WO2010013501A1 - Cylindrical iron core, stationary induction apparatus and induction heat-generating roller device - Google Patents

Cylindrical iron core, stationary induction apparatus and induction heat-generating roller device Download PDF

Info

Publication number
WO2010013501A1
WO2010013501A1 PCT/JP2009/051061 JP2009051061W WO2010013501A1 WO 2010013501 A1 WO2010013501 A1 WO 2010013501A1 JP 2009051061 W JP2009051061 W JP 2009051061W WO 2010013501 A1 WO2010013501 A1 WO 2010013501A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
iron core
cylindrical
steel sheet
angle
Prior art date
Application number
PCT/JP2009/051061
Other languages
French (fr)
Japanese (ja)
Inventor
良夫 北野
徹 外村
幸三 岡本
成之 弘田
幸男 玉置
泰広 藤本
Original Assignee
トクデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008194010A external-priority patent/JP5213571B2/en
Priority claimed from JP2008195521A external-priority patent/JP5213574B2/en
Application filed by トクデン株式会社 filed Critical トクデン株式会社
Priority to KR1020117003997A priority Critical patent/KR101526033B1/en
Priority to CN2009801307137A priority patent/CN102113070B/en
Publication of WO2010013501A1 publication Critical patent/WO2010013501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • H01F27/2455Magnetic cores made from sheets, e.g. grain-oriented using bent laminations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders

Definitions

  • the present invention relates to a circular iron core (cylindrical iron core) used for stationary induction equipment such as a transformer or a reactor and induction heating equipment such as an induction heating roller device.
  • the loss of the iron core which is a magnetic path, is a cause of reduced efficiency and heat generation of the device, and its reduction is a major issue.
  • the eddy current loss of the iron core due to the leakage magnetic flux occupies a large ratio, and the iron core generates heat due to the eddy current, thereby reducing the efficiency of the device.
  • the magnitude of the eddy current increases in proportion to the square of the width or thickness of the magnetic steel sheet in which the magnetic flux enters vertically.
  • the iron core may be formed into a columnar shape for reasons such as shortening the length of the coil conductor wound around the iron core.
  • a laminated iron core (see Patent Document 1) configured by laminating flat magnetic steel plates having different width dimensions to form a columnar shape, laminating a flat magnetic steel plate, and winding this round
  • a wound iron core (refer to Patent Document 2) configured in a columnar shape
  • a radial iron core (refer to Patent Document 3) configured in a cylindrical shape by laminating flat magnetic steel plates radially.
  • a magnetic gap may be provided between the iron cores in order to obtain a desired reactance by setting an appropriate magnetic flux density (see Patent Document 2).
  • the leakage magnetic flux passes through the end face of the steel sheet, and the eddy current can be reduced and the heat generation amount of the iron core can be reduced, but the narrow magnetic core
  • the work of arranging the steel plates radially along a certain circumference is extremely troublesome. Even if the inner ends of the magnetic steel plates are arranged closely, a gap is formed between the outer ends of the adjacent magnetic steel plates. Therefore, in order to improve the space factor of the iron core, it is necessary to work such as filling the gap by inserting another narrow magnetic steel plate in the gap.
  • This cylindrical iron core has the problem that the effective cross-sectional area that becomes a magnetic path is small because the magnetic steel sheets with a narrow width are stacked. From the viewpoint of improving the space factor, the width dimension of the magnetic steel sheet is simply set. It is possible to enlarge it. However, if the width dimension is simply increased, the outer diameter becomes larger, so that there is a problem that the use is limited. In order to reduce the outer diameter, it is conceivable to provide the magnetic steel sheet so as to be inclined as much as possible with respect to the radial direction. However, in this case, the area of the planar portion exposed to the outside of the magnetic steel sheet increases. Therefore, there is a problem that the generation of eddy currents cannot be prevented. Japanese Utility Model Publication No. 62-30317 JP 2001-237124 A JP-A-5-109546 JP 2000-311777 A JP-A-9-232165 Registered Utility Model No. 2532986
  • the present invention has been made to solve the above-described problems all at once, and suppresses deterioration of the magnetic properties of the iron core such as iron loss as much as possible by improving the space factor and reducing eddy currents. This is the main desired issue.
  • the iron core for a stationary induction device has a plurality of cylindrical core elements formed by stacking a plurality of magnetic steel plates having a curved portion whose cross section in the width direction forms a curved shape, shifted in the width direction, and concentrically formed. It is characterized by being laminated.
  • the cylindrical core element is curved with a constant curvature in the radial direction of the circular diameter, and a plurality of magnetic steel plates with a quarter width or less of the diameter with respect to the radial direction are stacked. It is desirable to be formed. If this is the case, the magnetic steel sheet has a width equal to or less than 1 ⁇ 4 of the diameter in the radial direction. Therefore, the cylindrical iron core elements are concentrically arranged in the radial direction sequentially, so that the cross-sectional area of the curved magnetic steel sheet is increased. You can easily make a large round iron core.
  • the core block is formed by laminating a plurality of cylindrical core elements on concentric circles, and the space in the entire cross section of the circular core can be reduced to improve the space factor. And iron loss can be reduced.
  • the iron core for static induction equipment according to the present invention is a concentric circle of a plurality of cylindrical core elements formed by stacking a plurality of magnetic steel plates having a curved portion whose cross section in the width direction forms a curved shape, shifted in the width direction. The effect is increased in a method of use having a configuration in which a plurality of core blocks formed by laminating in a shape and a magnetic gap provided between the core blocks are provided.
  • the gap member can increase or decrease the magnetic resistance in the magnetic path to obtain a desired reactance, and when the magnetic resistance is increased, the magnetic flux amount of the leakage magnetic flux penetrating in the radial direction increases.
  • the leakage magnetic flux equivalently passes along the width direction of the magnetic steel plate provided substantially radially, and eddy current can be reduced. Furthermore, simplification of manufacturing and reduction of manufacturing cost can be realized by the configuration in which the magnetic gap is formed between the iron core blocks formed by shifting and stacking the magnetic steel plates.
  • the magnetic gap is formed by sandwiching a gap member made of a non-magnetic material between the iron core blocks. It is desirable that
  • the length in the width direction of the externally exposed portion on the laminated side surface of the magnetic steel sheet constituting the cylindrical core element provided on the radially outermost side of the core block is It is desirable that the thickness of the magnetic steel plate be equal to or less than the plate thickness.
  • the inner diameter ⁇ of the cylindrical core element provided on the outermost side in the radial direction of the core block A , the outer diameter ⁇ B , and the thickness t of the magnetic steel sheet are
  • is the inclination angle of the magnetic steel sheet with respect to the radial direction of the inner circle of the cylindrical iron core element
  • ⁇ ′ is the central angle formed between the angle of the radially innermost end of the adjacent magnetic steel sheet and the circle center. Note that the unit of the trigonometric function is radians).
  • the tilt angle ⁇ of the magnetic steel sheet when the center angle ⁇ ′ is equal to the center angle ⁇ 0 when the tilt angle of the magnetic steel sheet is zero is ⁇ X ,
  • the present invention it is possible to suppress the deterioration of the magnetic properties of the iron core such as iron loss as much as possible by improving the space factor and reducing the eddy current.
  • FIG. 1 is a perspective view showing an outline of the configuration of the stationary induction device core 1 according to the present embodiment
  • FIG. 2 is a plan view of the stationary induction device core 1.
  • a stationary induction device iron core 1 is a circular iron core used in, for example, a reactor or a transformer, and as shown in FIG. 1, a plurality of iron core blocks 2 and a magnetic gap provided between the iron core blocks 2. 3.
  • the iron core block 2 is formed by laminating a plurality (three in this embodiment) of cylindrical iron core elements 2A, 2B, and 2C in a concentric radial direction.
  • the cylindrical core elements 2A, 2B, 2C adjacent in the radial direction are provided in contact with each other. That is, the outer diameter of one adjacent cylindrical core element 2A, 2B, 2C and the inner diameter of the other adjacent cylindrical core element 2A, 2B, 2C are substantially the same.
  • the core element provided on the inner diameter side is the first core element 2A
  • the core element provided in the middle is the second core element 2B.
  • the core element provided on the outer diameter side is the third core element 2C
  • the outer diameter of the first core element 2A and the inner diameter of the second core element 2B are substantially the same.
  • An insulating layer (not shown) is provided between the cylindrical core elements 2A, 2B, 2C.
  • the cylindrical core elements 2 ⁇ / b> A, 2 ⁇ / b> B, and 2 ⁇ / b> C are formed in a cylindrical shape by stacking a plurality of magnetic steel plates 21 while being shifted in the width direction.
  • the magnetic steel plate 21 has a long shape, and has a curved portion 211 having a curved cross section in the width direction as shown in FIG.
  • the magnetic steel plate 21 is formed of, for example, a silicon steel plate having an insulating film on its surface, and its thickness is, for example, about 0.3 mm.
  • the curved portion 211 may be curved with a constant curvature throughout, or may be curved while the curvature continuously changes.
  • an involute shape using a part of an involute curve, a partial arc A shape or a partial ellipse shape is conceivable.
  • the magnetic steel plates 21 are shifted in the width direction so that the convex portions formed by the curved portions 211 of the other magnetic steel plates 21 are fitted into the concave portions formed by the curved portions 211 of the magnetic steel plates 21. Then, a large number of magnetic steel plates 21 having the same shape are overlapped. At this time, the width direction end portions 21 a and 21 b of the magnetic steel plate 21 are in contact with the concave side surface or the convex side surface of the adjacent magnetic steel plate 21. In this way, cylindrical core elements 2A, 2B, 2C having a cylindrical shape are formed.
  • the magnetic gap 3 is formed by sandwiching a gap member made of a non-magnetic material between the core blocks 2 so that the core blocks 2 are substantially coaxial.
  • the gap member is made of a non-magnetic material such as aluminum, ceramic, or glass, and may have a flat plate shape or a column shape.
  • the iron core block 2 has an annular shape substantially the same shape as in plan view.
  • a columnar member or a cylindrical member (hereinafter referred to as a columnar member or the like) having a predetermined outer diameter is prepared.
  • the first iron core elements 2A are formed by being sequentially stacked along. Then, the first iron core element 2A is subjected to strain relief annealing and then fixed and insulated with a varnish or an insulator. Next, the width direction inner diameter side end 21a of the magnetic steel plate 21 is brought into contact with the outer peripheral surface of the first iron core element 2A subjected to fixing and insulation treatment, and along the outer peripheral surface of the first iron core element 2A. Then, the second core element 2B is formed by sequentially overlapping.
  • the first core element 2A, the cylindrical member, and the like are extracted from the second core element 2B, and the second core element 2B is strain-relieved and annealed.
  • the second core element 2B is stacked along the outer peripheral surface of the first core element 2A.
  • a two-layer iron core is formed by the first iron core element 2A and the second iron core element 2B.
  • the core block 2 having an arbitrary number of layers can be formed by repeatedly performing the above process on the outer peripheral surface of the second core element 2B.
  • the core 1 for stationary induction equipment is formed by stacking and fixing the core blocks 2 so as to be substantially coaxial with a gap member interposed between the core blocks 2 thus formed.
  • the obtained iron core 1 for a static induction device has a structure in which the magnetic steel plates 21 constituting the same are radially arranged in an equivalent manner. Even if a coil is wound around the outer periphery of the iron core 1 for the static induction device, a short circuit current is obtained.
  • the leakage magnetic flux passes through the magnetic steel plate 21 along the width direction like the radial iron core, and does not pass through the magnetic steel plate in the thickness direction. Thereby, generation
  • the iron core 1 for stationary induction equipment of the present embodiment is a cylindrical core element (third core element) 2C provided on the outermost side in the radial direction of the core block 2.
  • the magnetic steel plates 21 are laminated such that the width direction length s of the externally exposed portion 21x on the side surface of the magnetic steel plate 21 constituting the magnetic sheet 21 is equal to or less than the thickness t of the magnetic steel plate 21. That is, if the thickness t of the magnetic steel plate 21 is 0.3 mm, the length s in the width direction of the externally exposed portion 21x is set to 0.3 mm or less.
  • the laminated side surface of the magnetic steel plate 21 is the convex side surface 21n of the curved portion 211 among the side surfaces 21m and 21n facing the adjacent magnetic steel plate 21. And in this lamination
  • the width direction inner diameter side end portion 21a of the magnetic steel plate 21 has an inclination of the center line of the width direction inner diameter side end portion 21a with respect to the radial direction of the inner circle of the third core element 2C. So as to have an inclination angle ⁇ 21a . That is, the width direction inner diameter side end portion 21a of the magnetic steel plate 21 is provided so as to come into contact with the position of the plate thickness t or less from the width direction inner diameter side end portion 21a of the adjacent magnetic steel plate 21 toward the outer diameter direction. .
  • the third core element 2C of the present embodiment has an inner diameter ⁇ A , an outer diameter ⁇ B of the third core element 2C, and a thickness t of the magnetic steel sheet 21.
  • is the inclination angle ⁇ 21a of the magnetic steel sheet 21 with respect to the radial direction of the inner circle of the third core element 2C
  • ⁇ ′ is the angle and circle of the radially innermost end of the adjacent magnetic steel sheet 21
  • the center angle ⁇ ′ is the center angle ⁇ 0 when the inclination angle ⁇ 21a of the magnetic steel sheet 21 is zero in the unit of trigonometric function in radians (rad).
  • an inclined angle ⁇ ( ⁇ 21a) a theta X of the magnetic steel plates 21 when equal, if: the inclination angle alpha is theta X of the magnetic steel plates 21,
  • the relational expression (Expression 2) and the relational expression (Expression 3) are such that the width direction length s of the externally exposed portion 21x and the thickness t of the magnetic steel plate 21 satisfy s ⁇ t.
  • It shows a third core element 2C inner diameter [Phi a and outer diameter [Phi B relationship.
  • the inner diameter [Phi A third core element 2C, the diameter of a circle inscribed in the width direction of the inner diameter side end portion 21a of the magnetic steel plates 21, and the outer diameter [Phi B of the third core element 2C The diameter of a circle circumscribing the end portion 21b in the width direction outer diameter side of each magnetic steel plate 21 (see FIG. 2).
  • Widthwise inner diameter side end portion 21a of the magnetic steel plates 21 for simplicity, the tilt angle theta 21a of the center line of the third is perpendicular to the inner diameter [Phi A of the core element 2C (the width direction inner diameter side end portion 21a is zero ( ⁇ 21a 0)) is shown in FIG.
  • the center line of the straight line and the magnetic steel plates 21 connecting the corners and circle center O of the widthwise inner diameter side end portion 21a of the magnetic steel plates 21 (which is regarded as a straight line.)
  • Angle between the theta 0/2 (rad) Then, the following relational expression holds.
  • N 0 2 ⁇ / ⁇ 0 (Formula 5) It becomes.
  • This angle ⁇ X is an inclination angle ⁇ 21a of the magnetic steel plate 21 when ⁇ ′ is equal to the center angle ⁇ 0 , which is the angle formed between the radially innermost corner of the adjacent magnetic steel plate 21 and the circle center O.
  • the third core element 2C satisfying s ⁇ t can be manufactured by selecting the inner diameter ⁇ A , the outer diameter ⁇ B , and the plate thickness t of the third core element 2C that satisfies the above relational expression. .
  • the inclination angle ⁇ of the magnetic steel plates 21 is less than theta X, for example, the inner diameter [Phi A third core element 2C 550 (mm), the outer diameter ⁇ B 600 (mm) and the magnetic steel plates 21
  • the plate thickness t is 0.3 (mm)
  • the outer diameter ⁇ B ( 600) ⁇ 777.8 ⁇ 2 ⁇ 0.3 / (tan ⁇ 1 (0.3 / 550)).
  • the third core element 2C having a width direction length s of the externally exposed portion 21x smaller than the plate thickness t can be obtained.
  • the inclination angle ⁇ of the magnetic steel plates 21 is greater than the theta X, for example, the inner diameter [Phi A third core element 2C 550 (mm), 600 the outer diameter ⁇ B (mm), a plate of magnetic steel plates 21
  • the thickness t is 0.3 (mm) and the virtual plate thickness t ′ obtained from the above (formula 1) is 0.35 (mm)
  • the inclination angle ⁇ is larger conditions than theta X of the magnetic steel plates 21, the plate thickness t by using the magnetic steel plates 21 of 0.3 (mm), an inside diameter ⁇ A 550 (mm), outer diameter [Phi B 600 ( mm) of the third core element 2C, the third core element 2C having a width direction length s of the externally exposed portion 21x smaller than the plate thickness t can be obtained.
  • L 2 becomes the following equation.
  • the iron core block 2 is formed by laminating a plurality of cylindrical iron core elements 2A, 2B, and 2C on each other.
  • the volume factor can be improved and iron loss can be reduced.
  • the gap member 3 can increase or decrease the magnetic resistance in the magnetic path to obtain a desired reactance, and when the magnetic resistance is increased, the amount of leakage magnetic flux penetrating in the radial direction increases.
  • the leakage magnetic flux is equivalently passed along the width direction of the magnetic steel plate 21 provided substantially radially, and eddy current can be reduced.
  • the structure in which the gap member 3 is sandwiched between the iron core blocks 2 formed by shifting and stacking the magnetic steel plates 21 can simplify the manufacturing and reduce the manufacturing cost.
  • the stacking direction of the cylindrical core elements is the same, but the stacking direction may be reversed between the cylindrical core elements.
  • the core block is composed of three cylindrical core elements, but may be composed of two cylindrical core elements or four or more cylindrical core elements. That is, the stationary induction device iron core may be any one that includes two or more cylindrical core elements according to the application.
  • the magnetic steel plate 21 although the magnetic steel plate 21 consisted only of the curved part 211, as shown in FIG. 11, it continues to the inner diameter side edge part in the width direction of the curved part 211 and the said curved part 211 concerned. It may be composed of the bent portion 212 formed in this manner. At this time, the bending angle ⁇ of the bending portion 212 with respect to the bending portion 211 may be, for example, 30 degrees, and the length should be as short as possible, for example, about 3 to 10 times the thickness of the magnetic steel plate 21 is desirable. Thus, if it has a bending part 212, not only can the operation
  • electromagnetic induction devices such as static induction devices such as transformers and reactors, or induction heat generation devices such as induction heating roller devices
  • induction heat generation devices such as induction heating roller devices
  • the eddy current loss of the iron core due to the leakage magnetic flux occupies a large ratio, and the iron core generates heat due to this eddy current, and the efficiency of the equipment is lowered. Moreover, it becomes a factor which causes the efficiency fall and insulation fall of the induction coil currently wound by this. It is known that the magnitude of the eddy current increases in proportion to the square of the width or thickness of the magnetic steel sheet in which the magnetic flux enters vertically.
  • Patent Document 5 Japanese Patent Laid-Open No. 9-232165
  • this stacked iron core forms a plurality of types of steel plate blocks 200 having different width dimensions by laminating a plurality of magnetic steel plates, and the steel plate blocks 200 are stacked so as to have a substantially circular shape. It is formed by.
  • each steel plate block 200 in order to reduce eddy current, the number of magnetic steel plates stacked in each steel plate block 200 is simply reduced, the number of types of steel plate blocks 200 having different width dimensions is increased, and the steel plate blocks 200 are positioned at both upper and lower ends. It is conceivable to reduce the externally exposed portion 200b formed on the end surface 200a of the steel plate block 200 and the outer surface of the iron core.
  • the inner ends of the magnetic steel plates arranged in a radial manner are fixed to the outer periphery of the pipe by welding, and the magnetic steel plate is pressurized from the outer end of the magnetic steel plate while rotating the pipe.
  • welding work, pipe rotation work, pressurization work, etc. are required. These operations are extremely difficult when manufacturing a large iron core (for example, an axial length of 7 m).
  • Patent Document 4 Japanese Patent Laid-Open No. 2000-311777
  • Patent Document 6 Registered Utility Model No. 2532986
  • the present applicant has considered a cylindrical iron core formed by stacking in the width direction.
  • the present invention was made for the first time by paying attention to the relationship between the thickness of the magnetic steel sheet and the width in the width direction of the externally exposed portion on the side surface of the magnetic steel sheet, and was made to solve the above problems all at once. Therefore, it is a main intended problem to suppress as much as possible the eddy current caused by the leakage magnetic flux generated in the magnetic steel sheet while reducing the manufacturing cost with a simple configuration.
  • the cylindrical iron core according to the present invention is a cylindrical iron core formed by stacking a plurality of magnetic steel plates having a curved portion whose cross section in the width direction forms a curved shape, shifted in the width direction.
  • the widthwise length of the externally exposed portion on the side surface of the lamination side is equal to or less than the thickness of the magnetic steel plate.
  • the cylindrical iron core when the length of the externally exposed portion in the width direction is s and the thickness of the magnetic steel sheet is t, s ⁇ t is established, and the eddy current is Since the width of the generated portion is the same as the thickness of the magnetic steel plate, the maximum eddy current value can be made as small as possible. Therefore, by deviating and stacking the magnetic steel plates, it is possible to prevent a reduction in the magnetic properties of the cylindrical iron core such as iron loss caused by the generation of eddy currents while realizing a simple configuration and a reduction in manufacturing cost. It is possible to prevent a decrease in efficiency of the device and a heat generation such as a decrease in electrical characteristics and insulation characteristics of the induction coil.
  • the width direction length s of the externally exposed portion is equal to or less than the thickness t of the magnetic steel sheet, the inner diameter ⁇ A , the outer diameter ⁇ B of the cylindrical iron core, and the magnetic steel sheet.
  • the thickness t is
  • is an inclination angle with respect to the radial direction of the inner circle of the cylindrical iron core
  • ⁇ ′ is a central angle formed between the angle of the radially innermost end of the adjacent magnetic steel sheet and the circle center.
  • the unit of the trigonometric function is radians
  • the ratio ( ⁇ A / ⁇ B ) of the inner diameter ⁇ A of the cylindrical iron core to the outer diameter ⁇ B of the cylindrical iron core for setting the widthwise length s of the external exposed portion to be equal to or less than the plate thickness t of the magnetic steel sheet is 0.71 or more.
  • the induction heating roller device includes a magnetic flux generation mechanism configured by winding an induction coil around the outer peripheral surface of the cylindrical iron core;
  • a hollow cylindrical heating roll body that houses the magnetic flux generation mechanism and is provided so as to be rotatable relative to the magnetic flux generation mechanism, and generates heat by an induced current generated by the magnetic flux of the magnetic flux generation mechanism,
  • a non-magnetic material or a gap at a predetermined interval is interposed between the cylindrical iron core and the heat generating roll body.
  • the non-magnetic material is a substance that does not exhibit magnetism, such as aluminum, and includes ceramics or glass.
  • interval is a space
  • the effective surface length of the heat generating roll body is increased by interposing a non-magnetic body or a gap at a predetermined interval between the cylindrical iron core and the heat generating roll body, thereby increasing the magnetic resistance and making the magnetic flux difficult to pass. Only the portion generates heat, and other portions (for example, a journal portion connected to the heat-generating roll body) are made difficult to generate heat.
  • the magnetic flux amount of the leakage magnetic flux that is released from the outer peripheral surface of the cylindrical iron core in the radial direction to the outside Will increase.
  • the cylindrical iron core of the present invention eddy current loss due to leakage magnetic flux, that is, iron loss is suppressed, and self-heating of the magnetic flux generation mechanism itself is prevented.
  • the cylindrical iron core of the present invention for a stationary induction device.
  • a leg iron core configured using a cylindrical iron core is provided, and a nonmagnetic material is provided on at least one of both axial ends of the cylindrical iron core.
  • the magnetic resistance in the magnetic path can be increased, and a predetermined reactance can be obtained.
  • increasing the magnetic resistance increases the amount of magnetic flux leaked from the outer peripheral surface of the leg core in the radial direction and released to the outside.
  • the vortex Generation of current can be suppressed as much as possible.
  • the maximum eddy current value due to the leakage magnetic flux generated in the magnetic steel sheet is suppressed as much as possible while reducing the manufacturing cost with a simple structure, and the magnetic core generated by the generation of the eddy current is suppressed.
  • the deterioration of the characteristics, the electrical characteristics of the induction coil, and the insulation characteristics can be solved.
  • the induction heating roller device 1 is used in, for example, a continuous heat treatment process of a sheet material or web material such as a resin film, paper, cloth, nonwoven fabric, or metal foil, or a heat drawing process of synthetic fibers. And a hollow cylindrical heating roller body 2 that is rotatably provided, and a magnetic flux generation mechanism 3 accommodated in the heating roller body 2.
  • the journal 4 is attached to both ends of the heating roller body 2.
  • the journal 4 is configured integrally with a hollow drive shaft 5, and the drive shaft 5 is rotatably supported on a base 7 via a bearing 6 such as a rolling bearing.
  • the magnetic flux generation mechanism 3 includes a cylindrical iron core 31 having a cylindrical shape and an induction coil 32 wound around the outer peripheral surface of the cylindrical iron core 31.
  • Support rods 8 are attached to both ends of the cylindrical iron core 31, respectively.
  • Each of the support rods 8 is inserted into the drive shaft 5 and is rotatably supported with respect to the drive shaft 5 via a bearing 9 such as a rolling bearing.
  • the magnetic flux generation mechanism 3 is supported in a suspended state inside the heat generating roller body 2.
  • a lead wire 10 is connected to the induction coil 32, and an AC power source (not shown) for applying an AC voltage is connected to the lead wire 10.
  • a gap or a non-magnetic material (not shown) with a predetermined interval is provided between the cylindrical iron core 31 and the heat generating roll body 2 or the journal 4.
  • a gap G of a predetermined interval is provided between both ends of the cylindrical iron core 31 and the iron core side surface 4 a of the journal 4.
  • the cylindrical iron core 31 of the present embodiment is formed in a cylindrical shape by stacking a plurality of magnetic steel plates 311 shifted in the width direction.
  • the magnetic steel plate 311 has a long shape, and has a curved portion 3111 having a curved cross section in the width direction as shown in FIG.
  • the magnetic steel plate 311 is formed of, for example, a silicon steel plate having an insulating film on its surface, and the thickness thereof is, for example, about 0.3 mm.
  • the curved portion 3111 may be curved with a constant curvature throughout, or may be curved while the curvature continuously changes.
  • an involute shape using a part of an involute curve, a partial arc A shape or a partial ellipse shape is conceivable.
  • each magnetic steel plate 311 is shifted in the width direction so that the convex portion formed by the curved portion 3111 of another magnetic steel plate 311 is fitted into the concave portion formed by the curved portion 3111 of the magnetic steel plate 311. Then, a large number of magnetic steel plates 311 having the same shape are overlapped. At this time, the end portions 311a and 311b in the width direction of the magnetic steel plate 311 are in contact with the concave side surface 311m or the convex side surface 311n of the adjacent magnetic steel plate 311. In this way, the cylindrical iron core 31 having a cylindrical shape is formed.
  • the cylindrical iron core 31 has a width-direction length s of the externally exposed portion 311 x on the side of the laminated side of the magnetic steel plate 311 that is equal to or less than the plate thickness t of the magnetic steel plate 311.
  • Magnetic steel plates 311 are stacked. That is, if the thickness t of the magnetic steel plate 311 is 0.3 mm, the length s in the width direction of the externally exposed portion 311x is set to 0.3 mm or less.
  • the laminated side surface of the magnetic steel plate 311 is the convex side surface 311n of the curved portion 3111 among the side surfaces 311m and 311n facing the adjacent magnetic steel plate 311. And in this lamination
  • the width direction inner diameter side end 311a of the magnetic steel plate 311 has an inclination angle of the center line of the width direction inner diameter side end 311a with respect to the radial direction of the inner circle of the cylindrical iron core. It is provided so as to have ⁇ 311a . That is, the width direction inner diameter side end portion 311a of the magnetic steel plate 311 is provided so as to contact a position equal to or less than the plate thickness dimension in the outer diameter direction from the width direction inner diameter side end portion 311a of the adjacent magnetic steel plate 311. .
  • the cylindrical iron core 31 of the present embodiment has an inner diameter ⁇ A , an outer diameter ⁇ B of the cylindrical iron core 31, and a thickness t of the magnetic steel plate 311.
  • is an inclination angle ⁇ 311 with respect to the radial direction of the inner circle of the cylindrical iron core 31, and ⁇ ′ is a central angle formed between the angle of the innermost end in the radial direction of the adjacent magnetic steel plate 311 and the center of the circle. (Note that the unit of trigonometric function is radian.)
  • the relational expression (formula A) and the relational expression (formula B) are such that the width direction length s of the externally exposed portion 311x and the plate thickness t of the magnetic steel plate 311 satisfy s ⁇ t.
  • It shows the inner diameter [Phi a and outer diameter [Phi B relationship of the cylindrical core 31.
  • the inner diameter [Phi A cylindrical iron core 31 the diameter of a circle inscribed in the width direction of the inner diameter side end portion 311a of the magnetic steel plate 311, and the outer diameter [Phi B of the cylindrical iron core 31, the magnetic steel plate
  • This is the diameter of a circle circumscribing the width direction outer diameter side end 311b of 3311 (see FIG. 13).
  • the description of the above formula is the same as in the first embodiment, and will be omitted.
  • the width dimension of the portion where the eddy current is maximum is equal to or less than the plate thickness t of the magnetic steel plate 311, and the maximum eddy current value is obtained.
  • the magnetic resistance is increased to make it difficult for the magnetic flux to pass through, and only the effective surface length portion of the heat generating roll body 2 generates heat.
  • the eddy current loss that is, iron loss is suppressed against the increased leakage magnetic flux, and the self-heating of the magnetic flux generating mechanism 3 itself is not caused. Can be prevented.
  • the magnetic flux generating mechanism 3 is heated by heat transfer due to radiation and convection from the heat roller body 2, heat transfer to a portion other than the heat roller body 2 can be reduced by a non-magnetic material or a gap at a predetermined interval. it can.
  • the cylindrical iron core 31 can be used for a stationary induction device.
  • the reactor Z includes one or more (two in FIG. 16) leg iron cores Z1, a coil Z2 wound around the outer circumference of the leg iron core Z1, and the plurality of leg iron cores Z1 at each end. And a yoke iron core Z3 that forms a closed magnetic path.
  • Z5 is a fastening bolt for fastening the leg iron core Z1.
  • each leg iron core Z1 is formed with one or a plurality of gaps.
  • the leg iron core Z ⁇ b> 1 is formed of a plurality of cylindrical iron cores 31.
  • each leg iron core Z1 a spacer member Z4 made of an insulator is sandwiched between the respective cylindrical iron cores 31, thereby forming one or more gaps in the leg iron core Z1.
  • a spacer member Z4 is also disposed between the yoke iron core Z3 and the cylindrical iron core 31.
  • a predetermined reactance can be obtained by adjusting the magnetic resistance by the gap. Further, when the magnetic resistance is increased, the leakage magnetic flux increases. However, since the length in the width direction of the externally exposed portion 311x of the magnetic steel plate 311 is equal to or less than the thickness t of the magnetic steel plate 311, the eddy current is increased. It can be suppressed as much as possible.
  • the cylindrical iron core of the above embodiment for a stationary induction device connected to an electric circuit using a semiconductor element having a gate circuit.
  • a semiconductor element having a gate circuit has an effect as an energization switch, but the flowing current is a current including a large amount of harmonic components whose sine wave shape is broken. Therefore, the magnetic flux flowing in the magnetic circuit of the static dielectric device also contains a large amount of harmonic components, and an eddy current loss proportional to the square of the frequency occurs in the cylindrical iron core. Also, eddy current loss due to leakage magnetic flux occurs. At this time, eddy current loss can be suppressed as much as possible by using the cylindrical iron core.
  • cylindrical iron core of the above embodiment has a single layer in the radial direction, but may be of a multilayer structure in the radial direction, particularly when used for a reactor or a transformer.
  • a gap having a predetermined interval is provided between the cylindrical iron core and the heat generating roll body or the journal, but a non-magnetic body may be provided instead of the gap.
  • a non-magnetic body may be provided instead of the gap.
  • the heat generating roll body 2 is rotatably supported by the drive shaft 12 inserted into the cylindrical iron core 31.
  • the deterioration of the magnetic properties of the iron core such as iron loss can be suppressed as much as possible by improving the space factor and reducing the eddy current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • General Induction Heating (AREA)

