WO2011091622A1 - 近距离通信方法及系统 - Google Patents

近距离通信方法及系统 Download PDF

Info

Publication number
WO2011091622A1
WO2011091622A1 PCT/CN2010/071395 CN2010071395W WO2011091622A1 WO 2011091622 A1 WO2011091622 A1 WO 2011091622A1 CN 2010071395 W CN2010071395 W CN 2010071395W WO 2011091622 A1 WO2011091622 A1 WO 2011091622A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
card reader
mobile radio
low
radio frequency
Prior art date
Application number
PCT/CN2010/071395
Other languages
English (en)
French (fr)
Other versions
WO2011091622A8 (zh
Inventor
沈爱民
罗魏熙
Original Assignee
国民技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国民技术股份有限公司 filed Critical 国民技术股份有限公司
Priority to MX2011010018A priority Critical patent/MX2011010018A/es
Priority to KR1020117022119A priority patent/KR101532585B1/ko
Priority to ES10844400.1T priority patent/ES2566925T3/es
Priority to EP10844400.1A priority patent/EP2424157B1/en
Priority to JP2012550296A priority patent/JP5468144B2/ja
Priority to AU2010343862A priority patent/AU2010343862A1/en
Priority to SG2011068442A priority patent/SG174512A1/en
Priority to BRPI1013558-8A priority patent/BRPI1013558B1/pt
Priority to US13/011,125 priority patent/US8630584B2/en
Publication of WO2011091622A1 publication Critical patent/WO2011091622A1/zh
Publication of WO2011091622A8 publication Critical patent/WO2011091622A8/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10118Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the sensing being preceded by at least one preliminary step
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10366Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications
    • G06K7/10465Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves the interrogation device being adapted for miscellaneous applications the interrogation device being capable of self-diagnosis, e.g. in addition to or as part of the actual interrogation process

