WO2010013706A1 - Screw device - Google Patents

Screw device Download PDF

Info

Publication number
WO2010013706A1
WO2010013706A1 PCT/JP2009/063416 JP2009063416W WO2010013706A1 WO 2010013706 A1 WO2010013706 A1 WO 2010013706A1 JP 2009063416 W JP2009063416 W JP 2009063416W WO 2010013706 A1 WO2010013706 A1 WO 2010013706A1
Authority
WO
WIPO (PCT)
Prior art keywords
nut
load
rolling
path
ball
Prior art date
Application number
PCT/JP2009/063416
Other languages
French (fr)
Japanese (ja)
Inventor
白井 武樹
飯田 勝也
荘志 宮原
勉 富樫
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to JP2010522724A priority Critical patent/JP5341893B2/en
Publication of WO2010013706A1 publication Critical patent/WO2010013706A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • F16H25/2214Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls with elements for guiding the circulating balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • F16H2025/2242Thread profile of the screw or nut showing a pointed "gothic" arch in cross-section

Definitions

  • a plurality of rolling elements are interposed between a spiral rolling element rolling groove on the outer peripheral surface of the screw shaft and a helical load rolling element rolling groove on the inner peripheral surface of the nut so as to allow rolling motion. It relates to a screw device.
  • the ball screw is a mechanical element that converts rotational motion into linear motion.
  • a plurality of balls are interposed in the loaded ball rolling path so as to allow rolling motion.
  • ⁇ A return pipe is attached to the nut to circulate the ball rolling between the screw shaft and the nut.
  • the return pipe is formed with a no-load return path that connects one end and the other end of the spiral loaded ball rolling groove of the nut.
  • the ball that rolls between the screw shaft and the nut rolls up to one end of the loaded ball rolling groove of the nut, and then scoops up into the no-load return path of the return pipe. It is returned to the other end of the load ball rolling groove.
  • the one end and the other end of the load ball rolling groove of the nut are 180 degrees apart in the circumferential direction when viewed from the axial direction of the screw shaft. For this reason, the number of turns of the load ball rolling path is 2.5, 3.5, or the like. When the number of turns becomes such, the number of balls in the upper half of the nut where the return pipe is provided is different from the number of balls in the lower half of the nut where the return pipe is not provided, as viewed from the axial direction of the screw shaft. End up. Since the load that can be loaded is different between the upper half of the nut and the lower half of the nut, the load balance of the ball screw is deteriorated.
  • Patent Document 1 discloses a ball screw in which the number of turns of a load ball rolling path is close to an integer.
  • the circulating component for circulating the ball is composed of a return tube extending in the axial direction of the nut and a pair of inserts attached to both ends of the return tube in the axial direction. .
  • the nest lifts the ball moving on the load ball rolling path in the radial direction of the screw shaft and moves it to the return tube.
  • the return tube is disposed parallel to the axis of the screw shaft.
  • an object of the present invention is to provide a highly practical screw device that can realize integer winding.
  • an aspect of the present invention is to provide a screw shaft having a spiral rolling element rolling groove on an outer peripheral surface and a spiral facing the rolling element rolling groove of the screw shaft on an inner peripheral surface.
  • a loaded rolling element rolling groove a nut having a no-load return path connected to one end and the other end of the loaded rolling element rolling groove, the rolling element rolling groove of the screw shaft, and the A load rolling element rolling path between the nut and the load rolling element rolling groove, and a plurality of rolling elements arranged to circulate in a circulation path composed of the no-load return path, and the no load
  • the return path has a center line formed in an arc shape when viewed from the axial direction of the nut, and a hoisting passage that scoops up the rolling element that moves on the rolling element rolling path along the arc-shaped path, A line is formed parallel to the axis of the nut, and the rolling element is connected to the axis of the nut.
  • the axial passage to move to the line a screw device having a.
  • the rolling elements that move on the outer peripheral surface of the screw shaft can be scooped up along the arcuate track, so that the rolling elements can be smoothly circulated.
  • the inlet and outlet of the no-load return path seen from the nut axial direction are at the same position.
  • the number of turns of the loaded rolling element rolling path can be made closer to an integer.
  • the perspective view of the ball screw of a first embodiment of the present invention Nut perspective view Enlarged view of circulating parts Cross-sectional view of ball rolling groove on screw shaft and loaded ball rolling groove on nut Perspective view of nut with circulating parts removed Perspective view showing circulation path of ball screw Diagram showing the center line of the circulation path as seen from the side of the nut Diagram showing the center line of the no-load return path as seen from the axial direction of the nut
  • a perspective view of the unloaded return path developed on the screw shaft ((a) shows a perspective view, (b-1) shows a front view, and (b-2) shows a side view) Perspective view of screw shaft and circulating parts Front view of screw shaft and circulating parts Perspective view of circulating parts attached to nut Front view of the circulating parts attached to the nut (including a partial cross section)
  • the figure which shows the change of the cross-sectional shape of the no-load return path of circulation parts The figure which shows the change of the cross-sectional shape of the no-load return path of circulation parts Detailed view of
  • FIG. 1 shows an example of the usage method of the ball screw of 4th embodiment of this invention.
  • the figure which shows the circulation path of the ball screw of 4th embodiment of this invention ((a) shows a front view, (b) shows a side view in the figure)
  • bowl load ((a) in the figure is an example of the present invention, (b) is a conventional example using a return pipe)
  • FIG. 1 shows a perspective view of a ball screw as a screw device of a first embodiment of the present invention.
  • the ball screw has a screw shaft 1 having a ball rolling groove 1a which is a spiral rolling element rolling groove on the outer peripheral surface, and a spiral load rolling element rolling groove facing the ball rolling groove 1a on the inner peripheral surface.
  • a load ball rolling groove 2a and a nut 2 having a no-load return path connecting one end and the other end of the load ball rolling groove 1a, and a ball rolling groove 1a of the screw shaft 1 and a load ball of the nut 2
  • a ball 3 (see FIG. 4) that is a plurality of rolling elements interposed in a circulation path composed of a loaded ball rolling path and an unloaded return path between the rolling grooves 2a.
  • a ball rolling groove 1a of a predetermined lead is formed on the outer peripheral surface of the screw shaft 1 by grinding or rolling.
  • the ball rolling groove 1 a is formed in a Gothic arch groove shape including two arcs 4 having a radius slightly larger than the radius of the ball 3.
  • the centers C1 of the two arcs are located at a position away from the center C2 of the ball 3.
  • the ball 3 contacts the ball rolling groove 1a having a Gothic arch groove shape at two points.
  • a contact angle ⁇ formed by a line connecting the center C2 of the ball 3 and the bottom 5 of the gothic arch groove and a contact point 6 between the arc 4 and the ball 3 and the center C2 of the ball 3 is, for example, 40 to Set to 50 degrees.
  • the ball rolling groove 1a is ground after being heat-treated.
  • Arc-shaped chamfers 7 may be formed on both side edges of the ball rolling groove 1a, or a relief groove serving as a relief during grinding may be formed on the bottom 5 of the gothic arch groove.
  • the nut 2 and 3 are perspective views of the nut 2 with the screw shaft 1 removed.
  • the nut 2 is composed of a nut main body 9 in which a spiral load ball rolling groove 2 a is formed on the inner peripheral surface, and a circulating component 8 attached to the nut main body 9.
  • the nut body 9 is provided with a through hole 2e through which the screw shaft 1 passes.
  • a spiral load ball rolling groove 2a having a predetermined lead is formed by grinding.
  • the cross-sectional shape of the loaded ball rolling groove 2 a is formed in a Gothic arch groove shape including two arcs 4 having a radius slightly larger than the radius of the ball 3.
  • the Gothic arch groove shape is the same as the ball rolling groove 1 a of the screw shaft 1.
  • the loaded ball rolling groove 2a is ground and then heat-treated.
  • a flange 2b for attaching the nut body 9 to the other machine part is formed at one end of the nut body 9 in the axial direction.
  • a flat chamfered portion 2 c is formed on the outer peripheral surface of the nut body 9.
  • a circulating component 8 is mounted on the flattening portion 2c.
  • the circulation part 8 is formed with a no-load return path 10 (see FIG. 6) connected to one end and the other end of the load ball rolling groove of the nut body 9.
  • FIG. 5 shows a perspective view of the circulating component 8 and the nut body 9.
  • the unloaded return path 10 of the circulating component 8 has a loaded ball rolling path 12 between the ball rolling groove 1a of the screw shaft 1 and the loaded ball rolling groove 2a of the nut body 9 at both ends in the length direction.
  • a pair of hoisting passages 22 for hoisting the rolling ball 3 into the no-load return path 10 is provided.
  • Each lifting path 22 is formed with a lifting part 14 that contacts the ball 3 moving on the loaded ball rolling path and guides it into the no-load return path 10.
  • a pair of through holes 15 that penetrate from the outer surface to the inner surface of the nut body 9 and into which the pair of raised portions 14 of the circulating component 8 are fitted are formed in the flattening portion 2 c of the nut body 9.
  • the through hole 15 extends along the load ball rolling groove 2 a of the nut body 9.
  • a notch groove 16 extending in the axial direction of the nut body 9 is formed between the pair of through holes 15.
  • the notch groove 16 has a flat groove bottom 16a and a pair of flat inner wall surfaces 16b that rise from the groove bottom 16a and face each other.
  • the groove bottom 16a is parallel to the plane of the chamfered portion 2c and parallel to the axis of the nut body 9.
  • the inner wall surface 16b is parallel to the axis of the nut body 9 and is orthogonal to a plane including the groove bottom 16a.
  • the circulating component 8 is fitted into the through hole 15 and the notch groove 16 of the nut body 9.
  • the external shape of the circulating component 8 includes a pair of end portions 8a including a pair of raised portions 14 and a main body portion 8b between the pair of end portions 8a.
  • the end 8a extends elongated along the load ball rolling groove 2a of the nut body 9.
  • the cross-sectional shape of the end portion 8 a matches the cross-sectional shape of the through hole 15.
  • the main body portion 8 b extends in the axial direction of the nut main body 9.
  • the cross-sectional shape of the main body portion 8b is a combination of a square and a semicircle.
  • a pair of flat outer wall surfaces 17 corresponding to the inner wall surface 16b of the notch groove 16 is formed on the side surface of the main body portion 8b.
  • the bottom surface 19 of the main body portion 8 b is formed in a plane corresponding to the groove bottom 16 a of the notch groove 16.
  • the circulating component 8 is formed by combining a pair of divided bodies 18 divided into two along the no-load return path 10.
  • Reference numeral 24a in the figure is a dividing plane.
  • the pair of divided bodies 18 are formed in the same shape, and are manufactured by injection molding a resin in a common mold.
  • the pair of divided bodies 18 are joined by welding such as laser welding, welding, or adhesion.
  • the presser member 21 includes a main body presser 21a bent in a U shape in accordance with the upper portion of the main body portion 8b, and mounting seats 21b provided on both sides of the main body presser 21a.
  • the holding member 21 is manufactured by bending a metal plate.
  • a through hole 21c is opened in the mounting seat 21b.
  • the presser member 21 is attached to the nut body 9 by passing a bolt through the through hole 21 c and screwing the bolt into the screw hole of the nut body 9.
  • the circulating component 8 is sandwiched between the pressing member 21 and the notch groove 16 of the nut body 9 and is fixed to the nut body 9.
  • the circulating component 8 fits into the notch groove 16 of the nut body 9, and the bottom surface 19 of the body portion 8 b of the circulating component 8 contacts the groove bottom 16 a of the notch groove 16 of the nut body 9.
  • the position of the circulating component 8 in the X direction is positioned on a plane orthogonal to the axis of the nut body 9.
  • the outer wall surface of the main body portion 8 b of the circulating component 8 comes into contact with the inner wall surface 16 b of the notch groove 16 of the nut body 9, the position of the circulating component 8 on the plane is positioned in the Y direction.
  • FIG. 6 shows the ball circulation path of the ball screw.
  • a spiral load ball rolling path 12 is formed between the ball rolling groove 1 a of the screw shaft 1 and the load ball rolling groove 2 a of the nut body 9.
  • a no-load return path 10 is connected to one end and the other end of the load ball rolling path 12 so that the ball 3 moving from one end to the other end of the load ball rolling path 12 can be circulated.
  • a large number of balls 3 are arranged and accommodated in the circulation path constituted by the loaded ball rolling path 12 and the no-load return path 10. As described above, the no-load return path 10 is formed in the circulating component 8.
  • the no-load return path 10 has an axial passage 24 parallel to the axis of the nut 2 so that the number of turns of the load ball rolling path 12 is close to an integer such as 2, 3, 4, and so on. At both ends of the axial passage 24, a connecting passage 23 and a lifting passage 22 are formed.
  • FIG. 7 shows the center line of the circulation path seen from the side of the nut 2 (orbit of the center of the ball 3), and FIG. 8 shows the center line of the unloaded return path 10 seen from the axial direction of the nut 2 (of the ball 3). Center orbit).
  • the no-load return path 10 can be divided into a pair of lifting paths 22, a pair of connecting paths 23, and an axial path 24.
  • the hoisting passage 22 has a center line formed in an arc shape when viewed from the axial direction of the nut 2, and moves the ball 3 moving on the load ball rolling path 12 along the arc-shaped track. Crawling up.
  • the arc shape includes an arc, an ellipse, and a clothoid curve.
  • the ball 3 is scooped up along a straight track in the tangential direction of the circular load ball rolling path 12.
  • the ball 3 is scooped up along an arcuate path.
  • the tangent directions of these center lines coincide with each other at (lifting point).
  • the center line of the lifting passage 22 is orthogonal to the axis 2 f of the nut 2.
  • the center line of the connecting passage 23 connecting the lifting passage 22 and the axial passage 24 is formed in an arc shape.
  • the connecting passage 23 moves the ball 3 in the radial direction and moves the ball 3 inward of the nut 2.
  • the connecting passage 23 is bent at 90 degrees in the axial direction, and then connected to the axial passage 24 whose center line is parallel to the axis 2 f of the nut 2.
  • the axial passage 24 moves the ball 3 to the nut 2 parallel to the axis.
  • the ball 3 that has moved in the axial path 24 is returned to the loaded ball rolling path 12 again via the connecting path 23 and the lifting path 22 on the opposite side.
  • the front side lifting path 22 and the rear side lifting path 22 are formed symmetrically with respect to the center line 2 g of the nut 2.
  • the center line of the lifting passage 22 viewed from the side of the nut 2 may be inclined in accordance with the lead of the load ball rolling path 12. By tilting in accordance with the lead, the ball can be moved more smoothly.
  • FIG. 9A shows a perspective view of the no-load return path 10 developed on the screw shaft 1.
  • An unloaded return path 10 viewed from the axial direction of the nut 2 by providing an axial path 24 parallel to the axis of the nut 2 in the unloaded return path 10 of the circulating component 8 and circulating the ball 3 in parallel with the axis of the nut 2.
  • Ten inlets and outlets can be brought closer to the same position. For this reason, the number of turns of the load ball rolling path 12 can be made close to an integer. Further, since the lifting path 22 of the circulating component 8 scoops up the ball 3 along the arc-shaped track, the ball 3 can be smoothly circulated and the number of turns of the load ball rolling path 12 can be made closer to an integer. it can.
  • the hoisting passage 22 of the no-load return passage 10 has a center line formed in an arc shape when viewed from the axial direction of the nut 2, and FIG. 9 (b-2). ),
  • the center line of the nut 2 has a non-linear region 22a formed in an arc shape as viewed from the side.
  • the radial dimension of the nut 2 can be reduced by forming an arc-shaped non-linear region in the lifting passage 22 when viewed from the axial direction of the nut 2 or from the side of the nut 2.
  • a part of the hoisting passage 22 may be a non-linear region 22a, or the entire hoisting passage 22 may be a non-linear region 22a.
  • the screw shaft 1 and the circulating component 8 show the screw shaft 1 and the circulating component 8.
  • a no-load return path 10 developed on the screw shaft 1 is formed in the circulating component 8.
  • the no-load return path 10 of the circulating component 8 is formed in a circular shape surrounding the ball 3.
  • the unloaded return path 10 of the circulating component 8 is provided with an inlet 10a and an outlet 10b.
  • the inlet 10 a is connected to one end of the load ball rolling path 12, and the outlet 10 b is connected to the other end of the load ball rolling path 12.
  • the circulating component 8 is divided into two along the center line of the no-load return path 10.
  • the axial passage 24 of the no-load return path 10 is divided into two by a split surface 24 a parallel to the axis of the screw shaft 1, and as shown in FIG.
  • the connecting passage 23 and the lifting passage 22 are divided into two at a dividing surface 24b along the center line when viewed from the axial direction of the screw shaft 1.
  • the lifting portion 14 is formed in each of the divided parts so as not to be divided by the lifting portion 14 of the lifting passage 22.
  • FIG. 12 and 13 are detailed views of the circulating component 8 attached to the nut body 9.
  • a lifting portion 14 is formed for scooping up the ball 3 rolling on the loaded ball rolling path 12.
  • FIG. 13 when viewed from the axial direction of the screw shaft 1, the back surface 14 a of the lifting portion 14 is parallel to the center line of the connecting passage 23.
  • An arcuate curved surface is formed on the inner peripheral surface 14 b of the lifting portion 14.
