JP4945438B2 - Roller screw - Google Patents

Roller screw Download PDF

Info

Publication number
JP4945438B2
JP4945438B2 JP2007509225A JP2007509225A JP4945438B2 JP 4945438 B2 JP4945438 B2 JP 4945438B2 JP 2007509225 A JP2007509225 A JP 2007509225A JP 2007509225 A JP2007509225 A JP 2007509225A JP 4945438 B2 JP4945438 B2 JP 4945438B2
Authority
JP
Japan
Prior art keywords
roller
path
nut
load
roller rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007509225A
Other languages
Japanese (ja)
Other versions
JPWO2006100997A1 (en
Inventor
英一 道岡
宏 丹羽
明正 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2007509225A priority Critical patent/JP4945438B2/en
Publication of JPWO2006100997A1 publication Critical patent/JPWO2006100997A1/en
Application granted granted Critical
Publication of JP4945438B2 publication Critical patent/JP4945438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • F16H25/2214Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls with elements for guiding the circulating balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Description

【技術分野】
【0001】
本発明は、ねじ軸とナットとの間に転がり運動可能にローラを介在させたローラねじに関する。
【背景技術】
【0002】
ねじ軸とナットとの間に転がり運動可能にボールを介在させたボールねじは、すべり接触するねじに比べて、ナットに対してねじ軸を回転させる際の摩擦係数を低減できるので、工作機械・ロボットの位置決め機構、送り機構、あるいは自動車のステアリングギヤ等に実用化されている。
【0003】
近年許容荷重を増大するために、転動体としてボールの替わりにローラを使用したローラねじが、例えば特許文献1のように考案されている。このローラねじでは、ねじ軸の外周面にローラ転走溝を形成し、ナットの内周面にもねじ軸のローラ転走溝に対向する螺旋状のローラ転走溝を形成し、ねじ軸のローラ転走溝とナットのローラ転走溝との間の負荷ローラ転走路に、転動体として複数のローラを配列している。そして、ナットに負荷転走の一端及び他端に接続される無負荷ローラ戻し通路が形成される循環部材を設け、負荷ローラ転走路を転がるローラを負荷転走路の一端から掬い上げ、他端に戻し、これにより負荷転走路を転がるローラを循環させる。
【特許文献1】
特開平11−210858号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
負荷ローラ転走路では、ローラはその側面に荷重を受けながら、ねじ軸のローラ転走溝及びナットのローラ転走溝上を転がる。ボールは四方八方いずれの方向にも転がることができるが、ローラはその移動方向が一方向に限られており、負荷ローラ転走路においては、ローラの姿勢が定められている。このため、負荷ローラ転走路から掬い上げたローラを再び負荷ローラ転走路に戻す際、負荷ローラ転走路の定められたローラの姿勢に合わせて戻す、すなわち側面形状が四角形のローラの姿勢を断面四角形状の負荷ローラ転走路の形状に一致させる必要がある。
[0005]
このような姿勢を一致させて戻す必要性に対応するために、従来、循環部材の無負荷ローラ戻し通路をねじることにより、ローラが無負荷ローラ戻し通路を移動するに従って徐々にローラの姿勢を変化させ、最終的にはローラの姿勢を負荷ローラ転走路の断面形状に一致させることが行なわれていた。
[0006]
しかし、循環部材の無負荷ローラ戻し通路をねじると、ねじった分だけ無負荷ローラ戻し通路を移動するローラの抵抗が増えてしまい、ローラを円滑に移動させることができなくなるおそれがある。
[0007]
そこで本発明は、負荷ローラ転走路に接続される無負荷ローラ戻し通路をねじらなくても、ローラを循環させることができるローラねじを提供することを目的とする。
課題を解決するための手段
[0008]
以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照番号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものでない。
【0009】
上記課題を解決するために請求項1の発明は、外周面に螺旋状のローラ転走溝(5a)が形成されたねじ軸(5)と、内周面に前記ねじ軸(5)の前記ローラ転走溝(5a)に対向する螺旋状のローラ転走溝(6a)が形成されたナット(6)と、前記ねじ軸(5)の前記ローラ転走溝(5a)と前記ナット(6)の前記ローラ転走溝(6a)との間の負荷ローラ転走路(9)の一端及び他端に接続される無負荷ローラ戻し通路(10)が形成される循環部材(12,13)と、前記負荷ローラ転走路(9)及び前記無負荷ローラ戻し通路(10)に配列される複数のローラ(7)と、を備え、前記循環部材(12,13)の前記無負荷ローラ戻し通路(10)の両端部に前記負荷ローラ転走路(9)の一端及び他端に接続される一対の方向転換路(16)が設けられ、前記ナット(6)の正面からみて、前記無負荷ローラ戻し通路(10)の両端部の一対の方向転換路(16)は直線状に伸び、且つ前記一対の方向転換路(16)のなす角度は実質的に90度であり、前記無負荷ローラ戻し通路(10)がねじれていないことを特徴とするローラねじである。
[0010]
ここで実質的に90度としたのは、ローラ(7)と無負荷ローラ戻し通路(10)との間にはわずかに隙間が空くので、一対の方向転換路(16)のなす角度が90度からわずかに外れても、無負荷ローラ戻し通路(10)をねじらなくて済む場合があることを考慮したものである。
【0011】
請求項2に記載の発明は、請求項1に記載のローラねじにおいて、前記無負荷ローラ戻し通路(10)は、その中央部に前記ナット(6)の軸線と平行に直線状に伸びる直線通路(11)を有することを特徴とする。
【0012】
請求項3に記載の発明は、請求項1又は2に記載のローラねじにおいて、前記無負荷ローラ戻し通路(10)には、前記ローラ(7)の進行方向から見た状態において、隣接するローラ(7)の軸線が互いに直交するように、前記複数のローラ(7)がクロス配列されることを特徴とする。
【0013】
請求項4に記載の発明は、請求項1ないし3いずれかに記載のローラねじにおいて、前記ローラ(7)は、直径と長さの比が1:1であり、前記無負荷ローラ戻し通路(10)の断面形状は、正方形であることを特徴とする。
【0014】
ここで、直径と長さの比がほぼ1:1としたのは、厳密には長さが直径よりも僅かに小さく設定されるからである。
【0015】
請求項5に記載の発明は、請求項1ないし4いずれかに記載のローラねじにおいて、前記方向転換路(16)が形成される循環部材の一対の方向転換路構成部(13)は、前記ナット(6)の軸線方向の両端面に取り付けられることを特徴とする。
【発明の効果】
【0016】
請求項1に記載の発明によれば、循環部材の無負荷ローラ戻し通路をねじらなくてもローラを循環させることができるので、ローラが無負荷ローラ戻し通路を移動する際、無負荷ローラ戻し通路のねじれに起因した抵抗が生ずることがない。
【0017】
請求項2に記載の発明によれば、ねじ軸のリードが大きい場合や、負荷ローラ転走路の巻き数が多い場合にも対応できる循環部材が得られる。
【0018】
請求項1に記載の発明のように一対の方向転換路を配置すると、無負荷ローラ戻し通路を経由することで、ねじ軸の軸線の一方向(1)からの荷重を負荷していたローラが、反転した状態で(すなわち、ねじ軸の軸線の前記一方向(1)とは反対方向(2)からの荷重を負荷する状態で)負荷ローラ転走路に戻る。請求項3に記載の発明によれば、ローラをクロス配列するので、ローラが反転してもねじ軸の軸線の一方向(1)及び他方向(2)からの荷重を負荷することができる。
【0019】
請求項4に記載の発明によれば、直径と長さの比がほぼ1:1のローラを使用し、無負荷ローラ戻し通路の断面形状を正方形にすることで、ナットの正面からみて、直線状に伸びる一対の方向転換路のなす角度を90度に設計することができる。
【0020】
請求項5に記載の発明によれば、ナットの正面からみて90度で交差する方向転換路が形成される一対の方向転換路構成部を、ナットに取り付けることができる。
【図面の簡単な説明】
【0021】
【図1】本発明の一実施形態におけるローラねじの斜視図。
【図2】ローラねじの主要部品の分解斜視図。
【図3】全部品を組み合わせたローラねじの側面図。
【図4】図3のIV−IV線矢視図。
【図5】ねじ軸を示す側面図。
【図6】ねじ軸のローラ転走溝の溝直角断面形状を示す図。
【図7】ナット6の詳細図(図中(A)はナットの正面図を示し、図中(B)は軸線方向に沿った断面図を示し、図中(C)は裏面図を示す)。
【図8】方向転換路構成部の取付け座の詳細図(図中(B)は(A)のB−B線断面図を示す)。
【図9】ナットのローラ転走溝の溝直角断面形状を示す図。
【図10】ローラの側面図。
【図11】負荷ローラ転走路内のローラを示す断面図。
【図12】螺旋状の負荷ローラ転走路、円弧状の方向転換路及び直線通路を循環するローラの軌道の中心線を示す図。
【図13】ナットの一方側の端面に取付けられる方向転換路構成部と他方側の端面に取付けられる方向転換路構成部との位置関係を示す図。
【図14】方向転換路構成部の内周側を示す図(図中(A)は正面図を示し、図中(B)は側面図を示す)。
【図15】方向転換路構成部の内周側を示す図(図中(A)は側面図を示し、図中(B)は裏面図を示す)。
【図16】方向転換路構成部の外周側を示す図(図中(A)は正面図を示し、図中(B)は側面図を示す)。
【図17】方向転換路構成部の外周側を示す図(図中(A)は側面図を示し、図中(B)は正面図を示す)。
【図18】直線部の断面図。
【図19】直線通路を移動するローラの姿勢の回転を示す図。
【図20】リテーナを示す図(図中(A)は正面図を示し、図中(B)は(A)のX-X線断面図を示し、図中(C)は(A)のY-Y線断面図を示す)。
【符号の説明】
【0022】
5…ねじ軸
5a…ローラ転走溝
6…ナット
6a…ローラ転走溝
7…ローラ
9…負荷ローラ転走路
10…無負荷ローラ戻し通路
11…直線通路
12…直線部(循環部材)
13…方向転換路構成部(循環部材)
16…方向転換路
【発明を実施するための最良の形態】
【0023】
図1は、本発明の一実施形態におけるローラねじの斜視図を示す。ローラねじは、外周面に螺旋状のローラ転走溝5aが形成されたねじ軸5と、内周面にローラ転走溝5aに対向する螺旋状のローラ転走溝6aが形成されるナット6とを備える。ねじ軸5のローラ転走溝5aとナット6のローラ転走溝6aとの間の負荷ローラ転走路には、ローラ7の進行方向から見た状態において、複数のローラ7が隣接するローラ7の軸線が互いに直交するようにクロス配列される。ねじ軸5の軸線方向の一方向(1)及び他方向(2)の荷重(図3参照)を負荷するためには、このようにローラ7をクロス配列する必要がある。この実施形態では、一つ置きに軸線が直交するローラ7が配置され、軸線が平行なローラ7の数と軸線が直交するローラの数との比は1:1になる。ローラ7間にはローラ7同士の接触を防止するリテーナ8が介在される。
【0024】
ナット6をねじ軸5に対して相対的に回転させると、複数のローラ7がローラ転走溝5aとローラ転走溝6aとの間の負荷ローラ転走路9を転がり運動する。負荷ローラ転走路9の一端まで転がったローラ7は、無負荷ローラ戻し通路10を経由した後、数巻き手前の負荷ローラ転走路9の他端に戻される。
【0025】
図2は、無負荷ローラ戻し通路10が形成される循環部材12,13の斜視図を示す。無負荷ローラ戻し通路10は、中央部の直線通路11と、両端部の方向転換路16とからなる。直線通路11は、ナット6の軸線と平行に直線状に伸びる。方向転換路16は、曲線状、例えば円弧状に伸びる。
【0026】
ナット6には、ねじ軸5の軸線と平行に伸びる貫通孔が形成され、この貫通孔にパイプ状の直線部12が挿入される。この直線部12内に、直線的な軌道を有する断面四角形状の直線通路11が形成される。詳しくは後述するが、直線通路11はねじられることなく、ローラ7が直線通路11を移動してもローラ7の姿勢は回転することはない。
【0027】
ナット6の軸線方向の両端面には、方向転換路構成部13が取付けられる。方向転換路構成部13には、円弧状の軌道を有すると共に断面四角形状の方向転換路16が形成される。方向転換路構成部13は、方向転換路16の四角形断面の対角線の位置で内周側13aと外周側13bとに2分割されている。これら方向転換路構成部13の内周側13a及び外周側13bそれぞれはフランジ部を有する。方向転換路構成部13の内周側13a及び外周側13bを重ね合わせてナット6の端面に位置決めし、ボルト等の固定手段でフランジ部をナット6の端面に固定する。直線部12の両端は方向転換路構成部13に嵌まるので、方向転換路構成部13をナット6に固定することで、直線部12もナット6に固定される。
【0028】
図3はローラねじの側面図を示し、図4は図3のIV−IV線矢視図を示す。上記直線部12及び方向転換路構成部13が組み込まれたナット6の軸線方向の両端面には、異物を除去するため、並びにナット6の内部から潤滑剤が漏れるのを防止するために、ラビリンスシール14が取付けられる。そしてナット6の端面には、ラビリンスシール14を覆うキャップ15が取付けられる。
【0029】
図5はねじ軸5を示す。ねじ軸5の外周には所定のリードを有する螺旋状のローラ転走溝5aが形成される。この実施形態では、許容荷重を増加させ、且つナット6の全長を短くするためにローラ転走溝5aの条数を四条に設定している。勿論ローラ転走溝5aの条数は一条、二条、三条等様々に設定することができる。
【0030】
図6は、ねじ軸5のローラ転走溝5aの断面形状を示す。ローラ転走溝5aの断面はV字形状でその開き角度は90度に設定される。ローラ転走溝5aの底には90度の交差部分も研削加工できるように研削逃げのための円弧部5bが形成される。
【0031】
図7はナット6の詳細図を示す。図7(A)はナット6の正面図を示し、図7(B)は軸線方向に沿った断面図を示し、図7(C)はナット6の裏面図を示す。ナット6の内周面には、ねじ軸5のローラ転走溝5aに対向する螺旋状のローラ転走溝6aが形成される。またナット6には、ナット6の軸線方向に伸びる貫通孔17が形成される。貫通孔17は中央部17aが小径に形成され、中央部の両側の両端部17bが中央部17aよりも僅かに大径に形成される。貫通孔17の中央部17aに直線部12が挿入され、両端部17bに方向転換路構成部13が挿入される。ナット6の端面には、方向転換路構成部13をナット6に取付けるための取付け座18が形成される。直線部12及び方向転換路構成部13はローラ転走溝6aの条数と等しい数(この実施形態では4つ)設けられ、四条のローラ転走溝6aそれぞれを転がるローラ7を循環させる。
