WO2010013627A1 - Functional panel - Google Patents

Functional panel Download PDF

Info

Publication number
WO2010013627A1
WO2010013627A1 PCT/JP2009/063127 JP2009063127W WO2010013627A1 WO 2010013627 A1 WO2010013627 A1 WO 2010013627A1 JP 2009063127 W JP2009063127 W JP 2009063127W WO 2010013627 A1 WO2010013627 A1 WO 2010013627A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
meth
functional panel
monomer
photopolymerizable
Prior art date
Application number
PCT/JP2009/063127
Other languages
French (fr)
Japanese (ja)
Inventor
健延 石原
秀洋 赤間
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to KR1020117002244A priority Critical patent/KR101196625B1/en
Priority to CN2009801299643A priority patent/CN102112306B/en
Publication of WO2010013627A1 publication Critical patent/WO2010013627A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/18Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of organic plastics with or without reinforcements or filling materials or with an outer layer of organic plastics with or without reinforcements or filling materials; plastic tiles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Definitions

  • the present invention relates to a functional panel having improved chemical resistance and dye resistance by using a photocurable resin composition containing a specific photopolymerizable monomer.
  • Functional panels as building materials are members that are placed as building walls, floors, or ceiling walls. Depending on where they are placed, various functions such as soundproofing and humidity control are added. Has been. Such a functional panel has various characteristics such as water resistance and moisture resistance, which can withstand a harsher use environment, particularly when used as a watering member in a bathroom, washroom or kitchen in a house. Is required.
  • Patent Document 1 discloses a decorative board in which a top coat film made of an ultraviolet curable acrylate resin paint is further formed on a base coat film formed on the surface of a substrate. It has been shown that if this decorative board is used as a watering member as described above, it is excellent in hot water resistance, hardness characteristics, feeling of flesh, stain resistance, etc., and it is difficult for swelling and peeling to occur.
  • the present invention has a function that can withstand the occurrence of discoloration and staining as well as the occurrence of deterioration and deterioration caused by staining agents such as highly irritating detergents and hair colors that have been increasingly used in recent years.
  • the purpose is to provide a panel.
  • the present inventor uses a photopolymerizable monomer having a specific solubility parameter (SP value) and adopts a photocurable resin composition exhibiting a specific glass transition temperature.
  • SP value specific solubility parameter
  • the functional panel of the present invention comprises a photocurable resin composition obtained from a photopolymerizable monomer having a solubility parameter (SP value) of 20.0 (J / cm 3 ) 0.5 or less and a photopolymerizable oligomer. It comprises a coating layer formed by curing and having a glass transition temperature of 50 ° C. or higher, and a base material layer.
  • SP value solubility parameter
  • the photopolymerizable monomer is preferably a monomer represented by the following formula (1).
  • (CH 2 CR 1 COO) n R 2 (1)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an n-valent hydrocarbon group having 5 to 20 carbon atoms
  • n represents an integer of 1 to 4)
  • the photopolymerizable monomer includes isobornyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, isoamyl (meth) acrylate, lauryl (meth) acrylate, Tridecyl (meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, cyclohexanedimethanol di (meth) ) Acrylate, 1,9-nonanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, at least one monomer selected from the group consisting of pentaerythritol tetra (meth)
  • the blending amount of the photopolymerizable monomer and the photopolymerizable oligomer is desirably 70:30 to 30:70 by mass ratio.
  • the base material layer is preferably made of a material containing an unsaturated polyester resin, a filler, and glass fiber or carbon fiber.
  • the functional panel of the present invention is excellent in both chemical resistance and dyeing resistance, and even if it contains a detergent such as an acid-containing detergent or a hair color, not only alteration or deterioration but also discoloration and dyeing are sufficient. Can be deterred. Therefore, the functional panel of the present invention is optimal as a watering member such as a bathroom, a washroom, or a kitchen in a house. In addition, it is not necessary to form other layers such as an undercoat layer, and it is excellent in sufficient chemical resistance and dye resistance simply by providing a coating layer formed from a specific photocurable resin composition on the base material. The functional panel can be easily realized.
  • the functional panel of the present invention cures a photocurable resin composition obtained from a photopolymerizable monomer and a photopolymerizable oligomer having a solubility parameter (SP value) of 20.0 (J / cm 3 ) 0.5 or less. And a coating layer having a glass transition temperature of 50 ° C. or higher and a base material layer.
  • SP value solubility parameter
  • the photopolymerizable monomer used for the photocurable resin composition is characterized in that the solubility parameter (SP value) is 20.0 (J / cm 3 ) 0.5 or less.
  • the SP value can be estimated only from the chemical structure according to the Fedors method (see "Solubility Parameter Values", Polymer Handbook, 4th edition (edited by J, Brandrup et al.)) .
  • the SP value means a value calculated by the Fedors method, and the lower the value, the lower the polarity of the photopolymerizable monomer.
  • the SP value of the photopolymerizable monomer is preferably 19.6 (J / cm 3 ) 0.5 or less, more preferably 19.4 (J / cm 3 ) 0.5 or less.
  • the lower limit of the SP value is not particularly limited, but is usually 17.0 (J / cm 3 ) 0.5 or more.
  • the photopolymerizable monomer exhibiting such an SP value effectively reduces the polarity of the monomer itself while maintaining good compatibility with the photopolymerizable oligomer described below. And, since the photopolymerizable monomer used has low polarity, when the coating layer is formed by curing the photopolymer resin composition obtained therefrom, the reactivity of the coating layer itself after curing is sufficiently suppressed. Is estimated to be possible.
  • the functional panel of the present invention in which the coating layer is formed does not react with a cleaning agent or a dyeing agent more than necessary, and can exhibit good chemical resistance and dyeing resistance. . In particular, it exhibits a remarkable effect in dyeing resistance.
  • a (meth) acrylate monomer having at least one acryloyloxy group (CH 2 ⁇ CHCOO—) or methacryloyloxy group (CH 2 ⁇ C (CH 3 ) COO—) is preferably used. Any of a monofunctional monomer, a bifunctional monomer, and a polyfunctional monomer may be sufficient.
  • Examples of the monofunctional monomer include isobornyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, cyclohexyl (meth) ) Alicyclic (meth) acrylate such as acrylate; benzyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, (meth) acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate , Amyl (meth) acrylate
  • bifunctional monomer examples include ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6.
  • Examples of the multifunctional monomer include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • Examples include tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and dipentaerythritol monohydroxypenta (meth) acrylate.
  • These photopolymerizable monomers may be used alone or in combination of two or more.
  • SP value at the time of using 2 or more types of photopolymerizable monomers is the SP value of each monomer in the SP value of each monomer, and the blending ratio (ratio of each monomer when the total amount of monomers is 1). ) And the sum of these values.
  • a photopolymerizable monomer having an SP value of 19.0 is blended in an amount of 3/4
  • a photopolymerizable monomer having an SP value of 21.0 is blended in an amount of 1/4 with respect to the total amount of photopolymerizable monomers, the following formula ( According to X), the SP value of the entire photopolymerizable monomer used is determined.
  • R ⁇ 1 > shows a hydrogen atom or a methyl group.
  • R 2 represents an n-valent hydrocarbon group having 5 to 20 carbon atoms, does not include a hetero atom, and may be a chain or a ring. Further, —CH 2 — in the group may be replaced with —CH ⁇ CH—. n represents an integer of 1 to 4.
  • R 2 is an alkyl group having 5 to 20 carbon atoms
  • R 2 is carbon. It becomes an alkylene group of several 5 to 20.
  • R 2 examples include —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) CH 3 , cyclohexyl group, cycloheptane group, cyclooctane group, cyclononane group, cyclodecane group and the like.
  • the SP value of the monomer tends to increase in the case of a chain hydrocarbon group, and the acquisition itself becomes difficult in the case of a cyclic hydrocarbon group.
  • the carbon number of R 2 exceeds 20, in the case of a chain hydrocarbon group, the glass transition temperature of the resulting photocurable resin composition tends to decrease, and in the case of a cyclic hydrocarbon group, Tends to lower the crosslink density of the resulting photocurable resin composition. If the crosslink density is lowered more than necessary, a staining agent such as a hair color is likely to be leached into the coating layer, and the panel may be dyed.
  • the monomer represented by the above formula (1) examples include isobornyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethyloltricyclodecane di (meth) acrylate, and isoamyl (meta).
  • a monomer having a cyclic hydrocarbon group is preferable, and isobornyl (meth) acrylate and dimethyloltricyclodecanedi (meth) acrylate are more preferable.
  • Such a monomer tends to exhibit good low polarity since it has a more suitable SP value, and it is possible to further improve the chemical resistance and dyeing resistance of the resulting functional panel.
  • the function as a reactive diluent of the photopolymerizable oligomer mentioned later can also be exhibited effectively.
  • the number of functional groups of the photopolymerizable monomer is usually 1 to 6, preferably 1 to 4.
  • the number of functional groups means here the value which calculated
  • the crosslinking density tends to increase, but by increasing the glass transition temperature, it is possible to obtain a functional panel formed with a coating layer that exhibits good chemical resistance and dye resistance. it can.
  • a photopolymerizable monomer having a cyclic structure is preferable for increasing the glass transition temperature.
  • the number of functional groups is 2 to 6, preferably 2 to 4, the crosslinking reaction of the photocurable composition tends to be appropriately maintained. It is presumed that the phenomenon that the panel is stained can be more effectively suppressed. Therefore, also in this case, it is possible to obtain a functional panel in which a coating layer having suitable curability is formed while maintaining chemical resistance and dye resistance.
  • Photopolymerizable oligomer used in the photocurable resin composition include a urethane (meth) acrylate oligomer, an epoxy (meth) acrylate oligomer, an ether (meth) acrylate oligomer, and an ester ( Examples include meth) acrylate oligomers, polycarbonate-based (meth) acrylate oligomers, fluorine-based (meth) acrylate oligomers, and silicone-based (meth) acrylate oligomers.
  • photopolymerizable oligomers include polyethylene glycol, polyoxypropylene glycol, polytetramethylene ether glycol, bisphenol A type epoxy resin, phenol novolac type epoxy resin, adducts of polyhydric alcohol and ⁇ -caprolactone, and (meth) acrylic. It can be synthesized by reaction with an acid or by urethanizing a polyisocyanate compound and a (meth) acrylate compound having a hydroxyl group.
  • the photopolymerizable oligomer may be a monofunctional oligomer, a bifunctional oligomer, or a polyfunctional oligomer, and is a polyfunctional oligomer from the viewpoint of realizing an appropriate crosslinking density of the resulting photocurable resin composition. Is preferred.
  • urethane (meth) acrylate oligomers are preferable from the viewpoint of imparting suitable properties other than chemical resistance and dye resistance as a functional panel.
  • a urethane-based (meth) acrylate oligomer can be produced, for example, by synthesizing a urethane prepolymer from a polyol and a polyisocyanate, and adding a (meth) acrylate having a hydroxyl group to the urethane prepolymer. It may be a urethane-based (meth) acrylate oligomer.
  • the polyol used for the synthesis of the urethane prepolymer is a compound having a plurality of hydroxyl groups (OH groups).
  • polyether polyol polyester polyol, polytetramethylene glycol, polybutadiene polyol, alkylene oxide-modified polybutadiene polyol and polyoxypolyol.
  • examples include isoprene polyol. These polyols may be used alone or in combination of two or more.
  • the polyether polyol can be obtained by addition polymerization.
  • an alkylene oxide such as ethylene oxide or propylene oxide is added to a polyhydric alcohol such as ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol, or sorbitol.
  • polyether polyol can also be obtained by ring-opening polymerization, and examples of such polyether polyol include polytetramethylene glycol obtained by ring-opening polymerization of tetrahydrofuran (THF).
  • the polyester polyol can also be obtained by addition polymerization, for example, a polyhydric alcohol such as ethylene glycol, diethylene glycol, 1,4-butanediol, 1,6-hexanediol, propylene glycol, trimethylolethane, trimethylolpropane, It can be obtained from polyvalent carboxylic acids such as adipic acid, glutaric acid, succinic acid, sebacic acid, pimelic acid and suberic acid.
  • a polyester polyol can also be obtained by ring-opening polymerization, and examples of such polyester polyol include lactone-based polyester polyols obtained by ring-opening polymerization of ⁇ -caprolactone.
  • the polyisocyanate is a compound having a plurality of isocyanate groups (NCO groups), specifically, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), crude diphenylmethane diisocyanate (crude MDI), isophorone diisocyanate (IPDI), Examples include hydrogenated diphenylmethane diisocyanate, hydrogenated tolylene diisocyanate, hexamethylene diisocyanate (HDI), isocyanurate-modified products, carbodiimide-modified products, and glycol-modified products. These polyisocyanates may be used alone or in combination of two or more.
  • a catalyst for urethanization reaction is preferably used.
  • the catalyst for urethanization reaction include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin thiocarboxylate, dibutyltin dimaleate, dioctyltin thiocarboxylate, tin octenoate, monobutyltin oxide and the like; stannous chloride, etc.
  • Inorganic lead compounds organic lead compounds such as lead octenoate; cyclic amines such as triethylenediamine; organic sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, fluorosulfuric acid; sulfuric acid, phosphoric acid, perchloric acid, etc.
  • Inorganic acids; bases such as sodium alcoholate, lithium hydroxide, aluminum alcoholate, sodium hydroxide; titanium compounds such as tetrabutyl titanate, tetraethyl titanate, tetraisopropyl titanate; bismuth compounds; quaternary ammonium salts Etc.
  • organotin compounds are preferred. These catalysts may be used alone or in combination of two or more. The amount of the catalyst used is preferably in the range of 0.001 to 2.0 parts by mass with respect to 100 parts by mass of the polyol.
  • the (meth) acrylate having a hydroxyl group to be added to the urethane prepolymer has one or more hydroxyl groups and is a (meth) acryloyloxy group (CH 2 ⁇ CHCOO— or CH 2 ⁇ C (CH 3 ) COO—). Is a compound having one or more.
  • the (meth) acrylate having a hydroxyl group can be added to the isocyanate group of the urethane prepolymer. Examples of the acrylate having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and pentaerythritol triacrylate. These acrylates having a hydroxyl group may be used alone or in combination of two or more.
  • the glass transition temperature exhibited by the coating layer obtained by curing the resulting photocurable resin composition can be optimized as will be described later. It is possible to obtain a photocurable resin composition capable of exhibiting excellent effects in chemical resistance and dyeing resistance.
  • the photocurable resin composition used for the functional panel of the present invention contains the photopolymerizable oligomer and the photopolymerizable monomer.
  • the blending amount of the photopolymerizable oligomer and the photopolymerizable monomer is usually 70:30 to 30:70, preferably 40:60 to 60:40, in mass ratio. If the amount of the monomer is too small, the viscosity of the resulting photocurable resin composition may increase and applicability may be deteriorated, and chemical resistance and dyeing resistance may not be sufficiently exhibited. Moreover, when there are too many compounding quantities of a monomer, there exists a possibility that the softness
  • the blending amount of the photopolymerizable oligomer and the photopolymerizable monomer is within the above range, the low polarity of the photopolymerizable monomer can be sufficiently exhibited, and the photocurable resin composition can be cured. Thereafter, the glass transition temperature of the coating layer can be maintained at a suitable value. Thereby, it becomes possible to improve the chemical resistance and dyeing resistance of the functional panel due to these SP values and glass transition temperature values. Furthermore, it becomes possible for the photopolymerizable monomer to act as an effective diluent for the photopolymerizable oligomer, and the photocurable resin composition tends to exhibit an appropriate viscosity and can also provide good coating properties. it can.
  • the photocurable resin composition contains, in addition to the photopolymerizable monomer having the predetermined SP value as a monomer, a monomer other than the photopolymerizable monomer, as long as the effects of the present invention are not impaired. May be. That is, when blending other monomers, the SP value calculated from the SP value of each of the other monomers according to the above formula (X) may be within the range of the SP value.
  • a known photopolymerization initiator can be used for the photocurable resin composition.
  • the photopolymerization initiator exhibits an action of initiating polymerization of the above-described photopolymerizable monomer and photopolymerizable oligomer by irradiating with ultraviolet rays.
  • Specific examples of the photopolymerization initiator include 4-dimethylaminobenzoic acid, 4-dimethylaminobenzoic acid ester, 2,2-dimethoxy-2-phenylacetophenone, acetophenone diethyl ketal, alkoxyacetophenone, and benzyldimethyl.
  • Ketal, benzophenone and benzophenone derivatives such as 3,3-dimethyl-4-methoxybenzophenone, 4,4-dimethoxybenzophenone, 4,4-diaminobenzophenone, alkyl benzoylbenzoate, bis (4-dialkylaminophenyl) ketone, benzyl and Benzyl derivatives such as benzyl methyl ketal, benzoin derivatives such as benzoin and benzoin isobutyl ether, benzoin isopropyl ether, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl Nilketone, xanthone, thioxanthone and thioxanthone derivatives, fluorene, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4, 6-trimethylbenzo
  • the blending amount of the photopolymerization initiator in the photocurable composition is an amount in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the photopolymerizable monomer and the photopolymerizable oligomer. desirable.
  • the blending amount of the photopolymerization initiator is 0.1 parts by mass or less, the effect of initiating the polymerization reaction is small. On the other hand, when it exceeds 10 parts by mass, the effect of initiating the polymerization reaction is saturated, while the cost of the raw material is high. Become.
  • the photocurable composition may further contain a photosensitizer if necessary in consideration of required curing reactivity, stability, and the like.
  • the photosensitizer absorbs energy when irradiated with light, and the energy or electrons move to the polymerization initiator to initiate polymerization.
  • Examples of the photosensitizer include p-dimethylaminobenzoic acid isoamyl ester.
  • the blending amount of these photosensitizers is desirably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the photopolymerizable monomer and photopolymerizable oligomer.
  • the photocurable resin composition may contain a polymerization inhibitor as necessary.
  • the polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, p-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butyl-p-cresol, butylhydroxyanisole, Examples include 3-hydroxythiophenol, ⁇ -nitroso- ⁇ -naphthol, p-benzoquinone, 2,5-dihydroxy-p-quinone, and the like.
  • the blending amount of these polymerization inhibitors is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the photopolymerizable monomer and photopolymerizable oligomer.
  • the photocurable resin composition used for forming the coating layer may contain an organic solvent such as ether, ketone, or ester as a diluent solvent.
  • an organic solvent such as ether, ketone, or ester
  • a diluent solvent propylene glycol monomethyl ether acetate (PMA) ), Methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetone, or butyl lactate.
  • PMA propylene glycol monomethyl ether acetate
  • MEK Methyl ethyl ketone
  • MIBK methyl isobutyl ketone
  • acetone or butyl lactate.
  • the above-mentioned photocurable composition is applied to the surface on the substrate as a coating liquid using a diluting solvent as necessary as described above.
  • a known method can be adopted as a coating method, such as gravure coating, roll coating, reverse coating, knife coating, die coating, lip coating, doctor coating, extrusion coating, slide coating, wire bar coating, curtain coating, extrusion. Examples thereof include a coat and a spin coat.
  • the said photocurable composition is apply
  • the glass transition temperature of the formed coating layer is 50 ° C. or higher, preferably 70 ° C. or higher, and more preferably 80 ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly limited, but it is usually preferably 200 ° C. or lower from the viewpoint of easy availability of raw materials.
  • the glass transition temperature of the coating layer is within the above range, it is possible to further improve the chemical resistance and dyeing resistance of the functional panel in combination with the effect caused by the SP value of the photopolymerizable monomer described above. Become. In particular, it exhibits a remarkable effect in dyeing resistance.
  • the surface on the base material layer forming the coating layer may be only one surface or both surfaces of the front surface and the back surface, and may be appropriately selected as necessary.
  • the irradiation amount of light for curing the photocurable composition, when employing ultraviolet light usually, the irradiation intensity 20 ⁇ 2000mW / cm 2, an irradiation amount 100 ⁇ 5000mJ / cm 2.
  • the thickness of the coating layer can be appropriately selected from the required degree of designability and chemical resistance, and is not particularly limited, but is normally assumed to be in the range of 1 ⁇ m to 200 ⁇ m.
  • the ultraviolet curing reaction is a radical reaction, so that it is susceptible to inhibition by oxygen. Therefore, after apply
  • Base material layer As a material of the base material layer used for the functional panel of the present invention, inorganic materials such as slate, concrete, metal, calcium silicate, calcium carbonate, and glass; wood material, polypropylene, polystyrene, polycarbonate, unsaturated polyester resin Organic materials such as these; and composite materials thereof. Among them, a material obtained by adding fibers such as glass fiber and carbon fiber to an organic material, that is, so-called FRP (fiber reinforced plastic) is preferable. Examples of the FRP include an unsaturated polyester resin, a sheet-like sheet molding compound (SMC) containing glass fiber or carbon fiber, a bulky BMC which is a composite material similar to SMC and contains short fibers.
  • SMC sheet-like sheet molding compound
  • FRP is a blend of a thermosetting resin, an organic peroxide (curing agent), a filler, a low shrinkage agent, an internal mold release agent, a reinforcing material, a crosslinking agent, a thickener, and the like. It is used by being put in a mold set at a predetermined temperature and pressurized, and shaped into a shape according to the place to be arranged as a building material.
  • the FRP contains unsaturated polyester as a thermoplastic resin, a filler, and glass fiber or carbon fiber as a reinforcing material, the strength and durability of the entire functional panel obtained can be further improved.
  • Unsaturated polyesters include polybasic unsaturated acids such as maleic anhydride and fumaric acid, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, trimethylene glycol, trimethylpentanediol, neopentyl glycol, trimethylpropane monoallyl. It is produced from polyhydric alcohols such as ether, hydrogenated bisphenol and bisphenol dioxypropyl ether.
  • ⁇ Fillers include calcium carbonate and aluminum hydroxide.
  • Calcium carbonate is preferable from the viewpoint of cost reduction, and aluminum hydroxide is preferable from the viewpoint of improving the chemical resistance of FRP itself.
  • the coating layer is formed, the chemical resistance of the entire functional panel can be sufficiently improved even if FRP using calcium carbonate as a filler is used as the base material.
  • a functional panel having a base material layer made of cost FRP can be easily realized.
  • Glass fibers and carbon fibers as reinforcing materials having a fiber length of about 20 to 50 mm and a fiber diameter of about 5 to 25 ⁇ m are preferably used, and are contained in FRP in an amount of 10 to 70% by mass. Is desirable.
  • the FRP used as the substrate layer is manufactured as an FRP having a predetermined thickness and size by mixing these components and using an FRP manufacturing apparatus or the like.
  • the thickness of a base material layer may be fluctuate
  • the upper limit of the thickness is not particularly limited and can be appropriately selected.
  • the functional panel of the present invention includes the coating layer and the base material layer, and the coating layer is formed on the base material layer.
  • the thickness of the entire functional panel is usually preferably 2.5 mm or more.
  • the upper limit of the thickness of the entire functional panel is not particularly limited, and the coating layer may be formed on both the front surface and the back surface of the base material layer.
  • a multilayer structure in which an intermediate layer made of various materials is formed between these layers may be used.
  • the coating layer exhibits excellent chemical resistance and dyeing resistance as described above, it is desirable to form the coating layer as the outermost surface layer of the functional panel.
  • the undercoat layer for improving the adhesiveness of a base material layer and a coating layer, the decorative layer which provided the pattern and color for improving the designability of a functional panel, etc. are mentioned, for example.
  • the functional panel of the present invention thus obtained is excellent in chemical resistance and dyeing resistance because the above-mentioned specific coating layer is formed on the base material layer, and is irritating including acid and alkali. Even with the use of strong detergents, alteration and deterioration are unlikely to occur. In addition, discoloration and dyeing hardly occur even when a dyeing agent such as a hair color is used. Therefore, the functional panel of the present invention is particularly suitable as a functional panel disposed in a bathroom or kitchen in a house.
  • Example 1 The photocurable resin composition C1 prepared above was applied to the upper surface of a substrate made of FRP (Deckmat (registered trademark) 2415, manufactured by DIC Chemical Co., Ltd.) so as to have a thickness of 20 ⁇ m. Next, UV irradiation (1000 mW / cm 2 , 4000 mJ / cm 2 ) was performed to cure the photocurable resin composition C1 to obtain a functional panel.
  • FRP Carlmat (registered trademark) 2415, manufactured by DIC Chemical Co., Ltd.
  • Examples 2 to 6 A functional panel was obtained in accordance with Example 1 except that each of the photocurable resin compositions C2 to C6 prepared above was used.
  • Glass transition temperature (Tg) is measured using a dynamic viscoelastic device (DMS6100, manufactured by Seiko Instruments Inc.), measuring frequency: 1.0 Hz, temperature rising rate: 3 It was performed under the condition of 0.0 ° C./min.
  • FIG. HCl It was immersed in a 3% by mass HCl aqueous solution for 1 hour. It was immersed in an aqueous NaOH solution having a concentration of 5% by mass of NaOH for 1 hour. BM .... It was immersed in a commercial detergent (Power Spray ⁇ Bus Magiclin (registered trademark), manufactured by Kao Corporation) for 24 hours. These results are shown in Table 2.
  • the photocurable resin composition (C1 to C11) was applied on a glass substrate so as to have a thickness of 1.0 mm. Under a nitrogen atmosphere, UV irradiation (1000 mW / cm 2 , 4000 mJ / cm 2 ) was performed to cure the photocurable resin compositions (C1 to C11), thereby obtaining samples.
  • the functional panel of the present invention exhibits excellent dyeing resistance while maintaining good chemical resistance.
  • a low-polarity photopolymerizable monomer such as isobornyl (meth) acrylate or dimethylol tricyclodecane di (meth) acrylate
  • it is more resistant to staining than when a high-polarity monomer is used.
  • the properties were greatly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Finishing Walls (AREA)

