WO2010015113A1 - 借助误码率统计数据判断通信距离的系统和方法 - Google Patents

借助误码率统计数据判断通信距离的系统和方法 Download PDF

Info

Publication number
WO2010015113A1
WO2010015113A1 PCT/CN2008/001749 CN2008001749W WO2010015113A1 WO 2010015113 A1 WO2010015113 A1 WO 2010015113A1 CN 2008001749 W CN2008001749 W CN 2008001749W WO 2010015113 A1 WO2010015113 A1 WO 2010015113A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
error rate
data
mobile terminal
distance
Prior art date
Application number
PCT/CN2008/001749
Other languages
English (en)
French (fr)
Inventor
余运波
Original Assignee
深圳市中兴集成电路设计有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴集成电路设计有限责任公司 filed Critical 深圳市中兴集成电路设计有限责任公司
Publication of WO2010015113A1 publication Critical patent/WO2010015113A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to a record carrier for use with a machine, and more particularly to a record carrier with semiconductor circuit components, and more particularly to a system and method for determining the radio frequency communication distance of a mobile terminal. Background technique
  • Radio frequency communication terminals especially mobile phones, (referred to as “mobile phones”) have become popular, and have been modified to make them have close-range communication functions, so that the demand for functions such as mobile payment is becoming more and more intense.
  • the user identification module has appeared.
  • Super smart terminals which greatly meet the urgent needs of the market.
  • the RF SIM-based mobile phone short-range communication solution has received wide attention because of its simplicity, no need to replace or modify the mobile phone.
  • the RF SIM adopts UHF or VHF technology to make the RF signal transmit from the mobile phone. Therefore, the mobile phone can be equipped with a short-distance communication function without modifying the mobile phone.
  • some mobile phones have high transmission intensity due to poor shielding effect, and their communication distance can reach about 1 meter.
  • some mobile phones have excellent shielding effect, and the RF signal cannot escape. Shooting, resulting in the inability to properly send and receive data, can not complete the transaction, it is very difficult to accurately control the distance covered by the RF signal in the face of so many types of mobile phones.
  • the existing technology for controlling the distance of radio frequency communication so that it does not exceed the specified value is only passive sensing technology, such as the non-contact card technical specification specified in the IS014443 protocol, or the RFID technical specification specified by IS018000. These technologies are characterized by no card side. The source can only work by sensing the energy from the reader side coupling to achieve communication with the card reader.
  • the RF SIM-based mobile phone short-range communication uses an active mode, and basically uses the UHF band, which results in the inability to use passive aids to control the communication distance, because the UHF band RF signal has a strong wear. Through the ability, its distance control problem is more prominent.
  • Mobile phone short-range communication based on RF SIM adopts active mode, and is basically in UHF frequency. Segment, cannot use passive technology to control its communication distance;
  • the method of adjusting the radio frequency signal emission intensity of the mobile phone and the receiving sensitivity of the card reader to control the communication distance is difficult to achieve reliable short-range communication due to various factors such as standing wave and signal reflection.
  • the communication distance can be controlled by adjusting the RF signal emission intensity of the mobile phone and the receiving sensitivity of the card reader, and can also be implemented by setting multiple antennas (or antennas) to avoid standing waves caused by a single antenna. , signal reflection and other adverse effects.
  • the commonly used method is to use the signal field strength received by the antenna to judge.
  • the problem brought by this method is that the field strength signal is particularly susceptible to interference, resulting in a de facto Unachievable, such as in the 2.4 GHz band, Bluetooth technology and wireless LAN technology, the signal field strength on this band is difficult to distinguish.
  • the technical problem to be solved by the present invention is to avoid the above-mentioned deficiencies of the prior art and to propose a system and method for judging the communication distance by means of error rate statistics.
  • the invention provides a simple and easy solution for the single tube, which can solve the problem that the field strength signal is easily interfered, and can relatively reliably judge the approximate distance when the mobile communication terminal communicates with the mobile communication device. It is also advantageous to increase the operational reliability of the mobile communication terminal and the mobile communication device.
  • the invention provides a system for judging a communication distance by using a statistical error rate, comprising a radio frequency mobile terminal and a radio frequency control terminal including a radio frequency SIM card;
  • the radio frequency control terminal includes a reference antenna array and a host system; the radio frequency control terminal exchanges data with the radio frequency mobile terminal through the reference antenna array, analyzes and calculates the data obtained by the exchange, and calculates the bit error rate to determine the radio frequency movement.