Abstract

Provided is a cylindrical iron core, in which a gap in the whole section of a stationary electromagnetic induction-type circular core of a transformer or a reactor can be reduced and limiting iron loss due to leakage flux on the outer circumferential surface can be suppressed. The cylindrical iron core comprises a plurality of core blocks (2) formed by concentrically laminating cylindrical core elements (2A, 2B, 2C) which are formed by laminating a plurality of magnetic steel plates (21), each of which is provided with a curved portion (211) having a curved section in the width direction, while shifting from each other in the width direction.

Description

円筒状鉄心、静止誘導機器及び誘導発熱ローラ装置Cylindrical iron core, stationary induction device and induction heating roller device
 本発明は、変圧器又はリアクトルなどの静止誘導機器及び誘導発熱ローラ装置等の誘導加熱機器に用いられる円形鉄心(円筒状鉄心)に関するものである。 The present invention relates to a circular iron core (cylindrical iron core) used for stationary induction equipment such as a transformer or a reactor and induction heating equipment such as an induction heating roller device.
 変圧器やリアクトルなどの静止誘導機器において、磁路となる鉄心の損失は、機器の効率低下及び発熱の原因となっており、その低減が大きな課題である。特に、漏洩磁束による鉄心の渦電流損は大きな比率を占め、この渦電流により鉄心が発熱してしまい、機器の効率を低下させてしまう。また、これに巻回されている誘導コイルの効率低下、絶縁低下を招く要因となる。なお、渦電流の大きさは、磁束が垂直に入る磁性鋼板の幅、又は板厚の二乗に比例して大きくなることが知れられている。 In static induction devices such as transformers and reactors, the loss of the iron core, which is a magnetic path, is a cause of reduced efficiency and heat generation of the device, and its reduction is a major issue. In particular, the eddy current loss of the iron core due to the leakage magnetic flux occupies a large ratio, and the iron core generates heat due to the eddy current, thereby reducing the efficiency of the device. Moreover, it becomes a factor which causes the efficiency fall and insulation fall of the induction coil currently wound by this. It is known that the magnitude of the eddy current increases in proportion to the square of the width or thickness of the magnetic steel sheet in which the magnetic flux enters vertically.
 この静止誘導機器において、鉄心に巻装するコイル導線の長さを短くする為などの理由から、鉄心を円柱状にする場合がある。このとき、静止誘導機器用鉄心として、幅寸法が異なる平坦な磁性鋼板を積層して円柱状に構成する積鉄心(特許文献1参照)、平坦な磁性鋼板を積層し、これを丸巻きして円柱状に構成する巻鉄心(特許文献2参照)平坦な磁性鋼板を放射状に積層して円柱状に構成するラジアル鉄心(特許文献3参照)、がある。なお、これらの鉄心において、適当な磁束密度を設定して所望のリアクタンスを得るために鉄心間に磁気ギャップを設けることがある(特許文献2参照)。 In this static induction device, the iron core may be formed into a columnar shape for reasons such as shortening the length of the coil conductor wound around the iron core. At this time, as an iron core for stationary induction equipment, a laminated iron core (see Patent Document 1) configured by laminating flat magnetic steel plates having different width dimensions to form a columnar shape, laminating a flat magnetic steel plate, and winding this round There is a wound iron core (refer to Patent Document 2) configured in a columnar shape, and a radial iron core (refer to Patent Document 3) configured in a cylindrical shape by laminating flat magnetic steel plates radially. In these iron cores, a magnetic gap may be provided between the iron cores in order to obtain a desired reactance by setting an appropriate magnetic flux density (see Patent Document 2).
 しかしながら、特許文献1に示すような積鉄心では、真円に近づけるために幅寸法の異なる磁性鋼板の種類を増やす必要があり、製造コストが高くなってしまうことや、組み立て作業が煩雑になってしまう等の問題がある。また、磁気ギャップを設けた場合、当該ギャップ近傍の鉄心において、径方向に貫通して外部に放出される漏洩磁束が増大するが、この漏洩磁束により渦電流が生じてしまい、鉄心が発熱してしまうという問題がある。 However, in the stacked iron core as shown in Patent Document 1, it is necessary to increase the types of magnetic steel sheets having different width dimensions in order to approach a perfect circle, which increases the manufacturing cost and makes the assembly work complicated. There is a problem such as. In addition, when a magnetic gap is provided, in the iron core in the vicinity of the gap, the leakage magnetic flux penetrating in the radial direction and discharged to the outside increases. However, this leakage magnetic flux causes an eddy current, and the iron core generates heat. There is a problem of end.
 また、特許文献2に示すような巻鉄心では、最外周に設けられた鋼板の平面部の全部が露出する構造となり、漏洩磁束の貫通により発生する渦電流の最大値が大きく、鉄損が増大してしまうという問題がある。また、磁気ギャップを設けた場合において、この問題は顕著になってしまう。 Moreover, in the wound iron core as shown in Patent Document 2, the entire flat portion of the steel plate provided on the outermost periphery is exposed, and the maximum value of eddy current generated by the penetration of the leakage magnetic flux is large, and the iron loss increases. There is a problem of end up. In addition, this problem becomes significant when a magnetic gap is provided.
 さらに、特許文献3に示すようなラジアル鉄心では、漏洩磁束が通過するのは鋼板の端面であり渦電流を小さくすることができ、鉄心の発熱量を低減させることができるものの、細幅の磁性鋼板を一定の円周に沿って放射状に並べる作業は極めて面倒である。また、各磁性鋼板の内端を密に並べても隣接する磁性鋼板の外端の間には、空隙が形成されてしまう。そのため、鉄心の占積率を向上させるためには、別の細幅の磁性鋼板をその空隙に挟み込む等して、その空隙を埋める等の作業が必要となる。 Furthermore, in the radial iron core as shown in Patent Document 3, the leakage magnetic flux passes through the end face of the steel sheet, and the eddy current can be reduced and the heat generation amount of the iron core can be reduced, but the narrow magnetic core The work of arranging the steel plates radially along a certain circumference is extremely troublesome. Even if the inner ends of the magnetic steel plates are arranged closely, a gap is formed between the outer ends of the adjacent magnetic steel plates. Therefore, in order to improve the space factor of the iron core, it is necessary to work such as filling the gap by inserting another narrow magnetic steel plate in the gap.
 ところで、静止誘導機器に用いられるものではないが、誘導発熱ローラ装置といった誘導発熱機器に用いられる鉄心として、特許文献4に示すように、幅方向断面が湾曲形状をなす湾曲部を有する狭幅の磁性鋼板を、幅方向にずらして積み重ねることにより形成された円筒状鉄心が本出願人によって考えられている。これによれば、漏洩磁束が磁性鋼板を貫通することによる渦電流の発生を小さくすることができ、鉄心の発熱量を低減させることが可能になる。 By the way, although it is not used for stationary induction equipment, as an iron core used for induction heat generation equipment such as an induction heat generation roller device, as shown in Patent Document 4, a narrow-width section having a curved portion whose cross-section in the width direction forms a curved shape. A cylindrical iron core formed by stacking magnetic steel plates while being shifted in the width direction is considered by the present applicant. According to this, generation | occurrence | production of the eddy current by a leakage magnetic flux penetrating a magnetic steel plate can be made small, and it becomes possible to reduce the emitted-heat amount of an iron core.
 この円筒状鉄心は、狭幅の磁性鋼板を積み重ねることから、磁路となる有効断面積が小さいという問題があり、占積率を向上させるという観点から言うと、単純に磁性鋼板の幅寸法を大きくすることが考えられる。しかしながら、単純に幅寸法を大きくすると外径が大きくなることから用いられる用途が限られてしまうという問題がある。また、外径を小さくするためには、磁性鋼板を径方向に対して可及的に傾斜するように設けることも考えられるが、そうすると、磁性鋼板の外部に露出する平面部分の面積が大きくなってしまい、渦電流の発生を防ぐことができないという問題がある。
実開昭62-30317号公報 特開2001-237124号公報 特開平5-109546号公報 特開2000-311777号公報 特開平9-232165号公報 登録実用新案2532986号公報
This cylindrical iron core has the problem that the effective cross-sectional area that becomes a magnetic path is small because the magnetic steel sheets with a narrow width are stacked. From the viewpoint of improving the space factor, the width dimension of the magnetic steel sheet is simply set. It is possible to enlarge it. However, if the width dimension is simply increased, the outer diameter becomes larger, so that there is a problem that the use is limited. In order to reduce the outer diameter, it is conceivable to provide the magnetic steel sheet so as to be inclined as much as possible with respect to the radial direction. However, in this case, the area of the planar portion exposed to the outside of the magnetic steel sheet increases. Therefore, there is a problem that the generation of eddy currents cannot be prevented.
Japanese Utility Model Publication No. 62-30317 JP 2001-237124 A JP-A-5-109546 JP 2000-311777 A JP-A-9-232165 Registered Utility Model No. 2532986
 そこで本発明は、上記問題点を一挙に解決するためになされたものであり、占積率の向上及び渦電流の低減により、鉄損などの鉄心の磁気特性の低下を可及的に抑制することをその主たる所期課題とするものである。 Accordingly, the present invention has been made to solve the above-described problems all at once, and suppresses deterioration of the magnetic properties of the iron core such as iron loss as much as possible by improving the space factor and reducing eddy currents. This is the main desired issue.
 すなわち本発明に係る静止誘導機器用鉄心は、幅方向断面が湾曲形状をなす湾曲部を有する複数の磁性鋼板を、幅方向にずらして積み重ねることにより形成された複数の円筒状鉄心要素を同心円状に積層して形成されていることを特徴とする。
 具体的な実施の態様としては、前記円筒状鉄心要素が、円径の径方向に一定の曲率で湾曲し、前記径方向に対して直径の1/4幅以下とした複数の磁性鋼板を積み重ねて形成されていることが望ましい。これならば、磁性鋼板を径方向に対して直径の1/4幅以下としているので、円筒状鉄心要素を同心円状に径方向に順次積層して構成するので、湾曲した磁性鋼板による断面積の大きい円形鉄心を簡単に作ることができる。
That is, the iron core for a stationary induction device according to the present invention has a plurality of cylindrical core elements formed by stacking a plurality of magnetic steel plates having a curved portion whose cross section in the width direction forms a curved shape, shifted in the width direction, and concentrically formed. It is characterized by being laminated.
As a concrete embodiment, the cylindrical core element is curved with a constant curvature in the radial direction of the circular diameter, and a plurality of magnetic steel plates with a quarter width or less of the diameter with respect to the radial direction are stacked. It is desirable to be formed. If this is the case, the magnetic steel sheet has a width equal to or less than ¼ of the diameter in the radial direction. Therefore, the cylindrical iron core elements are concentrically arranged in the radial direction sequentially, so that the cross-sectional area of the curved magnetic steel sheet is increased. You can easily make a large round iron core.
 このように本発明によれば、鉄心ブロックが円筒状鉄心要素を同心円上に複数積層して形成されたものであり、円形鉄心の断面全域の隙間を低減して占積率を向上させることができ、鉄損を低減することができる。
 また、本発明に係る静止誘導機器用鉄心は、幅方向断面が湾曲形状をなす湾曲部を有する複数の磁性鋼板を、幅方向にずらして積み重ねることにより形成された複数の円筒状鉄心要素を同心円状に積層して形成された複数の鉄心ブロックと、前記鉄心ブロック間に設けられた磁気ギャップと、を具備する構成とした利用方法においてその効果が大きくなる。これならば、ギャップ部材によって磁路中の磁気抵抗を増減させて所望のリアクタンスを得ることができる上に、磁気抵抗を大きくした場合に径方向に貫通する漏洩磁束の磁束量は増加するが、この漏洩磁束は等価的に略放射状に設けられた磁性鋼板の幅方向に沿って通過するようになり、渦電流を低減することができる。さらに、磁性鋼板をずらして積み重ねて形成された鉄心ブロック間に磁気ギャップを形成する構成により、製造の簡単化及び製造コストの削減を実現することができる。
Thus, according to the present invention, the core block is formed by laminating a plurality of cylindrical core elements on concentric circles, and the space in the entire cross section of the circular core can be reduced to improve the space factor. And iron loss can be reduced.
Further, the iron core for static induction equipment according to the present invention is a concentric circle of a plurality of cylindrical core elements formed by stacking a plurality of magnetic steel plates having a curved portion whose cross section in the width direction forms a curved shape, shifted in the width direction. The effect is increased in a method of use having a configuration in which a plurality of core blocks formed by laminating in a shape and a magnetic gap provided between the core blocks are provided. If this is the case, the gap member can increase or decrease the magnetic resistance in the magnetic path to obtain a desired reactance, and when the magnetic resistance is increased, the magnetic flux amount of the leakage magnetic flux penetrating in the radial direction increases. The leakage magnetic flux equivalently passes along the width direction of the magnetic steel plate provided substantially radially, and eddy current can be reduced. Furthermore, simplification of manufacturing and reduction of manufacturing cost can be realized by the configuration in which the magnetic gap is formed between the iron core blocks formed by shifting and stacking the magnetic steel plates.
 また、磁気ギャップの形成を簡単にして、静止誘導機器用鉄心の組み立てを一層簡単にするためには、前記磁気ギャップが、非磁性体からなるギャップ部材を前記鉄心ブロック間に挟み込むことにより形成されていることが望ましい。 Further, in order to simplify the formation of the magnetic gap and further facilitate the assembly of the iron core for stationary induction equipment, the magnetic gap is formed by sandwiching a gap member made of a non-magnetic material between the iron core blocks. It is desirable that
 最大渦電流値を可及的に小さくするためには、前記鉄心ブロックの径方向最外側に設けられた円筒状鉄心要素を構成する磁性鋼板の積層側側面における外部露出部の幅方向長さが、前記磁性鋼板の板厚以下であることが望ましい。 In order to reduce the maximum eddy current value as much as possible, the length in the width direction of the externally exposed portion on the laminated side surface of the magnetic steel sheet constituting the cylindrical core element provided on the radially outermost side of the core block is It is desirable that the thickness of the magnetic steel plate be equal to or less than the plate thickness.
 外部露出部の幅方向長さsを前記磁性鋼板の板厚t以下にするための具体的な実施の態様としては、前記鉄心ブロックの径方向最外側に設けられた円筒状鉄心要素の内径Φ、外径Φ、及び前記磁性鋼板の板厚tが、 As a concrete embodiment for setting the width direction length s of the externally exposed portion to be equal to or less than the plate thickness t of the magnetic steel plate, the inner diameter Φ of the cylindrical core element provided on the outermost side in the radial direction of the core block A , the outer diameter Φ B , and the thickness t of the magnetic steel sheet are
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 (ここで、αは、円筒状鉄心要素の内側円の径方向に対する磁性鋼板の傾斜角度であり、θ’は、隣接する磁性鋼板の径方向最内端の角と円中心とのなす中心角度である。なお、三角関数の単位はラジアン(rad)である。)において、 (Where α is the inclination angle of the magnetic steel sheet with respect to the radial direction of the inner circle of the cylindrical iron core element, and θ ′ is the central angle formed between the angle of the radially innermost end of the adjacent magnetic steel sheet and the circle center. Note that the unit of the trigonometric function is radians).
 前記中心角度θ’が、前記磁性鋼板の傾斜角度がゼロの場合の中心角度θと等しくなるときの磁性鋼板の傾斜角度αをθとし、 The tilt angle α of the magnetic steel sheet when the center angle θ ′ is equal to the center angle θ 0 when the tilt angle of the magnetic steel sheet is zero is θ X ,
 磁性鋼板の傾斜角度αがθ以下の場合には、 When the inclination angle α of the magnetic steel sheet is θ X or less,
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 磁性鋼板の傾斜角度αがθよりも大きい場合には、前記(式1)を満たす中心角度θ’を用いて When the inclination angle α of the magnetic steel sheet is larger than θ X , the central angle θ ′ satisfying the above (Equation 1) is used.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 の関係をなすことである。 It is to make a relationship.
 このように本発明によれば、占積率の向上及び渦電流の低減より、鉄損などの鉄心の磁気特性の低下を可及的に抑制することができる。 Thus, according to the present invention, it is possible to suppress the deterioration of the magnetic properties of the iron core such as iron loss as much as possible by improving the space factor and reducing the eddy current.
本発明の一実施形態に係る静止誘導機器用鉄心の斜視図である。It is a perspective view of the iron core for static induction equipment concerning one embodiment of the present invention. 同実施形態の静止誘導機器用鉄心の平面図である。It is a top view of the iron core for stationary induction equipment of the embodiment. 同実施形態の磁性鋼板を示す断面図である。It is sectional drawing which shows the magnetic steel plate of the embodiment. 外部露出部及び磁性鋼板の板厚の関係を示す図である。It is a figure which shows the relationship between the plate | board thickness of an external exposure part and a magnetic steel plate. 磁性鋼板の幅方向内径側端部を示す拡大模式図(θ21a=0)である。It is an enlarged schematic diagram ((theta) 21a = 0) which shows the width direction inner diameter side edge part of a magnetic steel plate. 外部露出部の幅方向長さ及び磁性鋼板の板厚が同一とした場合の外側角a-cの距離を示す図である。It is a figure which shows the distance of the outside angle ac when the width direction length of an external exposure part and the board thickness of a magnetic steel plate are made the same. 磁性鋼板の幅方向内径側端部を示す拡大模式図(0<θ21a)である。It is an expansion schematic diagram (0 <(theta) 21a ) which shows the width direction inner diameter side edge part of a magnetic steel plate. シミュレーション結果を示す図である。It is a figure which shows a simulation result. シミュレーション結果を示す図である。It is a figure which shows a simulation result. 角度θの導出を説明するための図である。It is a figure for explaining derivation of angle theta X. 磁性鋼板の変形例を示す断面図である。It is sectional drawing which shows the modification of a magnetic steel plate. 第2実施形態の円筒状鉄心を用いた誘導発熱ローラ装置の模式的構成図である。It is a typical block diagram of the induction heating roller apparatus using the cylindrical iron core of 2nd Embodiment. 同実施形態の円筒状鉄心の断面図である。It is sectional drawing of the cylindrical iron core of the same embodiment. 同実施形態の磁性鋼板を示す断面図である。It is sectional drawing which shows the magnetic steel plate of the embodiment. 外部露出部及び磁性鋼板の板厚の関係を示す図である。It is a figure which shows the relationship between the plate | board thickness of an external exposure part and a magnetic steel plate. 第2実施形態の円筒状鉄心を用いたリアクトルの模式的構成図である。It is a typical block diagram of the reactor using the cylindrical iron core of 2nd Embodiment. 片持ち式の誘導発熱ローラ装置の模式的構成図である。It is a typical block diagram of a cantilever induction heating roller device. 従来の積鉄心の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional stacked iron core.