Abstract

Provided is a functional panel which can withstand the damage, alteration, discoloration, and dyeing caused by acid-containing detergents or dyeing materials such as hair dyes, which are coming to be used more frequently in recent years.  The functional panel is characterized by comprising: a coating layer having a glass transition temperature of 50°C or higher obtained by curing a photocurable resin composition obtained from a photopolymerizable monomer having a solubility parameter (SP value) of 20.0 (J/cm3)0.5 or less and a photopolymerizable oligomer; and a base layer.

Description

機能性パネルFunctional panel
 本発明は、特定の光重合性モノマーを含む光硬化性樹脂組成物を用いることにより、耐薬品性および耐染色性を向上させた機能性パネルに関する。 The present invention relates to a functional panel having improved chemical resistance and dye resistance by using a photocurable resin composition containing a specific photopolymerizable monomer.
 建築用資材としての機能性パネルは、建築物の壁面、床面または天井の壁面として配置される部材であり、その配置される場所に応じ、防音効果や湿度調節性などの様々な機能が付与されている。こうした機能性パネルは、特に住宅内における浴室、洗面所または台所などの水廻り用部材として用いられる場合には、より過酷な使用環境下に耐えうる、耐水性、耐湿性など種々の特性を有することが求められる。 Functional panels as building materials are members that are placed as building walls, floors, or ceiling walls. Depending on where they are placed, various functions such as soundproofing and humidity control are added. Has been. Such a functional panel has various characteristics such as water resistance and moisture resistance, which can withstand a harsher use environment, particularly when used as a watering member in a bathroom, washroom or kitchen in a house. Is required.
 たとえば、特許文献1には、基材の表面に形成した下塗塗膜上に、さらに紫外線硬化性アクリレート樹脂塗料からなる上塗塗膜が形成された化粧板が開示されている。この化粧板を上記のような水廻り部材として使用すれば、耐温水性、硬度特性、肉持ち感、耐汚染性等に優れ、膨れや剥がれなどが生じにくいことが示されている。 For example, Patent Document 1 discloses a decorative board in which a top coat film made of an ultraviolet curable acrylate resin paint is further formed on a base coat film formed on the surface of a substrate. It has been shown that if this decorative board is used as a watering member as described above, it is excellent in hot water resistance, hardness characteristics, feeling of flesh, stain resistance, etc., and it is difficult for swelling and peeling to occur.
 一方、近年、住宅内の壁面、特に浴室、洗面所または台所において、酸などを配合した刺激性の強い洗浄剤や、ヘアーカラーなどの染色剤を使用する機会が増しており、これらの薬剤が付着することによって、壁面の変質や劣化が生じるだけでなく、変色や染色をも引き起こされることとなる。変質や劣化の発生は望ましい現象でないことはいうまでもなく、変色が一度発生すれば元の色に戻すことができず、また染色が発生すれば元の色に戻すことが経時的に困難となることからも、変色や染色の発生も望ましい現象ではない。このような場所に配置される機能性パネルとしては、洗浄剤や染色剤の使用に耐え得る、変質や劣化、変色や染色が生じないパネルであることが要求される。 On the other hand, in recent years, there has been an increase in the use of highly irritating detergents containing acids, etc., and dyes such as hair colors on the walls in homes, especially bathrooms, washrooms or kitchens. Adhesion not only causes deterioration and deterioration of the wall surface, but also causes discoloration and staining. Needless to say, the occurrence of alteration or deterioration is not a desirable phenomenon. Once a discoloration has occurred, it cannot be restored to its original color, and once it has been dyed, it is difficult to restore its original color over time. Therefore, the occurrence of discoloration and staining is not a desirable phenomenon. The functional panel disposed in such a place is required to be a panel that can withstand the use of a cleaning agent and a dyeing agent and does not undergo alteration, deterioration, discoloration, and dyeing.
特開平11-20112号公報Japanese Patent Laid-Open No. 11-20112
 しかしながら、特許文献1に開示されるような上塗塗膜が形成された機能性パネルでは、これら洗浄剤や染色剤などに起因する、より過酷な使用環境下におけるパネルとして採用した場合、変質、劣化、変色および染色のすべてに対して必ずしも充分な耐性を発揮し得ず、依然として改善すべき余地があった。 However, in a functional panel formed with a top coat film as disclosed in Patent Document 1, when it is used as a panel under a more severe use environment due to these cleaning agents, dyeing agents, etc., it is altered or deteriorated. However, it did not necessarily exhibit sufficient resistance to all of discoloration and dyeing, and there was still room for improvement.
 そこで、本発明は、近年において使用頻度が増している刺激性の強い洗浄剤やヘアーカラーなどの染色剤によって引き起こされる、変質や劣化の発生のみならず、変色や染色の発生にも耐えうる機能パネルを提供することを目的としている。 Therefore, the present invention has a function that can withstand the occurrence of discoloration and staining as well as the occurrence of deterioration and deterioration caused by staining agents such as highly irritating detergents and hair colors that have been increasingly used in recent years. The purpose is to provide a panel.
 本発明者は、上記課題を解決すべく、特定の溶解パラメーター(SP値)を有する光重合性モノマーを用い、特定のガラス転移温度を示す光硬化性樹脂組成物を採用することで、耐薬品性とともに耐染色性にも優れた機能性パネルが得られることを見出し、本発明を完成させるに至った。 In order to solve the above-mentioned problems, the present inventor uses a photopolymerizable monomer having a specific solubility parameter (SP value) and adopts a photocurable resin composition exhibiting a specific glass transition temperature. As a result, it was found that a functional panel excellent in dyeing resistance as well as the property was obtained, and the present invention was completed.
 すなわち、本発明の機能性パネルは、溶解パラメーター(SP値)が20.0(J/cm3)0.5以下である光重合性モノマーと光重合性オリゴマーとから得られる光硬化性樹脂組成物を硬化させてなる、ガラス転移温度が50℃以上である塗布層、および基材層を含むことを特徴とする。 That is, the functional panel of the present invention comprises a photocurable resin composition obtained from a photopolymerizable monomer having a solubility parameter (SP value) of 20.0 (J / cm 3 ) 0.5 or less and a photopolymerizable oligomer. It comprises a coating layer formed by curing and having a glass transition temperature of 50 ° C. or higher, and a base material layer.
 また、前記光重合性モノマーは、下記式(1)で表されるモノマーであるのが望ましい。
    (CH2=CR1COO)n2  ・・・・・(1)
(式(1)中、R1は水素原子またはメチル基を示し、R2は炭素数5~20のn価の炭化水素基を示す。nは1~4の整数を示す。)
The photopolymerizable monomer is preferably a monomer represented by the following formula (1).
(CH 2 = CR 1 COO) n R 2 (1)
(In Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an n-valent hydrocarbon group having 5 to 20 carbon atoms, and n represents an integer of 1 to 4)
 さらに、前記光重合性モノマーは、イソボルニル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、イソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートからなる群より選ばれる少なくとも1種のモノマーであるのが好ましい。 Further, the photopolymerizable monomer includes isobornyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, isoamyl (meth) acrylate, lauryl (meth) acrylate, Tridecyl (meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, cyclohexanedimethanol di (meth) ) Acrylate, 1,9-nonanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, at least one monomer selected from the group consisting of pentaerythritol tetra (meth) acrylate Is preferred.
 また、前記光重合性モノマーと前記光重合性オリゴマーとの配合量は、質量比で70:30~30:70の量であるのが望ましい。
 さらに、前記基材層は、不飽和ポリエステル樹脂、充填剤およびガラス繊維もしくは炭素繊維を含む材質からなるのが好ましい。
The blending amount of the photopolymerizable monomer and the photopolymerizable oligomer is desirably 70:30 to 30:70 by mass ratio.
Furthermore, the base material layer is preferably made of a material containing an unsaturated polyester resin, a filler, and glass fiber or carbon fiber.
 本発明の機能性パネルは、耐薬品性および耐染色性ともに優れており、酸を含む洗浄剤やヘアーカラーなどの染色剤が付着しても、変質や劣化のみならず変色や染色をも充分に抑止することができる。したがって、本発明の機能性パネルは、住宅内の浴室、洗面所または台所などの水廻り用部材として最適である。また、必ずしも下塗層など他の層の形成を要せず、基材に特定の光硬化性樹脂組成物から形成される塗布層を設けるだけで、充分な耐薬品性および耐染色性に優れた機能性パネルを容易に実現することができる。 The functional panel of the present invention is excellent in both chemical resistance and dyeing resistance, and even if it contains a detergent such as an acid-containing detergent or a hair color, not only alteration or deterioration but also discoloration and dyeing are sufficient. Can be deterred. Therefore, the functional panel of the present invention is optimal as a watering member such as a bathroom, a washroom, or a kitchen in a house. In addition, it is not necessary to form other layers such as an undercoat layer, and it is excellent in sufficient chemical resistance and dye resistance simply by providing a coating layer formed from a specific photocurable resin composition on the base material. The functional panel can be easily realized.
 特に、基材として不飽和ポリエステル樹脂、充填剤およびガラス繊維もしくは炭素繊維を含む素材を採用した際、これらの特性に加え、さらに良好な耐久性をも保持した機能性パネルを得ることができる。 In particular, when a material containing an unsaturated polyester resin, a filler, and glass fiber or carbon fiber is employed as the base material, a functional panel that retains even better durability in addition to these characteristics can be obtained.
 以下、本発明について詳細に説明する。
 本発明の機能性パネルは、溶解パラメーター(SP値)が20.0(J/cm3)0.5以下である光重合性モノマーと光重合性オリゴマーとから得られる光硬化性樹脂組成物を硬化させてなる、ガラス転移温度が50℃以上である塗布層、および基材層を含むことを特徴としている。
Hereinafter, the present invention will be described in detail.
The functional panel of the present invention cures a photocurable resin composition obtained from a photopolymerizable monomer and a photopolymerizable oligomer having a solubility parameter (SP value) of 20.0 (J / cm 3 ) 0.5 or less. And a coating layer having a glass transition temperature of 50 ° C. or higher and a base material layer.
 [光重合性モノマー]
 上記光硬化性樹脂組成物に用いる光重合性モノマーは、溶解パラメーター(SP値)が20.0(J/cm3)0.5以下であることを特徴としている。このSP値(δ)とは、一般に液体のモル蒸発エネルギー(ΔEv)およびモル体積(V)より、次式によって定義される。
   SP値(δ)=(δEv/V)0.5
さらに、SP値はFedors法によれば化学構造のみから推算することができる(「溶解パラメーター値(Solubility Parameter Values)」、ポリマーハンドブック(Polymer Handbook)、第4版(J,Brandrup他編集)参照)。なお、本明細書においてSP値とは、Fedors法よって算出される値を意味し、該値が低いほど光重合性モノマーが低極性であることを示す。上記光重合性モノマーのSP値は、好ましくは19.6(J/cm3)0.5以下、より好ましくは19.4(J/cm3)0.5以下である。SP値の下限値については特に制限されないが、通常17.0(J/cm3)0.5以上である。
[Photopolymerizable monomer]
The photopolymerizable monomer used for the photocurable resin composition is characterized in that the solubility parameter (SP value) is 20.0 (J / cm 3 ) 0.5 or less. The SP value (δ) is generally defined by the following equation from the molar evaporation energy (ΔEv) and the molar volume (V) of the liquid.
SP value (δ) = (δEv / V) 0.5
Furthermore, the SP value can be estimated only from the chemical structure according to the Fedors method (see "Solubility Parameter Values", Polymer Handbook, 4th edition (edited by J, Brandrup et al.)) . In the present specification, the SP value means a value calculated by the Fedors method, and the lower the value, the lower the polarity of the photopolymerizable monomer. The SP value of the photopolymerizable monomer is preferably 19.6 (J / cm 3 ) 0.5 or less, more preferably 19.4 (J / cm 3 ) 0.5 or less. The lower limit of the SP value is not particularly limited, but is usually 17.0 (J / cm 3 ) 0.5 or more.