  • the communication distance of the terminal is a reference antenna array and a host system; the radio frequency control terminal exchanges data with the radio frequency mobile terminal through the reference antenna array, analyzes and calculates the data obtained by the exchange, and calculates the bit error rate to determine the radio frequency movement.
  • the radio frequency control terminal includes a radio frequency card reader.
  • the host system includes a switch and an attenuator.
  • the reference antenna array includes N antennas arranged in M circles at geometric positions and having the same center, and each of the antennas is M x 360. / ⁇ , where ⁇ > 2, ⁇ > 1 , and both are positive integers, and each antenna in the antenna array is electrically connected to the switch through a wire.
  • each antenna in the reference antenna array includes a circle, a ring, a stick, an arc, a W or a square; and each antenna in the reference antenna array may be made of ceramic, magnetic material or copper.
  • the receiving or transmitting gain of each antenna in the reference antenna array is adjusted by adjusting the attenuation of the attenuator Number implementation.
  • the present invention solves the technical problem by further adopting the following technical solutions: Providing a method for realizing a system capable of close distance communication by using a detector array, based on a system for judging a communication distance by using a statistical error rate, the system
  • the invention comprises an RF mobile terminal and a radio frequency control terminal including a radio frequency SIM card, in particular, comprising the steps of:
  • the radio frequency mobile terminal transmits all the data of the error experience database stored therein and its judgment rule to the radio frequency control terminal; or the radio frequency mobile terminal informs the radio frequency control terminal of its own model information, and the radio frequency control terminal calls accordingly The data in the error rate experience database stored therein and the judgment rule thereof; the radio frequency control terminal adjusts the attenuation coefficient of each antenna of the reference antenna array according to the signal attenuation rate displayed by the data in the error rate experience database;
  • the RF mobile terminal communicates with each antenna of the reference antenna array of the RF control terminal at a certain test distance, and records the test result to form a measured data set;
  • the test distance described in step A is the communication distance between the radio frequency mobile terminal and the radio frequency control terminal, and can be freely selected according to actual conditions.
  • the radio frequency control terminal compares the data of the measured data group according to the judgment rule of the error code database and compares the approximate distance of the current communication; the judgment rule and the matching comparison method include a pattern recognition method and a valid average comparison method.
  • the judging rules are respectively designed according to different types of different radio frequency mobile terminals.
  • step F the method for judging rules adopts an effective average comparison method, including the steps of: a. selecting the lowest bit error rate in a set of data corresponding to a test distance of the error experience database (ie, the letter) One or more data of the best number) as valid data, and take the average of these valid data as the reference value of the threshold value;
  • step b averaging the effective data corresponding to each test distance obtained by the method described in step a to form an array of threshold reference values
  • the currently detected radio frequency mobile terminal selects one or several data with the lowest bit error rate as the valid data in the bit error rate data corresponding to a certain test distance, and takes the average value B of the valid data.
  • d. Find the data closest to the average value of the currently detected valid data described in step c in the threshold reference value array described in step b, thereby judging the approximate communication based on each data in the error history database. distance. .
  • the method for determining the rule in step F adopts a mean square error method, and calculates a mean squared difference value of all data of the currently detected bit error rate data set.
  • the mean squared difference value is greater than an empirical value, the method can be considered to communicate at a relatively close distance. Less than the set empirical value is considered to be a longer distance communication, and the empirical value can be obtained by experimental or theoretical calculation.
  • the data communication distance between the RF communication terminal and the RF communication device can be reliably controlled in the near field range, ensuring the security of the transaction, and fundamentally ensuring the reliability of the communication.
  • Figure 1 is a schematic view showing the composition of the system of the present invention.
  • FIG. 2 is a schematic diagram of the composition of the radio frequency control terminal in FIG. 1;
  • FIG. 3 is a prior art radio frequency mobile terminal communication error rate experience database according to a preferred embodiment of the present invention
  • FIG. 4 is a flow chart of determining the communication distance by the method of the present invention. detailed description
  • the system 10 for determining the communication distance by means of bit error rate statistics comprises a radio frequency mobile terminal 12 and a radio frequency control terminal 13 including a radio frequency SIM card 11.
