WO2010013628A1 - 膜厚評価装置および膜厚評価方法 - Google Patents

膜厚評価装置および膜厚評価方法 Download PDF

Info

Publication number
WO2010013628A1
WO2010013628A1 PCT/JP2009/063128 JP2009063128W WO2010013628A1 WO 2010013628 A1 WO2010013628 A1 WO 2010013628A1 JP 2009063128 W JP2009063128 W JP 2009063128W WO 2010013628 A1 WO2010013628 A1 WO 2010013628A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
signal
film thickness
sample
measurement sample
Prior art date
Application number
PCT/JP2009/063128
Other languages
English (en)
French (fr)
Inventor
誠嗣 平家
富博 橋詰
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010522685A priority Critical patent/JP5066258B2/ja
Publication of WO2010013628A1 publication Critical patent/WO2010013628A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/30Scanning potential microscopy

Definitions

  • the present invention relates to a film thickness evaluation apparatus and a film thickness evaluation method for evaluating a film thickness of a dielectric by detecting an electrostatic force between a sample and a probe.
  • an optical method mainly using interference of light beams is most common.
  • the light beam interference method light incident on the sample surface is reflected by the film surface and the film-underlying interface, and interference fringes are observed due to the relationship between the optical path difference between them and the wavelength. Since interference fringes appear at every film thickness that is an integral multiple of the value determined by the wavelength of light and the refractive index of the film, the relative distribution of the film thickness can be obtained while using the wavelength of light as the reference length.
  • ellipsometry elliptical ellipsometry
  • This method is a method for evaluating optical characteristics of a sample by analyzing elliptically polarized light reflected from the sample. If the sample is a thin film, its optical characteristics are determined by the refractive index and film thickness of the film and the base, and if the characteristics are known, the film thickness can be measured conversely.
  • the film thickness can also be measured by measuring the height from the substrate surface to the film surface using a stylus method that scans the sample surface with a thin probe and measures the surface roughness from the vertical movement of the probe. Can be evaluated. Since this is a direct method performed only by mechanical operation, there is a feature that measurement can be performed quickly and easily. As a technique using a probe, an example using an atomic force microscope has been reported. The film thickness is evaluated by measuring the tunnel current flowing between the underlying substrate and the probe through the film using a conductive probe (e.g., Alexander Olbrich et al., Applied Physics Letter 78). Volume 2934, 2001).
  • a conductive probe e.g., Alexander Olbrich et al., Applied Physics Letter 78). Volume 2934, 2001.
  • the film thickness can be determined from the tunnel current by obtaining the relationship between the film thickness and the current in advance.
  • a film thickness distribution with an in-plane resolution of about 1 nm and a film thickness resolution of about 0.1 nm can be obtained.
  • a film thickness evaluation apparatus using a conventional optical method it is possible to measure the in-plane film thickness distribution by scanning with the diameter of the incident light narrowed down, but the in-plane resolution is the light used. The limit is about 1 ⁇ m. Similar problems arise in photoelectron spectroscopy because of the use of excitation light. In the stylus method, it is necessary to peel off the film on the sample surface, which is not suitable for obtaining a film thickness distribution. In the method using an atomic force microscope, the attenuation of the tunnel current is exponential with respect to the distance, so that when the film thickness is about several nanometers or more, the current becomes very small and measurement is difficult.
  • the tunnel current is greatly affected by the state of the tip of the probe, there is a problem that the current value is likely to become unstable due to wear of the tip of the probe, attached matter, or the like. Thus, it is difficult to measure the film thickness distribution over a wide film thickness range with high spatial resolution and high accuracy.