 <第1実施形態>
 次に、本発明に係る静止誘導機器用鉄心1の一実施形態について図面を参照して説明する。なお、図1は本実施形態の静止誘導機器用鉄心1の構成の概略を示す斜視図であり、図2は静止誘導機器鉄心1の平面図である。
<First Embodiment>
Next, an embodiment of the iron core 1 for stationary induction equipment according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an outline of the configuration of the stationary induction device core 1 according to the present embodiment, and FIG. 2 is a plan view of the stationary induction device core 1.
 本実施形態に係る静止誘導機器用鉄心1は、例えばリアクトル又は変圧器に用いられる円形鉄心であり、図1に示すように、複数の鉄心ブロック2と、これら鉄心ブロック2間に設けられる磁気ギャップ3とを具備する。 A stationary induction device iron core 1 according to the present embodiment is a circular iron core used in, for example, a reactor or a transformer, and as shown in FIG. 1, a plurality of iron core blocks 2 and a magnetic gap provided between the iron core blocks 2. 3.
 鉄心ブロック2は、図2に示すように、複数(本実施形態では3つ)の円筒状鉄心要素2A、2B、2Cを同心円状に径方向に積層して形成されたものである。径方向において隣接する円筒状鉄心要素2A、2B、2Cは接触して設けられている。つまり、隣接する一方の円筒状鉄心要素2A、2B、2Cの外径と隣接する他方の円筒状鉄心要素2A、2B、2Cの内径とは、略同一である。具体的に、3つの円筒状鉄心要素2A、2B、2Cのうち、内径側に設けられている鉄心要素を第1の鉄心要素2A、中間に設けられている鉄心要素を第2の鉄心要素2B、外径側に設けられている鉄心要素を第3の鉄心要素2Cとする場合に、例えば第1の鉄心要素2Aの外径と第2の鉄心要素2Bの内径とは、略同一である。なお、各円筒状鉄心要素2A,2B,2C間には、絶縁層(不図示)が設けられている。 As shown in FIG. 2, the iron core block 2 is formed by laminating a plurality (three in this embodiment) of cylindrical iron core elements 2A, 2B, and 2C in a concentric radial direction. The cylindrical core elements 2A, 2B, 2C adjacent in the radial direction are provided in contact with each other. That is, the outer diameter of one adjacent cylindrical core element 2A, 2B, 2C and the inner diameter of the other adjacent cylindrical core element 2A, 2B, 2C are substantially the same. Specifically, among the three cylindrical core elements 2A, 2B, and 2C, the core element provided on the inner diameter side is the first core element 2A, and the core element provided in the middle is the second core element 2B. When the core element provided on the outer diameter side is the third core element 2C, for example, the outer diameter of the first core element 2A and the inner diameter of the second core element 2B are substantially the same. An insulating layer (not shown) is provided between the cylindrical core elements 2A, 2B, 2C.
 円筒状鉄心要素2A、2B、2Cは、図2に示すように、複数の磁性鋼板21を、幅方向にずらして積み重ねることにより円筒状に形成されたものである。 As shown in FIG. 2, the cylindrical core elements 2 </ b> A, 2 </ b> B, and 2 </ b> C are formed in a cylindrical shape by stacking a plurality of magnetic steel plates 21 while being shifted in the width direction.
 磁性鋼板21は、長尺形状をなすものであり、図3に示すように、幅方向断面が湾曲形状をなす湾曲部211を有する。この磁性鋼板21は、例えば表面に絶縁皮膜が施されたケイ素鋼板により形成されており、その板厚は、例えば約0.3mmである。 The magnetic steel plate 21 has a long shape, and has a curved portion 211 having a curved cross section in the width direction as shown in FIG. The magnetic steel plate 21 is formed of, for example, a silicon steel plate having an insulating film on its surface, and its thickness is, for example, about 0.3 mm.
 湾曲部211は、全体に亘って一定の曲率で湾曲しているもの、又は、連続して曲率が変化しながら湾曲するものが考えられ、例えばインボリュート曲線の一部を用いたインボリュート形状、部分円弧形状又は部分楕円形状などが考えられる。 The curved portion 211 may be curved with a constant curvature throughout, or may be curved while the curvature continuously changes. For example, an involute shape using a part of an involute curve, a partial arc A shape or a partial ellipse shape is conceivable.
 そして、磁性鋼板21の湾曲部211により形成された凹部に、他の磁性鋼板21の湾曲部211により形成された凸部を嵌め込むように、尚かつ各磁性鋼板21が幅方向にずれるようにして、同一形状をなす多数枚の磁性鋼板21を重ね合わせる。このとき、磁性鋼板21の幅方向端部21a、21bが、隣接する磁性鋼板21の凹側側面又は凸側側面に接触するようにしている。このようにして円筒形状をなす円筒状鉄心要素2A、2B、2Cが形成される。 Then, the magnetic steel plates 21 are shifted in the width direction so that the convex portions formed by the curved portions 211 of the other magnetic steel plates 21 are fitted into the concave portions formed by the curved portions 211 of the magnetic steel plates 21. Then, a large number of magnetic steel plates 21 having the same shape are overlapped. At this time, the width direction end portions 21 a and 21 b of the magnetic steel plate 21 are in contact with the concave side surface or the convex side surface of the adjacent magnetic steel plate 21. In this way, cylindrical core elements 2A, 2B, 2C having a cylindrical shape are formed.
 磁気ギャップ3は、非磁性体からなるギャップ部材を鉄心ブロック2間に鉄心ブロック2が略同軸となるように挟み込むことにより形成されている。ギャップ部材は、アルミニウム、セラミック、ガラスなどの非磁性体から形成されており、平板状をなすものであっても良いし、柱状をなすものであっても良い。本実施形態では、前記鉄心ブロック2の平面視における形状と略同一形状の円環状をなす。 The magnetic gap 3 is formed by sandwiching a gap member made of a non-magnetic material between the core blocks 2 so that the core blocks 2 are substantially coaxial. The gap member is made of a non-magnetic material such as aluminum, ceramic, or glass, and may have a flat plate shape or a column shape. In the present embodiment, the iron core block 2 has an annular shape substantially the same shape as in plan view.
 次に、本実施形態の静止誘導機器用鉄心1の製造方法について説明する。 Next, the manufacturing method of the iron core 1 for static induction equipment of this embodiment is demonstrated.
 所定の外径を有する円柱部材又は円筒部材(以下、円柱部材等という。)を用意し、その外側周面に磁性鋼板21の幅方向内径側端部21aを当接させつつ、外側周面に沿って順次重ねて第1の鉄心要素2Aを形成する。そして、この第1の鉄心要素2Aを歪み取り焼き鈍し処理後、ワニスや絶縁物などにより固定及び絶縁処理を施す。次に、固定及び絶縁処理を施した第1の鉄心要素2Aの外側周面に磁性鋼板21の幅方向内径側端部21aを当接させつつ、第1の鉄心要素2Aの外側周面に沿って順次重ねて第2の鉄心要素2Bを形成する。この形状を維持したまま第2の鉄心要素2Bから第1の鉄心要素2A及び円柱部材等を抜き取り、第2の鉄心要素2Bを歪み取り焼き鈍し処理した後、再び第1の鉄心要素2Aを第2の鉄心要素2B内に挿入し、第2の鉄心要素2Bを第1の鉄心要素2Aの外側周面に沿って積層する。そしてワニスや絶縁物などにより固定及び絶縁処理を施すことにより、第1の鉄心要素2A及び第2の鉄心要素2Bによる2層鉄心が形成される。さらに、多層形成する場合には、第2の鉄心要素2Bの外側周面に上記の工程を繰り返し施すことにより、任意の層数の鉄心ブロック2を形成することができる。このようにして形成された鉄心ブロック2間にギャップ部材を介在させて各鉄心ブロック2が略同軸となるように積み重ねて固定することにより静止誘導機器用鉄心1が形成される。 A columnar member or a cylindrical member (hereinafter referred to as a columnar member or the like) having a predetermined outer diameter is prepared. The first iron core elements 2A are formed by being sequentially stacked along. Then, the first iron core element 2A is subjected to strain relief annealing and then fixed and insulated with a varnish or an insulator. Next, the width direction inner diameter side end 21a of the magnetic steel plate 21 is brought into contact with the outer peripheral surface of the first iron core element 2A subjected to fixing and insulation treatment, and along the outer peripheral surface of the first iron core element 2A. Then, the second core element 2B is formed by sequentially overlapping. While maintaining this shape, the first core element 2A, the cylindrical member, and the like are extracted from the second core element 2B, and the second core element 2B is strain-relieved and annealed. The second core element 2B is stacked along the outer peripheral surface of the first core element 2A. Then, by fixing and insulating with a varnish or an insulator, a two-layer iron core is formed by the first iron core element 2A and the second iron core element 2B. Furthermore, in the case of forming a multilayer, the core block 2 having an arbitrary number of layers can be formed by repeatedly performing the above process on the outer peripheral surface of the second core element 2B. The core 1 for stationary induction equipment is formed by stacking and fixing the core blocks 2 so as to be substantially coaxial with a gap member interposed between the core blocks 2 thus formed.
 得られた静止誘導機器用鉄心1は、これを構成している磁性鋼板21が等価的に放射状に並べたものとなり、この静止誘導機器用鉄心1の外周にコイルを巻装しても短絡電流が発生しないし、また漏洩磁束は、放射状鉄心と同様に磁性鋼板21の内部を、その幅方向に沿って通ることになり、磁性鋼板をその厚さ方向に通ることはなくなる。これにより漏洩磁束による渦電流の発生が抑制される。また、鉄心の断面がほぼ真円となるので、巻装するコイル導線の長さをより短くすることができ、省資源を図ることができる。 The obtained iron core 1 for a static induction device has a structure in which the magnetic steel plates 21 constituting the same are radially arranged in an equivalent manner. Even if a coil is wound around the outer periphery of the iron core 1 for the static induction device, a short circuit current is obtained. The leakage magnetic flux passes through the magnetic steel plate 21 along the width direction like the radial iron core, and does not pass through the magnetic steel plate in the thickness direction. Thereby, generation | occurrence | production of the eddy current by a leakage magnetic flux is suppressed. Further, since the cross section of the iron core is almost a perfect circle, the length of the coil conductor to be wound can be further shortened, and resource saving can be achieved.
 しかして、本実施形態の静止誘導機器用鉄心1は、図4の部分拡大図に示すように、鉄心ブロック2の径方向最外側に設けられた円筒状鉄心要素(第3の鉄心要素)2Cを構成する磁性鋼板21の積層側側面における外部露出部21xの幅方向長さsが、磁性鋼板21の板厚t以下になるように磁性鋼板21を積層している。つまり、磁性鋼板21の板厚tが0.3mmであれば、外部露出部21xの幅方向長さsは、0.3mm以下となるようにしている。 Thus, as shown in the partially enlarged view of FIG. 4, the iron core 1 for stationary induction equipment of the present embodiment is a cylindrical core element (third core element) 2C provided on the outermost side in the radial direction of the core block 2. The magnetic steel plates 21 are laminated such that the width direction length s of the externally exposed portion 21x on the side surface of the magnetic steel plate 21 constituting the magnetic sheet 21 is equal to or less than the thickness t of the magnetic steel plate 21. That is, if the thickness t of the magnetic steel plate 21 is 0.3 mm, the length s in the width direction of the externally exposed portion 21x is set to 0.3 mm or less.
 磁性鋼板21の積層側側面は、隣接する磁性鋼板21と対向する側面21m、21nのうち、湾曲部211の凸側側面21nである。そして、この積層側側面において、接触する磁性鋼板21の幅方向外径側端部21bよりも外側に形成される面が、外部露出部21xである。 The laminated side surface of the magnetic steel plate 21 is the convex side surface 21n of the curved portion 211 among the side surfaces 21m and 21n facing the adjacent magnetic steel plate 21. And in this lamination | stacking side surface, the surface formed in the outer side rather than the width direction outer-diameter side edge part 21b of the magnetic steel plate 21 to contact is the external exposed part 21x.
 さらに、磁性鋼板21の幅方向内径側端部21aは、図3に示すように、幅方向内径側端部21aの中心線の傾きが、第3の鉄心要素2Cの内側円の径方向に対して傾斜角度θ21aを有するように設けられている。つまり、磁性鋼板21の幅方向内径側端部21aが、隣接する磁性鋼板21の幅方向内径側端部21aから外径方向に向かって板厚t以下の位置に接触するように設けられている。 Furthermore, as shown in FIG. 3, the width direction inner diameter side end portion 21a of the magnetic steel plate 21 has an inclination of the center line of the width direction inner diameter side end portion 21a with respect to the radial direction of the inner circle of the third core element 2C. So as to have an inclination angle θ 21a . That is, the width direction inner diameter side end portion 21a of the magnetic steel plate 21 is provided so as to come into contact with the position of the plate thickness t or less from the width direction inner diameter side end portion 21a of the adjacent magnetic steel plate 21 toward the outer diameter direction. .
 また本実施形態の第3の鉄心要素2Cは、第3の鉄心要素2Cの内径Φ、外径Φ、及び前記磁性鋼板21の板厚tが、 The third core element 2C of the present embodiment has an inner diameter Φ A , an outer diameter Φ B of the third core element 2C, and a thickness t of the magnetic steel sheet 21.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 (ここで、αは、第3の鉄心要素2Cの内側円の径方向に対する磁性鋼板21の傾斜角度θ21aであり、θ’は、隣接する磁性鋼板21の径方向最内端の角と円中心とのなす中心角度である。なお、三角関数の単位はラジアン(rad)である。)において、前記中心角度θ’が、磁性鋼板21の傾斜角度θ21aがゼロの場合の中心角度θと等しくなるときの磁性鋼板21の傾斜角度α(=θ21a)をθとし、磁性鋼板21の傾斜角度αがθ以下の場合には、 (Where α is the inclination angle θ 21a of the magnetic steel sheet 21 with respect to the radial direction of the inner circle of the third core element 2C, and θ ′ is the angle and circle of the radially innermost end of the adjacent magnetic steel sheet 21 The center angle θ ′ is the center angle θ 0 when the inclination angle θ 21a of the magnetic steel sheet 21 is zero in the unit of trigonometric function in radians (rad). and an inclined angle α (= θ 21a) a theta X of the magnetic steel plates 21 when equal, if: the inclination angle alpha is theta X of the magnetic steel plates 21,
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 磁性鋼板21の傾斜角度αがθよりも大きい場合には、前記(式1)を満たす中心角度θ’を用いて If the inclination angle α of the magnetic steel plates 21 is greater than the theta X is using said center angle theta 'satisfying (Equation 1)
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 の関係となるように構成されている。 It is configured so that
 この関係式(式2)及び関係式(式3)は、図4に示すように、外部露出部21xの幅方向長さsと、磁性鋼板21の板厚tとが、s≦tとなる第3の鉄心要素2Cの内径Φ及び外径Φの関係を示すものである。ここで、第3の鉄心要素2Cの内径Φとは、各磁性鋼板21の幅方向内径側端部21aに内接する円の直径であり、第3の鉄心要素2Cの外径Φとは、各磁性鋼板21の幅方向外径側端部21bに外接する円の直径である(図2参照)。 As shown in FIG. 4, the relational expression (Expression 2) and the relational expression (Expression 3) are such that the width direction length s of the externally exposed portion 21x and the thickness t of the magnetic steel plate 21 satisfy s ≦ t. It shows a third core element 2C inner diameter [Phi a and outer diameter [Phi B relationship. Here, the inner diameter [Phi A third core element 2C, the diameter of a circle inscribed in the width direction of the inner diameter side end portion 21a of the magnetic steel plates 21, and the outer diameter [Phi B of the third core element 2C The diameter of a circle circumscribing the end portion 21b in the width direction outer diameter side of each magnetic steel plate 21 (see FIG. 2).
 簡単のため磁性鋼板21の幅方向内径側端部21aが、第3の鉄心要素2Cの内径Φに対して垂直である(幅方向内径側端部21aの中心線の傾斜角度θ21aがゼロ(θ21a=0))として、その説明図を図5に示す。このとき、磁性鋼板21の幅方向内径側端部21aの角及び円中心Oを結ぶ直線と磁性鋼板21の中心線(直線とみなしている。)とのなす角度をθ/2(rad)とすると、次の関係式が成り立つ。 Widthwise inner diameter side end portion 21a of the magnetic steel plates 21 for simplicity, the tilt angle theta 21a of the center line of the third is perpendicular to the inner diameter [Phi A of the core element 2C (the width direction inner diameter side end portion 21a is zero (Θ 21a = 0)) is shown in FIG. At this time, the center line of the straight line and the magnetic steel plates 21 connecting the corners and circle center O of the widthwise inner diameter side end portion 21a of the magnetic steel plates 21 (which is regarded as a straight line.) Angle between the theta 0/2 (rad) Then, the following relational expression holds.
 tan(θ/2)=(t/2)/(Φ/2)=t/Φ   ・・・(式4) tan (θ 0/2) = (t / 2) / (Φ A / 2) = t / Φ A ··· ( Equation 4)
 磁性鋼板21、一枚当たりの中心角度は、θとなり、内径Φの第3の鉄心要素2Cの磁性鋼板21の枚数をNとして、各磁性鋼板21の幅方向内径側端部21aを互いに接触させて隙間なく密に配置した場合には、 Magnetic steel plate 21, the center angle per a piece, theta 0. Therefore, the number of magnetic steel plates 21 of the third core element 2C of the inner diameter [Phi A as N 0, the width direction of the inner diameter side end portion 21a of the magnetic steel plates 21 When placed in close contact with each other without gaps,
 N=2π/θ   ・・・(式5)
 となる。
N 0 = 2π / θ 0 (Formula 5)
It becomes.
 また、図6に示すように、外部露出部21xの幅方向長さsが、板厚tと等しいとした場合には、磁性鋼板21の幅方向外径側端部21bの頂点a及び頂点c間の距離は、近似的にΦπ/Nとなる。ここで、直角二等辺三角形abcにおいて、 As shown in FIG. 6, when the width direction length s of the externally exposed portion 21x is equal to the plate thickness t, the vertex a and the vertex c of the end portion 21b in the width direction outer diameter side of the magnetic steel plate 21 are used. The distance between them is approximately Φ B π / N 0 . Here, in the right isosceles triangle abc,
 (Φπ/N=2t   ・・・(式6)
 となる。
B π / N 0 ) 2 = 2t 2 (Formula 6)
It becomes.
 ここで、(式5)を(式6)に代入して、
 {Φπ/(π/2θ)}=2t
Here, substituting (Equation 5) into (Equation 6),
B π / (π / 2θ 0 )} 2 = 2t 2
 両辺を整理すると、 Φ=2√2t/θ   ・・・(式7)
 となる。
By arranging both sides, Φ B = 2√2t / θ 0 (Expression 7)
It becomes.
 そして、(式7)に(式4)の変形式θ/2=tan-1(t/Φ)を代入すると、上記関係式(式2)における等号式が得られる。 Then, when substituted into (Equation 7) a modified equation θ 0/2 = tan -1 (Equation 4) (t / [Phi A), the equivalent expression in the above equation (Equation 2) is obtained.
 次に、傾斜角度θ21aがゼロ(θ21a=0)の場合において、s<tとなるための条件を考える。 Next, a condition for s <t is considered when the tilt angle θ 21a is zero (θ 21a = 0).
 このとき、直角三角形abcにおいて、
 (Φπ/N=s+t<2t   ・・・(式8)
 となる。
At this time, in the right triangle abc,
B π / N 0 ) 2 = s 2 + t 2 <2t 2 (Equation 8)
It becomes.
 ここで、(式5)を(式8)に代入すると、
 Φ<2√2t/θ   ・・・(式9)
 となる。
Here, if (Equation 5) is substituted into (Equation 8),
Φ B <2√2t / θ (Equation 9)
It becomes.
 そして、(式9)に(式4)の変形式θ/2=tan-1(t/Φ)を代入すると、上記関係式(式2)における不等式が得られる。 Then, substituting the equation (9) deformation equation θ 0/2 = tan -1 (Equation 4) (t / [Phi A), inequalities in the relationship (Equation 2) is obtained.