 このようなSP値を示す光重合性モノマーであると、後述する光重合性オリゴマーとの良好な相溶性を保持しつつ、該モノマー自体が有する極性が有効に低下する。そして用いる光重合性モノマーが低極性であるが故に、これから得られる光重合成樹脂組成物を硬化させて塗布層を形成した際に、硬化後の塗布層自体の反応性を充分に抑制することが可能となるものと推定される。このように、上記塗布層が形成された本発明の機能性パネルは、必要以上に洗浄剤や染色剤などと反応することがなく、良好な耐薬品性および耐染色性を発現することができる。特に耐染色性において顕著な効果を発揮する。 The photopolymerizable monomer exhibiting such an SP value effectively reduces the polarity of the monomer itself while maintaining good compatibility with the photopolymerizable oligomer described below. And, since the photopolymerizable monomer used has low polarity, when the coating layer is formed by curing the photopolymer resin composition obtained therefrom, the reactivity of the coating layer itself after curing is sufficiently suppressed. Is estimated to be possible. As described above, the functional panel of the present invention in which the coating layer is formed does not react with a cleaning agent or a dyeing agent more than necessary, and can exhibit good chemical resistance and dyeing resistance. . In particular, it exhibits a remarkable effect in dyeing resistance.
 上記光重合性モノマーとしては、アクリロイルオキシ基(CH2=CHCOO-)またはメタクロイルオキシ基(CH2=C(CH3)COO-)を1つ以上有する(メタ)アクリレートモノマーが好ましく用いられ、単官能性モノマー、2官能性モノマーおよび多官能性モノマーのいずれであってもよい。 As the photopolymerizable monomer, a (meth) acrylate monomer having at least one acryloyloxy group (CH 2 ═CHCOO—) or methacryloyloxy group (CH 2 ═C (CH 3 ) COO—) is preferably used. Any of a monofunctional monomer, a bifunctional monomer, and a polyfunctional monomer may be sufficient.
 単官能性モノマーとしては、たとえば、イソボルニル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、(メタ)アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、パルミチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリオキシエチレンノニルフェニルエーテルアクリレート、フェノキシエチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート;エーテル骨格(メタ)アクリレート類等が挙げられる。 Examples of the monofunctional monomer include isobornyl (meth) acrylate, bornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, cyclohexyl (meth) ) Alicyclic (meth) acrylate such as acrylate; benzyl (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, (meth) acryloylmorpholine, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate 2-hydroxybutyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate , Amyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) Acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, lauryl (meth) Acrylate, stearyl (meth) acrylate, myristyl (meth) acrylate, palmityl (meth) acrylate, isostearyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate , Butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, polyoxyethylene nonylphenyl ether acrylate, phenoxyethyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, methoxyethylene Glycol (meth) acrylate, ethoxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 7-amino-3, 7-dimethyloctyl (meth) acrylate; ether skeleton (meth) acrylates and the like.
 2官能性モノマーとしては、たとえば、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ビスフェノールAのアルキレンオキシド付加ジオールのジ(メタ)アクリレート、水添ビスフェノールAのアルキレンオキシド付加ジオールのジ(メタ)アクリレート、ビスフェノールAのジグリシジルエーテルに(メタ)アクリレートを付加させたエポキシ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional monomer include ethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6. -Hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, dimethylol tricyclodecandi (Meth) acrylate, di (meth) acrylate of bisphenol A alkylene oxide addition diol, di (meth) acrylate of hydrogenated bisphenol A alkylene oxide addition diol, diglycidyl bisphenol A Ether (meth) epoxy obtained by adding acrylate (meth) acrylate.
 多官能性モノマーとしては、たとえば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールモノヒドロキシペンタ(メタ)アクリレート等が挙げられる。
これら光重合性モノマーは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
Examples of the multifunctional monomer include trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples include tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and dipentaerythritol monohydroxypenta (meth) acrylate.
These photopolymerizable monomers may be used alone or in combination of two or more.
 なお、2種以上の光重合性モノマーを用いた場合のSP値は、該モノマーが有するSP値に各々のモノマーが有するSP値に各配合割合(モノマー全量を1とした場合の各モノマーの割合)を乗じ、これらを加算した値を意味する。たとえば、光重合性モノマー全量1に対し、SP値19.0の光重合性モノマーを3/4、SP値21.0の光重合性モノマーを1/4の量で配合した場合、下記式(X)にしたがって、用いた光重合性モノマー全体のSP値が求められる。
 光重合性モノマーのSP値=(19.0×3/4)+(21.0×1/4)=19.5・・・(X)
In addition, SP value at the time of using 2 or more types of photopolymerizable monomers is the SP value of each monomer in the SP value of each monomer, and the blending ratio (ratio of each monomer when the total amount of monomers is 1). ) And the sum of these values. For example, when a photopolymerizable monomer having an SP value of 19.0 is blended in an amount of 3/4 and a photopolymerizable monomer having an SP value of 21.0 is blended in an amount of 1/4 with respect to the total amount of photopolymerizable monomers, the following formula ( According to X), the SP value of the entire photopolymerizable monomer used is determined.
SP value of photopolymerizable monomer = (19.0 × 3/4) + (21.0 × 1/4) = 19.5 (X)
 上記光重合性モノマーのなかでも、下記式(1)で表されるモノマーであるのが好ましい。
    (CH2=CR1COO)n2  ・・・・・(1)
Among the photopolymerizable monomers, a monomer represented by the following formula (1) is preferable.
(CH 2 = CR 1 COO) n R 2 (1)
 上記式(1)中、R1は水素原子またはメチル基を示す。
 上記式(1)中、R2は炭素数5~20のn価の炭化水素基を示し、ヘテロ原子を含まず、鎖状であっても環状であってもよい。また、基中の-CH2-は、-CH=CH-で置き換えられてもよい。nは1~4の整数を示す。
In said formula (1), R < 1 > shows a hydrogen atom or a methyl group.
In the above formula (1), R 2 represents an n-valent hydrocarbon group having 5 to 20 carbon atoms, does not include a hetero atom, and may be a chain or a ring. Further, —CH 2 — in the group may be replaced with —CH═CH—. n represents an integer of 1 to 4.
 すなわち、上記式(1)において、たとえば鎖状であって飽和モノマーである場合、n=1のときにR2は炭素数5~20のアルキル基となり、n=2のときにR2は炭素数5~20のアルキレン基となる。さらに、鎖状であって飽和モノマーである場合、n=3のときにR2は炭素数5~20のアルカントリイル基となり、n=4のときに炭素数5~20のアルカンテトライル基となる。このようなR2としては、たとえば、-CH2CH3、-CH2CH2CH3、-CH(CH3)CH3、シクロヘキシル基、シクロヘプタン基、シクロオクタン基、シクロノナン基、シクロデカン基等のアルキル基、-CH2CH2-、-CH2CH2CH2-、-CH(CH3)CH2-等のアルキレン基、下記式(2)で表されるようなアルカントリイル基、下記式(3)で表されるようなアルカンテトライル基などがある。 That is, in the above formula (1), for example, in the case of a chain and a saturated monomer, when n = 1, R 2 is an alkyl group having 5 to 20 carbon atoms, and when n = 2, R 2 is carbon. It becomes an alkylene group of several 5 to 20. Further, when it is a chain and a saturated monomer, R 2 becomes an alkanetriyl group having 5 to 20 carbon atoms when n = 3, and an alkanetetrayl group having 5 to 20 carbon atoms when n = 4. It becomes. Examples of such R 2 include —CH 2 CH 3 , —CH 2 CH 2 CH 3 , —CH (CH 3 ) CH 3 , cyclohexyl group, cycloheptane group, cyclooctane group, cyclononane group, cyclodecane group and the like. An alkyl group, an alkylene group such as —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH (CH 3 ) CH 2 —, an alkanetriyl group represented by the following formula (2), There is an alkanetetrayl group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 R2の炭素数が5未満であると、鎖状の炭化水素基の場合にはモノマーのSP値が上昇する傾向にあり、環状の炭化水素基の場合には入手自体が困難となる。また、R2の炭素数が20を超えると、鎖状の炭化水素基の場合には得られる光硬化性樹脂組成物のガラス転移温度が低下する傾向にあり、環状の炭化水素基の場合には得られる光硬化性樹脂組成物の架橋密度が低下する傾向にある。仮に、架橋密度が必要以上に低下すると、ヘアーカラーなどの染色剤が塗布層内部に浸出しやすくなるため、パネルが染色されてしまうおそれがある。 When the carbon number of R 2 is less than 5, the SP value of the monomer tends to increase in the case of a chain hydrocarbon group, and the acquisition itself becomes difficult in the case of a cyclic hydrocarbon group. Moreover, when the carbon number of R 2 exceeds 20, in the case of a chain hydrocarbon group, the glass transition temperature of the resulting photocurable resin composition tends to decrease, and in the case of a cyclic hydrocarbon group, Tends to lower the crosslink density of the resulting photocurable resin composition. If the crosslink density is lowered more than necessary, a staining agent such as a hair color is likely to be leached into the coating layer, and the panel may be dyed.
 上記式(1)で表されるモノマーとしては、具体的には、イソボルニル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、イソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートが挙げられる。なかでも、ガラス転移温度を向上させる観点から、環状の炭化水素基を有するモノマーが好ましく、イソボルニル(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレートがより好ましい。このようなモノマーであると、より好適なSP値を有するために良好な低極性を示す傾向にあり、得られる機能性パネルの耐薬品性および耐染色性をさらに向上させることが可能となる。また、後述する光重合性オリゴマーの反応性希釈剤としての機能を有効に発揮することもできる。 Specific examples of the monomer represented by the above formula (1) include isobornyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethyloltricyclodecane di (meth) acrylate, and isoamyl (meta). ) Acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, neopentyl glycol di (meth) ) Acrylate, cyclohexanedimethanol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate. Among these, from the viewpoint of improving the glass transition temperature, a monomer having a cyclic hydrocarbon group is preferable, and isobornyl (meth) acrylate and dimethyloltricyclodecanedi (meth) acrylate are more preferable. Such a monomer tends to exhibit good low polarity since it has a more suitable SP value, and it is possible to further improve the chemical resistance and dyeing resistance of the resulting functional panel. Moreover, the function as a reactive diluent of the photopolymerizable oligomer mentioned later can also be exhibited effectively.
 また、上記光重合性モノマーの官能基数は、通常1~6、好ましくは1~4である。なお、ここで官能基数とは、上記官能基の数を複数の分子から求め、これらを平均して1分子中に有する官能基の数として換算した値を意味する。官能基数が1である場合、架橋密度が上昇する傾向にあるが、ガラス転移温度を上げることで良好な耐薬品性および耐染色性を発揮する塗布層が形成された機能性パネルを得ることができる。この際にガラス転移温度を上げるには、環状構造を有する光重合性モノマーであるのが好ましい。一方、官能基数が2~6、好ましくは2~4であると、光硬化性組成物の架橋反応を適度に保持することができる傾向にあるため、特に染色剤が塗布層内部に浸出してパネルが染色される現象をより有効に抑止しやすくなるものと推定される。したがってこの場合にも、耐薬品性および耐染色性を保持したまま、好適な硬化性を有する塗布層が形成された機能性パネルを得ることができる。 Further, the number of functional groups of the photopolymerizable monomer is usually 1 to 6, preferably 1 to 4. In addition, the number of functional groups means here the value which calculated | required the number of the said functional groups from several molecules, and averaged these and converted it as the number of the functional groups which have in 1 molecule. When the number of functional groups is 1, the crosslinking density tends to increase, but by increasing the glass transition temperature, it is possible to obtain a functional panel formed with a coating layer that exhibits good chemical resistance and dye resistance. it can. In this case, a photopolymerizable monomer having a cyclic structure is preferable for increasing the glass transition temperature. On the other hand, if the number of functional groups is 2 to 6, preferably 2 to 4, the crosslinking reaction of the photocurable composition tends to be appropriately maintained. It is presumed that the phenomenon that the panel is stained can be more effectively suppressed. Therefore, also in this case, it is possible to obtain a functional panel in which a coating layer having suitable curability is formed while maintaining chemical resistance and dye resistance.
 [光重合性オリゴマー]