  • the present invention focuses on the fact that the electrostatic force acting between the conductive probe and the conductive base substrate in the atomic force microscope depends on the insulator film thickness.
  • an atomic force microscope is operated in an intermittent contact method or a non-contact method and an AC voltage is applied between the probe and the sample with the probe approaching the sample surface, the probe vibrates with electrostatic force.
  • lock-in detection of the displacement vibration of the probe is performed at a double frequency, a second derivative signal relating to the voltage of the electrostatic force is obtained. Since the electrostatic force is proportional to the square of the applied voltage, the obtained second derivative is a constant.
  • the second derivative is proportional to the reciprocal of the square of the probe-substrate distance, and by calculating the reciprocal of the square root of this coefficient, the probe-substrate distance, ie, the film thickness and the probe-surface distance.
  • a signal proportional to the sum of the distances is obtained.
  • the absolute value of the film thickness is obtained by using the signal obtained by changing the probe-surface distance, the absolute value of the probe-surface distance, and the dielectric constant of the sample. By performing this operation for each measurement point while scanning the probe, the film thickness distribution of the sample can be observed.
  • the present invention it is possible to measure the film thickness distribution of an insulator film having a film thickness of sub-nanometers to several ⁇ m with a film thickness accuracy of approximately 0.01 nm and a spatial resolution of nanometer level.
  • FIG. 2A It is a block diagram which shows embodiment of the film thickness evaluation apparatus which concerns on this invention. It is a figure which shows a film thickness distribution image. It is a figure which shows the film thickness profile of the A-A 'part of FIG. 2A.
  • FIG. 1 is a configuration diagram showing an embodiment of a film thickness evaluation apparatus of the present invention.
  • the measurement sample 1 includes a conductive base substrate 2 and an insulator layer 3 formed on the surface thereof.
  • a cantilever 4 is disposed opposite to the surface of the measurement sample 1, and a probe 5 is provided at the tip thereof.
  • the cantilever 4 and the probe 5 are vibrated in the direction perpendicular to the surface of the measurement sample 1 by the oscillation unit 6 at the natural frequency or a frequency in the vicinity thereof.
  • the measurement sample 1 is fixed on the XYZ scanning mechanism 7 and the coarse movement mechanism 8, and can be moved in the three-dimensional azimuth direction with respect to the probe 5 by the XYZ scanning mechanism 7, and measured by the coarse movement mechanism 8.
  • the distance between the sample 1 and the probe 5 can be changed greatly.
  • the control unit 9 drives the coarse movement mechanism 8 using the coarse movement unit 10 to bring the surface of the measurement sample 1 closer to the probe 5.
  • the vibration state of the cantilever 4 changes due to the interaction with the surface of the measurement sample 1.
  • the displacement of the cantilever 4 is detected using the displacement detector 11, and the vibration amplitude or frequency of the cantilever 4 is detected by the amplitude / frequency detector 12.
  • the feedback control unit 13 drives the XYZ scanning mechanism 7 in the Z direction by the Z drive unit 14 so that the vibration amplitude or frequency of the cantilever 4 becomes a constant value set by the control unit 9, and the probe 5 and the measurement sample 1 Keep the distance to the surface constant.
  • the control unit 9 scans the XYZ scanning mechanism 7 in the XY plane using the XY scanning unit 15 to map the height information from the surface of the measurement sample 1 of the probe 5 to the surface of the measurement sample 1. The shape can be observed.
  • An alternating voltage is applied to the probe 5 by the alternating voltage application unit 16 and the base substrate 2 of the measurement sample 1 is grounded, so an electrostatic force acts between the probe 5 and the measurement sample 1, and the cantilever 4 It vibrates in synchronism with the AC voltage applied to the probe 5.
  • the voltage between measurement sample 1 and probe 5 is V
