WO2010015749A1 - Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables - Google Patents

Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables Download PDF

Info

Publication number
WO2010015749A1
WO2010015749A1 PCT/FR2009/000978 FR2009000978W WO2010015749A1 WO 2010015749 A1 WO2010015749 A1 WO 2010015749A1 FR 2009000978 W FR2009000978 W FR 2009000978W WO 2010015749 A1 WO2010015749 A1 WO 2010015749A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacers
series
conductive tracks
layer
sensor according
Prior art date
Application number
PCT/FR2009/000978
Other languages
English (en)
Inventor
Pascal Joguet
Julien Olivier
Original Assignee
Stantum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stantum filed Critical Stantum
Priority to US13/057,582 priority Critical patent/US20110141026A1/en
Priority to EP09804599A priority patent/EP2321833A1/fr
Priority to CN2009801347488A priority patent/CN102144272A/zh
Priority to JP2011521612A priority patent/JP5524963B2/ja
Priority to KR1020117005193A priority patent/KR20110047219A/ko
Publication of WO2010015749A1 publication Critical patent/WO2010015749A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/78Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
    • H01H13/785Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites characterised by the material of the contacts, e.g. conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • H01H13/703Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches characterised by spacers between contact carrying layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • H01H13/704Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches characterised by the layers, e.g. by their material or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2201/00Contacts
    • H01H2201/022Material
    • H01H2201/026Material non precious
    • H01H2201/028Indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/012Microprotrusions
    • H01H2203/014Grains; Microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/036Form of contacts to solve particular problems
    • H01H2203/05Form of contacts to solve particular problems to avoid damage by deformation of layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/036Form of contacts to solve particular problems
    • H01H2203/052Form of contacts to solve particular problems for backlighted keyboards
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2205/00Movable contacts
    • H01H2205/016Separate bridge contact
    • H01H2205/022Conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2209/00Layers
    • H01H2209/024Properties of the substrate
    • H01H2209/038Properties of the substrate transparent
    • H01H2209/04Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2209/00Layers
    • H01H2209/046Properties of the spacer
    • H01H2209/056Conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2209/00Layers
    • H01H2209/068Properties of the membrane
    • H01H2209/082Properties of the membrane transparent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/002Layer thickness
    • H01H2227/012Conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2227/00Dimensions; Characteristics
    • H01H2227/002Layer thickness
    • H01H2227/012Conductive rubber
    • H01H2227/014Conductive particles