 上記光硬化性樹脂組成物に用いる光重合性オリゴマーとしては、具体的には、たとえば、ウレタン系(メタ)アクリレートオリゴマー、エポキシ系(メタ)アクリレートオリゴマー、エーテル系(メタ)アクリレートオリゴマー、エステル系(メタ)アクリレートオリゴマー、ポリカーボネート系(メタ)アクリレートオリゴマー、フッ素系(メタ)アクリレートオリゴマー、シリコーン系(メタ)アクリレートオリゴマー等が挙げられる。これら光重合性オリゴマーは、ポリエチレングリコール、ポリオキシプロピレングリコール、ポリテトラメチレンエーテルグリコール、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、多価アルコールとε-カプロラクトンの付加物等と、(メタ)アクリル酸との反応により、あるいはポリイソシアネート化合物及び水酸基を有する(メタ)アクリレート化合物をウレタン化することにより合成することができる。
[Photopolymerizable oligomer]
Specific examples of the photopolymerizable oligomer used in the photocurable resin composition include a urethane (meth) acrylate oligomer, an epoxy (meth) acrylate oligomer, an ether (meth) acrylate oligomer, and an ester ( Examples include meth) acrylate oligomers, polycarbonate-based (meth) acrylate oligomers, fluorine-based (meth) acrylate oligomers, and silicone-based (meth) acrylate oligomers. These photopolymerizable oligomers include polyethylene glycol, polyoxypropylene glycol, polytetramethylene ether glycol, bisphenol A type epoxy resin, phenol novolac type epoxy resin, adducts of polyhydric alcohol and ε-caprolactone, and (meth) acrylic. It can be synthesized by reaction with an acid or by urethanizing a polyisocyanate compound and a (meth) acrylate compound having a hydroxyl group.
 上記光重合性オリゴマーは、単官能オリゴマー、2官能オリゴマー、多官能オリゴマーのいずれであってもよく、得られる光硬化性樹脂組成物の適度な架橋密度を実現させる観点から、多官能オリゴマーであるのが好ましい。 The photopolymerizable oligomer may be a monofunctional oligomer, a bifunctional oligomer, or a polyfunctional oligomer, and is a polyfunctional oligomer from the viewpoint of realizing an appropriate crosslinking density of the resulting photocurable resin composition. Is preferred.
 これら光重合性オリゴマーの中でも、機能性パネルとして耐薬品性および耐染色性以外の好適な特性を付与する観点から、ウレタン系(メタ)アクリレートオリゴマーが好ましい。ウレタン系(メタ)アクリレートオリゴマーは、たとえば、ポリオールとポリイソシアネートとからウレタンプレポリマーを合成し、該ウレタンプレポリマーに水酸基を有する(メタ)アクリレートを付加させることによって製造することができ、カーボネート骨格を有するウレタン系(メタ)アクリレートオリゴマーであってもよい。 Among these photopolymerizable oligomers, urethane (meth) acrylate oligomers are preferable from the viewpoint of imparting suitable properties other than chemical resistance and dye resistance as a functional panel. A urethane-based (meth) acrylate oligomer can be produced, for example, by synthesizing a urethane prepolymer from a polyol and a polyisocyanate, and adding a (meth) acrylate having a hydroxyl group to the urethane prepolymer. It may be a urethane-based (meth) acrylate oligomer.
 上記ウレタンプレポリマーの合成に用いるポリオールは、水酸基(OH基)を複数有する化合物であり、具体的には、ポリエーテルポリオール、ポリエステルポリオール、ポリテトラメチレングリコール、ポリブタジエンポリオール、アルキレンオキサイド変性ポリブタジエンポリオール及びポリイソプレンポリオール等が挙げられる。これらポリオールは、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なお、上記ポリエーテルポリオールは付加重合により得ることができ、例えば、エチレングリコール、プロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコールに、エチレンオキシドやプロピレンオキシド等のアルキレンオキサイドを付加させる。また、開環重合によりポリエーテルポリオールを得ることもでき、このようなポリエーテルポリオールとしては、例えば、テトラヒドロフラン(THF)の開環重合により得られるポリテトラメチレングリコールが挙げられる。 The polyol used for the synthesis of the urethane prepolymer is a compound having a plurality of hydroxyl groups (OH groups). Specifically, polyether polyol, polyester polyol, polytetramethylene glycol, polybutadiene polyol, alkylene oxide-modified polybutadiene polyol and polyoxypolyol. Examples include isoprene polyol. These polyols may be used alone or in combination of two or more. The polyether polyol can be obtained by addition polymerization. For example, an alkylene oxide such as ethylene oxide or propylene oxide is added to a polyhydric alcohol such as ethylene glycol, propylene glycol, glycerin, trimethylolpropane, pentaerythritol, or sorbitol. Let Moreover, polyether polyol can also be obtained by ring-opening polymerization, and examples of such polyether polyol include polytetramethylene glycol obtained by ring-opening polymerization of tetrahydrofuran (THF).
 上記ポリエステルポリオールも付加重合により得ることができ、例えば、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、プロピレングリコール、トリメチロールエタン、トリメチロールプロパン等の多価アルコールと、アジピン酸、グルタル酸、コハク酸、セバシン酸、ピメリン酸、スベリン酸等の多価カルボン酸とから得られる。また、開環重合によりポリエステルポリオールを得ることもでき、このようなポリエステルポリオールとしては、ε-カプロラクトンの開環重合により得られるラクトン系ポリエステルポリオールが挙げられる。 The polyester polyol can also be obtained by addition polymerization, for example, a polyhydric alcohol such as ethylene glycol, diethylene glycol, 1,4-butanediol, 1,6-hexanediol, propylene glycol, trimethylolethane, trimethylolpropane, It can be obtained from polyvalent carboxylic acids such as adipic acid, glutaric acid, succinic acid, sebacic acid, pimelic acid and suberic acid. A polyester polyol can also be obtained by ring-opening polymerization, and examples of such polyester polyol include lactone-based polyester polyols obtained by ring-opening polymerization of ε-caprolactone.
 上記ポリイソシアネートは、イソシアネート基(NCO基)を複数有する化合物であり、具体的には、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、粗製ジフェニルメタンジイソシアネート(クルードMDI)、イソホロンジイソシアネート(IPDI)、水素添加ジフェニルメタンジイソシアネート、水素添加トリレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)や、これらのイソシアヌレート変性物、カルボジイミド変性物、グリコール変性物等が挙げられる。これらポリイソシアネートは、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。 The polyisocyanate is a compound having a plurality of isocyanate groups (NCO groups), specifically, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), crude diphenylmethane diisocyanate (crude MDI), isophorone diisocyanate (IPDI), Examples include hydrogenated diphenylmethane diisocyanate, hydrogenated tolylene diisocyanate, hexamethylene diisocyanate (HDI), isocyanurate-modified products, carbodiimide-modified products, and glycol-modified products. These polyisocyanates may be used alone or in combination of two or more.
 上記ウレタンプレポリマーの合成においては、ウレタン化反応用の触媒を用いることが好ましい。該ウレタン化反応用触媒としては、ジブチルスズジラウレート、ジブチルスズジアセテート、ジブチルスズチオカルボキシレート、ジブチルスズジマレエート、ジオクチルスズチオカルボキシレート、オクテン酸スズ、モノブチルスズオキシド等の有機スズ化合物;塩化第一スズ等の無機スズ化合物;オクテン酸鉛等の有機鉛化合物;トリエチレンジアミン等の環状アミン類;p-トルエンスルホン酸、メタンスルホン酸、フルオロ硫酸等の有機スルホン酸;硫酸、リン酸、過塩素酸等の無機酸;ナトリウムアルコラート、水酸化リチウム、アルミニウムアルコラート、水酸化ナトリウム等の塩基類;テトラブチルチタネート、テトラエチルチタネート、テトライソプロピルチタネート等のチタン化合物;ビスマス化合物;四級アンモニウム塩等が挙げられる。これら触媒の中でも、有機スズ化合物が好ましい。これら触媒は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。上記触媒の使用量は、上記ポリオール100質量部に対して0.001~2.0質量部の範囲の量であるのが好ましい。 In the synthesis of the urethane prepolymer, a catalyst for urethanization reaction is preferably used. Examples of the catalyst for urethanization reaction include dibutyltin dilaurate, dibutyltin diacetate, dibutyltin thiocarboxylate, dibutyltin dimaleate, dioctyltin thiocarboxylate, tin octenoate, monobutyltin oxide and the like; stannous chloride, etc. Inorganic lead compounds; organic lead compounds such as lead octenoate; cyclic amines such as triethylenediamine; organic sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, fluorosulfuric acid; sulfuric acid, phosphoric acid, perchloric acid, etc. Inorganic acids; bases such as sodium alcoholate, lithium hydroxide, aluminum alcoholate, sodium hydroxide; titanium compounds such as tetrabutyl titanate, tetraethyl titanate, tetraisopropyl titanate; bismuth compounds; quaternary ammonium salts Etc. Of these catalysts, organotin compounds are preferred. These catalysts may be used alone or in combination of two or more. The amount of the catalyst used is preferably in the range of 0.001 to 2.0 parts by mass with respect to 100 parts by mass of the polyol.
 また、上記ウレタンプレポリマーに付加させる水酸基を有する(メタ)アクリレートは、水酸基を1つ以上有し、(メタ)アクリロイルオキシ基(CH2=CHCOO-またはCH2=C(CH3)COO-)を1つ以上有する化合物である。該水酸基を有する(メタ)アクリレートは、上記ウレタンプレポリマーのイソシアネート基に付加することができる。該水酸基を有するアクリレートとしては、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、ペンタエリスリトールトリアクリレート等が挙げられる。これら水酸基を有するアクリレートは、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。 The (meth) acrylate having a hydroxyl group to be added to the urethane prepolymer has one or more hydroxyl groups and is a (meth) acryloyloxy group (CH 2 ═CHCOO— or CH 2 ═C (CH 3 ) COO—). Is a compound having one or more. The (meth) acrylate having a hydroxyl group can be added to the isocyanate group of the urethane prepolymer. Examples of the acrylate having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and pentaerythritol triacrylate. These acrylates having a hydroxyl group may be used alone or in combination of two or more.
 このような光重合性オリゴマーを上記光重合性モノマーとともに配合することにより、後述するように、得られる光硬化性樹脂組成物を硬化させた塗布層が示すガラス転移温度を最適化することができ、耐薬品性および耐染色性に優れた効果を発揮し得る光硬化性樹脂組成物を得ることができる。 By blending such a photopolymerizable oligomer with the above photopolymerizable monomer, the glass transition temperature exhibited by the coating layer obtained by curing the resulting photocurable resin composition can be optimized as will be described later. It is possible to obtain a photocurable resin composition capable of exhibiting excellent effects in chemical resistance and dyeing resistance.
 [光硬化性樹脂組成物]
 本発明の機能性パネルに用いられる光硬化性樹脂組成物は、上記光重合性オリゴマーと上記光重合性モノマーとを含有している。これら光重合性オリゴマーと光重合性モノマーとの配合量は、質量比で、通常70:30~30:70、好ましくは40:60~60:40の量である。モノマーの配合量が少なすぎると、得られる光硬化性樹脂組成物の粘度が上昇して塗布性が悪化するおそれがあるとともに、耐薬品性および耐染色性を充分に発揮できない可能性がある。また、モノマーの配合量が多すぎると、塗膜の柔軟性が低下して脆性が高くなるおそれがある。したがって、光重合性オリゴマーと光重合性モノマーとの配合量が上記範囲内であると、光重合性モノマーが有する低極性を充分に発揮させることができるとともに、光硬化性樹脂組成物を硬化させた後の塗布層のガラス転移温度を好適な値に保持させることができる。これにより、これらSP値およびガラス転移温度の数値に起因する、機能性パネルの耐薬品性および耐染色性を向上させることが可能となる。さらに、光重合性モノマーが光重合性オリゴマーに対して有効な希釈剤として作用することも可能となり、光硬化性樹脂組成物が適度な粘度を呈しやすく、良好な塗布性をも付与することができる。
[Photocurable resin composition]
The photocurable resin composition used for the functional panel of the present invention contains the photopolymerizable oligomer and the photopolymerizable monomer. The blending amount of the photopolymerizable oligomer and the photopolymerizable monomer is usually 70:30 to 30:70, preferably 40:60 to 60:40, in mass ratio. If the amount of the monomer is too small, the viscosity of the resulting photocurable resin composition may increase and applicability may be deteriorated, and chemical resistance and dyeing resistance may not be sufficiently exhibited. Moreover, when there are too many compounding quantities of a monomer, there exists a possibility that the softness | flexibility of a coating film may fall and brittleness may become high. Therefore, when the blending amount of the photopolymerizable oligomer and the photopolymerizable monomer is within the above range, the low polarity of the photopolymerizable monomer can be sufficiently exhibited, and the photocurable resin composition can be cured. Thereafter, the glass transition temperature of the coating layer can be maintained at a suitable value. Thereby, it becomes possible to improve the chemical resistance and dyeing resistance of the functional panel due to these SP values and glass transition temperature values. Furthermore, it becomes possible for the photopolymerizable monomer to act as an effective diluent for the photopolymerizable oligomer, and the photocurable resin composition tends to exhibit an appropriate viscosity and can also provide good coating properties. it can.