  • the raising portion 14 gradually increases in thickness as it approaches the screw shaft 1. By increasing the thickness of the lower end of the hoisting portion 14, the strength of the hoisting portion 14 with which the ball 3 collides can be increased.
  • a constraining portion 28 that faces the ball rolling groove 1 a of the screw shaft 1 is formed at the end of the hoisting passage 22 of the circulating component 8.
  • the restraining portion 28 is connected to the load ball rolling groove 2 a of the nut body 9.
  • the cross-sectional shape of the restraining portion 28 in the plane orthogonal to the traveling direction of the ball 3 is formed in a Gothic arch groove shape that matches the cross-sectional shape of the loaded ball rolling groove 2 a of the nut body 9.
  • the play of the ball 3 sandwiched between the ball rolling groove 1a of the screw shaft 1 and the restraining portion 28 of the circulating component 8 is smaller than the play of the ball 3 in the unloaded return path 10 having a closed curved cross section.
  • the cross-sectional shape of the raised portion 14 of the circulating component 8 in a plane orthogonal to the traveling direction of the ball 3 is formed into a circular arc groove shape composed of a single arc having a radius of curvature slightly larger than the radius of the ball 3. Is done.
  • the cross-sectional shapes of the connecting passage 23 and the axial passage 24 of the circulation component 8 are formed in a circular shape having a radius slightly larger than the radius of the ball 3.
  • the cross-sectional shape is formed in a circular shape.
  • the cross-sectional shape of the no-load return path 10 in the region from (4) to (5) is the same as the region from (2) to (3).
  • the cross-sectional shape of the unloaded return path 10 in the region from (5) to (6) is the same as the region from (1) to (2).
  • FIG. 16 shows a detailed cross-sectional view of the lifting passage 22 that is an area from (2) to (3).
  • the cross-sectional shape on the nut body 9 side (restraint portion 28 side) is formed in a Gothic arch groove shape composed of two arcs R ⁇ b> 1.
  • the cross-sectional shape on the screw shaft 1 side (the raised portion 14 side) is formed into a circular arc groove shape composed of a single arc R2.
  • a no-load return path 10 in the no-load area there are two types of circulation paths of the ball 3, that is, a no-load return path 10 in the no-load area and a load ball rolling path 12 in the load area.
  • a restraint portion 28 is provided between the no-load return path 10 in the no-load area and the load ball rolling path 12 in the load area so that there is an intermediate area with little play. Exists.
  • the ball 3 is drawn into the loaded ball rolling path 12 not by being pushed into the subsequent ball 3 but by the rotation of the screw shaft 1. For this reason, the ball 3 can be smoothly moved from the no-load region to the load region. Further, when the ball 3 moves from the loaded ball rolling path 12 to the no-load return path 10, the ball 3 is guided between the restraining portion 28 of the circulating component 8 and the screw shaft 1. Can be moved smoothly inward.
  • the restraining portion 28 of the unloaded return path 10 of the circulating component 8 into a Gothic arch groove shape that matches the cross-sectional shape of the loaded ball rolling groove 2 a of the nut body 9, the restraining portion 28 correctly The aligned balls 3 can be smoothly moved to the loaded ball rolling groove 2a.
  • the ball 3 can be moved more smoothly.
  • the cross-sectional shape of the no-load return path 10 of the circulating component 8 is formed in a circular arc groove shape.
  • the cross-sectional shape of the load ball rolling groove 2a of the nut body 9 is formed in a Gothic arch groove shape. For this reason, it was necessary to process the chamfer 29 for making the cross-sectional shape continuous at the joint of the load ball rolling groove 2a of the nut body 9.
  • the ball 3 can be removed from the no-load return path 10 without chamfering the nut. It is possible to easily transfer to the loaded ball rolling groove 2a.
  • the ball 3 collides with the lifting unit 14.
  • the cross-sectional shape of the raised portion 14 is formed in a Gothic arch groove shape, an edge is likely to occur at the tip of the raised portion 14 with which the ball 3 collides.
  • the cross-sectional shape of the hoisting portion 14 is formed into a circular arc groove shape and rounding the tip of the hoisting portion 14 into an arc shape, it is possible to prevent an edge from occurring at the tip of the hoisting portion 14.
  • the cross-sectional shapes of the connecting passage 23 and the axial passage 24 of the no-load return passage 10 in a circular shape, it becomes easy to manufacture the divided body 18 using a mold.
  • FIG. 18 shows a circulation path for realizing complete integer winding.
  • the center S1 of the screw shaft 1 is derived from a line L1 (center line) connecting the center S1 of the screw shaft 1 and the center of the axial passage 24 of the circulating component 8 (center line of the connecting passage 23).
  • the center S1 of the screw shaft 1 is derived from a line L1 (center line) connecting the center S1 of the screw shaft 1 and the center of the axial passage 24 of the circulating component 8 (center line of the connecting passage 23).
  • the distance ⁇ is 0, the number of balls 3 that can receive a load is equal to the number of balls 3 that can receive a load at the position where the balls 3 are scooped up when viewed from the axial direction of the screw shaft 1. One more than the other 12 parts.
  • the arc-shaped distance ⁇ is equal to or greater than 1 ⁇ Da (diameter)
  • the number of balls 3 that can receive a load is reduced by one at the position where the balls 3 are scooped up, compared to the other portions.
  • the distance ⁇ is set to be larger than 0 and 1.5 times or less of the ball diameter in consideration of approaching the integer winding and the ease of turning of the ball 3.
  • the arc-shaped distance ⁇ By setting the arc-shaped distance ⁇ to 0.4 times or more and 0.6 times or less, preferably 0.5 times the ball diameter, as shown in FIG. 19, when viewed from the axial direction of the screw shaft 1,
  • the two balls 3 on the near side and the far side can be arranged so as to come into contact with each other, and the balls 3 can be arranged without gaps on the load ball rolling path 12.
  • the ball 3 is beaten from the load ball rolling path 12 on the near side, and at the same time, the ball 3 returns to the load ball rolling path 12 on the far side. Therefore, a screw device that can realize complete integer winding is obtained.
  • FIG. 20 shows a perspective view of the ball screw according to the second embodiment of the present invention. Also in the ball screw of this embodiment, the number of turns of the load ball rolling path 33 is close to an integer.
  • the ball rolling groove 31a is formed on the screw shaft 31, and the load ball rolling groove 32a is formed on the nut body 44, which is the same as the ball screw of the first embodiment.
  • the circulation part 34 is formed with a no-load return path 35 connected to one end and the other end of the load ball rolling path 33.
  • the no-load return path 35 includes a lifting path 36 (see FIG. 22) for scooping up the ball moving on the loaded ball rolling path 33 along an arcuate path, and a connecting path 37 for moving the scooped ball in the radial direction. (See FIG. 22) and an axial passage 38 (see FIG. 21) for moving the ball parallel to the axis of the nut 32.
  • the circulating component 34 is formed by combining a pair of divided bodies 39 that are divided into two along the axis of the nut 32.
  • the nut main body 44 is formed with a pair of through holes 32b penetrating from the outside to the inside.
  • the pair of through holes 32 b are arranged in the axial direction of the nut body 44.
  • FIG. 25 and 26 show detailed views of the circulating component 34.
  • FIG. Each of the pair of divided bodies 39 is formed with a lifting portion 40 that scoops up a ball moving on the loaded ball rolling path 33 along an arcuate path.
  • FIG. 27 shows a detailed view of the lifting unit 40.
  • a constraining portion 42 is formed at a portion of the end portion in the length direction of the no-load return path 35 of the circulating component 34 that is connected to the load ball rolling groove 32a of the nut body 44.
  • a ball 41 is sandwiched between the restraining portion 42 and the screw shaft 31.
  • the cross-sectional shape of the restraining portion 42 is formed in a Gothic arch groove shape that matches the cross-sectional shape of the load ball rolling groove 32 a of the nut body 44.
  • the cross-sectional shape of the raised portion 40 of the circulating component 34 is formed in a circular arc groove shape having a radius larger than the radius of the ball 41.
  • FIG. 30 shows a ball screw according to a third embodiment of the present invention.
  • (a) shows a sectional view of the ball screw
  • (b) shows a front view.
  • the structure of the circulating component for circulating the balls is different from that of the first and second embodiments, and an end piece 54 as a circulating component is attached to the end surface 53 a of the nut body 53 in the axial direction.
  • a spiral ball rolling groove 51 a is formed on the outer peripheral surface of the screw shaft 51.
  • the number of the ball rolling grooves 51a is two.
  • a spiral load ball rolling groove 52a facing the ball rolling groove 51a of the screw shaft 51 is formed on the inner peripheral surface of the nut main body 53 of the nut 52.
  • a spiral load ball rolling path 55 is formed between the ball rolling groove 51 a of the screw shaft 51 and the load ball rolling groove 52 a of the nut body 53.
  • a through hole 56 is provided in the nut main body 53 in parallel with its axis. The through hole 56 constitutes an axial passage of the no-load return path.
  • the nut through-hole 56 itself may constitute an axial passage, or a pipe inserted into the through-hole 56 may constitute an axial passage.
  • a recess 53b is formed in the end surface 53a of the nut main body 53, and an end surface piece 54 as a circulating part is fitted into the recess 53b.
  • the recess 53 b communicates with the through hole 56, and a pair of end face pieces 54 are provided at both ends in the length direction of the through hole 56.
  • the end face piece 54 is formed with a lifting passage and a connecting passage.
  • the configurations of the hoisting passage and the connecting passage are the same as those of the ball screw of the first embodiment.
  • the end face piece 54 is provided with a screw hole 54a.
  • the end face piece 54 is fixed to the nut body 53 by passing a screw through the screw hole 54 a and tightening the screw to the nut body 53.
  • the end face piece 54 may be divided into two along the hoisting passage and the connecting passage, or may not be divided into two.
  • FIG. 32 shows the trajectory of the ball 59 moving in the lifting path 58 of the end face piece 54.
  • the ball 59 moving on the load ball rolling path 55 is lifted up by the lifting portion 61 of the lifting path 58.
  • the center line of the lifting path 58 is formed in an arc shape that is continuous with the center line of the load ball rolling path 55.
  • the ball 59 is scooped up along an arcuate track.
  • this ball screw like the ball screw of the first and second embodiments, the hoisting along the arcuate track contacting the loaded ball rolling path 55, the increase in the number of effective balls, and the strength of the hoisting portion are increased. Improvement and load balance can be improved.
  • FIG. 33 shows a ball screw according to a fourth embodiment of the present invention.
  • a bearing 74 is integrally provided on the outer periphery of the nut body 73.
  • the bearing 74 includes an inner ring 75 integral with the nut body 73, an outer ring 76 disposed outside the inner ring 75, and between the inner ring 75 and the outer ring 76.
  • a plurality of rolling element rows arranged, for example, two roller rows are arranged.
  • roller rolling surfaces 75a On the outer peripheral surface of the inner ring 75, two rows of roller rolling surfaces 75a having a V-shaped cross section are formed.
  • the outer ring 76 is processed with a plurality of counterbores 76b for attaching the outer ring 76 to a counterpart component like a flange.
  • On the inner peripheral surface of the outer ring 76 two rows of roller rolling surfaces 76a having a V-shaped cross section facing the roller rolling surface 75a of the inner ring 75 are formed.
  • annular roller rolling paths having a square cross section are formed.
  • a plurality of rollers 77 are arranged on the roller rolling path.
  • the roller 77 has a substantially quadrangular side surface, and its diameter is slightly larger than the axial length.
  • a plurality of rollers 77 are arranged in a cross so that the axes of the adjacent rollers 77 are orthogonal to each other when viewed from the direction of travel of the rollers 77.
  • the bearing 74 becomes an angular contact bearing capable of applying a load in the axial direction of the nut 72 (a load in the directions (1) and (2) in the drawing) and a radial load.
  • a plurality of rollers 77 are arranged in parallel so that only the load in the direction (1) in the figure can be applied to the roller rolling path in one row, and only the load in the direction (2) in the figure is placed on the roller rolling path in the other row.
  • a plurality of rollers 77 may be arranged in parallel so that the load can be applied.
  • the contact angle line of the roller rolling path in one row at this time is indicated by (3) in the figure, and the contact angle line of the roller in the other row is indicated by (4) in the figure.
  • the parallel arrangement means that the axes of adjacent rollers are arranged in a substantially parallel state. When the rollers are arranged in a cross arrangement, the number of rows of rollers may be one.
  • a spiral ball rolling groove 71a is formed on the outer peripheral surface of the screw shaft 71. As shown in FIG. In this embodiment, two ball rolling grooves 71a are formed. A load ball rolling groove facing the ball rolling groove 71 a of the screw shaft 71 is formed on the inner peripheral surface of the nut body 73. A spiral loaded ball rolling path is formed between the ball rolling groove 71 a of the screw shaft 71 and the loaded ball rolling groove of the nut body 73. An axial passage parallel to the axis of the nut body 73 is formed inside the nut body 73. A pair of side piece 80 as a circulating part is attached to both ends of the nut body 73 in the lengthwise direction of the axial passage.
  • Each side piece 80 is formed with a lifting passage and a connecting passage.
  • the hoisting passage has a center line formed in an arc shape when viewed from the axial direction of the nut.
  • the connecting passage has a center line formed in an arc shape when viewed from the side of the nut, and connects the lifting passage and the axial passage.
  • the side piece 80 is fitted into a recess provided in the outer diameter portion of the nut body 73.
  • a circulation path is constituted by the load ball rolling path, the lifting path, the axial path, and the connecting path. The number and arrangement of circulation paths will be described later.
  • FIG. 35 shows an example of how to use the ball screw with bearing of the fourth embodiment.
  • a table 82 is coupled to both ends of the screw shaft 71 via a support portion 81.
  • the outer ring 76 of the bearing 74 is fixed to a base (not shown).
  • the bearing 74 needs not only a mechanism for guiding rotation but also high rigidity. By using an angular contact bearing using the roller 77, the rigidity of the bearing 74 can be increased.
  • the ball screw of the first to third embodiments is used in a general usage method.
  • FIG. 36 shows a ball screw circulation path 84 of the fourth embodiment.
  • two rows of circulation paths 84 are provided with their positions shifted in the axial direction of the screw shaft.
  • two circulation paths 84 are provided corresponding to the two screw shafts 71.
  • the total number of circulation paths 84 is represented by the product of the number of columns and the number of strips.
  • a total of four circulation paths are provided by two rows ⁇ two strips.
  • the four no-load return paths 85 of the circulation paths are arranged at equal intervals of 90 degrees in the circumferential direction when viewed from the axial direction of the screw shaft 71, as shown in FIG.
  • the distance ⁇ between the first row of loaded ball rolling grooves and the second row of loaded ball rolling grooves is adjusted so that a preload can be applied to the ball screw.
  • the phase of the loaded ball rolling groove in the first row and the loaded ball rolling groove in the second row are slightly shifted from the ball rolling groove 71 a of the screw shaft 71.
  • FIG. 37B shows the ball load distribution of a conventional return pipe type ball.
  • the return pipe 87 indicated by the broken line in FIG. 36A is attached, there are many portions 89 where there is no ball that receives the load in the axial direction of the screw shaft 71. For this reason, as shown in the graph of FIG. 37 (b), a phenomenon occurs in which the ball load in the circulation path increases or decreases depending on the position of the ball.
  • the ball load increases when the number of balls receiving the load in the axial direction of the screw shaft 71 is small, that is, when the ball is positioned above the load ball rolling path 90 in FIG.
  • the number of balls receiving a load in the axial direction of the screw shaft 71 is large, that is, when the balls are positioned below the loaded ball rolling path 90 in FIG.
  • the ball load of the balls in the nut can be made uniform as shown in FIG.
  • the horizontal axis of the graph represents the position of the ball in the loaded ball rolling path 90.
  • the averaging effect can be improved by increasing the length of the nut 72 in the axial direction and providing the nut 72 with a plurality of rows of circulation paths 84. Swaying can be reduced.
  • the four unloaded return paths 85 are arranged at equal intervals in the circumferential direction of the nut 72, so that the balls are changed from the loaded ball rolling path 90 to the unloaded return path 85.
  • the influence at the time of going in and out can be reduced, and the fluctuation of torque when the nut 72 is rotated can be reduced.
  • torque fluctuation can be further reduced.
  • the rigidity in the axial direction of the ball screw can be improved by using a relatively small diameter ball and making it a double thread screw.
  • a roller can be used for the rolling element instead of a ball.
  • the center line of the lifting path, the connecting path, and the axial path of the no-load return path may not be composed of a plurality of arcs and straight lines, but may be composed of a plurality of clothoid curves with continuous tangential directions.
  • the Gothic arch groove shape may be composed of two spline curves, two clothoid curves, etc., as long as it is a curve that can contact the ball at two points, even though it is not composed of two arcs.
  • the cross-sectional shape of the constraining portion of the circulation part is not limited to the Gothic arch groove shape, and may be formed into a circular arc groove shape made of a single arc as long as play of the ball can be reduced.
  • the distance ⁇ on the circular orbit may be set to a value other than 0.4 times to 0.6 times the diameter Da.
  • Ball rolling groove (rolling element rolling groove), 54 ... End face piece (circulation part), 74 ... Bearing, 75 ... Inner ring, 75a ... Roller rolling surface, 76 ... outer ring, 76a ... roller rolling surface, 77 ... roller, 84 ... circulation path

