTE + Long Term Evolution-Advanced
  • DL downlink
  • a radio communication base station apparatus hereinafter abbreviated as a base station
  • a radio communication mobile station apparatus hereinafter abbreviated as a mobile station
  • UL Uplink
  • the uplink and downlink are associated with each other.
  • ARQ Automatic Repeat Request
  • the mobile station sends a response signal indicating an error detection result of the downlink data to the uplink.
  • CRC Cyclic Redundancy Check
  • the base station transmits control information for notifying the resource allocation result of downlink data to the mobile station.
  • This control information is transmitted to the mobile station using a downlink control channel such as PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • Each PDCCH occupies one or more CCEs.
  • Control Channel Element When one PDCCH occupies a plurality of CCEs (Control Channel Element), one PDCCH occupies a plurality of continuous CCEs.
  • the base station allocates any PDCCH among a plurality of PDCCHs to each mobile station, and physical resources corresponding to CCEs (Control Channel Element) occupied by each PDCCH Control information is mapped to and transmitted.
  • Each mobile station can determine the PUCCH used for transmission of the response signal from the own station from the CCE corresponding to the physical resource to which the control information for the own station is mapped in accordance with this association.
  • Patent Document 1 proposes a frequency overlay system.
  • Patent Literature 1 when an old communication system and a new communication system coexist for the purpose of improving frequency utilization efficiency, the new communication system is designed to include the frequency of the old communication system. Scheduling is performed including the frequency of the old communication system. Further, the design is made to improve the channel estimation accuracy by lowering the correlation between the preamble channel (reference signal) used in the old communication system and the preamble channel (reference signal) used in the new communication system. In addition, a control channel is provided separately for the new communication system and the old communication system, and is transmitted in different frequency bands. In the method disclosed in Patent Document 1, the old communication system and the new communication system are operated with the same frequency arrangement in both the uplink and the downlink.
  • Non-Patent Document 1 proposes a frequency arrangement in which the LTE system and the LTE + system coexist with the old communication system as LTE and the new communication system as LTE +.
  • both the uplink and the downlink are arranged at a low frequency.
  • the center frequency of the downlink of the LTE system is different from the center frequency of the downlink of the LTE + system. Therefore, for initial synchronization or HO (handover) control, it is necessary to separately transmit control channels such as SCH (Synchronous Channel) and BCH (Broadcast Channel) at each frequency for both LTE and LTE +. is there.
  • SCH Synchronous Channel
  • BCH Broadcast Channel
  • FIG. 1 shows an example in which the LTE DL band is 10 MHz and the LTE + DL band is 40 MHz.
  • the LTE + DL band is arranged so as to spread on both sides around the center frequency of the LTE DL band.
  • LTE SCH and BCH are transmitted using the center frequency of LTE. Note that the SCH is common to LTE and LTE +. Also, BCH + is transmitted in the LTE + DL band with the BCH difference or the like as BCH +.
  • FIG. 1 shows the UL band corresponding to the DL band arranged as shown in FIG.
  • the center 10 MHz of the UL band is allocated to the LTE UL band
  • 40 MHz overlapping with the LTE UL band is allocated to the LTE + UL band.
  • PUCCH and PUCCH + are arranged at both ends of the uplink of each system.
  • PUCCH is an uplink control channel for LTE
  • PUCCH + is an uplink control channel for LTE +.
  • the PUCCH is arranged on the left and right sides separated from the center frequency by 5 MHz
  • the PUCCH + is arranged on the left and right sides separated from the center frequency by 20 MHz.
  • An object of the present invention is to provide a frequency allocation method and a transmission apparatus capable of reducing PAPR when single carrier transmission is performed on an uplink of an LTE + system in a mixed system in which an LTE system and an LTE + system coexist. is there.
  • the frequency band allocation method includes a first communication system in which terminals performing single carrier transmission are mixed in an uplink, and an uplink having a maximum bandwidth narrower than the maximum bandwidth of the uplink of the first communication system.
  • a continuous frequency band is assigned to the uplink of the first communication system.
  • the transmission apparatus uses a first communication system in which terminals for single carrier transmission are mixed in an uplink, and an uplink having a narrower maximum bandwidth than the maximum bandwidth of the uplink of the first communication system.
  • acquisition means for acquiring information on continuous frequency bands assigned to the uplink of the first communication system, and assignment to the uplink of the first communication system
  • a transmission means for performing single carrier transmission in a continuous frequency band.
  • PAPR in a mixed system in which an LTE system and an LTE + system coexist, PAPR can be reduced when single carrier transmission is performed on the uplink of the LTE + system.
  • band of the mixed system in which a LTE system and a LTE + system coexist The figure which shows the example of arrangement
  • positioning of DL band and UL band which concerns on Embodiment 2 of this invention The figure which shows the example 2 (a) of arrangement
  • FIG. The figure which shows the example 2 (b) of arrangement
  • FIG. The figure which shows the example 3 (b) of arrangement
  • FIG. The figure which shows the example 3 (c) of arrangement
  • FIG. The figure which shows the example 3 (d) of arrangement
  • LTE Long Term Evolution
  • LTE + also called “LTE Advanced”, “IMT advanced” or “4G”
  • BCH Broadcast Channel
  • SIB System Information Block included in D-BCH (Dynamic-Broadcast Channel) is used for notification.
  • the PUCCH is a channel for transmitting control information such as ACK / NACK information and CQI information.
  • the LTE mobile station apparatus (hereinafter also referred to as “mobile station”) uses the PUCCH to obtain a CRC result (ACK) for downlink data. / NACK information etc.) to the base station apparatus (hereinafter also referred to as “base station”).
  • ACK CRC result
  • base station base station apparatus
  • the PUCCH is transmitted by sequentially using the band inside the LTE band.
  • the old communication system and the new communication system are not limited to LTE and LTE +, and a new communication system that performs single carrier transmission on the uplink and an uplink having a narrower maximum bandwidth than the maximum bandwidth of the uplink of the new communication system.
  • the present invention is applicable to a mixed system in which an old communication system using a line coexists.
  • the maximum bandwidth refers to the maximum bandwidth of the system uplink.
  • the maximum bandwidth of the uplink of the LTE system is 20 MHz
  • the maximum bandwidth of the uplink of the LTE + system is 100 MHz.
  • the maximum bandwidth of the uplink in the LTE + system is not necessarily allocated to the LTE + base station.
  • the bandwidth allocated for operation is set from a plurality of candidates equal to or less than the maximum bandwidth for each base station. Since the bandwidth for LTE + and the bandwidth for LTE are set separately, the bandwidth allocated for LTE + may be smaller than the bandwidth allocated for LTE.
  • PUCCH is a control channel for feeding back ACK or NACK, it may be referred to as an ACK / NACK channel.
  • the LTE uplink band is arranged close to the low band, and the LTE + uplink band is arranged close to the high band.
  • the uplink control channel such as PUCCH
  • PUCCH uplink control channel
  • FIG. 2 shows an arrangement example of the LTE band and the LTE + band in the DL band and the UL band according to the present embodiment.
  • the LTE band is a band used in the LTE system
  • the LTE + band is a band used in the LTE + system.
  • the LTE band and the LTE + band are arranged with their center frequencies overlapped.
  • the LTE system is operated in the 10 MHz band where the LTE DL band and the LTE + DL band overlap.
  • an LTE SCH (Synchronization CHannel) and BCH are transmitted in a 10 MHz band where the LTE DL band and the LTE + DL band overlap.
  • the base station uses the BCH to notifies the LTE mobile station and the LTE + mobile station of information on the LTE UL band.
  • LTE + BCH + is transmitted in the LTE + DL band.
  • the base station uses the BCH +, the base station notifies the LTE + mobile station of information on the LTE + UL band.
  • the LTE mobile station receives the BCH transmitted in the 10 MHz band in which the LTE DL band and the LTE + DL band overlap, and acquires the position of the LTE UL band.
  • the LTE + mobile station is compatible with the LTE system and has the same function as the reception function of the LTE mobile station.
  • the LTE + mobile station receives a signal transmitted from the base station in the LTE DL band, using the same reception method as the LTE mobile station. That is, similarly to the LTE mobile station, the LTE + mobile station receives the BCH transmitted in the 10 MHz band in which the LTE DL band and the LTE + DL band overlap, and acquires the position of the LTE UL band. Further, the LTE + mobile station receives BCH + transmitted in the LTE + DL band, and acquires the position of the LTE + UL band from the information of the LTE + UL bandwidth included in the BCH +. A method for acquiring the position of the LTE + UL band will be described later.
  • the LTE mobile station and the LTE + mobile station can be accommodated simultaneously in the DL band.
  • the LTE band is arranged in a frequency band lower than the LTE + band and adjacent to the LTE + band.
  • PUCCH is arrange
  • the PUCCH is arranged at both ends of the LTE UL band.
  • PUCCH + is arranged at both ends of the LTE + UL band, similarly to the LTE UL band.
  • the LTE UL band is arranged adjacent to the lower frequency band than the LTE + UL band.
  • the LTE + mobile station acquires information on the LTE UL band notified from the base station using the BCH.
  • the bandwidth Fw [MHz] and the center frequency fc [MHz] of the LTE UL band are notified.
  • the bandwidth Fw is selected from 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz in the base station, for example, according to the communication status of the mobile station.
  • the base station notifies the total bandwidth Fw total of the bandwidth Fw of the LTE UL band and the bandwidth Fw + of the LTE + UL band using BCH +.
  • the total bandwidth Fw total is selected from a plurality of candidates, for example, 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz, 40 MHz, 60 MHz, 80 MHz, and 100 Mz.
  • the LTE UL band is arranged adjacent to the lower frequency band than the LTE + UL band. Therefore, the LTE + mobile station can calculate the center frequency fc + of the LTE + UL band using Equation (1).
  • the base station since the base station notifies the bandwidth Fw and the center frequency fc of the LTE UL band using BCH, the base station only needs to notify only the total bandwidth Fw total using BCH +. Even without notifying the center frequency fc + of the LTE + UL band, the LTE + mobile station can acquire the center frequency fc + of the LTE + UL band allocated to the local station, using Equation (1).
  • the LTE + mobile station substitutes the LTE UL band width Fw, the center frequency fc, and the total bandwidth Fw total into the formula (1), so that the LTE + UL band allocated to the local station is calculated.
  • the center frequency fc + can be obtained because the LTE UL band is arranged adjacent to a lower frequency band than the LTE + UL band.
  • the base station only needs to report the bandwidth Fw, the center frequency fc, and the total bandwidth Fw total of the LTE UL band, and needs to notify the bandwidth Fw + and the center frequency fc + of the LTE + UL band. Therefore, the amount of signaling for notifying the information on the LTE + UL band can be reduced.
  • the LTE UL band is arranged adjacent to a frequency band lower than the LTE + UL band.
  • the LTE + band is not divided by the uplink control channel (such as PUCCH) transmitted by the LTE mobile station, so that a wide band can be continuously allocated to the LTE + mobile station. It becomes possible.
  • the uplink control channel such as PUCCH
  • the base station notifies only the LTE bandwidth Fw, the center frequency fc of the LTE band, and the total bandwidth Fw total , so that the LTE + mobile station is allocated to itself using Equation (1).
  • the center frequency fc + of the UL band for LTE + can be acquired.
  • the LTE + mobile station can acquire information on the UL band allocated to itself without reporting the center frequency fc + of the LTE + UL band, and can reduce the signaling amount for band information notification. Can be reduced.