【0032】
図8は、取付け座18の詳細図を示す。取付け座18には、後述する方向転換路構成部13の薄肉部(23、図15(A)参照)に形状を合わせた円弧形状の逃げ溝19が形成される。通常のエンドキャップ方式のボールねじでは、ナットの端面はフラットに形成され、逃げ溝19は形成されることがない。そして、フラットな部分に方向転換路を構成する部材が取付けられる。しかしローラねじの場合、ローラ7を円滑に循環させるためには方向転換路16の曲率半径がボールねじに比べて大きくなる傾向がある。方向転換路16の曲率半径が大きくなると、方向転換路構成部13がナット6のローラ転走溝6aに干渉し易くなる。方向転換路構成部13に薄肉部23を形成し、且つナット6の端面に方向転換路構成部13の薄肉部23に形状を合わせた逃げ溝19を形成することで、方向転換路16の曲率半径がボールねじに比べて大きくなっても、ローラ転走溝6aに方向転換路構成部13が干渉するのを防止することができる。
【0033】
図9は、ナット6のローラ転走溝6aの断面形状を示す。ローラ転走溝6aの断面はV字形状でその開き角度は90度に設定される。ローラ転走溝6aの底には、90度の交差部分も研削加工できるように研削逃げのための円弧部6bが形成される。
【0034】
図10はローラ7の側面図を示す。負荷ローラ転走路9を転がるローラ7は円筒形状でその直径Dと長さLが略等しい(正確にはローラ7の直径Dがローラの長さLよりも僅かに大きい)。このため側面からみたローラ7の形状は正方形に近くなり、直径と長さの比はほぼ1:1となる。この実施形態では、ローラ7の側面形状に合わせて負荷ローラ転走路9及び無負荷ローラ戻し通路10の断面形状が正方形に形成される。
【0035】
図11は、負荷ローラ転走路9に収容されたローラ7を示す。ローラ7は、その側面がローラ転走溝5aの壁面と該壁面に対向するナット6のローラ転走溝6aの壁面との間で圧縮されることで荷重を負荷する。このため、ねじ軸5の軸線方向の一方向の荷重しか負荷できない。すなわち、一つのボールがねじ軸の軸線方向の一方向(1)及び該一方向(1)と反対方向(2)の荷重を負荷するのとは対照的に、一つのローラ7は、ねじ軸5の軸線方向の一方向(1)又は他方向(2)のいずれか一方の荷重のみ(図11では一方向(1)の荷重のみ)を負荷できるだけである。ねじらない無負荷ローラ戻し通路10を経由させると、ねじ軸5の軸線の一方向(1)からの荷重を負荷していたローラ7が、反転した状態で(すなわち、ねじ軸5の軸線の前記一方向(1)とは反対方向(2)からの荷重を負荷する状態で)負荷ローラ転走路9に戻る。ローラ7をクロス配列することで、ローラ7が反転しても、ねじ軸5の軸線の一方向(1)及び他方向(2)の双方からの荷重を負荷することができる。
【0036】
なお、この実施形態のようにクロス配列して、一方向(1)の荷重を負荷するローラ7の数と他方向(2)の荷重を負荷するローラ7の数を等しくてもよいが、両方向の許容荷重を変えたい場合には、一方向(1)の荷重を負荷するローラ7の数と他方向(2)の荷重を負荷するローラ7の数を異ならせてもよい。この場合、無負荷ローラ戻し通路10を経由すると、ローラ7が反転してしまい、受けられる荷重の方向も変わってしまうという問題に注意する必要がある。
【0037】
ローラ7の直径Dには、ねじ軸5のローラ転走溝5aの壁面と該壁面に対向するナット6のローラ転走溝6aの壁面との間の距離よりも僅かに大きい所謂オーバーサイズのものが用いられる。このため、負荷ローラ転走路9内でローラは弾性変形していることになり、それに見合う荷重が予圧荷重としてナット6の内部に存在する。ローラ7は負荷ローラ転走路9内でクロス配列されているので、ローラ7からナット6に加わる荷重は隣接するローラ7で互いに反発する方向に作用する。
【0038】
図12は、螺旋状の負荷ローラ転走路9、円弧状の方向転換路16及び直線通路11を循環するローラ7の軌道の中心線を示す。図(A)は負荷ローラ転走路9を移動するローラ7の軌道(ねじ軸5の軸線方向からみた状態)を示し、図(B)は無限循環路の全体を循環するローラ7の軌道を示す(ねじ軸5の側方からみた状態)。負荷ローラ転走路9でのローラ7の軌道は、ねじ軸5の軸線方向からみて半径がRCD/2の円形状になる。無負荷ローラ戻し通路10の直線通路11でのローラの軌道は、ねじ軸5の軸線5cに平行な直線になる。方向転換路16でのローラ7の軌道は、曲率半径Rの円弧になる。
【0039】
これら負荷ローラ転走路9、方向転換路16及び直線通路11の繋ぎ目では、ローラ7の軌道の接線方向が連続になっていて、これによりこれらの繋ぎ目が滑らかになっている。具体的には、負荷ローラ転走路9と方向転換路16との繋ぎ部分では、方向転換路16の接線方向は、ねじ軸5の軸線方向から見た状態において、負荷ローラ転走路9の中心線の接線方向と一致し、且つねじ軸5の側方から見た状態において、負荷ローラ転走路9のリード角と一致する。また直線通路11と方向転換路16の繋ぎ部分では、方向転換路16の接線方向は、直線通路11の中心線の伸びる方向と一致する。
【0040】
図13は、ナット6の一方側の端面に取付けられる方向転換路構成部13と他方側の端面に取付けられる方向転換路構成部13との位置関係を示す。上述したように無負荷ローラ戻し通路10の直線通路11の中心線は、ねじ軸5の軸線5cと平行に伸びる。方向転換路16の中心線は、図13(A)に示されるように、ナット6の正面から見た状態において、負荷ローラ転走路9の中心線の接線方向に直線状に伸びる。そして、手前側の方向転換路16の中心線と奥側の方向転換路16の中心線とは、所定の開き角度90度で交差する。方向転換路16が含まれる平面P1,P2(正確には方向転換路16の中心線が含まれる平面)は、ねじ軸の軸線にほぼ平行になる。
【0041】
ローラ径とローラの長さの比がほぼ1:1のローラを使用すると、図13(A)に示されるように、無負荷ローラ戻し通路10の直線通路11の断面形状を正方形にできる。このため、ナットの正面からみて、直線状に伸びる一対の方向転換路16のなす角度を90度に設計することができる。そうすると、循環部材の無負荷ローラ戻し通路10をねじらなくてもローラを循環させることができる。
【0042】
図14及び図15は、方向転換路構成部の内周側13aを示す。この方向転換路構成部の内周側13aは、曲率半径Rの方向転換路が形成される本体部21と、ナット6の端面に取付けられるフランジ部22とを有する。本体部21の一端には、負荷ローラ転走路9内に入ってローラ7を掬い上げる掬上げ部21aが形成される。本体部21の他端は直線部12に嵌め込まれる。内周側13aの掬上げ部21aは、外周側13bの掬上げ部と協働して螺旋状の負荷ローラ転走路9を転がるローラ7を接線方向に掬い上げる。方向転換路16は掬い上げた直後にローラ7を方向転換させ、円弧状の方向転換路16に沿ってローラを移動させる。ここで、方向転換路16に沿ってローラ7が移動しても、ローラ7の姿勢は回転することがない。
【0043】
方向転換路部材の内周側13aには、方向転換路構成部13が取付けられるナット6の端面よりもナット側に突出すると共に、方向転換路16の形状に合わせて曲線状に曲げられる薄肉部23が形成される。薄肉部23の断面形状はV字形状に形成される。この薄肉部23がナット6の端面に形成された逃げ溝19(図8参照)に嵌り込む。
【0044】
図16及び図17は、方向転換路構成部の外周側13bを示す。この方向転換路構成部の外周側13bは、曲率半径Rの方向転換路16が形成される本体部25と、ナット6の端面に取付けられるフランジ部26とを有する。本体部25の一端には、負荷ローラ転走路9内に入ってローラを掬い上げる掬上げ部25aが形成される。本体部25の他端は直線部12に嵌め込まれる。外周側の掬上げ部25aは、内周側の掬上げ部21aと協働して螺旋状の負荷ローラ転走路9を転がるローラ7を接線方向に掬い上げる。方向転換路16は掬い上げた直後にローラ7を方向転換させ、円弧状の方向転換路16に沿ってローラを移動させる。またこの方向転換路構成部の外周側13bには、ねじ軸5のローラ転走溝5aの形状に合わせた突出部27が形成され、これにより掬上げ部25aの強度を確保している。方向転換路構成部13は金属製であっても樹脂製であってもよい。
[0045]
図18は、直線部12の断面図を示す。直線通路11はねじられておらず、ローラ7が無負荷ローラ戻し通路10の直線通路11を通過する間、ローラ7の姿勢が回転することもない。直線部12は金属製であっても樹脂製であってもよい。
[0046]
図19は、直線通路11を移動するローラ7の姿勢を示す。この図19から直線通路11を移動しても、ローラ7の角A1の位置が変化せず、ローラ7の姿勢が回転しないのがわかる。
[0047]
図20は、本実施形態で使用されるリテーナ8の詳細図を示す。リテーナ8は隣接するローラの軸線が直角を保つようにローラの姿勢を保持する。リテーナ8には、リテーナ8自体も反転することを考慮して、円環状の負荷ローラ転走路9の内周側と外周側とで厚みが変わることのないフラットなものが用いられる。
[0048]
なお、本発明は上記実施形態に限られることなく、本発明の要旨を変更しない範囲で他の実施形態にも具現化できる。例えば循環部材には、この実施形態のようなエンドキャップ方式の循環部材に限られることなく、リターンパイプ方式等様々な方式の循環部材を用いることができる。
[0049]
本明細書は、2005年3月23日出願の特願2005−083131に基づく。この内容はすべてここに含めておく。
【Technical field】
[0001]
The present invention relates to a roller screw in which a roller is interposed between a screw shaft and a nut so as to allow rolling motion.
[Background]
[0002]
A ball screw with a ball that allows rolling motion between the screw shaft and the nut can reduce the coefficient of friction when rotating the screw shaft relative to the nut compared to a screw that makes sliding contact. It has been put to practical use in robot positioning mechanisms, feed mechanisms, automobile steering gears, and the like.
[0003]
In recent years, in order to increase the allowable load, a roller screw using a roller instead of a ball as a rolling element has been devised, for example, as in Patent Document 1. In this roller screw, a roller rolling groove is formed on the outer peripheral surface of the screw shaft, and a spiral roller rolling groove facing the roller rolling groove of the screw shaft is also formed on the inner peripheral surface of the nut. A plurality of rollers are arranged as rolling elements in a loaded roller rolling path between the roller rolling groove and the roller rolling groove of the nut. Then, the nut is provided with a circulating member in which a no-load roller return passage connected to one end and the other end of the load rolling is formed, and the roller that rolls the loaded roller rolling path is scooped up from one end of the load rolling path, and the other end In this way, the roller rolling on the load rolling path is circulated.
[Patent Document 1]
JP 11-210858 A DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0004]
In the loaded roller rolling path, the roller rolls on the roller rolling groove of the screw shaft and the roller rolling groove of the nut while receiving a load on the side surface. The ball can roll in either direction, but the roller has only one moving direction, and the posture of the roller is determined in the load roller rolling path. For this reason, when the roller that has been scooped up from the load roller rolling path is returned to the load roller rolling path again, it is returned in accordance with the posture of the roller defined by the load roller rolling path. It is necessary to match the shape of the shape of the loaded roller rolling path.
[0005]
In order to respond to the necessity of returning such a posture to match, conventionally, the roller posture is gradually changed as the roller moves through the no-load roller return passage by twisting the no-load roller return passage of the circulation member. Finally, the posture of the roller is matched with the cross-sectional shape of the loaded roller rolling path.