  • the distance between the surface of measurement sample 1 and the tip of probe 5 is g
  • the thickness of insulator layer 3 immediately below probe 5 is t
  • the lock-in amplifier (A) 17 detects the double frequency component of the reference signal, thereby generating electrostatic force.
  • Differential signal with respect to voltage V of d 2 F / dV 2 2a / (t / e + g) 2 (2) Is obtained.
  • a new signal is obtained by taking the square root of the reciprocal number of this signal using the reciprocal square root conversion unit 18.
  • S b (t / e + g) (3) Is obtained.
  • b is a constant.
  • the signal S is also changed by vibrating the XYZ scanning mechanism 7 in the Z direction by using the sample vibrating section 19 to vibrate the distance g between the surface of the measurement sample 1 and the tip of the probe 5.
  • the output signal S of the reciprocal square root converter 18, the output signal D of the lock-in amplifier (B) 20, and the known values g and e are used.
  • the present invention will be described in detail using the following examples.
  • the film thickness distribution of the thermal oxide film formed on the silicon substrate surface was measured using the film thickness evaluation apparatus of the present invention.
  • a cantilever made of silicon having a length of 100 ⁇ m, a width of 35 ⁇ m, and a force constant of 11.5 N / m was vibrated at 255 kHz, which is the natural frequency of the cantilever, by a piezo element provided in the cantilever holder.
  • the vibration amplitude was 0.5 nm.
  • a tip having a length of 10 ⁇ m was provided at the tip of the cantilever, and the surface thereof was coated with a platinum film having a thickness of 20 nm to impart conductivity, and grounded to a ground potential.
  • a platinum film is used as the material of the cantilever, but other materials may be used as long as they are conductive.
  • the displacement of the cantilever was detected by irradiating the surface of the cantilever with laser light from a laser diode, detecting the reflected light at that time with a two-divided photodiode, and taking the difference between the two outputs.
  • the sample substrate is fixed on an XYZ scanning stage using a piezo element, the entire stage is moved up and down by a coarse movement mechanism using a stepping motor and screws, and the sample is brought close to a cantilever mounted facing the sample surface. I let you. When the sample surface approaches the tip of the probe to about 1 nm, an attractive force acts between them, so that the natural frequency of the cantilever decreases.
  • the distance between the probe and the sample surface was kept constant.
  • the sample was vibrated in the Z direction with a frequency of 10 kHz and an amplitude of 0.1 nm, and the distance between the probe tip and the sample surface was changed.
  • a 10 kHz component that is the vibration frequency of the sample from the signal A using a lock-in amplifier
  • a differential signal B relating to the distance between the probe tip and the sample surface of the signal A was obtained.
  • the values of signal A and signal B were taken into a control computer by an AD converter, and the film thickness was calculated using the tip-sample distance and the relative dielectric constant of the silicon oxide film measured in advance by a force curve.
  • FIG. 2A shows a film thickness distribution image
  • FIG. 2B shows a film thickness profile of the A-A ′ portion of FIG. 2A.
  • the film thickness resolution and the in-plane spatial resolution depend on the film thickness, and were 0.01 nm and 0.1 nm when the film thickness was 0.3 nm, and 10 nm and 100 nm when the film thickness was 3 ⁇ m, respectively.
  • the frequency of the voltage applied to the probe is preferably in the vicinity of the natural frequency at which the sensitivity to the cantilever force is highest, but may be separated from the natural frequency. If the vibration frequency of the sample is not the same as the natural frequency of the cantilever and the frequency of the probe voltage, frequencies from several tens Hz to the upper limit frequency of the response of the XYZ scanning stage can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 導電体表面に形成された絶縁体層の膜厚分布を高分解能に評価できる膜厚評価装置を提供するために、探針を試料表面上で走査しながら、探針-試料間に働く静電気力の電圧に関する2回微分信号の逆数の平方根と、その探針-試料間距離に関する微分信号から膜厚の絶対値を得て、膜厚のマッピングを行う。