 また、傾斜角度θ21aが0<θ21a<θの場合において、s=tとなるための条件を考える。 In addition, when the inclination angle θ 21a is 0 <θ 21aX , a condition for s = t is considered.
 ここで、まず角度θについて説明する。この角度θは、隣接する磁性鋼板21の径方向最内端の角と円中心Oとのなす角度をθ’が、中心角度θと等しくなるときの磁性鋼板21の傾斜角度θ21aであり、 Here, first, the angle theta X will be described. This angle θ X is an inclination angle θ 21a of the magnetic steel plate 21 when θ ′ is equal to the center angle θ 0 , which is the angle formed between the radially innermost corner of the adjacent magnetic steel plate 21 and the circle center O. Yes,
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 において、中心角度θ’が、中心角度θと等しくなるときの磁性鋼板21の傾斜角度である。このθは、磁性鋼板21の傾斜角度θ21aが0<θ21a<θの場合には、角度θ’は中心角度θよりも小さい。一方、磁性鋼板21の傾斜角度θ21aがθ<θ21aの場合には、角度θ’は中心角度θよりも大きい。なお、(式1)及びθの導出については最後に説明する。 , The inclination angle of the magnetic steel sheet 21 when the center angle θ ′ becomes equal to the center angle θ 0 . This θ X is smaller than the central angle θ 0 when the inclination angle θ 21a of the magnetic steel sheet 21 is 0 <θ 21aX. On the other hand, when the inclination angle θ 21a of the magnetic steel plate 21 is θ X21a , the angle θ ′ is larger than the center angle θ 0 . The derivation of (Equation 1) and θ X will be described last.
 このとき、磁性鋼板21の積層枚数をN’とすると、N’>Nであり、図7に示すように、隣接する磁性鋼板21の径方向最内端の角と円中心Oとのなす角度をθ’とすると、θ’<θである。 At this time, if the number of laminated magnetic steel plates 21 is N ′, N ′> N 0 , and the angle between the innermost corner in the radial direction of the adjacent magnetic steel plates 21 and the circle center O is shown in FIG. When the angle is θ ′, θ ′ <θ 0 .
 そうすると、
 (Φπ/N’)=2t   ・・・(式10)
 また、N’=2π/θ’   ・・・(式11)
 となる。
Then
B π / N ′) 2 = 2t 2 (Equation 10)
N ′ = 2π / θ ′ (Expression 11)
It becomes.
 (式10)及び(式11)より、
 {Φπ/(π/2θ’)}=2t
From (Equation 10) and (Equation 11),
B π / (π / 2θ ′)} 2 = 2t 2
 両辺を整理すると、
 Φ=2√2t/θ’   ・・・(式12)
 となる。
If you organize both sides,
Φ B = 2√2t / θ ′ (Expression 12)
It becomes.
 この(式12)は、
 Φ=2√2t/θ’>2√2t/θ(∵θ’<θ
 となる。
This (Equation 12) is
Φ B = 2√2t / θ ′> 2√2t / θ 0 (∵θ ′ <θ 0 )
It becomes.
 つまり、磁性鋼板21の傾斜角度θ21aが0<θ21a<θの範囲においてs=tとなるための外径Φの満たす範囲は、磁性鋼板21の傾斜角度θ21aがθ21a=0の場合のs=tとなるための外径Φの満たす範囲を包含する。したがって、内径Φ、外径Φ、及び板厚tが、上記関係式(式2)の不等式を満たす場合には、磁性鋼板21の傾斜角度θ21aが0<θ21a<θの範囲にある場合においてもs=tとすることができる。 That is, the inclination angle θ 21a of the magnetic steel sheet 21 is θ 21a = 0 so that the outer diameter Φ B satisfies the condition that the inclination angle θ 21a of the magnetic steel sheet 21 satisfies s = t in the range of 0 <θ 21aX. It encompasses a range satisfying outer diameters [Phi B for the of s = t for. Therefore, when the inner diameter Φ A , the outer diameter Φ B , and the plate thickness t satisfy the inequality of the above relational expression (Formula 2), the inclination angle θ 21a of the magnetic steel sheet 21 is in the range of 0 <θ 21aX. In this case, s = t.
 次に、傾斜角度θ21aが0<θ21a<θの場合において、s<tとなるための条件を考える。 Next, a condition for satisfying s <t when the tilt angle θ 21a is 0 <θ 21aX will be considered.
 このとき、直角三角形abcにおいて、
 (Φπ/N’)=s+t<2t   ・・・(式13)
 となる。
At this time, in the right triangle abc,
B π / N ′) 2 = s 2 + t 2 <2t 2 (Equation 13)
It becomes.
 (式11)を(式13)に代入すると、
 Φ<2√2t/θ’   ・・・(式14)
 となる。
Substituting (Equation 11) into (Equation 13),
Φ B <2√2t / θ ′ (Expression 14)
It becomes.
 この(式14)は、
 Φ<2√2t/θ’>2√2t/θ(∵θ’<θ
 となる。
This (Equation 14) is
Φ B <2√2t / θ ′> 2√2t / θ 0 (∵θ ′ <θ 0 )
It becomes.
 つまり、磁性鋼板21の傾斜角度θ21aが0<θ21a<θの範囲においてs<tとなるための外径Φの満たす範囲は、磁性鋼板21の傾斜角度θ21aがθ21a=0の場合のs<tとなるための外径Φの満たす範囲を包含する。したがって、内径Φ、外径Φ、及び板厚tが、上記関係式(式2)の不等式を満たす場合には、磁性鋼板21の傾斜角度θ21aが0<θ21a<θの範囲にある場合においてもs<tとすることができる。 That is, the inclination angle θ 21a of the magnetic steel sheet 21 is θ 21a = 0 in the range that the outer diameter Φ B satisfies so that the inclination angle θ 21a of the magnetic steel sheet 21 satisfies s <t in the range of 0 <θ 21aX. It encompasses a range satisfying outer diameters [Phi B for the of s <t for. Therefore, when the inner diameter Φ A , the outer diameter Φ B , and the plate thickness t satisfy the inequality of the above relational expression (Formula 2), the inclination angle θ 21a of the magnetic steel sheet 21 is in the range of 0 <θ 21aX. Even in the case of, s <t.
 次に、傾斜角度θ21aがθ21a=θの場合において、s=t、s<tとなるための条件を考える。このとき、θ=θであるので、それぞれの場合において、上述したθ21a=0の場合におけるs=t、s<tとなるための条件と同じである。 Next, a condition for satisfying s = t and s <t when the inclination angle θ 21a is θ 21a = θ X will be considered. At this time, since θ X = θ 0 , in each case, the conditions for s = t and s <t in the case of θ 21a = 0 described above are the same.
 次に、傾斜角度θ21aがθよりも大きい(θ21a>θ)場合において、s=tとなるための条件を考える。 Next, a condition for s = t is considered when the inclination angle θ 21a is larger than θ X21a > θ X ).
 このとき、磁性鋼板21の積層枚数をN’とすると、N’<Nであり、図7に示すように、隣接する磁性鋼板21の径方向最内端の角と円中心Oとのなす角度をθ’とすると、θ’>θである。また、頂点A及び頂点A’の距離を仮想板厚t’とすると、 At this time, if the number of magnetic steel plates 21 to be stacked is N ′, N ′ <N 0 , and the angle between the corner of the radially innermost end of the adjacent magnetic steel plates 21 and the circle center O is shown in FIG. 'If you, θ' the angle θ> θ 0. Further, when the distance between the vertex A and the vertex A ′ is a virtual plate thickness t ′,
 tan(θ’/2)=(t’/2)/(Φ/2)=t’/Φ
 したがって、θ’=2tan-1(t’/Φ)   ・・・(式15)
tan (θ ′ / 2) = (t ′ / 2) / (Φ A / 2) = t ′ / Φ A
Therefore, θ ′ = 2 tan −1 (t ′ / Φ A ) (Equation 15)
 また、
 (Φπ/N’)=2t   ・・・(式16)
 N’=2π/θ’   ・・・(式17)
 となる。
Also,
B π / N ′) 2 = 2t 2 (Expression 16)
N ′ = 2π / θ ′ (Expression 17)
It becomes.
 (式16)及び(式17)より、
 {Φπ/(π/2θ’)}=2t
From (Expression 16) and (Expression 17),
B π / (π / 2θ ′)} 2 = 2t 2
 両辺を整理すると、
 Φ=2√2t/θ’   ・・・(式18)
 となる。
If you organize both sides,
Φ B = 2√2t / θ ′ (Expression 18)
It becomes.
 (式18)を(式15)に代入すると、
 Φ=√2tan-1(t’/Φ)   ・・・(式19)
 となる。
Substituting (Equation 18) into (Equation 15),
Φ B = √2 tan −1 (t ′ / Φ A ) (Equation 19)
It becomes.
 ここで、三角形OAA’において余弦定理より、
 (t’)=(Φ+(Φ-2(Φcosθ’であり、
 t’=Φ√{(1-cosθ’)/2}   ・・・(式20)
 となる。
Here, from the cosine theorem in the triangle OAA ',
(T ′) 2 = (Φ A ) 2 + (Φ A ) 2 −2 (Φ A ) 2 cos θ ′,
t ′ = Φ A √ {(1-cos θ ′) / 2} (Equation 20)
It becomes.
 そして、(式19)に(式20)を代入すると、上記関係式(式3)における等号式が得られる。 Then, by substituting (Equation 20) into (Equation 19), the equality expression in the above relational expression (Equation 3) is obtained.
 次に、傾斜角度θ21aがθよりも大きい(θ21a>θ)場合において、s<tとなるための条件を考える。 Next, a condition for satisfying s <t when the tilt angle θ 21a is larger than θ X21a > θ X ) will be considered.
 このとき、直角三角形abcにおいて、
 (Φπ/N’)=s+t<2t   ・・・(式21)
 となる。
At this time, in the right triangle abc,
B π / N ′) 2 = s 2 + t 2 <2t 2 (Formula 21)
It becomes.
 (式17)を(式21)に代入すると、
 Φ<2√2t/θ’   ・・・(式22)
 となる。
Substituting (Equation 17) into (Equation 21),
Φ B <2√2t / θ ′ (Expression 22)
It becomes.
 そして、(式22)に(式15)及び(式20)を代入すると、上記関係式(式3)における不等式が得られる。 Then, by substituting (Expression 15) and (Expression 20) into (Expression 22), the inequality in the above relational expression (Expression 3) is obtained.
 以上より、上記関係式を満たす第3の鉄心要素2Cの内径Φ、外径Φ、板厚tを選択することにより、s≦tとなる第3の鉄心要素2Cを製作することができる。 As described above, the third core element 2C satisfying s ≦ t can be manufactured by selecting the inner diameter Φ A , the outer diameter Φ B , and the plate thickness t of the third core element 2C that satisfies the above relational expression. .
 具体例として、磁性鋼板21の傾斜角度αがθ以下の場合において、例えば第3の鉄心要素2Cの内径Φを550(mm)、外径Φを600(mm)及び磁性鋼板21の板厚tを0.3(mm)とした場合には、外径Φ(=600)<777.8≒√2×0.3/(tan-1(0.3/550))となる。したがって、磁性鋼板21の傾斜角度αがθ以下の条件下、板厚tが0.3(mm)の磁性鋼板21を用いて、内径Φ550(mm)、外径Φ600(mm)の第3の鉄心要素2Cを製作した場合、外部露出部21xの幅方向長さsが、板厚tより小さい第3の鉄心要素2Cができる。 As a specific example, when the inclination angle α of the magnetic steel plates 21 is less than theta X, for example, the inner diameter [Phi A third core element 2C 550 (mm), the outer diameter Φ B 600 (mm) and the magnetic steel plates 21 When the plate thickness t is 0.3 (mm), the outer diameter Φ B (= 600) <777.8≈√2 × 0.3 / (tan −1 (0.3 / 550)). . Therefore, using the magnetic steel sheet 21 having a thickness t of 0.3 (mm) under the condition that the inclination angle α of the magnetic steel sheet 21 is θ X or less, the inner diameter Φ A 550 (mm) and the outer diameter Φ B 600 (mm ) Of the third core element 2C, the third core element 2C having a width direction length s of the externally exposed portion 21x smaller than the plate thickness t can be obtained.
 また、磁性鋼板21の傾斜角度αがθよりも大きい場合において、例えば第3の鉄心要素2Cの内径Φを550(mm)、外径Φを600(mm)、磁性鋼板21の板厚tを0.3(mm)、及び、上記(式1)から求められる仮想板厚t’が0.35(mm)の場合、外径Φ(=600)<666.7≒√2×0.3/(tan-1(0.35/550))となる。したがって、磁性鋼板21の傾斜角度αがθよりも大きい条件下、板厚tが0.3(mm)の磁性鋼板21を用いて、内径Φ550(mm)、外径Φ600(mm)の第3の鉄心要素2Cを製作した場合において、外部露出部21xの幅方向長さsが、板厚tより小さい第3の鉄心要素2Cができる。 Further, in the case the inclination angle α of the magnetic steel plates 21 is greater than the theta X, for example, the inner diameter [Phi A third core element 2C 550 (mm), 600 the outer diameter Φ B (mm), a plate of magnetic steel plates 21 When the thickness t is 0.3 (mm) and the virtual plate thickness t ′ obtained from the above (formula 1) is 0.35 (mm), the outer diameter Φ B (= 600) <666.7≈√2 × 0.3 / (tan −1 (0.35 / 550)). Therefore, the inclination angle α is larger conditions than theta X of the magnetic steel plates 21, the plate thickness t by using the magnetic steel plates 21 of 0.3 (mm), an inside diameter Φ A 550 (mm), outer diameter [Phi B 600 ( mm) of the third core element 2C, the third core element 2C having a width direction length s of the externally exposed portion 21x smaller than the plate thickness t can be obtained.
 さらに、s=tとした場合の内径Φ及び外径Φの関係を示すために、図8にシミュレーション結果を示す。この図8は、外径Φを60に固定して、インボリュート曲線(x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ))において、係数aを変化させた場合における内径Φの関係を示す図である。なお、s=tとなるためのθは、1.25π、3.25π、5.25πである。 Furthermore, in order to show the relationship between the inner diameter Φ A and the outer diameter Φ B when s = t, a simulation result is shown in FIG. FIG. 8 shows the relationship of the inner diameter Φ A when the outer diameter Φ B is fixed to 60 and the coefficient a is changed in the involute curve (x = a (cos θ + θ sin θ), y = a (sin θ−θ cos θ)). FIG. Note that θ for s = t is 1.25π, 3.25π, and 5.25π.
 この図8から分かるように、外径Φが60の場合、内径Φの最小値は、約42.6(=21.3×2)となる。つまり、s=tとするための内径/外径の比は、Φ/Φ>42.6/60=0.71である。 As can be seen from FIG. 8, when the outer diameter Φ B is 60, the minimum value of the inner diameter Φ A is about 42.6 (= 21.3 × 2). That is, the ratio of the inner diameter / outer diameter for s = t is Φ A / Φ B > 42.6 / 60 = 0.71.
 さらに、2s=tとした場合の内径Φ及び外径Φの関係を示すために、図9にシミュレーション結果を示す。この図9は、上記図8と同様に、外径Φを60に固定して、インボリュート曲線(x=a(cosθ+θsinθ)、y=a(sinθ-θcosθ))において、係数aを変化させた場合における内径Φの関係を示す図である。なお、2s=tとなるためのθは、1.25π、3.15π、5.15πである。 Furthermore, in order to show the relationship between the inner diameter Φ A and the outer diameter Φ B when 2 s = t, a simulation result is shown in FIG. The 9, similar to FIG 8, to fix the outer diameter [Phi B 60, an involute curve in (x = a (cosθ + θsinθ ), y = a (sinθ-θcosθ)), changing the coefficients a It is a figure which shows the relationship of the internal diameter (PHI) A in a case. Note that θ for satisfying 2s = t is 1.25π, 3.15π, and 5.15π.
 この図9から分かるように、外径Φが60の場合、内径Φの最小値は、約53,7(=26.85×2)となる。つまり、2s=tとするための外径/内径の比は、Φ/Φ>53.7/60=0.895である。このように、シミュレーションの結果から、s≦tとなるための内径/外径の比は、Φ/Φ>0.71であることが必要と考えられる。 As can be seen from FIG. 9, when the outer diameter Φ B is 60, the minimum value of the inner diameter Φ A is about 53,7 (= 26.85 × 2). That is, the ratio of the outer diameter / inner diameter for 2s = t is Φ A / Φ B > 53.7 / 60 = 0.895. Thus, from the simulation results, it is considered that the ratio of the inner diameter / outer diameter to satisfy s ≦ t needs to satisfy Φ A / Φ B > 0.71.
 最後に、角度θの導出について図10を参照して説明する。まず、幾何学的情報を解析学的に記述する。 Finally, it is described with reference to FIG. 10 the derivation of the angle theta X. First, geometric information is described analytically.
 図10に示した第1の磁性鋼板の点A(R(=Φ/2),0)を通る面L
 L:f(x、y)=0
 とおく。
A plane L 1 passing through the point A (R (= Φ A / 2), 0) of the first magnetic steel plate shown in FIG. 10 is expressed as L 1 : f (x, y) = 0.
far.
 また、第1の磁性鋼板に隣接する第2の磁性鋼板の面Lは、中心の回転角θ’を用いて、
 L:g(f(x、y),θ’)=0
 と表すことができる。
Further, the surface L2 of the second magnetic steel plate adjacent to the first magnetic steel plate uses the central rotation angle θ ′,
L 2 : g (f (x, y), θ ′) = 0
It can be expressed as.
 この面Lが第1の磁性鋼板と点B(x,y)で接していることから、
 g(f(x,y),θ’)=0
 が成立する。
Since this surface L 2 is in contact with the first magnetic steel plate at point B (x b , y b ),
g (f (x b , y b ), θ ′) = 0
Is established.
 以下、面L、Lの断面形状が直線であると仮定する。Lとx軸とのなす角度をαとおくと、幾何学的に関数fは次式となる。
 L:f(x,y)=y-(x-R)tan(-α)=0
Hereinafter, it is assumed that the cross-sectional shapes of the surfaces L 1 and L 2 are straight lines. The angle between L 1 and the x-axis when putting the alpha, geometrically function f is expressed as follows.
L 1 : f (x, y) = y− (x−R) tan (−α) = 0
 したがって、Lは次式となる。
 L:g(f(x,y),θ’)
     =y-Rsinθ’-(s-Rsinθ’)tan(θ’-α)=0
Therefore, L 2 becomes the following equation.
L 2 : g (f (x, y), θ ′)
= Y-Rsinθ '-(s-Rsinθ') tan (θ'-α) = 0
 また、鋼板の厚さをtとすると、点Bの座標は(R+tsinα,tcosα)となる。この点Bの座標値を式Lに代入すると、
 tcosα-Rsinθ-(R+tsinα-Rcosθ)tan(θ-α)=0
 となる。
If the thickness of the steel sheet is t, the coordinates of the point B are (R + tsin α, t cos α). Substituting the coordinates of the point B to the formula L 2,
tcos α-R sin θ- (R + tsin α-R cos θ) tan (θ-α) = 0
It becomes.
 この式により、内径R(=Φ/2)、板厚tを与え、θ’=θとすることにより求められたαがθとなる。 According to this formula, an inner diameter R (= Φ A / 2) and a sheet thickness t are given, and α obtained by setting θ ′ = θ 0 is θ X.
 <第1実施形態の効果>
 このように構成した本実施形態に係る静止誘導機器用鉄心1によれば、鉄心ブロック2が円筒状鉄心要素2A、2B、2Cを同士円上に複数積層して形成されたものであり、占積率を向上させることができ、鉄損を低減することができる。また、ギャップ部材3によって磁路中の磁気抵抗を増減させて所望のリアクタンスを得ることができる上に、磁気抵抗を大きくした場合に径方向に貫通する漏洩磁束の磁束量は増加するが、この漏洩磁束は等価的に略放射状に設けられた磁性鋼板21の幅方向に沿って通過するようになり、渦電流を低減することができる。さらに、磁性鋼板21をずらして積み重ねて形成された鉄心ブロック2間にギャップ部材3を挟み込むという構成により、製造の簡単化及び製造コストの削減を実現することができる。
<Effects of First Embodiment>
According to the iron core 1 for stationary induction equipment according to the present embodiment configured as described above, the iron core block 2 is formed by laminating a plurality of cylindrical iron core elements 2A, 2B, and 2C on each other. The volume factor can be improved and iron loss can be reduced. In addition, the gap member 3 can increase or decrease the magnetic resistance in the magnetic path to obtain a desired reactance, and when the magnetic resistance is increased, the amount of leakage magnetic flux penetrating in the radial direction increases. The leakage magnetic flux is equivalently passed along the width direction of the magnetic steel plate 21 provided substantially radially, and eddy current can be reduced. Further, the structure in which the gap member 3 is sandwiched between the iron core blocks 2 formed by shifting and stacking the magnetic steel plates 21 can simplify the manufacturing and reduce the manufacturing cost.
 <その他の変形実施形態>
 なお、本発明は前記実施形態に限られるものではない。以下の説明において前記実施形態に対応する部材には同一の符号を付すこととする。
<Other modified embodiments>
The present invention is not limited to the above embodiment. In the following description, the same reference numerals are given to members corresponding to the above-described embodiment.
 例えば、前記実施形態では、各円筒状鉄心要素の積み重ねる方向が同一であるが、各円筒状鉄心要素間において、積み重ねる方向を逆方向にしても良い。 For example, in the above-described embodiment, the stacking direction of the cylindrical core elements is the same, but the stacking direction may be reversed between the cylindrical core elements.
 また、前記実施形態では、鉄心ブロックは3つの円筒状鉄心要素により構成されているが、2つの円筒状鉄心要素又は4つ以上の円筒状鉄心要素から構成されるものであっても良い。つまり、静止誘導機器用鉄心は、その用途に合わせて2以上の円筒状鉄心要素から構成されているものであれば良い。 In the above embodiment, the core block is composed of three cylindrical core elements, but may be composed of two cylindrical core elements or four or more cylindrical core elements. That is, the stationary induction device iron core may be any one that includes two or more cylindrical core elements according to the application.