Abstract

A screw device enabling integer winding and also enabling rolling elements to circulate smoothly. The screw device comprises a screw shaft (1) having a spiral rolling element rolling groove (1a) in the outer peripheral surface, a nut (2) having a spiral load rolling element rolling groove (2a) facing the rolling element rolling groove (1a) of the screw shaft (1) in the inner peripheral surface and also having a no-load return passage (10) connected to one and the other ends of the load rolling element rolling groove (2a), and a plurality of rolling elements (3) so arranged as to be circulated through a circulation path comprising a load rolling element rolling passage between the rolling element rolling groove (1a) of the screw shaft (1) and the load rolling element rolling groove (2a) of the nut (2) and the no-load return passage (10).  The no-load return passage (10) comprises a pick-up passage (22) the center line of which is arcuate when viewed from the axial direction of the nut (2) and which picks up the rolling elements (3) moving in the load rolling element rolling passage along the arcuate path and an axial passage (24) the center line of which is parallel to the axis of the nut (2) and which allows the rolling elements (3) to move parallel to the axis of the nut (2).

Description

ねじ装置Screw device
 本発明は、ねじ軸の外周面の螺旋状の転動体転走溝とナットの内周面の螺旋状の負荷転動体転走溝との間に、転がり運動可能に複数の転動体を介在させたねじ装置に関する。 According to the present invention, a plurality of rolling elements are interposed between a spiral rolling element rolling groove on the outer peripheral surface of the screw shaft and a helical load rolling element rolling groove on the inner peripheral surface of the nut so as to allow rolling motion. It relates to a screw device.
 ボールねじは回転運動を直線運動に変換する機械要素である。ナットに対してねじ軸を相対的に回転させるときの摩擦を低減するために、ねじ軸の外周面のボール転走溝とこれに対向するナットの内周面の負荷ボール転走溝との間の負荷ボール転走路には、転がり運動可能に複数のボールが介在される。 The ball screw is a mechanical element that converts rotational motion into linear motion. In order to reduce the friction when rotating the screw shaft relative to the nut, between the ball rolling groove on the outer peripheral surface of the screw shaft and the loaded ball rolling groove on the inner peripheral surface of the nut facing this A plurality of balls are interposed in the loaded ball rolling path so as to allow rolling motion.
 ねじ軸とナットとの間を転がるボールを循環させるために、ナットにはリターンパイプが取り付けられる。リターンパイプには、ナットの螺旋状の負荷ボール転走溝の一端と他端とを接続する無負荷戻し路が形成される。ねじ軸とナットとの間を転がるボールは、ナットの負荷ボール転走溝の一端まで転がった後、リターンパイプの無負荷戻し路内に掬い上げられ、無負荷戻し路を経由した後、ナットの負荷ボール転走溝の他端に戻される。 ¡A return pipe is attached to the nut to circulate the ball rolling between the screw shaft and the nut. The return pipe is formed with a no-load return path that connects one end and the other end of the spiral loaded ball rolling groove of the nut. The ball that rolls between the screw shaft and the nut rolls up to one end of the loaded ball rolling groove of the nut, and then scoops up into the no-load return path of the return pipe. It is returned to the other end of the load ball rolling groove.
 ナットの負荷ボール転走溝の一端と他端とは、ねじ軸の軸線方向からみて周方向に180度離れている。このため、負荷ボール転走路の巻数は2.5巻、3.5巻等になる。このような巻数になると、ねじ軸の軸線方向からみて、リターンパイプが設けられているナットの上側半分のボールの個数と、リターンパイプが設けられていないナットの下側半分のボールの個数が異なってしまう。ナットの上側半分とナットの下側半分とで負荷できる荷重が異なるので、ボールねじの負荷バランスが悪くなる。 The one end and the other end of the load ball rolling groove of the nut are 180 degrees apart in the circumferential direction when viewed from the axial direction of the screw shaft. For this reason, the number of turns of the load ball rolling path is 2.5, 3.5, or the like. When the number of turns becomes such, the number of balls in the upper half of the nut where the return pipe is provided is different from the number of balls in the lower half of the nut where the return pipe is not provided, as viewed from the axial direction of the screw shaft. End up. Since the load that can be loaded is different between the upper half of the nut and the lower half of the nut, the load balance of the ball screw is deteriorated.
 負荷ボール転走路の巻数を2巻、3巻、4巻等の整数に近付けることができれば、この問題を解決することができる。特許文献1には、負荷ボール転走路の巻数を整数に近づけたボールねじが開示されている。 If the number of turns of the load ball rolling path can be made close to an integer such as 2, 3, 4, etc., this problem can be solved. Patent Document 1 discloses a ball screw in which the number of turns of a load ball rolling path is close to an integer.
 特許文献1に記載のボールねじにおいて、ボールを循環させるための循環部品は、ナットの軸線方向に伸びるリターンチューブと、リターンチューブの軸線方向の両端部に取り付けられる一対の入れ子と、から構成される。入れ子は、負荷ボール転走路を移動するボールをねじ軸の半径方向に掬い上げ、リターンチューブに移動させる。リターンチューブはねじ軸の軸線と平行に配置される。ねじ軸の軸線方向からみて、手前側の入れ子がボールを掬い上げる位置と奥側の入れ子がボールを掬い上げる位置は一致している。このため、負荷ボール転走路の巻数を整数にすることができる。 In the ball screw described in Patent Document 1, the circulating component for circulating the ball is composed of a return tube extending in the axial direction of the nut and a pair of inserts attached to both ends of the return tube in the axial direction. . The nest lifts the ball moving on the load ball rolling path in the radial direction of the screw shaft and moves it to the return tube. The return tube is disposed parallel to the axis of the screw shaft. When viewed from the axial direction of the screw shaft, the position of the front nesting up the ball and the position of the back nesting up the ball coincide. For this reason, the number of turns of the load ball rolling path can be made an integer.
実公平6-37227号公報No. 6-37227
 しかし、特許文献1に記載のボールねじにあっては、ねじ軸の外周面を転がるボールが入れ子に衝突してその移動方向を急激に半径方向に変化させるので、円滑に循環することができないという問題がある。しかも、循環部品が、リターンチューブと、リターンチューブの長さ方向の両端部に設けられる一対の入れ子と、から構成されるので、部品点数が多くなるという問題もある。すなわち、特許文献1に記載のボールねじは、整数巻きを実現できるものの、ボールの円滑な循環や、循環部品の製造上の問題から実用できるボールねじとはいえない。 However, in the ball screw described in Patent Document 1, since the ball rolling on the outer peripheral surface of the screw shaft collides with the nest and suddenly changes its moving direction in the radial direction, it cannot be smoothly circulated. There's a problem. In addition, since the circulating component is composed of a return tube and a pair of inserts provided at both ends in the lengthwise direction of the return tube, there is a problem that the number of components increases. That is, although the ball screw described in Patent Document 1 can realize integer winding, it cannot be said to be a practical ball screw due to smooth circulation of the balls and problems in the production of circulating parts.
 そこで本発明は、整数巻きを実現することができる実用性の高いねじ装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a highly practical screw device that can realize integer winding.
 以下、本発明について説明する。
 上記課題を解決するために、本発明の一態様は、外周面に螺旋状の転動体転走溝を有するねじ軸と、内周面に前記ねじ軸の前記転動体転走溝に対向する螺旋状の負荷転動体転走溝を有すると共に、前記負荷転動体転走溝の一端と他端とに接続される無負荷戻し路を有するナットと、前記ねじ軸の前記転動体転走溝と前記ナットの前記負荷転動体転走溝との間の負荷転動体転走路、及び前記無負荷戻し路から構成される循環経路に循環可能に配列される複数の転動体と、を備え、前記無負荷戻し路は、前記ナットの軸線方向からみて、中心線が円弧状に形成されて、前記負荷転動体転走路を移動する前記転動体を円弧状の軌道に沿って掬い上げる掬上げ通路と、中心線が前記ナットの軸線と平行に形成されて、前記転動体を前記ナットの軸線と平行に移動させる軸線方向通路と、を有するねじ装置である。
The present invention will be described below.
In order to solve the above-described problem, an aspect of the present invention is to provide a screw shaft having a spiral rolling element rolling groove on an outer peripheral surface and a spiral facing the rolling element rolling groove of the screw shaft on an inner peripheral surface. A loaded rolling element rolling groove, a nut having a no-load return path connected to one end and the other end of the loaded rolling element rolling groove, the rolling element rolling groove of the screw shaft, and the A load rolling element rolling path between the nut and the load rolling element rolling groove, and a plurality of rolling elements arranged to circulate in a circulation path composed of the no-load return path, and the no load The return path has a center line formed in an arc shape when viewed from the axial direction of the nut, and a hoisting passage that scoops up the rolling element that moves on the rolling element rolling path along the arc-shaped path, A line is formed parallel to the axis of the nut, and the rolling element is connected to the axis of the nut. The axial passage to move to the line, a screw device having a.
 本発明の一態様によれば、ねじ軸の外周面を移動する転動体を円弧状の軌道に沿って掬い上げることができるので、転動体を円滑に循環させることができる。また、無負荷戻し路にナットの軸線と平行な軸線方向通路を設け、ボールをナットの軸線と平行に循環させることで、ナットの軸線方向からみた無負荷戻し路の入口と出口を同じ位置に近づけることができ、負荷転動体転走路の巻数を整数に近づけることができる。 According to one aspect of the present invention, the rolling elements that move on the outer peripheral surface of the screw shaft can be scooped up along the arcuate track, so that the rolling elements can be smoothly circulated. In addition, by providing an axial passage parallel to the nut axis in the no-load return path and circulating the ball parallel to the nut axis, the inlet and outlet of the no-load return path seen from the nut axial direction are at the same position. The number of turns of the loaded rolling element rolling path can be made closer to an integer.
本発明の第一の実施形態のボールねじの斜視図The perspective view of the ball screw of a first embodiment of the present invention. ナットの斜視図Nut perspective view 循環部品の拡大図Enlarged view of circulating parts ねじ軸のボール転走溝及びナットの負荷ボール転走溝の断面図Cross-sectional view of ball rolling groove on screw shaft and loaded ball rolling groove on nut 循環部品を取り外したナットの斜視図Perspective view of nut with circulating parts removed ボールねじの循環経路を示す斜視図Perspective view showing circulation path of ball screw ナットの側方からみた循環経路の中心線を示す図Diagram showing the center line of the circulation path as seen from the side of the nut ナットの軸線方向からみた無負荷戻し路の中心線を示す図Diagram showing the center line of the no-load return path as seen from the axial direction of the nut ねじ軸上に展開された無負荷戻し路の斜視図(図中(a)は斜視図を示し、(b-1)は正面図を示し、(b-2)は側面図を示す)A perspective view of the unloaded return path developed on the screw shaft ((a) shows a perspective view, (b-1) shows a front view, and (b-2) shows a side view) ねじ軸及び循環部品の斜視図Perspective view of screw shaft and circulating parts ねじ軸及び循環部品の正面図Front view of screw shaft and circulating parts ナットに取り付けられた循環部品の斜視図Perspective view of circulating parts attached to nut ナットに取り付けられた循環部品の正面図(一部断面を含む)Front view of the circulating parts attached to the nut (including a partial cross section) 循環部品の無負荷戻し路の断面形状の変化を示す図The figure which shows the change of the cross-sectional shape of the no-load return path of circulation parts 循環部品の無負荷戻し路の断面形状の変化を示す図The figure which shows the change of the cross-sectional shape of the no-load return path of circulation parts 掬上げ通路の断面の詳細図Detailed view of cross section of dredging passage 従来のボールねじの面取り加工を示す概念図Conceptual diagram showing chamfering of a conventional ball screw 完全な整数巻きを実現するための循環経路の正面図Front view of circulation path to achieve perfect integer winding ねじ軸の頂点にボールを二つ並べた状態を示す正面図Front view showing two balls arranged on top of screw shaft 本発明の第二の実施形態のボールねじの斜視図The perspective view of the ball screw of the second embodiment of the present invention. ナットの側面図Nut side view ナットの正面図Front view of nut ナットの平面図Top view of nut 循環部品を取り外したナットの平面図Top view of the nut with the circulating parts removed 循環部品の分割体の斜視図Perspective view of divided parts of circulating parts 循環部品の斜視図Perspective view of circulating parts 循環部品の掬上げ部の詳細図(図26のIIXVI部)Detailed view of the lifting part of the circulating parts (IIXVI part in Fig. 26) 循環経路の斜視図Perspective view of circulation path 循環経路の側面図Side view of circulation path 本発明の第三の実施形態のボールねじを示す図(図中(a)はねじ軸の軸線に沿った断面図を示し、(b)は正面図を示す)The figure which shows the ball screw of 3rd embodiment of this invention ((a) in the figure shows sectional drawing along the axis line of a screw axis | shaft, (b) shows a front view) ナットの端面に装着される端面ピースを示す斜視図The perspective view which shows the end piece attached to the end surface of a nut 端面ピースを移動するボールを示す断面図Sectional view showing the ball moving the end piece 本発明の第四の実施形態のボールねじの斜視図A perspective view of a ball screw according to a fourth embodiment of the present invention. 軸受の断面図Cross section of bearing 本発明の第四の実施形態のボールねじの使用方法の一例を示す図The figure which shows an example of the usage method of the ball screw of 4th embodiment of this invention. 本発明の第四の実施形態のボールねじの循環経路を示す図(図中(a)は正面図を示し、(b)は側面図を示す)The figure which shows the circulation path of the ball screw of 4th embodiment of this invention ((a) shows a front view, (b) shows a side view in the figure) ボールの位置と玉荷重との関係を示すグラフ(図中(a)は本発明例、(b)はリターンパイプを使用した従来例)The graph which shows the relationship between the position of a ball | bowl, and a ball | bowl load ((a) in the figure is an example of the present invention, (b) is a conventional example using a return pipe)
 図1は、本発明の第一の実施形態のねじ装置としてのボールねじの斜視図を示す。ボールねじは、外周面に螺旋状の転動体転走溝であるボール転走溝1aを有するねじ軸1と、内周面にボール転走溝1aに対向する螺旋状の負荷転動体転走溝である負荷ボール転走溝2aを有すると共に負荷ボール転走溝1aの一端と他端を接続する無負荷戻し路を有するナット2と、ねじ軸1のボール転走溝1aとナット2の負荷ボール転走溝2aとの間の負荷ボール転走路及び無負荷戻し路から構成される循環経路に循環可能に介在される複数の転動体であるボール3(図4参照)と、を備える。 FIG. 1 shows a perspective view of a ball screw as a screw device of a first embodiment of the present invention. The ball screw has a screw shaft 1 having a ball rolling groove 1a which is a spiral rolling element rolling groove on the outer peripheral surface, and a spiral load rolling element rolling groove facing the ball rolling groove 1a on the inner peripheral surface. A load ball rolling groove 2a and a nut 2 having a no-load return path connecting one end and the other end of the load ball rolling groove 1a, and a ball rolling groove 1a of the screw shaft 1 and a load ball of the nut 2 And a ball 3 (see FIG. 4) that is a plurality of rolling elements interposed in a circulation path composed of a loaded ball rolling path and an unloaded return path between the rolling grooves 2a.
 ねじ軸1の外周面には、所定のリードのボール転走溝1aが研削加工や転造加工によって形成される。図4に示されるように、ボール転走溝1aの断面形状は、ボール3の半径よりも僅かに大きい半径の二つの円弧4を含むゴシックアーチ溝形状に形成される。二つの円弧の中心C1は、ボール3の中心C2よりも離れた位置にある。ボール3はゴシックアーチ溝形状のボール転走溝1aに二点で接触する。ボール3の中心C2とゴシックアーチ溝の底5と結んだ線Lと、円弧4とボール3との接触点6とボール3の中心C2とを結んだ線のなす接触角θは、例えば40~50度に設定される。ボール転走溝1aは、熱処理された後、研削加工される。ボール転走溝1aの両側の縁に円弧状の面取り7を施してもよいし、ゴシックアーチ溝の底5に研削時の逃げになる逃げ溝を形成してもよい。 A ball rolling groove 1a of a predetermined lead is formed on the outer peripheral surface of the screw shaft 1 by grinding or rolling. As shown in FIG. 4, the ball rolling groove 1 a is formed in a Gothic arch groove shape including two arcs 4 having a radius slightly larger than the radius of the ball 3. The centers C1 of the two arcs are located at a position away from the center C2 of the ball 3. The ball 3 contacts the ball rolling groove 1a having a Gothic arch groove shape at two points. A contact angle θ formed by a line connecting the center C2 of the ball 3 and the bottom 5 of the gothic arch groove and a contact point 6 between the arc 4 and the ball 3 and the center C2 of the ball 3 is, for example, 40 to Set to 50 degrees. The ball rolling groove 1a is ground after being heat-treated. Arc-shaped chamfers 7 may be formed on both side edges of the ball rolling groove 1a, or a relief groove serving as a relief during grinding may be formed on the bottom 5 of the gothic arch groove.
 図2及び図3は、ねじ軸1を取り外した状態のナット2の斜視図を示す。ナット2は、内周面に螺旋状の負荷ボール転走溝2aが形成されるナット本体9と、ナット本体9に装着される循環部品8と、から構成される。ナット本体9には、ねじ軸1が貫通する貫通孔2eが開けられる。ナット本体9の内周面には、所定のリードの螺旋状の負荷ボール転走溝2aが研削加工によって形成される。図4に示されるように、負荷ボール転走溝2aの断面形状は、ボール3の半径よりも僅かに大きい半径の二つの円弧4を含むゴシックアーチ溝形状に形成される。ゴシックアーチ溝形状はねじ軸1のボール転走溝1aと同一である。負荷ボール転走溝2aは、熱処理された後、研削加工される。 2 and 3 are perspective views of the nut 2 with the screw shaft 1 removed. The nut 2 is composed of a nut main body 9 in which a spiral load ball rolling groove 2 a is formed on the inner peripheral surface, and a circulating component 8 attached to the nut main body 9. The nut body 9 is provided with a through hole 2e through which the screw shaft 1 passes. On the inner peripheral surface of the nut body 9, a spiral load ball rolling groove 2a having a predetermined lead is formed by grinding. As shown in FIG. 4, the cross-sectional shape of the loaded ball rolling groove 2 a is formed in a Gothic arch groove shape including two arcs 4 having a radius slightly larger than the radius of the ball 3. The Gothic arch groove shape is the same as the ball rolling groove 1 a of the screw shaft 1. The loaded ball rolling groove 2a is ground and then heat-treated.
 ナット本体9の軸線方向の一端部には、ナット本体9を相手方の機械部品に取り付けるためのフランジ2bが形成される。ナット本体9の外周面には、平坦な平取り部2cが形成される。平取り部2cには、循環部品8が装着される。循環部品8には、ナット本体9の負荷ボール転走溝の一端及び他端に接続される無負荷戻し路10(図6参照)が形成される。 At one end of the nut body 9 in the axial direction, a flange 2b for attaching the nut body 9 to the other machine part is formed. A flat chamfered portion 2 c is formed on the outer peripheral surface of the nut body 9. A circulating component 8 is mounted on the flattening portion 2c. The circulation part 8 is formed with a no-load return path 10 (see FIG. 6) connected to one end and the other end of the load ball rolling groove of the nut body 9.