  • the radio frequency control terminal 13 includes a reference antenna array 131 and a host system 132; the radio frequency control terminal 13 exchanges data with the radio frequency mobile terminal 12 through the reference antenna array 131, and exchanges the obtained data. The analysis calculation is performed, and the bit error rate is counted to determine the communication distance of the radio frequency mobile terminal 12.
  • the radio frequency control terminal 13 includes a radio frequency card reader.
  • the host system 132 includes a switch 1321 and an attenuator 1322.
  • the reference antenna array i includes N antennas arranged in a geometric circle at M circles and having the same center, each antenna antenna forming M x 3 60° /N, where N > 2 , M > 1 , and both are positive integers, and each antenna in the antenna array is connected to the switch 1321 through a wire 1317.
  • each antenna in the reference antenna array 131 includes a circle, a ring, a stick, an arc, a W or a square; and each antenna in the reference antenna array 131 may be made of a ceramic, a magnetic material or a copper material.
  • the receive or transmit gain of each antenna in the reference antenna array 131 is achieved by adjusting the attenuation coefficient of the attenuator 1322.
  • the technical problem of the present invention can be achieved by adopting the following technical solutions: Providing a method for judging a communication distance by using a statistical error rate, based on a system 10 for judging a communication distance by using a statistical error rate, as shown in FIG.
  • the system includes a radio frequency mobile terminal 12 and a radio frequency control terminal 13 including a radio frequency SIM card 11.
  • the method includes the steps of:
  • the transmit or receive gain of each antenna in the reference antenna array 131 is adjusted by the attenuator 1322 so that the radio frequency mobile terminal 12 does not have a bit error rate when communicating with each antenna in the reference antenna array 131 at each test distance.
  • the radio frequency mobile terminal 12 transmits all the data of the error code stored in the face database and its judgment rule to the radio frequency control terminal 13; or the radio frequency mobile terminal 12 informs the radio frequency control of its own model information.
  • the terminal 13 is configured by the radio frequency control terminal 13 to call the data in the error rate experience database stored therein and the judgment rule thereof; the radio frequency control terminal 13 adjusts the signal attenuation rate according to the data rate displayed in the database according to the error rate.
  • the radio frequency control terminal 13 can determine whether the communication state with the radio frequency mobile terminal I 2 is normal, thereby determining whether the reception is correct, as shown in step 405 or step 406, when completed.
  • the number of communications selected by the preferred embodiment of the present invention is 500.
  • the radio frequency control terminal 13 counts the error rate when each antenna communicates with the radio frequency mobile terminal 12, as in step 408. Shown.
  • step 409 when the radio frequency mobile terminal 12 communicates with each antenna of the reference antenna array 131 of the radio frequency control terminal 13 at a certain test distance, and records the test result (ie, the error rate of each antenna), Measured data set;
  • the measured results in step E are averaged, as shown in step 410 of FIG.
  • step 411 of Figure 4 the average value described in step 410 is compared to the decision rule in the error experience database, and then the approximate distance of communication is determined.
  • the test distance described in step A is the communication distance between the radio frequency mobile terminal 12 and the radio frequency control terminal 13, and can be freely selected according to actual conditions.
  • the radio frequency control terminal 13 compares and compares the data of the measured data group according to the judgment rule of the error code database and judges the approximate distance of the current communication; the judgment rule and the matching comparison method include a pattern recognition method and an effective average comparison method.
  • the judging rules are respectively designed according to different types of different radio frequency mobile terminals 12.
  • step F the method for determining a rule uses an effective average comparison method, including the steps:
  • step b averaging the effective data corresponding to each test distance obtained by the method described in step a to form an array of threshold reference values
  • the currently detected radio frequency mobile terminal 12 also selects one or several data with the lowest bit error rate as the valid data in the error rate data of a group corresponding to a certain test distance, and takes the average value of the valid data.
  • FIG. 3 is a bit error experience database of each test distance when each antenna communicates with the radio frequency mobile terminal 12, and the radio frequency mobile terminal 12 is recorded separately.
  • the bit error rate of each antenna when the distance from the radio frequency control terminal 13 is 0 CM, 2 CM, 5 CM, 10 CM, 15 CM, 20 CM, 30 CM, and 50 CM.
  • the determining rule of step F adopts a mean square error method, and calculates a mean squared difference value of all data of the currently detected bit error rate data set.
  • the mean squared difference value is greater than an empirical value
  • the communication may be considered to be communication at a relatively close distance, which is smaller than
  • the set empirical value is considered to be a longer distance communication, and the empirical value can be obtained by experimental or theoretical calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