Definitions

  • the present invention relates to the field of communications, and in particular, to a short-range communication method and system. Background technique
  • a radio frequency function (referred to as a radio frequency SIM card) is added to a subscriber identity module SIM (Subscr iber Ident module) card in a mobile terminal, or a short-range communication module is added on a mobile terminal motherboard to implement a mobile terminal near
  • SIM Subscriber identity module
  • FC Near Field Communication
  • the radio frequency SIM card adopts UHF (Ultra tra High Frequency) technology. Since UHF, especially the RF SIM card using the 2.4 GHz ISM common frequency band (ie industrial, scientific and medical frequency bands), the operating frequency is very high, the size of the antenna is small, and a small antenna can be placed in the SIM card to transmit enough Intensity signal, even if the radio frequency SIM card is embedded in the mobile terminal, the RF signal can still be transmitted from the mobile terminal.
  • UHF Ultra tra tra High Frequency
  • the industry's mainstream RF (Radio Frequency) transceiver chip can be used without additional amplification and reliable reception.
  • the radio frequency signals of most mobile terminals so that the mobile terminal can have the short-range communication function without any structural change to the existing mobile terminal.
  • different mobile terminals have great differences in the transmission effect of radio frequency signals due to different internal structures.
  • the radio frequency SIM card with high transmission distance may reach a distance of several meters, and the mobile terminal with weak transmission Its RF SIM card communication distance can only reach a few centimeters.
  • the RF SIM card In order to avoid the huge difference in attenuation of RF signals by different mobile terminals, the RF SIM card must be calibrated to the mobile terminal, that is, the attenuation parameters of the mobile terminal must be recorded into the card before use. The need for calibration is a major issue with RF S IM cards.
  • NFC evolved based on the I S014443 standard contactless card technology.
  • the fundamental point is that both transmit signals and energy using a magnetic field of 13.56 MHz.
  • the main problems of NFC technology are:
  • NFC's magnetic field lines cannot be integrated into SIM or SD card (Secure Digit Memory Card) / TF (TransFLash) cards.
  • SIM or SD card Secure Digit Memory Card
  • TF TransFLash
  • the signal is transmitted between the card reader and the card to exchange signals and transmit energy.
  • the direction of the card reader to the card needs to transmit energy and 13.56MHz amplitude modulation signal.
  • the size and area of the wire cymbal have higher requirements; the card is in the direction of the card reader, and the card relies on the load modulation mode of the short circuit and the open circuit card instead of relying on external energy to directly transmit the field strength to the card reader, because
  • the load modulation signal requires that the higher the coupling coefficient between the card line and the card reader, the better the information transmitted by the card reader decoding card, which further increases the size and area requirements of the antenna on the card.
  • the size of the coupled coil is relatively large.
  • the NFC requires that the antenna cable in the mobile terminal is sufficiently large, and the size cannot be placed in the card for the mobile terminal such as the SIM card or the SD/TF card, and not only the metal and other conductive objects on the mobile terminal. It will seriously interfere with the receiving and load modulation effects of the antenna.
  • the retrofit point is, for example, placing the multi-turn antenna of the card on the battery back cover of the mobile terminal, or guiding the antenna from the terminal main board to the back of the battery through a flexible PCB, the area of the antenna is equivalent to the size of the ordinary battery, and the back cover of the mobile phone Cannot be made of metal.
  • the 13.56MHz frequency used by NFC needs to be calibrated for distance control.
  • Figure 1 shows the voltage-distance curve of the test in the case where the coil receiving circuit is placed in various mobile terminals and the carrier is kept constant at the same 14443 P0S machine.
  • the signal strength value is the necessary amplification of the receiving antenna induced voltage. After the value, the magnification remains constant, just pay attention to the relative change in intensity with distance. It can be seen that the field strength difference received by different terminals is > 30dB, and the field strength change from 1 cm to 10 cm in the same terminal is about 25 dB.
  • the field strength change caused by the difference of the mobile phone has exceeded the terminal within the control range of l cm to 10 cm. The field strength changes, so it is impossible to control the distance of each terminal by the same threshold, that is, the non-calibrated distance control cannot be realized. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a short-distance communication method and system, which enables a credit card transaction such as electronic payment without requiring calibration for various mobile terminals having a short-range communication function.
  • the present invention proposes a short-range communication method applied to a short-range communication system including at least one card reader and at least one mobile radio frequency device, comprising the following steps:
  • Step a the card reader transmits a low-frequency alternating magnetic field signal according to a preset transmission parameter, where the low-frequency alternating magnetic field signal carries identity identification information of the card reader, and the transmission parameter includes a frequency of the low-frequency alternating magnetic field signal.
  • the frequency is equal to or less than the highest frequency f O of the system without calibration work;
  • Step b The mobile radio frequency device receives, detects, and amplifies the low-frequency alternating magnetic field signal at each distance point and amplifies the voltage signal with a constant amplitude corresponding to the distance, and further determines that the movement is loaded by a preset voltage threshold V t Whether the terminal of the radio frequency device enters a preset effective distance interval, and the voltage threshold Vt is the same for all terminals loaded with the mobile radio frequency device; Step c, if the voltage signal corresponding to the received low frequency alternating magnetic field signal is greater than or equal to the preset voltage threshold Vt, the terminal loaded with the mobile radio frequency device enters a preset effective swipe interval, and the mobile radio device is moved from Acquiring the identification information of the card reader in the received low frequency alternating magnetic field signal, and transmitting the card identification information together with the identity identification information thereof to the card reader through the radio frequency channel;
  • Step d the card reader receives the information transmitted by the mobile radio device through the radio frequency channel, and compares whether the identity information of the card reader in the information is consistent with the identity information of the card, and if they are consistent, the identity information and the identity are
  • the combination of the identification information of the mobile radio device is used as a combined address, and the mobile radio device performs a card transaction through the radio frequency channel.
  • the above method may further have the following feature.
  • the highest frequency f 0 of the system without calibration is determined by the following steps:
  • Step a1 determining a distance control target (Din, Dv) of the system, wherein Din indicates that all terminals loaded with the mobile radio device ensure that the distance can be swiped within a range of 0 ⁇ Din, Dv represents a range of distance fluctuation, and the distance is Din ⁇ Swipe is allowed in the range of (Din+Dv), and the range is greater than Din+Dv.
  • Din indicates that all terminals loaded with the mobile radio device ensure that the distance can be swiped within a range of 0 ⁇ Din
  • Dv represents a range of distance fluctuation
  • the distance is Din ⁇ Swipe is allowed in the range of (Din+Dv)
  • the range is greater than Din+Dv.
  • Step a2 determining a fluctuation range ⁇ ⁇ of the detection voltage in the mobile radio frequency device caused by the card reader; step a3, determining a fluctuation range S c of the detection voltage caused by the mobile radio frequency device itself;
  • Step a4 testing the voltage distance curve of each typical terminal and obstacle at the f frequency; step a5, determining the fluctuation range ⁇ ⁇ of the detection voltage in the mobile radio device by the distance control target (Din, Dv), ⁇ A is equal to each typical The difference between the voltage value corresponding to the Din point on the voltage distance curve of the voltage field curve of the terminal and the obstacle and the voltage value corresponding to the (Din+Dv) point obtained by the voltage distance curve of the terminal and the obstacle;
  • the transmission parameter further includes a modulation mode, an encoding mode, and a transmitting magnetic induction intensity amplitude Br, wherein the modulation mode, the encoding mode, and the transmitting magnetic induction intensity amplitude Br pass
  • the modulation mode, the encoding mode, and the transmitting magnetic induction intensity amplitude Br pass
  • the typical noise terminal and the easily realized gain parameter of magnetic detection and amplification in the mobile radio device are selected, and the test card reader does not transmit the low frequency alternating magnetic field signal.
  • the inherent noise voltage amplitude Vn of the detected voltage in the radio frequency device is moved, and then the card reader transmits the low-frequency alternating magnetic field signal by using the selected modulation and coding method to move the detection voltage Vr in the radio frequency device, and selects the amplitude of the transmitted magnetic induction intensity Br.
  • Vr/Vn>SNR SNR be the signal-to-noise ratio of the mobile radio device.
  • the above method may further have the following features.
  • the preset voltage threshold Vt is determined by the following steps:
  • Step bl under the selected transmission parameters, measuring the voltage distance curve of each typical terminal and obstacle, the transmission parameters including the frequency, modulation mode, coding mode and amplitude of the transmitted magnetic induction intensity Br of the low frequency alternating magnetic field signal;
  • Step b2 obtaining a reference voltage distance curve, the reference voltage distance curve is the intermediate value of the typical terminal and the obstacle curve, and the voltage amplitudes from the upper boundary and the lower boundary of the typical terminal curve are both ⁇ ⁇ /2;
  • step b3 the detection voltage threshold Vt in the mobile radio device is selected, and the voltage value corresponding to the (Din+Dv/2) point on the reference voltage distance curve is the Vt value.
  • the above method may further have the following feature, the frequency of the low frequency alternating magnetic field signal is in a special low frequency band or a low frequency band or a low frequency band, and the frequency range of the special low frequency band is
  • the frequency range of the very low frequency band is 3 KHz ⁇ 30 KHz, and the frequency range of the low frequency band is 30 KHz ⁇ 300 KHz.
  • the above method may further have the following feature, the frequency of the low frequency alternating magnetic field signal is 300 Hz to 50 kHz.
  • the above method may further have the following characteristics: the frequency of the low frequency alternating magnetic field signal is 500 ⁇ , 1 ⁇ , 1.5 kHz, 2 kHz, 2. 5 kHz, 3 kHz, 4 kHz, 5 kHz, 10 kHz, 20 kHz, or 30 kHz.
  • the foregoing method may further have the following features: the coding mode is a Manchester code, a differential Manchester code, or a return-to-zero code; and the modulation mode is an open key control method, a phase shift keying method, or a frequency shift keying method. .
  • the present invention proposes a short-range communication system comprising at least one card reader and at least one mobile radio frequency device, wherein:
  • the card reader is configured to transmit a low frequency alternating magnetic field signal according to a preset transmission parameter, where the low frequency alternating magnetic field signal carries identity identification information of the card reader, and the transmission parameter includes a low frequency alternating magnetic field signal Frequency, which is equal to or less than the highest frequency f 0 of the system without calibration work; and is also used to receive information transmitted by the mobile radio device through the radio frequency channel, and compare whether the identity information of the card reader in the information is the same as the identity of the card If the information is consistent, the combination of the identity information of the mobile device and the identity information of the mobile radio device is used as a combined address, and the mobile radio device performs a card transaction through the radio frequency channel;
  • the mobile radio frequency device is configured to receive, detect, and amplify the low frequency alternating magnetic field signal at each distance point into a voltage signal having a constant amplitude corresponding to the distance, and further determine that the loading is performed by a preset voltage threshold Vt Whether the terminal of the mobile radio device enters a preset effective distance interval, and the voltage threshold Vt is the same for all terminals loaded with the mobile radio device;
  • the voltage signal corresponding to the received low frequency alternating magnetic field signal is greater than or equal to the preset voltage threshold Vt
  • the identification information of the card reader is obtained from the received low frequency alternating magnetic field signal, and is associated with its own identity. The information is transmitted to the card reader through the RF channel; and is also used for card transaction with the card reader through the RF channel.
  • the card reader comprising at least one low frequency transmission line, at least one driving circuit, at least one encoding circuit, at least one first main processor, at least one radio frequency transceiver circuit, and at least one The radio frequency antenna, the low frequency transmission line, the driving circuit, the encoding circuit, the first main processor, the radio frequency transceiver circuit, the radio frequency antenna, and the serial connection in series;
  • the mobile radio frequency device includes at least one low frequency magnetic induction circuit, at least one low frequency amplification a circuit, at least one threshold determination and demodulation circuit, at least one second main processor, at least one radio frequency transceiver circuit and at least one radio frequency antenna, said low frequency magnetic induction circuit, low frequency amplifying circuit, threshold determination and demodulation circuit, second main
  • the processor, the RF transceiver circuit, and the RF antenna are connected in series in series.
  • a modulation circuit is further disposed between the driving circuit of the card reader and the encoding circuit.
  • the above system may further have the following feature, the low frequency emission line ⁇ being an enameled wire ⁇ or a PCB wire ⁇ .
  • the above system may further have the following feature, the number of turns of the low frequency transmission line ⁇ is greater than 10 ⁇ .
  • the above system may further have the following feature: the number of turns of the low frequency transmission line is 50 ⁇ 500 ⁇ .
  • the above system may further have the following feature: the low frequency emission line is filled with a ferrite core or an iron core.
  • the above system may further have the following feature, the widest part of the area enclosed by the low frequency emission line ⁇ is larger than the section width of the mobile radio frequency terminal.
  • the above system may further have the following features: the area surrounded by the low frequency transmission line
  • the cross section includes at least a circular area of 3 cm in diameter or a square area of 3 cm * 3 cm.
  • the low frequency magnetic induction circuit is a PCB wire ⁇ , an enameled wire ⁇ , a Hall device or a giant magnetoresistive device.
  • the above system may also have the following features, the mobile radio frequency device being placed in the mobile terminal.
  • the mobile radio frequency device is placed in a SIM card, a UIM card, a USIM card, a TF card or an SD card in the mobile terminal.
  • the mobile terminal is a mobile phone, a personal digital assistant PDA or a notebook computer.
  • the above system may further have the following feature: the identity identification information is an identification code.
  • the identity identification information is an identification code. The invention realizes that the data communication distance (that is, the transaction distance) of the radio frequency communication terminal (such as the mobile phone equipped with the radio frequency SIM card) containing the mobile radio frequency device and the card reader is reliably controlled within the specified range, and the terminal does not need to be calibrated. .
  • Figure 1 is a voltage-distance curve tested in the case where the coil receiving circuit is placed in various mobile terminals and the 13.56 MHz carrier is kept constant on the same 14443 P0S machine;
  • FIG. 2 is a structural block diagram of a system for selecting a highest frequency f O of a system without calibration work in the short-range communication method of the present invention
  • FIG. 3 is a schematic diagram of determining a total received detection voltage fluctuation range ⁇ ⁇ by a distance control target (Din, Dv);
  • Figure 4 is a typical terminal and obstacle voltage distance curve and its fluctuation interval ⁇ ;
  • Figure 5 is the voltage distance curve of five typical mobile terminals when the frequency f is 3. 3KHz;
  • Figure 6 is the non-modulation detected inside the mobile RF device Received voltage signal for direct baseband transmission Voltage waveform diagram of the received voltage signal when the number and sine wave FSK are modulated;
  • Figure 7 is a schematic diagram of a calculation method of a reference voltage distance curve
  • FIG. 8 is a structural diagram of a short-range communication system according to an embodiment of the present invention.
  • Figure 9 is a schematic diagram of a low frequency transmitting portion of the card reader.
  • FIG. 10 is a schematic diagram of a format of a low frequency data frame of a card reader
  • Figure 11 shows the voltage distance curve of the coil receiving circuit placed in various mobile terminals and tested by a signal source through a low-frequency transmitting line ⁇ under a constant ⁇ magnetic field.
  • the terminal appearing in the following text refers to a terminal loaded with a mobile radio device by default, and refers to a terminal that can be moved, that is, a mobile terminal, such as a mobile phone, etc., a distance card reader and a mobile radio device.
  • a mobile terminal such as a mobile phone, etc.
  • a distance card reader and a mobile radio device.
  • the distance between the reader that is, the distance between the card reader and the terminal loaded with the mobile radio device.
  • the invention provides a distance control problem for a short-distance transaction between a radio frequency device (especially a radio frequency card built in a terminal, such as a radio frequency SIM card) and a card reader device, and proposes a function of transmitting a low-frequency alternating magnetic field and a radio frequency signal.
  • a radio frequency device especially a radio frequency card built in a terminal, such as a radio frequency SIM card
  • a short-distance communication system consisting of a transceiver card reader and a mobile radio frequency device with a low-frequency alternating magnetic field induction receiving function and a radio frequency signal transceiving function, and a short-distance communication method corresponding to the system.
  • the invention utilizes the characteristics of low-frequency alternating magnetic field penetrating through different terminal attenuation differences to perform distance control, and uses high-frequency radio frequency to effectively penetrate the terminal to complete high-speed two-way communication for transaction.
  • the system performs the distance detection and control without calibration by a preset threshold determination method, that is, the card reader transmits the low frequency alternating magnetic field signal according to the preset transmission parameter, and the mobile radio frequency device detects the magnetic field signal at each distance point and Amplifying into a voltage signal having a constant amplitude corresponding to the distance, and further determining whether the terminal enters a preset effective distance interval (the effective distance interval, that is, the range of allowing the card to be swiped) by a preset voltage threshold Vt, the voltage threshold Vt All terminals are identical and no calibration is required.
  • the invention combines the low-frequency one-way communication and the RF two-way communication to complete the unique binding of the card reader and the mobile radio device, and the binding is completed through the RF channel.