 図5は、循環部品8及びナット本体9の斜視図を示す。循環部品8の無負荷戻し路10は、その長さ方向の両端部に、ねじ軸1のボール転走溝1aとナット本体9の負荷ボール転走溝2aとの間の負荷ボール転走路12を転がるボール3を無負荷戻し路10内に掬い上げる一対の掬上げ通路22を有する。各掬上げ通路22には、負荷ボール転走路を移動するボール3に接触して無負荷戻し路10内に導く掬上げ部14が形成される。ナット本体9の平取り部2cには、ナット本体9の外面から内面まで貫通し、循環部品8の一対の掬上げ部14が嵌められる一対の貫通孔15が開けられる。貫通孔15は、ナット本体9の負荷ボール転走溝2aに沿って伸びる。一対の貫通孔15の間には、ナット本体9の軸線方向に伸びる切欠き溝16が形成される。切欠き溝16は、平らな溝底16aと、この溝底16aから立ち上がり、対向する一対の平らな内壁面16bと、を有する。溝底16aは、平取り部2cの平面と平行であり、かつナット本体9の軸線と平行である。内壁面16bはナット本体9の軸線と平行であり、かつ溝底16aが含まれる平面に直交する。 FIG. 5 shows a perspective view of the circulating component 8 and the nut body 9. The unloaded return path 10 of the circulating component 8 has a loaded ball rolling path 12 between the ball rolling groove 1a of the screw shaft 1 and the loaded ball rolling groove 2a of the nut body 9 at both ends in the length direction. A pair of hoisting passages 22 for hoisting the rolling ball 3 into the no-load return path 10 is provided. Each lifting path 22 is formed with a lifting part 14 that contacts the ball 3 moving on the loaded ball rolling path and guides it into the no-load return path 10. A pair of through holes 15 that penetrate from the outer surface to the inner surface of the nut body 9 and into which the pair of raised portions 14 of the circulating component 8 are fitted are formed in the flattening portion 2 c of the nut body 9. The through hole 15 extends along the load ball rolling groove 2 a of the nut body 9. A notch groove 16 extending in the axial direction of the nut body 9 is formed between the pair of through holes 15. The notch groove 16 has a flat groove bottom 16a and a pair of flat inner wall surfaces 16b that rise from the groove bottom 16a and face each other. The groove bottom 16a is parallel to the plane of the chamfered portion 2c and parallel to the axis of the nut body 9. The inner wall surface 16b is parallel to the axis of the nut body 9 and is orthogonal to a plane including the groove bottom 16a.
 ナット本体9の貫通孔15及び切欠き溝16には、循環部品8が嵌められる。循環部品8の外形形状は、一対の掬上げ部14を含む一対の端部8aと、一対の端部8a間の本体部8bと、を有する。端部8aはナット本体9の負荷ボール転走溝2aに沿って細長く伸びる。端部8aの断面形状は貫通孔15の断面形状に一致する。本体部8bは、ナット本体9の軸線方向に伸びる。本体部8bの断面形状は、四角形と半円形とを組み合わせた形状である。本体部8bの側面には、切欠き溝16の内壁面16bに対応した一対の平らな外壁面17が形成される。本体部8bの底面19は、切欠き溝16の溝底16aに対応した平面に形成される。 The circulating component 8 is fitted into the through hole 15 and the notch groove 16 of the nut body 9. The external shape of the circulating component 8 includes a pair of end portions 8a including a pair of raised portions 14 and a main body portion 8b between the pair of end portions 8a. The end 8a extends elongated along the load ball rolling groove 2a of the nut body 9. The cross-sectional shape of the end portion 8 a matches the cross-sectional shape of the through hole 15. The main body portion 8 b extends in the axial direction of the nut main body 9. The cross-sectional shape of the main body portion 8b is a combination of a square and a semicircle. A pair of flat outer wall surfaces 17 corresponding to the inner wall surface 16b of the notch groove 16 is formed on the side surface of the main body portion 8b. The bottom surface 19 of the main body portion 8 b is formed in a plane corresponding to the groove bottom 16 a of the notch groove 16.
 この循環部品8は、無負荷戻し路10に沿って二分割された一対の分割体18を結合させてなる。図中符号24aが分割面である。一対の分割体18は同じ形状に形成され、共通の金型に樹脂を射出成形することで製造される。一対の分割体18はレーザー溶接等の溶接、溶着、又は接着によって結合される。循環部品8を無負荷戻し路10に沿って二分割された一対の分割体18から構成することで、部品点数を削減することができる。 The circulating component 8 is formed by combining a pair of divided bodies 18 divided into two along the no-load return path 10. Reference numeral 24a in the figure is a dividing plane. The pair of divided bodies 18 are formed in the same shape, and are manufactured by injection molding a resin in a common mold. The pair of divided bodies 18 are joined by welding such as laser welding, welding, or adhesion. By configuring the circulating component 8 from a pair of divided bodies 18 divided into two along the no-load return path 10, the number of components can be reduced.
 図2に示されるように、循環部品8をナット本体9に装着するとき、循環部品8の一対の端部8aがナット本体9の一対の貫通孔15に嵌まる。そして、循環部品8の本体部8bがナット本体9の切欠き溝16に嵌まる。図3に示されるように、循環部品8の本体部8bの上部20は切欠き溝16から突出する。本体部8bの上部20は、押え部材21によって押さえられる。押え部材21は、本体部8bの上部に合わせてU字状に曲げられた本体押え21aと、本体押え21aの両側に設けられる取付け座21bと、から構成される。押え部材21は、金属板を曲げ加工することで製造される。取付け座21bには通し孔21cが開けられる。通し孔21cにボルトを通し、ボルトをナット本体9のねじ穴にねじ込むことで、押え部材21がナット本体9に取り付けられる。循環部品8は押え部材21とナット本体9の切欠き溝16との間に挟まれ、ナット本体9に固定される。 As shown in FIG. 2, when the circulating component 8 is attached to the nut body 9, the pair of end portions 8 a of the circulating component 8 fit into the pair of through holes 15 of the nut body 9. And the main-body part 8b of the circulation component 8 fits into the notch groove 16 of the nut main body 9. FIG. As shown in FIG. 3, the upper portion 20 of the main body portion 8 b of the circulating component 8 protrudes from the notch groove 16. The upper portion 20 of the main body portion 8b is pressed by the pressing member 21. The presser member 21 includes a main body presser 21a bent in a U shape in accordance with the upper portion of the main body portion 8b, and mounting seats 21b provided on both sides of the main body presser 21a. The holding member 21 is manufactured by bending a metal plate. A through hole 21c is opened in the mounting seat 21b. The presser member 21 is attached to the nut body 9 by passing a bolt through the through hole 21 c and screwing the bolt into the screw hole of the nut body 9. The circulating component 8 is sandwiched between the pressing member 21 and the notch groove 16 of the nut body 9 and is fixed to the nut body 9.
 図5に示されるように、循環部品8がナット本体9の切欠き溝16に嵌まり、循環部品8の本体部8bの底面19がナット本体9の切欠き溝16の溝底16aに接触することによって、ナット本体9の軸線と直交する平面において、循環部品8のX方向位置が位置決めされる。また、循環部品8の本体部8bの外壁面がナット本体9の切欠き溝16の内壁面16bに接触することによって、当該平面上の循環部品8のY方向位置が位置決めされる。そして、循環部品8の端部8aがナット本体9の貫通孔15に嵌まることによって、ナット本体9の軸線方向における循環部品8のZ方向位置が位置決めされる。すなわち、循環部品8がナット本体9に嵌まることによって、ナット本体9に対して循環部品8を、ひいてはナット本体9の負荷ボール転走溝2aに対して循環部品8の掬上げ部14を正確に位置決めすることができる。これにより、無負荷戻し路10と負荷ボール転走路12との間で円滑にボール3を移動させることができる。また、循環部品8を切欠き溝16の内壁面16b間に挟むことによって、二分割された循環部品8の分割面24aが開くことを防止できる。 As shown in FIG. 5, the circulating component 8 fits into the notch groove 16 of the nut body 9, and the bottom surface 19 of the body portion 8 b of the circulating component 8 contacts the groove bottom 16 a of the notch groove 16 of the nut body 9. Thus, the position of the circulating component 8 in the X direction is positioned on a plane orthogonal to the axis of the nut body 9. Further, when the outer wall surface of the main body portion 8 b of the circulating component 8 comes into contact with the inner wall surface 16 b of the notch groove 16 of the nut body 9, the position of the circulating component 8 on the plane is positioned in the Y direction. Then, when the end 8 a of the circulating component 8 is fitted into the through hole 15 of the nut body 9, the Z-direction position of the circulating component 8 in the axial direction of the nut body 9 is positioned. That is, when the circulating component 8 is fitted into the nut body 9, the circulating component 8 is accurately positioned with respect to the nut body 9, and consequently the raised portion 14 of the circulating component 8 is accurately positioned with respect to the load ball rolling groove 2 a of the nut body 9. Can be positioned. Thereby, the ball 3 can be smoothly moved between the no-load return path 10 and the loaded ball rolling path 12. Further, by sandwiching the circulating component 8 between the inner wall surfaces 16b of the notch groove 16, it is possible to prevent the divided surface 24a of the circulating component 8 divided into two from being opened.
 図6は、ボールねじのボール循環経路を示す。ねじ軸1のボール転走溝1aとナット本体9の負荷ボール転走溝2aとの間には、螺旋状の負荷ボール転走路12が形成される。負荷ボール転走路12の一端から他端まで移動するボール3を循環させることができるように、負荷ボール転走路12の一端と他端には無負荷戻し路10が接続される。負荷ボール転走路12及び無負荷戻し路10から構成される循環経路には、多数のボール3が配列・収容される。上述のように、無負荷戻し路10は循環部品8に形成される。無負荷戻し路10は、負荷ボール転走路12の巻数が2巻、3巻、4巻等の整数に近くなるように、ナット2の軸線と平行な軸線方向通路24を有する。軸線方向通路24の両端部には、繋ぎ通路23及び掬上げ通路22が形成される。 FIG. 6 shows the ball circulation path of the ball screw. A spiral load ball rolling path 12 is formed between the ball rolling groove 1 a of the screw shaft 1 and the load ball rolling groove 2 a of the nut body 9. A no-load return path 10 is connected to one end and the other end of the load ball rolling path 12 so that the ball 3 moving from one end to the other end of the load ball rolling path 12 can be circulated. A large number of balls 3 are arranged and accommodated in the circulation path constituted by the loaded ball rolling path 12 and the no-load return path 10. As described above, the no-load return path 10 is formed in the circulating component 8. The no-load return path 10 has an axial passage 24 parallel to the axis of the nut 2 so that the number of turns of the load ball rolling path 12 is close to an integer such as 2, 3, 4, and so on. At both ends of the axial passage 24, a connecting passage 23 and a lifting passage 22 are formed.
 図7は、ナット2の側方からみた循環経路の中心線(ボール3の中心の軌道)を示し、図8は、ナット2の軸線方向からみた無負荷戻し路10の中心線(ボール3の中心の軌道)を示す。無負荷戻し路10は、一対の掬上げ通路22、一対の繋ぎ通路23、及び軸線方向通路24に分けることができる。図8に示されるように、掬上げ通路22は、ナット2の軸線方向からみて、中心線が円弧状に形成されて、負荷ボール転走路12を移動するボール3を円弧状の軌道に沿って掬い上げる。ここで、円弧状とは、円弧、楕円、クロソイド曲線を含む。従来のボールねじにおいては、ナット2の軸線方向からみて、円形状の負荷ボール転走路12の接線方向に直線状の軌道に沿ってボール3を掬い上げていた。これに対して、本実施形態のボールねじにおいては、円弧状の軌道に沿ってボール3を掬い上げる。負荷ボール転走路12から掬上げ通路22にボール3が円滑に移動するように、ナット2の軸線方向からみて、負荷ボール転走路12の中心線と掬上げ通路22の中心線との接続点P1(掬上げ点)においてこれらの中心線の接線方向が一致する。 FIG. 7 shows the center line of the circulation path seen from the side of the nut 2 (orbit of the center of the ball 3), and FIG. 8 shows the center line of the unloaded return path 10 seen from the axial direction of the nut 2 (of the ball 3). Center orbit). The no-load return path 10 can be divided into a pair of lifting paths 22, a pair of connecting paths 23, and an axial path 24. As shown in FIG. 8, the hoisting passage 22 has a center line formed in an arc shape when viewed from the axial direction of the nut 2, and moves the ball 3 moving on the load ball rolling path 12 along the arc-shaped track. Crawling up. Here, the arc shape includes an arc, an ellipse, and a clothoid curve. In the conventional ball screw, as viewed from the axial direction of the nut 2, the ball 3 is scooped up along a straight track in the tangential direction of the circular load ball rolling path 12. On the other hand, in the ball screw of the present embodiment, the ball 3 is scooped up along an arcuate path. A connection point P1 between the center line of the load ball rolling path 12 and the center line of the lifting path 22 as viewed from the axial direction of the nut 2 so that the ball 3 moves smoothly from the loaded ball rolling path 12 to the lifting path 22. The tangent directions of these center lines coincide with each other at (lifting point).
 図7に示されるように、ナット2の側方からみて、掬上げ通路22の中心線はナット2の軸線2fと直交する。掬上げ通路22と軸線方向通路24とを接続する繋ぎ通路23の中心線は、円弧形状に形成される。繋ぎ通路23は、ボール3を半径方向に移動させると共に、ボール3をナット2の内方に移動させる。繋ぎ通路23は軸方向に90度に曲げられた後、中心線がナット2の軸線2fと平行な軸線方向通路24に接続される。軸線方向通路24は、ボール3をナット2に軸線と平行に移動させる。軸線方向通路24を移動したボール3は、反対側の繋ぎ通路23及び掬上げ通路22を経由して再び負荷ボール転走路12に戻される。図8に示されるように、手前側の掬上げ通路22と奥側の掬上げ通路22とは、ナット2の中心線2gを境にした線対称に形成される。なお、ナット2の側方からみた掬上げ通路22の中心線は、負荷ボール転走路12のリードに合わせて傾けられてもよい。リードに合わせて傾けることにより、より円滑にボールを移動させることができる。 As shown in FIG. 7, when viewed from the side of the nut 2, the center line of the lifting passage 22 is orthogonal to the axis 2 f of the nut 2. The center line of the connecting passage 23 connecting the lifting passage 22 and the axial passage 24 is formed in an arc shape. The connecting passage 23 moves the ball 3 in the radial direction and moves the ball 3 inward of the nut 2. The connecting passage 23 is bent at 90 degrees in the axial direction, and then connected to the axial passage 24 whose center line is parallel to the axis 2 f of the nut 2. The axial passage 24 moves the ball 3 to the nut 2 parallel to the axis. The ball 3 that has moved in the axial path 24 is returned to the loaded ball rolling path 12 again via the connecting path 23 and the lifting path 22 on the opposite side. As shown in FIG. 8, the front side lifting path 22 and the rear side lifting path 22 are formed symmetrically with respect to the center line 2 g of the nut 2. Note that the center line of the lifting passage 22 viewed from the side of the nut 2 may be inclined in accordance with the lead of the load ball rolling path 12. By tilting in accordance with the lead, the ball can be moved more smoothly.
 図9(a)は、ねじ軸1上に展開された無負荷戻し路10の斜視図を示す。循環部品8の無負荷戻し路10にナット2の軸線と平行な軸線方向通路24を設け、ボール3をナット2の軸線と平行に循環させることで、ナット2の軸線方向からみた無負荷戻し路10の入口と出口を同じ位置に近づけることができる。このため、負荷ボール転走路12の巻数を整数に近づけることできる。また、循環部品8の掬上げ通路22がボール3を円弧状の軌道に沿って掬い上げるので、ボール3を円滑に循環させることができると共に、負荷ボール転走路12の巻数を整数により近づけることができる。 FIG. 9A shows a perspective view of the no-load return path 10 developed on the screw shaft 1. An unloaded return path 10 viewed from the axial direction of the nut 2 by providing an axial path 24 parallel to the axis of the nut 2 in the unloaded return path 10 of the circulating component 8 and circulating the ball 3 in parallel with the axis of the nut 2. Ten inlets and outlets can be brought closer to the same position. For this reason, the number of turns of the load ball rolling path 12 can be made close to an integer. Further, since the lifting path 22 of the circulating component 8 scoops up the ball 3 along the arc-shaped track, the ball 3 can be smoothly circulated and the number of turns of the load ball rolling path 12 can be made closer to an integer. it can.
 図9(b-1)に示されるように、無負荷戻し路10の掬上げ通路22には、ナット2の軸線方向からみてその中心線が円弧状に形成され、かつ図9(b-2)に示されるように、ナット2の側方からみてその中心線が円弧状に形成される非直線領域22aを有する。ナット2の軸線方向からみて円弧状に形成される掬上げ通路22と、ナット2の側方からみて円弧状に形成される繋ぎ通路23とを直線領域を介して接続すると、ナット2の半径方向の寸法が大きくなってしまう。掬上げ通路22にナット2の軸線方向からみてもナット2の側方からみても円弧状の非直線領域を形成することで、ナット2の半径方向の寸法を小さくできる。なお、掬上げ通路22の一部を非直線領域22aにしてもよいし、掬上げ通路22の全体を非直線領域22aにしてもよい。 As shown in FIG. 9 (b-1), the hoisting passage 22 of the no-load return passage 10 has a center line formed in an arc shape when viewed from the axial direction of the nut 2, and FIG. 9 (b-2). ), The center line of the nut 2 has a non-linear region 22a formed in an arc shape as viewed from the side. When the lifting passage 22 formed in an arc shape when viewed from the axial direction of the nut 2 and the connecting passage 23 formed in an arc shape when viewed from the side of the nut 2 are connected via a straight region, the radial direction of the nut 2 The dimensions of will become larger. The radial dimension of the nut 2 can be reduced by forming an arc-shaped non-linear region in the lifting passage 22 when viewed from the axial direction of the nut 2 or from the side of the nut 2. A part of the hoisting passage 22 may be a non-linear region 22a, or the entire hoisting passage 22 may be a non-linear region 22a.
 図10及び図11は、ねじ軸1及び循環部品8を示す。ねじ軸1上に展開される無負荷戻し路10は、循環部品8に形成される。循環部品8の無負荷戻し路10は、ボール3の周囲を囲む円形状に形成される。循環部品8の無負荷戻し路10には、入口10aと出口10bが設けられる。入口10aが負荷ボール転走路12の一端に接続され、出口10bが負荷ボール転走路12の他端に接続される。循環部品8は、無負荷戻し路10の中心線に沿って二分割される。図10に示されるように、無負荷戻し路10の軸線方向通路24は、ねじ軸1の軸線と平行な分割面24aで二分割され、図11に示されるように、無負荷戻し路10の繋ぎ通路23及び掬上げ通路22は、ねじ軸1の軸線方向からみて、これらの中心線に沿った分割面24bで二分割される。掬上げ通路22の掬上げ部14で分割されないように、掬上げ部14は二分割された分割体のそれぞれに形成される。 10 and 11 show the screw shaft 1 and the circulating component 8. A no-load return path 10 developed on the screw shaft 1 is formed in the circulating component 8. The no-load return path 10 of the circulating component 8 is formed in a circular shape surrounding the ball 3. The unloaded return path 10 of the circulating component 8 is provided with an inlet 10a and an outlet 10b. The inlet 10 a is connected to one end of the load ball rolling path 12, and the outlet 10 b is connected to the other end of the load ball rolling path 12. The circulating component 8 is divided into two along the center line of the no-load return path 10. As shown in FIG. 10, the axial passage 24 of the no-load return path 10 is divided into two by a split surface 24 a parallel to the axis of the screw shaft 1, and as shown in FIG. 11, The connecting passage 23 and the lifting passage 22 are divided into two at a dividing surface 24b along the center line when viewed from the axial direction of the screw shaft 1. The lifting portion 14 is formed in each of the divided parts so as not to be divided by the lifting portion 14 of the lifting passage 22.
 図12及び図13は、ナット本体9に取り付けられた循環部品8の詳細図を示す。循環部品8の掬上げ通路22には、負荷ボール転走路12を転がるボール3を掬い上げる掬上げ部14が形成される。図13に示されるように、ねじ軸1の軸線方向からみて、掬上げ部14の背面14aは繋ぎ通路23の中心線と平行である。掬上げ部14の内周面14bには円弧状の曲面が形成される。掬上げ部14はねじ軸1に接近するにしたがって徐々に肉厚が厚くなる。掬上げ部14の下端の肉厚を厚くすることで、ボール3が衝突する掬上げ部14の強度を高くすることができる。 12 and 13 are detailed views of the circulating component 8 attached to the nut body 9. In the lifting passage 22 of the circulating component 8, a lifting portion 14 is formed for scooping up the ball 3 rolling on the loaded ball rolling path 12. As shown in FIG. 13, when viewed from the axial direction of the screw shaft 1, the back surface 14 a of the lifting portion 14 is parallel to the center line of the connecting passage 23. An arcuate curved surface is formed on the inner peripheral surface 14 b of the lifting portion 14. The raising portion 14 gradually increases in thickness as it approaches the screw shaft 1. By increasing the thickness of the lower end of the hoisting portion 14, the strength of the hoisting portion 14 with which the ball 3 collides can be increased.