借助误码率统计数据判断通信距离的系统和方法 技术领域
本发明涉及连同机器一起使用的记录载体, 特别涉及带有半导体电路元件的记 录载体, 尤其涉及一种判断移动终端射频通信距离的系统和方法。 背景技术
射频通信终端, 尤其是移动电话, (简称 "手机") 巳经普及, 通过改造使其具 备近距离通信功能, 以实现手机支付等功能的需求越来越强烈, 目前已经出现了在 用户识别模块 SIM卡上增加射频功能(成为射频 SIM )或者在手机主板上增加近距 离通信模块来实现手机近距离通信的方法, 这种方法的出现使得手机成为一个可以 克值、 消费、 交易及身份认证的超级智能终端, 极大地满足市场的迫切需求。
其中, 基于射频 SIM的手机近距离通信解决方案以其简单、 无需更换或改造手 机等优势得到广泛的关注, 在该方案中, 射频 SIM采用 UHF或 VHF技术使得射频信 号可以从手机中透射出来,从而实现不改造手机就可使得手机具备近距离通信功能。 但是, 由于不同手机 蔽效果差距很大, 有的手机因为屏蔽效果不好其射频信号透 射强度大, 其通信距离甚至可以达到 1米左右, 而有的手机因为屏蔽效果特别好, 射频信号不能逸射出来, 造成不能正常收发数据, 不能完成交易, 面对如此多的手 机种类要都能做到精确地控制射频信号覆盖的距离十分困难。
实际生活中的许多应用, 尤其是公交刷卡, 对于交易的有效距离范围控制提出 了严格的要求, 过长的距离 (如 10CM以上)会带来很大的安全隐患, 因此, 手机在 增加近距离通信功能的同时, 还必须能够控制其交易的有效距离范围。
现有针对射频通信的距离进行控制 , 使其不超过规定值的技术只有被动感应技 术, 如 IS014443协议规定的非接触卡技术规范, 或者 IS018000规定的 RFID技术规 范, 这些技术的特点是卡侧无源的, 只能通过感应的方式从读卡器侧耦合获得能量 来工作, 从而实现与读卡器之间的通信。 而基于射频 SIM的手机近距离通信采用的 是有源方式, 且基本上使用的是 UHF频段, 这就导致其无法使用无源扶术来控制通 信距离, 由于 UHF频段射频信号具备很强的穿透能力, 其距离控制问题更加突出。
上述现有技术控制移动终端射频通信距离的方法存在以下不足:
1、 基于射频 SIM的手机近距离通信采用的是有源方式, 且基本上是在 UHF频 段, 无法使用无源技术来控制其通信距离;
2、 采用调整手机射频信号发射强度及读卡器接收灵敏度等方法来控制通信距 离的方法受驻波、 信号反射等多种因素的影响难以实现可靠的近距离通信。
针对这个问题, 可以采用调整手机射频信号发射强度及读卡器接收灵敏度等方 法来控制通信距离, 此外还可以通过设置多个天线 (或天线) 来辅助实现, 以避免 单个天线带来的驻波、 信号反射等不良影响。
在具体实现过程中, 如何能够快速判断距离是一个难题, 通常采用的方法是利 用天线接收到的信号场强来判断,此方法带来的问题是场强信号特别容易受到干扰, 造成事实上的无法实现, 如在 2. 4GHz频段、 蓝牙技术和无线局域网技术均采用此频 段, 此频段上的信号场强难以区分。 发明内容
本发明要解决的技术问题在于避免上述现有技术的不足之处而提出一种借助误 码率统计数据判断通信距离的系统和方法。
本发明提出一种筒单易行解决方案, 该方案可以很好地解决场强信号容易受到 干扰的问题, 一方面可以较为可靠地判断移动通信终端与移动通信设备通信时的大 致距离, 另方面还能够有利于增加移动通信终端与移动通信设备的工作可靠性。
本发明提供了一种利用统计误码率判断通信距离的系统, .包括内含射频 SIM卡 的射频移动终端和射频控制终端;
所述射频控制终端包括基准天线阵列和主机系统; 所述射频控制终端通过基准 天线阵列与射频移动终端进行数据交换, 并对交换所获数据进行分析计算, 统计其 误码率, 从而判断射频移动终端的通信距离。
所述射频控制终端包括射频读卡器。
所述主机系统包括切换器和衰减器。
所述基准天线阵列包含 N个在几何位置上排列成 M圈且具有相同圆心的天线, 每一圈天线相互成 M x 360。 /Ν, 其中 Ν > 2, Μ > 1 , 且都为正整数, 所述天线阵列中 各天线均通过导线与切换器电连接。
所述基准天线阵列中各天线的形状包括圆形、 环形、 棍状、 弧形、 W形或方形; 所述基准天线阵列中各天线可用陶瓷、 磁性材料或铜材制成。
所述基准天线阵列中各天线的接收或发送增益通过调整所述衰减器的衰减系 数实现。
本发明解决所述技术问题还可以通过采用以下技术方案进一步来实现: 提供一 种利用探测器阵列实现可靠近距离通信的系统的方法, 基于利用统计误码率判断通 信距离的系统, 所述系统包括内含射频 SIM卡的射频移动终端和射频控制终端, 尤 其是, 包括步骤:
A. 通过衰减器调整基准天线阵列中各天线的发送或接收增益, 使射频移动终 端在每一个试验距离上与基准天线阵列中各天线通信时误码率不都是 0 %或 100 % , 记录此时基准天线阵列各天线的参数特性;