Description

膜厚評価装置および膜厚評価方法
 本発明は、試料-探針間の静電気力を検出することにより誘電体の膜厚を評価する膜厚評価装置および膜厚評価方法に関する。
 従来の膜厚評価装置としては、主に光束の干渉を利用した光学的方法がもっとも一般的である。光束干渉法においては、試料表面に入射した光が膜表面と膜-下地界面で反射され、両者の光路差と波長の関係により干渉縞が観察される。干渉縞は光の波長と膜の屈折率で決定される値の整数倍した膜厚毎に現れるため、光の波長を基準長としながら膜厚の相対的分布を求めることができる。光束干渉法が分割された波面を持つ複数の光束の干渉を用いるのに対し、振動面分割型の干渉測光法としてエリプソメトリ(楕円偏光解析法)がある。この手法は、試料から反射される楕円偏光を解析することにより、試料の光学的特性を評価する方法である。試料が薄膜であれば、その光学的特性は膜と下地の屈折率および膜厚で決定されるので、特性がわかれば逆に膜厚が測定できる。
 次に、エリプソメトリでは困難な1nm程度以下の膜厚を評価する方法として、光電子分光を応用した手法がある。試料表面に紫外線を照射した時に下地から放出される光電子は表面膜内で減衰するため、膜厚が厚いほど計数される電子数が減少する。あらかじめ膜厚と放出される電子数の関係を求めておくことにより、電子数から膜厚を評価できる。この手法は、下地の仕事関数が膜の仕事関数よりも低いときに用いられ、1nm以下程度から数10nm程度までの膜厚試料に対して適用可能である。
 さらに、試料表面に細い探針を当てて走査し、探針の上下動から表面粗さを測定する触針法を用いて、基板面から膜表面までの高さを測ることによっても膜厚を評価できる。これは、機械的な操作のみで行う直接的は方法であるから、迅速かつ容易に測定が行えるという特徴がある。探針を用いた手法としては、原子間力顕微鏡を用いた例が報告されている。導電性の探針を用いて、膜を介して下地基板と探針との間を流れるトンネル電流を測定することにより、膜厚評価を行う(例えば、アレクサンダー・オルブリッヒら、アプライド・フィジックス・レター78巻2934項2001年に記載)。トンネル電流は距離の増大とともに指数関数的に減少するため、あらかじめ膜厚と電流の関係を求めておくことにより、トンネル電流から膜厚がわかる。探針を試料に対して2次元方向に走査することにより、面内分解能1nm程度、膜厚分解能0.1nm程度の膜厚分布が得られる。
 従来の光学的手法を用いた膜厚評価装置においては、入射光の直径を絞って走査することにより、面内の膜厚分布を測定することが可能であるが、面内分解能は使用する光の波長によって制約されるため、1μm程度が限界であった。光電子分光においても励起光を用いるため同様の問題が生ずる。また、触針法においては試料表面の膜を剥す必要があり、膜厚分布を得るには全く適してない。原子間力顕微鏡を用いた手法においては、トンネル電流の減衰が距離に対して指数関数的であるために、膜厚が数nm程度以上の場合は電流が極めて微小となり測定が困難となる。さらに、トンネル電流は探針先端の状態に大きく影響されるため、探針先端の磨耗や付着物等によって電流値は不安定となりやすいといった問題がある。このように、高い空間分解能で、高精度で、広い膜厚範囲にわたって、膜厚分布を測定することは困難であった。
 本発明は、原子間力顕微鏡において、導電性探針と導電性下地基板との間に働く静電気力が、絶縁体膜厚に依存することに注目したものである。原子間力顕微鏡を間欠接触方式あるいは非接触方式で動作させ、探針を試料表面に接近させた状態で、探針-試料間に交流電圧を印加すると、探針が静電気力で振動する。探針の変位振動を2倍周波数でロックイン検出すると、静電気力の電圧に関する二次微分信号が得られる。静電気力は印加電圧の二乗に比例しているため、得られた二次微分は定数となる。二次微分係数は探針-基板間距離の二乗の逆数に比例しており、この係数の平方根の逆数を計算することにより、探針-基板間距離、すなわち、膜厚と探針-表面間距離の和に比例した信号が得られる。さらに、探針-表面間距離を変化させて得られた信号と、探針-表面間距離の絶対値および試料の誘電率を用いて、膜厚の絶対値が得られる。この動作を探針を走査しながら各測定点ごとに行うことにより、試料の膜厚分布が観察できる。