Definitions

  • the present invention relates to a multicontact tactile sensor with spacing means of variable size and impedance.
  • the present invention relates to the field of multicontact transparent tactile sensors.
  • This type of sensor is provided with means for simultaneous acquisition of the position, the pressure, the size, the shape and the displacement of several fingers on its surface, in order to control an equipment, preferably via an interface graphic.
  • They may be used, in a non-limiting manner, as interfaces for personal computers, portable or not, cell phones, automated teller machines (banks, points of sale, ticketing), game consoles, portable media players digital players, control of audiovisual equipment or appliances, control of industrial equipment, GPS navigators.
  • the present invention more particularly relates to a multicontact tactile sensor comprising an elastically deformable interaction layer and a support layer, the interaction layer having on its lower surface an array of conductive tracks, the support layer having on its upper surface a network of conductive tracks that are not parallel to the network of conductive tracks of the interaction layer, said interaction and support layers being separated by a first series of rigid insulating spacers.
  • the conductive tracks are thus arranged in a matrix of nodes formed by the intersection of rows and columns.
  • at least one line and one column make contact at a node and act as a closed switch.
  • a voltage measurement across each node of the array is performed sequentially and quickly to recreate an image of the sensor several times per second.
  • a multicontact tactile sensor is described as comprising two transparent conductive layers on which are printed lines or columns corresponding to conducting wires, and an insulating material. between said two transparent conductive layers.
  • the insulating material may advantageously consist of insulating rigid spacers of spherical shape, arranged between the two conductive layers of the sensor.
  • the conductive tracks are advantageously made from a surface deposit of indium tin oxide (ITO), ie "indium tin oxide” in the English-speaking language.
  • the disadvantage of this solution lies, on the one hand, in the disturbances on the data measured by the sensor, which significantly impacts the accuracy and sensitivity of the touch sensor implemented. These disturbances are due to false detections, as well as phenomena related to the resistivity of the materials coating the conductive tracks, in particular in the case of transparent conductive materials in indium-tin oxide deposition. On the other hand, during a excessive deformation of a conductive track of the interaction layer, it would be likely to be damaged or broken. Such a sensor is thus weakened, which gives it a short life.
  • the aim of the present invention is to remedy these technical problems, by making it possible, on the one hand, to limit the phenomena of false detections when two conductive tracks of the respective interaction and support layers are brought together and, on the other hand, to reduce the amplitude of the deformations of the conductive tracks of the interaction layer when tactile contact is made.
  • the approach of the solution consisted in looking for a means allowing at the same time to obtain an electrical contact between two conductive tracks of different layers, without generating false local detections around this point of contact nor to deform the conductive tracks too much.
  • the subject of the present invention is a multicontact tactile sensor of the type mentioned above, comprising an elastically deformable interaction layer and a support layer, the interaction layer having on its lower surface an array of conductive tracks, the support layer having on its upper surface an array of conductive tracks that are not parallel to the network of conductive tracks of the interaction layer, said interaction layers and support being separated by a first series of rigid insulating spacers.
  • This sensor also comprises a second series of conductive spacers disposed in contact with at least one of the two networks of conductive tracks. The impedance of the spacers of the second series is between the impedance of the spacers of the first series and the impedance of the conductive tracks.
  • the dimensions of the spacers of the second series are smaller than the dimensions of the spacers of the first series.
  • the dimensions of the struts of the first series are determined to prevent the contact at rest and allow the local contact during a deformation of the interaction layer, between the spacers of the second series and the network of conductive tracks of the opposite layer to the spacers of the second series.
  • Such a sensor formed in addition to the combination of the first and second series of spacers, solves the above technical problems. Indeed, since the conductive spacers of the second series are arranged between the conductive tracks of different layers and their impedance being greater than the impedance of these conductive tracks, the problems of false detection when the conductive tracks of different layers are brought closer together are limited. In addition, because of the size and positioning of the conductive spacers of the second series, they will make the electrical contact between the conductive tracks of different layers when it is desired to achieve tactile contact. During this contact, the deformation of the conductive tracks of the interaction layer is limited since they no longer have to come into direct physical contact with the conductive tracks of the support layer.
  • the two networks of conductive tracks comprise a conductive surface coating of indium tin oxide.
  • the interaction layer consists of a polyester sheet.
  • the support layer is rigid.
  • the support layer advantageously consists of a glass substrate.
  • the interaction layer is transparent
  • the spacers of the first series are formed of a transparent polymer
  • the spacers of the second series are formed by a transparent conductive polymer.
  • a node being defined by the intersection of a conducting track of one of the two layers with the projection of a conductive track of the other layer :
  • the two networks of conductive tracks are perpendicular to each other, the conductive tracks of at least one of the two conductive track networks are parallel and equidistant.
  • the diameter of the spacers of the first series is greater than twice the diameter of the spacers of the second series.
  • the ratio of the dimensions between the spacers of the two series then allows, at rest, the absence of contact and, during a tactile activation, the contact between the spacers of the second series and at least one conductive track of each layer.
  • the present invention also relates to a controller of such a multicontact tactile sensor, also comprising a scanning circuit of the conductive tracks and means for acquiring an electrical characteristic at each scanning step, and a circuit for providing a signal (X, Y, Z ⁇ , ⁇ ), Z ⁇ , ⁇ denoting the electrical characteristic measured at a scanning step corresponding to an intersection of a conductive track X of a network and a conductive track Y of the other network.
  • the present invention also relates to a multicontact touch screen comprising a display screen and such a multicontact touch sensor.
  • the present invention finally relates to a keyboard comprising a set of discrete keys constituted by such a multicontact touch sensor.
  • FIG. 1 a view of a passive matrix multicontact tactile electronic device in which the sensor is integrated; 2, a sectional view of a multicontact tactile sensor according to a first embodiment of the present invention, FIG. 3, a sectional view of a multicontact tactile sensor according to a second embodiment of the invention.
  • FIG. 4 is a three-dimensional view of the multicontact tactile sensor according to this second embodiment of the present invention.
  • a multicontact touch sensor according to the present invention is of the matrix type. It is more particularly a passive matrix, that is to say composed of two layers of transparent conductive material arranged in a matrix and separated by an insulating layer.
  • FIG. 1 represents a view of a passive matrix multicontact tactile electronic device in which the multicontact tactile sensor is integrated.
  • This device comprises a multicontact matrix touch sensor 1, a screen of visualization 2, a capture interface 3, a main processor 4 and a graphics processor 5.
  • the first fundamental element of this tactile device is the multicontact tactile sensor 1, necessary for the acquisition - the multicontact manipulation - using a capture interface 3.
  • This capture interface 3 contains the acquisition and processing circuits. 'analysis.
  • the touch sensor 1 is of the matrix type. This sensor can be optionally divided into several parts to accelerate the capture, each part being scanned simultaneously.
  • the data from the capture interface 3 is transmitted after filtering to the main processor 4.
  • the main processor 4 also transmits to the graphic interface 5 the data to be displayed on the display screen 2. This graphic interface can also be driven by a graphics processor.
  • the touch sensor is controlled as follows: one feeds successively, during a first scanning phase, the conductive tracks of one of the networks and the response is detected on each of the conductive tracks of the other network.
  • Contact zones corresponding to the nodes whose state is modified with respect to the idle state are determined as a function of these responses.
  • One or more sets of adjacent nodes are determined whose state is changed. A set of such adjacent nodes defines a contact area. From this set of nodes is computed a qualified position information in the sense of the present cursor patent. In the case of several sets of nodes separated by non-active zones, several independent cursors will be determined during the same scanning phase.
  • Cursors are created, tracked or destroyed based on information obtained during successive scans.
  • the cursor is an example calculated by a barycenter function of the contact zone.
  • the general principle is to create as many sliders as there are zones detected on the touch sensor and to follow their evolution over time. When the user removes his fingers from the sensor, the associated sliders are destroyed. In this way, it is possible to capture the position and the evolution of several fingers on the touch sensor simultaneously.
  • the matrix sensor 1 is for example a resistive type sensor or projected capacitive type. It is composed of two transparent layers on which are arranged lines or columns corresponding to conductive tracks. These tracks consist of conductive wires. These two layers of conductive tracks thus form a matrix network of conducting wires.
  • the electrical characteristics - voltage, capacitance or inductance - are measured at the terminals of each node of the matrix.
  • the device makes it possible to acquire the data on the whole of the sensor 1 with a sampling frequency of the order of 100 Hz, by implementing the sensor 1 and the control circuit integrated in the main processor 4.
  • the main processor 4 executes the program for associating the sensor data with graphic objects that are displayed on the display screen 2 in order to be manipulated.
  • FIG. 2 represents a sectional view of a multicontact tactile sensor according to a first embodiment of the present invention.
  • This sensor comprises an interaction layer 10, a support layer 11, a first series of spacers 14 and a second series of spacers 15.
  • the interaction layer 10 is an elastically deformable layer. She is made with a polyester sheet that can withstand scratches that may be caused for example by a stylus. It has a transparency allowing sufficient clarity for the display of graphic objects on the display screen 2 through the sensor 1.
  • This interaction layer 10 has an array of conductive tracks 12 arranged in parallel and equidistant manner. These tracks are conductive wires made by surface deposition of indium tin oxide (ITO).
  • ITO indium tin oxide
  • the support layer 11 is the support element of the sensor 1, on which the elements 10 and 12 to 15 come to rest. It is made of glass substrate and has a transparency allowing sufficient clarity for the display of graphic objects. on the display screen 2 through the sensor 1.
  • This support layer 11 has a network of conductive tracks 13 arranged in parallel and equidistant manner. These tracks are conductive wires made by surface deposition of indium tin oxide (ITO). They are arranged perpendicularly to the conductive tracks 12 of the interaction layer 10, so as to form a matrix network of conductive tracks 12, 13.
  • ITO indium tin oxide
  • the arrangement of these conductive tracks 12, 13 forms lines and columns.
  • the intersection of a line and a column forms a point of contact.
  • a column or columns located on the interaction layer 10 are brought into contact with one or more lines on the support layer 11, through the conductive spacer 15, creating thus one or more points of contact.
  • This contact is caused by the deformation of the interaction layer 10 - and therefore conductive tracks 12 - until an electrical contact is formed with the conductive tracks 13 of the support layer 11 through the conductive spacer 15.
  • the support layer 1 1 is deformable but of greater rigidity than the interaction layer 10, so as not to cause excessive shocks on the support layer 11 during a contact while making it possible to obtain tactile contact sensitivity via the interaction layer 10.
  • the first series of spacers 14 separates the interaction layers 10 and support 11 - and therefore the conductive tracks 12 and 13 they have - with a given spacing on the entire sensor 1.
  • the spacers 14 are arranged between the interaction layers 10 and support 11.
  • These spacers are rigid to have a fixed spacing, and transparent to obtain a transparent sensor. They have a very large impedance so as to be insulating. They are made of a transparent insulating polymer, for example silicone.
  • the second series of spacers 15 makes it possible, on the one hand, to avoid the physical proximity of the conductive tracks 12 and 13 - source of false detection, and to limit the amplitude of deformation of the conductive tracks 12 of the interaction layer 10.
  • the spacers 15 are transparent to obtain a transparent sensor. They can be deposited by screen printing a transparent conductive polymer and have a spherical shape.
  • spacers 15 of the second series have an impedance between the impedance of the spacers of the first series and the impedance of the conductive tracks. This makes it possible to obtain conductive spacers of the current.
  • the electrical contact between the tracks 12 and 13 is obtained via the conductive spacers 15.
  • a resistance for example 100 kilo-ohms is suitable for current conduction needs.
  • the dimensions of these spacers 15 of the second series are smaller than the dimensions of the spacers 14 of the first series.
  • the dimensions of the struts 14 of the first series are determined to: prevent the at rest contact between the struts 15 of the second series and the network of conductive tracks of the layer opposite to the struts 15 of the second series, and allow the local contact during a deformation of the interaction layer 10 between the spacers 15 of the second series and the network of conductive tracks of the layer opposite to the struts 15 of the second series.
  • the diameter of the struts 14 of the first series is greater than twice the diameter of the struts 15 of the second series.
  • This size ratio makes it possible to avoid the resting contact between the spacers 15 and the conductive tracks 13 and allows the electrical contact between the tracks 12 and 13 via the spacers 15, without however the deformation of the tracks 12 of the interaction layer 10 does not weaken them significantly.
  • the spacers 14 and 15 of the first and second series respectively have, for example, diameters of 40 micrometers and 20 micrometers.
  • the spacers 15 of the second series take the form of drops disposed on the intersections of the conductive tracks 12 of the interaction layer 10 with the projection of the conductive tracks 13 of the support layer 11.
  • These spacers can to be arranged by serigraphy of a material which, when it dries, takes the form of a drop.
  • the spacers 15 of the first series are arranged at the level of the conductive tracks 13 of the support layer 11.
  • the results obtained with this embodiment are similar to those obtained with a sensor according to the first embodiment described above and illustrated in FIG. 2.