B. 通过试验为每一类型射频移动终端建立其在每一个试验距离上的误码率经 验数据库, 所述数据库包括射频移动终端在该位置与基准天线阵列中各天线通信时 的误码率;
C. 将所述误码率经验数据之所有数据库写入所述射频移动终端或射频 SIM卡 内, 作为该射频移动终端自身的误码率经验数据库;
D. 射频移动终端把存储在其内的误码经验数据库之所有数据及其判断规则传 送给射频控制终端; 或者射频移动终端将自身的型号信息告知射频控制终端, 由该 射频控制终端据此调用存储在其内的误码率经验数据库中的数据及其判断规则; 射 频控制终端按照误码率经验数据库内数据显示的信号衰减率来调整基准天线阵列各 天线的衰减系数;
E. 射频移动终端在某一个测试距离与射频控制终端的基准天线阵列各天线进 行通信, 并将测试结果记录下来, 形成实测数据组;
F. 将实际的测试结果和误码率经验数据库记录的情况按预定的判断规则进行 比较,进而判断射频移动终端与射频控制终端的通信距离的大致范围。
步骤 A所述的试验距离为射频移动终端与射频控制终端之间的通信距离, 可以 根据实际情况自由选择。
射频控制终端按照误码经验数据库的判断规则对实测数据组的数据进行匹配比 较和判断当前通信的大致距离; 所述判断规则和匹配比较方法包括模式识别方法和 有效平均值比较方法。
所述的判断规则根据不同类型的不同的射频移动终端分别设计。
步骤 F中, 所述判断规则方法采用有效平均值比较方法, 包括步骤: a. 在误码经验数据库的某一试猃距离对应的一组数据中选取误码率最低 (即信 号最好 ) 的一个或几个数据作为有效数据, 并取这些有效数据的平均值作为门限值 的参考值;
b. 将步骤 a所述方法得到的每一试验距离对应的有效数据的平均值组成门限参 考值数组;
c. 在当前检测到的射频移动终端在某一测试距离对应的一组的误码率数据中 也选取误码率最低的一个或几个数据作为有效数据, 并取这些有效数据的平均值 B; d. 在步骤 b所述的门限参考值数组中找出与步骤 c所述的当前检测到的有效数 据的平均值最接近的数据, 从而根据误码经验数据库中的各数据判断通信的大致距 离。 .
步骤 F所述判断规则方法采用均方差方法, 通过计算当前检测到的误码率数据 组所有数据的均方差值, 当该均方差值大于一个经验数值可认为其在较近距离通信, 小于设定的经验数值则认为其为较远距离通信, 所述经验数值可以通过试验或理论 计算获得。
同现有技术相比较, 本发明的有益效果在于:
1、 方案简单易行、 成本低;
2、 本可以将射频通信终端与射频通信设备的数据通信距离可靠地控制在近场 范围内, 保证了交易的安全性, 还能从根本上确保通信的可靠。 附图说明
图 1是本发明系统的組成示意图;
图 2是图 1中射频控制终端的组成示意图;
图 3是本发明方法优选实施例一之射频移动终端通信误码率经验数据库; 图 4是本发明方法判断通信距离流程图。 具体实施方式
以下结合附图所示之优选实施例作进一步详述。
本发明借助误码率统计数据判断通信距离的系统 10, 如图 1所示, 包括内含射 频 SIM卡 11的射频移动终端 12和射频控制终端 13。
所述射频控制终端 13包括基准天线阵列 131和主机系统 132;所述射频控制终 端 13通过基准天线阵列 131与射频移动终端 12进行数据交换, 并对交换所获数据 进行分析计算, 统计其误码率, 从而判断射频移动终端 12的通信距离。
所述射频控制终端 13包括射频读卡器。
如图 2所示, 所述主机系统 132包括切换器 1321和衰减器 1322。
如图 2所示, 所述基准天线阵列 i 包含 N个在几何位置上排列成 M圈且具有 相同圆心的天线,每一圏天线相互成 M x 360° /N, 其中 N > 2 , M > 1 , 且都为正整数, 所述天线阵列中各天线均通过导线 1317与切换器 1321连接。
本发明之优先实施例中, N = 6, M = l , 即所述基准天线阵列 131包括 6个天线 1311 - 1316 , 此 6个天线在几何位置上排列成一圈, 相互之间成 60。 。
所述基准天线阵列 131中各天线的形状包括圆形、 环形、 棍状、 弧形、 W形或 方形; 所述基准天线阵列 131中各天线可用陶瓷、 磁性材料或铜质材料制成。
所述基准天线阵列 131 中各天线的接收或发送增益通过调整所述衰减器 1322 的衰减系数实现。
本发明解决所述技术问题可以通过采用以下技术方案来实现: 提供一种利用统 计误码率判断通信距离的方法, 基于利用统计误码率判断通信距离的系统 10 , 如图 1所示, 所述系统包括内含射频 SIM卡 11的射频移动终端 12和射频控制终端 13 , 尤其是, 如图 4所示, 所述方法包括步驟:
A. 通过衰减器 1322调整基准天线阵列 131中各天线的发送或接收增益, 使射 频移动终端 12在每个试验距离上与基准天线阵列 131中各天线通信时误码率不都是
0 %或 100 % , 记录此时基准天线阵列 131各天线的参数特性;