 本発明によれば、膜厚がサブナノメートルから数μm程度の絶縁体膜の膜厚分布を、0.01nm程度の膜厚精度、および、ナノメートルレベルの空間分解能で測定することが可能となる。
本発明に係る膜厚評価装置の実施形態を示す構成図である。 膜厚分布像を示す図である。 図2AのA-A’部の膜厚プロファイルを示す図である。
 以下、膜厚評価装置にかかる発明の実施の形態について説明する。
 最初に、膜厚評価装置の構成について説明する。図1は、本発明の膜厚評価装置の実施形態を示す構成図である。測定試料1は導電性の下地基板2とその表面に形成された絶縁体層3からなる。測定試料1の表面に対向してカンチレバー4が配置され、その先端には探針5が設けられている。カンチレバー4および探針5は発振部6により、固有振動数かその近傍の周波数で、測定試料1の表面に対して垂直方向に振動させられる。測定試料1はXYZ走査機構7および粗動機構8上に固定されており、XYZ走査機構7により探針5に対して3次元方位方向に移動させることができ、また、粗動機構8により測定試料1と探針5の間の距離を大きく変化させることができる。
 測定時に際して、まず、制御部9が粗動部10を用いて粗動機構8を駆動し、測定試料1の表面を探針5に接近させる。測定試料1と探針5が十分に接近すると、測定試料1表面との相互作用によりカンチレバー4の振動状態が変化する。カンチレバー4の変位を変位検出部11を用いて検出し、さらに、振幅・周波数検出部12によりカンチレバー4の振動振幅あるいは周波数が検出される。フィードバック制御部13は、カンチレバー4の振動振幅あるいは周波数が制御部9により設定された一定値となるように、Z駆動部14によりXYZ走査機構7をZ方向に駆動し、探針5と測定試料1表面との間の距離を一定に保つ。この状態において、制御部9がXY走査部15を用いてXYZ走査機構7をXY面内で走査することにより、探針5の測定試料1表面からの高さ情報のマッピングとして測定試料1の表面形状が観察できる。
 探針5には交流電圧印加部16により交流電圧が印加され、測定試料1の下地基板2は接地されているため、探針5と測定試料1との間に静電気力が働き、カンチレバー4は探針5に印加された交流電圧に同期して振動する。測定試料1と探針5との間の電圧をV、測定試料1の表面と探針5の先端との距離をg、探針5直下の絶縁体層3の膜厚をt、絶縁体層3の比誘電率をeとし、aを定数とすると、測定試料1と探針5との間に働く静電気力は、
F = a(V/(t/e+g))2・・・(1)
となる。変位検出部11で検出されたカンチレバー4の振動信号と交流電圧印加部16からの参照信号を用いて、ロックインアンプ(A) 17で参照信号の2倍周波数成分を検出することにより、静電気力の電圧Vに関する二回微分信号、
d2F/dV2= 2a/(t/e+g)2・・・(2)
が得られる。逆数・平方根変換部18を用いてこの信号の逆数の平方根を取ることにより新たな信号、
S = b(t/e+g) ・・・(3)
が得られる。ここで、bは定数である。さらに、試料振動部19を用いてXYZ走査機構7をZ方向に振動させ、測定試料1表面と探針5先端との距離gを振動させることにより、信号Sも変化する。この信号と試料振動部19からの参照信号を用いて、ロックインアンプ(B)20で参照信号と同じ周波数成分を検出することにより、信号Sの距離gに関する微分信号、
D = dS/dg = b・・・(4)
すなわち、比例定数bが得られる。膜厚計算部21において、逆数・平方根変換部18の出力信号S、ロックインアンプ(B)20の出力信号D、および、既知の値g、eを用いて
t = e(S/D-g) ・・・(5)
を計算することにより膜厚tを求める。探針5を測定試料1に対して相対的に動かし、測定試料1表面の各位置において得られた膜厚の値をマッピングすることにより、表面形状と同時に膜厚分布が得られる。