  • the total bandwidth Fw total of the LTE UL bandwidth and the LTE + UL bandwidth is a plurality of candidates (1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz, 40 MHz, 60 MHz, 80 MHz). , 100 Mz), the bandwidth pattern to be prepared in advance is ten. On the other hand, when notifying the UL bandwidth for LTE +, it is necessary to prepare more patterns.
  • the base station instead of the total bandwidth Fw total, may notify the central frequency fc + of the LTE + for UL bandwidth with BCH +.
  • the LTE + mobile station can acquire the total bandwidth Fw total by using Expression (2).
  • FIG. 3 shows a relationship among the bandwidth Fw of the LTE UL band, the center frequency fc, the bandwidth Fw + of the UL band for LTE + , the center frequency fc +, and the total bandwidth Fw total .
  • FIG. 4 is a block diagram showing a configuration of the mobile station apparatus according to the present embodiment.
  • the mobile station apparatus 100 of FIG. 4 is applicable to both LTE mobile stations and LTE + mobile stations.
  • 4 includes a radio reception unit 101, a signal separation unit 102, a demodulation / decoding unit 103, an error determination unit 104, an ACK / NACK generation unit 105, a BCH / BCH + reception unit 106, a PDCCH (Physical Downlink Control Channel).
  • the PDCCH + receiving unit 107, the band calculating unit 108, the modulation / coding unit 109, the scheduler 110, and the radio transmitting unit 111 are configured.
  • the radio reception unit 101 receives a signal transmitted from the base station via the antenna, performs radio processing such as down-conversion, and outputs the received signal after radio processing to the signal separation unit 102.
  • the signal separation unit 102 separates the received signal into received data, control information such as BCH and BCH +, and downlink control channels such as PDCCH and PDCCH.
  • the signal separation unit 102 outputs received data to the demodulation / decoding unit 103, outputs control information such as BCH and BCH + to the BCH / BCH + receiving unit 106, and receives downlink control channels such as PDCCH and PDCCH as PDCCH / PDCCH + Output to the unit 107.
  • Demodulation / decoding section 103 demodulates and decodes the received signal, and outputs the demodulated / decoded received data to error determination section 104.
  • the error determination unit 104 determines whether there is an error in the received data and outputs the determination result to the ACK / NACK generation unit 105.
  • the ACK / NACK generation unit 105 generates an ACK when there is no error in the received data, generates a NACK when there is an error, and outputs the generated ACK / NACK to the scheduler 110.
  • the BCH / BCH + receiving unit 106 extracts information on the center frequency fc, the bandwidth Fw, and the total bandwidth Fw total of the LTE UL band from the input control information, and sends the information to the band calculation unit 108. Output.
  • the PDCCH / PDCCH + receiving unit 107 receives PDCCH or PDCCH +.
  • the PDCCH / PDCCH + receiving unit 107 determines the transmission position of the ACK / NACK on the PUCCH corresponding to the received CCE (Control Channel Element) number of the PDCCH, and outputs information on the determined transmission position to the scheduler 110.
  • PDCCH / PDCCH + receiving section 107 determines the transmission position of ACK / NACK in PUCCH + corresponding to the received CCE + number of PDCCH +, and outputs information on the determined transmission position to scheduler 110. Note that the association between PDCCH + and PUCCH + follows the basic arrangement example described above.
  • the bandwidth calculation unit 108 calculates the LTE + UL bandwidth center frequency fc + and the LTE + UL bandwidth Fw + using the equations (1) and (3), and the LTE UL bandwidth Fw, the center frequency fc. , And information on the LTE + UL band Fw + is output to the scheduler 110.
  • Modulation / encoding section 109 modulates and encodes control signals such as transmission data and CQI to obtain a modulated signal, and outputs the modulated signal to scheduler 110.
  • the scheduler 110 schedules the modulated signal in an appropriate frequency band. Specifically, when the LTE UL band is used, the scheduler 110 assigns the modulation signal to an appropriate frequency band of the LTE UL band using information on the bandwidth Fw and the center frequency fc of the LTE UL band. Further, when using the LTE + UL band, the scheduler 110 uses the information on the bandwidth Fw + and the center frequency fc + of the LTE + UL band to allocate the modulation signal to an appropriate frequency band of the LTE + UL band.
  • the scheduler 110 separately holds the association between PDCCH and PUCCH and the association between PDCCH + and PUCCH +. Then, ACK / NACK for data reception in the LTE DL band is scheduled on the PUCCH associated with the PDCCH CCE number. Also, ACK / NACK for data reception in the LTE + DL band is scheduled to PUCCH + associated with the PDCCH + CCE + number.
  • the scheduler 110 outputs the modulated signal after scheduling to the wireless transmission unit 111.
  • the radio transmission unit 111 performs single carrier modulation on the modulated signal after scheduling, and transmits the single carrier signal to the base station via the antenna.
  • the LTE UL band is arranged adjacent to the lower frequency band than the LTE + UL band.
  • the LTE + mobile station uses the formula (1) to allocate the LTE + UL
  • the center frequency fc + of the band can be acquired.
  • the LTE + mobile station can notify the LTE + mobile station by notifying only the LTE UL bandwidth Fw, the LTE UL bandwidth center frequency fc, and the total bandwidth Fw total without notifying the center frequency fc + of the LTE + UL band.
  • Information on the UL band allocated to the apparatus can be acquired, and the amount of signaling for notification of band information can be reduced.
  • the LTE UL band in a frequency band lower than the LTE + UL band, the line quality is improved compared to the case where the LTE UL band is arranged in a frequency band higher than the LTE + UL band. Even when the mobile station is far away from the base station, good communication quality can be ensured.
  • Embodiment 2 In this embodiment, an arrangement example of PUCCH + different from that in Embodiment 1 will be described.
  • the LTE mobile station when the PDCCH is transmitted from the base station, the LTE mobile station transmits an ACK / NACK signal for downlink data reception to the base station using the PUCCH corresponding to the CCE number in which the PDCCH is arranged.
  • the transmission position of the PDCCH is associated with the transmission position of the PUCCH that transmits ACK / NACK, and is operated according to the association rule.
  • a new association rule between PDCCH + and PUCCH + is proposed, and three arrangement examples will be described below.
  • two PUCCH + are referred to as a first PUCCH + and a second PUCCH +, and the first PUCCH + is described as being arranged on a lower frequency side than the second PUCCH +.
  • the LTE UL band is 10 MHz and the LTE + UL band is 35 MHz will be described as an example.
  • FIG. 5 shows an arrangement example 1.
  • the first and second PUCCH + for LTE + are arranged inside the PUCCH for LTE.
  • the first and second PUCCH + for LTE + adjacent to the LTE PUCCH and within the LTE UL band, the first and second PUCCH + in the LTE + UL band It will not be sent.
  • the bandwidth that can be allocated for LTE + data transmission can be increased, and more data can be transmitted.
  • the PDCCH transmitted on the LTE downlink is associated with the PUCCH transmitted on the LTE uplink, and the LTE mobile station associates with the CCE number in which the PDCCH is arranged.
  • ACK / NACK is transmitted using the assigned PUCCH.
  • the first PUCCH + is arranged on the low frequency side of the LTE UL band
  • the second PUCCH + is arranged on the high frequency side of the LTE UL band.
  • a frequency diversity effect is obtained.
  • the first and second PUCCHs are arranged on the low frequency side of the LTE + UL band, the LTE + UL band is wide, and it is difficult for the LTE + mobile station to transmit in the high frequency band of the LTE + UL band. Even in the case, the LTE + mobile station can transmit the first and second PUCCH +.
  • the first PUCCH + is arranged adjacent to the PUCCH on the low frequency side of the LTE UL band and outside the LTE UL band, and the second PUCCH + is arranged in the LTE + UL band. To do.
  • FIG. 6A shows arrangement example 2 (a).
  • the first PUCCH + is arranged outside the LTE UL band adjacent to the PUCCH.
  • the second PUCCH + is arranged in the LTE + UL band adjacent to the high frequency side PUCCH.
  • FIG. 6B shows arrangement example 2 (b).
  • the first PUCCH + is arranged outside the LTE UL band adjacent to the PUCCH on the low frequency side. Also, the second PUCCH + is arranged at the end on the high frequency side in the LTE + UL band.
  • positioning in this way, since 1st PUCCH + and 2nd PUCCH + come to be arrange
  • the PUCCH + is transmitted at both ends of the LTE + UL band.
  • the same rules as those in LTE can be used.
  • the arrangement example 2 has been described above.
  • the frequency interval between the first PUCCH + and the second PUCCH + is wider in the arrangement example 2 than in the arrangement example 1, and thus the frequency of the PUCCH + Diversity effect can be improved.
  • either one of the first PUCCH + and the second PUCCH + is arranged in the LTE UL band. That is, one of the first and second PUCCH + is nested in two PUCCHs. Thereby, in the example 3 of arrangement
  • 7A, 7B, 7C, and 7D show Arrangement Example 3 (a), Arrangement Example 3 (b), Arrangement Example 3 (c), and Arrangement Example 3 (d).
  • FIG. 7A shows an arrangement example 3 (a).
  • the first and second PUCCH + are arranged adjacent to the high frequency side of the two PUCCHs. By arranging in this way, it is not necessary to transmit PUCCH + outside the low frequency band of the LTE UL band, and a higher frequency diversity effect can be obtained as compared to arrangement example 1.
  • FIG. 7B shows an arrangement example 3 (b).
  • the first PUCCH + is arranged adjacent to the high frequency side of the low frequency PUCCH, and the second PUCCH + is arranged at the high frequency end of the LTE + UL band.
  • the frequency interval between the two PUCCH + is further widened, so that a higher frequency diversity effect can be obtained.
  • FIG. 7C shows an arrangement example 3 (c).
  • the first and second PUCCH + are arranged adjacent to the low frequency side of the two PUCCHs.
  • FIG. 7D shows an arrangement example 3 (d).
  • the first PUCCH + is arranged adjacent to the low frequency side of the high frequency PUCCH, and the second PUCCH + is arranged at the high frequency end of the LTE + UL band.
  • the frequency interval between the two PUCCH + s is widened, so that a high frequency diversity effect can be obtained.
  • FIG. 8 is a block diagram showing a main configuration of the mobile station apparatus according to the present embodiment.
  • the mobile station apparatus 200 of FIG. 8 includes a PDCCH / PDCCH + receiving unit 201 in place of the PDCCH / PDCCH + receiving unit 107 with respect to the mobile station apparatus 100 of FIG.
  • the PDCCH / PDCCH + receiving unit 201 receives PDCCH or PDCCH +.
  • the PDCCH / PDCCH + reception unit 201 determines the transmission position of the ACK / NACK in the PUCCH corresponding to the received PDCCH CCE number, and outputs information on the determined transmission position to the scheduler 110.
  • PDCCH / PDCCH + receiving section 201 determines the transmission position of ACK / NACK in PUCCH + corresponding to the received CCE + number of PDCCH +, and outputs information on the determined transmission position to scheduler 110. Note that the association between PDCCH + and PUCCH + follows any of Arrangement Example 1 to Arrangement Example 3.
  • arrangement examples 1 to 3 are proposed as new association rules between PDCCH + and PUCCH +.
  • PAPR can be reduced when performing single carrier transmission.
  • the LTE + UL band information has been described as an example using BCH +, but may be notified using control information other than BCH +.
  • BCH + is arranged in the LTE + DL band.
  • the present invention is not limited to this, and BCH + may be arranged in the LTE DL band.
  • the LTE + mobile station may communicate only in the LTE + UL band, may communicate only in the LTE UL band, or may communicate using both the LTE + UL band and the LTE UL band. Also good.
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the frequency band allocation method and the transmission apparatus according to the present invention are an LTE system and an uplink frequency band allocation method for an LTE system in a mixed system in which an LTE system and an LTE + system coexist, and a transmission apparatus applied to the mixed system. Useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 LTE(Long Term Evolution)システム及びLTE+(LTE Advanced)システムが共存する混在システムにおいて、LTE+システムの上り回線でシングルキャリア伝送を行う場合に、PAPR(peak to average power ratio)を低減する周波数帯域割当方法を開示する。この周波数帯域割当方法は、LTE用UL帯域を、LTE+用UL帯域より低い周波数帯に隣接して配置する。このような配置を採ることにより、LTE移動局が送信する上り回線制御チャネル(PUCCH等)によって、LTE+用の帯域が分断されずに済むため、LTE+移動局に連続して広い帯域を割り当てることが可能となる。特に、上り回線でLTE+移動局がシングルキャリア伝送を行う場合、シングルキャリア信号に連続した帯域を割り当てることが可能となるため、PAPRを軽減することができる。