Abstract

La présente invention concerne un capteur tactile multicontacts comportant une couche d'interaction déformable élastiquement (10) et une couche support (11), la couche d'interaction (10) présentant à sa surface inférieure un réseau de pistes conductrices (12), la couche support (11) présentant à sa surface supérieure un réseau de pistes conductrices (13) non parallèles au réseau de pistes conductrices (12) de la couche d'interaction (10). Les couches d'interaction (10) et support (11) sont séparées par une première série d'entretoises rigides isolantes (14). Une deuxième série d'entretoises conductrices (15) est disposée au contact d'au moins l'un des deux réseaux de pistes conductrices (12,13). L'impédance et les dimensions de ces entretoises (14) de deuxième série sont déterminées pour empêcher le contact au repos et permettre l'entrée en contact local lors d'une déformation de la couche d'interaction (10), entre les entretoises (15) de la deuxième série et le réseau de pistes conductrices de la couche opposée auxdites entretoises (15) de la deuxième série. La présente invention concerne égalementun contrôleur d'un tel capteur, un écran tactile multicontacts comprenant un tel capteur et un clavier comprenant un ensemble de touches discrètes constitué par un tel capteur.

Description

CAPTEUR TACTILE MULTICONTACTS A MOYENS D'ESPACEMENT DE TAILLE ET IMPEDANCE VARIABLES
La présente invention concerne un capteur tactile multicontacts à moyens d'espacement de taille et impédance variables.
DOMAINE TECHNIQUE
La présente invention concerne le domaine des capteurs tactiles transparents multicontacts. Ce type de capteur est muni de moyens d'acquisition simultanée de la position, la pression, la taille, la forme et le déplacement de plusieurs doigts sur sa surface, afin de commander un équipement, de préférence par l'intermédiaire d'une interface graphique. Ils peuvent être utilisés, de manière non limitative, en tant qu'interfaces pour des ordinateurs personnels, portables ou non, des téléphones cellulaires, des guichets automatiques (banques, points de ventes, billetterie), des consoles de jeu, des lecteurs multimédias portatifs (baladeurs numériques), du contrôle d'équipements audiovisuels ou électroménagers, du contrôle d'équipements industriels, des navigateurs GPS.
La présente invention concerne plus particulièrement un capteur tactile multicontacts comportant une couche d'interaction déformable élastiquement et une couche support, la couche d'interaction présentant à sa surface inférieure un réseau de pistes conductrices, la couche support présentant à sa surface supérieure un réseau de pistes conductrices non parallèles au réseau de pistes conductrices de la couche d'interaction, lesdites couches d'interaction et support étant séparées par une première série d 'entretoises rigides isolantes.
ÉTAT DE LA TECHNIQUE ANTERIEURE
On connaît dans l'état de la technique des solutions à base de capteurs tactiles multicontacts permettant de détecter la présence ainsi que l'état de plusieurs points de contact à la fois. Il comporte une couche d'interaction déformable élastiquement et une couche support, la couche d'interaction présentant à sa surface inférieure un réseau de pistes conductrices, la couche support présentant à sa surface supérieure un réseau de pistes conductrices non parallèles au réseau de pistes conductrices de la couche d'interaction. Les couches d'interaction et support sont séparées par des moyens d'espacement, en particulier une série d'entretoises rigides isolantes.
Les pistes conductrices sont ainsi agencées en une matrice de nœuds formés par l'intersection de lignes et de colonnes. Lors d'un contact sur le capteur tactile, au moins une ligne et une colonne entrent en contact au niveau d'un nœud et jouent le rôle d'un interrupteur fermé. Une mesure de tension aux bornes de chaque nœud de la matrice est effectuée de manière séquentielle et rapide afin de recréer une image du capteur plusieurs fois par seconde.
Une telle solution est proposée dans le document de brevet français FR 2 866 726. Dans ce document, un capteur tactile multicontacts est décrit comme comportant deux couches conductrices transparentes sur lesquelles sont imprimées des lignes ou colonnes correspondant à des fils conducteurs, et un matériau isolant entre lesdites deux couches conductrices transparentes. Le matériau isolant peut être constitué avantageusement d'entretoises rigides isolantes de forme sphérique, disposées entre les deux couches conductrices du capteur. Les pistes conductrices sont réalisées avantageusement à partir d'un dépôt surfacique d'oxyde d'indium-étain (ITO, soit « indium tin oxide » en langue anglo-saxonne).
L'inconvénient de cette solution réside, d'une part, dans les perturbations sur les données mesurées par le capteur, ce qui impacte de manière significative la précision et la sensibilité du capteur tactile mis en œuvre. Ces perturbations sont dues à de fausses détections, ainsi que des phénomènes liés à la résistivité des matériaux revêtant les pistes conductrices, en particulier dans le cas de matériaux conducteurs transparents en dépôt d'oxyde indium-étain. D'autre part, lors d'une trop grande déformation d'une piste conductrice de la couche d'interaction, celle-ci serait susceptible d'être endommagée, voire rompue. Un tel capteur est ainsi fragilisé, ce qui lui confère une faible durée de vie.
Ainsi les solutions selon l'état de la technique ne permettent pas de bénéficier d'un capteur dont les pistes conductrices ne seraient pas fragilisées lors d'un contact local et ne seraient pas responsables de phénomènes de fausse détection.
OBJET DE L'INVENTION
Le but de la présente invention est de remédier à ces problèmes techniques, en permettant, d'une part, de limiter les phénomènes de fausses détections lorsque deux pistes conductrices des couches respectivement d'interaction et support sont rapprochées et, d'autre part, de diminuer l'amplitude des déformations des pistes conductrices de la couche d'interaction lorsqu'un contact tactile est réalisé.
L'approche de la solution a consisté à chercher un moyen permettant à la fois d'obtenir un contact électrique entre deux pistes conductrices de couches différentes, sans engendrer de fausses détections locales autour de ce point de contact ni de trop déformer les pistes conductrices. La mise en œuvre d'une deuxième série d 'entretoises, de taille et résistance différentes de celles de la première série, et disposées de manière particulière par rapport aux pistes conductrices des deux couches, a alors permis, en combinaison avec la première série d'entretoises rigides isolantes, de résoudre ces différents problèmes techniques.
Dans ce but, la présente invention a pour objet un capteur tactile multicontacts du type mentionné ci-dessus, comportant une couche d'interaction déformable élastiquement et une couche support, la couche d'interaction présentant à sa surface inférieure un réseau de pistes conductrices, la couche support présentant à sa surface supérieure un réseau de pistes conductrices non parallèles au réseau de pistes conductrices de la couche d'interaction, lesdites couches d'interaction et support étant séparées par une première série d 'entretoises rigides isolantes. Ce capteur comporte également une deuxième série d 'entretoises conductrices disposées au contact d'au moins l'un parmi les deux réseaux de pistes conductrices. L'impédance des entretoises de la deuxième série est comprise entre l'impédance des entretoises de la première série et l'impédance des pistes conductrices. Les dimensions des entretoises de la deuxième série sont inférieures aux dimensions des entretoises de la première série. Les dimensions des entretoises de la première série sont déterminées pour empêcher le contact au repos et permettre l'entrée en contact local lors d'une déformation de la couche d'interaction, entre les entretoises de la deuxième série et le réseau de pistes conductrices de la couche opposée aux entretoises de la deuxième série.