[0006]
However, if the unloaded roller return path of the circulation member is twisted, the resistance of the roller moving through the unloaded roller return path increases by the twisted amount, and the roller may not be able to move smoothly.
[0007]
Accordingly, an object of the present invention is to provide a roller screw that can circulate a roller without twisting a no-load roller return path connected to a loaded roller rolling path.
Means for Solving the Problems [0008]
The present invention will be described below. In addition, in order to make an understanding of this invention easy, the reference number of an accompanying drawing is attached in parenthesis writing, However, This invention is not limited to the form of illustration.
[0009]
In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that the screw shaft (5) having a spiral roller rolling groove (5a) formed on the outer peripheral surface and the screw shaft (5) on the inner peripheral surface. A nut (6) in which a spiral roller rolling groove (6a) facing the roller rolling groove (5a) is formed, and the roller rolling groove (5a) and the nut (6) of the screw shaft (5). Circulating members (12, 13) in which unloaded roller return passages (10) connected to one end and the other end of the loaded roller rolling path (9) between the roller rolling groove (6a) of A plurality of rollers (7) arranged in the loaded roller rolling path (9) and the unloaded roller return path (10), and the unloaded roller return path (12, 13) of the circulation member (12, 13). A pair of directions connected to one end and the other end of the load roller rolling path (9) at both ends of 10)換路(16) is provided, wherein when viewed from the front of the nut (6), the pair of direction changing passages at both ends of the unloaded roller return path (10) (16) extends in a straight line, and the pair An angle formed by the direction change path (16) is substantially 90 degrees, and the unloaded roller return path (10) is not twisted.
[0010]
The reason why the angle is substantially 90 degrees is that a slight gap is formed between the roller (7) and the no-load roller return passage (10), so that the angle formed by the pair of direction change paths (16) is 90 °. This is because it may not be necessary to twist the no-load roller return passage (10) even if it slightly deviates from the above.
[0011]
According to a second aspect of the present invention, in the roller screw according to the first aspect, the unloaded roller return passage (10) is a straight passage that extends linearly in parallel with the axis of the nut (6) at the center thereof. (11).
[0012]
According to a third aspect of the present invention, in the roller screw according to the first or second aspect, the unloaded roller return passage (10) is adjacent to the unrolled roller return passage (10) when viewed from the traveling direction of the roller (7). The plurality of rollers (7) are arranged in a cross manner so that the axes of (7) are orthogonal to each other.
[0013]
According to a fourth aspect of the present invention, in the roller screw according to any one of the first to third aspects, the roller (7) has a diameter to length ratio of 1 : 1, and the unloaded roller return passage ( The cross-sectional shape of 10) is a square.
[0014]
Here, the reason why the ratio of the diameter and the length is approximately 1: 1 is strictly because the length is set slightly smaller than the diameter.
[0015]
According to a fifth aspect of the present invention, in the roller screw according to any one of the first to fourth aspects, the pair of direction change path constituting portions (13) of the circulation member in which the direction change path (16) is formed include: It is attached to the both end surfaces of the axial direction of a nut (6), It is characterized by the above-mentioned.
【Effect of the invention】
[0016]
According to the first aspect of the present invention, since the roller can be circulated without twisting the unloaded roller return path of the circulation member, when the roller moves in the unloaded roller return path, the unloaded roller return There is no resistance caused by twisting of the passage.
[0017]
According to the second aspect of the present invention, it is possible to obtain a circulating member that can cope with a case where the lead of the screw shaft is large or a case where the number of windings of the load roller rolling path is large.
[0018]
When a pair of direction change paths are arranged as in the invention of claim 1, the roller that has loaded a load from one direction (1) of the axis of the screw shaft is passed through the no-load roller return path. In the inverted state (that is, in a state where a load is applied from a direction (2) opposite to the one direction (1) of the axis of the screw shaft), the roller roller returns to the load roller rolling path. According to the third aspect of the present invention, since the rollers are arranged in a cross arrangement, it is possible to load loads from one direction (1) and the other direction (2) of the axis of the screw shaft even if the rollers are reversed.
[0019]
According to the fourth aspect of the present invention, a roller having a diameter to length ratio of approximately 1: 1 is used, and the cross-sectional shape of the no-load roller return passage is made square, so that the straight line is seen from the front of the nut. The angle formed by the pair of direction change paths extending in a shape can be designed to be 90 degrees.
[0020]
According to invention of Claim 5, a pair of direction change path structure part in which the direction change path which cross | intersects at 90 degree | times seeing from the front of a nut can be attached to a nut.
[Brief description of the drawings]
[0021]
FIG. 1 is a perspective view of a roller screw according to an embodiment of the present invention.
FIG. 2 is an exploded perspective view of main parts of a roller screw.
FIG. 3 is a side view of a roller screw in which all parts are combined.
4 is a view taken along the line IV-IV in FIG. 3;
FIG. 5 is a side view showing a screw shaft.
FIG. 6 is a view showing a cross-sectional shape perpendicular to the groove of the roller rolling groove of the screw shaft.
7 is a detailed view of the nut 6 ((A) in the drawing shows a front view of the nut, (B) in the drawing shows a cross-sectional view along the axial direction, and (C) in the drawing shows a back view)); .
FIG. 8 is a detailed view of a mounting seat of the direction change path constituting part ((B) in the figure shows a cross-sectional view taken along line BB of (A)).
FIG. 9 is a view showing a cross-sectional shape perpendicular to the groove of the roller rolling groove of the nut.