Description

周波数帯域割当方法及び送信装置
 本発明は、LTE(Long Term Evolution)システム及びLTE+(Long Term Evolution Advanced)システムが共存する混在システムにおけるLTEシステム及びLTE+システムの上り回線の周波数帯域割当方法、及び、混在するシステムに適用される送信装置に関する。
 移動体通信では、無線通信基地局装置(以下、基地局と省略する)から無線通信移動局装置(以下、移動局と省略する)への下り回線(DL:Downlink)と、移動局から基地局への上り回線(UL:Uplink)を用いて通信が行われる。下り回線では、下りのデータ送信及び下りの制御信号が送信され、上り回線では、上りのデータ及び上りの制御信号が送信される。
 上り回線と下り回線とは、対応付けられており、例えば下りデータに対してARQ(Automatic Repeat Request)が適用される場合、移動局は下り回線データの誤り検出結果を示す応答信号を、上り回線を使用して基地局へフィードバックする。移動局は下り回線データに対しCRC(Cyclic Redundancy Check)を行って、CRC=OK(誤り無し)であればACK(Acknowledgment)を、CRC=NG(誤り有り)であればNACK(Negative Acknowledgment)を応答信号として基地局へフィードバックする。この応答信号は例えばPUCCH(Physical Uplink Control Channel)等の上り回線制御チャネルを用いて基地局へ送信される。
 また、基地局は下り回線データのリソース割当結果を通知するための制御情報を移動局へ送信する。この制御情報は例えばPDCCH(Physical Downlink Control Channel)等の下り回線制御チャネルを用いて移動局へ送信される。各PDCCHは、1つまたは複数のCCEを占有する。1つのPDCCHが複数のCCE(Control Channel Element)を占有する場合、1つのPDCCHは連続する複数のCCEを占有する。制御情報を通知するために必要なCCE数に従って、基地局は各移動局に対し複数のPDCCHの中のいずれかのPDCCHを割り当て、各PDCCHが占有するCCE(Control Channel Element)に対応する物理リソースに制御情報をマッピングして送信する。
 また、下り回線の通信リソースを効率よく使用するために、CCEとPUCCHとを対応付けることが検討されている。各移動局は、この対応付けに従って、自局への制御情報がマッピングされている物理リソースに対応するCCEから、自局からの応答信号の送信に用いるPUCCHを判定することができる。
 このように、上り回線と下り回線とは対応付けられているため、複数の通信システムを混在させたい場合に、それぞれの通信システムに対して上り回線と下り回線を割り当てると、周波数リソースが足りなくなるという問題がある。また、古い通信システムが運用される帯域に新しい通信システムが加わるような場合には、古い通信システムの移動局に何ら変更を行うことなく新しい通信システムでもそのまま使用できることが望ましい。これらの問題を解決する方法として、特許文献1には、周波数オーバレイシステムが提案されている。
 特許文献1では、周波数利用効率の向上を目的に、古い通信システムと新しい通信システムとを共存させる場合に、新しい通信システムは、古い通信システムの周波数を含むように設計され、新しい通信システムでは、古い通信システムの周波数も含めてスケジューリングが行われる。また、古い通信システムで使用されるプリアンブルチャネル(リファレンス信号)と新しい通信システムで使用されるプリアンブルチャネル(リファレンス信号)との相関を低いものにし、チャネル推定精度を向上させる設計とする。また、制御チャネルを新しい通信システムと古い通信システムとに別々に設けて、異なる周波数帯で送信する。なお、特許文献1に開示される方法では、古い通信システムと新しい通信システムとは、上り回線及び下り回線がともに同じ周波数配置で運用される。
 また、非特許文献1には、古い通信システムをLTEとし、新しい通信システムをLTE+として、LTEシステムとLTE+システムとが共存する周波数配置が提案されている。非特許文献1では、LTEシステムは、上り回線及び下り回線がともに、低い周波数に配置される。しかし、このような配置では、LTEシステムの下り回線の中心周波数とLTE+システムの下り回線の中心周波数とが異なる。そのため、初期同期又はHO(ハンドオーバ)制御のために、LTE用及びLTE+用の双方で、SCH(Synchronous Channel)、BCH(Broadcast Channel)等の制御チャネルを、それぞれの周波数で別々に送信する必要がある。
 この課題を解決する方法として、下り回線において中心周波数を共有し、LTE用の下り回線を中心に配置し、LTE+用DL帯域とLTE用DL帯域とをオーバラップして割り当てる方法がある。この場合の下り回線の帯域の配置例を図1に示す。図1は、LTE用DL帯域が10MHzであり、LTE+用DL帯域が40MHzである場合の例である。LTE+用DL帯域は、図1に示すように、LTE用DL帯域の中心周波数を中心として両側に広がって配置される。また、LTEのSCH、BCHをLTEの中心周波数を用いて送信する。なお、SCHは、LTEとLTE+とで共通とする。また、BCHの差分等をBCH+として、BCH+をLTE+用DL帯域で送信する。
 図1に示すように配置されるDL帯域に対応するUL帯域を同図に示す。図1に示すように、UL帯域の中心10MHzがLTE用UL帯域に割り当てられ、当該LTE用UL帯域にオーバラップする40MHzがLTE+用UL帯域に割り当てられる。また、各システムの上り回線の両端に、PUCCH及びPUCCH+が配置される。PUCCHは、LTE用の上り回線制御チャネルであり、PUCCH+は、LTE+用の上り回線制御チャネルである。LTEシステムでは、中心周波数から5MHzずつ離れた左右の内側にPUCCHが配置され、LTE+システムでは、中心周波数から20MHzずつ離れた左右の内側にPUCCH+が配置される。
特開2006-304312号公報
Proposals for LTE-Advanced Technologies (http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_53/Docs/R1-081948.zip)
 しかしながら、上り回線をこのように配置にすると、上り回線の中央付近にLTE用のPUCCHが配置されるため、LTE+用のデータ送信に40MHz帯域に渡り連続した帯域を割り当てることができない。そのため、上り回線にシングルキャリア伝送を適用した場合に、連続された帯域が割り当てられないことにより、PAPR(peak to average power ratio)が高くなり、電力利用効率が悪くなるという課題がある。
 本発明の目的は、LTEシステム及びLTE+システムが共存する混在システムにおいて、LTE+システムの上り回線でシングルキャリア伝送を行う場合に、PAPRを軽減することができる周波数割当方法及び送信装置を提供することである。
 本発明の周波数帯域割当方法は、上り回線においてシングルキャリア伝送を行う端末が混在する第1の通信システムと、前記第1の通信システムの上り回線の最大帯域幅より、最大帯域幅が狭い上り回線を用いる第2の通信システムとが共存する混在システムにおいて、前記第1の通信システムの上り回線に連続した周波数帯域を割り当てるようにした。
 本発明の送信装置は、上り回線においてシングルキャリア伝送を行う端末が混在する第1の通信システムと、前記第1の通信システムの上り回線の最大帯域幅より、最大帯域幅が狭い上り回線を用いる第2の通信システムとが共存する混在システムにおいて、前記第1の通信システムの上り回線に割り当てられた連続した周波数帯域の情報を取得する取得手段と、前記第1の通信システムの上り回線に割り当てられた連続した周波数帯域でシングルキャリア伝送を行う送信手段と、を具備する構成を採る。
 本発明によれば、LTEシステム及びLTE+システムが共存する混在システムにおいて、LTE+システムの上り回線でシングルキャリア伝送を行う場合において、PAPRを軽減することができる。
LTEシステム及びLTE+システムが共存する混在システムのDL帯域及びUL帯域の配置例を示す図 本発明の実施の形態1に係るDL帯域及びUL帯域の配置例を示す図 LTE用UL帯域の帯域幅Fw、中心周波数fc、LTE+用UL帯域の帯域幅Fw、中心周波数fc及び合計帯域幅Fwtotalの関係を示す図 実施の形態1に係る移動局装置の構成を示すブロック図 本発明の実施の形態2に係るDL帯域及びUL帯域の配置例1を示す図 実施の形態2に係るUL帯域の配置例2(a)を示す図 実施の形態2に係るUL帯域の配置例2(b)を示す図 実施の形態2に係るUL帯域の配置例3(a)を示す図 実施の形態2に係るUL帯域の配置例3(b)を示す図 実施の形態2に係るUL帯域の配置例3(c)を示す図 実施の形態2に係るUL帯域の配置例3(d)を示す図 実施の形態2に係る移動局装置の構成を示すブロック図