 さらに、前記実施形態では、磁性鋼板21が湾曲部211のみからなるものであったが、図11に示すように、湾曲部211と、当該湾曲部211の幅方向における内径側端部に連続して形成された屈曲部212とからなるものであっても良い。このとき、屈曲部212の湾曲部211に対する屈曲角θは例えば30度で良く、その長さはできるだけ短い方がよく、例えば磁性鋼板21の厚さの3~10倍程度が望ましい。このように屈曲部212を備えるものであれば、各磁性鋼板21を積み重ねる作業を容易にすることができるだけでなく、磁性鋼板21が径方向外部に抜脱されることを好適に防止することができる。 Furthermore, in the said embodiment, although the magnetic steel plate 21 consisted only of the curved part 211, as shown in FIG. 11, it continues to the inner diameter side edge part in the width direction of the curved part 211 and the said curved part 211 concerned. It may be composed of the bent portion 212 formed in this manner. At this time, the bending angle θ of the bending portion 212 with respect to the bending portion 211 may be, for example, 30 degrees, and the length should be as short as possible, for example, about 3 to 10 times the thickness of the magnetic steel plate 21 is desirable. Thus, if it has a bending part 212, not only can the operation | work which piles up each magnetic steel plate 21 be facilitated, but it can prevent suitably that the magnetic steel plate 21 is pulled out to radial direction exterior. it can.
 <第2実施形態>
 次に、渦電流を好適に抑制することができる円筒状鉄心、誘導発熱ローラ装置及び静止誘導機器に関する第2実施形態について説明する。
Second Embodiment
Next, a second embodiment relating to a cylindrical iron core, an induction heating roller device, and a stationary induction device that can suitably suppress eddy currents will be described.
 変圧器やリアクトルといった静止誘導機器、又は誘導発熱ローラ装置といった誘導発熱機器などの電磁誘導機器において、磁路となる鉄心の損失は、電磁誘導機器の効率低下及び発熱の原因となっており、その低減が大きな課題である。 In electromagnetic induction devices such as static induction devices such as transformers and reactors, or induction heat generation devices such as induction heating roller devices, the loss of the iron core that becomes the magnetic path is the cause of reduced efficiency and heat generation of electromagnetic induction devices. Reduction is a major issue.
 特に、漏洩磁束による鉄心の渦電流損は大きな比率を占め、この渦電流により鉄心が発熱してしまい、機器の効率を低下させてしまう。また、これに巻回されている誘導コイルの効率低下、絶縁低下を招く要因となる。なお、渦電流の大きさは、磁束が垂直に入る磁性鋼板の幅、又は板厚の二乗に比例して大きくなることが知れられている。 Especially, the eddy current loss of the iron core due to the leakage magnetic flux occupies a large ratio, and the iron core generates heat due to this eddy current, and the efficiency of the equipment is lowered. Moreover, it becomes a factor which causes the efficiency fall and insulation fall of the induction coil currently wound by this. It is known that the magnitude of the eddy current increases in proportion to the square of the width or thickness of the magnetic steel sheet in which the magnetic flux enters vertically.
 従来、一般的に用いられている略円形鉄心としては、特許文献5(特開平9-232165号公報)に示すような積鉄心がある。この積鉄心は、図18に示すように、複数枚の磁性鋼板を積層することにより、幅寸法の異なる複数種の鋼板ブロック200を形成し、この鋼板ブロック200を概略円形状となるように積み重ねることによって形成されている。 Conventionally, as a generally circular iron core generally used, there is a product core as shown in Patent Document 5 (Japanese Patent Laid-Open No. 9-232165). As shown in FIG. 18, this stacked iron core forms a plurality of types of steel plate blocks 200 having different width dimensions by laminating a plurality of magnetic steel plates, and the steel plate blocks 200 are stacked so as to have a substantially circular shape. It is formed by.
 しかしながら、積層方向両端(図18において上下両端)に位置する鋼板ブロック200の端面200aが大きくなってしまい、この端面200aにおいて、大きな渦電流が生じてしまうという問題がある。また、各鋼板ブロック200の積層面の外部露出部分200bでも渦電流が生じてしまうという問題がある。 However, there is a problem that the end surfaces 200a of the steel plate blocks 200 located at both ends in the stacking direction (upper and lower ends in FIG. 18) become large, and a large eddy current is generated on the end surfaces 200a. Further, there is a problem that eddy currents are also generated in the externally exposed portion 200b of the laminated surface of each steel plate block 200.
 ここで、渦電流を小さくするためには、単純に各鋼板ブロック200における磁性鋼板の積層枚数を少なくするとともに、幅寸法の異なる鋼板ブロック200の種類を増やし、鋼板ブロック200の上下両端に位置する鋼板ブロック200の端面200a、及び鉄心の外面に形成される外部露出部200bを小さくすることが考えられる。 Here, in order to reduce eddy current, the number of magnetic steel plates stacked in each steel plate block 200 is simply reduced, the number of types of steel plate blocks 200 having different width dimensions is increased, and the steel plate blocks 200 are positioned at both upper and lower ends. It is conceivable to reduce the externally exposed portion 200b formed on the end surface 200a of the steel plate block 200 and the outer surface of the iron core.
 しかしながら、鋼板ブロック200の種類を増やしてしまうと、製造コストが高くなってしまうことや、作業が煩雑になってしまう等の問題がある。 However, if the types of the steel plate blocks 200 are increased, there are problems such as an increase in manufacturing cost and a complicated operation.
 また、近時、細幅に切断した長尺平板状をなす多数枚の磁性鋼板を、放射状に並べることによって筒状に構成したものが考えられている。これによれば、漏洩磁束が磁性鋼板を貫通することによる渦電流の発生を小さくすることができ、鉄心の発熱量を低減させることが可能になる。 Also, recently, it has been considered that a large number of magnetic steel plates having a long flat plate shape cut in a narrow width are arranged in a radial shape by arranging them radially. According to this, generation | occurrence | production of the eddy current by a leakage magnetic flux penetrating a magnetic steel plate can be made small, and it becomes possible to reduce the emitted-heat amount of an iron core.
 しかしながら、細幅の磁性鋼板を一定の円周に沿って放射状に並べる作業は極めて面倒である。また、各磁性鋼板の内端を密に並べても隣接する磁性鋼板の外端の間には、空隙が形成されてしまう。そのため、さらに別の細幅の磁性鋼板をその空隙に挟み込む等して、その空隙を埋める等の作業が必要となる。 However, it is extremely troublesome to arrange thin magnetic steel plates radially along a certain circumference. Even if the inner ends of the magnetic steel plates are arranged closely, a gap is formed between the outer ends of the adjacent magnetic steel plates. For this reason, it is necessary to work such as filling the gap by sandwiching another narrow magnetic steel plate in the gap.
 さらに、磁性鋼板の外端の空隙を無くす為に、放射状に並べた磁性鋼板の内端をパイプの外周に溶接によって固着し、前記パイプを回転させながら磁性鋼板の外端より加圧して、磁性鋼板を湾曲させることも考えられるが、溶接作業、パイプの回転作業、加圧作業などを必要とする。これらの作業は、大型の鉄心(例えば、軸方向長さが7m)を製造する場合には、極めて困難である。 Further, in order to eliminate the gap at the outer end of the magnetic steel plate, the inner ends of the magnetic steel plates arranged in a radial manner are fixed to the outer periphery of the pipe by welding, and the magnetic steel plate is pressurized from the outer end of the magnetic steel plate while rotating the pipe. Although it is conceivable to bend the steel plate, welding work, pipe rotation work, pressurization work, etc. are required. These operations are extremely difficult when manufacturing a large iron core (for example, an axial length of 7 m).
 その上、特許文献4(特開2000-311777号公報)及び特許文献6(登録実用新案2532986号公報)などに示すように、幅方向断面が湾曲形状をなす湾曲部を有する複数の磁性鋼板を、幅方向にずらして積み重ねることにより形成された円筒状鉄心が本出願人によって考えられている。 In addition, as shown in Patent Document 4 (Japanese Patent Laid-Open No. 2000-311777) and Patent Document 6 (Registered Utility Model No. 2532986), a plurality of magnetic steel plates having a curved portion having a curved cross section in the width direction are provided. The present applicant has considered a cylindrical iron core formed by stacking in the width direction.
 しかしながら、いずれの円筒状鉄心においても磁性鋼板を円筒状に積み重ねるという考えに止まっており、具体的に磁性鋼板をどのように積み重ねるかに着目したもの、つまり磁性鋼板の板厚と磁性鋼板の積層側側面における外部露出部の幅方向長さとの関係に着目したものはない。 However, in any cylindrical iron core, the idea of stacking magnetic steel plates in a cylindrical shape is limited, and it is focused on how to stack magnetic steel plates specifically, that is, the thickness of magnetic steel plates and the lamination of magnetic steel plates There is nothing that pays attention to the relationship with the width direction length of the externally exposed portion on the side surface.
 そこで本発明は、磁性鋼板の板厚と磁性鋼板の積層側側面における外部露出部の幅方向長さとの関係に着目して初めてなされたものであり、上記問題点を一挙に解決するためになされたものであり、簡単な構成且つ製造コストの削減を図りつつ、磁性鋼板に生じる漏洩磁束による渦電流を可及的に抑制することをその主たる所期課題とするものである。 Therefore, the present invention was made for the first time by paying attention to the relationship between the thickness of the magnetic steel sheet and the width in the width direction of the externally exposed portion on the side surface of the magnetic steel sheet, and was made to solve the above problems all at once. Therefore, it is a main intended problem to suppress as much as possible the eddy current caused by the leakage magnetic flux generated in the magnetic steel sheet while reducing the manufacturing cost with a simple configuration.
 すなわち本発明に係る円筒状鉄心は、幅方向断面が湾曲形状をなす湾曲部を有する複数の磁性鋼板を、幅方向にずらして積み重ねることにより形成された円筒状鉄心であって、前記磁性鋼板の積層側側面における外部露出部の幅方向長さが、前記磁性鋼板の板厚以下であることを特徴とする。 That is, the cylindrical iron core according to the present invention is a cylindrical iron core formed by stacking a plurality of magnetic steel plates having a curved portion whose cross section in the width direction forms a curved shape, shifted in the width direction. The widthwise length of the externally exposed portion on the side surface of the lamination side is equal to or less than the thickness of the magnetic steel plate.
 このようなものであれば、円筒状鉄心において、外部露出部の幅方向長さをsとし、磁性鋼板の板厚をtとした場合に、s≦tとなるように構成され、渦電流が生じる部分の幅が最大でも磁性鋼板の板厚と同じとなるので、最大渦電流値を可及的に小さくすることができる。したがって、磁性鋼板をずらして積み重ねることにより簡単な構成且つ製造コストの削減を実現しつつ、渦電流の発生により生じる鉄損等の円筒状鉄心の磁気特性の低下を防止することができ、さらに、誘導コイルの電気特性及び絶縁特性の低下などの機器の効率低下及び発熱を防止することができる。 In such a case, in the cylindrical iron core, when the length of the externally exposed portion in the width direction is s and the thickness of the magnetic steel sheet is t, s ≦ t is established, and the eddy current is Since the width of the generated portion is the same as the thickness of the magnetic steel plate, the maximum eddy current value can be made as small as possible. Therefore, by deviating and stacking the magnetic steel plates, it is possible to prevent a reduction in the magnetic properties of the cylindrical iron core such as iron loss caused by the generation of eddy currents while realizing a simple configuration and a reduction in manufacturing cost. It is possible to prevent a decrease in efficiency of the device and a heat generation such as a decrease in electrical characteristics and insulation characteristics of the induction coil.
 外部露出部の幅方向長さsを前記磁性鋼板の板厚t以下にするための具体的な実施の態様としては、前記円筒状鉄心の内径Φ、外径Φ、及び前記磁性鋼板の板厚tが、 As a concrete embodiment for setting the width direction length s of the externally exposed portion to be equal to or less than the thickness t of the magnetic steel sheet, the inner diameter Φ A , the outer diameter Φ B of the cylindrical iron core, and the magnetic steel sheet The thickness t is
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 (ここで、αは、円筒状鉄心の内側円の径方向に対する傾斜角度であり、θ’は、隣接する磁性鋼板の径方向最内端の角と円中心とのなす中心角度である。なお、三角関数の単位はラジアン(rad)である。)において、前記中心角度θ’が、前記磁性鋼板の傾斜角度がゼロの場合の中心角度θと等しくなるときの磁性鋼板の傾斜角度αをθとし、磁性鋼板の傾斜角度αがθ以下の場合には、 (Here, α is an inclination angle with respect to the radial direction of the inner circle of the cylindrical iron core, and θ ′ is a central angle formed between the angle of the radially innermost end of the adjacent magnetic steel sheet and the circle center. The unit of the trigonometric function is radians), and the inclination angle α of the magnetic steel sheet when the central angle θ ′ is equal to the central angle θ 0 when the inclination angle of the magnetic steel sheet is zero. When θ X is set and the inclination angle α of the magnetic steel sheet is equal to or less than θ X ,
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 磁性鋼板の傾斜角度αがθよりも大きい場合には、上記(式1)を満たす中心角度θ’を用いて If the inclination angle α of the magnetic steel plates is greater than theta X, using the central angle theta 'satisfying the above equation (1)
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 の関係をなすことである。 It is to make a relationship.
 外部露出部の幅方向長さsを前記磁性鋼板の板厚t以下にするための前記円筒状鉄心の外径Φに対する前記円筒状鉄心の内径Φの比(Φ/Φ)は、0.71以上である。 The ratio (Φ A / Φ B ) of the inner diameter Φ A of the cylindrical iron core to the outer diameter Φ B of the cylindrical iron core for setting the widthwise length s of the external exposed portion to be equal to or less than the plate thickness t of the magnetic steel sheet is 0.71 or more.
 また、本発明の円筒状鉄心を誘導発熱ローラ装置に用いることが望ましく、特に、誘導発熱ローラ装置が、円筒状鉄心の外側周面に誘導コイルを巻装して構成される磁束発生機構と、前記磁束発生機構を収容するとともに、前記磁束発生機構に対して相対的に回転可能に設けられ、前記磁束発生機構の磁束により生じる誘導電流によって発熱する中空円筒状の発熱ロール体と、を備え、前記円筒状鉄心と前記発熱ロール体との間に非磁性体又は所定間隔の空隙を介在させていることが望ましい。ここで、非磁性体とは、アルミニウムのような磁性を示さない物質であり、セラミックス又は硝子なども含む。また、所定間隔の空隙とは、発熱ロール体の有効面長部分のみが発熱し、その他の部分が発熱しにくいようにする程度の間隔を有する空隙であり、真空又は大気であっても良い。 Further, it is desirable to use the cylindrical iron core of the present invention for the induction heating roller device, and in particular, the induction heating roller device includes a magnetic flux generation mechanism configured by winding an induction coil around the outer peripheral surface of the cylindrical iron core; A hollow cylindrical heating roll body that houses the magnetic flux generation mechanism and is provided so as to be rotatable relative to the magnetic flux generation mechanism, and generates heat by an induced current generated by the magnetic flux of the magnetic flux generation mechanism, It is desirable that a non-magnetic material or a gap at a predetermined interval is interposed between the cylindrical iron core and the heat generating roll body. Here, the non-magnetic material is a substance that does not exhibit magnetism, such as aluminum, and includes ceramics or glass. Moreover, the space | gap of a predetermined space | interval is a space | gap which has a space | interval of the grade which makes only the effective surface length part of a heat-generating roll body generate | occur | produce only heat, and does not generate | occur | produce another part easily, and may be vacuum or air | atmosphere.
 このように、円筒状鉄心と発熱ロール体との間に非磁性体又は所定間隔の空隙を介在させることにより、磁気抵抗を大きくして磁束が通りにくくすることにより、発熱ロール体の有効面長部分のみが発熱し、その他の部分(例えば発熱ロール体に接続されたジャーナル部分など)が発熱しにくいようにしている。 Thus, the effective surface length of the heat generating roll body is increased by interposing a non-magnetic body or a gap at a predetermined interval between the cylindrical iron core and the heat generating roll body, thereby increasing the magnetic resistance and making the magnetic flux difficult to pass. Only the portion generates heat, and other portions (for example, a journal portion connected to the heat-generating roll body) are made difficult to generate heat.
 このとき、円筒状鉄心と発熱ローラ体との間に非磁性体又は所定間隔の空隙を設けることによって円筒状鉄心の外側周面から半径方向に貫通して外部に放出される漏洩磁束の磁束量は増加する。しかし、本発明の円筒状鉄心を用いることによって、漏洩磁束による渦電流損、つまり鉄損を抑制し、磁束発生機構自体の自己発熱は防止される。 At this time, by providing a non-magnetic material or a gap at a predetermined interval between the cylindrical iron core and the heating roller body, the magnetic flux amount of the leakage magnetic flux that is released from the outer peripheral surface of the cylindrical iron core in the radial direction to the outside Will increase. However, by using the cylindrical iron core of the present invention, eddy current loss due to leakage magnetic flux, that is, iron loss is suppressed, and self-heating of the magnetic flux generation mechanism itself is prevented.
 さらに、本発明の円筒状鉄心を静止誘導機器に用いることが望ましい。特に、円筒状鉄心を用いて構成された脚鉄心を備え、前記円筒状鉄心の軸方向両端部の少なくとも一方に非磁性体を設けていることが望ましい。例えば、静止誘導機器のうちリアクトルに用いた場合には、磁路中の磁気抵抗を大きくすることができ、所定のリアクタンスを得ることができる。また、磁気抵抗を大きくすることによって、脚鉄心の外側周面から半径方向に貫通して外部に放出される漏洩磁束の磁束量は増加するが、本発明の円筒状鉄心を用いることによって、渦電流の発生を可及的に抑制することができる。 Furthermore, it is desirable to use the cylindrical iron core of the present invention for a stationary induction device. In particular, it is desirable that a leg iron core configured using a cylindrical iron core is provided, and a nonmagnetic material is provided on at least one of both axial ends of the cylindrical iron core. For example, when used as a reactor among static induction devices, the magnetic resistance in the magnetic path can be increased, and a predetermined reactance can be obtained. In addition, increasing the magnetic resistance increases the amount of magnetic flux leaked from the outer peripheral surface of the leg core in the radial direction and released to the outside. However, by using the cylindrical core of the present invention, the vortex Generation of current can be suppressed as much as possible.
 このように本発明によれば、簡単な構成且つ製造コストの削減を図りつつ、磁性鋼板に生じる漏洩磁束による最大渦電流値を可及的に抑制して、渦電流の発生により生じる鉄心の磁気特性、誘導コイルの電気特性及び絶縁特性の低下を解決することができる。 As described above, according to the present invention, the maximum eddy current value due to the leakage magnetic flux generated in the magnetic steel sheet is suppressed as much as possible while reducing the manufacturing cost with a simple structure, and the magnetic core generated by the generation of the eddy current is suppressed. The deterioration of the characteristics, the electrical characteristics of the induction coil, and the insulation characteristics can be solved.
 次に、第2実施形態の円筒状鉄心を用いた誘導発熱ローラ装置について図面を参照して説明する。なお、前記第1実施形態とは異なる符号を用いて説明する。 Next, the induction heating roller device using the cylindrical iron core of the second embodiment will be described with reference to the drawings. In addition, it demonstrates using the code | symbol different from the said 1st Embodiment.