B. 通过试验为每一类型射频移动终端 12建立其在每一试验距离上的误码率经 验数据库,所述数据库包括射频移动终端 12在该位置与基准天线阵列 131中各天线 通信时的误码率;
C. 将所述误码率经验数据库之所有数据写入所述射频移动终端 12或射频 SIM 卡 11内, 作为该射频移动终端 12 自身的误码率经 数据库;
D. 如步骤 401所示, 射频移动终端 12把存储在其内的误码经臉数据库之所有 数据及其判断规则传送给射频控制终端 13; 或者射频移动终端 12将自身的型号信 息告知射频控制终端 13, 由该射频控制终端 13据此调用存储在其内的误码率经验 数据库中的数据及其判断规则;射频控制终端 13按照误码率经猃数据库内数据显示 的信号衰减率来调整基准天线阵列 131各天线的衰减系数, 并选择合适的天线, 如 步骤 402所示; 在射频移动终端 I2与射频控制终端 13相互通信时, 射频控制终端 13能够判 断与射频移动终端 I2的通信状态是否正常, 从而判断接收是否正确, 如步骤 405或 步驟 406所示, 当完成一次的通信次数后,本发明优先实施例选择的通信次数为 500 次, 如步骤 407所示, 射频控制终端 13就将各天线与射频移动终端 12通信时的误 码率进行统计, 如步骤 408所示。
B. 如步骤 409所示, 当射频移动终端 12在某个测试距离与射频控制终端 13 的基准天线阵列 131各天线进行通信, 并将测试结果(即各天线的误码率)记录下 来, 形成实测数据组;
本发明优先实施例中, 将步骤 E中的实测结果取平均值, 参见图 4步骤 410所 示。
F. 将实际的测试结果和误码经验数据库记录的情况按预定的判断规则进行比 较,进而判断射频移动终端 12与射频控制终端 13的通信距离的大致范围。
如图 4步驟 411所示, 将步骤 410所述的平均值与误码经验数据库中的判断规 则比较, 然后就可以判断其通信的大致距离。
步骤 A所述的试验距离为射频移动终端 12与射频控制终端 13之间的通信距离 , 可以根据实际情况自由选择。
射频控制终端 13 按照误码经驗数据库的判断规则对实测数据组的数据进行匹 配比较和判断当前通信的大致距离; 所述判断规则和匹配比较方法包括模式识别方 法和有效平均值比较方法。
所述的判断规则根据不同类型的不同的射频移动终端 12分別设计。
步骤 F中, 所述判断规则方法采用有效平均值比较方法, 包括步骤:
a. 在误码经验数据库的某一试验距离对应的一组数据中选取误码率最低(即信 号最好) 的一个或几个数据作为有效数据, 并取这些有效数据的平均值作为门限值 的参考值;
b. 将步骤 a所述方法得到的每一试验距离对应的有效数据的平均值組成门限参 考值数组;
c. 在当前检测到的射频移动终端 12在某一测试距离对应的一组的误码率数据 中也选取误码率最低的一个或几个数据作为有效数据, 并取这些有效数据的平均值 B;
' d. 在步骤 b所述的门限参考值数组中找出与步骤 c所述的实际检测有效数据的 平均值最接近的数据, 从而根据误码经验数据库判断通信的大致距离。
如图 2所示, 本发明优先实施例中逸择了 6个天线, 图 3是每个天线在与射频 移动终端 12进行通信时各个试验距离的误码经验数据库,分别记录了射频移动终端 12在距离射频控制终端 13为 0CM、 2CM、 5CM、 10CM, 15CM、 20CM、 30CM和 50CM时 各天线的误码率。
步骤 F所述判断规则采用均方差方法, 通过计算当前检测到的误码率数据组所 有数据的均方差值, 当该均方差值大于一个经验数值可认为其在较近距离通信, 小 于设定的经验数值则认为其为较远距离通信, 所述经验数值可以通过试验或理论计 算获得。
上述实现过程为本发明的优先实现过程, 本领域的技术人员在本发明的基础上 进行的通常变化和替换包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种借助误码率统计数据判断通信距离的系统(10), 其特征在于, 包括内 含射频 SIM卡 ( 11 ) 的射频移动终端 ( 12 )和射频控制终端 ( 13 );
所述射频控制终端( 13 ) 包括基准天线阵列 ( 131 )和主机系统( 132 ); 所述射 频控制终端 (13)通过基准天线阵列 (131) 与射频移动终端 (12)进行数据交换, 并对交换所获数据进行分析计算, 统计其误码率, 从而判断射频移动终端 (12) 的 通信距离。
2、如权利要求 1所述的借助误码率统计数据判断通信距离的系统,其特征在于: 所述射频控制终端 (13) 包括射频读卡器。
3、 如权利要求 1所述的借助误码率统计数据判断通信距离的系统, 其特征在于: 所述主机系统 (132) 包括切换器(1321)和衰减器 ( 1322 )。
4、如权利要求 1所述的借助误码率统计数据判断通信距离的系统,其特征在于: 所述基准天线阵列( 131 )包含 N个在几何位置上排列成 M圈且具有相同圆心的 天线, 每一圈天线相互成 Μχ 360° /N, 其中 N>2, Μ>1, 且都为正整数, 所述天线 阵列中各天线均通过导线(1317) 与切换器(1321) 电连接。