Un tel capteur, formé en outre de la combinaison de la première et de la deuxième série d 'entretoises, permet de résoudre les problèmes techniques ci-dessus. En effet, les entretoises conductrices de la deuxième série étant disposées entre les pistes conductrices de couches différentes et leur impédance étant supérieure à l'impédance de ces pistes conductrices, les problèmes de fausse détection lors d'un rapprochement des pistes conductrices de couches différentes sont limités. De plus, du fait des dimensions et du positionnement des entretoises conductrices de la deuxième série, celles-ci réaliseront le contact électrique entre les pistes conductrices de couches différentes lorsque l'on souhaite réaliser un contact tactile. Lors de ce contact, la déformation des pistes conductrices de la couche d'interaction est limitée puisqu'elles n'ont plus à rentrer en contact physique direct avec les pistes conductrices de la couche support.
Dans un mode de réalisation préférentiel visant à bénéficier de pistes conductrices qui soient transparentes et en couche très fine, les deux réseaux de pistes conductrices comportent un revêtement conducteur surfacique d'oxyde dïndium- étain.
Préférentiellement, la couche d'interaction est constituée d'une feuille de polyester.
Préférentiellement, la couche support est rigide. Dans ce cas, la couche support est avantageusement constituée d'un substrat de verre.
Dans des modes de réalisation préférentiels visant à conférer au capteur une transparence suffisante pour être intégré dans un écran tactile multipoints nécessitant la vue d'objets graphiques au travers du capteur : la couche d'interaction est transparente, les entretoises de la première série sont formées d'un polymère transparent, les entretoises de la deuxième série sont formées par un polymère transparent conducteur.
Dans des modes de réalisation visant à améliorer la répartition des nœuds couverts par le capteur, un nœud étant défini par l'intersection d'une piste conductrice de l'une des deux couches avec la projection d'une piste conductrice de l'autre couche : les deux réseaux de pistes conductrices sont perpendiculaires entre eux, les pistes conductrices d'au moins l'un des deux réseaux de pistes conductrices sont parallèles et équidistantes.
Dans un mode de réalisation préférentiel, le diamètre des entretoises de la première série est supérieur au double du diamètre des entretoises de la deuxième série. Le rapport des dimensions entre les entretoises des deux séries permet alors, au repos, l'absence de contact et, lors d'une activation tactile, le contact entre les entretoises de la deuxième série et au moins une piste conductrice de chaque couche.
La présente invention concerne également un contrôleur d'un tel capteur tactile multicontacts, comprenant également un circuit de balayage des pistes conductrices et des moyens d'acquisition d'une caractéristique électrique à chaque pas de balayage, ainsi qu'un circuit pour fournir un signal (X,Y,Zχ,γ), Zχ,γ désignant la caractéristique électrique mesurée à une étape de balayage correspondant à un intersection d'une piste conductrice X d'un réseau et d'une piste conductrice Y de l'autre réseau. La présente invention concerne également un écran tactile multicontacts comprenant un écran de visualisation et un tel capteur tactile multicontacts.
La présente invention concerne enfin un clavier comprenant un ensemble de touches discrètes constitué par un tel capteur tactile multicontacts.
BREVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise à la lecture de la description détaillée d'un exemple non limitatif de réalisation, accompagnée de figures représentant respectivement : la figure 1 , une vue d'un dispositif électronique tactile multicontacts à matrice passive dans lequel est intégré le capteur tactile multicontacts, la figure 2, une vue de coupe d'un capteur tactile multicontacts selon un premier mode de réalisation de la présente invention, la figure 3, une vue de coupe d'un capteur tactile multicontacts selon un deuxième mode de réalisation de la présente invention, et la figure 4, une vue en trois dimensions du capteur tactile multicontacts selon ce deuxième mode de réalisation de la présente invention.
EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERS
Un capteur tactile multicontacts selon la présente invention est de type matriciel. Il s'agit plus particulièrement d'une matrice passive, c'est-à-dire composée de deux couches de matériau conducteur transparent arrangées en matrice et séparées par une couche isolante.
La figure 1 représente une vue d'un dispositif électronique tactile multicontacts à matrice passive dans lequel est intégré le capteur tactile multicontacts.
Ce dispositif comprend un capteur tactile multicontacts matriciel 1 , un écran de visualisation 2, une interface de capture 3, un processeur principal 4 et un processeur graphique 5.
Le premier élément fondamental de ce dispositif tactile est le capteur tactile multicontacts 1 , nécessaire à l'acquisition - la manipulation multicontacts - à l'aide d'une interface de capture 3. Cette interface de capture 3 contient les circuits d'acquisition et d'analyse. Le capteur tactile 1 est de type matriciel. Ce capteur peut être éventuellement divisé en plusieurs parties afin d'accélérer la captation, chaque partie étant scannée simultanément.
Les données issues de l'interface de capture 3 sont transmises après filtrage, au processeur principal 4. Celui-ci exécute le programme local permettant d'associer les données de la dalle à des objets graphiques qui sont affichés sur l'écran 2 afin d'être manipulés. Le processeur principal 4 transmet également à l'interface graphique 5 les données à afficher sur l'écran de visualisation 2. Cette interface graphique peut en outre être piloté par un processeur graphique.
Le capteur tactile est commandé de la façon suivante : on alimente successivement, lors d'une première phase de balayage, les pistes conductrices d'un des réseaux et on détecte la réponse sur chacune des pistes conductrices de l'autre réseau. On détermine en fonction de ces réponses des zones de contact qui correspondent aux nœuds dont l'état est modifié par rapport à l'état au repos. On détermine un ou plusieurs ensembles de nœuds adjacents dont l'état est modifié. Un ensemble de tels nœuds adjacents définit une zone de contact. On calcule à partir de cet ensemble de nœuds une information de position qualifiée au sens du présent brevet de curseur. Dans le cas de plusieurs ensembles de nœuds séparés par des zones non actives, on déterminera plusieurs curseurs indépendants pendant une même phase de balayage.
Cette information est rafraîchie périodiquement au cours de nouvelles phases de balayage. Les curseurs sont créés, suivis ou détruits en fonction des informations obtenues au cours des balayages successifs. Le curseur est à titre d'exemple calculé par une fonction barycentre de la zone de contact. Le principe général est de créer autant de curseurs qu'il y a de zones détectées sur le capteur tactile et de suivre leur évolution dans le temps. Lorsque l'utilisateur retire ses doigts du capteur, les curseurs associés sont détruits. De cette manière, il est possible de capter la position et l'évolution de plusieurs doigts sur le capteur tactile simultanément.