 <装置構成>
 本実施形態に係る誘導発熱ローラ装置1は、例えば樹脂フィルム、紙、布、不織布、金属箔などのシート材又はウエブ材の連続熱処理工程又は合成繊維の熱延伸処理工程等において用いられるものであり、回転可能に設けられた中空円筒状の発熱ローラ体2と、この発熱ローラ体2内に収容される磁束発生機構3と、を備えている。
<Device configuration>
The induction heating roller device 1 according to the present embodiment is used in, for example, a continuous heat treatment process of a sheet material or web material such as a resin film, paper, cloth, nonwoven fabric, or metal foil, or a heat drawing process of synthetic fibers. And a hollow cylindrical heating roller body 2 that is rotatably provided, and a magnetic flux generation mechanism 3 accommodated in the heating roller body 2.
 発熱ローラ体2の両端部には、ジャーナル4が取り付けられている。このジャーナル4は、中空の駆動軸5と一体に構成されており、駆動軸5は、転がり軸受等の軸受6を介して基台7に回転自在に支持されている。 The journal 4 is attached to both ends of the heating roller body 2. The journal 4 is configured integrally with a hollow drive shaft 5, and the drive shaft 5 is rotatably supported on a base 7 via a bearing 6 such as a rolling bearing.
 磁束発生機構3は、円筒形状をなす円筒状鉄心31と、当該円筒状鉄心31の外側周面に巻装された誘導コイル32とから構成されている。円筒状鉄心31の両端にはそれぞれ、支持ロッド8が取り付けられている。この支持ロッド8は、それぞれ駆動軸5の内部に挿通されており、転がり軸受等の軸受9を介して駆動軸5に対して回転自在に支持されている。これにより、磁束発生機構3は、発熱ローラ体2の内部において、宙づり状態で支持されることになる。誘導コイル32には、リード線10が接続されており、このリード線10には、交流電圧を印加するための交流電源(図示しない)が接続されている。 The magnetic flux generation mechanism 3 includes a cylindrical iron core 31 having a cylindrical shape and an induction coil 32 wound around the outer peripheral surface of the cylindrical iron core 31. Support rods 8 are attached to both ends of the cylindrical iron core 31, respectively. Each of the support rods 8 is inserted into the drive shaft 5 and is rotatably supported with respect to the drive shaft 5 via a bearing 9 such as a rolling bearing. Thereby, the magnetic flux generation mechanism 3 is supported in a suspended state inside the heat generating roller body 2. A lead wire 10 is connected to the induction coil 32, and an AC power source (not shown) for applying an AC voltage is connected to the lead wire 10.
 また、円筒状鉄心31と発熱ロール体2又はジャーナル4との間に所定間隔の間隙又は非磁性体(図示しない)を設けている。具体的には、図12に示すように、円筒状鉄心31の両端と、ジャーナル4の鉄心側側面4aとの間に所定間隔の空隙Gを設けている。このように空隙Gを設けることにより、磁気抵抗を大きくして磁束が通りにくくし、発熱ロール体2のみが発熱し、ジャーナル4などが発熱しにくいようにしている。 Further, a gap or a non-magnetic material (not shown) with a predetermined interval is provided between the cylindrical iron core 31 and the heat generating roll body 2 or the journal 4. Specifically, as shown in FIG. 12, a gap G of a predetermined interval is provided between both ends of the cylindrical iron core 31 and the iron core side surface 4 a of the journal 4. By providing the gap G in this manner, the magnetic resistance is increased to make it difficult for the magnetic flux to pass through, so that only the heat generating roll body 2 generates heat and the journal 4 and the like hardly generate heat.
 しかして本実施形態の円筒状鉄心31は、図13に示すように、複数の磁性鋼板311を、幅方向にずらして積み重ねることにより円筒状に形成されたものである。
 磁性鋼板311は、長尺形状をなすものであり、図14に示すように、幅方向断面が湾曲形状をなす湾曲部3111を有する。この磁性鋼板311は、例えば表面に絶縁皮膜が施されたケイ素鋼板により形成されており、その板厚は、例えば約0.3mmである。
Thus, as shown in FIG. 13, the cylindrical iron core 31 of the present embodiment is formed in a cylindrical shape by stacking a plurality of magnetic steel plates 311 shifted in the width direction.
The magnetic steel plate 311 has a long shape, and has a curved portion 3111 having a curved cross section in the width direction as shown in FIG. The magnetic steel plate 311 is formed of, for example, a silicon steel plate having an insulating film on its surface, and the thickness thereof is, for example, about 0.3 mm.
 湾曲部3111は、全体に亘って一定の曲率で湾曲しているもの、又は、連続して曲率が変化しながら湾曲するものが考えられ、例えばインボリュート曲線の一部を用いたインボリュート形状、部分円弧形状又は部分楕円形状などが考えられる。 The curved portion 3111 may be curved with a constant curvature throughout, or may be curved while the curvature continuously changes. For example, an involute shape using a part of an involute curve, a partial arc A shape or a partial ellipse shape is conceivable.
 そして、磁性鋼板311の湾曲部3111により形成された凹部に、他の磁性鋼板311の湾曲部3111により形成された凸部を嵌め込むように、尚かつ各磁性鋼板311が幅方向にずれるようにして、同一形状をなす多数枚の磁性鋼板311を重ね合わせる。このとき、磁性鋼板311の幅方向端部311a、311bが、隣接する磁性鋼板311の凹側側面311m又は凸側側面311nに接触するようにしている。このようにして円筒形状をなす円筒状鉄心31が形成される。 Then, each magnetic steel plate 311 is shifted in the width direction so that the convex portion formed by the curved portion 3111 of another magnetic steel plate 311 is fitted into the concave portion formed by the curved portion 3111 of the magnetic steel plate 311. Then, a large number of magnetic steel plates 311 having the same shape are overlapped. At this time, the end portions 311a and 311b in the width direction of the magnetic steel plate 311 are in contact with the concave side surface 311m or the convex side surface 311n of the adjacent magnetic steel plate 311. In this way, the cylindrical iron core 31 having a cylindrical shape is formed.
 また円筒状鉄心31は、図13の部分拡大図に示すように、磁性鋼板311の積層側側面における外部露出部311xの幅方向長さsが、磁性鋼板311の板厚t以下になるように磁性鋼板311を積層している。つまり、磁性鋼板311の板厚tが0.3mmであれば、外部露出部311xの幅方向長さsは、0.3mm以下となるようにしている。 Further, as shown in the partial enlarged view of FIG. 13, the cylindrical iron core 31 has a width-direction length s of the externally exposed portion 311 x on the side of the laminated side of the magnetic steel plate 311 that is equal to or less than the plate thickness t of the magnetic steel plate 311. Magnetic steel plates 311 are stacked. That is, if the thickness t of the magnetic steel plate 311 is 0.3 mm, the length s in the width direction of the externally exposed portion 311x is set to 0.3 mm or less.
 磁性鋼板311の積層側側面は、隣接する磁性鋼板311と対向する側面311m、311nのうち、湾曲部3111の凸側側面311nである。そして、この積層側側面において、接触する磁性鋼板311の幅方向外径側端部311bよりも外側に形成される面が、外部露出部311xである。 The laminated side surface of the magnetic steel plate 311 is the convex side surface 311n of the curved portion 3111 among the side surfaces 311m and 311n facing the adjacent magnetic steel plate 311. And in this lamination | stacking side surface, the surface formed outside the width direction outer-diameter side edge part 311b of the magnetic steel plate 311 to contact is the external exposure part 311x.
 さらに、磁性鋼板311の幅方向内径側端部311aは、図14に示すように、幅方向内径側端部311aの中心線の傾きが、円筒状鉄心の内側円の径方向に対して傾斜角度θ311aを有するように設けられている。つまり、磁性鋼板311の幅方向内径側端部311aが、隣接する磁性鋼板311の幅方向内径側端部311aから外径方向に向かって板厚寸法以下の位置に接触するように設けられている。 Furthermore, as shown in FIG. 14, the width direction inner diameter side end 311a of the magnetic steel plate 311 has an inclination angle of the center line of the width direction inner diameter side end 311a with respect to the radial direction of the inner circle of the cylindrical iron core. It is provided so as to have θ 311a . That is, the width direction inner diameter side end portion 311a of the magnetic steel plate 311 is provided so as to contact a position equal to or less than the plate thickness dimension in the outer diameter direction from the width direction inner diameter side end portion 311a of the adjacent magnetic steel plate 311. .
 また本実施形態の円筒状鉄心31は、円筒状鉄心31の内径Φ、外径Φ、及び前
記磁性鋼板311の板厚tが、
The cylindrical iron core 31 of the present embodiment has an inner diameter Φ A , an outer diameter Φ B of the cylindrical iron core 31, and a thickness t of the magnetic steel plate 311.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 (ここで、αは、円筒状鉄心31の内側円の径方向に対する傾斜角度θ311であり、θ’は、隣接する磁性鋼板311の径方向最内端の角と円中心とのなす中心角度である。なお、三角関数の単位はラジアン(rad)である。)において、 (Here, α is an inclination angle θ311 with respect to the radial direction of the inner circle of the cylindrical iron core 31, and θ ′ is a central angle formed between the angle of the innermost end in the radial direction of the adjacent magnetic steel plate 311 and the center of the circle. (Note that the unit of trigonometric function is radian.)
 前記中心角度θ’が、磁性鋼板311の傾斜角度θ311がゼロの場合の中心角度θと等しくなるときの磁性鋼板311の傾斜角度α(=θ311)をθとし、 The central angle theta 'is the inclination angle of the magnetic steel plates 311 when the inclination angle theta 311 of the magnetic steel plates 311 becomes equal to the central angle theta 0 in the case of zero α of (= theta 311) and theta X,
 磁性鋼板311の傾斜角度αがθ以下の場合には、 When the inclination angle α of the magnetic steel plate 311 is θ X or less,
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 磁性鋼板311の傾斜角度αがθよりも大きい場合には、上記(式1)を満たす中心角度θ’を用いて If the inclination angle α of the magnetic steel plates 311 is greater than theta X, using the central angle theta 'satisfying the above equation (1)
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 の関係となるように構成されている。 It is configured so that
 この関係式(式A)及び関係式(式B)は、図15に示すように、外部露出部311xの幅方向長さsと、磁性鋼板311の板厚tとが、s≦tとなる円筒状鉄心31の内径Φ及び外径Φの関係を示すものである。ここで、円筒状鉄心31の内径Φとは、各磁性鋼板311の幅方向内径側端部311aに内接する円の直径であり、円筒状鉄心31の外径Φとは、各磁性鋼板3311の幅方向外径側端部311bに外接する円の直径である(図13参照)。なお、上記式の説明は、第1実施形態と同様であり省略する。 As shown in FIG. 15, the relational expression (formula A) and the relational expression (formula B) are such that the width direction length s of the externally exposed portion 311x and the plate thickness t of the magnetic steel plate 311 satisfy s ≦ t. It shows the inner diameter [Phi a and outer diameter [Phi B relationship of the cylindrical core 31. Here, the inner diameter [Phi A cylindrical iron core 31, the diameter of a circle inscribed in the width direction of the inner diameter side end portion 311a of the magnetic steel plate 311, and the outer diameter [Phi B of the cylindrical iron core 31, the magnetic steel plate This is the diameter of a circle circumscribing the width direction outer diameter side end 311b of 3311 (see FIG. 13). The description of the above formula is the same as in the first embodiment, and will be omitted.
 <第2実施形態の効果>
 このように構成した本実施形態に係る誘導発熱ローラ装置1によれば、円筒状鉄心31において、渦電流の最大となる部分の幅寸法が磁性鋼板311の板厚t以下となり、最大渦電流値を可及的に小さくすることができる。したがって、磁性鋼板311をずらして積み重ねることにより簡単な構成且つ製造コストの削減を実現しつつ、円筒状鉄心31の鉄損を低減することができ、その結果、機器の効率低下及び発熱を防ぐことができる。
<Effects of Second Embodiment>
According to the induction heating roller device 1 according to this embodiment configured as described above, in the cylindrical iron core 31, the width dimension of the portion where the eddy current is maximum is equal to or less than the plate thickness t of the magnetic steel plate 311, and the maximum eddy current value is obtained. Can be made as small as possible. Therefore, the iron loss of the cylindrical iron core 31 can be reduced while realizing a simple configuration and a reduction in manufacturing cost by staggering and stacking the magnetic steel plates 311. As a result, the efficiency of the device can be reduced and heat generation can be prevented. Can do.
 また、円筒状鉄心31と発熱ロール体2との間に空隙を設けていることにより、磁気抵抗を大きくして磁束が通りにくくし、発熱ロール体2の有効面長部分のみが発熱し、その他の部分(例えばジャーナル4)が発熱しにくいようにしているだけでなく、このとき、増大する漏洩磁束に対して、渦電流損、つまり鉄損を抑制し、磁束発生機構3自体の自己発熱は防止することができる。さらに、発熱ローラ体2からの輻射及び対流による伝熱で磁束発生機構3は高温化するが、非磁性体又は所定間隔の空隙によって発熱ローラ体2以外の部分への伝熱を低減することができる。 Further, by providing a gap between the cylindrical iron core 31 and the heat generating roll body 2, the magnetic resistance is increased to make it difficult for the magnetic flux to pass through, and only the effective surface length portion of the heat generating roll body 2 generates heat. In this case, the eddy current loss, that is, iron loss is suppressed against the increased leakage magnetic flux, and the self-heating of the magnetic flux generating mechanism 3 itself is not caused. Can be prevented. Furthermore, although the magnetic flux generating mechanism 3 is heated by heat transfer due to radiation and convection from the heat roller body 2, heat transfer to a portion other than the heat roller body 2 can be reduced by a non-magnetic material or a gap at a predetermined interval. it can.
 なお、例えば、円筒状鉄心31を静止誘導機器に用いることもできる。図16により、静止誘導機器のうちリアクトルZに用いた場合について説明する。このリアクトルZは、1又は複数(図16中では2個)の脚鉄心Z1と、当該脚鉄心Z1の外周に巻装されたコイルZ2と、前記複数の脚鉄心Z1を上下毎に各端部に繋ぎ閉じた磁路を形成するヨーク鉄心Z3と、を備えている。なお、図中Z5は、脚鉄心Z1を締め付けるための締め付けボルトである。そして、各脚鉄心Z1には、1又は複数のギャップが形成されている。具体的に脚鉄心Z1は、複数の円筒状鉄心31から形成されている。各脚鉄心Z1において、それぞれの円筒状鉄心31間には絶縁体からなるスペーサ部材Z4が挟まれており、これにより脚鉄心Z1には1又は複数のギャップが形成される。また、ヨーク鉄心Z3と円筒状鉄心31との間にもスペーサ部材Z4が配置されている。 In addition, for example, the cylindrical iron core 31 can be used for a stationary induction device. The case where it uses for the reactor Z among static induction apparatuses with FIG. 16 is demonstrated. The reactor Z includes one or more (two in FIG. 16) leg iron cores Z1, a coil Z2 wound around the outer circumference of the leg iron core Z1, and the plurality of leg iron cores Z1 at each end. And a yoke iron core Z3 that forms a closed magnetic path. In the figure, Z5 is a fastening bolt for fastening the leg iron core Z1. And each leg iron core Z1 is formed with one or a plurality of gaps. Specifically, the leg iron core Z <b> 1 is formed of a plurality of cylindrical iron cores 31. In each leg iron core Z1, a spacer member Z4 made of an insulator is sandwiched between the respective cylindrical iron cores 31, thereby forming one or more gaps in the leg iron core Z1. A spacer member Z4 is also disposed between the yoke iron core Z3 and the cylindrical iron core 31.
 これにより、ギャップにより磁気抵抗を調整することで所定のリアクタンスを得ることができる。また、磁気抵抗を大きくした場合には漏洩磁束が増大してしまうが、磁性鋼板311の外部露出部311xの幅方向長さが磁性鋼板311の板厚t以下であるので、渦電流の増大を可及的に抑制することができる。 Thus, a predetermined reactance can be obtained by adjusting the magnetic resistance by the gap. Further, when the magnetic resistance is increased, the leakage magnetic flux increases. However, since the length in the width direction of the externally exposed portion 311x of the magnetic steel plate 311 is equal to or less than the thickness t of the magnetic steel plate 311, the eddy current is increased. It can be suppressed as much as possible.
 また、前記実施形態の円筒状鉄心を、ゲート回路を有する半導体素子を用いた電気回路に接続される静止誘導機器に用いることも考えられる。ゲート回路を有する半導体素子には、通電スイッチとしての作用があるが、その通流電流は正弦波形状が崩れた多量の高調波成分を含む電流となる。そのため静止誘電機器の磁気回路に流れる磁束にも多量の高調波成分を含むことになり、円筒状鉄心には、周波数の二乗に比例した渦電流損が発生してしまう。また、漏洩磁束による渦電流損も発生してしまう。このとき、円筒状鉄心を用いることによって渦電流損を可及的に抑制することができる。 It is also conceivable to use the cylindrical iron core of the above embodiment for a stationary induction device connected to an electric circuit using a semiconductor element having a gate circuit. A semiconductor element having a gate circuit has an effect as an energization switch, but the flowing current is a current including a large amount of harmonic components whose sine wave shape is broken. Therefore, the magnetic flux flowing in the magnetic circuit of the static dielectric device also contains a large amount of harmonic components, and an eddy current loss proportional to the square of the frequency occurs in the cylindrical iron core. Also, eddy current loss due to leakage magnetic flux occurs. At this time, eddy current loss can be suppressed as much as possible by using the cylindrical iron core.
 その上、前記実施形態の円筒状鉄心は、径方向において一層のものであったが、特にリアクトル又はトランスに用いる場合には、径方向において多層構造のものであっても良い。 Furthermore, the cylindrical iron core of the above embodiment has a single layer in the radial direction, but may be of a multilayer structure in the radial direction, particularly when used for a reactor or a transformer.
 加えて、前記実施形態では、円筒状鉄心と発熱ロール体又はジャーナルとの間に所定間隔の間隙を設けているが、空隙の代わりに非磁性体を設けるものであっても良い。この場合、図17に示す片持ち式の誘導発熱ローラ装置に適用することが考えられる。つまり、円筒状鉄心31の一端部にフランジ31fが設けられ、当該フランジ31fを基台11に例えばねじ留めされることにより固定される。なお、発熱ロール体2は、円筒状鉄心31の内部に挿通される駆動軸12により回転可能に支持される。 In addition, in the above-described embodiment, a gap having a predetermined interval is provided between the cylindrical iron core and the heat generating roll body or the journal, but a non-magnetic body may be provided instead of the gap. In this case, it can be considered to apply to the cantilever induction heating roller device shown in FIG. That is, a flange 31 f is provided at one end of the cylindrical iron core 31, and the flange 31 f is fixed to the base 11 by, for example, screwing. The heat generating roll body 2 is rotatably supported by the drive shaft 12 inserted into the cylindrical iron core 31.
 その他、前述した実施形態や変形実施形態の一部又は全部を適宜組み合わせてよいし、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。 In addition, some or all of the above-described embodiments and modified embodiments may be combined as appropriate, and the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. .
 本発明によって、占積率の向上及び渦電流の低減より、鉄損などの鉄心の磁気特性の低下を可及的に抑制することができる。 According to the present invention, the deterioration of the magnetic properties of the iron core such as iron loss can be suppressed as much as possible by improving the space factor and reducing the eddy current.