FIG. 10 is a side view of a roller.
FIG. 11 is a cross-sectional view showing a roller in a loaded roller rolling path.
FIG. 12 is a view showing a center line of a roller trajectory circulating in a spiral load roller rolling path, an arc-shaped direction changing path, and a straight path.
FIG. 13 is a diagram showing a positional relationship between a direction change path component attached to one end surface of a nut and a direction change path component attached to the other end face;
FIG. 14 is a view showing the inner peripheral side of the direction change path constituting part ((A) in the figure shows a front view and (B) in the figure shows a side view).
FIGS. 15A and 15B are diagrams showing an inner peripheral side of the direction change path constituting part (in the figure, (A) shows a side view, and in the figure, (B) shows a rear view);
FIGS. 16A and 16B are diagrams showing an outer peripheral side of the direction change path constituting portion (in the figure, (A) shows a front view, and in the figure, (B) shows a side view);
FIG. 17 is a view showing the outer peripheral side of the direction change path constituting part ((A) in the figure shows a side view, and (B) in the figure shows a front view).
FIG. 18 is a cross-sectional view of a straight portion.
FIG. 19 is a diagram illustrating rotation of a posture of a roller moving in a straight path.
FIG. 20 is a view showing a retainer ((A) is a front view, (B) is a cross-sectional view taken along line XX of (A), and (C) is a cross-sectional view taken along line YY of (A)). Shows the figure).
[Explanation of symbols]
[0022]
DESCRIPTION OF SYMBOLS 5 ... Screw shaft 5a ... Roller rolling groove 6 ... Nut 6a ... Roller rolling groove 7 ... Roller 9 ... Loaded roller rolling path 10 ... Unloaded roller return path 11 ... Linear path 12 ... Straight line part (circulation member)
13. Direction change path component (circulation member)
16. Direction change path [Best Mode for Carrying Out the Invention]
[0023]
FIG. 1 is a perspective view of a roller screw according to an embodiment of the present invention. The roller screw includes a screw shaft 5 having a spiral roller rolling groove 5a formed on the outer peripheral surface, and a nut 6 having a spiral roller rolling groove 6a facing the roller rolling groove 5a on the inner peripheral surface. With. In the loaded roller rolling path between the roller rolling groove 5 a of the screw shaft 5 and the roller rolling groove 6 a of the nut 6, a plurality of rollers 7 are adjacent to each other when viewed in the traveling direction of the roller 7. Cross arrangement is made so that the axes are orthogonal to each other. In order to apply a load (see FIG. 3) in one direction (1) and the other direction (2) in the axial direction of the screw shaft 5, it is necessary to cross the rollers 7 in this way. In this embodiment, every other roller 7 whose axes are orthogonal to each other is arranged, and the ratio between the number of rollers 7 whose axes are parallel and the number of rollers whose axes are orthogonal is 1: 1. A retainer 8 for preventing contact between the rollers 7 is interposed between the rollers 7.
[0024]
When the nut 6 is rotated relative to the screw shaft 5, the plurality of rollers 7 rolls on the loaded roller rolling path 9 between the roller rolling groove 5a and the roller rolling groove 6a. The roller 7 that has rolled to one end of the loaded roller rolling path 9 passes through the no-load roller return path 10 and is then returned to the other end of the loaded roller rolling path 9 several turns before.
[0025]
FIG. 2 is a perspective view of the circulation members 12 and 13 in which the no-load roller return passage 10 is formed. The no-load roller return path 10 includes a straight path 11 at the center and direction change paths 16 at both ends. The straight passage 11 extends linearly in parallel with the axis of the nut 6. The direction change path 16 extends in a curved shape, for example, an arc shape.
[0026]
A through hole extending in parallel with the axis of the screw shaft 5 is formed in the nut 6, and a pipe-like linear portion 12 is inserted into the through hole. A straight passage 11 having a square cross section having a straight track is formed in the straight portion 12. As will be described in detail later, the linear path 11 is not twisted, and even if the roller 7 moves through the linear path 11, the posture of the roller 7 does not rotate.
[0027]
Direction change path constituting portions 13 are attached to both end faces of the nut 6 in the axial direction. In the direction change path component 13, a direction change path 16 having an arc-shaped track and a quadrangular cross section is formed. The direction change path component 13 is divided into two parts, an inner peripheral side 13 a and an outer peripheral side 13 b, at diagonal positions of the square cross section of the direction change path 16. Each of the inner peripheral side 13a and the outer peripheral side 13b of the direction change path constituting portion 13 has a flange portion. The inner peripheral side 13a and the outer peripheral side 13b of the direction change path constituting portion 13 are overlapped and positioned on the end surface of the nut 6, and the flange portion is fixed to the end surface of the nut 6 by fixing means such as a bolt. Since both ends of the straight portion 12 are fitted in the direction change path constituting portion 13, the straight portion 12 is also fixed to the nut 6 by fixing the direction change way constituting portion 13 to the nut 6.
[0028]
3 shows a side view of the roller screw, and FIG. 4 shows a view taken along line IV-IV in FIG. In order to remove foreign matter and to prevent the lubricant from leaking from the inside of the nut 6, the labyrinth is formed on both end surfaces in the axial direction of the nut 6 in which the linear portion 12 and the direction changing path constituting portion 13 are incorporated. A seal 14 is attached. A cap 15 that covers the labyrinth seal 14 is attached to the end surface of the nut 6.
[0029]
FIG. 5 shows the screw shaft 5. A spiral roller rolling groove 5 a having a predetermined lead is formed on the outer periphery of the screw shaft 5. In this embodiment, in order to increase the allowable load and shorten the overall length of the nut 6, the number of the roller rolling grooves 5a is set to four. Of course, the number of rolls of the roller rolling groove 5a can be variously set such as one, two, and three.
[0030]
FIG. 6 shows a cross-sectional shape of the roller rolling groove 5 a of the screw shaft 5. The roller rolling groove 5a has a V-shaped cross section and an opening angle of 90 degrees. An arc portion 5b for grinding relief is formed at the bottom of the roller rolling groove 5a so as to grind 90 ° intersecting portions.