  • the system of the present invention can realize that the data communication distance (ie, the transaction distance) of the terminal (such as the mobile phone equipped with the radio frequency SIM card) containing the mobile radio frequency device and the card reader is reliably controlled within the prescribed range, and the terminal is not required to be calibrated.
  • the short-range communication method of the present invention is applied to a short-range communication system including at least one card reader and at least one mobile radio frequency device, and includes the following steps of step &, step b, step c and step d, respectively The steps are specified:
  • Step a the card reader transmits a low frequency alternating magnetic field signal according to a preset transmission parameter, where the low frequency alternating magnetic field signal carries the identity identification information of the card reader, wherein the transmitting parameter includes a frequency of the low frequency alternating magnetic field signal, The frequency is equal to or less than the highest frequency f O of the system without calibration work; wherein the identification information may be an identification code ID.
  • the frequency of the low-frequency alternating magnetic field signal in this step refers to the frequency corresponding to the high-end frequency cut-off point of the 3dB bandwidth of the spectrum of the low-frequency alternating signal.
  • the frequency point selection system selects the frequency point with a small enough difference to achieve No calibration distance control.
  • the low frequency alternating magnetic field signal is transmitted through a standard magnetic field emission line using a standard signal source, and the low frequency alternating magnetic field signal is received inside each typical mobile terminal and obstacle, and the transmission frequency is adjusted until the frequency point f O is found to make the mobile radio frequency device (loaded in the mobile terminal) the received voltage (the voltage is a voltage signal whose amplitude corresponding to the distance obtained by amplifying the low-frequency alternating magnetic field signal is constant) at the same distance from the center point of the plane of the emission line,
  • the difference in field strength between different terminals and obstacles is approximately equal to the set fluctuation range ⁇ ⁇ .
  • the frequency point f 0 and the frequency band lower than the frequency point f O are the frequency bands in which the system has no calibration work, and do not need to be calibrated in any system.
  • the operating frequency ie, the frequency of the low-frequency alternating magnetic field signal mentioned above
  • f O the frequency of the low-frequency alternating magnetic field signal
  • the frequency point selection system is composed of a signal source 505 and a low-frequency magnetic field emission line.
  • the 504 is composed of a typical mobile terminal 501 and an obstacle, a signal strength tester 503 (a voltmeter, an oscilloscope, a spectrum analyzer, etc.), and the mobile terminal 501 has a low frequency receiving module 502 therein.
  • Signal source 505 accurately produces signals of various frequencies, waveforms, and amplitudes.
  • signal source 505 generates a sine wave signal of fixed amplitude frequency f, which is transmitted through transmission line 504, and low frequency receiving module 502 is placed inside selected typical mobile terminal 501 or obstacle, and received low frequency.
  • the signal is connected to the signal strength tester 503 through a dedicated signal line, and the signal strength tester 503 tests the received voltage.
  • Changing the distance of the mobile terminal can obtain a curve of the detected voltage of the mobile terminal or the obstacle under the condition of the frequency f (hereinafter referred to as a voltage distance curve), and changing the mobile terminal or the obstacle can obtain a curve of the plurality of terminals, changing A different curve can also be obtained for the frequency f.
  • step a the highest frequency f O of the system without calibration work is determined by the following steps: Step 101, determining the distance control target (Din, Dv), wherein Din indicates that all terminals in the range of 0 ⁇ Din ensure that the card can be swiped, and Dv represents the distance fluctuation. Scope, the distance is Din ⁇ ( Din + Dv ) is allowed to swipe, the distance is greater than the Din + Dv range is not allowed to swipe;
  • the distance control target is determined by the specific application. (0 ⁇ Din+Dv ) is called the distance control range.
  • Step 102 Determine a fluctuation range ⁇ ⁇ of the detection voltage in the mobile radio frequency device caused by the card reader; the parameter fluctuation of the low frequency transmission circuit of the card reader forms a fluctuation of the transmission field strength, causing fluctuation of the detection voltage in the mobile radio frequency device, and the parameter includes the transmission.
  • Drive voltage fluctuations, line parameter fluctuations, temperature effects, etc. ⁇ ⁇ is controlled by the reader design and production process. This fluctuation can be calibrated in the production process. Since the low frequency transmitting circuit operates at a low frequency, ⁇ ⁇ can usually be well controlled, for example 4dB. Inside.
  • Step 103 determining a fluctuation range S c of the detection voltage caused by the mobile radio frequency device itself
  • S e is controlled by the design and production of the mobile RF device.
  • the fluctuation can be calibrated at the production stage. Since the low frequency receiving circuit of the mobile RF device has a low operating frequency, usually s c can be well controlled, for example, within 4 dB.
  • Step 104 Test the voltage distance curve of each typical terminal and obstacle at the f frequency; perform a preparatory work before performing this step 104, that is, select a typical terminal and a typical obstacle.
  • the selection principle of a typical terminal is mainly selected according to the number of terminal metals or conductive structures. The more metal, the greater the attenuation. For example, plastic casing, metal casing, thick metal shell, thin metal shell, large-size terminal, small-sized terminal, etc. can be selected.
  • the number of typical terminals is not strictly limited.
  • the selection of typical terminals can basically cover the attenuation characteristics of the terminal to the low-frequency alternating magnetic field signals.
  • the mobile terminal model authentication can be added to the application, and the mobile terminal that needs to support the payment application is attempted to perform a card test to confirm that the attenuation characteristics of the mobile terminal of the model meet the requirements.
  • Typical obstacles can be selected from different materials of standard shape plastic, aluminum, copper, iron, stainless steel and other mobile terminal common materials, placed between the card reader and the mobile radio device as an equivalent obstacle measurement attenuation of the mobile terminal effect.
  • Step 105 Determine, by the distance control target (Din, Dv), a fluctuation range ⁇ ⁇ of the detection voltage in the mobile radio frequency device, where ⁇ A is equal to a voltage having a slope of the average field strength attenuation curve obtained from a voltage distance curve of each typical terminal and the obstacle The difference between the voltage value corresponding to the Din point on the curve and the voltage value corresponding to the (Din+Dv) point;
  • FIG. 3 is a schematic diagram of determining the total received detection voltage fluctuation range ⁇ ⁇ of the system by the distance control target (Din, Dv).
  • the voltage value corresponding to the (Din+Dv) point is V2
  • the voltage value corresponding to the (Din+Dv) point is VI
  • S A V1_V2.
  • Step 107 Calculate a maximum field strength difference ⁇ (also called a fluctuation interval) at each distance point between each typical terminal and an obstacle in a distance control range. If ⁇ is greater than ⁇ ⁇ , decrease the frequency f, and go to step a4; If ⁇ is smaller than ⁇ ⁇ , the frequency f is increased, and step a4 is turned; if ⁇ is equal to ⁇ ⁇ , the current test frequency f is equal to the highest frequency f0 of the system without calibration work.
  • also called a fluctuation interval
  • Figure 4 shows a typical terminal and obstacle voltage distance curve and its fluctuation interval ⁇ .
  • the voltage distance curve corresponding to the maximum attenuation terminal or obstacle is called the maximum attenuation curve.
  • the voltage attenuation curve corresponding to the minimum attenuation terminal or obstacle is called the minimum attenuation curve.
  • the highest frequency fO of the system without calibration work is determined.
  • the system can adopt the modulation method or the method of directly transmitting the baseband signal.
  • the maximum frequency component of the system operation is as long as it is not greater than fO, and the distance control does not need to be calibrated.
  • FIG. 5 is a voltage distance curve of five typical mobile terminals at a frequency f of 3.3 kHz.
  • the system distance control target is (5cm, 5 cm)
  • the system 0 ⁇ 10cm distance range varies by about 40dB
  • the transmission parameters may further include a modulation mode, an encoding mode, and a transmitting magnetic induction intensity amplitude Br.
  • the basic principle of selecting the transmission parameters is to ensure that the mobile radio device reads the card at various distances.
  • the low-frequency alternating magnetic field signal emitted by the device detects and amplifies the signal as a voltage signal having a constant amplitude corresponding to the distance.
  • 6 is a voltage waveform diagram of a received voltage signal and a received voltage signal when a sinusoidal FSK modulation is detected in a non-modulated direct baseband transmission detected by a mobile radio frequency device, wherein a is a received voltage signal waveform when the baseband is transmitted without modulation.
  • FIG. 6 is a waveform diagram of the received voltage signal when sinusoidal FSK modulation.
  • the detection voltage signal is a variable voltage signal including demodulation information, and the signal may be an AC voltage signal without a DC component or a voltage signal having a DC component, and the constant amplitude means that the AC component changes the most. The amplitude is constant between different transmission symbols.
  • the modulation mode, coding mode and amplitude of the transmitted magnetic induction intensity in the transmission parameters are selected by the following steps al l to al 3:
  • Step al l selecting any encoding method without an average DC component, such as Manchester code, differential Manchester code, return to zero code, etc.;
  • Step a2 selecting a carrier modulation mode with no modulation mode or no change in amplitude, and the carrier modulation mode may select any modulation mode with no change in amplitude.
  • the carrier may adopt a sine wave, a pulse, a triangular wave, etc.
  • the modulation mode may be selected as Key control method (00K), phase shift keying method or frequency shift keying method (FSK); when using no modulation method, the encoded baseband signal is directly transmitted by the transmitting line after being driven by the driving circuit;
  • Step a3 selecting the amplitude of the transmitted magnetic induction intensity Br, by: selecting the typical noise terminal and the easy-to-implement magnetic detection in the mobile radio device under the selected operating frequency, modulation mode and coding mode less than f O And the amplified gain parameter, test the inherent noise voltage amplitude Vn of the detection voltage in the mobile radio device under the condition that the card reader does not transmit the low frequency alternating magnetic field signal, and then measure the low frequency alternating magnetic field signal when the card reader transmits the low frequency alternating magnetic field signal by using the selected modulation and coding mode.
  • the detection voltage Vr in the mobile radio device is selected, and the amplitude of the transmitted magnetic induction intensity is selected to be such that Vr/Vn>SNR and SNR are the signal-to-noise ratio of the mobile radio device.
  • the selection of the SNR value is usually as large as possible, but too large will cause the reader to transmit too much power, which is difficult to implement.
  • Step b the mobile radio frequency device receives and detects the low frequency alternating magnetic field signal at each distance point And zooming in to a voltage signal having a constant amplitude corresponding to the distance, and determining, by a preset voltage threshold V t , whether the terminal loaded with the mobile radio frequency device enters a preset effective distance interval, the voltage threshold vt loading All terminals with the mobile radio device are the same;
  • step b the preset voltage threshold Vt is determined by the following steps 201 to 203: Step 201, measuring the voltage distance curve of each typical terminal and the obstacle under the selected transmission parameter, wherein the transmission parameter includes low frequency intersection The frequency of the variable magnetic field signal, the modulation mode, the coding mode and the amplitude of the transmitted magnetic induction intensity Br;
  • Step 202 obtaining a reference voltage distance curve, wherein the reference voltage distance curve is an intermediate value of a typical terminal and an obstacle curve, and the voltage amplitudes of the upper boundary and the lower boundary of the typical terminal curve are both ⁇ ⁇ /2 , as shown in FIG. 7 .
  • Step 203 Select a detection voltage threshold value Vt in the mobile radio frequency device. As shown in FIG. 7, the voltage value corresponding to the (Din+Dv/2) point on the reference voltage distance curve is a Vt value.
  • Step c if the voltage signal corresponding to the received low frequency alternating magnetic field signal is greater than or equal to a preset voltage threshold Vt, the terminal loaded with the mobile radio frequency device enters a preset effective swipe interval, and the mobile radio frequency device receives from the receiving Obtaining the identification information of the card reader in the low frequency alternating magnetic field signal, and transmitting the card identification information together with the identity identification information thereof to the card reader through the radio frequency channel;
  • the card reader receives the information transmitted by the mobile radio device through the radio frequency channel, and compares whether the identity information of the card reader in the information is consistent with the identity information of the card, and if they are consistent, the identity information and the mobile radio device are The combination of the identification information is used as a combined address, and the mobile radio device performs a credit card transaction through the radio frequency channel.
  • the card transaction does not only refer to electronic payment, but also other communication processes through the RF channel, such as recharge, consumption, identity authentication, etc.
  • the card transaction in this document refers to the communication through the RF channel, especially the short-range communication. Communication through the RF channel.
  • the frequency of the low frequency alternating magnetic field signal is in the ultra low frequency band or the low frequency band or the low frequency band, wherein the frequency range of the special low frequency band is 300 Hz ⁇ 3000 Hz, and the frequency of the very low frequency band The rate ranges from 3KHz to 30KHz, and the frequency range of the low frequency band is 30 KHz ⁇ 300KHz.
  • the frequency of the low frequency alternating magnetic field signal may be 300 Hz to 50 kHz.
  • the frequency of the low frequency alternating magnetic field signal may be 500 ⁇ , 1 ⁇ , 1 ⁇ 5 ⁇ , 2 ⁇ , 2 ⁇ 5 ⁇ , 3 ⁇ , 4 ⁇ , 5 ⁇ , 10 ⁇ , 20 ⁇ or 30 ⁇ .
  • the short-distance communication method of the invention adopts a combination of low-frequency magnetic field one-way communication and radio frequency electromagnetic field high-speed two-way communication, thereby avoiding the use of the unique 13.56 MHz frequency point bidirectional communication and distance control in the NFC system, and the antenna signal and the terminal signal attenuation difference are large. And other issues.
  • the card reader transmits the unique identifier I Dr (ie, the aforementioned identification information) to the mobile radio device by using the low frequency unidirectional channel, and the mobile radio device attaches its unique identifier I Dc to the I Dr through the RF bidirectional channel.
  • the card reader After being passed back to the card reader, the card reader compares the correctness of the returned I Dr, thereby realizing the unique binding of the card reader to the mobile radio device. After the binding, the card reader and the mobile radio device use the RF bidirectional channel to realize high-speed and large-data communication until the transaction is completed.
  • the short-distance communication method of the present invention realizes that the data communication distance (ie, the transaction distance) of the radio frequency communication terminal (such as the mobile phone equipped with the radio frequency SIM card) containing the mobile radio frequency device and the card reader is reliably controlled within a prescribed range, and There is no need to calibrate the terminal.
  • the radio frequency communication terminal such as the mobile phone equipped with the radio frequency SIM card
  • the near field communication system of the present invention includes at least one card reader and at least one mobile radio frequency device, wherein:
  • the card reader is configured to transmit a low frequency alternating magnetic field signal according to a preset transmission parameter, where the low frequency alternating magnetic field signal carries identification information of the card reader, wherein the transmission parameter includes a frequency of the low frequency alternating magnetic field signal, and the frequency is equal to Or less than the highest frequency f O of the system without calibration work; the card reader is also used to receive information transmitted by the mobile radio device through the radio frequency channel, and compare whether the identity information of the card reader in the information is consistent with its own identity information, Consistently, the combination of the identity information of the mobile device and the identity information of the mobile radio device is used as a combined address, and the mobile radio device performs a card transaction through the radio frequency channel;
  • the mobile radio frequency device is configured to receive and detect the low frequency alternating magnetic field signal emitted by the card reader at each distance point and amplify the voltage signal with a constant amplitude corresponding to the distance, and then determine the loading by the preset voltage threshold Vt.
  • the mobile radio device is further configured to correspond to the received low frequency alternating magnetic field signal
  • the identifier information of the card reader is obtained from the received low frequency alternating magnetic field signal, and is transmitted to the card reader through the radio frequency channel together with the identity information of the card.
  • the mobile RF unit is also used for card transaction with the reader through the RF channel.
  • the identity information may be an identifier ID.
  • the card reader in the short-range communication system of the present invention has two basic functions of a low-frequency transmitting function and a radio frequency transceiving function. It can also be said that the card reader in the short-range communication system of the present invention has a low-frequency transmitting module and radio frequency transmitting and receiving.
  • the module has two basic modules; the mobile radio frequency device in the short-range communication system of the present invention has two basic functions of a low frequency receiving function and a radio frequency transceiving function, and it can also be said that the mobile radio frequency device in the short-range communication system of the present invention has a low frequency receiving module. And two basic modules such as RF transceiver module.
  • the card reader includes at least one low frequency transmission line, at least one driving circuit, at least one encoding circuit, at least one first main processor, at least one radio frequency a transceiver circuit and at least one radio frequency antenna, wherein the low frequency transmission line ⁇ , the driving circuit, the encoding circuit, the first main processor, the radio frequency transceiver circuit, the radio frequency antenna, and the serial connection in series;
  • the mobile radio frequency device includes at least one low frequency magnetic induction circuit, at least a low frequency amplifying circuit, at least one threshold determining and demodulating circuit, at least one second main processor, at least one radio frequency transceiver circuit and at least one radio frequency antenna, wherein the low frequency magnetic induction circuit, the low frequency amplifying circuit, the threshold determining and demodulating circuit,
  • the second main processor, the radio frequency transceiver circuit, and the radio frequency antenna are connected in series in series.
  • a modulation circuit may be further disposed between the driving circuit of the card reader and the encoding circuit.