 図13に示されるように、循環部品8の掬上げ通路22の端部には、ねじ軸1のボール転走溝1aに対向する拘束部28が形成される。拘束部28がナット本体9の負荷ボール転走溝2aに接続される。拘束部28の、ボール3の進行方向と直交する面内での断面形状は、ナット本体9の負荷ボール転走溝2aの断面形状に合わせたゴシックアーチ溝形状に形成される。ねじ軸1のボール転走溝1aと循環部品8の拘束部28との間に挟まれるボール3の遊びは、閉曲線の断面を持つ無負荷戻し路10におけるボール3の遊びよりも小さい。拘束部28を設けることで、無負荷戻し路10と負荷ボール転走路12との間を移行するボール3の軌道を安定させることができる。 As shown in FIG. 13, a constraining portion 28 that faces the ball rolling groove 1 a of the screw shaft 1 is formed at the end of the hoisting passage 22 of the circulating component 8. The restraining portion 28 is connected to the load ball rolling groove 2 a of the nut body 9. The cross-sectional shape of the restraining portion 28 in the plane orthogonal to the traveling direction of the ball 3 is formed in a Gothic arch groove shape that matches the cross-sectional shape of the loaded ball rolling groove 2 a of the nut body 9. The play of the ball 3 sandwiched between the ball rolling groove 1a of the screw shaft 1 and the restraining portion 28 of the circulating component 8 is smaller than the play of the ball 3 in the unloaded return path 10 having a closed curved cross section. By providing the restraining portion 28, the trajectory of the ball 3 that moves between the no-load return path 10 and the loaded ball rolling path 12 can be stabilized.
 循環部品8の掬上げ部14の、ボール3の進行方向と直交する面内での断面形状は、ボール3の半径よりも僅かに大きい曲率半径の単一の円弧からなるサーキュラーアーク溝形状に形成される。循環部品8の繋ぎ通路23及び軸線方向通路24の断面形状は、ボール3の半径よりも僅かに大きい半径の円形状に形成される。 The cross-sectional shape of the raised portion 14 of the circulating component 8 in a plane orthogonal to the traveling direction of the ball 3 is formed into a circular arc groove shape composed of a single arc having a radius of curvature slightly larger than the radius of the ball 3. Is done. The cross-sectional shapes of the connecting passage 23 and the axial passage 24 of the circulation component 8 are formed in a circular shape having a radius slightly larger than the radius of the ball 3.
 図14及び図15は、循環部品8の無負荷戻し路10の断面形状の変化を示す。(1)から(2)に至る領域、すなわち負荷ボール転走路12及び循環部品8の拘束部28の領域においては、これらの断面形状がゴシックアーチ溝形状に形成される。(2)から(3)に到る領域、すなわち掬上げ通路22の領域においては、掬上げ通路22の外側の断面形状は、拘束部28に合わせたゴシックアーチ溝形状からサーキュラーアーク溝形状に除々に変化する。掬上げ通路22の内側の掬上げ部14の断面形状はサーキュラーアーク溝形状に形成される。(3)から(4)に至る領域、すなわち繋ぎ通路23及び軸線方向通路24の領域においては、これらに断面形状が円形状に形成される。(4)から(5)に至る領域の無負荷戻し路10の断面形状は、(2)から(3)に至る領域と同一である。(5)から(6)に至る領域の無負荷戻し路10の断面形状は、(1)から(2)に至る領域と同一である。 14 and 15 show changes in the cross-sectional shape of the no-load return path 10 of the circulating component 8. In the region from (1) to (2), that is, in the region of the load ball rolling path 12 and the restraint portion 28 of the circulating component 8, these cross-sectional shapes are formed in a Gothic arch groove shape. In the region from (2) to (3), that is, the region of the hoisting passage 22, the cross-sectional shape of the outer side of the hoisting passage 22 is gradually changed from a Gothic arch groove shape matched to the restraining portion 28 to a circular arc groove shape. To change. The cross-sectional shape of the hoisting portion 14 inside the hoisting passage 22 is formed in a circular arc groove shape. In the region from (3) to (4), that is, in the region of the connecting passage 23 and the axial passage 24, the cross-sectional shape is formed in a circular shape. The cross-sectional shape of the no-load return path 10 in the region from (4) to (5) is the same as the region from (2) to (3). The cross-sectional shape of the unloaded return path 10 in the region from (5) to (6) is the same as the region from (1) to (2).
 図16は、(2)から(3)に至る領域である掬上げ通路22の断面の詳細図を示す。掬上げ通路22においては、ナット本体9側(拘束部28側)の断面形状が二つの円弧R1からなるゴシックアーチ溝形状に形成される。その一方、ねじ軸1側(掬上げ部14側)の断面形状が単一の円弧R2からなるサーキュラーアーク溝形状に形成される。 FIG. 16 shows a detailed cross-sectional view of the lifting passage 22 that is an area from (2) to (3). In the hoisting passage 22, the cross-sectional shape on the nut body 9 side (restraint portion 28 side) is formed in a Gothic arch groove shape composed of two arcs R <b> 1. On the other hand, the cross-sectional shape on the screw shaft 1 side (the raised portion 14 side) is formed into a circular arc groove shape composed of a single arc R2.
 図13に示されるように、負荷ボール転走路12においては、ボール3はねじ軸1のボール転走溝1aとナット本体9の負荷ボール転走溝2aとの間に挟まれて、圧縮荷重を受けながら転がり運動する。一方、循環部品8の無負荷戻し路10では、ボール3と無負荷戻し路10との間には僅かな遊びがあり、ボール3は負荷を受けることなく、後続のボール3に押されながら移動する。 As shown in FIG. 13, in the load ball rolling path 12, the ball 3 is sandwiched between the ball rolling groove 1 a of the screw shaft 1 and the load ball rolling groove 2 a of the nut body 9, and compressive load is applied. Roll while exercising. On the other hand, in the no-load return path 10 of the circulating component 8, there is a slight play between the ball 3 and the no-load return path 10, and the ball 3 moves while being pushed by the subsequent ball 3 without being loaded. To do.
 従来のボールねじにおいては、ボール3の循環経路は無負荷域の無負荷戻し路10と負荷域の負荷ボール転走路12との二種類が存在している。これに対して、本実施形態のボールねじにおいては、無負荷域の無負荷戻し路10と負荷域の負荷ボール転走路12との間に、拘束部28が設けられて遊びの少ない中間領域が存在する。この中間領域では、後続のボール3に押し込まれることによってではなく、ねじ軸1の回転によって、ボール3が負荷ボール転走路12に引き込まれる。このため、無負荷域から負荷域にボール3を円滑に移動させることができる。また、ボール3が負荷ボール転走路12から無負荷戻し路10へ移動するときも、循環部品8の拘束部28とねじ軸1との間で案内されるので、ボール3を無負荷戻し路10の内方へ円滑に移動させることができる。 In the conventional ball screw, there are two types of circulation paths of the ball 3, that is, a no-load return path 10 in the no-load area and a load ball rolling path 12 in the load area. On the other hand, in the ball screw of this embodiment, a restraint portion 28 is provided between the no-load return path 10 in the no-load area and the load ball rolling path 12 in the load area so that there is an intermediate area with little play. Exists. In this intermediate region, the ball 3 is drawn into the loaded ball rolling path 12 not by being pushed into the subsequent ball 3 but by the rotation of the screw shaft 1. For this reason, the ball 3 can be smoothly moved from the no-load region to the load region. Further, when the ball 3 moves from the loaded ball rolling path 12 to the no-load return path 10, the ball 3 is guided between the restraining portion 28 of the circulating component 8 and the screw shaft 1. Can be moved smoothly inward.
 また、循環部品8の無負荷戻し路10の拘束部28の断面形状をナット本体9の負荷ボール転走溝2aの断面形状に合わせたゴシックアーチ溝形状に形成することで、拘束部28で正しく整列されたボール3を負荷ボール転走溝2aへ円滑に移動させることができる。拘束部28におけるボール3の遊びが負荷ボール転走路12に近付くにしたがって徐々に小さくなるようにすることで、ボール3をより円滑に移動させることができる。 Further, by forming the cross-sectional shape of the restraining portion 28 of the unloaded return path 10 of the circulating component 8 into a Gothic arch groove shape that matches the cross-sectional shape of the loaded ball rolling groove 2 a of the nut body 9, the restraining portion 28 correctly The aligned balls 3 can be smoothly moved to the loaded ball rolling groove 2a. By making the play of the ball 3 in the restraining portion 28 gradually become smaller as it approaches the load ball rolling path 12, the ball 3 can be moved more smoothly.
 図17に示されるように、従来のボールねじにおいては、循環部品8の無負荷戻し路10の断面形状がサーキュラーアーク溝形状に形成される。一方、ナット本体9の負荷ボール転走溝2aの断面形状はゴシックアーチ溝形状に形成される。このため、ナット本体9の負荷ボール転走溝2aの繋ぎ目に断面形状を連続にするための面取り29を加工する必要があった。これに対して、本実施形態のように、循環部品8の拘束部28の断面形状をゴシックアーチ溝形状に形成することで、ナットに面取り加工しなくてもボール3が無負荷戻し路10から負荷ボール転走溝2aへ容易に乗り移ることができる。 As shown in FIG. 17, in the conventional ball screw, the cross-sectional shape of the no-load return path 10 of the circulating component 8 is formed in a circular arc groove shape. On the other hand, the cross-sectional shape of the load ball rolling groove 2a of the nut body 9 is formed in a Gothic arch groove shape. For this reason, it was necessary to process the chamfer 29 for making the cross-sectional shape continuous at the joint of the load ball rolling groove 2a of the nut body 9. On the other hand, by forming the cross-sectional shape of the restraining portion 28 of the circulating component 8 in a Gothic arch groove shape as in the present embodiment, the ball 3 can be removed from the no-load return path 10 without chamfering the nut. It is possible to easily transfer to the loaded ball rolling groove 2a.
 図13に示されるように、掬上げ部14にはボール3が衝突する。掬上げ部14の断面形状をゴシックアーチ溝形状に形成すると、ボール3が衝突する掬上げ部14の先端にエッジが生じ易い。掬上げ部14の断面形状をサーキュラーアーク溝形状に形成し、掬上げ部14の先端を円弧状に丸めることで、掬上げ部14の先端にエッジが発生するのを防止できる。また、無負荷戻し路10の繋ぎ通路23及び軸線方向通路24の断面形状を円形状に形成することで、金型による分割体18の製造が容易になる。 As shown in FIG. 13, the ball 3 collides with the lifting unit 14. If the cross-sectional shape of the raised portion 14 is formed in a Gothic arch groove shape, an edge is likely to occur at the tip of the raised portion 14 with which the ball 3 collides. By forming the cross-sectional shape of the hoisting portion 14 into a circular arc groove shape and rounding the tip of the hoisting portion 14 into an arc shape, it is possible to prevent an edge from occurring at the tip of the hoisting portion 14. In addition, by forming the cross-sectional shapes of the connecting passage 23 and the axial passage 24 of the no-load return passage 10 in a circular shape, it becomes easy to manufacture the divided body 18 using a mold.
 図18は、完全な整数巻きを実現するための循環経路を示す。ナット2の軸線方向からみて、ねじ軸1の中心S1と循環部品8の軸線方向通路24の中心(繋ぎ通路23の中心線)を結んだ線L1(中心線)から、ねじ軸1の中心S1とナット本体9の負荷ボール転走溝と循環部品8の掬上げ通路22との境目B1(図13参照、循環開始点)とを結んだ線L2までの、負荷ボール転走路12におけるボール3の中心の円弧形状の軌道上の距離αが0より大きく、かつボール直径の1.5倍以下に設定される。距離αが短くなればなる程、ターンすることが難しくなるので、掬上げ通路22の中心線を、ナット2の中心線L1を超えた後、再びナット2の中心線L1上に戻るように設計してもよい。 FIG. 18 shows a circulation path for realizing complete integer winding. When viewed from the axial direction of the nut 2, the center S1 of the screw shaft 1 is derived from a line L1 (center line) connecting the center S1 of the screw shaft 1 and the center of the axial passage 24 of the circulating component 8 (center line of the connecting passage 23). Of the ball 3 in the load ball rolling path 12 up to a line L2 connecting the boundary B1 (see FIG. 13, the circulation start point) between the load ball rolling groove of the nut body 9 and the lifting path 22 of the circulating component 8. The distance α on the center arc-shaped orbit is set to be larger than 0 and 1.5 times or less of the ball diameter. The shorter the distance α is, the more difficult it is to turn, so that the center line of the lifting passage 22 exceeds the center line L1 of the nut 2 and then returns to the center line L1 of the nut 2 again. May be.
 もし距離αが0ならば、ねじ軸1の軸線方向からみて、ボール3を掬い上げる位置において、手前と奥のボール3が重なってしまう分、負荷を受けられるボール3の数が負荷ボール転走路12の他の部分よりも一個多くなる。その一方、円弧状の距離αが1・Da(直径)以上であると、ボール3を掬い上げる位置において、逆に負荷を受けられるボール3の数が他の部分よりも一個少なくなる。ただし、ターンする距離が長くなるので、ボール3をターンさせ易くなる。整数巻きに近付けることと、ボール3のターンのし易さを考慮して、距離αを0より大きく、かつボール直径の1.5倍以下に設定する。円弧状の距離αをボール直径の0.4倍以上かつ0.6倍以下、望ましくは0.5倍に設定することで、図19に示されるように、ねじ軸1の軸線方向からみて、手前側と奥側にある二個のボール3を接触するように並べることができ、負荷ボール転走路12にすきまなくボール3を配列することができる。言い換えれば、手前側でボール3が負荷ボール転走路12から掬われるのと同時に、奥側でボール3が負荷ボール転走路12に戻る。したがって、完全な整数巻きが実現できるねじ装置が得られる。 If the distance α is 0, the number of balls 3 that can receive a load is equal to the number of balls 3 that can receive a load at the position where the balls 3 are scooped up when viewed from the axial direction of the screw shaft 1. One more than the other 12 parts. On the other hand, when the arc-shaped distance α is equal to or greater than 1 · Da (diameter), the number of balls 3 that can receive a load is reduced by one at the position where the balls 3 are scooped up, compared to the other portions. However, since the distance to turn becomes long, it becomes easy to turn the ball 3. The distance α is set to be larger than 0 and 1.5 times or less of the ball diameter in consideration of approaching the integer winding and the ease of turning of the ball 3. By setting the arc-shaped distance α to 0.4 times or more and 0.6 times or less, preferably 0.5 times the ball diameter, as shown in FIG. 19, when viewed from the axial direction of the screw shaft 1, The two balls 3 on the near side and the far side can be arranged so as to come into contact with each other, and the balls 3 can be arranged without gaps on the load ball rolling path 12. In other words, the ball 3 is beaten from the load ball rolling path 12 on the near side, and at the same time, the ball 3 returns to the load ball rolling path 12 on the far side. Therefore, a screw device that can realize complete integer winding is obtained.
 図20は、本発明の第二の実施形態のボールねじの斜視図を示す。この実施形態のボールねじにおいても、負荷ボール転走路33の巻数は整数に近づけられている。ねじ軸31にボール転走溝31aが形成され、ナット本体44に負荷ボール転走溝32aが形成される点は、上記第一の実施形態のボールねじと同一である。 FIG. 20 shows a perspective view of the ball screw according to the second embodiment of the present invention. Also in the ball screw of this embodiment, the number of turns of the load ball rolling path 33 is close to an integer. The ball rolling groove 31a is formed on the screw shaft 31, and the load ball rolling groove 32a is formed on the nut body 44, which is the same as the ball screw of the first embodiment.
 図21及び図22は循環部品34が取り付けられたナット32を示す。循環部品34には、負荷ボール転走路33の一端と他端に接続される無負荷戻し路35が形成される。無負荷戻し路35は、負荷ボール転走路33を移動するボールを円弧状の軌道に沿って掬い上げる掬上げ通路36(図22参照)と、掬い上げたボールを半径方向に移動させる繋ぎ通路37(図22参照)と、ボールをナット32の軸線と平行に移動させる軸線方向通路38(図21参照)と、から構成される。 21 and 22 show the nut 32 to which the circulating component 34 is attached. The circulation part 34 is formed with a no-load return path 35 connected to one end and the other end of the load ball rolling path 33. The no-load return path 35 includes a lifting path 36 (see FIG. 22) for scooping up the ball moving on the loaded ball rolling path 33 along an arcuate path, and a connecting path 37 for moving the scooped ball in the radial direction. (See FIG. 22) and an axial passage 38 (see FIG. 21) for moving the ball parallel to the axis of the nut 32.
 図23に示されるように、循環部品34は、ナット32の軸線に沿って二分割された一対の分割体39を結合させてなる。 23, the circulating component 34 is formed by combining a pair of divided bodies 39 that are divided into two along the axis of the nut 32.
 図24に示されるように、ナット本体44にはその外側から内側に貫通する一対の貫通孔32bが開けられる。一対の貫通孔32bは、ナット本体44の軸線方向に並べられる。 24, the nut main body 44 is formed with a pair of through holes 32b penetrating from the outside to the inside. The pair of through holes 32 b are arranged in the axial direction of the nut body 44.
 図25及び図26は、循環部品34の詳細図を示す。一対の分割体39のそれぞれに負荷ボール転走路33を移動するボールを円弧の軌道に沿って掬い上げる掬上げ部40が形成される。 25 and 26 show detailed views of the circulating component 34. FIG. Each of the pair of divided bodies 39 is formed with a lifting portion 40 that scoops up a ball moving on the loaded ball rolling path 33 along an arcuate path.
 図27は掬上げ部40の詳細図を示す。循環部品34の無負荷戻し路35の長さ方向の端部の、ナット本体44の負荷ボール転走溝32aに接続される部分には、拘束部42が形成される。この拘束部42とねじ軸31との間には、ボール41が挟まれる。拘束部42の断面形状は、ナット本体44の負荷ボール転走溝32aの断面形状に合わせたゴシックアーチ溝形状に形成される。一方、循環部品34の掬上げ部40の断面形状は、ボール41の半径よりも大きい半径のサーキュラーアーク溝形状に形成される。 FIG. 27 shows a detailed view of the lifting unit 40. A constraining portion 42 is formed at a portion of the end portion in the length direction of the no-load return path 35 of the circulating component 34 that is connected to the load ball rolling groove 32a of the nut body 44. A ball 41 is sandwiched between the restraining portion 42 and the screw shaft 31. The cross-sectional shape of the restraining portion 42 is formed in a Gothic arch groove shape that matches the cross-sectional shape of the load ball rolling groove 32 a of the nut body 44. On the other hand, the cross-sectional shape of the raised portion 40 of the circulating component 34 is formed in a circular arc groove shape having a radius larger than the radius of the ball 41.
 図28及び図29は、循環経路を循環するボール41を示す。ナット32に対してねじ軸31を相対的に回転させると、ねじ軸31とナット本体44との間の負荷ボール転走路33をボール41が転がり運動する。負荷ボール転走路33の一端まで移動したボール41は、循環部品34の掬上げ部40によって、円弧状の軌道に沿って掬い上げられる。循環部品34の掬上げ通路36、繋ぎ通路37、軸線方向通路38を通過したボール41は、反対側の繋ぎ通路37、掬上げ通路36を経由して再び負荷ボール転走路33に戻される。ボール41が負荷ボール転走路33に戻されるとき、ねじ軸31の回転によって、ねじ軸31と循環部品34の拘束部42との間に挟まれるボール41が負荷ボール転走路12に引き込まれる。このため、ボール41を円滑に移動させることができる。 28 and 29 show the ball 41 circulating in the circulation path. When the screw shaft 31 is rotated relative to the nut 32, the ball 41 rolls along the loaded ball rolling path 33 between the screw shaft 31 and the nut body 44. The ball 41 that has moved to one end of the load ball rolling path 33 is scooped up along the arcuate track by the scooping portion 40 of the circulating component 34. The balls 41 that have passed through the lifting passage 36, the connecting passage 37, and the axial passage 38 of the circulating component 34 are returned to the loaded ball rolling passage 33 again via the opposite connecting passage 37 and the lifting passage 36. When the ball 41 is returned to the load ball rolling path 33, the rotation of the screw shaft 31 causes the ball 41 sandwiched between the screw shaft 31 and the restraining portion 42 of the circulating component 34 to be drawn into the load ball rolling path 12. For this reason, the ball 41 can be moved smoothly.
 図30は、本発明の第三の実施形態のボールねじを示す。図中(a)はボールねじの断面図を、(b)は正面図を示す。ボールを循環させるための循環部品の構造が上記第一及び第二の実施形態と異なり、循環部品としての端面ピース54がナット本体53の軸線方向の端面53aに装着される。 FIG. 30 shows a ball screw according to a third embodiment of the present invention. In the figure, (a) shows a sectional view of the ball screw, and (b) shows a front view. Unlike the first and second embodiments, the structure of the circulating component for circulating the balls is different from that of the first and second embodiments, and an end piece 54 as a circulating component is attached to the end surface 53 a of the nut body 53 in the axial direction.