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。
 先ず、実施の形態の具体的な構成及び動作を説明する前に、実施の形態において想定される通信システムについて説明する。
 (1)古い通信システム及び新しい通信システムとして、以下のシステムを想定する。
 古い通信システム:LTE(Long Term Evolution)
 新しい通信システム:LTE+(「LTE Advanced」、「IMT advanced」又は「4G」とも呼ばれる)
 (2)LTEシステムの中心周波数及び周波数帯域は、BCH(Broadcast Channel)により通知される。より詳細には、D-BCH(Dynamic-Broadcast Channel)に含まれるSIB(System Information Block)が用いられて通知される。
 (3)LTEシステムでは、UL帯域の両端の帯域が用いられて、2つのPUCCH(Physical Uplink Control Channel)が送信される。PUCCHは、ACK/NACK情報、CQI情報等の制御情報を送信するチャネルであり、LTE移動局装置(以下「移動局」ともいう)は、PUCCHを用いて、下り回線データに対するCRCの結果(ACK/NACK情報等)を基地局装置(以下「基地局」ともいう)に送信する。なお、LTEシステムでは、PUCCHの数が増えると、PUCCHは、LTE帯域の内側の帯域が順次用いられて送信される。
 なお、古い通信システム及び新しい通信システムは、LTE及びLTE+に限られず、上り回線においてシングルキャリア伝送を行う新しい通信システムと、当該新しい通信システムの上り回線の最大帯域幅より、最大帯域幅が狭い上り回線を用いる古い通信システムとが共存する混在システムにおいて、本発明は適用可能である。なお、最大帯域幅とは、システムの上り回線の最大帯域幅をいう。例えば、LTEシステムの上り回線の最大帯域幅は、20MHzであり、LTE+システムの上り回線の最大帯域幅は、100MHzである。因みに、LTE+基地局に、必ずしも、LTE+システムにおける上り回線の最大帯域幅が割り当てられるわけではない。運用上割り当てられる帯域幅は、基地局ごとに最大帯域幅以下の複数の候補より設定される。LTE+用の帯域幅と、LTE用の帯域幅は、それぞれ別個に設定されるので、LTE+用に割り当てられる帯域幅が、LTE用に割り当てられる帯域幅よりも小さい場合もあり得る。
 また、PUCCHは、ACK又はNACKをフィードバックするための制御チャネルであるため、ACK/NACKチャネルと称されることもある。
 (実施の形態1)
 本実施の形態では、LTE移動局とLTE+移動局とが共存する混合システムにおいて、LTE用の上り回線帯域を低い帯域に寄せて配置し、LTE+用の上り回線帯域を高い帯域に寄せて配置して運用する形態について説明する。このような配置を採ることにより、LTE移動局が送信する上り回線制御チャネル(PUCCH等)によって、LTE+用の帯域が分断されずに済むため、LTE+移動局に連続して広い帯域を割り当てることが可能となる。特に、上り回線でLTE+移動局がシングルキャリア伝送を行う場合、シングルキャリア信号に連続した帯域を割り当てることが可能となるため、PAPR(peak to average power ratio)を軽減することができる。
 [基本配置例]
 図2に、本実施の形態に係るDL帯域及びUL帯域におけるLTE用帯域及びLTE+用帯域の配置例を示す。なお、LTE用帯域とは、LTEシステムにおいて用いられる帯域であり、LTE+用帯域とは、LTE+システムにおいて用いられる帯域である。
 図2に示すように、DL帯域では、LTE用帯域とLTE+用帯域とを、その中心周波数を重ねて配置する。なお、LTE用DL帯域とLTE+用DL帯域とが重なる帯域10MHzでは、LTEシステムが運用される。具体的には、LTE用DL帯域とLTE+用DL帯域とが重なる帯域10MHzでは、LTE用のSCH(Synchronization CHannel)及びBCHが送信される。当該BCHを用いて、基地局は、LTE移動局及びLTE+移動局に、LTE用UL帯域の情報を通知する。また、LTE+用DL帯域では、LTE+用のBCH+が送信される。当該BCH+を用いて、基地局はLTE+移動局に、LTE+用UL帯域の情報を通知する。
 LTE移動局は、LTE用DL帯域とLTE+用DL帯域とが重なる帯域10MHzで送信されるBCHを受信して、LTE用UL帯域の位置を取得する。
 LTE+移動局は、LTEシステムとの互換性を有し、LTE移動局の受信機能と同様の機能を備える。LTE+移動局は、LTE移動局と同様の受信方法を用いて、基地局からLTE用DL帯域で送信される信号を受信する。すなわち、LTE+移動局は、LTE移動局と同様に、LTE用DL帯域とLTE+用DL帯域とが重なる帯域10MHzで送信されるBCHを受信して、LTE用UL帯域の位置を取得する。更に、LTE+移動局は、LTE+用DL帯域で送信されるBCH+を受信し、BCH+に含まれるLTE+用UL帯域幅の情報から、LTE+用UL帯域の位置を取得する。なお、LTE+用UL帯域の位置の取得方法については、後述する。
 このように、LTE用DL帯域とLTE+用DL帯域とを、その中心周波数を重ねて配置することにより、DL帯域内でLTE移動局とLTE+移動局とを同時に収容することができる。
 一方、UL帯域では、図2に示すように、LTE用帯域を、LTE+用帯域より低い周波数帯に、LTE+用帯域に隣接して配置する。なお、LTE用UL帯域の両端には、PUCCHを配置する。LTEシステムでは、PUCCHをLTE用UL帯域の両端に配置することが定められている。なお、PUCCHの数が増えると、LTE用UL帯域の内側にPUCCHが順次配置される。また、図2に示すように、本実施の形態では、LTE用UL帯域と同様に、LTE+用UL帯域の両端にPUCCH+を配置する。
 このように、本実施の形態では、LTE用UL帯域を、LTE+用UL帯域より低い周波数帯に隣接して配置する。このような配置を採ることにより、基地局から移動局に通知される周波数帯域の情報のシグナリング量を削減できるという効果を得る。以下に、その理由を説明する。説明に先立ち、先ず、本実施の形態に係る帯域情報のシグナリング方法について説明する。
 上述したように、LTE+移動局は、BCHが用いられて基地局から通知されるLTE用UL帯域の情報を取得する。LTE用UL帯域の情報として、LTE用UL帯域の帯域幅Fw[MHz]及び中心周波数fc[MHz]が通知される。帯域幅Fwは、基地局において、例えば、移動局の通信状況等に応じて、1.4MHz、3MHz、5MHz、10MHz、15MHz及び20MHzから選択される。
 更に、基地局は、BCH+を用いて、LTE用UL帯域の帯域幅FwとLTE+用UL帯域の帯域幅Fwとの合計帯域幅Fwtotalを通知するようにする。合計帯域幅Fwtotalとしては、複数の候補、たとえば、1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz、40MHz、60MHz、80MHz、100Mzから選択される。
 上述したように、本実施の形態では、LTE用UL帯域をLTE+用UL帯域より低い周波数帯に隣接して配置する。そのため、LTE+移動局は、式(1)を用いて、LTE+用UL帯域の中心周波数fcを計算することができる。
Figure JPOXMLDOC01-appb-M000001
 すなわち、基地局は、BCHを用いてLTE用UL帯域の帯域幅Fw及び中心周波数fcを通知するので、更に、基地局が、BCH+を用いて合計帯域幅Fwtotalのみを通知しさえすれば、LTE+用UL帯域の中心周波数fcを通知せずとも、LTE+移動局は、式(1)を用いて、自局に割り当てられたLTE+用UL帯域の中心周波数fcを取得することができる。
 このようにして、LTE+移動局が、LTE用UL帯域の帯域幅Fw、中心周波数fc及び合計帯域幅Fwtotalを式(1)に代入することにより、自局に割り当てられたLTE+用UL帯域の中心周波数fcを取得することができるのは、LTE用UL帯域を、LTE+用UL帯域より低い周波数帯に隣接して配置したことによる。
 したがって、基地局は、LTE用UL帯域の帯域幅Fw、中心周波数fc、及び合計帯域幅Fwtotalのみを通知すればよく、LTE+用UL帯域の帯域幅Fw及び中心周波数fcを通知する必要がない分、LTE+用UL帯域の情報を通知するためのシグナリング量を削減することができる。