  • the low frequency transmission line ⁇ , the driving circuit and the encoding circuit (including the modulation circuit when modulating the circuit) in the card reader can be regarded as a component of the low frequency transmitting module, and the first in the card reader
  • the main processor, the RF transceiver circuit and the RF antenna can be considered as components of the RF transceiver module in the card reader; the low frequency magnetic induction circuit, the low frequency amplification circuit and the threshold determination and demodulation circuit in the mobile RF device can be regarded as the low frequency receiving module.
  • the second main processor, the radio frequency transceiver circuit, and the radio frequency antenna in the mobile radio device can be considered as an integral part of the radio frequency transceiver module in the mobile radio device.
  • the low frequency emission line ⁇ may be an enameled wire ⁇ or a PCB ⁇ .
  • the number of turns of the low-frequency emission line ⁇ may be greater than 10 ⁇ .
  • the number of turns of the low-frequency emission line 50 is 50 ⁇ 500 ⁇ .
  • the low frequency emission line is filled with a ferrite core or a core.
  • the cross-sectional area of the area surrounded by the low-frequency emission line ⁇ is wider than the cross-sectional width of the mobile radio frequency terminal.
  • the section of the area enclosed by the low-frequency emission line ⁇ includes at least a circular area i of 3 cm in diameter or a square area i of 3 cm * 3 cm.
  • the frequency magnetic sensing circuit described above may be a PCB coil, an enamelled wire, a Hall device or a giant magnetoresistive device.
  • the mobile radio frequency device may be placed in the mobile terminal, or may be placed in a SIM card, a UIM card, a USIM card, a TF card or an SD card in the mobile terminal.
  • the mobile terminal can be a mobile phone, a personal digital assistant PDA or a laptop computer.
  • the card reader continuously transmits a low-frequency alternating magnetic field signal not higher than the selected frequency f O according to the distance control target according to the distance control target, and the data frame carries the data frame in the manner of modulation or direct baseband transmission.
  • the frame contains the unique identifier Idr of the card reader (of course, it can be other body Identification information).
  • the low frequency alternating magnetic field signal penetrates the terminal to reach the internal mobile radio frequency device, and the mobile radio frequency device detects the magnetic field signal at each distance point and amplifies the distance to the distance
  • the receiving voltage threshold value Vt indicates that the terminal enters the predetermined valid card swiping range of the card reader
  • the low frequency receiving circuit refers to the aforementioned low frequency magnetic inducting circuit, low frequency amplifying circuit and threshold determining and demodulating circuit
  • the unique identification code I Dr of the card reader there is a one-to-one correspondence between the voltage signal after the magnetic field conversion in the mobile radio frequency device and the distance between the card reader and the mobile radio frequency device, and the relationship is determined by the voltage distance variation curve, and according to the corresponding relationship, the voltage can be The distance between the mobile radio device and the card reader is determined, thereby indirectly determining the distance between the mobile terminal and the card reader.
  • the setting of Vt and emission parameters is a one-time operation, and there is no need to change once the settings are in use.
  • the mobile radio device access card reader mainly includes a unique binding process of the card reader and the mobile radio device.
  • the binding process is exemplified: the mobile radio device disassembles the card reader unique identification code I Dr from the low frequency signal and transmits it to the second main processing module in the mobile radio device, and the second main processing module moves the radio device.
  • the unique identification code I Dc is sent to the card reader through the RF transceiver module together with the received I Dr. After the card reader receives the return (I Dr, I Dc) from the mobile radio device, the identification code is I Dc.
  • the mobile radio device correctly returned the reader's identification code I Dr , which is the only communication terminal for this transaction.
  • the mobile radio device with the ID I Dc confirms that it is unique to the card reader with the ID I Dr. Communication. At this point, the mobile radio device and the card reader achieve unique binding, and the two parties uniquely identify each other through the combined address (I Dr, I Dc ).
  • the binding communication process uses the RF channel for interaction without error. After the mobile radio device is successfully accessed, the distance control process is completed, and the subsequent transaction process can be performed on the RF channel until the transaction ends. 4. Trading process:
  • the card reader and the mobile radio device establish a reliable and unique communication link through the RF channel. Based on the link, the two parties can implement the process required for identity authentication and other transactions required for the transaction. All of these processes are performed through a fast RF channel. Since the completion of the aforementioned process ensures that access can only be achieved within a predetermined distance, the entire transaction process is also within a limited range of communication.
  • FIG. 8 is a structural diagram of a short-range communication system according to an embodiment of the present invention. As shown in Fig. 8, the system consists of two parts: a card reader device 100 and a mobile radio device 200, which is placed inside the mobile terminal and interacts with the terminal through the mobile terminal communication interface.
  • the card reader 100 is composed of the following modules: a first main processor 101, which is responsible for the low frequency and high frequency control of the card reader and other protocol processing, and the first main processor 101 is directly connected to the external communication interface through the interface circuit 102;
  • the encoding circuit 108 is responsible for bit-by-bit encoding the low-frequency frame data, and the modulating circuit 107 is responsible for modulating the encoded-output symbol stream to form a modulated signal to the driving circuit 106, and the encoded signal is directly sent to the transmitting circuit without modulation.
  • the driving circuit 106 is responsible for driving the low-frequency transmitting line ⁇ 105, generating the low-frequency alternating magnetic field 301; and the low-frequency transmitting module composed of the low-frequency transmitting line ⁇ 105, the driving circuit 106, the modulating circuit 107 and the encoding circuit 108,
  • the transmit field strength value can be changed and set;
  • the low frequency transmit line ⁇ 105 is typically composed of a plurality of turns of a particular shape;
  • the RF transceiver circuit 103 receives and transmits the RF signal through the RF antenna 104.
  • the mobile radio device is composed of the following modules: a second main processor 201, which is responsible for the control of low frequency and radio frequency modules and other protocol processing, and is also responsible for communication with the mobile terminal; S IM/TF/SD card module 202 is a mobile terminal S IM/TF/SD card body module, which module is determined by the card type; low frequency magnetic induction circuit 207, which is composed of PCB wire ⁇ , enamelled wire ⁇ , Hall device or other circuit components capable of sensing magnetic field changes, is responsible for sensing low frequency intersection
  • the variable magnetic field signal 301 is converted into an electrical signal;
  • the low frequency amplifying circuit 206 is responsible for amplifying the electrical signal detected by the low frequency magnetic induction circuit to obtain a low frequency magnetic detection voltage signal.
  • the threshold determining and demodulating circuit 205 is responsible for determining the low frequency magnetic detecting voltage signal 303 according to a preset threshold Vt. If the threshold Vt is not reached, the card is not demodulated and is not allowed to be swiped, and the threshold Vt is reached to demodulate the signal.
  • the adjusted signal is sent to the second main processor 201; the RF transceiver circuit 203 is responsible for performing RF bidirectional communication with the RF transceiver module of the card reader via the RF antenna 204.
  • the system performs distance detection and control without calibration by a preset threshold determination method, that is, the card reader 100 transmits a low frequency alternating magnetic field signal 301 according to a preset transmission parameter, and the mobile radio frequency device 200 receives the magnetic field signal and converts it into a low frequency.
  • the magnetic detection voltage signal 303 is used to determine whether the terminal enters a preset effective distance interval by a preset threshold Vt.
  • the threshold Vt is the same for all terminals, and does not need to be modified for different terminals (so-called calibration).
  • the unique binding of the card reader 100 and the mobile radio frequency device 200 is completed by the combination of the low frequency one-way communication and the RF two-way communication, that is, the card reader 100 transmits the unique identifier IDr to the mobile radio device 200 by using the low frequency one-way channel.
  • the mobile radio frequency device 200 adds the card's own unique identifier IDc to the IDR through the RF bidirectional channel, and then returns the card ID to the card reader 100.
  • the card reader 100 compares the correctness of the IDR, thereby implementing the card reader 100 and the mobile radio device 200. The only binding. After binding, the two-way high-speed and large-volume communication is completed through the RF channel.
  • the specific working process of the short-range communication system is as follows:
  • the frequency of the above RF communication usually uses the 2400 - 2483MH 2.4G ISM band to achieve high-speed communication and good penetration to the terminal, and other frequency points such as 433MHz, 900MHz, 5GHz, etc. can also be used.
  • the above method is used to determine the system low frequency uncalibrated working frequency point f0.
  • distance control in the range of 0 ⁇ 10 cm is required, and the f0 frequency point is usually less than ⁇ , typical value Including 500Hz, ⁇ , 1. 5KHz, 2KHz, 2. 5KHz, 3KHz, 5KHz, etc.
  • the transmission parameters mainly include the modulation mode, the coding mode and the amplitude of the transmitted magnetic induction intensity Br.
  • Figure 9 is a schematic diagram of the low frequency transmitting part of the card reader. Referring to FIG. 8, the low frequency transmitting circuit of the card reader is composed of a driving circuit 106, a modulation circuit 107 and an encoding circuit 108, and the low frequency modulation signal driven by the driving circuit 106 is output to the low frequency transmitting line ⁇ 105.
  • the modulation circuit 107 can employ a variety of modulation methods:
  • Carrier modulation mode modulation The baseband signal generated by the coding circuit 108 is modulated by the modulation circuit 107.
  • the carrier can be a sine wave, a square wave, a triangle wave, etc., and the modulation can be switched frequency shift keying 00K, phase shift keying, frequency. Shift keying FSK, etc., the modulated signal is loaded into the low frequency emission line ⁇ 105 through the driving circuit 106;
  • modulation method Since the system of the present invention uses the threshold judgment method for distance control, the modulation method should not adopt amplitude modulation, and any modulation method capable of keeping the detection voltage amplitude in the mobile radio frequency device substantially constant during the transmission process can be used for the present invention.
  • the invention of the short-range communication system; the encoding circuit 108 can adopt a plurality of coding methods:
  • Bit 1 is encoded as two symbols 01 and bit 0 is encoded as 10.
  • the process of adjusting Br is actually a process of adjusting parameters such as the number of turns, wire diameter, and shape.
  • the card receiving threshold voltage Vt is determined by the aforementioned method.
  • Step A100 Distance measurement and control process.
  • the first main processor 101 of the card reader 100 generates a data frame containing the unique identification code IDr of the card reader, and sends it to the encoding circuit 108 for encoding.
  • the encoded signal is modulated by the modulation circuit 107 or directly sent without modulation.
  • the modulation voltage is sent to the low-frequency transmitting line ⁇ 105 for transmission.
  • the transmission line ⁇ 105 continuously circulates according to the above frame format with the set intensity Br.
  • a low frequency alternating magnetic field signal 301 of the specified parameters is transmitted.
  • the low frequency alternating magnetic field signal 301 penetrates the terminal to reach the internal mobile radio frequency device 200, and the low frequency magnetic induction circuit 207 in the mobile radio frequency device 200 detects the low frequency magnetic signal and converts it into an electrical signal. After being amplified by the low frequency amplifying circuit 206, the low frequency magnetic detecting voltage 303 is obtained.
  • the card When the magnitude of the voltage is less than (or greater than) the preset receiving voltage threshold value Vt, the card is not allowed to be swiped; when the magnitude of the voltage is greater than or equal to (or less than or equal to)
  • the preset receiving voltage threshold value Vt indicates that the terminal enters the predetermined effective card swipe range of the card reader, and the low frequency receiving circuit starts the decoding process to obtain the unique identification code IDr of the card reader.
  • FIG. 10 is a schematic diagram of the low-frequency data frame format of the card reader. As shown in Figure 10, the low-frequency data frame of the card reader is divided into: 3 ⁇ 4 port under i or:
  • Sync code 8 bits, usually FFH, for frame synchronization
  • Control field 8 bits, used to provide de-frame information of frame data, such as length, data type, etc., may be reserved for expansion;
  • IDr N bits, the unique identifier of the reader, specified by the control field;
  • CRC For the control domain, the IDr is verified, and the CRC checksum or other methods can be used.
  • the frame format described above is only an example and does not limit the frame format actually employed by the present invention.
  • any frame format including a card reader that uniquely identifies the card reader can be used.
  • the unique identification code may use a random number of sufficient length, or a method in which all readers manually assign a unique code, or an identification code generated by other means.
  • Step A2QQ The process of the mobile radio device accessing the card reader:
  • the mobile radio device access card reader mainly includes the unique binding process of the card reader 100 and the mobile radio device 200, which actually indicates that the card reader and the mobile radio device are located.
  • the internal low frequency receiving circuit of the mobile radio frequency device 200 solves the card reader unique identification code Idr and transmits it to the first main processor 201 in the mobile radio frequency device, and the module adds the unique identification code Idc of the mobile radio frequency device together with the received Idr.
  • the card reader 100 And transmitting to the card reader 100 through the RF transceiver circuit 203 and the RF antenna 204 in the mobile radio device, and the internal RF antenna 103 and the RF transceiver circuit 104 of the card reader receive the (IDr, IDc) returned by the mobile radio device, and then transmit the signal to the first A main processor 101 processes, and the first main processor 101 confirms that the mobile radio device whose identification code is IDc correctly returns the card reader IDr, which is the only communication terminal of the transaction. Since the IDr encoding ensures that the identification codes of other card readers around the card reader are different at this time, the card whose ID is IDc confirms that it has unique communication with the card reader whose ID code is IDr.
  • the mobile radio device and the card reader implement a unique binding, and the two parties uniquely identify each other through the (IDr, IDc) combined address.
  • the binding communication process uses RF channels for interaction without error. After the mobile radio device is successfully connected to the card reader, the distance control process is completed and can be performed on the RF channel. Continued trading process;
  • the mobile radio device unique identification code IDc in step A200 is a unique identification code pre-stored in the non-volatile memory (NVM) in the mobile radio device, or a sufficiently long random number generated in the mobile radio device.
  • NVM non-volatile memory
  • Step A300 The transaction process.
  • the card reader 100 and the mobile radio device 200 establish a reliable unique communication link through the RF channel, on the basis of which the two parties can implement the authentication required for the transaction and the processes required for other transactions. All of these processes are done through a fast RF channel until the end of the transaction. Since the completion of the foregoing steps A100 ⁇ A200 ensures that the mobile radio device 200 can only complete access within a predetermined distance, the entire transaction process is also within a limited distance to complete the transaction.
  • the transaction process is a mature P0S machine processing flow, which is not described in detail in the present invention.
  • the low frequency signal detecting circuit 207 in the mobile radio frequency device 200 can generally be constructed by using a PCB wire ⁇ , an enameled wire ⁇ or a Hall device.
  • the detecting circuit is not limited to these components, and in principle any magnetic field change can be converted into an electrical signal. Sensors can be used with this module, the only restriction being that it can be placed inside the card.
  • the system of the invention realizes the distance detection and control by using the low frequency alternating magnetic field, and realizes the one-way communication between the card reader and the mobile radio frequency device, and realizes the reliable binding of the terminal by using the RF channel combined with the low frequency communication, and simultaneously realizes the card reader by using the RF channel.
  • High-speed data communication between mobile radios It has the following characteristics: 1. It is possible to realize reliable two-way distance communication by simply replacing the internal SIM card/TF/SD card in the terminal without replacing the mobile terminal; 2 the card reader transmits low-frequency alternating magnetic field signals, moving The radio frequency device only needs to receive the magnetic field signal.
  • the receiving line or other receiving circuit can be miniaturized enough to put the mobile radio device into the SIM card/TF. /SD card; 3. Due to the weak reception signal, the amplifier circuit needs to be added in the mobile RF device. In addition, the RF transceiver circuit is placed in the mobile RF device at the same time, and the RF transceiver circuit in the card reader realizes bidirectional high-speed communication. As described above, the antenna of the RF circuit is small and can be easily integrated into the SIM card/TF/SD card. Inside. According to the frequency point f O selected by the method of the present invention, the system does not need to be calibrated to work below the frequency point.
  • the near field communication system of the invention realizes that the data communication distance (ie, the transaction distance) of the radio frequency communication terminal (such as the mobile phone equipped with the radio frequency SIM card) containing the mobile radio frequency device and the card reader is reliably controlled within the prescribed range, and Calibrate the terminal.
  • the radio frequency communication terminal such as the mobile phone equipped with the radio frequency SIM card
  • FIG. 11 shows the voltage distance curve of the coil receiving circuit placed in various mobile terminals and tested by a signal source through a low-frequency transmitting line ⁇ under a constant ⁇ magnetic field. As shown in Figure 11, it is an example of the voltage distance curve of multiple typical terminals at the ⁇ frequency.
  • the signal strength value is the value of the receiving antenna's induced voltage after necessary amplification.
  • the magnification is kept constant, and only the relative change of the intensity with the distance is concerned. It can be seen from Figure 11 that the field strength difference between the terminals is ⁇ 5dB, and the field strength variation range of each terminal in the range of 1 ⁇ 10cm reaches 40dB, regardless of the fluctuation of the field strength of the reader and the error of the detection circuit of the mobile radio device.
  • the mobile RF device uses a uniform threshold Vt to determine whether each terminal is within the target distance range.
  • the distance control error is approximately 1 cm between the terminals, which fully satisfies the requirements of no calibration distance control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Biomedical Technology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)
  • Transceivers (AREA)