Le capteur matriciel 1 est par exemple un capteur de type résistif ou de type capacitif projeté. Il est composé de deux couches transparentes sur lesquelles sont agencées des lignes ou colonnes correspondant à des pistes conductrices. Ces pistes sont constituées par des fils conducteurs. Ces deux couches de pistes conductrices forment ainsi un réseau matriciel de fils conducteurs.
Lorsque l'on veut savoir si une ligne a été mise en contact avec une colonne, déterminant un point de contact sur le capteur 1 , on mesure les caractéristiques électriques - tension, capacitance ou inductance - aux bornes de chaque nœud de la matrice. Le dispositif permet d'acquérir les données sur l'ensemble du capteur 1 avec une fréquence d'échantillonnage de l'ordre de 100 Hz, en mettant en œuvre le capteur 1 et le circuit de commande intégré dans le processeur principal 4.
Le processeur principal 4 exécute le programme permettant d'associer les données du capteur à des objets graphiques qui sont affichés sur l'écran de visualisation 2 afin d'être manipulés.
La figure 2 représente une vue de coupe d'un capteur tactile multicontacts selon un premier mode de réalisation de la présente invention.
Ce capteur comporte une couche d'interaction 10, une couche support 11 , une première série d'entretoises 14 et une deuxième série d'entretoises 15.
La couche d'interaction 10 est une couche élastiquement déformable. Elle est réalisée avec une feuille de polyester qui permet de résister aux rayures susceptibles d'être causées par exemple par un stylet. Elle présente une transparence permettant une clarté suffisante pour l'affichage d'objets graphique sur l'écran de visualisation 2 au travers du capteur 1.
Cette couche d'interaction 10 présente un réseau de pistes conductrices 12 agencées de manière parallèle et équidistante. Ces pistes sont des fils conducteurs réalisés par dépôt surfacique d'oxyde d'indium-étain (ITO).
La couche support 11 est l'élément support du capteur 1 , sur lequel viennent se poser les éléments 10 ainsi que 12 à 15. Elle est réalisé en substrat de verre et présente une transparence permettant une clarté suffisante pour l'affichage d'objets graphique sur l'écran de visualisation 2 au travers du capteur 1.
Cette couche support 11 présente un réseau de pistes conductrices 13 agencées de manière parallèle et équidistante. Ces pistes sont des fils conducteurs réalisés par dépôt surfacique d'oxyde d'indium-étain (ITO). Elles sont disposées de manière perpendiculaire aux pistes conductrices 12 de la couche d'interaction 10, de sorte à former un réseau matriciel de pistes conductrices 12,13.
L'agencement de ces pistes conductrices 12,13 forme des lignes et des colonnes. L'intersection d'une ligne et d'une colonne forme un point de contact. Quand on pose par exemple un doigt sur le capteur, on met en contact, au travers de l'entretoise conductrice 15, une ou des colonnes situées sur la couche d'interaction 10 avec une ou des lignes situées sur la couche support 11 , créant ainsi un ou plusieurs points de contacts. Ce contact est provoqué par la déformation de la couche d'interaction 10 - et donc des pistes conductrices 12 - jusqu'à ce qu'un contact électrique se forme avec les pistes conductrices 13 de la couche support 11 au travers de l'entretoise conductrice 15.
Dans un autre mode de réalisation, la couche support 1 1 est déformable mais de plus grande rigidité que la couche d'interaction 10, de sorte à ne pas provoquer de chocs trop importants sur la couche support 11 lors d'un contact tout en permettant d'obtenir une sensibilité de contact tactile par l'intermédiaire de la couche d'interaction 10.
La première série d'entretoises 14 permet de séparer les couches d'interaction 10 et support 11 - et donc les pistes conductrices 12 et 13 qu'elles présentent - avec un écartement donné sur la totalité du capteur 1. A cet effet, les entretoises 14 sont disposées entre les couches d'interaction 10 et support 11. Ces entretoises sont rigides pour avoir un écartement fixe, et transparentes pour obtenir un capteur transparent. Elles présentent une impédance très grande de sorte à être isolantes. Elles sont réalisées en un polymère isolant transparent, par exemple en silicone.
La deuxième série d'entretoises 15 permet d'une part d'éviter le rapprochement physique des pistes conductrices 12 et 13 - source de fausse détection - et de limiter l'amplitude de déformation des pistes conductrices 12 de la couche d'interaction 10. A cet effet, les entretoises 15 sont transparentes pour obtenir un capteur transparent. Elles peuvent être déposées par sérigraphie d'un polymère conducteur transparent et présenter une forme sphérique.
Ces entretoises 15 de la deuxième série présentent une impédance comprise entre l'impédance des entretoises de la première série et l'impédance des pistes conductrices. Ceci permet d'obtenir des entretoises conductrices du courant. Ainsi, lors d'une déformation des pistes conductrices 12 de la couche d'interaction 10 en vue de réaliser un contact tactile, le contact électrique entre les pistes 12 et 13 est obtenu par l'intermédiaire des entretoises conductrices 15. Une résistance par exemple de 100 kilo-ohms convient aux besoins de conduction du courant.
Les dimensions de ces entretoises 15 de la deuxième série sont inférieures aux dimensions des entretoises 14 de la première série. De plus, les dimensions des entretoises 14 de la première série sont déterminées pour : empêcher le contact au repos entre les entretoises 15 de la deuxième série et le réseau de pistes conductrices de la couche opposée aux entretoises 15 de la deuxième série, et permettre l'entrée en contact local lors d'une déformation de la couche d'interaction 10, entre les entretoises 15 de la deuxième série et le réseau de pistes conductrices de la couche opposée aux entretoises 15 de la deuxième série.
Préférentiellement, le diamètre des entretoises 14 de la première série est supérieur au double du diamètre des entretoises 15 de la deuxième série. Ce rapport de dimensions permet d'éviter le contact au repos entre les entretoises 15 et les pistes conductrices 13 et de permet le contact électrique entre les pistes 12 et 13 par l'intermédiaire des entretoises 15, sans toutefois que la déformation des pistes 12 de la couche d'interaction 10 ne les fragilise de manière significative. Les entretoises 14 et 15 des première et deuxième séries présentent respectivement, par exemple, des diamètres de 40 micromètres et 20 micromètres.
Dans un autre mode de réalisation, les entretoises 15 de la deuxième série prennent la forme de gouttes disposées sur les intersections des pistes conductrices 12 de la couche d'interaction 10 avec la projection des pistes conductrices 13 de la couche support 11. Ces entretoises peuvent être disposées par sérigraphie d'un matériau qui, lorsqu'il sèche, prend la forme d'une goutte.
Dans un second mode de réalisation du capteur illustré par les figures 3 et 4, les entretoises 15 de la première série sont disposées au niveau des pistes conductrices 13 de la couche support 11. Les résultats obtenus avec ce mode de réalisation sont analogues à ceux obtenus avec un capteur conformément au premier mode de réalisation décrit ci-dessus et illustré par la figure 2.
Les modes de réalisation précédemment décrits de la présente invention sont donnés à titre d'exemples et ne sont nullement limitatifs. Il est entendu que l'homme du métier est à même de réaliser différentes variantes de l'invention sans pour autant sortir du cadre du brevet.