5、 如权利要求 1或 4所述的借助误码率统计数据判断通信距离的系统, 其特征 在于:
所述基准天线阵列 (131) 中各天线的形状包括圆形、 环形、 棍状、 弧形、 W形 或方形; 所述基准天线阵列 (131) 中各天线可用陶瓷、 磁性材料或铜材制成。
'
6、 如权利要求要求 1或 4所述的借助误码率统计数据判断通信距离的系统, 其 特征在于:
所述基准天线阵列 (131) 中各天线的接收或发送增益通过调整所述衰减器 ( 1322 ) 的衰减系数实现。
7、一种借助误码率统计数据判断通信距离的方法, 基于借助误码率统计数据判 断通信距离的系统(10), 所述系统包括内含射频 SIM卡(11)的射频移动终端(12) 和射频控制终端 (13), 其特征在于, 包括步骤:
A. 通过衰减器( 1322 )调整基准天线阵列 ( 131 )中各天线的发送或接收增益, 使射频移动终端(12)在每一试验距离上与基准天线阵列 (131) 中各天线通信时误 码率不都是 0 %或 100 % , 记录此时基准天线阵列 ( 131 )各天线的参数特性; B. 通过试验为每一类型射频移动终端( Π )建立其在每一试验距离上的误码率 经验数据库, 所述数据库包括射频移动终端 (12 )在该位置与基准天线阵列 (131 ) 中各天线通信时的误码率;
C 将所述误码率经验数据库之所有数据写入所述射频移动终端 ( 12 ) 或射频 SIM卡 ( 11 ) 内, 作为该射频移动终端 ( Π ) 自身的误码率经验数据库;
D. 射频移动终端( Π )把存储在其内的误码经验数据库之所有数据及其判断规 则传送给射频控制终端( 13 ); 或者射频移动终端( 12 )将自身的型号信息告知射频 控制终端(13 ), 由该射频控制终端(13 )据此调用存储在其内的误码率经臉数据库 中的数据及其判断规则; 射频控制终端 (13 )按照误码率经验数据库内数据显示的 信号衰减率来调整基准天线阵列 ( 131 )各天线的衰减系数;
E. 射频移动终端( 12 )在某一测试距离与射频控制终端( 13 )的基准天线阵列 ( 131 )各天线进行通信, 并将测试结果记录下来, 形成实测数据组;
F. 将实际的测试结果和误码率经验数据库记录的情况按预定判断规则进行比 较,进而判断射频移动终端 (12 ) 与射频控制终端 (13 ) 的通信距离的大致范围。
8、如权利要求 7所述的借助误码率统计数据判断通信距离的方法,其特征在于: 步骤 A所述的试验距离为射频移动终端 (12 ) 与射频控制终端 (13 )之间的通 信距离, 可以根据实际情况自由选择。
9、如权利要求 7所述的借助误码率统计数据判断通信距离的方法,其特征在于: 射频控制终端 ( 13 )按照误码经验数据库的判断规则对实测数据组的数据进行 匹配比较, 从而判断当前通信的大致距离; 所述判断规则和匹配比较方法包括模式 识别方法、 均方差方法和有效平均值比较方法。
10、 如权利要求 7所述的借助误码率统计数据判断通信距离的方法, 其特征在 于:
所述的判断规则根据不同类型的不同的射频移动终端 ( 12 )分别设计。
11、 如权利要求 7或 9所述的借助误码率统计数据判断通信距离的方法, 其特 征在于:
步驟 F中, 所述判断规则采用有效平均值比较方法, 包括步骤:
a. 在误码经验数据库的某一试验距离对应的一组数据中选取误码率最低,即信 号最好的一个或几个数据作为有效数据, 并取这些有效数据的平均值作为门限值的 参考值; b. 将步骤 a 所述方法得到的每一试验距离对应的有效数据的平均值組成门限 参考值数組;
c. 在当前检测到的射频移动终端( I2 )在某一测试距离对应的一組误码率数据 中也选取误码率最低的一个或几个数据作为有效数据, 并取这些有效数据的平均值 B;
d. 在步骤 b所述的门限参考值数組中找出与步骤 c所述的当前检测到的有效数 据的平均值最接近的数据, 从而根据误码经臉数据库中的各数据判断通信的大致距 离。
12、 如权利要求 7或 9所述的借助误码率统计数据判断通信距离的方法, 其特 征在于:
步骤 F所述判断规则法采用均方差方法, 通过计算当前检测到的误码率数据组所有 数据的均方差值, 当该均方差值大于一个经验数值可认为其在较近距离通信, 小于设定 的经验数值则认为其为较远距离通信, 所述经验数值可以通过试验或理论计算获得。
PCT/CN2008/001749 2008-08-05 2008-10-17 借助误码率统计数据判断通信距离的系统和方法 WO2010015113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810142271 CN101335956B (zh) 2008-08-05 2008-08-05 借助误码率统计数据判断通信距离的系统和方法
CN200810142271.5 2008-08-05