 ねじ軸51の外周面には、螺旋状のボール転走溝51aが形成される。この実施形態では、ボール転走溝51aの条数は二条である。ナット52のナット本体53の内周面には、ねじ軸51のボール転走溝51aに対向する螺旋状の負荷ボール転走溝52aが形成される。ねじ軸51のボール転走溝51aとナット本体53の負荷ボール転走溝52aとの間で螺旋状の負荷ボール転走路55が構成される。ナット本体53の内部には、その軸線と平行に貫通孔56が設けられる。この貫通孔56は無負荷戻し路の軸線方向通路を構成する。なお、この実施形態のようにナットの貫通孔56自体が軸線方向通路を構成してもよいし、貫通孔56に挿入されるパイプが軸線方向通路を構成してもよい。 A spiral ball rolling groove 51 a is formed on the outer peripheral surface of the screw shaft 51. In this embodiment, the number of the ball rolling grooves 51a is two. On the inner peripheral surface of the nut main body 53 of the nut 52, a spiral load ball rolling groove 52a facing the ball rolling groove 51a of the screw shaft 51 is formed. A spiral load ball rolling path 55 is formed between the ball rolling groove 51 a of the screw shaft 51 and the load ball rolling groove 52 a of the nut body 53. A through hole 56 is provided in the nut main body 53 in parallel with its axis. The through hole 56 constitutes an axial passage of the no-load return path. As in this embodiment, the nut through-hole 56 itself may constitute an axial passage, or a pipe inserted into the through-hole 56 may constitute an axial passage.
 図31に示されるように、ナット本体53の端面53aには凹所53bが形成され、この凹所53bに循環部品としての端面ピース54が嵌め込まれる。凹所53bは貫通孔56に連通していて、貫通孔56の長さ方向の両端部に一対の端面ピース54が設けられている。端面ピース54には、掬上げ通路及び繋ぎ通路が形成される。掬上げ通路及び繋ぎ通路の構成は上記第一の実施形態のボールねじと同一である。また、端面ピース54にはねじ通し穴54aが設けられる。ねじ通し穴54aにねじを通し、ナット本体53にねじを締めることにより、端面ピース54がナット本体53に固定される。端面ピース54は掬上げ通路及び繋ぎ通路に沿って二分割されてもよいし、二分割されてなくてもよい。 As shown in FIG. 31, a recess 53b is formed in the end surface 53a of the nut main body 53, and an end surface piece 54 as a circulating part is fitted into the recess 53b. The recess 53 b communicates with the through hole 56, and a pair of end face pieces 54 are provided at both ends in the length direction of the through hole 56. The end face piece 54 is formed with a lifting passage and a connecting passage. The configurations of the hoisting passage and the connecting passage are the same as those of the ball screw of the first embodiment. The end face piece 54 is provided with a screw hole 54a. The end face piece 54 is fixed to the nut body 53 by passing a screw through the screw hole 54 a and tightening the screw to the nut body 53. The end face piece 54 may be divided into two along the hoisting passage and the connecting passage, or may not be divided into two.
 図32は、端面ピース54の掬上げ通路58を移動するボール59の軌道を示す。負荷ボール転走路55を移動するボール59は掬上げ通路58の掬上げ部61によって掬い上げられる。掬上げ通路58の中心線は負荷ボール転走路55の中心線と連続する円弧状に形成される。ボール59は円弧状の軌道に沿って掬い上げられる。このボールねじにおいても、上記第一及び第二の実施形態のボールねじ同様に、負荷ボール転走路55に接する円弧状の軌道に沿った掬上げ、有効ボール数の増加、掬上げ部の強度の向上、負荷バランスの向上が可能になる。 FIG. 32 shows the trajectory of the ball 59 moving in the lifting path 58 of the end face piece 54. The ball 59 moving on the load ball rolling path 55 is lifted up by the lifting portion 61 of the lifting path 58. The center line of the lifting path 58 is formed in an arc shape that is continuous with the center line of the load ball rolling path 55. The ball 59 is scooped up along an arcuate track. Also in this ball screw, like the ball screw of the first and second embodiments, the hoisting along the arcuate track contacting the loaded ball rolling path 55, the increase in the number of effective balls, and the strength of the hoisting portion are increased. Improvement and load balance can be improved.
 図33は、本発明の第四の実施形態のボールねじを示す。この実施形態のボールねじにおいては、ナット本体73の外周に一体に軸受74が設けられる。図34の軸受74の断面図にも示されるように、軸受74は、ナット本体73と一体の内輪75と、内輪75の外側に配置される外輪76と、内輪75と外輪76との間に配列される複数列の転動体列、例えば二列のローラ列と、から構成される。 FIG. 33 shows a ball screw according to a fourth embodiment of the present invention. In the ball screw of this embodiment, a bearing 74 is integrally provided on the outer periphery of the nut body 73. 34, the bearing 74 includes an inner ring 75 integral with the nut body 73, an outer ring 76 disposed outside the inner ring 75, and between the inner ring 75 and the outer ring 76. A plurality of rolling element rows arranged, for example, two roller rows are arranged.
 内輪75の外周面には、断面V字形状の二列のローラ転走面75aが形成される。外輪76には、フランジのように外輪76を相手部品に取り付けるための複数のざぐり穴76bが加工される。外輪76の内周面には、内輪75のローラ転走面75aに対向する断面V字形状の二列のローラ転走面76aが形成される。内輪75のローラ転走面75aと外輪76のローラ転走面76aとの間には、断面正方形の二列の環状のローラ転走路が形成される。ローラ転走路には、複数のローラ77が配列される。ローラ77は、側面形状が略四角形であり、その直径が軸線方向長さよりも僅かに大きい。各列のローラ転走路には、ローラ77の進行方向からみたとき、隣接するローラ77の軸線が直交するように、複数のローラ77がクロス配列される。ローラ77をクロス配列することにより、軸受74は、ナット72の軸線方向の荷重(図中(1)及び(2)方向の荷重)及び半径方向の荷重を負荷できるアンギュラーコンタクト軸受になる。なお、一方の列のローラ転走路に図中(1)方向の荷重のみを負荷できるように複数のローラ77をパラレル配列し、他方の列のローラ転走路に図中(2)方向の荷重のみを負荷できるように複数のローラ77をパラレル配列してもよい。このときの一方の列のローラ転走路の接触角線は図中(3)で示され、他方の列のローラの接触角線は図中(4)で示される。パラレル配列とは、隣り合うローラの軸線がほぼ平行な状態で配列されることをいう。また、ローラをクロス配列する場合、ローラの列数は一列でもよい。 On the outer peripheral surface of the inner ring 75, two rows of roller rolling surfaces 75a having a V-shaped cross section are formed. The outer ring 76 is processed with a plurality of counterbores 76b for attaching the outer ring 76 to a counterpart component like a flange. On the inner peripheral surface of the outer ring 76, two rows of roller rolling surfaces 76a having a V-shaped cross section facing the roller rolling surface 75a of the inner ring 75 are formed. Between the roller rolling surface 75a of the inner ring 75 and the roller rolling surface 76a of the outer ring 76, two rows of annular roller rolling paths having a square cross section are formed. A plurality of rollers 77 are arranged on the roller rolling path. The roller 77 has a substantially quadrangular side surface, and its diameter is slightly larger than the axial length. In each roller rolling path, a plurality of rollers 77 are arranged in a cross so that the axes of the adjacent rollers 77 are orthogonal to each other when viewed from the direction of travel of the rollers 77. By arranging the rollers 77 in a cross arrangement, the bearing 74 becomes an angular contact bearing capable of applying a load in the axial direction of the nut 72 (a load in the directions (1) and (2) in the drawing) and a radial load. A plurality of rollers 77 are arranged in parallel so that only the load in the direction (1) in the figure can be applied to the roller rolling path in one row, and only the load in the direction (2) in the figure is placed on the roller rolling path in the other row. A plurality of rollers 77 may be arranged in parallel so that the load can be applied. The contact angle line of the roller rolling path in one row at this time is indicated by (3) in the figure, and the contact angle line of the roller in the other row is indicated by (4) in the figure. The parallel arrangement means that the axes of adjacent rollers are arranged in a substantially parallel state. When the rollers are arranged in a cross arrangement, the number of rows of rollers may be one.
 図33に示すように、ねじ軸71の外周面には螺旋状のボール転走溝71aが形成される。この実施形態では、二条のボール転走溝71aが形成されている。ナット本体73の内周面には、ねじ軸71のボール転走溝71aに対向する負荷ボール転走溝が形成される。ねじ軸71のボール転走溝71aとナット本体73の負荷ボール転走溝との間で螺旋状の負荷ボール転走路が構成される。ナット本体73の内部には、ナット本体73の軸線と平行な軸線方向通路が形成される。ナット本体73の軸線方向通路の長さ方向の両端部には、循環部品としての一対の側面ピース80が装着される。各側面ピース80には、掬上げ通路及び繋ぎ通路が形成される。掬上げ通路は、ナットの軸線方向からみて、中心線が円弧状に形成される。繋ぎ通路は、ナットの側方からみて中心線が円弧状に形成され、掬上げ通路と軸線方向通路とを繋ぐ。側面ピース80はナット本体73の外径部に設けた凹所に嵌め込まれる。負荷ボール転走路、掬上げ通路、軸線方向通路及び繋ぎ通路によって循環経路が構成される。循環経路の個数及び配列については後述する。 33, a spiral ball rolling groove 71a is formed on the outer peripheral surface of the screw shaft 71. As shown in FIG. In this embodiment, two ball rolling grooves 71a are formed. A load ball rolling groove facing the ball rolling groove 71 a of the screw shaft 71 is formed on the inner peripheral surface of the nut body 73. A spiral loaded ball rolling path is formed between the ball rolling groove 71 a of the screw shaft 71 and the loaded ball rolling groove of the nut body 73. An axial passage parallel to the axis of the nut body 73 is formed inside the nut body 73. A pair of side piece 80 as a circulating part is attached to both ends of the nut body 73 in the lengthwise direction of the axial passage. Each side piece 80 is formed with a lifting passage and a connecting passage. The hoisting passage has a center line formed in an arc shape when viewed from the axial direction of the nut. The connecting passage has a center line formed in an arc shape when viewed from the side of the nut, and connects the lifting passage and the axial passage. The side piece 80 is fitted into a recess provided in the outer diameter portion of the nut body 73. A circulation path is constituted by the load ball rolling path, the lifting path, the axial path, and the connecting path. The number and arrangement of circulation paths will be described later.
 図35は、第四の実施形態の軸受付きボールねじの使用方法の一例を示す。ねじ軸71の両端部には、支持部81を介してテーブル82が結合される。軸受74の外輪76は、図示しないベースに固定される。モータによって軸受74の外輪76に対してナット本体73を回転させると、ねじ軸71が軸線方向に移動し、テーブル82が移動する。移動するテーブル82を正確に位置決めするためには、軸受74には回転を案内する機構だけでなく、高い剛性が必要になる。ローラ77を用いたアンギュラーコンタクト軸受にすることによって、軸受74の剛性を高くすることができる。 FIG. 35 shows an example of how to use the ball screw with bearing of the fourth embodiment. A table 82 is coupled to both ends of the screw shaft 71 via a support portion 81. The outer ring 76 of the bearing 74 is fixed to a base (not shown). When the nut main body 73 is rotated with respect to the outer ring 76 of the bearing 74 by the motor, the screw shaft 71 moves in the axial direction, and the table 82 moves. In order to accurately position the moving table 82, the bearing 74 needs not only a mechanism for guiding rotation but also high rigidity. By using an angular contact bearing using the roller 77, the rigidity of the bearing 74 can be increased.
 ボールねじの使用方法としては、ナットにテーブルを固定し、両端部がベースに回転可能に支持されるねじ軸を回転させてナットをねじ軸の軸線方向に移動させるのが一般的である。第一ないし第三の実施形態のボールねじは一般的な使用方法で用いられる。 As a method of using the ball screw, it is common to fix the table to the nut and rotate the screw shaft whose both ends are rotatably supported by the base to move the nut in the axial direction of the screw shaft. The ball screw of the first to third embodiments is used in a general usage method.
 図36は、第四の実施形態のボールねじの循環経路84を示す。この実施形態において、ねじ軸の軸線方向に位置をずらせて二列の循環経路84が設けられる。また、二条のねじ軸71に対応して二条の循環経路84が設けられる。合計の循環経路84の個数は、列数と条数との積で表わされる。この実施形態において、二列×二条により、合計四個の循環経路が設けられる。四個の循環経路の無負荷戻し路85は、図36(a)に示されるように、ねじ軸71の軸線方向からみて、周方向に90度の均等間隔を空けて配列される。また、ボールねじに予圧を付与できるように、ナット本体73の一列目の負荷ボール転走溝と二列目の負荷ボール転走溝との間の距離βが調整される。一列目の負荷ボール転走溝及び二列目の負荷ボール転走溝は、ねじ軸71のボール転走溝71aに対して位相がわずかにずれている。 FIG. 36 shows a ball screw circulation path 84 of the fourth embodiment. In this embodiment, two rows of circulation paths 84 are provided with their positions shifted in the axial direction of the screw shaft. In addition, two circulation paths 84 are provided corresponding to the two screw shafts 71. The total number of circulation paths 84 is represented by the product of the number of columns and the number of strips. In this embodiment, a total of four circulation paths are provided by two rows × two strips. The four no-load return paths 85 of the circulation paths are arranged at equal intervals of 90 degrees in the circumferential direction when viewed from the axial direction of the screw shaft 71, as shown in FIG. Further, the distance β between the first row of loaded ball rolling grooves and the second row of loaded ball rolling grooves is adjusted so that a preload can be applied to the ball screw. The phase of the loaded ball rolling groove in the first row and the loaded ball rolling groove in the second row are slightly shifted from the ball rolling groove 71 a of the screw shaft 71.
 この実施形態のボールねじによれば、負荷ボール転走路の巻数を整数に近付け、負荷を受けられないボールの個数を少なくするので、ナット内のボールの玉荷重を均一化することができる。以下にこれを説明する。図37(b)は、従来のリターンパイプ方式のボールの玉荷重の分布を示す。図36(a)の破線で示すリターンパイプ87を取り付けたとき、ねじ軸71の軸線方向の負荷を受けるボールがない部分89が多く存在する。このため、図37(b)のグラフに示すように、循環経路内での玉荷重がボールの位置によって大きくなったり、小さくなったりする現象が生ずる。なぜならば、ねじ軸71の軸線方向の負荷を受けるボールの個数が少ないとき、すなわち図36(a)の負荷ボール転走路90の上部にボールが位置するとき、玉荷重が大きくなる。その一方、ねじ軸71の軸線方向の負荷を受けるボールの個数が多いとき、すなわち図36(a)の負荷ボール転走路90の下部にボールが位置するとき、玉荷重が小さくなる。これに対し、負荷を受けるボールがない部分を少なくすることにより、図37(a)に示すように、ナット内のボールの玉荷重を均一化することができる。なお、グラフの横軸は負荷ボール転走路90内のボールの位置を表す。 According to the ball screw of this embodiment, the number of turns of the loaded ball rolling path is made close to an integer, and the number of balls that cannot receive the load is reduced, so that the ball load of the balls in the nut can be made uniform. This will be described below. FIG. 37B shows the ball load distribution of a conventional return pipe type ball. When the return pipe 87 indicated by the broken line in FIG. 36A is attached, there are many portions 89 where there is no ball that receives the load in the axial direction of the screw shaft 71. For this reason, as shown in the graph of FIG. 37 (b), a phenomenon occurs in which the ball load in the circulation path increases or decreases depending on the position of the ball. This is because the ball load increases when the number of balls receiving the load in the axial direction of the screw shaft 71 is small, that is, when the ball is positioned above the load ball rolling path 90 in FIG. On the other hand, when the number of balls receiving a load in the axial direction of the screw shaft 71 is large, that is, when the balls are positioned below the loaded ball rolling path 90 in FIG. On the other hand, the ball load of the balls in the nut can be made uniform as shown in FIG. The horizontal axis of the graph represents the position of the ball in the loaded ball rolling path 90.
 また、本実施形態のボールねじによれば、ナット72の軸線方向の長さを長くし、ナット72に複数列の循環経路84を設けることにより、平均化効果を向上させることができ、ナット72のよろめきを低減することができる。 Further, according to the ball screw of this embodiment, the averaging effect can be improved by increasing the length of the nut 72 in the axial direction and providing the nut 72 with a plurality of rows of circulation paths 84. Swaying can be reduced.
 さらに、本実施形態のボールねじによれば、四つの無負荷戻し路85をナット72の周方向に均等間隔を空けて配列することにより、ボールが負荷ボール転走路90から無負荷戻し路85に出入りするときの影響を少なくすることができ、ナット72を回転させるときのトルクの変動を低減できる。ボールねじに予圧を付与することにより、トルクの変動をより低減できる。 Furthermore, according to the ball screw of the present embodiment, the four unloaded return paths 85 are arranged at equal intervals in the circumferential direction of the nut 72, so that the balls are changed from the loaded ball rolling path 90 to the unloaded return path 85. The influence at the time of going in and out can be reduced, and the fluctuation of torque when the nut 72 is rotated can be reduced. By applying preload to the ball screw, torque fluctuation can be further reduced.
 さらに、本実施形態のボールねじによれば、比較的小径のボールを使用し、二条ねじにすることにより、ボールねじの軸方向の剛性を向上させることができる。 Furthermore, according to the ball screw of this embodiment, the rigidity in the axial direction of the ball screw can be improved by using a relatively small diameter ball and making it a double thread screw.
 なお、本発明は上記実施形態に限られず、本発明の要旨を変更しない範囲で様々に変更できる。例えば、転動体には、ボールの替わりにローラを用いることができる。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention. For example, a roller can be used for the rolling element instead of a ball.
 無負荷戻し路の掬上げ通路、繋ぎ通路、及び軸線方向通路の中心線は、複数の円弧と直線から構成されなくても、接線方向が連続になる複数のクロソイド曲線から構成されてもよい。 The center line of the lifting path, the connecting path, and the axial path of the no-load return path may not be composed of a plurality of arcs and straight lines, but may be composed of a plurality of clothoid curves with continuous tangential directions.
 ゴシックアーチ溝形状は、二つの円弧から構成されなくても、ボールと二点で接触できる曲線であれば、二つのスプライン曲線、二つのクロソイド曲線等から構成されてもよい。 The Gothic arch groove shape may be composed of two spline curves, two clothoid curves, etc., as long as it is a curve that can contact the ball at two points, even though it is not composed of two arcs.
 循環部品の拘束部の断面形状は、ゴシックアーチ溝形状に限られることはなく、ボールの遊びを少なくすることができれば、単一の円弧からなるサーキュラーアーク溝形状に形成されてもよい。 The cross-sectional shape of the constraining portion of the circulation part is not limited to the Gothic arch groove shape, and may be formed into a circular arc groove shape made of a single arc as long as play of the ball can be reduced.
 完全な整数巻きを必要としない場合は、円形状の軌道上の距離αが直径Daの0.4倍以上かつ0.6倍以下以外に設定されてもよい。 If a complete integer winding is not required, the distance α on the circular orbit may be set to a value other than 0.4 times to 0.6 times the diameter Da.
1,31,51,71…ねじ軸,1a,31a,51a,71a…ボール転走溝(転動体転走溝),2,32,52,72…ナット,9,44,53,73…ナット本体,2a,32a,52a…負荷ボール転走溝(負荷転動体転走溝),3,41,59…ボール(転動体),8,34…循環部品,10,35…無負荷戻し路,12,55…負荷ボール転走路(負荷転動体転走路),14,40…掬上げ部,18,39…分割体,22,36,58…掬上げ通路,23,37…繋ぎ通路,24,38…軸線方向通路,31…ねじ軸,31a…ボール転走溝(転動体転走溝),54…端面ピース(循環部品),74…軸受,75…内輪,75a…ローラ転走面,76…外輪,76a…ローラ転走面,77…ローラ,84…循環経路 DESCRIPTION OF SYMBOLS 1, 31, 51, 71 ... Screw shaft, 1a, 31a, 51a, 71a ... Ball rolling groove (rolling body rolling groove), 2, 32, 52, 72 ... Nut, 9, 44, 53, 73 ... Nut Main body, 2a, 32a, 52a ... loaded ball rolling groove (loaded rolling element rolling groove), 3, 41, 59 ... ball (rolling element), 8, 34 ... circulating parts, 10, 35 ... unloaded return path, 12, 55 ... Loaded ball rolling path (loaded rolling element rolling path), 14, 40 ... Lifting section, 18, 39 ... Divided body, 22, 36, 58 ... Lifting path, 23, 37 ... Connecting path, 24, 38 ... Axial passage, 31 ... Screw shaft, 31a ... Ball rolling groove (rolling element rolling groove), 54 ... End face piece (circulation part), 74 ... Bearing, 75 ... Inner ring, 75a ... Roller rolling surface, 76 ... outer ring, 76a ... roller rolling surface, 77 ... roller, 84 ... circulation path