Claims (7)

  1.  幅方向断面が湾曲形状をなす湾曲部を有する複数の磁性鋼板を、幅方向にずらして積み重ねることにより形成された複数の円筒状鉄心要素を同心円状に積層して形成された静止誘導機器用鉄心。 An iron core for stationary induction equipment formed by concentrically laminating a plurality of cylindrical core elements formed by stacking a plurality of magnetic steel plates having curved portions whose cross sections in the width direction are curved. .
  2.  幅方向断面が湾曲形状をなす湾曲部を有する複数の磁性鋼板を、幅方向にずらして積み重ねることにより形成された複数の円筒状鉄心要素を同心円状に積層して形成された複数の鉄心ブロックと、
     前記鉄心ブロック間に設けられた磁気ギャップと、を具備する請求項1記載の静止誘導機器用鉄心。
    A plurality of core blocks formed by concentrically laminating a plurality of cylindrical core elements formed by stacking a plurality of magnetic steel plates having a curved portion whose cross section in the width direction forms a curved shape, shifted in the width direction; and ,
    The iron core for stationary induction equipment according to claim 1, further comprising a magnetic gap provided between the iron core blocks.
  3.  前記磁気ギャップが、非磁性体からなるギャップ部材を前記鉄心ブロック間に挟み込むことにより形成されている請求項2記載の静止誘導機器用鉄心。 3. The iron core for stationary induction equipment according to claim 2, wherein the magnetic gap is formed by sandwiching a gap member made of a non-magnetic material between the iron core blocks.
  4.  前記鉄心ブロックの径方向最外側に設けられた円筒状鉄心要素を構成する磁性鋼板の積層側側面における外部露出部の幅方向長さが、前記磁性鋼板の板厚以下である請求項1記載の静止誘導機器用鉄心。 2. The length in the width direction of the externally exposed portion on the side surface of the laminated side of the magnetic steel plates constituting the cylindrical core element provided on the radially outermost side of the iron core block is equal to or less than the plate thickness of the magnetic steel plates. Iron core for stationary induction equipment.
  5.  前記鉄心ブロックの径方向最外側に設けられた円筒状鉄心要素の内径Φ、外径Φ、及び前記磁性鋼板の板厚tが、
    Figure JPOXMLDOC01-appb-M000001
    (ここで、αは、円筒状鉄心要素の内側円の径方向に対する磁性鋼板の傾斜角度であり、θ’は、隣接する磁性鋼板の径方向最内端の角と円中心とのなす中心角度である。なお、三角関数の単位はラジアン(rad)である。)において、
     前記中心角度θ’が、前記磁性鋼板の傾斜角度がゼロの場合の中心角度θと等しくなるときの磁性鋼板の傾斜角度αをθとし、
     磁性鋼板の傾斜角度αがθ以下の場合には、
    Figure JPOXMLDOC01-appb-M000002
     磁性鋼板の傾斜角度αがθよりも大きい場合には、前記(式1)を満たす中心角度θ’を用いて
    Figure JPOXMLDOC01-appb-M000003
    の関係をなす請求項4記載の静止誘導機器用鉄心。
    An inner diameter Φ A , an outer diameter Φ B of the cylindrical core element provided on the outermost radial direction of the iron core block, and a plate thickness t of the magnetic steel sheet,
    Figure JPOXMLDOC01-appb-M000001
    (Where α is the inclination angle of the magnetic steel sheet with respect to the radial direction of the inner circle of the cylindrical iron core element, and θ ′ is the central angle formed between the angle of the radially innermost end of the adjacent magnetic steel sheet and the circle center. Note that the unit of the trigonometric function is radians).
    The tilt angle α of the magnetic steel sheet when the center angle θ ′ is equal to the center angle θ 0 when the tilt angle of the magnetic steel sheet is zero is θ X ,
    When the inclination angle α of the magnetic steel sheet is θ X or less,
    Figure JPOXMLDOC01-appb-M000002
    When the inclination angle α of the magnetic steel sheet is larger than θ X , the central angle θ ′ satisfying the above (Equation 1) is used.
    Figure JPOXMLDOC01-appb-M000003
    The iron core for stationary induction equipment according to claim 4, wherein:
  6.  幅方向断面が湾曲形状をなす湾曲部を有する複数の磁性鋼板を、幅方向にずらして積み重ねることにより形成された円筒状鉄心であって、
     前記磁性鋼板の積層側側面における外部露出部の幅方向長さが、前記磁性鋼板の板厚以下である円筒状鉄心。
    A cylindrical iron core formed by stacking a plurality of magnetic steel plates having a curved portion having a curved cross section in the width direction, shifted in the width direction,
    A cylindrical iron core in which a length in a width direction of an externally exposed portion on a laminated side surface of the magnetic steel sheet is equal to or less than a thickness of the magnetic steel sheet.
  7.  前記円筒状鉄心の内径Φ、外径Φ、及び前記磁性鋼板の板厚tが、
    Figure JPOXMLDOC01-appb-M000004
    (ここで、αは、円筒状鉄心の内側円の径方向に対する傾斜角度であり、θ’は、隣接する磁性鋼板の径方向最内端の角と円中心とのなす中心角度である。なお、三角関数の単位はラジアン(rad)である。)において、
     前記中心角度θ’が、前記磁性鋼板の傾斜角度がゼロの場合の中心角度θと等しくなるときの磁性鋼板の傾斜角度αをθとし、
     磁性鋼板の傾斜角度αがθ以下の場合には、
    Figure JPOXMLDOC01-appb-M000005
     磁性鋼板の傾斜角度αがθよりも大きい場合には、上記(式1)を満たす中心角度θ’を用いて
    Figure JPOXMLDOC01-appb-M000006
    の関係をなす請求項6記載の円筒状鉄心。
    The cylindrical iron core has an inner diameter Φ A , an outer diameter Φ B , and a thickness t of the magnetic steel sheet.
    Figure JPOXMLDOC01-appb-M000004
    (Here, α is an inclination angle with respect to the radial direction of the inner circle of the cylindrical iron core, and θ ′ is a central angle formed between the angle of the radially innermost end of the adjacent magnetic steel sheet and the circle center. , The unit of the trigonometric function is radians).
    The tilt angle α of the magnetic steel sheet when the center angle θ ′ is equal to the center angle θ 0 when the tilt angle of the magnetic steel sheet is zero is θ X ,
    When the inclination angle α of the magnetic steel sheet is θ X or less,
    Figure JPOXMLDOC01-appb-M000005
    If the inclination angle α of the magnetic steel plates is greater than theta X, using the central angle theta 'satisfying the above equation (1)
    Figure JPOXMLDOC01-appb-M000006
    The cylindrical iron core according to claim 6 having the relationship of
PCT/JP2009/051061 2008-07-28 2009-01-23 Cylindrical iron core, stationary induction apparatus and induction heat-generating roller device WO2010013501A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117003997A KR101526033B1 (en) 2008-07-28 2009-01-23 Iron core for stationary induction apparatus and cylindrical iron core
CN2009801307137A CN102113070B (en) 2008-07-28 2009-01-23 Cylindrical iron core, stationary induction apparatus and induction heat-generating roller device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-194010 2008-07-28
JP2008194010A JP5213571B2 (en) 2008-07-28 2008-07-28 Cylindrical iron core, induction heating roller device and stationary induction device
JP2008195521A JP5213574B2 (en) 2008-07-29 2008-07-29 Iron core for static induction equipment
JP2008-195521 2008-07-29