Claims

REVENDICATIONS
1 - Capteur tactile multicontacts comportant une couche d'interaction déformable élastiquement (10) et une couche support (11 ), la couche d'interaction (10) présentant à sa surface inférieure un réseau de pistes conductrices (12), la couche support (11) présentant à sa surface supérieure un réseau de pistes conductrices (13) non parallèles au réseau de pistes conductrices (12) de la couche d'interaction (10), lesdites couches d'interaction (10) et support (11) étant séparées par une première série d'entretoises rigides isolantes (14), caractérisé en ce qu'il comprend une deuxième série d'entretoises conductrices (15) disposées au contact d'au moins l'un parmi lesdits deux réseaux de pistes conductrices (12,13), l'impédance des entretoises (15) de la deuxième série étant comprise entre l'impédance des entretoises (14) de la première série et l'impédance des pistes conductrices (12,13), les dimensions desdites entretoises (15) de la deuxième série étant inférieures aux dimensions desdites entretoises (14) de la première série, les dimensions desdites entretoises (14) de la première série étant déterminées pour empêcher le contact au repos et permettre l'entrée en contact local lors d'une déformation de la couche d'interaction (10), entre les entretoises (15) de la deuxième série et le réseau de pistes conductrices de la couche opposée auxdites entretoises (15) de la deuxième série.
2 - Capteur tactile multicontacts selon la revendication 1 , dans lequel les deux réseaux de pistes conductrices (12,13) comportent un revêtement conducteur surfacique d'oxyde d'indium-étain.
3 - Capteur tactile multicontacts selon l'une quelconque des revendications 1 ou 2, dans lequel la couche d'interaction (10) est constituée d'une feuille de polyester.
4 - Capteur tactile multicontacts selon l'une quelconque des revendications précédentes, dans lequel la couche support (11 ) est rigide.
5 - Capteur tactile multicontacts selon la revendication 4, dans lequel la couche support (11 ) est constituée d'un substrat de verre.
6 - Capteur tactile multicontacts selon l'une quelconque des revendications précédentes, dans lequel la couche d'interaction (10) est transparente.
7 - Capteur tactile multicontacts selon l'une quelconque des revendications précédentes, dans lequel les entretoises (14) de la première série sont formées par polymère transparent.
8 - Capteur tactile multicontacts selon l'une quelconque des revendications précédentes, dans lequel les entretoises (15) de la deuxième série sont formées par un polymère transparent conducteur.
9 - Capteur tactile multicontacts selon l'une quelconque des revendications précédentes, dans lequel les deux réseaux de pistes conductrices (12,13) sont perpendiculaires entre eux.
10 - Capteur tactile multicontacts selon l'une quelconque des revendications précédentes, dans lequel les pistes conductrices d'au moins l'un des deux réseaux de pistes conductrices (12, 13) sont parallèles et équidistantes.
11 - Capteur tactile multicontacts selon l'une quelconque des revendications précédentes, dans lequel le diamètre des entretoises (14) de la première série est supérieur au double du diamètre des entretoises (15) de la deuxième série.
12 - Contrôleur d'un capteur tactile multicontacts selon l'une quelconque des revendications précédentes, comprenant également un circuit de balayage des pistes conductrices (12,13) et des moyens d'acquisition d'une caractéristique électrique à chaque pas de balayage, ainsi qu'un circuit pour fournir un signal (X,Y,Zχγ), Zχ,γ désignant la caractéristique électrique mesurée à une étape de balayage correspondant à un intersection d'une piste conductrice X d'un réseau et d'une piste conductrice Y de l'autre réseau. 13 - Ecran tactile multicontacts comprenant un écran de visualisation et un capteur tactile multicontacts selon l'une quelconque des revendications 1 à 11.
14 - Clavier comprenant un ensemble de touches discrètes constitué par un capteur tactile multicontacts selon l'une quelconque des revendications 1 à 11.
PCT/FR2009/000978 2008-08-05 2009-08-05 Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables WO2010015749A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/057,582 US20110141026A1 (en) 2008-08-05 2009-08-05 Multicontact touch-sensitive sensor including variable-size and variable-impedance spacing means
EP09804599A EP2321833A1 (fr) 2008-08-05 2009-08-05 Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables
CN2009801347488A CN102144272A (zh) 2008-08-05 2009-08-05 具有尺寸及阻抗可变的间隔装置的多触点触摸传感器
JP2011521612A JP5524963B2 (ja) 2008-08-05 2009-08-05 多様なサイズおよび多様なインピーダンスの間隔保持手段を有する多点接触タッチ検出センサ
KR1020117005193A KR20110047219A (ko) 2008-08-05 2009-08-05 가변 크기 및 가변 임피던스 스페이싱 수단을 포함하는 멀티컨택트 촉각 센서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0804469A FR2934921B1 (fr) 2008-08-05 2008-08-05 Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables
FR08/04469 2008-08-05