 以上のように、本実施の形態では、LTE用UL帯域を、LTE+用UL帯域より低い周波数帯に隣接して配置する。このような配置を採ることにより、LTE移動局が送信する上り回線制御チャネル(PUCCH等)によって、LTE+用の帯域が分断されずに済むため、LTE+移動局に連続して広い帯域を割り当てることが可能となる。これにより、上り回線でLTE+移動局がシングルキャリア伝送を行う場合、シングルキャリア信号に連続した帯域を割り当てることが可能となるため、PAPR(peak to average power ratio)を軽減することができる。特に、LTE+システムの上り回線の最大帯域幅は、LTEシステムの上り回線の最大帯域幅(20MHz)に比べ広いため、LTE+用にLTE用よりも広い帯域幅が割り当てられるような場合に、本実施の形態では、広い帯域幅を連続して確保することができるので、PAPRの軽減効果が顕著となる。
 また、基地局が、LTE用帯域幅Fw、LTE用帯域の中心周波数fc及び合計帯域幅Fwtotalのみを通知することにより、LTE+移動局は、式(1)を用いて自局に割り当てられたLTE+用UL帯域の中心周波数fcを取得することができる。このように、LTE+用UL帯域の中心周波数fcを通知せずとも、LTE+移動局は、自局に割り当てられたUL帯域の情報を取得することができ、帯域情報通知のためのシグナリング量を削減することができる。
 また、LTE用UL帯域の帯域幅とLTE+用UL帯域の帯域幅とを合計した帯域幅Fwtotalは、複数の候補(1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz、40MHz、60MHz、80MHz、100Mz)から選択されるので、予め用意すべき帯域幅のパターンは10通りで済む。これに対し、LTE+用UL帯域幅を通知する場合には、より多くのパターンを用意する必要が生じる。
 なお、基地局は、合計帯域幅Fwtotalに代え、BCH+を用いてLTE+用UL帯域の中心周波数fcを通知するようにしても良い。この場合、LTE+移動局は、式(2)を用いることにより、合計帯域幅Fwtotalを取得することができる。
Figure JPOXMLDOC01-appb-M000002
 なお、図3に、LTE用UL帯域の帯域幅Fw、中心周波数fc、LTE+用UL帯域の帯域幅Fw、中心周波数fc及び合計帯域幅Fwtotalの関係を示す。
 [移動局装置の構成]
 図4は、本実施の形態に係る移動局装置の構成を示すブロック図である。図4の移動局装置100は、LTE移動局及びLTE+移動局の双方に適用可能である。図4の移動局装置100は、無線受信部101、信号分離部102、復調・復号部103、誤り判定部104、ACK/NACK生成部105、BCH・BCH+受信部106、PDCCH(Physical Downlink Control Channel)・PDCCH+受信部107、帯域計算部108、変調・符号化部109、スケジューラ110、及び、無線送信部111を備えて構成される。
 無線受信部101は、アンテナを介して基地局から送信される信号を受信し、ダウンコンバート等の無線処理を施し、無線処理後の受信信号を信号分離部102に出力する。
 信号分離部102は、受信信号を、受信データと、BCH、BCH+等の制御情報と、PDCCH、PDCCH等の下り回線制御チャネルと、に分離する。信号分離部102は、受信データを復調・復号部103に出力し、BCH、BCH+等の制御情報をBCH・BCH+受信部106に出力し、PDCCH、PDCCH等の下り回線制御チャネルをPDCCH・PDCCH+受信部107に出力する。
 復調・復号部103は、受信信号を復調・復号し、復調・復号後の受信データを誤り判定部104に出力する。
 誤り判定部104は、受信データに誤りがあるか否か判定し、判定結果をACK/NACK生成部105に出力する。
 ACK/NACK生成部105は、受信データに誤りがない場合はACKを生成し、誤りがある場合はNACKを生成し、生成したACK/NACKをスケジューラ110に出力する。
 BCH・BCH+受信部106は、入力された制御情報より、LTE用UL帯域の中心周波数fc、帯域幅Fw、及び、合計帯域幅Fwtotalに関する情報を抽出し、これらの情報を帯域計算部108に出力する。
 PDCCH・PDCCH+受信部107は、PDCCH又はPDCCH+を受信する。PDCCH・PDCCH+受信部107は、受信したPDCCHのCCE(Control Channel Element)番号に対応して、PUCCHにおけるACK/NACKの送信位置を決定し、決定した送信位置の情報をスケジューラ110に出力する。また、PDCCH・PDCCH+受信部107は、受信したPDCCH+のCCE+番号に対応して、PUCCH+におけるACK/NACKの送信位置を決定し、決定した送信位置の情報をスケジューラ110に出力する。なお、PDCCH+とPUCCH+との対応付けは、上述の基本配置例に従う。
 帯域計算部108は、式(1)及び式(3)を用いて、LTE+用UL帯域の中心周波数fc及びLTE+用UL帯域幅Fwを計算し、LTE用UL帯域幅Fw、中心周波数fc、及び、LTE+用UL帯域Fwの情報をスケジューラ110に出力する。
Figure JPOXMLDOC01-appb-M000003
 変調・符号化部109は、送信データ及びCQI等の制御信号を変調・符号化して変調信号を得、変調信号をスケジューラ110に出力する。
 スケジューラ110は、変調信号を適切な周波数帯域にスケジューリングする。具体的には、LTE用UL帯域を用いる場合、スケジューラ110は、LTE用UL帯域の帯域幅Fw及び中心周波数fcの情報を用いて、変調信号をLTE用UL帯域の適切な周波数帯域に割り当てる。また、LTE+用UL帯域を用いる場合、スケジューラ110は、LTE+用UL帯域の帯域幅Fw及び中心周波数fcの情報を用いて、変調信号をLTE+用UL帯域の適切な周波数帯域に割り当てる。
 また、スケジューラ110は、PDCCHとPUCCHとの対応付け、及び、PDCCH+とPUCCH+との対応付けを別々に保持する。そして、LTE用DL帯域におけるデータ受信に対するACK/NACKをPDCCHのCCE番号に対応付けられたPUCCHにスケジューリングする。また、LTE+用DL帯域におけるデータ受信に対するACK/NACKを、PDCCH+のCCE+番号に対応付けられたPUCCH+にスケジューリングする。
 スケジューラ110は、スケジューリング後の変調信号を無線送信部111に出力する。
 無線送信部111は、スケジューリング後の変調信号に対してシングルキャリア変調を施し、アンテナを介してシングルキャリア信号を基地局に送信する。
 以上のように、本実施の形態では、LTE用UL帯域を、LTE+用UL帯域より低い周波数帯に隣接して配置する。基地局が、LTE用UL帯域の帯域幅Fw、中心周波数fc及び合計帯域幅Fwtotalのみを通知することにより、LTE+移動局は、式(1)を用いて自局に割り当てられたLTE+用UL帯域の中心周波数fc+を取得することができる。このように、LTE+用UL帯域の中心周波数fc+を通知せずとも、LTE用UL帯域幅Fw、LTE用UL帯域の中心周波数fc及び合計帯域幅Fwtotalのみの通知により、LTE+移動局は、自装置に割り当てられたUL帯域の情報を取得することができ、帯域情報通知のためのシグナリング量を削減することができる。
 また、LTE用UL帯域を、LTE+用UL帯域より低い周波数帯域に配置することにより、LTE用UL帯域をLTE+用UL帯域より高い周波数帯域に配置するのに比べ、回線品質が良好になり、LTE移動局が基地局から遠く離れる場合においても、良好な通信品質を確保することができる。
 (実施の形態2)
 本実施の形態では、実施の形態1と異なるPUCCH+の配置例について説明する。
 LTEシステムでは、基地局からPDCCHが送信されると、LTE移動局は、PDCCHが配置されたCCE番号に対応したPUCCHを用いて、下り回線のデータ受信に対するACK/NACK信号を基地局に送信する。このように、LTEシステムでは、PDCCHの送信位置とACK/NACKを送信するPUCCHの送信位置とが対応付けられており、当該対応付けのルールにしたがって運用されている。
 実施の形態1では、LTE+システムに、当該LTEシステムにおけるPDCCHとPUCCHとの対応ルールを適用した例を説明した。すなわち、LTE+用UL帯域の両端にPUCCH+を配置した。
 本実施の形態では、PDCCH+とPUCCH+との新たな対応付けのルールを提案し、以下では、3つの配置例について説明する。なお、以下では、2つのPUCCH+を、第1のPUCCH+、第2のPUCCH+と区別して呼び、第1のPUCCH+は、第2のPUCCH+より低い周波数側に配置されるとして説明する。また、以下では、LTE用UL帯域が10MHzであり、LTE+用UL帯域が35MHzの場合を例に説明する。
 [配置例1]
 図5に、配置例1を示す。