Publications (1)

Publication Number Publication Date
WO2010013501A1 true WO2010013501A1 (en) 2010-02-04

Family

ID=41610211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051061 WO2010013501A1 (en) 2008-07-28 2009-01-23 Cylindrical iron core, stationary induction apparatus and induction heat-generating roller device

Country Status (4)

Country Link
KR (1) KR101526033B1 (en)
CN (1) CN102113070B (en)
TW (1) TWI450285B (en)
WO (1) WO2010013501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2736055A1 (en) * 2012-11-21 2014-05-28 Hamilton Sundstrand Corporation Enhanced leakage common mode inductor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051116B (en) * 2014-05-28 2017-04-12 浙江鑫业电子科技有限公司 Silicon steel sheet-rolled core assembly for electromagnetic valves
CN108063536A (en) * 2017-12-26 2018-05-22 中国人民解放军海军工程大学 A kind of drum type brake slotless line inductance electromotor
WO2019146499A1 (en) * 2018-01-23 2019-08-01 三菱電機株式会社 Stator of dynamo-electric machine and method for manufacturing stator of dynamo-electric machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4734175B1 (en) * 1969-03-05 1972-08-29
JPS5472455A (en) * 1977-11-18 1979-06-09 Nissin Electric Co Ltd Core type reactor with gap
JPS54113017U (en) * 1978-01-27 1979-08-08
JPS55181322U (en) * 1979-06-14 1980-12-26
JPS60161603A (en) * 1984-02-02 1985-08-23 Toshiba Corp Radial core
JPH1055878A (en) * 1996-08-07 1998-02-24 Tokuden Co Ltd Low-frequency electromagnetic induction heater
JPH1116724A (en) * 1997-06-25 1999-01-22 Toyota Motor Corp Laminated magnetic sheet core and manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4734175B1 (en) * 1969-03-05 1972-08-29
JPS5472455A (en) * 1977-11-18 1979-06-09 Nissin Electric Co Ltd Core type reactor with gap
JPS54113017U (en) * 1978-01-27 1979-08-08
JPS55181322U (en) * 1979-06-14 1980-12-26
JPS60161603A (en) * 1984-02-02 1985-08-23 Toshiba Corp Radial core
JPH1055878A (en) * 1996-08-07 1998-02-24 Tokuden Co Ltd Low-frequency electromagnetic induction heater
JPH1116724A (en) * 1997-06-25 1999-01-22 Toyota Motor Corp Laminated magnetic sheet core and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2736055A1 (en) * 2012-11-21 2014-05-28 Hamilton Sundstrand Corporation Enhanced leakage common mode inductor

Also Published As

Publication number Publication date
TWI450285B (en) 2014-08-21
TW201005765A (en) 2010-02-01
KR101526033B1 (en) 2015-06-04
CN102113070A (en) 2011-06-29
KR20110042086A (en) 2011-04-22
CN102113070B (en) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2010013501A1 (en) Cylindrical iron core, stationary induction apparatus and induction heat-generating roller device
TW200834617A (en) Coil device
WO2020071512A1 (en) Wound core and transformer
JPWO2011158290A1 (en) Static electromagnetic equipment
JP5391096B2 (en) Annular iron core and iron core for stationary induction equipment
JP5152839B2 (en) Circular iron core for stationary electromagnetic equipment
WO2016092612A1 (en) Stationary induction device
JP5709042B2 (en) Coil component and power receiving device and power feeding device using the same
JP2010074132A (en) Core for high-frequency transformer and high-frequency transformer
JP5213571B2 (en) Cylindrical iron core, induction heating roller device and stationary induction device
JP2020184647A (en) Magnetic core for rotary transformer
JP2011243715A (en) Reactor
JP5213574B2 (en) Iron core for static induction equipment
JP5324867B2 (en) Cylindrical iron core, induction heating roller device and stationary induction device
JP5237011B2 (en) Iron core for static induction equipment
WO2021045169A1 (en) Wound core
US20210225571A1 (en) Laminated core
JP2532986Y2 (en) Iron core for induction heating roller device
JP5865131B2 (en) Cylindrical iron core and iron core steel sheet
JP6031239B2 (en) Iron core for induction heating roller device and induction heating roller device
JP2016207845A (en) Stationary electric induction device
TW201903793A (en) Static induction appliance
JP5388975B2 (en) Cooling structure in stationary inductor and stationary inductor having the cooling structure
JP5603602B2 (en) Annular iron core and iron core steel plate for induction heating roller device
JP2586826Y2 (en) Annular core

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130713.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117003997

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1216/CHENP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09802746

Country of ref document: EP

Kind code of ref document: A1