Abstract

本发明涉及近距离通信方法和系统。所述方法包括:读卡器发射低频交变磁场信号,其频率等于或小于系统无校准工作的最高频率f0,信号中携带其身份标识信息;移动射频装置接收、检测低频信号并放大为电压信号,判断终端是否进入有效距离区间;若电压信号大于或等于电压门限Vt,则终端进入有效刷卡区间,获取读卡器身份标识信息,连同自身的身份标识信息一起通过射频通道传送给读卡器;读卡器接收所述传送信息,比较其中身份标识信息是否同自身的身份标识信息一致,若一致则与移动射频装置通过射频通道进行刷卡交易。本发明实现了含有移动射频装置的射频通信终端与读卡器的数据通信距离可靠地控制在规定范围内,并且无需对终端进行校准。

Description

说 明 书
^Ji巨离通信方法及系统 技术领域
本发明涉及通信领域, 尤其涉及一种近距离通信方法及系统。 背景技术
随着移动终端的普及, 利用移动终端进行移动终端支付的应用需求非常 迫切, 目前已经有多种实现方案, 但各有缺点。 当前,已经出现了在移动终 端中的用户识别模块 SIM ( Subscr iber Ident i ty Module )卡上增加射频功 能(称为射频 SIM卡 )或者在移动终端主板上增加近距离通信模块来实现移 动终端近距离通信的方法,后者称为 FC (Near Field Communicat ion,近场通 信),这些方法的出现使得移动终端成为一个可以充值、 消费、 交易及身份认 证的超级智能终端, 极大地满足了市场的迫切需求。
其中, 基于射频 SIM卡的移动终端近距离解决方案以其筒单、 无需更改 移动终端等优势得到广泛的关注, 在该方案中, 射频 SIM卡采用 UHF ( Ul tra High Frequency, 超高频)技术, 由于 UHF特别是采用 2. 4GHz ISM公共频 段(即工业, 科学和医用频段)的射频 SIM卡, 其工作频率很高, 天线的尺寸 很小, 在 SIM卡内放置小型的天线就能发射足够强度的信号, 即使射频 SIM 卡嵌入在移动终端内部射频信号仍然可以从移动终端中透射出来,在读卡器 中采用业界主流的 RF (Radio Frequency,射频)收发芯片即可无需额外放大 可靠接收到绝大多数移动终端的射频信号,从而实现不必对现有的移动终端 进行任何结构改变就可使移动终端具备近距离通信功能。 但是, 不同移动终 端由于内部结构不同造成射频信号透射效果存在很大的差异,透射强的移动 终端其射频 SIM卡射频通信距离可能达到几米远的距离,透射弱的移动终端 其射频 SIM卡通信距离只可以达到几厘米。射频 SIM卡为了避免不同移动终 端对 RF信号衰减的巨大差异, 必须对移动终端进行校准, 也就是在使用前 必须将移动终端的衰减参数记录到卡中。需要校准是射频 S IM卡的主要问题。
另外一种移动支付的技术 NFC基于 I S014443标准的非接触卡技术演化 而来, 两者根本点在于都采用 13. 56MHz的磁场传送信号和能量。 NFC技术的 主要问题有:
1.必须改造移动终端才能实现可靠的双向数据通讯, NFC的磁场线圏不 能集成到 SIM 卡或 SD 卡(Secure Digi ta l Memory Card,安全数字存储 卡) /TF (TransFLash,闪存)卡等移动终端用的卡内。
在 13. 56MHz频点下, 读卡器和卡之间采用电感线圏耦合的方式交互信 号及传送能量,读卡器到卡的方向需要同时传递能量和 13. 56MHz调幅信号, 对卡上接收线圏的尺寸面积均有较高要求; 卡到读卡器的方向, 卡依靠短路 和开路卡上线圏的负载调制方式而不是依靠外部能量直接发送场强的方式 向读卡器传递信息, 由于负载调制信号要求卡线圏和读卡器线圏的耦合系数 越高越利于读卡器解码卡传送的信息, 这种方式进一步提高了对卡上天线尺 寸和面积的要求。 另外一方面, 由于 13. 56MHz频点较低, 耦合线圏的尺寸 相对较大。 综合上述因素, NFC要求移动终端内的天线线圏足够大, 该尺寸 大小完全不能放入 SIM卡或 SD/TF卡等移动终端用的卡内, 不但如此, 移动 终端上的金属及其它导电物体会严重干扰天线的接收和负载调制效果, 为了 达到近场通讯良好的通讯效果, 必须对手机进行定制化的改造, 使天线的效 果达到最佳。 改造点例如, 将卡的多匝天线放到移动终端的电池后盖上, 或 者通过柔性 PCB从终端主板上将天线引到电池背面, 天线的面积和普通电池 尺寸相当, 另外, 手机的后盖不能为金属材质。
2. NFC所使用的 13. 56MHz频点需要校准才能用于距离控制。
即使有一种 NFC 的天线能够更换到任何移动终端中, 由于其使用 1 3. 56MHz频点,该频点信号在遇到金属和其它导电物体会形成强烈的涡流效 应, 信号强度会随着移动终端结构而变化, 从而在 NFC卡接收天线上形成场 强的巨大波动, 无法进行无校准的距离控制。
图 1为线圏接收电路放入各种移动终端内, 在同一 14443 P0S机上保持 1 3. 56MHz 载波恒定的情况下测试的电压-距离曲线,其中信号强度值是接收 天线感应电压经过必要的放大后的值, 放大倍数保持恒定, 只需关注强度随 距离的相对变化。 可以看出, 不同终端接收到的场强差异 > 30dB , 同一终端 从 l cm到 10cm的场强变化为 25dB左右,手机差异造成的场强变化已经超过 终端在 l cm到 10cm距离控制范围内的场强变化, 因此无法采用同一门限对 各终端进行距离控制, 也就是无法实现无校准距离控制。 发明内容
本发明所要解决的技术问题是提供一种近距离通信方法及系统,使得对 于各种具有近距离通信功能的移动终端不需要校准就能够实现电子支付等 刷卡交易。
为解决上述技术问题, 本发明提出了一种近距离通信方法, 应用于包括 至少一个读卡器和至少一个移动射频装置的近距离通信系统, 包括如下步 骤:
步骤 a , 读卡器按照预设的发射参数发射低频交变磁场信号, 所述低频 交变磁场信号中携带该读卡器的身份标识信息, 所述发射参数包括低频交变 磁场信号的频率, 该频率等于或小于系统无校准工作的最高频率 f O;
步骤 b , 移动射频装置在各距离点上接收、 检测所述低频交变磁场信号 并放大为与距离对应的幅度恒定的的电压信号,进而通过预设的电压门限 V t 判断装载有所述移动射频装置的终端是否进入了预设的有效距离区间,所述 电压门限 Vt对装载有所述移动射频装置的所有终端相同; 步骤 c , 若与接收到的低频交变磁场信号对应的电压信号大于或等于预 设的电压门限 Vt ,则装载有所述移动射频装置的终端进入了预设的有效刷卡 区间,移动射频装置从接收到的低频交变磁场信号中获取读卡器的身份标识 信息, 并将其连同自身的身份标识信息一起通过射频通道传送给所述读卡 器;
步骤 d, 读卡器接收所述移动射频装置通过射频通道传送的信息, 比较 该信息中读卡器的身份标识信息是否同自身的身份标识信息一致, 若一致则 以自身的身份标识信息和所述移动射频装置的身份标识信息的结合作为组 合地址, 与所述移动射频装置通过射频通道进行刷卡交易。
进一步地,上述方法还可具有以下特点, 所述步骤 a 中, 所述系统无校 准工作的最高频率 f 0通过下述步骤确定:
步骤 al ,确定系统的距离控制目标(Din, Dv ),其中 Din表示距离为 0 ~ Din的范围内所有装载有所述移动射频装置的终端确保可刷卡, Dv表示距离 波动范围, 距离为 Din ~ ( Din+Dv )的范围内均允许刷卡, 距离大于 Din+Dv 的范围不允许刷卡;
步骤 a2 , 确定读卡器导致的移动射频装置内检测电压的波动范围 δ κ; 步骤 a3 , 确定移动射频装置本身导致的检测电压的波动范围 S c;
步骤 a4 , 在 f 频率下测试各典型终端及障碍物的电压距离曲线; 步骤 a5 , 由距离控制目标(Din, Dv )确定移动射频装置内检测电压的 波动范围 δ Α, δ A等于由各典型终端及障碍物的电压距离曲线得到的具有平 均场强衰减曲线斜率的电压距离曲线上 Din点所对应的电压值与 (Din+ Dv ) 点所对应的电压值之差;
步骤 a6 , 确定由终端导致的移动射频装置内检测电压的波动范围 δ τ, δ τ表示终端衰减特性造成的移动射频装置内检测电压波动范围, δ τ= δ Α_ δ R_ δ c; 步骤 a7 ,计算各典型终端及障碍物间在距离控制范围内各距离点上的最 大场强差异 δ , 若 δ 大于 δτ, 则降低频率 f, 转步骤 a4; 若 δ 小于 δτ, 则提高频率 f, 转步骤 a4; 若 δ 等于 δτ, 则当前测试频率 f 等于系统无校 准工作的最高频率 f0。
进一步地,上述方法还可具有以下特点, 所述步骤 a 中, 所述发射参数 还包括调制方式、 编码方式及发射磁感应强度幅值 Br, 其中调制方式、 编码 方式及发射磁感应强度幅值 Br通过下述步骤选定:
选定任意一种无平均直流分量的编码方式;
选择无调制方式或幅度无变化的载波调制方式;
在选定的小于 fO的工作频率、 调制方式及编码方式下, 先选定典型噪 声终端及易于实现的移动射频装置内磁检测及放大的增益参数, 测试读卡器 未发送低频交变磁场信号条件下移动射频装置内检测电压的固有噪声电压 幅度 Vn,然后测量读卡器用选定的调制编码方式发送低频交变磁场信号时移 动射频装置内检测电压 Vr, 选择发射磁感应强度幅值 Br值, 使 Vr/Vn>SNR, SNR为移动射频装置的信噪比。
进一步地,上述方法还可具有以下特点, 所述步骤 b 中, 所述预设的电 压门限 Vt通过下述步骤确定:
步骤 bl,在选定的发射参数下, 测量各典型终端和障碍物的电压距离曲 线, 所述发射参数包括低频交变磁场信号的频率、 调制方式、 编码方式及发 射磁感应强度幅值 Br;
步骤 b2,求取基准电压距离曲线,基准电压距离曲线是典型终端及障碍 物曲线的中间值, 其距离典型终端曲线的上边界及下边界的电压幅度都为 δτ/2;
步骤 b3, 选定移动射频装置内检测电压门限 Vt, 在基准电压距离曲线 上对应于 (Din+Dv/2) 点处的电压值即为 Vt值。 进一步地,上述方法还可具有以下特点, 所述低频交变磁场信号的频率 处于特低频频段或甚低频频段或低频频段,所述特低频频段的频率范围为
300 Hz - 3000Hz, 所述甚低频频段的频率范围为 3KHz ~ 30KHz,所述低频频段 的频率范围为 30 KHz ~ 300KHz。
进一步地,上述方法还可具有以下特点, 所述低频交变磁场信号的频率 为 300Hz ~ 50KHz。
进一步地,上述方法还可具有以下特点, 所述低频交变磁场信号的频率 为 500Ηζ、 1ΚΗζ、 1. 5KHz、 2KHz、 2. 5KHz、 3KHz、 4KHz、 5KHz、 10KHz、 20KHz 或 30KHz。
进一步地,上述方法还可具有以下特点, 所述编码方式为曼彻斯特码、 差分曼彻斯特码或归零码; 以及, 所述调制方式为开关键控法、 相移键控法 或频移键控法。
为解决上述技术问题, 本发明提出了一种近距离通信系统, 包括至少一 个读卡器和至少一个移动射频装置,其中:
所述读卡器, 用于按照预设的发射参数发射低频交变磁场信号, 所述低 频交变磁场信号中携带该读卡器的身份标识信息,所述发射参数包括低频交 变磁场信号的频率,该频率等于或小于系统无校准工作的最高频率 f 0;还用 于接收所述移动射频装置通过射频通道传送的信息, 比较该信息中读卡器的 身份标识信息是否同自身的身份标识信息一致, 若一致则以自身的身份标识 信息和所述移动射频装置的身份标识信息的结合作为组合地址, 与所述移动 射频装置通过射频通道进行刷卡交易;
所述移动射频装置, 用于在各距离点上接收、 检测所述低频交变磁场信 号并放大为与距离对应的幅度恒定的的电压信号,进而通过预设的电压门限 Vt判断装载有所述移动射频装置的终端是否进入了预设的有效距离区间,所 述电压门限 Vt对装载有所述移动射频装置的所有终端相同; 还用于在与接 收到的低频交变磁场信号对应的电压信号大于或等于预设的电压门限 Vt时, 从接收到的低频交变磁场信号中获取读卡器的身份标识信息, 并将其连同自 身的身份标识信息一起通过射频通道传送给所述读卡器;还用于与所述读卡 器通过射频通道进行刷卡交易。
进一步地,上述系统还可具有以下特点, 所述读卡器包括至少一个低频 发射线圏、至少一个驱动电路、至少一个编码电路、至少一个第一主处理器、 至少一个射频收发电路和至少一个射频天线,所述低频发射线圏、驱动电路、 编码电路、 第一主处理器、 射频收发电路、 射频天线、 顺次串联连接; 所述 移动射频装置包括至少一个低频磁感应电路、 至少一个低频放大电路、 至少 一个门限判断及解调电路、 至少一个第二主处理器、 至少一个射频收发电路 和至少一个射频天线, 所述低频磁感应电路、 低频放大电路、 门限判断及解 调电路、 第二主处理器、 射频收发电路、 射频天线顺次串联连接。
进一步地,上述系统还可具有以下特点, 所述读卡器的驱动电路和编码 电路之间还设有调制电路。
进一步地,上述系统还可具有以下特点, 所述低频发射线圏为漆包线线 圏或 PCB线圏。
进一步地,上述系统还可具有以下特点, 所述低频发射线圏的匝数大于 10圏。
进一步地,上述系统还可具有以下特点, 所述低频发射线圏的匝数为 50 ~ 500圏。
进一步地,上述系统还可具有以下特点, 所述低频发射线圏内填塞有铁 氧体磁芯或铁芯。
进一步地,上述系统还可具有以下特点, 所述低频发射线圏所包围面积 的截面最宽处大于移动射频终端的截面宽度。
进一步地,上述系统还可具有以下特点, 所述低频发射线圏所包围面积 的截面至少包含直径 3cm的圓形区域或者 3cm* 3cm的方形区域。
进一步地,上述系统还可具有以下特点, 所述低频磁感电路为 PCB线圏、 漆包线线圏、 霍尔器件或巨磁阻器件。
进一步地,上述系统还可具有以下特点, 所述移动射频装置置于移动终 端中。
进一步地,上述系统还可具有以下特点, 所述移动射频装置置于移动终 端内的 SIM卡、 UIM卡、 USIM卡、 TF卡或 SD卡中。
进一步地,上述系统还可具有以下特点, 所述移动终端为手机、 个人数 字助理 PDA或笔记本电脑。
进一步地,上述系统还可具有以下特点, 所述身份标识信息为识别码。 本发明实现了含有移动射频装置的射频通信终端(如装有射频 SIM卡的 手机)与读卡器的数据通信距离(也即交易距离)可靠地控制在规定范围内, 并且无需对终端进行校准。
附图说明
图 1为线圏接收电路放入各种移动终端内, 在同一 14443 P0S机上保持 13. 56MHz载波恒定的情况下测试的电压 -距离曲线;
图 2为本发明近距离通信方法中系统无校准工作的最高频率 f O的选择 系统结构框图;
图 3为由距离控制目标( Din, Dv )确定系统总的接收检测电压波动范围 δ Α的示意图;
图 4为典型终端及障碍物电压距离曲线及其波动区间 δ示意图; 图 5为频率 f 为 3. 3KHz时 5种典型移动终端的电压距离曲线; 图 6为移动射频装置内部检测到的无调制直接基带发射时的接收电压信 号和正弦波 FSK调制时的接收电压信号的电压波形图;
图 7为基准电压距离曲线的计算方法示意图;
图 8为本发明实施例中近距离通信系统的结构图;
图 9为读卡器低频发射部分示意图;
图 10为读卡器低频数据帧格式示意图;
图 11 为线圏接收电路放入各种移动终端内, 用信号源通过低频发射线 圏发射恒定 ΙΚΗζ磁场条件下测试的电压距离曲线。 具体实施方式
在此首先说明, 以下本文中所出现的终端在默认情况下指装载有移动射 频装置的终端, 而且指能够移动的终端, 即移动终端, 如手机等, 距离指读 卡器与移动射频装置之间的距离,也即读卡器与装载有移动射频装置的终端 之间的距离。
本发明针对射频装置(尤其是内置于终端中的射频卡, 如射频 SIM卡) 与读卡器装置近距离交易的距离控制问题,提出了一种由带有低频交变磁场 发射功能及射频信号收发功能的读卡器和与之对应的带有低频交变磁场感 应接收功能及射频信号收发功能的移动射频装置组成的近距离通信系统, 以 及与该系统对应的近距离通信方法。本发明利用低频交变磁场穿透不同终端 衰减差异小的特点进行距离控制, 利用高频射频能有效穿透终端来完成高速 双向通讯进行交易。 系统通过预先设定好的门限判定方法来完成无需校准的 距离检测和控制, 即读卡器按照预设的发射参数发射低频交变磁场信号, 移 动射频装置在各距离点上检测该磁场信号并放大为与距离对应的幅度恒定 的电压信号, 进而通过预先设定的电压门限 Vt来判断终端是否进入预先设 定的有效距离区间(有效距离区间也即允许刷卡的范围), 该电压门限 Vt对 所有终端相同, 无需校准。 本发明通过低频单向通讯和 RF双向通讯结合的 方法来完成读卡器和移动射频装置的唯一绑定, 绑定之后通过射频通道来完 成双向的高速大数据量的通讯。本发明系统可以实现含有移动射频装置的终 端 (如装有射频 SIM卡的手机)与读卡器的数据通信距离 (也即交易距离) 可靠地控制在规定范围内, 并且无需对终端进行校准。