 本発明を、以下の実施例を用いて詳細に説明する。本発明の膜厚評価装置を用いて、シリコン基板表面に形成された熱酸化膜の膜厚分布を測定した。カンチレバーとして、長さ100μm、幅35μm、力定数11.5N/mのシリコン製のものを用い、カンチレバーホルダーに設けられたピエゾ素子により、カンチレバーの固有振動数である255kHzで振動させた。
 振動振幅は0.5nmであった。カンチレバー先端には長さ10μmの探針が設けられ、その表面を厚さ20nmの白金膜でコートすることにより導電性を付与し、アース電位に接地した。なお、ここでは、カンチレバーの材質として、白金膜を用いたが、導電性のものであれば他のものでも良い。
 カンチレバーの変位は、レーザダイオードからのレーザ光をカンチレバー表面に照射し、そのときの反射光を2分割フォトダイオードで検出し、2つの出力の差分を取ることにより検出した。試料基板をピエゾ素子を用いたXYZ走査ステージ上に固定し、ステッピングモータとねじを用いた粗動機構によってステージ全体を上下方向に移動し、試料表面に対向して取り付けられたカンチレバーに試料を接近させた。試料表面が探針先端に1nm程度まで接近すると、両者の間には引力が作用するため、カンチレバーの固有振動数が低下する。
 フェイズロックドループを用いた周波数検出器により、変位信号からカンチレバーの振動周波数を検出し、振動周波数の変化が一定となるように試料のZ方向位置を調整することにより、探針-試料表面間距離を一定に保った。
 探針には周波数がカンチレバーの固有振動数近傍である254kHz、振幅1Vの交流電圧を印加した。ロックインアンプを用いてカンチレバーの変位信号から交流電圧の2倍周波数である508kHz成分を検出することにより、探針-試料間に働く静電気力の電圧に関する2回微分信号を得た。さらに、除算器を用いた逆数回路と乗算器を用いた平方根回路により、この信号を逆数の平方根に変換し、新たな信号Aを得た。また、XYZ走査ステージのZ方向駆動信号に微小な交流電圧を加えることにより、試料をZ方向に周波数10kHz、振幅0.1nmで振動させ、探針先端-試料表面間距離を変化させた。ロックインアンプを用いて、信号Aから試料の振動周波数である10kHz成分を検出することにより、信号Aの探針先端-試料表面間距離に関する微分信号Bを得た。信号Aおよび信号Bの値をADコンバータにより制御用コンピュータに取り込み、あらかじめフォースカーブにより測定された探針-試料間距離とシリコン酸化膜の比誘電率を用いて膜厚を計算した。XYZ走査ステージを用いて探針-試料間距離を一定に保ちながら試料をXY方向に走査し、試料表面の各位置における膜厚を測定した結果をマッピングすることにより膜厚分布画像を得ることに成功した。膜厚0.3nmから3μmの試料に対して測定を行い、明瞭な膜厚分布が得られた。図2Aに、膜厚分布像を示し、図2Bには、図2AのA-A’部の膜厚プロファイルを示す。膜厚分解能および面内空間分解能は膜厚に依存し、膜厚0.3nmの場合、それぞれ0.01nmおよび0.1nm、膜厚3μmの場合、10nmおよび100nmであった。
 探針-試料間距離の制御はカンチレバーの振動振幅の変化を一定に保つことによって行っても同様の結果が得られた。探針に印加する電圧の周波数は、カンチレバーの力に対する感度がもっとも高くなる固有振動数近傍が望ましいが、固有振動数から離れていてもよい。試料の振動周波数はカンチレバーの固有振動数および探針電圧の周波数と同一でなければ、数10HzからXYZ走査ステージの応答の上限周波数までの周波数が利用できる。
 半導体プロセス内における半導体および金属表面に形成された誘電体膜の膜厚分布評価、および、膜厚の均一性の評価に適用できる。
 1…測定試料、
 2…下地基板、
 3…絶縁体層、
 4…カンチレバー、
 5…探針、
 6…発振部、
 7…XYZ走査機構、
 8…粗動機構、
 9…制御部、
 10…粗動部、
 11…変位検出部、
 12…振幅・周波数検出部、
 13…フィードバック制御部、
 14…Z駆動部、
 15…XY走査部、
 16…交流電圧印加部、
 17…ロックインアンプ(A)、
 18…逆数・平方根変換部、
 19…試料振動部、
 20…ロックインアンプ(B)、
 21…膜厚計算部。
 