Claims (8)

  1.  外周面に螺旋状の転動体転走溝を有するねじ軸と、
     内周面に前記ねじ軸の前記転動体転走溝に対向する螺旋状の負荷転動体転走溝を有すると共に、前記負荷転動体転走溝の一端と他端とに接続される無負荷戻し路を有するナットと、
     前記ねじ軸の前記転動体転走溝と前記ナットの前記負荷転動体転走溝との間の負荷転動体転走路、及び前記無負荷戻し路から構成される循環経路に循環可能に配列される複数の転動体と、を備え、
     前記無負荷戻し路は、
     前記ナットの軸線方向からみて、中心線が円弧状に形成されて、前記負荷転動体転走路を移動する前記転動体を円弧状の軌道に沿って掬い上げる掬上げ通路と、
     中心線が前記ナットの軸線と平行に形成されて、前記転動体を前記ナットの軸線と平行に移動させる軸線方向通路と、を有するねじ装置。
    A screw shaft having a spiral rolling element rolling groove on the outer peripheral surface;
    An unloaded return having a spiral loaded rolling element rolling groove facing the rolling element rolling groove of the screw shaft on the inner peripheral surface and connected to one end and the other end of the loaded rolling element rolling groove A nut having a path;
    It is arranged to be able to circulate in a circulation path composed of a loaded rolling element rolling path between the rolling element rolling groove of the screw shaft and the loaded rolling element rolling groove of the nut, and the no-load return path. A plurality of rolling elements,
    The no-load return path is
    A hoisting passage that has a center line formed in an arc shape when viewed from the axial direction of the nut, and scoops up the rolling element that moves on the load rolling element rolling path along an arc-shaped track,
    A screw device comprising: an axial passage having a center line formed parallel to the axis of the nut and moving the rolling element parallel to the axis of the nut.
  2.  前記掬上げ通路は、前記ナットの軸線方向からみて、中心線が円弧状に形成され、かつ前記ナットの側面方向から見て、中心線が円弧状に形成される非直線領域を有することを特徴とする請求項1に記載のねじ装置。 The hoisting passage has a non-linear region in which a center line is formed in an arc shape when viewed from the axial direction of the nut and a center line is formed in an arc shape when viewed from the side surface direction of the nut. The screw device according to claim 1.
  3.  前記ナットは、
     内周面に前記負荷転動体転走溝が形成されるナット本体と、
     前記ナット本体に装着され、前記無負荷戻し路が形成される循環部品と、を備え、
     前記循環部品は、前記無負荷戻し路に沿って二分割された一対の分割体を結合させてなることを特徴とする請求項1又は2に記載のねじ装置。
    The nut is
    A nut body in which the load rolling element rolling groove is formed on the inner peripheral surface;
    A circulating part mounted on the nut body and forming the no-load return path;
    3. The screw device according to claim 1, wherein the circulating component is formed by combining a pair of divided bodies that are divided into two along the no-load return path.
  4.  前記ナットは、
     内周面に前記負荷転動体転走溝が形成されると共に、前記軸線方向通路が形成されるナット本体と、
     前記ナット本体の前記軸線方向の端面又は外径部に装着され、前記掬上げ通路が形成される循環部品と、を備えることを特徴とする請求項1又は2に記載のねじ装置。
    The nut is
    A nut body in which the load rolling element rolling groove is formed on an inner peripheral surface and the axial passage is formed;
    The screw device according to claim 1, further comprising: a circulating component that is mounted on an end surface or an outer diameter portion of the nut body in the axial direction and in which the hoisting passage is formed.
  5.  前記転動体がボールであり、
     前記ナットの軸線方向からみて、前記ねじ軸の中心と前記軸線方向通路の中心とを結んだ線から、前記掬上げ通路と前記負荷転動体転走路との境目までの、前記負荷転動体転走路における前記ボールの中心の軌道上の距離が0より大きく、かつ前記ボールの直径の1.5倍以下に設定されることを特徴とする請求項1ないし4のいずれかに記載のねじ装置。
    The rolling element is a ball;
    The load rolling element rolling path from the line connecting the center of the screw shaft and the center of the axial path to the boundary between the lifting path and the load rolling element rolling path as seen from the axial direction of the nut 5. The screw device according to claim 1, wherein a distance on the track of the center of the ball is set to be greater than 0 and not more than 1.5 times the diameter of the ball.
  6.  前記ねじ軸の軸線方向からみて、前記掬上げ通路の中心線と前記負荷転動体転走路の中心線との接続点において、前記掬上げ通路の中心線の接線方向と前記負荷転動体転走路の中心線の接線方向とが実質的に一致することを特徴とする請求項1ないし5のいずれかに記載のねじ装置。 When viewed from the axial direction of the screw shaft, at the connection point between the center line of the lifting passage and the center line of the load rolling element rolling path, the tangential direction of the center line of the lifting path and the load rolling element rolling path 6. The screw device according to claim 1, wherein a tangential direction of the center line substantially coincides with the center line.
  7.  前記ナットは、
     内周面に前記負荷転動体転走溝が形成されるナット本体と、
     前記ナット本体と一体に設けられ、外周面に転動体転走面を有する内輪と、
     前記内輪の外周側に配置され、内周面に転動体転走面を有する外輪と、
     前記内輪の前記転動体転走面と前記外輪の前記転動体転走面との間に転がり運動可能に配置される複数のローラと、を備え、
     前記内輪、前記外輪及び前記複数のローラから構成される軸受は、前記ナットの軸線方向の荷重及び半径方向の荷重を負荷できるアンギュラーコンタクト軸受であることを特徴とする請求項1ないし6のいずれかに記載のねじ装置。
    The nut is
    A nut body in which the load rolling element rolling groove is formed on the inner peripheral surface;
    An inner ring provided integrally with the nut body and having a rolling element rolling surface on the outer peripheral surface;
    An outer ring disposed on the outer peripheral side of the inner ring and having a rolling element rolling surface on the inner peripheral surface;
    A plurality of rollers arranged so as to be able to roll between the rolling element rolling surface of the inner ring and the rolling element rolling surface of the outer ring,
    The bearing comprising the inner ring, the outer ring, and the plurality of rollers is an angular contact bearing capable of being loaded with an axial load and a radial load of the nut. The screw device according to the above.
  8.  前記ねじ軸の軸線方向に位置をずらして二列以上の列数の循環経路が設けられると共に、二条以上の前記ねじ軸の条数に対応して二条以上の条数の循環経路が設けられ、
     循環経路の合計の個数が列数と条数の積で表わされ、
     合計の個数の循環経路の無負荷戻し路が、前記ねじ軸の軸線方向からみて前記ねじ軸の周方向に均等間で配列されることを特徴とする請求項1ないし7のいずれかに記載のねじ装置。
    Two or more rows of circulation paths are provided by shifting the position in the axial direction of the screw shaft, and two or more cycles of circulation paths are provided corresponding to the number of two or more of the screw shafts,
    The total number of circulation paths is represented by the product of the number of columns and the number of lines,
    The unloaded return paths of the total number of circulation paths are arranged evenly in the circumferential direction of the screw shaft as viewed from the axial direction of the screw shaft. Screw device.
PCT/JP2009/063416 2008-07-31 2009-07-28 Screw device WO2010013706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010522724A JP5341893B2 (en) 2008-07-31 2009-07-28 Screw device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008198982 2008-07-31
JP2008-198982 2008-07-31