Publications (1)

Publication Number Publication Date
WO2010015113A1 true WO2010015113A1 (zh) 2010-02-11

Family

ID=40198199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001749 WO2010015113A1 (zh) 2008-08-05 2008-10-17 借助误码率统计数据判断通信距离的系统和方法

Country Status (2)

Country Link
CN (1) CN101335956B (zh)
WO (1) WO2010015113A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060425A1 (en) 2017-09-19 2019-03-28 Massachusetts Institute Of Technology COMPOSITIONS FOR CHIMERIC ANTIGENIC RECEPTOR T CELL THERAPY AND USES THEREOF
WO2020068261A1 (en) 2018-09-28 2020-04-02 Massachusetts Institute Of Technology Collagen-localized immunomodulatory molecules and methods thereof
WO2020263399A1 (en) 2019-06-26 2020-12-30 Massachusetts Institute Of Technology Immunomodulatory fusion protein-metal hydroxide complexes and methods thereof
WO2021061648A1 (en) 2019-09-23 2021-04-01 Massachusetts Institute Of Technology Methods and compositions for stimulation of endogenous t cell responses
WO2021183675A2 (en) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology Methods for generating engineered memory-like nk cells and compositions thereof
WO2021183207A1 (en) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology COMPOSITIONS AND METHODS FOR IMMUNOTHERAPY OF NPM1c-POSITIVE CANCER
WO2021221782A1 (en) 2020-05-01 2021-11-04 Massachusetts Institute Of Technology Chimeric antigen receptor-targeting ligands and uses thereof
WO2023081715A1 (en) 2021-11-03 2023-05-11 Viracta Therapeutics, Inc. Combination of car t-cell therapy with btk inhibitors and methods of use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101770009B (zh) * 2009-01-06 2014-05-21 成都西谷曙光数字技术有限公司 一种精确射频定位系统
CN102215051B (zh) * 2010-04-02 2013-08-28 国民技术股份有限公司 一种利用低频磁通信的射频sim卡启动交易的距离门限判断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298250A (zh) * 1999-11-30 2001-06-06 三星电子株式会社 防止使用蓝牙通信的便携式电话丢失的装置及控制方法
CN1625038A (zh) * 2003-12-02 2005-06-08 日立空调系统株式会社 冷冻装置和逆变装置
US20070210930A1 (en) * 2006-03-09 2007-09-13 Samsung Electronics Co., Ltd. Anti-miss alarm system, method, and shoe supporting anti-miss alarm using wireless personal area network
CN101329399A (zh) * 2008-07-29 2008-12-24 深圳市中兴集成电路设计有限责任公司 利用探测器阵列实现可靠近距离通信的系统和方法
CN101334470A (zh) * 2008-07-29 2008-12-31 深圳市中兴集成电路设计有限责任公司 一种控制移动终端射频通信距离的系统和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625068A (zh) * 2004-07-13 2005-06-08 吴裕策 超距离报警手机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298250A (zh) * 1999-11-30 2001-06-06 三星电子株式会社 防止使用蓝牙通信的便携式电话丢失的装置及控制方法
CN1625038A (zh) * 2003-12-02 2005-06-08 日立空调系统株式会社 冷冻装置和逆变装置
US20070210930A1 (en) * 2006-03-09 2007-09-13 Samsung Electronics Co., Ltd. Anti-miss alarm system, method, and shoe supporting anti-miss alarm using wireless personal area network
CN101329399A (zh) * 2008-07-29 2008-12-24 深圳市中兴集成电路设计有限责任公司 利用探测器阵列实现可靠近距离通信的系统和方法
CN101334470A (zh) * 2008-07-29 2008-12-31 深圳市中兴集成电路设计有限责任公司 一种控制移动终端射频通信距离的系统和方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060425A1 (en) 2017-09-19 2019-03-28 Massachusetts Institute Of Technology COMPOSITIONS FOR CHIMERIC ANTIGENIC RECEPTOR T CELL THERAPY AND USES THEREOF
WO2020068261A1 (en) 2018-09-28 2020-04-02 Massachusetts Institute Of Technology Collagen-localized immunomodulatory molecules and methods thereof
WO2020263399A1 (en) 2019-06-26 2020-12-30 Massachusetts Institute Of Technology Immunomodulatory fusion protein-metal hydroxide complexes and methods thereof
WO2021061648A1 (en) 2019-09-23 2021-04-01 Massachusetts Institute Of Technology Methods and compositions for stimulation of endogenous t cell responses
WO2021183675A2 (en) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology Methods for generating engineered memory-like nk cells and compositions thereof
WO2021183207A1 (en) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology COMPOSITIONS AND METHODS FOR IMMUNOTHERAPY OF NPM1c-POSITIVE CANCER
WO2021221782A1 (en) 2020-05-01 2021-11-04 Massachusetts Institute Of Technology Chimeric antigen receptor-targeting ligands and uses thereof
WO2023081715A1 (en) 2021-11-03 2023-05-11 Viracta Therapeutics, Inc. Combination of car t-cell therapy with btk inhibitors and methods of use thereof

Also Published As

Publication number Publication date
CN101335956A (zh) 2008-12-31
CN101335956B (zh) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2010015113A1 (zh) 借助误码率统计数据判断通信距离的系统和方法
CN101334470B (zh) 一种控制移动终端射频通信距离的系统和方法
US7212499B2 (en) Method and apparatus for antenna steering for WLAN
TWI565140B (zh) 適應性多重天線選擇方法
US8929805B2 (en) System, method, and device for radio frequency communication
CN101329399B (zh) 利用探测器阵列实现可靠近距离通信的系统和方法
WO2011091622A1 (zh) 近距离通信方法及系统
CN111277314B (zh) 一种天线选路方法及相关装置
WO2009109075A1 (zh) 一种用于校准射频sim卡通信距离的装置及方法
WO2004114458A2 (en) Antenna steering for an 802.11 station
EP2180738B1 (en) Method and apparatus for antenna steering for WLAN
CN204374997U (zh) Sim卡及移动终端
WO2011044740A1 (zh) 移动支付的实现方法及移动支付系统
CN102196605A (zh) 移动射频装置、射频ic卡及射频存储卡
WO2011120242A1 (zh) 一种利用低频磁通信的射频sim卡启动交易的距离门限判断方法
CN102970065B (zh) 一种控制无线通讯范围的方法和装置
WO2011113215A1 (zh) 一种读卡器
CN201936313U (zh) 一种实现近场通信的射频读卡设备
CN104050501B (zh) 一种无源三频多界面智能卡及其自适应工作方法
CN203054898U (zh) 一种采用磁场控制距离检测的rf-sim卡
CN101989325B (zh) 会自动诊断是否已被非授权改造的射频读卡器及实现方法
CN209895346U (zh) 新型读卡器
CN104754498B (zh) 一种基于伪vlr寄存器的移动终端近距识别方法和系统
CN201937826U (zh) 移动终端的近距识别系统
US8983544B2 (en) Communication system and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08876696

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/06/2011)

122 Ep: pct application non-entry in european phase

Ref document number: 08876696

Country of ref document: EP

Kind code of ref document: A1