以下结合附图对本发明的原理和特征进行描述, 所举实例只用于解释本 发明, 并非用于限定本发明的范围。
本发明的近距离通信方法,应用于包括至少一个读卡器和至少一个移动 射频装置的近距离通信系统, 包括如下的步骤 &、 步骤 b、 步骤 c和步骤 d 四个步骤, 下面分别对各个步骤进行具体说明:
步骤 a , 读卡器按照预设的发射参数发射低频交变磁场信号, 该低频交 变磁场信号中携带该读卡器的身份标识信息, 其中, 发射参数包括低频交变 磁场信号的频率, 该频率等于或小于系统无校准工作的最高频率 f O; 其中, 身份标识信息可以是识别码 ID。
这里需要说明的是, 本步骤中低频交变磁场信号的频率是指所述低频交 变信号的频谱上 3dB带宽的高端频率截止点所对应的频率。
低频交变磁场频率越低, 穿过各种类型的终端后衰减的差异越小,利用 该特性, 在频点选择系统(如图 2所示) 中选定差异足够小的频点, 以实现 无校准距离控制。采用标准信号源通过标准的磁场发射线圏发送低频交变磁 场信号, 在各个典型的移动终端及障碍物内部接收该低频交变磁场信号, 调 整发射频率直到找到频点 f O , 使移动射频装置(装载在移动终端中)接收到 的电压(该电压是由低频交变磁场信号经放大后得到的与距离对应的幅度恒 定的的电压信号)在距离发射线圏平面中心点相同距离条件下, 不同终端及 障碍物间的场强差异大致等于设定的波动范围 δ τ,该频点 f 0及低于该频点 f O的频段是系统无校准工作的频段, 不需要校准任何系统中的任何终端, 工 作频点(即前述的低频交变磁场信号的频率)高于 f O , 系统需要校准, 通常 工作频点高于 f O越多, 需要校准的终端越多, 校准的复杂度越高。 频点选 定是一次性工作, 一旦选定, 在使用中无需更改。
图 2为本发明近距离通信方法中系统无校准工作的最高频率 f O的选择 系统结构框图,如图 2所示,频点选择系统的组成为:发送系统由信号源 505 和低频磁场发射线圏 504组成, 接收系统由典型移动终端 501及障碍物、 信 号强度测试仪 503 (电压表、 示波器、 频谱仪等)组成, 移动终端 501内部 具有低频接收模块 502。 信号源 505可以精确的产生各种频率、 波形和幅度 的信号。 频点选择的原理是: 信号源 505产生固定幅度频率为 f 的正弦波信 号, 通过发射线圏 504发送, 低频接收模块 502放置在选定的典型移动终端 501或障碍物内部, 接收到的低频信号通过专用信号线接到信号强度测试仪 503 , 信号强度测试仪 503测试接收到的电压。 改变移动终端的距离可以得 到该移动终端或障碍物在频率 f 条件下的检测电压随距离变化的曲线(以下 称为电压距离曲线), 更换移动终端或障碍物可以得到多个终端的曲线, 改 变频率 f也可以得到不同的曲线。
步骤 a中, 系统无校准工作的最高频率 f O通过下述步骤确定: 步骤 101 , 确定距离控制目标(Din, Dv ), 其中 Din表示 0 ~ Din范围内 所有终端确保可刷卡, Dv表示距离波动范围, 距离为 Din ~ ( Din+Dv )的范 围内均允许刷卡, 距离大于 Din+Dv范围不允许刷卡;
例如(5cm, 5 cm )表示 5 cm以下所有终端确保可刷卡, 5 cm ~ 10 cm允许 刷卡, 超过 10cm不能刷卡。 距离控制目标由具体的应用确定。 (0 ~ Din+Dv ) 称为距离控制范围。
步骤 102 , 确定读卡器导致的移动射频装置内检测电压的波动范围 δ κ; 读卡器低频发射电路参数波动形成发射场强的波动,造成移动射频装置 内检测电压的波动, 该参数包括发射驱动电压波动、 线圏参数波动、 温度影 响等。 δ κ由读卡器设计及生产环节来控制, 该波动可以在生产环节校准, 由于低频发射电路工作频率很低, 通常 δ κ可以被控制得很好, 例如 4dB以 内。
步骤 103 , 确定移动射频装置本身导致的检测电压的波动范围 S c;
移动射频装置本身低频接收电路参数波动造成的最终检测输出电压的 波动, 该参数包括接收天线误差、 放大器增益误差、 比较器或 AD误差、 温 度影响及噪声等。 S e由移动射频装置设计及生产环节来控制, 该波动可以 在生产环节校准, 由于移动射频装置低频接收电路工作频率很低, 通常 s c 可以被控制得很好, 例如 4dB以内。
步骤 104 , 在 f 频率下测试各典型终端及障碍物的电压距离曲线; 在进行本步骤 104之前先要做个准备工作, 即选定典型终端及典型障碍 物。 典型终端的选取原则主要依据终端金属或导电结构的多少来选取, 金属 越多, 衰减越大, 例如可以选取塑料外壳、金属外壳、厚金属壳、 薄金属壳、 大尺寸终端、 小尺寸终端等, 典型终端的数量不严格限制, 典型终端的选取 基本可以覆盖终端对低频交变磁场信号的衰减特点。 为了避免个别移动终端 差异太大, 可以在应用中加入移动终端型号认证, 对每种需要支持支付应用 的移动终端尝试做刷卡测试, 确认该型号的移动终端衰减特性符合要求。 典 型障碍物可以选择不同材质的标准形状的塑料、 铝、 铜、 铁、 不锈钢等移动 终端常见材料,放置在读卡器和移动射频装置之间作为移动终端衰减特性的 一种等效障碍物测量衰减效果。
步骤 105 , 由距离控制目标(Din, Dv )确定移动射频装置内检测电压的 波动范围 δ Α, δ A等于由各典型终端及障碍物的电压距离曲线得到的具有平 均场强衰减曲线斜率的电压距离曲线上 Din点所对应的电压值与 (Din+ Dv ) 点所对应的电压值之差;
图 3为由距离控制目标(Din,Dv )确定系统总的接收检测电压波动范围 δ Α的示意图。 如图 3所示, 如图 3所示, (Din+ Dv )点所对应的电压值为 V2 , ( Din+ Dv ) 点所对应的电压值为 VI,则 S A=V1_V2。 步骤 106, 确定由终端导致的移动射频装置内检测电压的波动范围 δτ, 参数 δτ表示终端衰减特性造成的移动射频装置内检测电压波动范围, δ τ= δ A- δ R- δ c;
步骤 107, 计算各典型终端及障碍物间在距离控制范围内各距离点上的 最大场强差异 δ (又称为波动区间), 若 δ 大于 δτ, 则降低频率 f, 转步 骤 a4; 若 δ 小于 δτ, 则提高频率 f, 转步骤 a4; 若 δ 等于 δ τ, 则当前测 试频率 f 等于系统无校准工作的最高频率 f0。
图 4为典型终端及障碍物电压距离曲线及其波动区间 δ示意图。 如图 4 所示, 最大衰减终端或障碍物对应的电压距离曲线称为最大衰减曲线, 最小 衰减终端或障碍物对应的电压距离曲线称为最小衰减曲线, 最大及最小衰减 曲线包围的区域称为典型终端及障碍物电压距离曲线分布区间, 任意距离 D 在最小衰减曲线上对应的电压为 V3, 在最大衰减曲线上对应的电压为 V4, 则 5=V3-V4。
至此, 在限定距离控制目标的情况下, 系统无校准工作的最高频率 fO 就确定下来了。 系统可以采用调制的方式, 也可以采用直接发送基带信号的 方式, 系统工作的主要频率分量最高只要不大于 fO, 距离控制就无需校准。
举例说明 fO的确定过程。 图 5为频率 f 为 3.3KHz时 5种典型移动终端 的电压距离曲线。 如图 5所示, 系统距离控制目标为(5cm, 5 cm), 系统 0~ 10cm距离区间电压的变化范围约为 40dB, 读卡器和移动射频装置导致的移 动射频装置内检测电压波动均为 4dB, 即 SR=Sc=4dB, δΑ=20άΒ , Sf Sf Sf
Figure imgf000015_0001
假设 5种终端可以代表系统所使用的所有终端, 检查 曲线在各距离点上的最大波动约等于 12dB,因此该系统无校准工作的最高频 率 fO可确定为 f0=3.3KHz。
步骤 a中, 发射参数还可以包括调制方式、 编码方式及发射磁感应强度 幅值 Br。发射参数选定的基本原则是保证移动射频装置在各距离点上对读卡 器所发射的低频交变磁场信号检测并放大后的信号是与距离对应的幅度恒 定的电压信号。 图 6为移动射频装置内部检测到的无调制直接基带发射时的 接收电压信号和正弦波 FSK调制时的接收电压信号的电压波形图, 其中, a 为无调制直接基带发射时的接收电压信号波形图, b为正弦波 FSK调制时的 接收电压信号波形图。 如图 6所示, 检测电压信号是包含解调信息的变化电 压信号, 该信号可以为无直流分量的交流电压信号, 也可以是有直流分量的 电压信号, 幅度恒定是指交流分量的变化最大幅度在不同传输符号间恒定。
发射参数中的调制方式、 编码方式及发射磁感应强度幅值 Br通过下述 步骤 al l至步骤 al 3选定:
步骤 al l ,选定任意一种无平均直流分量的编码方式,例如曼彻斯特码, 差分曼彻斯特码, 归零码等;
步骤 al 2 , 选择无调制方式或幅度无变化的载波调制方式, 载波调制方 式可以选定任意一种幅度无变化的调制方式, 例如载波可以采用正弦波、 脉 沖、 三角波等, 调制方式可以选为开关键控法(00K )、 相移键控法或频移键 控法 (FSK )等; 采用无调制方式时, 编码后的基带信号直接经驱动电路驱 动由发射线圏发射;
步骤 al 3 , 选定发射磁感应强度幅值 Br , 方法为: 在选定的小于 f O的 工作频率、 调制方式及编码方式下, 先选定典型噪声终端及易于实现的移动 射频装置内磁检测及放大的增益参数, 测试读卡器未发送低频交变磁场信号 条件下移动射频装置内检测电压的固有噪声电压幅度 Vn,然后测量读卡器用 选定的调制编码方式发送低频交变磁场信号时移动射频装置内的检测电压 Vr , 选择发射磁感应强度幅值 Br值, 使 Vr/Vn>SNR, SNR为移动射频装置的 信噪比。 SNR值的选择通常越大越好,但是太大会造成读卡器发送功率过大, 实现困难, 典型值可选择 SNR=10.当 SNR确定, Br通过上述方式便确定了。
步骤 b, 移动射频装置在各距离点上接收、 检测所述低频交变磁场信号 并放大为与距离对应的幅度恒定的的电压信号,进而通过预设的电压门限 V t 判断装载有所述移动射频装置的终端是否进入了预设的有效距离区间,所述 电压门限 vt对装载有所述移动射频装置的所有终端相同;
步骤 b中, 预设的电压门限 Vt通过下述步骤 201至步骤 203确定: 步骤 201 , 在选定的发射参数下, 测量各典型终端和障碍物的电压距离 曲线, 其中, 发射参数包括低频交变磁场信号的频率、 调制方式、 编码方式 及发射磁感应强度幅值 Br ;
步骤 202 , 求取基准电压距离曲线, 基准电压距离曲线是典型终端及障 碍物曲线的中间值, 其距离典型终端曲线的上边界及下边界的电压幅度都为 δ τ/2 , 如图 7所示;
步骤 203 , 选定移动射频装置内检测电压门限值 Vt , 如图 7所示, 在基 准电压距离曲线上对应于 (Din+Dv/2 ) 点处的电压值即为 Vt值。
步骤 c , 若与接收到的低频交变磁场信号对应的电压信号大于或等于预 设的电压门限 Vt , 则装载有移动射频装置的终端进入了预设的有效刷卡区 间,移动射频装置从接收到的低频交变磁场信号中获取读卡器的身份标识信 息, 并将其连同自身的身份标识信息一起通过射频通道传送给读卡器;
步骤 d , 读卡器接收移动射频装置通过射频通道传送的信息, 比较该信 息中读卡器的身份标识信息是否同自身的身份标识信息一致, 若一致则以自 身的身份标识信息和移动射频装置的身份标识信息的结合作为组合地址, 与 移动射频装置通过射频通道进行刷卡交易。此处,刷卡交易不单指电子支付, 还可以是其他通过射频通道进行的通讯过程, 比如充值、消费、身份认证等, 本文中的刷卡交易泛指通过射频通道进行的通信,尤其指近距离通信中通过 射频通道进行的通信。
本发明中,低频交变磁场信号的频率处于特低频频段或甚低频频段或低 频频段,其中, 特低频频段的频率范围为 300 Hz ~ 3000Hz, 甚低频频段的频 率范围为 3KHz ~ 30KHz,低频频段的频率范围为 30 KHz ~ 300KHz。 优选地, 低频交变磁场信号的频率可以为 300Hz ~ 5 0KHz。优选地,低频交变磁场信号 的频率可以为 500Ηζ、 1ΚΗζ、 1 · 5ΚΗζ、 2ΚΗζ、 2· 5ΚΗζ、 3ΚΗζ、 4ΚΗζ、 5ΚΗζ、 1 0ΚΗζ、 20ΚΗζ或 30ΚΗζ。
本发明近距离通信方法采用低频磁场单向通讯和射频电磁场高速双向 通讯的结合, 从而避免了 NFC系统中采用唯一 1 3. 56MHz频点双向通讯及距 离控制带来天线问题及终端信号衰减差异大等问题。 本方法中, 读卡器利用 低频单向通道将自身唯一标识 I Dr (即前述的身份标识信息)传给移动射频 装置,移动射频装置通过射频双向通道将自身唯一标识 I Dc附加在 I Dr后回 传给读卡器, 读卡器比较回传的 I Dr的正确性, 进而实现了读卡器与移动射 频装置的唯一绑定。绑定后读卡器与移动射频装置采用射频双向通道实现高 速大数据量的通讯, 直至本次交易完成。
本发明近距离通信方法实现了含有移动射频装置的射频通信终端(如装 有射频 S IM卡的手机)与读卡器的数据通信距离 (也即交易距离 )可靠地控 制在规定范围内, 并且无需对终端进行校准。
为了实现上述的近距离通信方法,本发明还提出了一种近距离通信系 统。本发明的近距离通信系统包括至少一个读卡器和至少一个移动射频装置, 其中:
读卡器用于按照预设的发射参数发射低频交变磁场信号, 该低频交变磁 场信号中携带该读卡器的身份标识信息, 其中, 发射参数包括低频交变磁场 信号的频率,该频率等于或小于系统无校准工作的最高频率 f O ;读卡器还用 于接收移动射频装置通过射频通道传送的信息, 比较该信息中读卡器的身份 标识信息是否同自身的身份标识信息一致,若一致则以自身的身份标识信息 和移动射频装置的身份标识信息的结合作为组合地址, 与移动射频装置通过 射频通道进行刷卡交易; 移动射频装置, 用于在各距离点上接收、检测读卡器发射的低频交变磁 场信号并放大为与距离对应的幅度恒定的的电压信号, 进而通过预设的电压 门限 Vt判断装载有该移动射频装置的终端是否进入了预设的有效距离区间, 其中, 电压门限 Vt对装载有该移动射频装置的所有终端相同; 移动射频装 置还用于在与接收到的低频交变磁场信号对应的电压信号大于或等于预设 的电压门限 vt 时, 从接收到的低频交变磁场信号中获取读卡器的身份标识 信息, 并将其连同自身的身份标识信息一起通过射频通道传送给读卡器; 移 动射频装置还用于与读卡器通过射频通道进行刷卡交易。
其中, 身份标识信息可以为识别码 ID。
由上述可见,本发明近距离通信系统中的读卡器具有低频发射功能和射 频收发功能这样两个基本功能,也可以说本发明近距离通信系统中的读卡器 具有低频发射模块和射频收发模块这样两个基本模块; 本发明近距离通信系 统中的移动射频装置具有低频接收功能和射频收发功能这样两个基本功能, 也可以说本发明近距离通信系统中的移动射频装置具有低频接收模块和射 频收发模块这样两个基本模块。
进一步地, 上述的近距离通信系统可以由如下的具体电路来实现: 读卡 器包括至少一个低频发射线圏、 至少一个驱动电路、 至少一个编码电路、 至 少一个第一主处理器、 至少一个射频收发电路和至少一个射频天线, 其中, 低频发射线圏、 驱动电路、 编码电路、 第一主处理器、 射频收发电路、 射频 天线、 顺次串联连接; 移动射频装置包括至少一个低频磁感应电路、 至少一 个低频放大电路、 至少一个门限判断及解调电路、 至少一个第二主处理器、 至少一个射频收发电路和至少一个射频天线, 其中, 低频磁感应电路、 低频 放大电路、 门限判断及解调电路、 第二主处理器、 射频收发电路、 射频天线 顺次串联连接。 优选地, 在上述具体实现电路中, 读卡器的驱动电路和编码 电路之间还可以设有调制电路。 在上述具体实现电路中, 读卡器中的低频发射线圏、 驱动电路和编码电 路(带调制电路时,还包括调制电路 )可以认为是低频发射模块的组成部分, 读卡器中的第一主处理器、射频收发电路和射频天线可以认为是读卡器中射 频收发模块的组成部分; 移动射频装置中的低频磁感应电路、 低频放大电路 和门限判断及解调电路可以认为是低频接收模块的组成部分,移动射频装置 中的第二主处理器、 射频收发电路、 射频天线可以认为是移动射频装置中射 频收发模块的组成部分。