Publications (1)

Publication Number Publication Date
WO2010013706A1 true WO2010013706A1 (en) 2010-02-04

Family

ID=41610406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063416 WO2010013706A1 (en) 2008-07-31 2009-07-28 Screw device

Country Status (3)

Country Link
JP (1) JP5341893B2 (en)
TW (1) TWI473948B (en)
WO (1) WO2010013706A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010025589A1 (en) 2010-06-29 2011-12-29 Schaeffler Technologies Gmbh & Co. Kg Ball Screw
USD752964S1 (en) * 2014-07-10 2016-04-05 Thk Co., Ltd. Ball screw
USD755618S1 (en) * 2014-07-10 2016-05-10 Thk Co., Ltd. Ball screw
CN109910998A (en) * 2019-04-17 2019-06-21 上海格尔汽车科技发展有限公司 A kind of electric direction converter of vehicle nut
WO2021199989A1 (en) 2020-04-02 2021-10-07 日本精工株式会社 Ball screw device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417472B (en) * 2010-12-28 2013-12-01 Outside Circulation Ball Screws

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142155A (en) * 1979-04-20 1980-11-06 Nippon Tokushu Bearing Kk Constituting method for ball-circulating path in ball screw
JPH0328564A (en) * 1989-05-30 1991-02-06 Neff Gmbh Manufacturing method of ball returning device of ball screw nut
JPH0372147U (en) * 1989-11-16 1991-07-22
JP2004176826A (en) * 2002-11-27 2004-06-24 Thk Co Ltd Nut for ball screw
JP2007303590A (en) * 2006-05-12 2007-11-22 Nsk Ltd Ball screw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142155A (en) * 1979-04-20 1980-11-06 Nippon Tokushu Bearing Kk Constituting method for ball-circulating path in ball screw
JPH0328564A (en) * 1989-05-30 1991-02-06 Neff Gmbh Manufacturing method of ball returning device of ball screw nut
JPH0372147U (en) * 1989-11-16 1991-07-22
JP2004176826A (en) * 2002-11-27 2004-06-24 Thk Co Ltd Nut for ball screw
JP2007303590A (en) * 2006-05-12 2007-11-22 Nsk Ltd Ball screw

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010025589A1 (en) 2010-06-29 2011-12-29 Schaeffler Technologies Gmbh & Co. Kg Ball Screw
WO2012000699A1 (en) 2010-06-29 2012-01-05 Schaeffler Technologies Gmbh & Co. Kg Ball screw
USD752964S1 (en) * 2014-07-10 2016-04-05 Thk Co., Ltd. Ball screw
USD755618S1 (en) * 2014-07-10 2016-05-10 Thk Co., Ltd. Ball screw
CN109910998A (en) * 2019-04-17 2019-06-21 上海格尔汽车科技发展有限公司 A kind of electric direction converter of vehicle nut
WO2021199989A1 (en) 2020-04-02 2021-10-07 日本精工株式会社 Ball screw device
CN113767234A (en) * 2020-04-02 2021-12-07 日本精工株式会社 Ball screw device
US11680628B2 (en) 2020-04-02 2023-06-20 Nsk Ltd. Ball screw device
CN113767234B (en) * 2020-04-02 2023-11-14 日本精工株式会社 Ball screw device

Also Published As

Publication number Publication date
JPWO2010013706A1 (en) 2012-01-12
TW201013072A (en) 2010-04-01
JP5341893B2 (en) 2013-11-13
TWI473948B (en) 2015-02-21

Similar Documents

Publication Publication Date Title
JP5341893B2 (en) Screw device
JP5255503B2 (en) Rolling element screw device
US8220353B2 (en) Screw device manufacturing method and screw device
WO2006135038A1 (en) Screw device and method of manufacturing the same
JP2011080602A (en) Roller screw
JP5069555B2 (en) Exercise guidance device
KR101232398B1 (en) Roller screw
WO2012144371A1 (en) Linear motion guide mechanism
JP6244108B2 (en) Screw device
JP4712894B2 (en) Roller screw
JP2007255435A (en) Rolling element screw device and manufacturing method for rolling element screw device
JP2007010060A (en) Roller retainer and roller screw
JP4932711B2 (en) Roller screw and manufacturing method thereof
JP4875888B2 (en) Rolling element screw device and method for manufacturing circulating member of rolling element screw device
JP5058095B2 (en) Screw device and motion guide device
JP2010038196A (en) Screw device
JP4945438B2 (en) Roller screw
WO2023189044A1 (en) Ball screw
TW201135091A (en) Motion guiding device
JP3122085U (en) Rolling element screw device
JP6559199B2 (en) Screw device
JP4777934B2 (en) Ball screw circulation parts and ball screw
JP2000211535A (en) Rack-and-pinion type steering device
JPWO2006082934A1 (en) Worm gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010522724

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802949

Country of ref document: EP

Kind code of ref document: A1