 なお、上記光硬化性樹脂組成物は、モノマーとして上記所定のSP値を有する光重合性モノマーのほか、本発明の効果を損なわない範囲内で、さらに上記光重合性モノマー以外のモノマーを含有してもよい。すなわち、他のモノマーを配合する場合、他のモノマー各々のSP値から上記式(X)にしたがって算出されるSP値が、上記SP値の範囲内であればよい。 The photocurable resin composition contains, in addition to the photopolymerizable monomer having the predetermined SP value as a monomer, a monomer other than the photopolymerizable monomer, as long as the effects of the present invention are not impaired. May be. That is, when blending other monomers, the SP value calculated from the SP value of each of the other monomers according to the above formula (X) may be within the range of the SP value.
 上記光硬化性樹脂組成物には、公知の光重合開始剤を用いることができる。該光重合開始剤は紫外線を照射させることによって、上述した光重合性モノマーと光重合性オリゴマーとの重合を開始させる作用を奏する。該光重合開始剤としては、具体的には、たとえば、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸エステル、2,2-ジメトキシ-2-フェニルアセトフェノン、アセトフェノンジエチルケタール、アルコキシアセトフェノン、ベンジルジメチルケタール、ベンゾフェノンおよび3,3-ジメチル-4-メトキシベンゾフェノン、4,4-ジメトキシベンゾフェノン、4,4-ジアミノベンゾフェノン等のベンゾフェノン誘導体、ベンゾイル安息香酸アルキル、ビス(4-ジアルキルアミノフェニル)ケトン、ベンジル及びベンジルメチルケタール等のベンジル誘導体、ベンゾイン及びベンゾインイソブチルエーテル等のベンゾイン誘導体、ベンゾインイソプロピルエーテル、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、キサントン、チオキサントン及びチオキサントン誘導体、フルオレン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1,2-ベンジル-2-ジメチルアミノ-1-(モルホリノフェニル)-ブタノン-1等が挙げられる。これら光重合開始剤は、1種単独で用いてもよく、2種以上を併用してもよい。上記光硬化性組成物における光重合開始剤の配合量は、上記光重合性モノマーおよび光重合性オリゴマーの合計100質量部に対して、0.1~10質量部の範囲の量であるのが望ましい。 A known photopolymerization initiator can be used for the photocurable resin composition. The photopolymerization initiator exhibits an action of initiating polymerization of the above-described photopolymerizable monomer and photopolymerizable oligomer by irradiating with ultraviolet rays. Specific examples of the photopolymerization initiator include 4-dimethylaminobenzoic acid, 4-dimethylaminobenzoic acid ester, 2,2-dimethoxy-2-phenylacetophenone, acetophenone diethyl ketal, alkoxyacetophenone, and benzyldimethyl. Ketal, benzophenone and benzophenone derivatives such as 3,3-dimethyl-4-methoxybenzophenone, 4,4-dimethoxybenzophenone, 4,4-diaminobenzophenone, alkyl benzoylbenzoate, bis (4-dialkylaminophenyl) ketone, benzyl and Benzyl derivatives such as benzyl methyl ketal, benzoin derivatives such as benzoin and benzoin isobutyl ether, benzoin isopropyl ether, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl Nilketone, xanthone, thioxanthone and thioxanthone derivatives, fluorene, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4, 6-trimethylbenzoyl) -phenylphosphine oxide, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1,2-benzyl-2-dimethylamino-1- (morpholinophenyl) -butanone- 1 etc. are mentioned. These photopolymerization initiators may be used alone or in combination of two or more. The blending amount of the photopolymerization initiator in the photocurable composition is an amount in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the photopolymerizable monomer and the photopolymerizable oligomer. desirable.
 光重合開始剤の配合量が0.1質量部以下では、重合反応を開始させる効果が小さく、一方、10質量部を超えると、重合反応を開始させる効果が飽和する一方、原料のコストが高くなる。 When the blending amount of the photopolymerization initiator is 0.1 parts by mass or less, the effect of initiating the polymerization reaction is small. On the other hand, when it exceeds 10 parts by mass, the effect of initiating the polymerization reaction is saturated, while the cost of the raw material is high. Become.
 また、上記光硬化性組成物には、求められる硬化反応性や安定性等を考慮し、必要に応じてさらに光増感剤を含有させてもよい。該光増感剤は、光を照射させることによって、エネルギーを吸収し、該エネルギーまたは電子が重合開始剤に移動して、重合を開始させる作用を有する。該光増感剤としては、p-ジメチルアミノ安息香酸イソアミルエステル等が挙げられる。これら光増感剤の配合量は、上記光重合性モノマーおよび光重合性オリゴマーの合計100質量部に対して、0.1~10質量部の範囲の量であるのが望ましい。 In addition, the photocurable composition may further contain a photosensitizer if necessary in consideration of required curing reactivity, stability, and the like. The photosensitizer absorbs energy when irradiated with light, and the energy or electrons move to the polymerization initiator to initiate polymerization. Examples of the photosensitizer include p-dimethylaminobenzoic acid isoamyl ester. The blending amount of these photosensitizers is desirably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the photopolymerizable monomer and photopolymerizable oligomer.
 さらに、上記光硬化性樹脂組成物には、求められる硬化反応性や安定性等を考慮し、必要に応じて重合禁止剤を含有させてもよい。該重合禁止剤としては、ハイドロキノン、ハイドロキノンモノメチルエ-テル、p-メトキシフェノール、2,4-ジメチル-6-t-ブチルフェノール、2,6-ジ-t-ブチル-p-クレゾール、ブチルヒドロキシアニソール、3-ヒドロキシチオフェノール、α-ニトロソ-β-ナフトール、p-ベンゾキノン、2,5-ジヒドロキシ-p-キノン等が挙げられる。これら重合禁止剤の配合量は、上記光重合性モノマーおよび光重合性オリゴマーの合計100質量部に対して、0.1~10質量部の範囲の量であるのが望ましい。 Furthermore, in consideration of the required curing reactivity and stability, the photocurable resin composition may contain a polymerization inhibitor as necessary. Examples of the polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, p-methoxyphenol, 2,4-dimethyl-6-t-butylphenol, 2,6-di-t-butyl-p-cresol, butylhydroxyanisole, Examples include 3-hydroxythiophenol, α-nitroso-β-naphthol, p-benzoquinone, 2,5-dihydroxy-p-quinone, and the like. The blending amount of these polymerization inhibitors is preferably in the range of 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the photopolymerizable monomer and photopolymerizable oligomer.
 また、上記塗布層の形成に用いる光硬化性樹脂組成物は、希釈溶媒としてエーテル、ケトン、エステル等の有機溶媒を含有していてもよく、該有機溶媒としては、プロピレングリコールモノメチルエーテルアセテート(PMA)、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセトン、または乳酸ブチル等が挙げられる。これらの希釈溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In addition, the photocurable resin composition used for forming the coating layer may contain an organic solvent such as ether, ketone, or ester as a diluent solvent. As the organic solvent, propylene glycol monomethyl ether acetate (PMA) ), Methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), acetone, or butyl lactate. These diluent solvents may be used alone or in combination of two or more.
 上記光硬化性組成物は、上述のとおり必要に応じて希釈溶媒を用い、塗布液状としてこれを基材上の面に塗布する。塗布する方法には公知の方法を採用することができ、グラビアコート、ロールコート、リバースコート、ナイフコート、ダイコート、リップコート、ドクターコート、エクストルージョンコート、スライドコート、ワイヤーバーコート、カーテンコート、押出コート、スピンコート等が挙げられる。 The above-mentioned photocurable composition is applied to the surface on the substrate as a coating liquid using a diluting solvent as necessary as described above. A known method can be adopted as a coating method, such as gravure coating, roll coating, reverse coating, knife coating, die coating, lip coating, doctor coating, extrusion coating, slide coating, wire bar coating, curtain coating, extrusion. Examples thereof include a coat and a spin coat.
 [塗布層]
 上記光硬化性組成物を基材上に塗布し、次いで光硬化させることによって、基材層上に塗布層を形成する。形成された塗布層のガラス転移温度は、50℃以上であり、70℃以上であるのが好ましく、80℃以上であるのがより好ましい。ガラス転移温度の上限値は特に制限されないが、原料入手の容易性等の観点からすれば、通常200℃以下であるのが望ましい。塗布層のガラス転移温度が上記範囲内であると、上述した光重合性モノマーが有するSP値に起因する効果と相まって、機能性パネルの耐薬品性および耐染色性をより向上させることが可能となる。特に耐染色性において顕著な効果を発揮する。
[Coating layer]
The said photocurable composition is apply | coated on a base material, Then, an application layer is formed on a base material layer by carrying out photocuring. The glass transition temperature of the formed coating layer is 50 ° C. or higher, preferably 70 ° C. or higher, and more preferably 80 ° C. or higher. The upper limit of the glass transition temperature is not particularly limited, but it is usually preferably 200 ° C. or lower from the viewpoint of easy availability of raw materials. When the glass transition temperature of the coating layer is within the above range, it is possible to further improve the chemical resistance and dyeing resistance of the functional panel in combination with the effect caused by the SP value of the photopolymerizable monomer described above. Become. In particular, it exhibits a remarkable effect in dyeing resistance.
 上記塗布した光硬化性組成物を光硬化させる方法としては、紫外線を照射させる方法が一般的である。塗布層を形成する基材層上の面は、表面および裏面のうち、一方の面だけであっても双方の面であってもよく、必要に応じて適宜選択すればよい。なお、光硬化性組成物を硬化させる際の光の照射量は、紫外線を採用する場合、通常、照射強度20~2000mW/cm2、照射量100~5000mJ/cm2である。 As a method of photocuring the applied photocurable composition, a method of irradiating ultraviolet rays is common. The surface on the base material layer forming the coating layer may be only one surface or both surfaces of the front surface and the back surface, and may be appropriately selected as necessary. The irradiation amount of light for curing the photocurable composition, when employing ultraviolet light, usually, the irradiation intensity 20 ~ 2000mW / cm 2, an irradiation amount 100 ~ 5000mJ / cm 2.
 上記塗布層の厚さは、要求される意匠性や耐薬品性の程度から適宜選択し得るものであり、特に限定されないが、通常1μm~200μmの範囲の厚さであると想定される。 The thickness of the coating layer can be appropriately selected from the required degree of designability and chemical resistance, and is not particularly limited, but is normally assumed to be in the range of 1 μm to 200 μm.
 なお、紫外線を照射する場合、紫外線硬化反応はラジカル反応であるため、酸素による阻害を受けやすい。そのため、上記光硬化性組成物を基材に塗布した後、酸素との接触を回避し得るよう、窒素雰囲気下で該組成物を硬化させてもよい。 In addition, when irradiating with ultraviolet rays, the ultraviolet curing reaction is a radical reaction, so that it is susceptible to inhibition by oxygen. Therefore, after apply | coating the said photocurable composition to a base material, you may harden this composition in nitrogen atmosphere so that a contact with oxygen can be avoided.
 [基材層]
 本発明の機能性パネルに用いられる基材層の材質としては、スレート、コンクリート、金属、珪酸カルシウム、炭酸カルシウム、ガラス等の無機質材;木質材のほか、ポリプロピレン、ポリスチレン、ポリカーボネート、不飽和ポリエステル樹脂等の有機質材;およびこれらの複合材が挙げられる。なかでも、有機質剤にガラス繊維や炭素繊維などの繊維を加えた材質、いわゆるFRP(繊維強化プラスチック)であるのが好ましい。FRPとしては、不飽和ポリエステル樹脂、充填剤およびガラス繊維もしくは炭素繊維を含むシート状のシートモールディングコンパウンド(SMC)、SMCと同様の複合材であって短繊維を含む塊状のBMCなどが挙げられる。一般に、FRPは、熱硬化性樹脂、有機過酸化物(硬化剤)、充填剤、低収縮剤、内部離型剤、強化材、架橋剤、および増粘剤などを配合したものであって、所定の温度に設定した金型内に入れて加圧し、建材として配置する場所に応じた形状に成形して用いられるものである。なかでも、熱可塑性樹脂として不飽和ポリエステル、充填剤、および強化材としてガラス繊維もしくは炭素繊維を含むFRPであると、得られる機能性パネル全体の強度および耐久性等をより向上させることができる。
[Base material layer]
As a material of the base material layer used for the functional panel of the present invention, inorganic materials such as slate, concrete, metal, calcium silicate, calcium carbonate, and glass; wood material, polypropylene, polystyrene, polycarbonate, unsaturated polyester resin Organic materials such as these; and composite materials thereof. Among them, a material obtained by adding fibers such as glass fiber and carbon fiber to an organic material, that is, so-called FRP (fiber reinforced plastic) is preferable. Examples of the FRP include an unsaturated polyester resin, a sheet-like sheet molding compound (SMC) containing glass fiber or carbon fiber, a bulky BMC which is a composite material similar to SMC and contains short fibers. In general, FRP is a blend of a thermosetting resin, an organic peroxide (curing agent), a filler, a low shrinkage agent, an internal mold release agent, a reinforcing material, a crosslinking agent, a thickener, and the like. It is used by being put in a mold set at a predetermined temperature and pressurized, and shaped into a shape according to the place to be arranged as a building material. In particular, when the FRP contains unsaturated polyester as a thermoplastic resin, a filler, and glass fiber or carbon fiber as a reinforcing material, the strength and durability of the entire functional panel obtained can be further improved.