 配置例1では、LTE+用の第1及び第2のPUCCH+をLTE用のPUCCHの内側に配置する。このように、LTE+用の第1及び第2のPUCCH+を、LTE用のPUCCHに隣接し、かつ、LTE用UL帯域内に配置することにより、LTE+用UL帯域では第1及び第2のPUCCH+が送信されなくなる。これにより、LTE+用のデータ送信に割り当て可能な帯域幅を増加することができ、より多くのデータを送信することができる。
 上述したように、LTE用の下り回線で送信されるPDCCHと、LTE用の上り回線で送信されるPUCCHとは対応付けられており、LTE移動局は、PDCCHが配置されるCCE番号に対応付けられたPUCCHを用いて、ACK/NACKを送信する。
 なお、配置例1では、第1のPUCCH+は、LTE用UL帯域の低周波数側に配置され、第2のPUCCH+は、LTE用UL帯域の高周波数側に配置されるので、実施の形態1と同様に、周波数ダイバーシチ効果を得る。また、第1及び第2のPUCCHは、LTE+用UL帯域の低周波数側に配置されるので、LTE+用UL帯域が広く、LTE+移動局がLTE+用UL帯域の高周波数帯域での送信が困難な場合においても、LTE+移動局は、第1及び第2のPUCCH+を送信することができる。
 [配置例2]
 配置例2では、第1のPUCCH+を、LTE用UL帯域の低周波数側のPUCCHに隣接しつつ、かつ、LTE用UL帯域外に配置し、第2のPUCCH+を、LTE+用UL帯域内に配置する。
 A.配置例2(a)
 図6Aに配置例2(a)を示す。
 配置例2(a)では、第1のPUCCH+を、PUCCHに隣接してLTE用UL帯域外に配置する。また、第2のPUCCH+を、高周波数側のPUCCHに隣接して、LTE+用UL帯域内に配置する。このように配置することにより、LTE用UL帯域には、第1及び第2のPUCCH+が配置されないので、配置例1に比べ、LTE用UL帯域におけるデータ送信帯域の減少を回避することができる。
 B.配置例2(b)
 図6Bに配置例2(b)を示す。
 配置例2(b)では、第1のPUCCH+を、低周波数側のPUCCHに隣接して、LTE用UL帯域外に配置する。また、第2のPUCCH+を、LTE+用UL帯域内の高周波数側の端に配置する。このように配置することにより、第1のPUCCH+と、第2のPUCCH+とが、配置例2(a)に比べより離れて配置されるようになるので、より高い周波数ダイバーシチ効果を得ることができる。
 また、LTE+移動局が、第1のPUCCH+が配置される帯域から第2のPUCCH+が配置される帯域までを、LTE+用UL帯域として運用する場合、LTE+用UL帯域の両端でPUCCH+が送信されるようになり、LTEにおけるルールと同じルールで運用することができる。
 以上、配置例2について説明した。ここで、配置例1と配置例2とを比べると、配置例2では、配置例1と比較して、第1のPUCCH+と第2のPUCCH+との周波数間隔がより広くなるので、PUCCH+の周波数ダイバーシチ効果を向上させることができる。
 なお、LTEにおけるルールをLTE+に適用した場合、PUCCH+の数が増加すると、LTE+用UL帯域の内側にPUCCH+が順次配置されるようになるので、配置例2(a)及び配置例2(b)の低周波数側では、PUCCH+とPUCCHとが衝突してしまう可能性がある。これを回避する為には、PUCCH+の増加分を見積もった領域にPUCCHを配置する必要があり、LTEにおけるルールを若干変更する必要が生じる。
 [配置例3]
 配置例3では、第1又は第2のPUCCH+のいずれか一方を、LTE用UL帯域内に配置する。すなわち、第1又は第2のPUCCH+のいずれか一方を、2つのPUCCHの入れ子とする。これにより、配置例3では、LTE用UL帯域を占有するPUCCH+の数を、配置例1よりも削減することができる。図7A、図7B、図7C及び図7Dに、配置例3(a)、配置例3(b)、配置例3(c)及び配置例3(d)を示す。
 A.配置例3(a)
 図7Aに配置例3(a)を示す。
 配置例3(a)では、第1及び第2のPUCCH+を、2つのPUCCHの高周波数側にそれぞれ隣接して配置する。このように配置することにより、LTE用UL帯域の低周波数側の帯域外でPUCCH+を送信する必要がなくなるとともに、配置例1に比べ、より高い周波数ダイバーシチ効果を得ることができる。
 B.配置例3(b)
 図7Bに配置例3(b)を示す。
 配置例3(b)では、第1のPUCCH+を低周波数側のPUCCHの高周波数側に隣接して配置し、第2のPUCCH+をLTE+用UL帯域の高周波数側の端に配置する。配置例3(a)と比較すると、2つのPUCCH+の周波数間隔が更に広がるので、より高い周波数ダイバーシチ効果を得ることができる。
 C.配置例3(c)
 図7Cに配置例3(c)を示す。
 配置例3(c)では、第1及び第2のPUCCH+を、2つのPUCCHの低周波数側にそれぞれ隣接して配置する。このように配置することにより、配置例1と同様に、LTE+用UL帯域として広い帯域を連続して確保しつつ、配置例1に比べ、高い周波数ダイバーシチ効果を得ることができる。ただし、配置例2と同様に、LTE用UL帯域外でPUCCH+を送信する必要がある。
 D.配置例3(d)
 図7Dに配置例3(d)を示す。
 配置例3(d)では、第1のPUCCH+を、高周波数側のPUCCHの低周波数側に隣接して配置し、第2のPUCCH+を、LTE+用UL帯域の高周波数側の端に配置する。配置例3(c)と比較すると、2つのPUCCH+の周波数間隔が広がるので、高い周波数ダイバーシチ効果を得ることができる。
 以上、配置例1~配置例3について説明した。以下、上述の配置例にしたがって、PUCCH+を配置する移動局装置の構成について説明する。
 [移動局の構成]
 図8は、本実施の形態に係る移動局装置の要部構成を示すブロック図である。なお、図8の移動局装置200において、図4と共通する構成部分には、図4と同一の符号を付して説明を省略する。図8の移動局装置200は、図4の移動局装置100に対し、PDCCH・PDCCH+受信部107に代えて、PDCCH・PDCCH+受信部201を備える。
 PDCCH・PDCCH+受信部201は、PDCCH又はPDCCH+を受信する。PDCCH・PDCCH+受信部201は、受信したPDCCHのCCE番号に対応して、PUCCHにおけるACK/NACKの送信位置を決定し、決定した送信位置の情報をスケジューラ110に出力する。また、PDCCH・PDCCH+受信部201は、受信したPDCCH+のCCE+番号に対応して、PUCCH+におけるACK/NACKの送信位置を決定し、決定した送信位置の情報をスケジューラ110に出力する。なお、PDCCH+とPUCCH+との対応付けは、配置例1~配置例3のいずれかに従う。
 以上のように、本実施の形態では、PDCCH+とPUCCH+との新たな対応付けルールとして、配置例1~配置例3を提案した。配置例1~配置例3では、LTE+用UL帯域における送信データ帯域を連続して確保することができるため、シングルキャリア伝送を行う場合に、PAPRを軽減することができる。
 なお、PUCCH+の数が増える場合、増加分のPUCCH+の配置方法としては、既に配置されたPUCCH+に隣接し、かつ、PUCCH+の内側又は外側に配置するようにしても良い。また、増加分のPUCCH+の配置方法として、上述した配置例1~配置例3の組み合わせてとしても良い。
 また、以上の説明では、LTE+用UL帯域の情報は、BCH+を用いて通知される場合を例に説明したが、BCH+以外の他の制御情報を用いて通知されるようにしても良い。
 また、以上の説明では、BCH+がLTE+用DL帯域に配置される場合を例に説明したが、これに限られず、BCH+がLTE用DL帯域に配置されるようにしても良い。
 また、LTE+移動局は、LTE+用UL帯域のみで通信しても良く、LTE用UL帯域のみで通信をしても良く、又は、LTE+用UL帯域及びLTE用UL帯域を併用して通信しても良い。
 また、上記実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2008年8月7日出願の特願2008-204327に含まれる明細書、図面及び要約書の開示内容は、すべて本願に援用される。
 本発明にかかる周波数帯域割当方法及び送信装置は、LTEシステム及びLTE+システムが共存する混在システムにおけるLTEシステム及びLTE+システムの上り回線の周波数帯域割当方法、及び、混在システムに適用される送信装置等として有用である。
 100,200 移動局装置
 101 無線受信部
 102 信号分離部
 103 復調・復号部
 104 誤り判定部
 105 ACK/NACK生成部
 106 BCH・BCH+受信部
 107,201 PDCCH・PDCCH+受信部
 108 帯域計算部
 109 変調・符号化部
 110 スケジューラ
 111 無線送信部