Publications (1)

Publication Number Publication Date
WO2010015749A1 true WO2010015749A1 (fr) 2010-02-11

Family

ID=40365418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/000978 WO2010015749A1 (fr) 2008-08-05 2009-08-05 Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables

Country Status (7)

Country Link
US (1) US20110141026A1 (fr)
EP (1) EP2321833A1 (fr)
JP (1) JP5524963B2 (fr)
KR (1) KR20110047219A (fr)
CN (1) CN102144272A (fr)
FR (1) FR2934921B1 (fr)
WO (1) WO2010015749A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041666B2 (en) 2011-09-09 2015-05-26 Samsung Display Co., Ltd. Touch panel and touch information determining method of touch panel
CN105546930A (zh) * 2014-10-24 2016-05-04 Lg电子株式会社 触摸传感器组件、冰箱门及冰箱门的制作方法
US10006625B2 (en) 2014-12-24 2018-06-26 Lg Electronics Inc. Touch sensor assembly and door including the same
US10055038B2 (en) 2014-12-24 2018-08-21 Lg Electronics Inc. Touch sensor assembly and refrigerator door including same
US10180748B2 (en) 2014-12-24 2019-01-15 Lg Electronics Inc. Touch sensor assembly and method of manufacturing same
US10267556B2 (en) 2014-12-22 2019-04-23 Lg Electronics Inc. Piezoelectric touch sensor array
US10330380B2 (en) 2014-11-07 2019-06-25 Lg Electronics Inc. Touch sensing apparatus for metal panel including display window with through-holes and touch part home appliance having metal panel and touch sensing apparatus, and method for controlling the same
US10359227B2 (en) 2014-11-07 2019-07-23 Lg Electronics Inc. Refrigerator and method for controlling the same
US10429126B2 (en) 2014-12-22 2019-10-01 Lg Electronics Inc. Touch sensor assembly
US10859309B2 (en) 2015-11-27 2020-12-08 Lg Electronics Inc. Refrigerator

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018030B2 (en) 2008-03-20 2015-04-28 Symbol Technologies, Inc. Transparent force sensor and method of fabrication
US20090237374A1 (en) * 2008-03-20 2009-09-24 Motorola, Inc. Transparent pressure sensor and method for using
US8988191B2 (en) 2009-08-27 2015-03-24 Symbol Technologies, Inc. Systems and methods for pressure-based authentication of an input on a touch screen
FR2954982A1 (fr) * 2010-01-05 2011-07-08 Stantum Capteur tactile multicontacts a resistance de contact electrique elevee
US8963874B2 (en) 2010-07-31 2015-02-24 Symbol Technologies, Inc. Touch screen rendering system and method of operation thereof
TWI471794B (zh) * 2011-10-20 2015-02-01 Wintek Corp 觸控面板
CN103164070A (zh) * 2011-12-17 2013-06-19 宸鸿科技(厦门)有限公司 触控显示装置及其制造方法
US11221706B2 (en) 2013-09-27 2022-01-11 Sensel, Inc. Tactile touch sensor system and method
KR102270454B1 (ko) 2013-09-27 2021-06-29 센셀, 인크. 용량성 터치 센서 시스템 및 방법
US10013092B2 (en) 2013-09-27 2018-07-03 Sensel, Inc. Tactile touch sensor system and method
US9001082B1 (en) 2013-09-27 2015-04-07 Sensel, Inc. Touch sensor detector system and method
EP3423925B1 (fr) * 2016-02-29 2020-04-08 Koninklijke Philips N.V. Dispositif de capteur et procédé de détection basé sur un matériau électroactif
US10216234B2 (en) * 2016-06-23 2019-02-26 Texas Instruments Incorporated Securing a touch sensor assembly for a touch button within a device
US11561138B1 (en) * 2022-06-28 2023-01-24 RET Equipment Inc. Resistive pressure sensor with improved structure design

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543764A1 (fr) * 1983-03-31 1984-10-05 Canon Kk Element d'entree tel qu'un commutateur de tableau
US4700025A (en) * 1986-05-23 1987-10-13 Alps Electric Co., Ltd. Transparent touch-sensitive panel
GB2233499A (en) * 1989-06-28 1991-01-09 Mitsubishi Electric Corp Switch
JPH10149737A (ja) * 1996-11-19 1998-06-02 Fujikura Ltd メンブレンスイッチ
US20050212778A1 (en) * 2004-03-29 2005-09-29 Chun-Lin Yeh Button device for a touch panel
EP1950649A2 (fr) * 2004-02-23 2008-07-30 Stantum Dispositif d'acquisition d'informations tactiles à balayage séquentiel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183926A (ja) * 1989-01-10 1990-07-18 Optrex Corp タッチスイッチ及びタッチスイッチ付表示装置
GB9406702D0 (en) * 1994-04-05 1994-05-25 Binstead Ronald P Multiple input proximity detector and touchpad system
JP2001228975A (ja) * 2000-02-16 2001-08-24 Fujikura Ltd 感圧素子並びにそれを用いたタッチパネル及び液晶表示装置
CN1275131C (zh) * 2001-08-22 2006-09-13 夏普株式会社 触摸传感器、带触摸传感器的显示装置和位置数据产生方法
US7081888B2 (en) * 2003-04-24 2006-07-25 Eastman Kodak Company Flexible resistive touch screen
JPWO2006028131A1 (ja) * 2004-09-10 2008-05-08 グンゼ株式会社 タッチパネル及びタッチパネル用フィルム材料の製造方法
KR101254695B1 (ko) * 2006-05-10 2013-04-23 삼성디스플레이 주식회사 터치 스크린 내장형 액정표시패널 및 이를 포함한액정표시장치
FR2903207B1 (fr) * 2006-06-28 2008-11-07 Jazzmutant Soc Par Actions Sim Capteur tactile multipoint a matrice active
CN101641669B (zh) * 2007-03-27 2012-07-18 京瓷株式会社 触摸面板及触摸面板型显示装置
FR2914756B1 (fr) * 2007-04-05 2012-09-21 Jazzmutant Capteur multi-tactile transparent.
FR2925717B1 (fr) * 2007-12-19 2010-06-18 Stantum Capteur tactile transparent multicontatcs a base de depot surfacique metallise
FR2925713B1 (fr) * 2007-12-19 2010-03-19 Stantum Capteur tactile multicontacts a mode veille