 不飽和ポリエステルは、無水マレイン酸、フマル酸などの多塩基酸の不飽和酸と、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリメチレングリコール、トリメチルペンタンジオール、ネオペンチルグリコール、トリメチルプロパンモノアリルエーテル、水素添加ビスフェノール、ビスフェノールジオキシプロピルエーテルなどの多価アルコールとから生成される。 Unsaturated polyesters include polybasic unsaturated acids such as maleic anhydride and fumaric acid, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, trimethylene glycol, trimethylpentanediol, neopentyl glycol, trimethylpropane monoallyl. It is produced from polyhydric alcohols such as ether, hydrogenated bisphenol and bisphenol dioxypropyl ether.
 充填剤としては、炭酸カルシウム、水酸化アルミニウムなどが挙げられる。コストダウンの観点からは炭酸カルシウムが好ましく、FRP自体の耐薬品性を向上させる観点からは水酸化アルミニウムが好ましい。しかしながら上述のとおり、上記塗布層を形成すれば、基材として充填剤に炭酸カルシウムを用いたFRPを採用しても、機能性パネル全体の耐薬品性を充分に向上させることができるため、低コストのFRPからなる基材層を有した機能性パネルを容易に実現できる。 充填 Fillers include calcium carbonate and aluminum hydroxide. Calcium carbonate is preferable from the viewpoint of cost reduction, and aluminum hydroxide is preferable from the viewpoint of improving the chemical resistance of FRP itself. However, as described above, if the coating layer is formed, the chemical resistance of the entire functional panel can be sufficiently improved even if FRP using calcium carbonate as a filler is used as the base material. A functional panel having a base material layer made of cost FRP can be easily realized.
 強化材としてのガラス繊維および炭素繊維は、繊維長が20~50mm程度、繊維径が5~25μm程度のものが好適に用いられ、FRP中に10~70質量%の量で含有されているのが望ましい。上記基材層として用いられるFRPは、これらの成分を混合し、FRP製造装置などにより所定の厚みおよび大きさを有するFRPとして製造される。 Glass fibers and carbon fibers as reinforcing materials having a fiber length of about 20 to 50 mm and a fiber diameter of about 5 to 25 μm are preferably used, and are contained in FRP in an amount of 10 to 70% by mass. Is desirable. The FRP used as the substrate layer is manufactured as an FRP having a predetermined thickness and size by mixing these components and using an FRP manufacturing apparatus or the like.
 なお、基材層の厚さは、機能性パネルの用途により変動し得るが、通常2.5mm以上である。厚さの上限は特に制限されず、適宜選択することができる。 In addition, although the thickness of a base material layer may be fluctuate | varied with the use of a functional panel, it is 2.5 mm or more normally. The upper limit of the thickness is not particularly limited and can be appropriately selected.
 [機能性パネル]
 本発明の機能性パネルは、上記塗布層と基材層を含み、該塗布層は該基材層上に形成されてなる。機能性パネル全体の厚さは、通常、2.5mm以上であるのが好ましい。機能性パネル全体の厚さの上限は特に制限されず、上記塗布層を基材層上の表面および裏面の双方に形成してもよく、必要に応じてこれら基材層および塗布層に加え、これらの層間に種々の材質からなる中間層を形成した多層構造としてもよい。この際、上記塗布層は上述のとおり優れた耐薬品性および耐染色性を奏するため、該塗布層を機能性パネルの最表面層として形成するのが望ましい。中間層としては、たとえば、基材層と塗布層との接着性を向上させるためのアンダーコート層、機能性パネルの意匠性を向上させるための模様や色彩を付与した化粧層等が挙げられる。
[Function panel]
The functional panel of the present invention includes the coating layer and the base material layer, and the coating layer is formed on the base material layer. The thickness of the entire functional panel is usually preferably 2.5 mm or more. The upper limit of the thickness of the entire functional panel is not particularly limited, and the coating layer may be formed on both the front surface and the back surface of the base material layer. In addition to the base material layer and the coating layer, A multilayer structure in which an intermediate layer made of various materials is formed between these layers may be used. At this time, since the coating layer exhibits excellent chemical resistance and dyeing resistance as described above, it is desirable to form the coating layer as the outermost surface layer of the functional panel. As an intermediate | middle layer, the undercoat layer for improving the adhesiveness of a base material layer and a coating layer, the decorative layer which provided the pattern and color for improving the designability of a functional panel, etc. are mentioned, for example.
 このようにして得られる本発明の機能性パネルは、基材層に上記特定の塗布層が形成されているため、耐薬品性および耐染色性に優れており、酸やアルカリを含んだ刺激性の強い洗浄剤の使用によっても変質や劣化が発生しにくい。また、ヘアーカラーのような染色剤の使用によっても変色や染色が生じにくい。したがって、本発明の機能性パネルは、特に住宅内の浴室または台所に配置される機能性パネルとして好適である。 The functional panel of the present invention thus obtained is excellent in chemical resistance and dyeing resistance because the above-mentioned specific coating layer is formed on the base material layer, and is irritating including acid and alkali. Even with the use of strong detergents, alteration and deterioration are unlikely to occur. In addition, discoloration and dyeing hardly occur even when a dyeing agent such as a hair color is used. Therefore, the functional panel of the present invention is particularly suitable as a functional panel disposed in a bathroom or kitchen in a house.
 また、基材層として、不飽和ポリエステル樹脂およびガラス繊維もしくは炭素繊維を含むFRPを採用すれば、耐薬品性および耐染色性だけでなく、さらに優れた耐久性が付与された機能性パネルを実現することができる。 In addition, if FRP containing unsaturated polyester resin and glass fiber or carbon fiber is used as the base material layer, a functional panel with not only chemical and dye resistance but also superior durability has been realized. can do.
 以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
 [光硬化性樹脂組成物の調製]
 表1に示す内容に従い、攪拌装置に光重合性オリゴマー60質量部および光重合性モノマー40質量部を投入して混合し、次いで光重合開始剤(IRGACURE 184、チバ・スペシャルティ・ケミカルズ(株)製)1質量部を加えて2分間攪拌し、脱泡処理を施して光硬化性樹脂組成物(C1~C11)を得た。
[Preparation of photocurable resin composition]
In accordance with the contents shown in Table 1, 60 parts by mass of the photopolymerizable oligomer and 40 parts by mass of the photopolymerizable monomer were added to the stirrer and mixed, and then the photopolymerization initiator (IRGACURE 184, manufactured by Ciba Specialty Chemicals Co., Ltd.). ) 1 part by mass was added and stirred for 2 minutes, followed by defoaming treatment to obtain photocurable resin compositions (C1 to C11).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例1]
 FRP(デックマット(登録商標)2415、DIC化工(株)製)からなる基材の上面に、上記調製した光硬化性樹脂組成物C1を厚さ20μmになるように塗布した。次いで、UV照射(1000mW/cm2、4000mJ/cm2)して光硬化性樹脂組成物C1を硬化させ、機能性パネルを得た。
[Example 1]
The photocurable resin composition C1 prepared above was applied to the upper surface of a substrate made of FRP (Deckmat (registered trademark) 2415, manufactured by DIC Chemical Co., Ltd.) so as to have a thickness of 20 μm. Next, UV irradiation (1000 mW / cm 2 , 4000 mJ / cm 2 ) was performed to cure the photocurable resin composition C1 to obtain a functional panel.
 [実施例2~6]
 各々上記調製した光硬化性樹脂組成物C2~C6を用いた以外は、実施例1にしたがって機能性パネルを得た。
[Examples 2 to 6]
A functional panel was obtained in accordance with Example 1 except that each of the photocurable resin compositions C2 to C6 prepared above was used.
 [比較例1~5]
 各々上記調製した光硬化性樹脂組成物C7~C11を用いた以外は、実施例1にしたがって機能性パネルを得た。
[Comparative Examples 1 to 5]
A functional panel was obtained according to Example 1 except that the photocurable resin compositions C7 to C11 prepared above were used.
 (1)ガラス転移温度の測定
 ガラス転移温度(Tg)の測定は、動的粘弾性装置(DMS6100、セイコーインスツル(株)製)を用いて、測定周波数:1.0Hz、昇温速度:3.0℃/minの条件下で行った。
(1) Measurement of glass transition temperature Glass transition temperature (Tg) is measured using a dynamic viscoelastic device (DMS6100, manufactured by Seiko Instruments Inc.), measuring frequency: 1.0 Hz, temperature rising rate: 3 It was performed under the condition of 0.0 ° C./min.
 (2)耐薬品性の評価
 実施例1で得られた機能性パネルを用い、下記に示す薬品を各条件下で浸漬し、機能性パネルの変化を観察し、その変化の度合いを色差計(SpectroEye、サカタインクスエンジニアリング(株)製)を用いて下記式(A)に基づき、浸漬部位と未浸漬部位とのLab色差(ΔE)を求めた。
   ΔE=(Δa2+Δb2+ΔL21/2  ・・・(A)
該数値は、小さいほど薬品に対して良好な耐性を有することを意味し、3.0以下であるのが好ましくは、1.0以下であるのがより好ましい。1.0以下の場合には、ほぼ変化がないものとみなすことができる。
(2) Evaluation of chemical resistance Using the functional panel obtained in Example 1, the chemicals shown below were immersed under each condition, the change of the functional panel was observed, and the degree of the change was determined by a color difference meter ( Based on the following formula (A) using SpectroEye (manufactured by Sakata Inx Engineering Co., Ltd.), the Lab color difference (ΔE) between the immersed part and the unimmersed part was determined.
ΔE = (Δa 2 + Δb 2 + ΔL 2 ) 1/2 (A)
The smaller the numerical value, the better the resistance to chemicals, and it is preferably 3.0 or less, more preferably 1.0 or less. In the case of 1.0 or less, it can be considered that there is almost no change.
 なお、対照例1として光硬化性樹脂組成物を塗布しない上記FRPからなる基材を用い、同様にして耐薬品性の評価を行った。
  HCl・・・3質量%濃度のHCl水溶液に1時間浸漬した。
  NaOH・・5質量%濃度のNaOH水溶液に1時間浸漬した。
  BM・・・・市販洗剤(パワースプレー\バスマジックリン(登録商標)、花王株式会社製)に24時間浸漬した。
 これらの結果を表2に示す。
In addition, the chemical resistance was similarly evaluated using the base material which consists of said FRP which does not apply | coat a photocurable resin composition as the comparative example 1. FIG.
HCl: It was immersed in a 3% by mass HCl aqueous solution for 1 hour.
It was immersed in an aqueous NaOH solution having a concentration of 5% by mass of NaOH for 1 hour.
BM .... It was immersed in a commercial detergent (Power Spray \ Bus Magiclin (registered trademark), manufactured by Kao Corporation) for 24 hours.
These results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (3)耐染色性の評価
 ガラス基板上に、厚さ1.0mmになるよう上記光硬化性樹脂組成物(C1~C11)を塗布した。窒素雰囲気下、UV照射(1000mW/cm2、4000mJ/cm2)して光硬化性樹脂組成物(C1~C11)を硬化させ、各サンプルを得た。
(3) Evaluation of dyeing resistance The photocurable resin composition (C1 to C11) was applied on a glass substrate so as to have a thickness of 1.0 mm. Under a nitrogen atmosphere, UV irradiation (1000 mW / cm 2 , 4000 mJ / cm 2 ) was performed to cure the photocurable resin compositions (C1 to C11), thereby obtaining samples.
 得られたサンプルを用い、市販の毛染め剤(GATSBY黒髪もどし(登録商標):1剤と2剤との混合物、(株)マンダム社製)に24時間浸漬後水洗し、上記(1)耐薬品性の評価と同様、上記色差計を用いて式(A)に基づき、浸漬部位と未浸漬部位とのLab色差(ΔE)を求めた。これらの結果を表1に示す。 Using the obtained sample, it was immersed in a commercially available hair dye (GATSBY Black Hair Restoration (registered trademark): 1 part and 2 parts, Mandom Co., Ltd.) for 24 hours and then washed with water. Similar to the evaluation of chemical properties, the Lab color difference (ΔE) between the immersed part and the non-immersed part was determined based on the formula (A) using the color difference meter. These results are shown in Table 1.
 上記結果によれば、本発明の機能性パネルは良好な耐薬品性を保持しつつ、耐染色性に優れた効果を発揮することがわかる。特に光重合性モノマーとして、イソボルニル(メタ)アクリレート、またはジメチロールトリシクロデカンジ(メタ)アクリレートなどの低極性のものを採用した場合、高極性のものを採用した場合と比較して、耐染色性が大きく低減された。 According to the above results, it can be seen that the functional panel of the present invention exhibits excellent dyeing resistance while maintaining good chemical resistance. In particular, when a low-polarity photopolymerizable monomer such as isobornyl (meth) acrylate or dimethylol tricyclodecane di (meth) acrylate is used, it is more resistant to staining than when a high-polarity monomer is used. The properties were greatly reduced.