[0031]
FIG. 7 shows a detailed view of the nut 6. 7A shows a front view of the nut 6, FIG. 7B shows a cross-sectional view along the axial direction, and FIG. 7C shows a back view of the nut 6. A spiral roller rolling groove 6 a facing the roller rolling groove 5 a of the screw shaft 5 is formed on the inner peripheral surface of the nut 6. The nut 6 is formed with a through hole 17 extending in the axial direction of the nut 6. The through hole 17 has a central portion 17a with a small diameter, and both end portions 17b on both sides of the central portion are formed with a slightly larger diameter than the central portion 17a. The straight line portion 12 is inserted into the central portion 17a of the through hole 17, and the direction change path constituting portion 13 is inserted into both end portions 17b. On the end surface of the nut 6, an attachment seat 18 for attaching the direction change path constituting portion 13 to the nut 6 is formed. The straight portion 12 and the direction changing path constituting portion 13 are provided in a number equal to the number of the roller rolling grooves 6a (four in this embodiment), and circulate the rollers 7 that roll on the four roller rolling grooves 6a.
[0032]
FIG. 8 shows a detailed view of the mounting seat 18. The mounting seat 18 is formed with an arc-shaped escape groove 19 that matches the shape of a thin portion (23, see FIG. 15A) of the direction change path constituting portion 13 described later. In a normal end cap type ball screw, the end face of the nut is formed flat, and the relief groove 19 is not formed. And the member which comprises a direction change path is attached to a flat part. However, in the case of a roller screw, in order to smoothly circulate the roller 7, the radius of curvature of the direction changing path 16 tends to be larger than that of the ball screw. When the radius of curvature of the direction change path 16 is increased, the direction change path constituting portion 13 easily interferes with the roller rolling groove 6 a of the nut 6. The curvature of the direction change path 16 is formed by forming the thin portion 23 in the direction change path constituting portion 13 and forming the relief groove 19 having the shape matched to the thin portion 23 of the direction change path constituting portion 13 on the end surface of the nut 6. Even if the radius is larger than that of the ball screw, it is possible to prevent the direction change path constituting portion 13 from interfering with the roller rolling groove 6a.
[0033]
FIG. 9 shows a cross-sectional shape of the roller rolling groove 6 a of the nut 6. The roller rolling groove 6a has a V-shaped cross section and an opening angle of 90 degrees. At the bottom of the roller rolling groove 6a, a circular arc portion 6b for grinding relief is formed so that a 90 ° intersection portion can also be ground.
[0034]
FIG. 10 shows a side view of the roller 7. The roller 7 that rolls on the loaded roller rolling path 9 has a cylindrical shape, and its diameter D and length L are substantially equal (exactly, the diameter D of the roller 7 is slightly larger than the length L of the roller). For this reason, the shape of the roller 7 seen from the side surface is close to a square, and the ratio of the diameter to the length is approximately 1: 1. In this embodiment, the sectional shape of the loaded roller rolling path 9 and the unloaded roller return path 10 is formed in a square shape in accordance with the side surface shape of the roller 7.
[0035]
FIG. 11 shows the roller 7 accommodated in the loaded roller rolling path 9. The roller 7 applies a load by compressing the side surface between the wall surface of the roller rolling groove 5a and the wall surface of the roller rolling groove 6a of the nut 6 facing the wall surface. For this reason, only a load in one direction in the axial direction of the screw shaft 5 can be applied. That is, in contrast to one ball carrying a load in one direction (1) in the axial direction of the screw shaft and a direction (2) opposite to the one direction (1), one roller 7 has a screw shaft. Only one of the loads in one direction (1) or the other direction (2) in the axial direction of 5 (only the load in one direction (1) in FIG. 11) can be applied. When the unloaded roller return passage 10 that does not twist is passed, the roller 7 that has loaded the load from one direction (1) of the axis of the screw shaft 5 is reversed (that is, the axis of the screw shaft 5 is Returning to the load roller rolling path 9 (with a load from the direction (2) opposite to the one direction (1)). By arranging the rollers 7 in a cross arrangement, even if the rollers 7 are reversed, it is possible to apply loads from both one direction (1) and the other direction (2) of the axis of the screw shaft 5.
[0036]
As in this embodiment, the number of rollers 7 that apply a load in one direction (1) may be equal to the number of rollers 7 that apply a load in the other direction (2). When it is desired to change the allowable load, the number of rollers 7 that apply a load in one direction (1) may be different from the number of rollers 7 that apply a load in another direction (2). In this case, it is necessary to pay attention to the problem that when passing through the no-load roller return passage 10, the roller 7 is reversed and the direction of the load that can be received also changes.
[0037]
The diameter D of the roller 7 is a so-called oversize that is slightly larger than the distance between the wall surface of the roller rolling groove 5a of the screw shaft 5 and the wall surface of the roller rolling groove 6a of the nut 6 facing the wall surface. Is used. For this reason, the roller is elastically deformed in the load roller rolling path 9, and a load corresponding to the roller is present in the nut 6 as a preload. Since the rollers 7 are cross-arranged in the load roller rolling path 9, the load applied to the nut 6 from the rollers 7 acts in a direction in which the adjacent rollers 7 repel each other.
[0038]
FIG. 12 shows the center line of the trajectory of the roller 7 that circulates through the spiral load roller rolling path 9, the arc-shaped direction changing path 16, and the linear path 11. Fig. (A) shows the trajectory of the roller 7 that moves on the loaded roller rolling path 9 (as viewed from the axial direction of the screw shaft 5), and Fig. (B) shows the trajectory of the roller 7 that circulates the entire endless circuit. (State seen from the side of the screw shaft 5). The track of the roller 7 on the loaded roller rolling path 9 has a circular shape with a radius of RCD / 2 when viewed from the axial direction of the screw shaft 5. The roller trajectory in the straight passage 11 of the no-load roller return passage 10 is a straight line parallel to the axis 5c of the screw shaft 5. The path of the roller 7 on the direction change path 16 is an arc having a radius of curvature R.