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543764A1 (fr) * 1983-03-31 1984-10-05 Canon Kk Element d'entree tel qu'un commutateur de tableau
US4700025A (en) * 1986-05-23 1987-10-13 Alps Electric Co., Ltd. Transparent touch-sensitive panel
GB2233499A (en) * 1989-06-28 1991-01-09 Mitsubishi Electric Corp Switch
JPH10149737A (ja) * 1996-11-19 1998-06-02 Fujikura Ltd メンブレンスイッチ
EP1950649A2 (fr) * 2004-02-23 2008-07-30 Stantum Dispositif d'acquisition d'informations tactiles à balayage séquentiel
US20050212778A1 (en) * 2004-03-29 2005-09-29 Chun-Lin Yeh Button device for a touch panel

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041666B2 (en) 2011-09-09 2015-05-26 Samsung Display Co., Ltd. Touch panel and touch information determining method of touch panel
CN105546930A (zh) * 2014-10-24 2016-05-04 Lg电子株式会社 触摸传感器组件、冰箱门及冰箱门的制作方法
US10007385B2 (en) 2014-10-24 2018-06-26 Lg Electronics Inc. Touch sensor assembly and refrigerator door with touch sensor assembly and method for manufacturing the same
US10725599B2 (en) 2014-10-24 2020-07-28 Lg Electronics Inc. Touch sensor assembly and refrigerator door with touch sensor assembly and method for manufacturing the same
US10345981B2 (en) 2014-10-24 2019-07-09 Lg Electronics Inc. Touch sensor assembly and refrigerator door with touch sensor assembly and method for manufacturing the same
US11056051B2 (en) 2014-10-24 2021-07-06 Lg Electronics Inc. Touch sensor assembly and refrigerator door with touch sensor assembly and method for manufacturing the same
US10359227B2 (en) 2014-11-07 2019-07-23 Lg Electronics Inc. Refrigerator and method for controlling the same
US10619915B2 (en) 2014-11-07 2020-04-14 Lg Electronics Inc. Touch sensing apparatus for metal panel including display window with through-holes and touch part home appliance having metal panel and touch sensing apparatus, and method for controlling the same
US11181317B2 (en) 2014-11-07 2021-11-23 Lg Electronics Inc. Touch sensing apparatus for metal panel including display window with through-holes and touch part, home appliance having metal panel and touch sensing apparatus, and method for controlling the same
US10330380B2 (en) 2014-11-07 2019-06-25 Lg Electronics Inc. Touch sensing apparatus for metal panel including display window with through-holes and touch part home appliance having metal panel and touch sensing apparatus, and method for controlling the same
US11747079B2 (en) 2014-12-22 2023-09-05 Lg Electronics Inc. Touch sensor assembly
US10429126B2 (en) 2014-12-22 2019-10-01 Lg Electronics Inc. Touch sensor assembly
US10267556B2 (en) 2014-12-22 2019-04-23 Lg Electronics Inc. Piezoelectric touch sensor array
US10180748B2 (en) 2014-12-24 2019-01-15 Lg Electronics Inc. Touch sensor assembly and method of manufacturing same
US10564769B2 (en) 2014-12-24 2020-02-18 Lg Electronics Inc. Touch sensor assembly and method of manufacturing same
US10655840B2 (en) 2014-12-24 2020-05-19 Lg Electronics Inc. Touch sensor assembly and door including the same
US10521033B2 (en) 2014-12-24 2019-12-31 Lg Electronics Inc. Touch sensor assembly and refrigerator door including same
US10352552B2 (en) 2014-12-24 2019-07-16 Lg Electronics Inc. Touch sensor assembly and door including the same
US11131453B2 (en) 2014-12-24 2021-09-28 Lg Electronics Inc. Touch sensor assembly and door including the same
US11182009B2 (en) 2014-12-24 2021-11-23 Lg Electronics Inc. Touch sensor assembly and method of manufacturing same
US10055038B2 (en) 2014-12-24 2018-08-21 Lg Electronics Inc. Touch sensor assembly and refrigerator door including same
US10006625B2 (en) 2014-12-24 2018-06-26 Lg Electronics Inc. Touch sensor assembly and door including the same
US10859309B2 (en) 2015-11-27 2020-12-08 Lg Electronics Inc. Refrigerator

Also Published As

Publication number Publication date
JP5524963B2 (ja) 2014-06-18
KR20110047219A (ko) 2011-05-06
FR2934921B1 (fr) 2010-09-24
CN102144272A (zh) 2011-08-03
US20110141026A1 (en) 2011-06-16
EP2321833A1 (fr) 2011-05-18
FR2934921A1 (fr) 2010-02-12
JP2011530130A (ja) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2010015749A1 (fr) Capteur tactile multicontacts a moyens d'espacement de taille et impedance variables
EP3582090B1 (fr) Dispositif de saisie de données destiné a être apposé sur une dalle tactile d'un terminal, procédé et système de saisie correspondants
EP2235615B1 (fr) Circuit electronique d'analyse a modulation de caracteristiques de balayage pour capteur tactile multicontacts a matrice passive
EP2310932B1 (fr) Procédé d'acquisition et d'analyse d'un capteur tactile multicontacts suivant un principe dichotomique, circuit électronique et capteur tactile multicontacts mettant en oeuvre un tel procédé
FR2936326A1 (fr) Dispositif pour le controle d'appareil electronique par la manipulation d'objets graphiques sur un ecran tactile multicontacts
FR2903207A1 (fr) Capteur tactile multipoint a matrice active
KR20220058519A (ko) 터치 스크린의 병합된 플로팅 픽셀들
CA2172328A1 (fr) Dispositif de designation tactile a surface capacitive transparente a haute resolution
JP2011509450A (ja) 金属表面堆積に基づく透明多点接触タッチセンサ
WO2017143688A1 (fr) Substrat d'affichage tactile, écran d'affichage tactile et procédé de fabrication de substrat d'affichage tactile
WO2011083271A2 (fr) Capteur tactile multicontacts a resistance de contact electrique elevee
CA2709838A1 (fr) Circuit electronique d'analyse a alternance axe d'alimentation/axe de detection pour capteur tactile multicontacts a matrice passive
WO2009106738A1 (fr) Capteur tactile multicontacts avec mode veille monocontact
EP2769290B1 (fr) Procède d'acquisition de données d'un capteur tactile matriciel, notamment pour un écran tactile
EP0351355A1 (fr) Tablette de type résistif à plusieurs conducteurs pour l'entrée de coordonnées
EP2926232B1 (fr) Système et procédé de communication reproduisant une interactivité de type physique
EP3757733B1 (fr) Surface tactile à détection tactile hybridée
FR3112628A1 (fr) Dispositif de pointage informatique
LU88024A1 (fr) Clavier numerique pour commandes manuelles
FR2831319A1 (fr) Surface sensible au toucher

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134748.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09804599

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009804599

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011521612

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13057582

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117005193

Country of ref document: KR

Kind code of ref document: A