优选地 ,在上述具体实现电路中,低频发射线圏可以为漆包线线圏或 PCB 线圏。 进一步地, 低频发射线圏的匝数可以大于 10 圏。 优选地, 低频发射 线圏的匝数为 50 ~ 500圏。 优选地, 低频发射线圏内填塞有铁氧体磁芯或铁 芯。 优选地, 低频发射线圏所包围面积的截面最宽处大于移动射频终端的截 面宽度。 优选地, 低频发射线圏所包围面积的截面至少包含直径 3cm的圓形 区 i或或者 3cm* 3cm的方形区 i或。
优选地, 上述的 频磁感电路可以为 PCB线圏、 漆包线线圏、 霍尔器件 或巨磁阻器件。
本发明中, 移动射频装置可以置于移动终端中, 也可以置于移动终端内 的 SIM卡、 UIM卡、 USIM卡、 TF卡或 SD卡中。 其中, 移动终端可以为手机、 个人数字助理 PDA或笔记本电脑等。
下面对本发明近距离通信系统的原理进行说明:
1、 系统无校准工作的最高频率 f O的选定方法及装置在前述近距离通信 方法的内容中已有阐述, 此处不再赘述;
2、 距离测量和控制实现原理如下:
读卡器根据距离控制目标, 以设定的发射参数持续不断的循环发送不高 于选定频率 f O的低频交变磁场信号,该信号中以调制或直接基带传送的方式 携带数据帧, 数据帧内包含读卡器的唯一识别码 Idr (当然也可以是其他身 份标识信息)。 当装载有移动射频装置的移动终端置于读卡器周围, 低频交 变磁场信号穿透该终端到达其内部的移动射频装置,移动射频装置在各距离 点上检测该磁场信号并放大为与距离对应的幅度恒定的的电压信号, 当电压 的幅度低于卡内预设的接收电压门限值 Vt ,表示终端未进入有效刷卡距离范 围, 不允许刷卡; 当电压的幅度高于卡内预设的接收电压门限值 Vt , 表示终 端进入读卡器预定的有效刷卡范围, 移动射频装置内的低频接收电路(指前 述的低频磁感应电路、低频放大电路和门限判断及解调电路)启动解码过程, 得到读卡器的唯一标识码 I Dr。 另一方面, 移动射频装置内磁场转换后的电 压信号与读卡器和移动射频装置之间的距离存在一一对应关系,该关系由电 压距离变化曲线确定, 根据该对应关系, 可以由该电压确定移动射频装置与 读卡器之间的距离,从而间接的确定了移动终端与读卡器的距离。 Vt和发射 参数的设定是一次工作, 一旦设定在使用中无需更改。
3、 移动射频装置接入读卡器的过程原理:
移动射频装置接入读卡器主要包含读卡器和移动射频装置的唯一绑定 过程。 这里举例说明该绑定过程: 移动射频装置中从低频信号中解出读卡器 唯一识别码 I Dr后传送到移动射频装置内的第二主处理模块, 该第二主处理 模块将移动射频装置的唯一识别码 I Dc连同收到的 I Dr—起, 通过 RF收发 模块发送给读卡器, 读卡器收到移动射频装置返回的(I Dr, I Dc)后, 确认识 别码为 I Dc的移动射频装置正确的返回了读卡器的识别码 I Dr , 是本次交易 的唯一通讯终端。 由于 I Dr编码保证了该读卡器周围其它读卡器的识别码在 该时刻不相同, 因此识别码为 I Dc的移动射频装置确认了其与识别码为 I Dr 的读卡器建立了唯一的通讯。至此,移动射频装置和读卡器实现了唯一绑定, 双方通过 ( I Dr, I Dc )组合地址唯一的识别对方。 绑定后的通讯过程采用 RF 通道进行交互不会产生错误。移动射频装置接入成功后,距离控制过程完成, 可在 RF通道上进行后续的交易过程, 直至交易结束。 4、 交易过程:
读卡器和移动射频装置通过 RF通道建立了可靠的唯一通讯链路, 在该 链路基础上, 双方可以实现交易所需的身份认证及其他交易所需的过程。 所 有这些过程均通过快速的 RF通道完成, 由于前述过程的完成保证了只能在 预定的距离范围内完成接入, 因此整个交易过程也是在限定范围内的近距离 通讯。
下面通过实施例对本发明作进一步说明。
图 8为本发明实施例中近距离通信系统的结构图。 如图 8所示, 该系统 由 2部分组成: 读卡器装置 100和移动射频装置 200 , 该移动射频装置 200 放在移动终端内部, 并通过移动终端通讯接口与终端交互。
读卡器 100由下述模块组成: 第一主处理器 101 , 负责读卡器低频及高 频的控制及其他协议处理, 第一主处理器 101通过接口电路 102或直接连接 到外部通讯接口; 编码电路 1 08 , 负责将低频帧数据进行逐比特编码, 调制 电路 1 07负责将编码输出的符号流对载波进行调制形成调制信号送给驱动电 路 106 , 不需要调制时编码后的信号直接送给驱动电路 106 ; 驱动电路 1 06 , 负责驱动低频发射线圏 105 , 产生低频交变磁场 301 ; 由低频发射线圏 1 05、 驱动电路 106、 调制电路 1 07及编码电路 108构成的低频发射模块, 其发射 场强值可更改并设定;低频发射线圏 105通常由较多匝数特定形状的线圏构 成; RF收发电路 103 , 通过 RF天线 104接收及发射 RF信号。
移动射频装置由下述模块组成: 第二主处理器 201 , 负责低频及射频模 块的控制及其他协议处理,也负责和移动终端的通讯; S IM/TF/SD卡模块 202 为移动终端的 S IM/TF/SD卡本体模块, 具体何种模块由卡类型确定; 低频磁 感应电路 207 , 由 PCB线圏、 漆包线线圏、 霍尔器件或其他能感应磁场变化 的电路元件构成, 负责感应低频交变磁场信号 301并转换为电信号; 低频放 大电路 206负责放大低频磁感应电路检测到的电信号得到低频磁检测电压信 号 303; 门限判断及解调电路 205, 负责对低频磁检测电压信号 303按照预 设的门限 Vt进行判决, 未达到门限 Vt不解调也不允许刷卡, 达到门限 Vt 对信号进行解调, 解调后的信号送给第二主处理器 201; RF收发电路 203 通过 RF天线 204负责与读卡器的 RF收发模块完成 RF双向通讯。
系统通过预先设定好的门限判定方法来完成无需校准的距离检测和控 制, 即读卡器 100按照预设的发射参数发射低频交变磁场信号 301, 移动射 频装置 200接收该磁场信号转换为低频磁检测电压信号 303, 并通过预先设 定的门限 Vt来判断终端是否进入预先设定的有效距离区间, 该门限 Vt对所 有终端相同, 无需针对不同终端修改(即所谓校准)。 通过低频单向通讯和 RF双向通讯结合的方法来完成读卡器 100和移动射频装置 200的唯一绑定, 即读卡器 100利用低频单向通道将自身唯一标识 IDr传给移动射频装置 200, 移动射频装置 200通过射频双向通道将卡自身唯一标识 IDc附加在 IDr后回 传给读卡器 100,读卡器 100比较回传 IDr的正确性,进而实现了读卡器 100 与移动射频装置 200的唯一绑定。绑定之后通过射频通道来完成双向的高速 大数据量的通讯。
本实施例中, 近距离通信系统的具体工作流程如下:
(一)首先, 选定系统工作的基本参数, 包括 RF频点, 无校准低频频点 f0, 读卡器发射参数, 移动射频装置的接收电压门限 Vt。
1. RF频点选择
上述 RF通讯的频点通常采用 2400 - 2483MH 2.4G ISM频段, 以实现高 速的通讯和对终端的良好穿透性, 也可以采用其它频点, 例如 433MHz, 900MHz, 5GHz等。
2.无校准低频频点 f 0选择
采用前述方法确定系统低频无校准工作频点 f0,对于典型的 GSM移动通 讯终端, 要实现 0~ 10cm范围的距离控制, f0频点通常小于 ΙΟΚΗζ, 典型值 包括 500Hz , ΙΚΗζ , 1. 5KHz , 2KHz , 2. 5KHz , 3KHz, 5KHz等。
3.读卡器发射参数的选择
发射参数主要包括调制方式、 编码方式及发射磁感应强度幅值 Br。 图 9为读卡器低频发射部分示意图。 参见图 8 , 读卡器低频发射电路由 驱动电路 106、 调制电路 1 07及编码电路 108构成的, 驱动电路 1 06驱动的 低频调制信号输出到低频发射线圏 1 05。
调制电路 107可以采用多种调制方式:
1 )载波调制方式调制: 编码电路 108产生的基带信号通过调制电路 107 对载波进行调制, 载波可以为正弦波、 方波及三角波等, 调制可以采用开关 频移键控 00K、相移键控、频移键控 FSK等,调制后的信号通过驱动电路 106 加载到低频发射线圏 105上;
2 )无载波直接基带发射: 编码电路 108产生的基带信号, 通过驱动电 路 106直接加载到低频发射线圏 105上;
3 )其他调制方式: 由于本发明系统采用门限判断的方式进行距离控制, 因此调制方式不宜采用幅度调制, 凡是发送过程中能够保持移动射频装置内 检测电压幅度基本恒定的调制方式均可以用于本发明的近距离通信系统; 编码电路 108可以采用多种编码方式:
1 ) 曼彻斯特编码: 比特 1编码为两个符号 01 , 比特 0编码为 10。
2 )差分曼彻斯特编码: 有两种比特符号序列: 01及 10 , 比特 1编码为 与上一符号序列不同, 比特 0则相同, 或者反过来编码亦可。
3 )其他编码方式: 由于本发明系统采用门限判断的方式进行距离控制, 因此低频调制信号必须保持均值稳定, 编码后的序列不能含有直流分量, 凡 是编码后平均直流分量为零的编码方式均可以用于本发明的近距离通信系 统。
确定好调制方式和编码方式后, 采用前述方法, 确定读卡器发射磁感应 强度幅值 Br。 调整 Br的过程实际上是调整线圏匝数, 线径, 形状等参数的 过程。
4. 移动射频装置接收电压门限 Vt的选择
采用前述方法确定卡接收门限电压 Vt。
上述参数的选定是一次性的, 一旦选定, 工作中无需改变。
(二)其次, 工作参数确定后的系统工作流程如下:
步骤 A100:距离测量和控制过程。读卡器 100的第一主处理器 1 01产生 包含读卡器的唯一识别码 IDr的数据帧, 送给编码电路 1 08完成编码, 编码 后的信号通过调制电路 107调制或不经调制直接送给驱动电路 106 , 调制电 压送给低频发射线圏 105发射, 通过预先设定好帧格式、 调制编码方式及驱 动能力, 发射线圏 1 05以设定的强度 Br持续不断的按照上述帧格式循环发 送指定参数的低频交变磁场信号 301。 当移动终端置于读卡器周围, 低频交 变磁磁场信号 301穿透该终端到达内部的移动射频装置 200 , 移动射频装置 200内的低频磁感应电路 207检测到低频磁信号, 转换为电信号后经低频放 大电路 206放大后得到低频磁检测电压 303 , 当电压的幅度小于 (或大于) 于预设的接收电压门限值 Vt , 不允许刷卡; 当电压的幅度大于等于于(或小 于等于)预设的接收电压门限值 Vt ,表示终端进入读卡器预定的有效刷卡范 围, 低频接收电路启动解码过程, 得到读卡器的唯一标识码 IDr。 另一方面, 所述移动射频装置内磁场转换后的电压信号与读卡器和移动射频装置之间 的距离存在——对应关系, 该关系由电压-距离变化曲线确定, 根据该对应 关系, 可以由该电压确定移动射频装置与读卡器的距离, 从而间接的确定了 移动终端与读卡器的距离。 上述门限值 Vt对所有终端均相同, 无需针对每 个终端修正, 也就是无需知道校准, 从而上述过程是一种无需校准的距离测 量及控制过程;
步骤 A100中的帧格式定义如下: 图 10为读卡器低频数据帧格式示意图, 如图 10所示, 读卡器低频数据 帧每帧分为: ¾口下 i或:
同步码: 8比特, 通常为 FFH, 用于帧同步;
控制域: 8比特, 用于提供帧数据的解帧信息, 如长度, 数据类型等, 可留保留位用于扩展;
IDr: N比特, 读卡器唯一识别码, 由控制域指定;
CRC: 对控制域, IDr进行校验, 可采用 CRC校验和或其他方式。
上面所述帧格式仅作为一种示例, 不限制本发明实际采用的帧格式, 原 则上任何包含能唯一识别读卡器的帧格式均可使用。唯一识别码可采用足够 长度的随机数, 也可采用所有读卡器人工分配唯一码的方式, 或其他方式产 生的识别码。
步骤 A2QQ: 移动射频装置接入读卡器的过程: 移动射频装置接入读卡器 主要包含读卡器 100和移动射频装置 200的唯一绑定过程, 实际上表示读卡 器和移动射频装置所在移动终端的唯一绑定过程。移动射频装置 200内部低 频接收电路解出读卡器唯一识别码 Idr后传送到移动射频装置内第一主处理 器 201 ,该模块将移动射频装置自身的唯一识别码 Idc连同收到的 Idr—起, 通过移动射频装置内 RF收发电路 203和 RF天线 204发送给读卡器 100 , 读 卡器内部 RF天线 103和 RF收发电路 104收到移动射频装置返回的(IDr , IDc) 后, 传送给第一主处理器 101处理, 第一主处理器 101确认识别码为 IDc的 移动射频装置正确的返回了读卡器 IDr , 是本次交易的唯一通讯终端。 由于 IDr编码保证了该读卡器周围其它读卡器的识别码在该时刻不相同, 因此识 别码为 IDc的卡确认了其与识别码为 IDr的读卡器建立了唯一的通讯。至此, 移动射频装置和读卡器实现了唯一绑定, 双方通过(IDr,IDc )组合地址唯 一的识别对方。 绑定后的通讯过程采用 RF通道进行交互不会产生错误。 移 动射频装置成功接入读卡器后, 距离控制过程完成, 可在 RF通道上进行后 续的交易过程;
步骤 A200中的移动射频装置唯一识别码 IDc,是预先存储在移动射频装 置内非易失存储器内 (NVM ) 的唯一识别码, 或者是由移动射频装置内产生 的足够长的的随机数。
步骤 A300:交易过程。读卡器 100和移动射频装置 200通过 RF通道建立 了可靠的唯一通讯链路, 在该链路基础上, 双方可以实现交易所需的身份认 证及其他交易所需的过程。 所有这些过程均通过快速的 RF通道完成, 直至 本次交易结束。 由于前述步骤 A100 ~ A200 的完成保证了移动射频装置 200 只能在预定的距离范围内完成接入, 因此整个交易过程也是在限定距离范围 内才能完成交易。交易过程是成熟的 P0S机处理流程,本发明不做详细描述。
移动射频装置 200中低频信号检测电路 207通常可以用 PCB线圏、漆包 线线圏或霍尔器件构成, 该检测电路并不仅限于用这几种元件, 原则上任何 能将磁场变化转变为电信号的传感器都可以用于该模块,唯一的限制是能放 入卡内部。
本发明系统利用低频交变磁场实现距离检测和控制,并实现读卡器和移 动射频装置的单向通讯, 利用 RF通道结合低频通讯实现终端的可靠绑定, 同时利用 RF通道实现读卡器和移动射频装置之间高速的数据通讯。 其具有 如下特点点: 1.可以无需改造移动终端, 只需更换终端内部的 S IM卡 /TF/SD 卡, 即可实现可靠的双向距离通讯; 2读卡器发射低频交变磁场信号, 移动 射频装置只需接收该磁场信号, 由于是单向通讯, 并且无需读卡器通过磁场 提供能量, 因此可以将接收线圏或其他接收电路小型化, 足以将移动射频装 置放入 S IM卡 /TF/SD卡内; 3.由于接收信号较弱,移动射频装置内需要增加 放大电路。 另外移动射频装置内同时放置 RF收发电路, 与读卡器内的 RF收 发电路实现双向高速通讯, 如前面所述, RF电路的天线很小, 可以轻易的集 成到 S IM卡 /TF/SD卡内。 依照本发明所述方法选定的频点 f O , 系统在该频点以下工作无需校准, 作为一种扩展, 系统工作在 f O频点以上, 也不是绝对不行, 可能的效果是 性能降低, 距离控制的精度降低, 同时可能需要辅以筒单的校准, 这些应用 并不与本发明所述原则从根本上沖突, 只是一种性能改变的延伸应用。
本发明近距离通信系统实现了含有移动射频装置的射频通信终端(如装 有射频 SIM卡的手机)与读卡器的数据通信距离 (也即交易距离 )可靠地控 制在规定范围内, 并且无需对终端进行校准。
采用本发明所述的系统和方法, 选择合适的无校准工作的最高频点 f O , 用低于 f O 的低频交变磁场进行距离测量和控制, 移动终端间结构差异的影 响可以减小到距离控制目标所要求的波动范围之内,从而实现无校准距离控 制。 图 11 为线圏接收电路放入各种移动终端内, 用信号源通过低频发射线 圏发射恒定 ΙΚΗζ磁场条件下测试的电压距离曲线。 如图 11所示, 为系统在 ΙΚΗζ频率下多个典型终端的电压距离曲线实例。其中信号强度值是接收天线 感应电压经过必要的放大后的值, 放大倍数保持恒定, 只需关注强度随距离 的相对变化。从图 11可以看出, 终端之间的场强差异 <5dB, 而各终端在 1 ~ 10cm范围的场强变化范围达到 40dB, 不考虑读卡器发射场强波动及移动射 频装置检测电路的误差, 移动射频装置端采用统一的门限 Vt来判断各终端 是否在目标距离范围之内,距离控制的误差在终端之间的差异大致为 1cm范 围, 完全满足无校准距离控制的要求。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明 的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。