[0039]
At the joint between the load roller rolling path 9, the direction changing path 16, and the straight path 11, the tangential direction of the track of the roller 7 is continuous, thereby smoothing these joints. Specifically, in the connecting portion between the load roller rolling path 9 and the direction changing path 16, the tangential direction of the direction changing path 16 is the center line of the load roller rolling path 9 when viewed from the axial direction of the screw shaft 5. And the lead angle of the load roller rolling path 9 in a state viewed from the side of the screw shaft 5. Further, at the connecting portion between the straight passage 11 and the direction change path 16, the tangential direction of the direction change path 16 coincides with the direction in which the center line of the straight passage 11 extends.
[0040]
FIG. 13 shows the positional relationship between the direction change path component 13 attached to the end surface on one side of the nut 6 and the direction change path component 13 attached to the other end face. As described above, the center line of the straight passage 11 of the no-load roller return passage 10 extends in parallel with the axis 5 c of the screw shaft 5. As shown in FIG. 13A, the center line of the direction change path 16 extends linearly in the tangential direction of the center line of the load roller rolling path 9 when viewed from the front of the nut 6. The center line of the front direction change path 16 and the center line of the rear direction change path 16 intersect at a predetermined opening angle of 90 degrees. The planes P1 and P2 including the direction change path 16 (more precisely, the plane including the center line of the direction change path 16) are substantially parallel to the axis of the screw shaft.
[0041]
If a roller having a ratio of the roller diameter to the roller length of approximately 1: 1 is used, the cross-sectional shape of the straight passage 11 of the no-load roller return passage 10 can be made square as shown in FIG. For this reason, when viewed from the front of the nut, the angle formed by the pair of direction change paths 16 extending linearly can be designed to be 90 degrees. Then, the rollers can be circulated without twisting the unloaded roller return passage 10 of the circulation member.
[0042]
14 and 15 show the inner peripheral side 13a of the direction change path constituting part. The inner peripheral side 13 a of the direction change path constituting part has a main body part 21 in which a direction change path having a radius of curvature R is formed, and a flange part 22 attached to the end face of the nut 6. At one end of the main body 21, a lifting portion 21 a that enters the loaded roller rolling path 9 and lifts the roller 7 is formed. The other end of the main body portion 21 is fitted into the linear portion 12. The hoisting part 21a on the inner peripheral side 13a cooperates with the hoisting part on the outer peripheral side 13b to scoop up the roller 7 rolling on the spiral load roller rolling path 9 in the tangential direction. Immediately after scooping up the direction change path 16, the direction of the roller 7 is changed, and the roller is moved along the arc-shaped direction change path 16. Here, even if the roller 7 moves along the direction changing path 16, the posture of the roller 7 does not rotate.
[0043]
On the inner peripheral side 13a of the direction change path member, a thin portion that protrudes toward the nut side from the end face of the nut 6 to which the direction change path constituting portion 13 is attached and is bent in a curved shape according to the shape of the direction change path 16 23 is formed. The cross-sectional shape of the thin portion 23 is formed in a V shape. This thin portion 23 is fitted into a relief groove 19 (see FIG. 8) formed on the end face of the nut 6.
[0044]
16 and 17 show the outer peripheral side 13b of the direction change path component. The outer peripheral side 13b of the direction change path constituting part has a main body part 25 in which the direction change path 16 having a radius of curvature R is formed, and a flange part 26 attached to the end face of the nut 6. At one end of the main body 25, a scooping portion 25a that enters the loaded roller rolling path 9 and scoops up the roller is formed. The other end of the main body portion 25 is fitted into the linear portion 12. The outer peripheral side lifting portion 25a, in cooperation with the inner peripheral side lifting portion 21a, lifts the roller 7 rolling on the spiral load roller rolling path 9 in the tangential direction. Immediately after scooping up the direction change path 16, the direction of the roller 7 is changed, and the roller is moved along the arc-shaped direction change path 16. Further, on the outer peripheral side 13b of the direction change path constituting portion, a protruding portion 27 is formed in accordance with the shape of the roller rolling groove 5a of the screw shaft 5, thereby ensuring the strength of the lifting portion 25a. The direction change path component 13 may be made of metal or resin.
[0045]
FIG. 18 shows a cross-sectional view of the straight portion 12. The straight path 11 is not twisted, and the posture of the roller 7 does not rotate while the roller 7 passes through the straight path 11 of the no-load roller return path 10. The straight line portion 12 may be made of metal or resin.
[0046]
FIG. 19 shows the posture of the roller 7 that moves in the straight path 11. It can be seen from FIG. 19 that even if the straight path 11 is moved, the position of the angle A1 of the roller 7 does not change and the posture of the roller 7 does not rotate.
[0047]
FIG. 20 shows a detailed view of the retainer 8 used in this embodiment. The retainer 8 holds the posture of the roller so that the axis of the adjacent roller is kept at a right angle. In consideration of the fact that the retainer 8 itself also reverses, the retainer 8 is a flat one whose thickness does not change between the inner peripheral side and the outer peripheral side of the annular load roller rolling path 9.
[0048]
In addition, this invention is not limited to the said embodiment, In the range which does not change the summary of this invention, it can embody in other embodiment. For example, the circulation member is not limited to the end cap type circulation member as in this embodiment, and various types of circulation members such as a return pipe method can be used.
[0049]
This specification is based on Japanese Patent Application No. 2005-083131 of an application on March 23, 2005. All this content is included here.