Claims (12)

  1.  上り回線においてシングルキャリア伝送を行う端末が混在する第1の通信システムと、前記第1の通信システムの上り回線の最大帯域幅より、最大帯域幅が狭い上り回線を用いる第2の通信システムとが共存する混在システムにおいて、前記第1の通信システムの上り回線に連続した周波数帯域を割り当てる、
     周波数帯域割当方法。
  2.  前記第1の通信システムの上り回線の周波数帯域より低く、当該周波数帯域に隣接した周波数帯域を、前記第2の通信システムの上り回線に割り当てる、
     請求項1に記載の周波数帯域割当方法。
  3.  前記第1の通信システムは、前記第2の通信システムとの互換性を有し、
     前記混在システムの上り回線の帯域幅又は前記第1の通信システムの上り回線の中心周波数を前記第1の通信システムの制御チャネルを用いて前記第1の通信システムの端末に通知し、
     前記第2の通信システムの上り回線の中心周波数及び帯域幅を前記第2の通信システムの制御チャネルを用いて前記第1の通信システムの端末及び前記第2の通信システムの端末に通知する、
     請求項2に記載の周波数帯域割当方法。
  4.  前記第1の通信システムは、LTE+であり、前記第2の通信システムは、LTEである、
     請求項2に記載の周波数帯域割当方法。
  5.  前記LTE+用の第1及び第2のPUCCH+を、LTE用のPUCCHに隣接し、かつ、LTE用帯域内に配置する、
     請求項4に記載の周波数帯域割当方法。
  6.  前記LTE+用の第1のPUCCH+を、LTE用の低周波数側のPUCCHに隣接し、かつ、LTE用帯域外に配置し、
     前記LTE+用の第2のPUCCH+を、LTE用の高周波数側のPUCCHに隣接し、かつ、LTE用帯域外に配置する、
     請求項4に記載の周波数帯域割当方法。
  7.  前記LTE+用の第1のPUCCH+を、LTE用の低周波数側のPUCCHに隣接し、かつ、LTE用帯域外に配置し、
     前記LTE+用の第2のPUCCH+を、LTE+用帯域の高周波数側に配置する、
     請求項4に記載の周波数帯域割当方法。
  8.  前記LTE+用の第1のPUCCH+を、LTE用の低周波数側のPUCCHに隣接し、かつ、LTE用帯域内に配置し、
     前記LTE+用の第2のPUCCH+を、LTE用の高周波数側のPUCCHに隣接し、かつ、LTE用帯域外に配置する、
     請求項4に記載の周波数帯域割当方法。
  9.  前記LTE+用の第1のPUCCH+を、LTE用の低周波数側のPUCCHに隣接し、かつ、LTE用帯域内に配置し、
     前記LTE+用の第2のPUCCH+を、LTE+用帯域の高周波数側に配置する、
     請求項4に記載の周波数帯域割当方法。
  10.  前記LTE+用の第1のPUCCH+を、LTE用の低周波数側のPUCCHに隣接し、かつ、LTE用帯域外に配置し、
     前記LTE+用の第2のPUCCH+を、LTE用の高周波数側のPUCCHに隣接し、かつ、LTE用帯域内に配置する、
     請求項4に記載の周波数帯域割当方法。
  11.  前記LTE+用の第1のPUCCH+を、LTE用の高周波数側のPUCCHに隣接し、かつ、LTE用帯域内に配置し、
     前記LTE+用の第2のPUCCH+を、LTE+用帯域の高周波数側に配置する、
     請求項4に記載の周波数帯域割当方法。
  12.  上り回線においてシングルキャリア伝送を行う端末が混在する第1の通信システムと、前記第1の通信システムの上り回線の最大帯域幅より、最大帯域幅が狭い上り回線を用いる第2の通信システムとが共存する混在システムにおいて、前記第1の通信システムの上り回線に割り当てられた連続した周波数帯域の情報を取得する取得手段と、
     前記第1の通信システムの上り回線に割り当てられた連続した周波数帯域でシングルキャリア伝送を行う送信手段と、
     を具備する送信装置。
PCT/JP2009/003778 2008-08-07 2009-08-06 周波数帯域割当方法及び送信装置 WO2010016261A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/057,254 US8588173B2 (en) 2008-08-07 2009-08-06 Frequency band allocation method and transmission device
CN2009801291088A CN102106180A (zh) 2008-08-07 2009-08-06 频带分配方法及发送装置
JP2010523764A JP5366951B2 (ja) 2008-08-07 2009-08-06 周波数帯域割当方法及び送信装置
EP09804748.3A EP2312899A4 (en) 2008-08-07 2009-08-06 Frequency band allocation method and transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008204327 2008-08-07
JP2008-204327 2008-08-07