Claims (6)

  1.  導電性基板上に絶縁体膜を有する測定試料を載置するとともにXY方向に前記測定試料を移動させるXY走査部および垂直方向に前記測定試料を移動させるZ駆動部とを有するXYZ走査機構と、
     導電性の探針をその先端部に有し前記測定試料の表面に対して面内方向および垂直方向に相対的に移動可能なカンチレバーと、
     前記カンチレバーを固有振動数かその近傍の周波数で、前記測定試料の表面に対して垂直方向の振動を与える発振部と、
     前記測定試料に前記探針を接近させた際に前記探針に印加される静電気力(a(V/(t/e+g))2、ここでa:定数、e:前記絶縁体膜の比誘電率、t:前記絶縁体膜の膜厚、g:前記探針と前記測定試料表面との間の距離、V:前記探針に印加する電圧とする。)の前記振動による力の変化を検出する力検出器と、
     前記力検出器からの信号を入力し、前記カンチレバーの振動信号である振動振幅あるいは周波数を検出する振幅・周波数検出部と、
     前記振動信号に基づいて、前記Z駆動部により前記XYZ走査機構をZ方向に駆動し、前記探針と前記測定試料の表面との間の距離を制御部により設定された一定値となるように制御するフィードバック制御部と、
     前記振動信号と、前記探針に交流電圧を印加する交流電圧印加部からの参照信号とを用いて、前記参照信号の2倍周波数成分を検出することにより、前記静電気力の電圧に関する二回微分信号(2a(1/(t/e+g))2)を得る第1の振幅検出器と、
     前記二回微分信号の逆数の平方根となる変換を行って第1の信号(S=b(t/e+g))を得る逆数・平方根変換部と、
     前記XYZ走査機構をZ方向に振動させ、前記測定試料の表面と前記探針の先端との距離を振動させることにより、前記第1の信号を変化させて第2の信号を得る測定試料振動部と、
     前記第2の信号と、前記測定試料振動部からの参照信号と同じ周波数成分を検出することにより、前記測定試料の表面と前記探針の先端との距離(g)に関する前記第1の信号の微分信号(D=b)を得る第2の振幅検出器と、を具備し、
     前記第1の信号(S)と、前記第1の信号の微分信号(D)と、前記測定試料の表面と前記探針の先端との距離(g)と、前記絶縁体膜の比誘電率(e)とを用いて前記導電性基板上の絶縁体膜の膜厚(t=e(S/D-g))を求めることを繰り返すことにより、前記導電性基板上の絶縁体膜の膜厚分布を評価することを特徴とする膜厚評価装置。
  2.  前記力検出器として、前記探針を一端に具備するカンチレバーの変位を検出する変位検出器を用いることを特徴とする請求項1に記載の膜厚評価装置。
  3.  前記第1の振幅検出器と前記第2の振幅検出器として、ロックインアンプを用いることを特徴とする請求項1に記載の膜厚評価装置。
  4.  導電性の探針を用いて、導電性基板上に絶縁体膜が設けられた試料の膜厚分布を測定する膜厚評価方法において、
     前記探針を前記試料の表面に対して面内方向および垂直方向に相対的に移動可能な手段と、前記探針と前記試料の距離を一定に保つ制御手段と、前記探針に印加される力を検出する力検出器と、前記探針に交流電圧を印加する手段と、前記力検出器の出力信号から前記交流電圧の2倍周波数成分を検出する第1の振幅検出器と、前記第1の振幅検出器の出力信号を逆数変換および平方根変換する信号変換器と、前記探針と前記試料の距離に交流振動を与える手段と、前記信号変換器の出力信号から前記交流振動の周波数成分を検出する第2の振幅検出器と、前記信号変換器の出力信号を前記第2の振幅検出器の出力信号で除算し、前記探針と前記試料の距離を減算し、前記絶縁体膜の比誘電率を乗算する計算手段とを具備する膜厚評価装置を用いて、
     定数a、前記絶縁体膜の比誘電率e、前記絶縁体膜の膜厚t、前記探針と前記試料の距離g、前記探針の電圧Vを用いて表される、前記探針に印加される静電気力a(V/(t/e+g))2に対して、
     前記第1の振幅検出器で前記静電気力の前記電圧Vに関する二回微分信号2a(1/(t/e+g))2を検出し、
     前記二回微分信号に対して、前記信号変換器で逆数変換および平方根変換することにより、定数bを用いて表される第1の信号S=b(t/e+g)を取得し、
     前記第1の信号に対して、前記第2の振幅検出器で前記第1の信号の前記距離gに関する微分である第2の信号D=bを検出し、
     前記計算手段でt=e(S/D-g)を計算することにより、前記膜厚tを取得し、
     前記探針を前記試料表面上で移動し、前記試料表面上の各位置における膜厚を測定することにより膜厚分布の評価を行うことを特徴とする膜厚評価方法。
  5.  前記力検出器として、前記探針を一端に具備するカンチレバーの変位を検出する手段を用いることを特徴とする請求項4に記載の膜厚評価方法。
  6.  前記第1の振幅検出器と前記第2の振幅検出器として、ロックインアンプを用いることを特徴とする請求項4に記載の膜厚評価方法。
     
     
PCT/JP2009/063128 2008-08-01 2009-07-22 膜厚評価装置および膜厚評価方法 WO2010013628A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010522685A JP5066258B2 (ja) 2008-08-01 2009-07-22 膜厚評価装置および膜厚評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008199608 2008-08-01
JP2008-199608 2008-08-01

Publications (1)

Publication Number Publication Date
WO2010013628A1 true WO2010013628A1 (ja) 2010-02-04

Family

ID=41610327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063128 WO2010013628A1 (ja) 2008-08-01 2009-07-22 膜厚評価装置および膜厚評価方法

Country Status (2)