Claims (5)

  1.  溶解パラメーター(SP値)が20.0(J/cm3)0.5以下である光重合性モノマーと光重合性オリゴマーとから得られる光硬化性樹脂組成物を硬化させてなる、ガラス転移温度が50℃以上である塗布層、および基材層を含むことを特徴とする機能性パネル。 A glass transition temperature of 50 obtained by curing a photocurable resin composition obtained from a photopolymerizable monomer and a photopolymerizable oligomer having a solubility parameter (SP value) of 20.0 (J / cm 3 ) 0.5 or less. The functional panel characterized by including the application layer which is (degreeC) or more, and a base material layer.
  2.  前記光重合性モノマーが、下記式(1)で表されるモノマーであることを特徴とする請求項1に記載の機能性パネル;
        (CH2=CR1COO)n2  ・・・・・(1)
    (式(1)中、R1は水素原子またはメチル基を示し、R2は炭素数5~20のn価の炭化水素基を示す。nは1~4の整数を示す。)。
    The functional panel according to claim 1, wherein the photopolymerizable monomer is a monomer represented by the following formula (1):
    (CH 2 = CR 1 COO) n R 2 (1)
    (In Formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an n-valent hydrocarbon group having 5 to 20 carbon atoms, and n represents an integer of 1 to 4).
  3.  前記光重合性モノマーが、イソボルニル(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、イソアミル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートからなる群より選ばれる少なくとも1種のモノマーであることを特徴とする請求項1または2に記載の機能性パネル。 The photopolymerizable monomer is isobornyl (meth) acrylate, 1,6-hexanediol di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, isoamyl (meth) acrylate, lauryl (meth) acrylate, tridecyl ( (Meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, 3-methyl-1,5-pentanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate 1,9-nonanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and at least one monomer selected from the group consisting of pentaerythritol tetra (meth) acrylate. The functional panel according to claim 1 or 2.
  4.  前記光重合性モノマーと前記光重合性オリゴマーとの配合量が、質量比で70:30~30:70の量であることを特徴とする請求項1~3のいずれかに記載の機能性パネル。 The functional panel according to any one of claims 1 to 3, wherein a blending amount of the photopolymerizable monomer and the photopolymerizable oligomer is 70:30 to 30:70 by mass ratio. .
  5.  前記基材層が、不飽和ポリエステル樹脂、充填剤およびガラス繊維もしくは炭素繊維を含む材質からなることを特徴とする請求項1~4のいずれかに記載の機能性パネル。 The functional panel according to any one of claims 1 to 4, wherein the base material layer is made of a material containing an unsaturated polyester resin, a filler, and glass fiber or carbon fiber.
PCT/JP2009/063127 2008-07-28 2009-07-22 Functional panel WO2010013627A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117002244A KR101196625B1 (en) 2008-07-28 2009-07-22 Functional panel
CN2009801299643A CN102112306B (en) 2008-07-28 2009-07-22 Functional panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008193412A JP5548347B2 (en) 2008-07-28 2008-07-28 Functional panel
JP2008-193412 2008-07-28