Claims (5)

外周面に螺旋状のローラ転走溝が形成されたねじ軸と、
内周面に前記ねじ軸の前記ローラ転走溝に対向する螺旋状のローラ転走溝が形成されたナットと、
前記ねじ軸の前記ローラ転走溝と前記ナットの前記ローラ転走溝との間の負荷ローラ転走路の一端及び他端に接続される無負荷ローラ戻し通路が形成される循環部材と、
前記負荷ローラ転走路及び前記無負荷ローラ戻し通路に配列される複数のローラと、を備え、
前記循環部材の前記無負荷ローラ戻し通路の両端部に前記負荷ローラ転走路の一端及び他端に接続される一対の方向転換路が設けられ、
前記ナットの正面からみて、前記無負荷ローラ戻し通路の両端部の前記一対の方向転換路は直線状に伸び、且つ前記一対の方向転換路のなす角度は実質的に90度であり、
前記無負荷ローラ戻し通路がねじれていないことを特徴とするローラねじ。
A screw shaft having a spiral roller rolling groove formed on the outer peripheral surface;
A nut in which a spiral roller rolling groove facing the roller rolling groove of the screw shaft is formed on the inner peripheral surface;
A circulating member in which a no-load roller return passage connected to one end and the other end of a loaded roller rolling path between the roller rolling groove of the screw shaft and the roller rolling groove of the nut;
A plurality of rollers arranged in the loaded roller rolling path and the unloaded roller return path,
A pair of direction change paths connected to one end and the other end of the load roller rolling path are provided at both ends of the no-load roller return path of the circulation member,
When viewed from the front of the nut, the angle of the pair of direction changing passages at both ends of the unloaded roller return path extends in a straight line, and the pair of direction changing passage is substantially 90 degrees,
A roller screw characterized in that the unloaded roller return passage is not twisted.
前記無負荷ローラ戻し通路は、その中央部に前記ナットの軸線と平行に直線状に伸びる直線通路を有することを特徴とする請求項1に記載のローラねじ。  2. The roller screw according to claim 1, wherein the no-load roller return passage has a straight passage extending linearly in parallel with an axis of the nut at a central portion thereof. 前記無負荷ローラ戻し通路には、前記ローラの進行方向から見た状態において、隣接するローラの軸線が互いに直交するように、前記複数のローラがクロス配列されることを特徴とする請求項1又は2に記載のローラねじ。  The plurality of rollers are arranged in a cross in the no-load roller return path so that the axes of adjacent rollers are orthogonal to each other when viewed from the traveling direction of the rollers. 2. The roller screw according to 2. 前記ローラは、直径と長さの比が1:1であり、
前記無負荷ローラ戻し通路の断面形状は、正方形であることを特徴とする請求項1ないし3いずれかに記載のローラねじ。
The roller has a diameter to length ratio of 1 : 1,
The roller screw according to any one of claims 1 to 3, wherein a cross-sectional shape of the unloaded roller return passage is a square.
前記方向転換路が形成される循環部材の一対の方向転換路構成部は、前記ナットの軸線方向の両端面に取り付けられることを特徴とする請求項1ないし4いずれかに記載のローラねじ。  The roller screw according to any one of claims 1 to 4, wherein the pair of direction change path constituting portions of the circulation member in which the direction change path is formed are attached to both end faces of the nut in the axial direction.
JP2007509225A 2005-03-23 2006-03-16 Roller screw Active JP4945438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007509225A JP4945438B2 (en) 2005-03-23 2006-03-16 Roller screw