Country Link
JP (1) JP5066258B2 (ja)
WO (1) WO2010013628A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013575A (ja) * 2010-07-01 2012-01-19 Hitachi Ltd 走査プローブ顕微鏡
CN104236444A (zh) * 2013-06-18 2014-12-24 中芯国际集成电路制造(上海)有限公司 一种金属膜厚度测量方法
CN107192325A (zh) * 2017-04-10 2017-09-22 天津大学 环状流局部动态液膜平均厚度的直接测量方法
CN114322745A (zh) * 2021-12-31 2022-04-12 华中科技大学 一种同时测量导体表面电势和表面形貌的方法
CN114397352A (zh) * 2021-12-31 2022-04-26 华中科技大学 一种对探针与样品间距变化不敏感的电势测量方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412547A (ja) * 1990-05-02 1992-01-17 Toshiba Corp 膜厚分布測定装置
JP2002529743A (ja) * 1998-11-06 2002-09-10 トレック・インコーポレーテッド カンチレバーおよびシールドを備えた静電気力検出器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412547A (ja) * 1990-05-02 1992-01-17 Toshiba Corp 膜厚分布測定装置
JP2002529743A (ja) * 1998-11-06 2002-09-10 トレック・インコーポレーテッド カンチレバーおよびシールドを備えた静電気力検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OLBRICH A ET AL.: "Oxide thickness mapping of ultrathin A1203 at nanometer scale with conducting atomic force microscopy", APPL PHYS LETT, vol. 78, no. 19, 7 May 2001 (2001-05-07), pages 2934 - 2936 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013575A (ja) * 2010-07-01 2012-01-19 Hitachi Ltd 走査プローブ顕微鏡
CN104236444A (zh) * 2013-06-18 2014-12-24 中芯国际集成电路制造(上海)有限公司 一种金属膜厚度测量方法
CN107192325A (zh) * 2017-04-10 2017-09-22 天津大学 环状流局部动态液膜平均厚度的直接测量方法
CN107192325B (zh) * 2017-04-10 2019-11-01 天津大学 环状流局部动态液膜平均厚度的直接测量方法
CN114322745A (zh) * 2021-12-31 2022-04-12 华中科技大学 一种同时测量导体表面电势和表面形貌的方法
CN114397352A (zh) * 2021-12-31 2022-04-26 华中科技大学 一种对探针与样品间距变化不敏感的电势测量方法
CN114322745B (zh) * 2021-12-31 2022-09-30 华中科技大学 一种同时测量导体表面电势和表面形貌的方法
CN114397352B (zh) * 2021-12-31 2024-02-20 华中科技大学 一种对探针与样品间距变化不敏感的电势测量方法

Also Published As

Publication number Publication date
JPWO2010013628A1 (ja) 2012-01-12
JP5066258B2 (ja) 2012-11-07

Similar Documents

Publication Publication Date Title
JP2915554B2 (ja) バリアハイト測定装置
Palacio et al. Normal and lateral force calibration techniques for AFM cantilevers
TWI754649B (zh) 判定重疊誤差之方法、用以製造多層半導體裝置之方法、原子力顯微鏡裝置、微影系統及半導體裝置
US7323684B2 (en) Scanning probe microscope and specimen observation method and semiconductor device manufacturing method using said scanning probe microscope
US7404313B2 (en) Scanning probe microscope
US5253516A (en) Atomic force microscope for small samples having dual-mode operating capability
JP5813966B2 (ja) 変位検出機構およびそれを用いた走査型プローブ顕微鏡
EP2864798B1 (en) Method and apparatus of electrical property measurement using an afm operating in peak force tapping mode
JPH0734032B2 (ja) 磁力測定装置及び方法
JP5066258B2 (ja) 膜厚評価装置および膜厚評価方法
TWI675206B (zh) 用於掃描探針顯微鏡的裝置與方法
US6404207B1 (en) Scanning capacitance device for film thickness mapping featuring enhanced lateral resolution, measurement methods using same
WO2014132341A1 (ja) 原子間力顕微鏡を用いた表面電荷密度測定装置
Van Gorp et al. Integrated dual grating method for extended range interferometric displacement detection in probe microscopy
CN112513648A (zh) 用于针对样本改善光透导力的使用传感器分子的扫描探针显微镜
Shi et al. Atomic force microscope scanning head with 3-dimensional orthogonal scanning to eliminate the curved coupling
JP6001728B2 (ja) 変位検出機構およびそれを用いた走査型プローブ顕微鏡
Bugg Noncontact surface profiling using a novel capacitive technique: scanning capacitance microscopy
JPH08248082A (ja) 電位分布測定方法および走査型顕微鏡
Voigtländer et al. Cantilevers and Detection Methods in Atomic Force Microscopy
JP7444017B2 (ja) 走査型プローブ顕微鏡
JP3450460B2 (ja) 走査型プローブ顕微鏡
Voigtländer et al. Technical Aspects of Atomic Force Microscopy (AFM)
JP2694783B2 (ja) 原子間力顕微鏡
Palacio et al. Calibration of Normal and Lateral Forces in Cantilevers Used in Atomic Force Microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010522685

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802871

Country of ref document: EP

Kind code of ref document: A1