Publications (1)

Publication Number Publication Date
WO2010013627A1 true WO2010013627A1 (en) 2010-02-04

Family

ID=41610326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063127 WO2010013627A1 (en) 2008-07-28 2009-07-22 Functional panel

Country Status (5)

Country Link
JP (1) JP5548347B2 (en)
KR (1) KR101196625B1 (en)
CN (1) CN102112306B (en)
TW (1) TWI417191B (en)
WO (1) WO2010013627A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504496A (en) * 2010-06-30 2012-06-20 上海晓宝增强塑料有限公司 Preparation method of fiber-reinforced plastic
JP2012224669A (en) * 2011-04-15 2012-11-15 Mitsubishi Rayon Co Ltd Active energy ray-curable coating material composition, and coated article

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543808B2 (en) * 2010-01-25 2014-07-09 株式会社ブリヂストン Photopolymerizable composition and functional panel using the same
JP5860622B2 (en) * 2011-07-19 2016-02-16 株式会社ブリヂストン PHOTOCURABLE RESIN COMPOSITION, WATERWIRE MEMBER AND FUNCTIONAL PANEL USING THE SAME
JP6134473B2 (en) * 2011-07-19 2017-05-24 株式会社ブリヂストン PHOTOCURABLE RESIN COMPOSITION, WATERWIRE MEMBER AND FUNCTIONAL PANEL USING THE SAME
KR102195015B1 (en) 2013-04-26 2020-12-28 다이셀올넥스 주식회사 Urethane (meth)acrylate and active energy ray-curable resin composition
KR102571283B1 (en) * 2022-01-13 2023-08-29 이영준 Tile for swimming pool and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240774A (en) * 2000-02-29 2001-09-04 Hitachi Chem Co Ltd Method of producing layer having both hydrophilic antifoulancy and hard coat and plastic molded product to be obtained by this method
JP2007131698A (en) * 2005-10-11 2007-05-31 Mitsubishi Chemicals Corp Radiation-curable composition, cured material of the same and laminated material of the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963239B2 (en) * 1998-04-07 2007-08-22 日本化薬株式会社 Resin composition, lens resin composition and cured product thereof
DE60128038T2 (en) * 2000-07-19 2007-08-09 Nippon Shokubai Co. Ltd. Curable resin and coating composition
JP3676260B2 (en) * 2000-12-28 2005-07-27 ナトコ株式会社 Active energy ray curable urethane (meth) acrylate, active energy ray curable composition and use thereof
CN101052681A (en) * 2004-11-08 2007-10-10 三菱化学株式会社 Radiation curable composition and curing product thereof, and laminate including the same
WO2006049296A1 (en) * 2004-11-08 2006-05-11 Mitsubishi Chemical Corporation Radiation curable composition and curing product thereof, and laminate including the same
US20070197362A1 (en) * 2006-02-02 2007-08-23 Bridgestone Corporation Conductive elastic roller and image forming apparatus comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240774A (en) * 2000-02-29 2001-09-04 Hitachi Chem Co Ltd Method of producing layer having both hydrophilic antifoulancy and hard coat and plastic molded product to be obtained by this method
JP2007131698A (en) * 2005-10-11 2007-05-31 Mitsubishi Chemicals Corp Radiation-curable composition, cured material of the same and laminated material of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102504496A (en) * 2010-06-30 2012-06-20 上海晓宝增强塑料有限公司 Preparation method of fiber-reinforced plastic
JP2012224669A (en) * 2011-04-15 2012-11-15 Mitsubishi Rayon Co Ltd Active energy ray-curable coating material composition, and coated article

Also Published As

Publication number Publication date
TW201026497A (en) 2010-07-16
KR101196625B1 (en) 2012-11-02
CN102112306B (en) 2013-12-18
KR20110038076A (en) 2011-04-13
TWI417191B (en) 2013-12-01
JP2010030100A (en) 2010-02-12
CN102112306A (en) 2011-06-29
JP5548347B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5759548B2 (en) PHOTOCURABLE RESIN COMPOSITION, WATERWIRE MEMBER AND FUNCTIONAL PANEL USING THE SAME
JP6134473B2 (en) PHOTOCURABLE RESIN COMPOSITION, WATERWIRE MEMBER AND FUNCTIONAL PANEL USING THE SAME
JP5548347B2 (en) Functional panel
JP5735816B2 (en) Photopolymerizable composition, water-surrounding member and functional panel using the same
JP6077792B2 (en) A member having at least a cured layer formed by curing a curable resin composition
JP5860622B2 (en) PHOTOCURABLE RESIN COMPOSITION, WATERWIRE MEMBER AND FUNCTIONAL PANEL USING THE SAME
JP2010024386A (en) Curing agent and two-pack curing type polyurethane composition
JP5805192B2 (en) PHOTOCURABLE RESIN COMPOSITION, WATERWIRE MEMBER AND FUNCTIONAL PANEL USING THE SAME
JP5567325B2 (en) Photocurable resin composition and functional panel using the same
WO2012108193A1 (en) Photocurable resin composition and functional panel obtained using same
JP6358789B2 (en) Active energy ray-curable resin composition and coating agent
JP5543808B2 (en) Photopolymerizable composition and functional panel using the same
CN102190915B (en) Light polymerization composition and functional panel having the same
JP5515609B2 (en) Photo-curable coating composition
JP2022131646A (en) Active energy ray-curable resin composition and coating agent
JP2023069277A (en) Curable composition and cured product having developability, and laminate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129964.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117002244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802870

Country of ref document: EP

Kind code of ref document: A1