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005083131 2005-03-23
JP2005083131 2005-03-23
JP2007509225A JP4945438B2 (en) 2005-03-23 2006-03-16 Roller screw
PCT/JP2006/305216 WO2006100997A1 (en) 2005-03-23 2006-03-16 Roller screw

Publications (2)

Publication Number Publication Date
JPWO2006100997A1 JPWO2006100997A1 (en) 2008-09-04
JP4945438B2 true JP4945438B2 (en) 2012-06-06

Family

ID=37023658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007509225A Active JP4945438B2 (en) 2005-03-23 2006-03-16 Roller screw

Country Status (3)

Country Link
JP (1) JP4945438B2 (en)
TW (1) TWI388745B (en)
WO (1) WO2006100997A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101232398B1 (en) * 2004-09-08 2013-02-12 티에치케이 가부시끼가이샤 Roller screw
JP5042347B2 (en) * 2010-09-06 2012-10-03 Thk株式会社 Rolling element screw device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031257A (en) * 1973-05-16 1975-03-27
JP2001241527A (en) * 2000-02-28 2001-09-07 Thk Co Ltd Roller screw and method of roller arrangement on roller screw

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031257A (en) * 1973-05-16 1975-03-27
JP2001241527A (en) * 2000-02-28 2001-09-07 Thk Co Ltd Roller screw and method of roller arrangement on roller screw

Also Published As

Publication number Publication date
TW200702574A (en) 2007-01-16
TWI388745B (en) 2013-03-11
JPWO2006100997A1 (en) 2008-09-04
WO2006100997A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4712717B2 (en) Roller screw
JP4634396B2 (en) Roller screw
JP5069555B2 (en) Exercise guidance device
JP2007010060A (en) Roller retainer and roller screw
JP4712894B2 (en) Roller screw
JP4932711B2 (en) Roller screw and manufacturing method thereof
EP1925852A1 (en) Rolling element screw device and method of assembling the same
JP5341893B2 (en) Screw device
JP4945438B2 (en) Roller screw
US8336414B2 (en) Roller screw and method of designing unloaded roller return path thereof
JP4516479B2 (en) Rotational linear motion conversion mechanism
JP4634116B2 (en) Roller screw
JPH1162962A (en) Spacer member for rolling guide device and rolling guide device using the same
JP2024034667A (en) ball screw device
JPWO2008123451A1 (en) Roller screw
JP2000211535A (en) Rack-and-pinion type steering device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

R150 Certificate of patent or registration of utility model

Ref document number: 4945438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250