Claims

权 利 要 求 书
1. 一种近距离通信方法, 应用于包括至少一个读卡器和至少一个移动 射频装置的近距离通信系统, 其特征在于, 包括如下步骤:
步骤 a , 读卡器按照预设的发射参数发射低频交变磁场信号, 所述低频 交变磁场信号中携带该读卡器的身份标识信息, 所述发射参数包括低频交变 磁场信号的频率, 该频率等于或小于系统无校准工作的最高频率 f O;
步骤 b, 移动射频装置在各距离点上接收、 检测所述低频交变磁场信号 并放大为与距离对应的幅度恒定的的电压信号,进而通过预设的电压门限 V t 判断装载有所述移动射频装置的终端是否进入了预设的有效距离区间,所述 电压门限 Vt对装载有所述移动射频装置的所有终端相同;
步骤 c , 若与接收到的低频交变磁场信号对应的电压信号大于或等于预 设的电压门限 Vt ,则装载有所述移动射频装置的终端进入了预设的有效刷卡 区间,移动射频装置从接收到的低频交变磁场信号中获取读卡器的身份标识 信息, 并将其连同自身的身份标识信息一起通过射频通道传送给所述读卡 器;
步骤 d, 读卡器接收所述移动射频装置通过射频通道传送的信息, 比较 该信息中读卡器的身份标识信息是否同自身的身份标识信息一致, 若一致则 以自身的身份标识信息和所述移动射频装置的身份标识信息的结合作为组 合地址, 与所述移动射频装置通过射频通道进行刷卡交易。
2. 根据权利要求 1 所述的近距离通信方法, 其特征在于, 所述步骤 a 中, 所述系统无校准工作的最高频率 f O通过下述步骤确定:
步骤 al ,确定系统的距离控制目标(Din, Dv ),其中 Din表示距离为 0 ~ Din的范围内所有装载有所述移动射频装置的终端确保可刷卡, Dv表示距离 波动范围, 距离为 Din ~ ( Din+Dv )的范围内均允许刷卡, 距离大于 Din+Dv 的范围不允许刷卡;
步骤 a2, 确定读卡器导致的移动射频装置内检测电压的波动范围 δκ; 步骤 a3, 确定移动射频装置本身导致的检测电压的波动范围 Sc;
步骤 a4 , 在 f 频率下测试各典型终端及障碍物的电压距离曲线; 步骤 a5, 由距离控制目标(Din, Dv )确定移动射频装置内检测电压的 波动范围 δΑ, δ A等于由各典型终端及障碍物的电压距离曲线得到的具有平 均场强衰减曲线斜率的电压距离曲线上 Din点所对应的电压值与 (Din+ Dv ) 点所对应的电压值之差;
步骤 a6, 确定由终端导致的移动射频装置内检测电压的波动范围 δτ, δτ表示终端衰减特性造成的移动射频装置内检测电压波动范围, δ τ= δ A- δ R- δ c;
步骤 a7 ,计算各典型终端及障碍物间在距离控制范围内各距离点上的最 大场强差异 δ , 若 δ 大于 δτ, 则降低频率 f, 转步骤 a4; 若 δ 小于 δτ, 则提高频率 f, 转步骤 a4; 若 δ 等于 δτ, 则当前测试频率 f 等于系统无校 准工作的最高频率 f0。
3. 根据权利要求 2所述的近距离通信方法, 其特征在于, 所述步骤 a 中, 所述发射参数还包括调制方式、 编码方式及发射磁感应强度幅值 Br, 其 中调制方式、 编码方式及发射磁感应强度幅值 Br通过下述步骤选定:
选定任意一种无平均直流分量的编码方式;
选择无调制方式或幅度无变化的载波调制方式;
在选定的小于 fO 的工作频率、 调制方式及编码方式下, 先选定典型噪 声终端及易于实现的移动射频装置内磁检测及放大的增益参数, 测试读卡器 未发送低频交变磁场信号条件下移动射频装置内检测电压的固有噪声电压 幅度 Vn,然后测量读卡器用选定的调制编码方式发送低频交变磁场信号时移 动射频装置内检测电压 Vr, 选择发射磁感应强度幅值 Br值, 使 Vr/Vn>SNR, SNR为移动射频装置的信噪比。
4. 根据权利要求 3所述的近距离通信方法, 其特征在于, 所述步骤 b 中, 所述预设的电压门限 Vt通过下述步骤确定:
步骤 bl ,在选定的发射参数下, 测量各典型终端和障碍物的电压距离曲 线, 所述发射参数包括低频交变磁场信号的频率、 调制方式、 编码方式及发 射磁感应强度幅值 Br ;
步骤 b2 ,求取基准电压距离曲线,基准电压距离曲线是典型终端及障碍 物曲线的中间值, 其距离典型终端曲线的上边界及下边界的电压幅度都为 δ τ/2 ;
步骤 b3 , 选定移动射频装置内检测电压门限 Vt , 在基准电压距离曲线 上对应于 (Din+Dv/2 ) 点处的电压值即为 Vt值。
5. 根据权利要求 1所述的近距离通信方法, 其特征在于, 所述低频交 变磁场信号的频率处于特低频频段或甚低频频段或低频频段,所述特低频频 段的频率范围为 300 Hz ~ 3000Hz, 所述甚 频频段的频率范围为 3KHz ~ 30KHz,所述低频频段的频率范围为 30 KHz ~ 300KHz。
6. 根据权利要求 5所述的近距离通信方法, 其特征在于, 所述低频交 变磁场信号的频率为 300Hz ~ 50KHz。
7. 根据权利要求 6所述的近距离通信方法, 其特征在于, 所述低频交 变磁场信号的频率为 500Ηζ、 1ΚΗζ、 1 · 5ΚΗζ、 2ΚΗζ、 2· 5ΚΗζ、 3ΚΗζ、 4ΚΗζ、 5ΚΗζ、 10ΚΗζ、 20ΚΗζ或 30ΚΗζ。
8. 根据权利要求 3所述的近距离通信方法, 其特征在于, 所述编码方 式为曼彻斯特码、 差分曼彻斯特码或归零码; 以及, 所述调制方式为开关键 控法、 相移键控法或频移键控法。
9. 一种近距离通信系统,其特征在于,包括至少一个读卡器和至少一个 移动射频装置,其中: 所述读卡器, 用于按照预设的发射参数发射低频交变磁场信号, 所述低 频交变磁场信号中携带该读卡器的身份标识信息,所述发射参数包括低频交 变磁场信号的频率,该频率等于或小于系统无校准工作的最高频率 f O;还用 于接收所述移动射频装置通过射频通道传送的信息, 比较该信息中读卡器的 身份标识信息是否同自身的身份标识信息一致, 若一致则以自身的身份标识 信息和所述移动射频装置的身份标识信息的结合作为组合地址, 与所述移动 射频装置通过射频通道进行刷卡交易;
所述移动射频装置, 用于在各距离点上接收、 检测所述低频交变磁场信 号并放大为与距离对应的幅度恒定的的电压信号,进而通过预设的电压门限 Vt判断装载有所述移动射频装置的终端是否进入了预设的有效距离区间,所 述电压门限 vt对装载有所述移动射频装置的所有终端相同; 还用于在与接 收到的低频交变磁场信号对应的电压信号大于或等于预设的电压门限 vt时, 从接收到的低频交变磁场信号中获取读卡器的身份标识信息, 并将其连同自 身的身份标识信息一起通过射频通道传送给所述读卡器;还用于与所述读卡 器通过射频通道进行刷卡交易。
10.根据权利要求 9所述的近距离通信系统,其特征在于:
所述读卡器包括至少一个低频发射线圏、 至少一个驱动电路、 至少一个 编码电路、 至少一个第一主处理器、 至少一个射频收发电路和至少一个射频 天线, 所述低频发射线圏、 驱动电路、 编码电路、 第一主处理器、 射频收发 电路、 射频天线、 顺次串联连接;
所述移动射频装置包括至少一个低频磁感应电路、 至少一个低频放大电 路、 至少一个门限判断及解调电路、 至少一个第二主处理器、 至少一个射频 收发电路和至少一个射频天线, 所述低频磁感应电路、 低频放大电路、 门限 判断及解调电路、 第二主处理器、 射频收发电路、 射频天线顺次串联连接。
11.根据权利要求 1 0所述的近距离通信系统,其特征在于, 所述读卡器 的驱动电路和编码电路之间还设有调制电路。
12.根据权利要求 10或 11所述的近距离通信系统,其特征在于,所述低 频发射线圏为漆包线线圏或 PCB线圏。
1 3.根据权利要求 12所述的近距离通信系统,其特征在于, 所述低频发 射线圏的匝数大于 1 0圏。
14.根据权利要求 1 3所述的近距离通信系统,其特征在于, 所述低频发 射线圏的匝数为 50 ~ 500圏。
15.根据权利要求 12所述的近距离通信系统,其特征在于, 所述低频发 射线圏内填塞有铁氧体磁芯或铁芯。
16.根据权利要求 12所述的近距离通信系统,其特征在于, 所述低频发 射线圏所包围面积的截面最宽处大于移动射频终端的截面宽度。
17.根据权利要求 12所述的近距离通信系统,其特征在于, 所述低频发 射线圏所包围面积的截面至少包含直径 3cm的圓形区域或者 3cm* 3cm的方形 区域。
18.根据权利要求 1 0所述的近距离通信系统,其特征在于, 所述低频磁 感电路为 PCB线圏、 漆包线线圏、 霍尔器件或巨磁阻器件。
19.根据权利要求 9所述的近距离通信系统,其特征在于,所述移动射频 装置置于移动终端中。
20.根据权利要求 9所述的近距离通信系统,其特征在于,所述移动射频 装置置于移动终端内的 S IM卡、 UIM卡、 US IM卡、 TF卡或 SD卡中。
21.根据权利要求 19或 20所述的近距离通信系统,其特征在于,所述移 动终端为手机、 个人数字助理 PDA或笔记本电脑。
22.根据权利要求 9所述的近距离通信系统,其特征在于,所述身份标识 信息为识别码。
PCT/CN2010/071395 2008-11-26 2010-03-29 近距离通信方法及系统 WO2011091622A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2011010018A MX2011010018A (es) 2010-01-29 2010-03-29 Metodo y sistema de comunicacion de campo cercano.
KR1020117022119A KR101532585B1 (ko) 2010-01-29 2010-03-29 근접장 통신 방법 및 시스템
ES10844400.1T ES2566925T3 (es) 2010-01-29 2010-03-29 Método y sistema de comunicación de campo cercano
EP10844400.1A EP2424157B1 (en) 2010-01-29 2010-03-29 Method and system for near field communication
JP2012550296A JP5468144B2 (ja) 2010-01-29 2010-03-29 近距離通信方法およびシステム
AU2010343862A AU2010343862A1 (en) 2010-01-29 2010-03-29 Method and system for near field communication
SG2011068442A SG174512A1 (en) 2010-01-29 2010-03-29 Method and system for near field communication
BRPI1013558-8A BRPI1013558B1 (pt) 2010-01-29 2010-03-29 sistema e método de comunicação de campo próximo
US13/011,125 US8630584B2 (en) 2008-11-26 2011-01-21 RF SIM card, card reader, and communication method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010103009758 2010-01-29
CN201010300975.8A CN102142868B (zh) 2010-01-29 2010-01-29 近距离通信方法及系统
CN201010300975.8 2010-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076349 Continuation-In-Part WO2011069312A1 (zh) 2008-11-26 2009-12-31 一种射频装置和射频读卡器以及相关通信系统和通信方法

Publications (2)

Publication Number Publication Date
WO2011091622A1 true WO2011091622A1 (zh) 2011-08-04
WO2011091622A8 WO2011091622A8 (zh) 2011-12-01

Family

ID=44318637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071395 WO2011091622A1 (zh) 2008-11-26 2010-03-29 近距离通信方法及系统

Country Status (13)

Country Link
EP (1) EP2424157B1 (zh)
JP (1) JP5468144B2 (zh)
KR (1) KR101532585B1 (zh)
CN (1) CN102142868B (zh)
AU (1) AU2010343862A1 (zh)
BR (1) BRPI1013558B1 (zh)
CO (1) CO6362075A2 (zh)
ES (1) ES2566925T3 (zh)
HK (1) HK1155004A1 (zh)
MX (1) MX2011010018A (zh)
MY (1) MY155381A (zh)
SG (1) SG174512A1 (zh)
WO (1) WO2011091622A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054825A (zh) * 2016-04-27 2016-10-26 杭州鸿雁电器有限公司 便携式控制装置
CN112913264A (zh) * 2018-10-26 2021-06-04 三菱电机株式会社 认证装置、认证系统、进出室管理系统、电梯分配管理系统、测位系统及智能设备
CN116938291A (zh) * 2023-07-21 2023-10-24 维沃移动通信有限公司 近场通信nfc设备及其通信方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917357B (zh) * 2011-08-05 2016-05-11 国民技术股份有限公司 一种认证方法及装置
CN102957454B (zh) * 2011-08-26 2014-12-17 国民技术股份有限公司 一种利用磁双向通信的方法及系统
CN102982294B (zh) * 2011-09-05 2015-12-02 国民技术股份有限公司 一种利用磁双向通信的冲突检测方法
CN103001705B (zh) * 2011-09-13 2015-02-04 上海华虹宏力半导体制造有限公司 一种近场通信收发器芯片测试波的产生系统及其产生方法
CN103187984B (zh) * 2011-12-29 2016-09-14 国民技术股份有限公司 一种移动终端、移动终端系统及移动终端信号传输方法
CN103093255A (zh) * 2011-10-31 2013-05-08 深圳光启高等理工研究院 基于rfid-sim移动终端的通讯系统及通讯方法
CN102523022B (zh) * 2011-11-25 2014-12-24 乐鑫信息科技(上海)有限公司 有源微型近距无线通讯天线系统
CN103178907B (zh) * 2011-12-21 2016-03-30 国民技术股份有限公司 提高冲突检测成功率的方法
CN103187938B (zh) * 2011-12-27 2017-07-25 国民技术股份有限公司 一种用于低频信号检测及传输系统的差分模拟前端装置
US9721402B2 (en) 2012-08-17 2017-08-01 Utc Fire & Security Corporation Access control apparatus with modular encoder subassembly
JP5914368B2 (ja) * 2013-01-08 2016-05-11 日本電信電話株式会社 携帯端末装置および無線通信システム
KR20140134562A (ko) * 2013-05-14 2014-11-24 삼성전자주식회사 지자기 센서를 이용한 통신부 제어 방법 및 이를 위한 전자 기기
CN103824368A (zh) * 2014-03-12 2014-05-28 厦门立林科技有限公司 一种实现电子设备非接触进入设置状态的装置及其方法
JP6745358B2 (ja) * 2016-05-25 2020-08-26 深▲せん▼長城開発科技股▲ふん▼有限公司Shenzhen Kaifa Technology Co., Ltd. Nfc腕時計
CN105978582B (zh) * 2016-06-30 2019-03-19 深圳优克云联科技有限公司 一种单基带双通道的通信方法及通信设备
KR102544939B1 (ko) * 2016-11-14 2023-06-21 삼성전자주식회사 근거리 무선 통신 장치
CN107087249A (zh) * 2017-03-31 2017-08-22 北京小米移动软件有限公司 通信方法及装置
CN109389813A (zh) * 2017-08-10 2019-02-26 上海西门子医疗器械有限公司 具有遥控器的医疗设备
CN107404635B (zh) * 2017-08-29 2024-05-14 上海罗捷物联网技术有限公司 一种报警信息的监控方法及系统
CN108205637B (zh) * 2017-10-13 2023-05-23 中兴通讯股份有限公司 一种nfc配置方法、移动终端及计算机可读存储介质
CN111114348B (zh) * 2018-10-31 2024-03-08 现代自动车株式会社 位置对准方法、磁场检测设备和位置对准设备
CN114826334B (zh) * 2022-04-26 2023-11-14 上海顺舟智能科技股份有限公司 基于磁场变化的数据传输系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643806A (zh) * 2002-03-26 2005-07-20 诺基亚公司 用于近距离无线通信的基于射频识别(rf-id)的发现
WO2008009830A2 (fr) * 2006-07-21 2008-01-24 Ask S.A. Dispositif d'identification par radio fréquence (rfid) apposé sur un objet à identifier
CN201134107Y (zh) * 2007-12-22 2008-10-15 湖北物资流通技术研究所 射频识别网络天线
CN201172588Y (zh) * 2007-12-17 2008-12-31 中国国际海运集装箱(集团)股份有限公司 用于集装箱吊装设备的rfid读写装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655427B2 (ja) * 2001-07-19 2011-03-23 ソニー株式会社 通信システムおよび方法、通信端末および方法、拡張装置、並びにプログラム
JP2009135610A (ja) * 2007-11-28 2009-06-18 Sony Corp 通信システム並びに通信装置
JP4357581B1 (ja) * 2008-07-24 2009-11-04 株式会社東芝 携帯型電子機器および通信制御方法
JP2010258595A (ja) * 2009-04-22 2010-11-11 Toshiba Corp 電子機器および通信制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643806A (zh) * 2002-03-26 2005-07-20 诺基亚公司 用于近距离无线通信的基于射频识别(rf-id)的发现
WO2008009830A2 (fr) * 2006-07-21 2008-01-24 Ask S.A. Dispositif d'identification par radio fréquence (rfid) apposé sur un objet à identifier
CN201172588Y (zh) * 2007-12-17 2008-12-31 中国国际海运集装箱(集团)股份有限公司 用于集装箱吊装设备的rfid读写装置
CN201134107Y (zh) * 2007-12-22 2008-10-15 湖北物资流通技术研究所 射频识别网络天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054825A (zh) * 2016-04-27 2016-10-26 杭州鸿雁电器有限公司 便携式控制装置
CN112913264A (zh) * 2018-10-26 2021-06-04 三菱电机株式会社 认证装置、认证系统、进出室管理系统、电梯分配管理系统、测位系统及智能设备
CN112913264B (zh) * 2018-10-26 2024-03-01 三菱电机株式会社 认证装置、认证系统、进出室管理系统、电梯分配管理系统、测位系统及智能设备
CN116938291A (zh) * 2023-07-21 2023-10-24 维沃移动通信有限公司 近场通信nfc设备及其通信方法

Also Published As

Publication number Publication date
ES2566925T3 (es) 2016-04-18
EP2424157A1 (en) 2012-02-29
JP5468144B2 (ja) 2014-04-09
HK1155004A1 (zh) 2012-05-04
BRPI1013558B1 (pt) 2020-10-13
EP2424157B1 (en) 2016-02-10
KR20120119978A (ko) 2012-11-01
SG174512A1 (en) 2011-10-28
CN102142868A (zh) 2011-08-03
JP2013518482A (ja) 2013-05-20
MY155381A (en) 2015-10-15
WO2011091622A8 (zh) 2011-12-01
MX2011010018A (es) 2011-10-11
CO6362075A2 (es) 2012-01-20
AU2010343862A1 (en) 2011-10-27
CN102142868B (zh) 2015-02-25
EP2424157A4 (en) 2014-08-20
BRPI1013558A2 (pt) 2016-04-12
KR101532585B1 (ko) 2015-07-01

Similar Documents

Publication Publication Date Title
WO2011091622A1 (zh) 近距离通信方法及系统
US10019611B2 (en) Communication device and system
WO2011140732A1 (zh) 一种近距离通信方法及系统
US8630584B2 (en) RF SIM card, card reader, and communication method
WO2011113216A1 (zh) 移动射频装置、射频ic卡及射频存储卡
KR101492948B1 (ko) 조절가능 이득을 갖는 근거리 무선 통신 장치
WO2011113215A1 (zh) 一种读卡器
US9292782B2 (en) Adaptive NFC transceivers
US8929805B2 (en) System, method, and device for radio frequency communication
CN102768722B (zh) 一种通信系统及方法
WO2012163118A1 (zh) 距离可控的移动支付方法及装置
CN102769483A (zh) 一种通信系统及方法
CN102769474B (zh) 一种低频交变磁场距离控制方法
WO2011022894A1 (zh) 通讯距离的控制方法及射频读卡装置
TWI549063B (zh) 讀卡器
TWI501575B (zh) 行動射頻裝置、射頻ic卡及射頻存儲卡
TWI509522B (zh) 射頻裝置、射頻讀取器及相關通訊系統和方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 3754/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11118465

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 12011501864

Country of ref document: PH

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012550296

Country of ref document: JP

Ref document number: 2010844400

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117022119

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/010018

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2010343862

Country of ref document: AU

Date of ref document: 20100329

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013558

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1013558

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110921