Publications (1)

Publication Number Publication Date
WO2010016261A1 true WO2010016261A1 (ja) 2010-02-11

Family

ID=41663488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003778 WO2010016261A1 (ja) 2008-08-07 2009-08-06 周波数帯域割当方法及び送信装置

Country Status (5)

Country Link
US (1) US8588173B2 (ja)
EP (1) EP2312899A4 (ja)
JP (1) JP5366951B2 (ja)
CN (1) CN102106180A (ja)
WO (1) WO2010016261A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8737340B2 (en) 2010-11-26 2014-05-27 Huawei Technologies Co., Ltd. Power control method and base station
US9100955B2 (en) 2010-09-03 2015-08-04 Panasonic Intellectual Property Corporation Of America Terminal, base station and signal transmission control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089838B1 (ko) * 2008-08-13 2011-12-05 한국전자통신연구원 캐리어 집성을 사용하는 통신 시스템 및 상기 통신 시스템에 속하는 기지국 및 단말
US8417253B2 (en) 2010-02-23 2013-04-09 Intel Corporation Bandwidth and channel notification for wide-channel wireless communication
KR20140006200A (ko) * 2012-06-27 2014-01-16 한국전자통신연구원 사물통신 서비스를 위한 데이터 송수신 방법 및 이를 이용한 통신 장치
EP2916574B1 (en) * 2012-11-09 2020-02-12 Huawei Technologies Co., Ltd. Method and base station for sharing frequency spectrum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053895A1 (fr) * 2006-11-01 2008-05-08 Ntt Docomo, Inc. Dispositif terminal utilisateur et dispositif de station de base
JP2008204327A (ja) 2007-02-22 2008-09-04 Nec Corp 二重化システムにおける記憶装置の制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805633A (en) * 1995-09-06 1998-09-08 Telefonaktiebolaget L M Ericsson Method and apparatus for frequency planning in a multi-system cellular communication network
EP0975184A1 (en) 1998-07-20 2000-01-26 Motorola, Inc. Method of allocating resources and allocation scheme therefor
KR100830163B1 (ko) 2005-04-20 2008-05-20 삼성전자주식회사 주파수 오버레이 통신 시스템에서 신호 송수신 장치 및 방법
US8095134B2 (en) * 2006-10-27 2012-01-10 Nokia Corporation Method and apparatus for handover measurement
CN101542997B (zh) * 2006-11-02 2012-08-08 艾利森电话股份有限公司 在频域和时域中对信号进行循环移位
KR101236624B1 (ko) * 2007-02-01 2013-02-22 삼성전자주식회사 이종망간 서비스 연동 방법과 장치 및 시스템
US8665807B2 (en) * 2007-03-26 2014-03-04 Nokia Corporation Method and apparatus for providing high bandwidth utilization
US8072918B2 (en) * 2007-04-03 2011-12-06 Texas Instruments Incorporated Network-based inter-cell power control for multi-channel wireless networks
JP5024533B2 (ja) * 2007-06-19 2012-09-12 日本電気株式会社 移動通信システムにおけるリファレンス信号系列の割当方法および装置
CN101983536B (zh) * 2008-04-07 2016-11-02 爱立信电话股份有限公司 用于蜂窝无线无线电传输的方法和无线电传输系统及无线电接入设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053895A1 (fr) * 2006-11-01 2008-05-08 Ntt Docomo, Inc. Dispositif terminal utilisateur et dispositif de station de base
JP2008204327A (ja) 2007-02-22 2008-09-04 Nec Corp 二重化システムにおける記憶装置の制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Carrier aggregation in Advanced E-UTRA", 3GPP R1-082448, 3GPP, 30 June 2008 (2008-06-30), XP050110721 *
See also references of EP2312899A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9100955B2 (en) 2010-09-03 2015-08-04 Panasonic Intellectual Property Corporation Of America Terminal, base station and signal transmission control method
JP5820381B2 (ja) * 2010-09-03 2015-11-24 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 端末装置、通信方法、及び集積回路
US9706569B2 (en) 2010-09-03 2017-07-11 Sun Patent Trust Terminal, base station and signal transmission control method
US10342039B2 (en) 2010-09-03 2019-07-02 Sun Patent Trust Terminal, base station, integrated circuit and signal transmission control method
US10743342B2 (en) 2010-09-03 2020-08-11 Sun Patent Trust Terminal, base station, integrated circuit and signal transmission control method
US11337247B2 (en) 2010-09-03 2022-05-17 Sun Patent Trust Terminal, base station, integrated circuit and signal transmission control method
US11729817B2 (en) 2010-09-03 2023-08-15 Sun Patent Trust Terminal, base station, integrated circuit and signal transmission control method
US12096469B2 (en) 2010-09-03 2024-09-17 Sun Patent Trust Terminal, base station, integrated circuit and signal transmission control method
US8737340B2 (en) 2010-11-26 2014-05-27 Huawei Technologies Co., Ltd. Power control method and base station
US8934444B2 (en) 2010-11-26 2015-01-13 Huawei Technologies Co., Ltd. Power control method and base station

Also Published As

Publication number Publication date
EP2312899A4 (en) 2017-11-15
CN102106180A (zh) 2011-06-22
EP2312899A1 (en) 2011-04-20
US20110134870A1 (en) 2011-06-09
JPWO2010016261A1 (ja) 2012-01-19
JP5366951B2 (ja) 2013-12-11
US8588173B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
US11601963B2 (en) Communication method and device in mobile communication system
US10958386B2 (en) ACK/NACK signals for next generation LTE devices and systems
JP6697698B2 (ja) 基地局装置、リソース割当方法および集積回路
EP3944543A1 (en) Method and apparatus for transmitting/receiving channel state information in wireless communication system
EP3579645B9 (en) Method and apparatus for control and data information resource mapping in wireless cellular communication system
KR101750371B1 (ko) 크로스 캐리어 스케쥴링을 지원하는 tdd 통신시스템에서 물리채널의 송수신 타이밍을 정의하는 방법
CN103563469B (zh) 发送装置、接收装置、发送方法及接收方法
JP7460628B2 (ja) 端末、送信方法及び集積回路
KR20180091527A (ko) 무선 셀룰라 통신 시스템에서 제어 및 데이터 정보 전송방법 및 장치
KR102349602B1 (ko) 무선 셀룰라 통신 시스템에서 제어 및 데이터 정보 자원 매핑 방법 및 장치
US9967876B2 (en) Base station device, mobile station device, and communication method
KR20180022808A (ko) 무선 셀룰라 통신 시스템에서 협대역 신호 전송을 위한 방법 및 장치
JP5366951B2 (ja) 周波数帯域割当方法及び送信装置
WO2010035497A1 (ja) Cce+番号割当方法及び基地局装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129108.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804748

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010523764

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13057254

Country of ref document: US

Ref document number: 2009804748

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE