JP5391096B2 - Annular iron core and iron core for stationary induction equipment - Google Patents

Annular iron core and iron core for stationary induction equipment Download PDF

Info

Publication number
JP5391096B2
JP5391096B2 JP2010014689A JP2010014689A JP5391096B2 JP 5391096 B2 JP5391096 B2 JP 5391096B2 JP 2010014689 A JP2010014689 A JP 2010014689A JP 2010014689 A JP2010014689 A JP 2010014689A JP 5391096 B2 JP5391096 B2 JP 5391096B2
Authority
JP
Japan
Prior art keywords
core
iron core
annular
electromagnetic steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010014689A
Other languages
Japanese (ja)
Other versions
JP2011155079A (en
Inventor
深 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuden Co Ltd Kyoto
Original Assignee
Tokuden Co Ltd Kyoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuden Co Ltd Kyoto filed Critical Tokuden Co Ltd Kyoto
Priority to JP2010014689A priority Critical patent/JP5391096B2/en
Publication of JP2011155079A publication Critical patent/JP2011155079A/en
Application granted granted Critical
Publication of JP5391096B2 publication Critical patent/JP5391096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、例えば変圧器やリアクトルといった静止誘導機器、又は誘導発熱ローラ装置といった誘導発熱機器などの電磁誘導機器に用いられる環状鉄心及びその環状鉄心を用いた静止誘導機器用鉄心に関するものである。   The present invention relates to an annular core used in an electromagnetic induction device such as a stationary induction device such as a transformer or a reactor, or an induction heating device such as an induction heating roller device, and an iron core for a stationary induction device using the annular core.

従来、短絡電流防止用のスリットを不要とした環状鉄心として、特許文献1に示すように、表面に絶縁被膜を有し、同じ長さとされた電磁鋼板の複数を、その一方の端縁を得ようとする環状鉄心の内周長に相当する長さにわたって均等にずらして積層し、その一方の端縁から巻芯を利用してその周囲に巻回して、外周面において、他方の端縁が均等にずれるように環状としている環状鉄心が考えられている。この環状鉄心は、巻芯を一回巻回することによって形成され、各電磁鋼板の一方の端縁は環状鉄心の内周面に位置し、他方の端縁は環状鉄心の外周面に位置する。   Conventionally, as shown in Patent Document 1, as an annular iron core that does not require a slit for preventing a short-circuit current, a plurality of electromagnetic steel sheets having an insulating coating on the surface and having the same length are obtained as one edge. Laminate evenly over the length corresponding to the inner circumferential length of the annular core to be wound, and wind around one end edge of the annular core around the circumference using the core. An annular core that is annular so as to be evenly displaced is considered. The annular core is formed by winding the winding core once, and one end edge of each electromagnetic steel sheet is located on the inner peripheral surface of the annular core, and the other end edge is located on the outer peripheral surface of the annular core. .

しかしながら、この環状鉄心は、電磁鋼板の長さLが環状鉄心の内径rと巻厚d(外径r+d)により定まるため、内径rや巻厚dを変更しようとすると電磁鋼板の長さLも変更しなければならないという問題がある。具体的に電磁鋼板の長さLは、{r+(d/2)×2π}となる。そうすると、内径r及び巻厚d(外径r+d)が異なる種々の環状鉄心を製造するためには、各環状鉄心の種類に合わせて専用の電磁鋼板を準備しなければならないという問題がある。   However, since the length L of the electromagnetic steel sheet is determined by the inner diameter r and the winding thickness d (outer diameter r + d) of the annular iron core, if the inner diameter r or the winding thickness d is changed, the length L of the electromagnetic steel sheet is also increased. There is a problem that must be changed. Specifically, the length L of the electrical steel sheet is {r + (d / 2) × 2π}. Then, in order to manufacture various annular iron cores having different inner diameters r and winding thicknesses d (outer diameters r + d), there is a problem that a dedicated electrical steel sheet must be prepared for each kind of annular iron core.

また、環状鉄心の巻厚dを大きくする場合には、電磁鋼板の枚数の増やす必要があるが、そうすると一度に曲げる電磁鋼板の枚数が増えることになり、その曲げ加工、つまり巻回作業が困難になり、製造効率が低下してしまう恐れがある。特に、環状鉄心の内径を小さくする場合には上記の問題が顕著となる。   Further, in order to increase the winding thickness d of the annular core, it is necessary to increase the number of electromagnetic steel sheets. However, if this is done, the number of electromagnetic steel sheets to be bent at one time increases, so that bending, that is, winding work is difficult. Thus, the production efficiency may be reduced. In particular, when the inner diameter of the annular core is reduced, the above problem becomes significant.

実用新案登録第2586826号公報Utility Model Registration No. 2586826

そこで本発明は、上記問題点を一挙に解決するためになされたものであり、短絡電流防止用のスリットを不要とした環状鉄心において、電磁鋼板のサイズを変更することなく、環状鉄心の内径及び外径を容易に変更可能にすることをその主たる課題とするものである。   Therefore, the present invention has been made to solve the above problems all at once, and in an annular core that does not require a slit for preventing a short-circuit current, without changing the size of the electromagnetic steel sheet, the inner diameter and The main problem is to make the outer diameter easily changeable.

すなわち本発明に係る環状鉄心は、長尺状電磁鋼板を渦巻き状に複数回巻回して形成され、所定内径を有する渦巻き鋼板と、短尺状電磁鋼板から形成され、内径側端部が前記渦巻き鋼板に接触配置されるとともに、前記渦巻き鋼板の巻回方向に沿って所定幅ずらして積層された略同一形状をなす複数の鉄心鋼板とを備えることを特徴とする。ここで複数回とは、1回以上であり、整数の他、小数点以下の値を含む数であっても良い。   That is, the annular iron core according to the present invention is formed by winding a long electromagnetic steel sheet in a plurality of spirals, and is formed from a spiral steel sheet having a predetermined inner diameter and a short electromagnetic steel sheet, and the inner diameter side end is the spiral steel sheet. And a plurality of core steel plates having substantially the same shape and stacked with a predetermined width shifted along the winding direction of the spiral steel plate. Here, “multiple times” means one or more times, and may be a number including a value after the decimal point in addition to an integer.

このようなものであれば、環状鉄心の内径は、渦巻き鉄心の内径を変更することによって自在に設定可能であり、環状鉄心の外径は渦巻き鉄心の巻回数及び鉄心鋼板の枚数を変更することによって自在に設定可能である。これにより、用途に応じて種々の径寸法の環状鉄心を製造することができる。また、鉄心鋼板においては所定の長さに予め切断した電磁鋼板を使用するので、方向性電磁鋼板を用いた場合には、その方向性が環状鉄心の中心軸方向(磁束通過方向)に沿うように積層することができ、磁気特性に優れた環状鉄心を得ることができる。したがって、鉄心の断面積を小さくすることができ、当該環状鉄心を用いた電磁誘導機器を小型化できるだけでなく、コイルに使用する電線量も低減することができる。   If it is such, the inner diameter of the annular core can be freely set by changing the inner diameter of the spiral core, and the outer diameter of the annular core can be changed by the number of turns of the spiral core and the number of core steel sheets. Can be set freely. Thereby, the cyclic | annular iron core of various diameter dimensions can be manufactured according to a use. In addition, since the steel sheet uses a magnetic steel sheet that has been cut in advance to a predetermined length, when a directional magnetic steel sheet is used, the directionality of the steel sheet follows the central axis direction (flux passage direction) of the annular core. And an annular core having excellent magnetic properties can be obtained. Therefore, the cross-sectional area of the iron core can be reduced, and not only the electromagnetic induction device using the annular core can be reduced in size, but also the amount of electric wire used for the coil can be reduced.

また本発明に係る環状鉄心は、長尺状電磁鋼板上に、略同一形状をなす複数の短尺状電磁鋼板を、前記長尺状電磁鋼板の延伸方向に沿って略等間隔にずらして重ねて並べ、前記長尺状電磁鋼板の一方の端部から前記短尺状電磁鋼板を巻き込むように、前記長尺状電磁鋼板を複数回巻き取ることにより形成されていることを特徴とする。   The annular iron core according to the present invention is formed by laminating a plurality of short electromagnetic steel sheets having substantially the same shape on a long electromagnetic steel sheet while being shifted at substantially equal intervals along the extending direction of the long electromagnetic steel sheet. It is formed by winding the said long electromagnetic steel plate in multiple times so that it may arrange and wind up the said short electromagnetic steel plate from one edge part of the said long electromagnetic steel plate.

このようなものであれば、長尺状電磁鋼板をその一方の端部から巻回する際に、その巻回径を変更することによって環状鉄心の内径を自在に設定可能であり、環状鉄心の外径は鉄心鋼板の枚数を変更することによって自在に設定可能である。ここで、鉄心鋼板の枚数により環状鉄心の外径が自在に設定可能になるのは、複数の鉄心鋼板全てを巻き込むまで長尺状電磁鋼板を複数回巻回する結果、環状鉄心の外径がその巻回数により定まるためである。これにより、用途に応じて種々の径寸法の環状鉄心を製造することができる。また、長尺状電磁鋼板を巻き取る際に複数の鉄心鋼板が巻き込まれて環状鉄心が形成されるので、環状鉄心の製造作業を簡単にすることができる。このとき、巻芯に複数回巻回することによって環状鉄心を製造することから、一回巻回する工程で巻き込まれる鉄心鋼板の枚数を少なくすることが可能であり、鉄心鋼板の曲げ加工を容易にすることができ、巻回作業を簡単化することができる。さらに、鉄心鋼板において所定の長さに予め切断した電磁鋼板を使用するので、方向性電磁鋼板を用いた場合には、その方向性が環状鉄心の中心軸方向(磁束通過方向)に沿うように積層することができ、磁気特性に優れた環状鉄心を得ることができる。したがって、鉄心の断面積を小さくすることができ、当該環状鉄心を用いた電磁誘導機器を小型化できるだけでなく、コイルに使用する電線量も低減することができる。   If it is such, when winding a long electromagnetic steel sheet from one end thereof, the inner diameter of the annular core can be freely set by changing the winding diameter, The outer diameter can be freely set by changing the number of core steel sheets. Here, the outer diameter of the annular core can be freely set depending on the number of the iron core steel sheets. As a result of winding the long electromagnetic steel sheet a plurality of times until all of the plurality of iron core steel sheets are wound, the outer diameter of the annular core is reduced. This is because it is determined by the number of windings. Thereby, the cyclic | annular iron core of various diameter dimensions can be manufactured according to a use. In addition, when winding the long electromagnetic steel sheet, a plurality of iron core steel sheets are wound to form an annular core, so that the manufacturing operation of the annular core can be simplified. At this time, since the annular core is manufactured by winding the core core a plurality of times, it is possible to reduce the number of core steel sheets that are wound in a single winding process, and it is easy to bend the core steel sheet. The winding work can be simplified. Furthermore, since the magnetic steel sheet previously cut into a predetermined length is used in the iron core steel sheet, when the directional electromagnetic steel sheet is used, the directionality is along the central axis direction (magnetic flux passing direction) of the annular core. An annular core having excellent magnetic properties can be obtained. Therefore, the cross-sectional area of the iron core can be reduced, and not only the electromagnetic induction device using the annular core can be reduced in size, but also the amount of electric wire used for the coil can be reduced.

さらに本発明に係る環状鉄心製造方法は、長尺状電磁鋼板上に、略同一形状をなす複数の短尺状電磁鋼板を、前記長尺状電磁鋼板の延伸方向に沿って略等間隔にずらして重ねて並べ、巻芯を用いて、前記長尺状電磁鋼板の一方の端部から前記短尺状電磁鋼板を巻き込むように、前記長尺状電磁鋼板を複数回巻き取り、所望の外径に合わせて前記短尺状電磁鋼板の枚数を調整することを特徴とする。   Furthermore, in the method for manufacturing an annular core according to the present invention, a plurality of short electromagnetic steel sheets having substantially the same shape are shifted on a long electromagnetic steel sheet at substantially equal intervals along the extending direction of the long electromagnetic steel sheet. The long electromagnetic steel sheet is wound up several times using a winding core so that the short electromagnetic steel sheet is wound from one end of the long electromagnetic steel sheet, and adjusted to a desired outer diameter. And adjusting the number of the short electromagnetic steel sheets.

上記環状鉄心を用いた鉄心としては、前記環状鉄心の外側周面を囲む円筒状鉄心を備え、前記円筒状鉄心が、幅方向断面が湾曲形状をなす湾曲部を有する複数の電磁鋼板を、幅方向にずらして積み重ねることにより形成された1又は複数の円筒状鉄心要素を前記環状鉄心に同心円上に積層して形成されたものであることを特徴とする。   The iron core using the annular core includes a cylindrical iron core that surrounds the outer peripheral surface of the annular core, and the cylindrical iron core includes a plurality of electrical steel sheets having a curved portion whose cross section in the width direction has a curved shape. It is characterized in that one or a plurality of cylindrical core elements formed by stacking in a direction are stacked on the annular core on a concentric circle.

このとき、前記鉄心鋼板が、前記湾曲部の幅方向における外径側端部に連続して、当該湾曲部の湾曲方向とは反対側に屈曲して形成された外径側屈曲部を有し、当該外径側屈曲部が、円筒状鉄心要素の外周の接線に対して略直角となることが望ましい。これならば、鉄心鋼板が外径側屈曲部を有し、当該外径側屈曲部が、環状鉄心の外周部分において、その接線に対して略直角となるように構成されているので、誘導コイルによって生じる漏洩磁束が通過する部分が鉄心鋼板において径方向外側を向く端面のみとなり、漏洩磁束による渦電流を可及的に抑制することができる。また、外径側屈曲部が、湾曲部の湾曲方向とは反対側に屈曲していることにより、各鉄心鋼板の剛性を大きくすることができ、その鉄心鋼板を複数用いて構成された円筒状鉄心要素の剛性を大きくすることができる。さらに、円筒状鉄心要素を製造する過程においては、各鉄心鋼板の外径側屈曲部同士を係合させるように重ね合わせれば良いので、円筒状鉄心要素の製造作業を簡単にすることができる。その上、外径側屈曲部同士が係合することにより、鉄心鋼板が径方向に抜脱してしまうことを防止することができる。   At this time, the iron core steel plate has an outer-diameter-side bent portion formed by being bent to the opposite side to the bending direction of the bending portion continuously to the outer-diameter side end portion in the width direction of the bending portion. It is desirable that the outer diameter side bent portion is substantially perpendicular to the outer tangent of the cylindrical core element. In this case, since the iron core steel plate has an outer diameter side bent portion, and the outer diameter side bent portion is configured to be substantially perpendicular to the tangent line in the outer peripheral portion of the annular core, the induction coil The portion through which the leakage magnetic flux generated by the passage passes is only the end surface facing the radially outer side in the iron core steel sheet, and the eddy current due to the leakage magnetic flux can be suppressed as much as possible. Further, the outer diameter side bent portion is bent in the opposite direction to the bending direction of the bending portion, whereby the rigidity of each iron core steel plate can be increased, and a cylindrical shape constituted by using a plurality of the iron core steel plates. The rigidity of the core element can be increased. Furthermore, in the process of manufacturing the cylindrical core element, it is only necessary to overlap the outer diameter side bent portions of the core steel sheets so that the manufacturing operation of the cylindrical core element can be simplified. Moreover, it is possible to prevent the core steel sheet from being pulled out in the radial direction by engaging the outer diameter side bent portions.

さらに鉄心鋼板の剛性を大きくするとともに、各鉄心鋼板を積み重ねる作業を容易にするだけでなく、鉄心鋼板が径方向に抜脱してしまうことを一層好適に防止するためには、前記鉄心鋼板が、前記湾曲部の幅方向における内径側端部に連続して、当該湾曲部の湾曲方向と同方向に屈曲して形成された内径側屈曲部を有することが望ましい。   Furthermore, in addition to increasing the rigidity of the iron core steel sheet and not only facilitating the work of stacking each iron core steel sheet, in order to more suitably prevent the iron core steel sheet from being pulled out in the radial direction, the iron core steel sheet, It is desirable to have an inner diameter side bent portion formed by being bent in the same direction as the bending direction of the bending portion, continuously from the inner diameter side end portion in the width direction of the bending portion.

このように構成した本発明によれば、短絡電流防止用のスリットを不要とした環状鉄心の製造方法において、電磁鋼板のサイズを変更することなく、種々の内径及び外径を有する環状鉄心を提供することができる。   According to the present invention configured as described above, in the method of manufacturing an annular core that eliminates the need for a slit for preventing a short-circuit current, an annular core having various inner and outer diameters is provided without changing the size of the electromagnetic steel sheet. can do.

本発明の一実施形態に係る環状鉄心の斜視図である。It is a perspective view of the annular iron core concerning one embodiment of the present invention. 同実施形態の環状鉄心の平面図である。It is a top view of the annular iron core of the embodiment. 同実施形態の環状鉄心の電磁鋼板の拡大図である。It is an enlarged view of the magnetic steel sheet of the annular iron core of the embodiment. 同実施形態の環状鉄心の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the cyclic | annular iron core of the embodiment. 同実施形態の環状鉄心の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the cyclic | annular iron core of the embodiment. 変形実施形態に係る静止誘導機器用鉄心の斜視図である。It is a perspective view of the iron core for static induction equipment concerning a modification. 同実施形態の静止誘導機器用鉄心の平面図である。It is a top view of the iron core for stationary induction equipment of the embodiment. 同実施形態の静止誘導機器用鉄心の正面図である。It is a front view of the iron core for stationary induction equipment of the embodiment. 同実施形態の静止誘導機器用鉄心の背面図である。It is a rear view of the iron core for static induction equipment of the embodiment. 同実施形態の静止誘導機器用鉄心の右側面図である。It is a right view of the iron core for stationary induction equipment of the embodiment. 同実施形態の静止誘導機器用鉄心の左側面図である。It is a left view of the iron core for static induction equipment of the embodiment. 同実施形態の鉄心鋼板の断面図である。It is sectional drawing of the iron core steel plate of the embodiment. 鉄心鋼板の変形例を示す断面図である。It is sectional drawing which shows the modification of an iron core steel plate. 別の変形実施形態に係る静止誘導機器用鉄心の斜視図である。It is a perspective view of the iron core for static induction equipment concerning another modification. 同実施形態の静止誘導機器用鉄心の平面図である。It is a top view of the iron core for stationary induction equipment of the embodiment. 同実施形態の静止誘導機器用鉄心の正面図である。It is a front view of the iron core for stationary induction equipment of the embodiment. 同実施形態の静止誘導機器用鉄心の背面図である。It is a rear view of the iron core for static induction equipment of the embodiment. 同実施形態の静止誘導機器用鉄心の右側面図である。It is a right view of the iron core for stationary induction equipment of the embodiment. 同実施形態の静止誘導機器用鉄心の左側面図である。It is a left view of the iron core for static induction equipment of the embodiment.

以下に本発明に係る環状鉄心の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of an annular core according to the present invention will be described with reference to the drawings.

本実施形態に係る環状鉄心100は、例えば変圧器やリアクトルといった静止誘導機器、又は誘導発熱ローラ装置といった誘導発熱機器などの電磁誘導機器に用いられるものであり、短絡電流防止用のスリットを不要とした環状鉄心である。   The annular core 100 according to the present embodiment is used for an electromagnetic induction device such as a stationary induction device such as a transformer or a reactor or an induction heating device such as an induction heating roller device, and does not require a slit for preventing a short-circuit current. An annular iron core.

具体的にこのものは、図1及び図2に示すように、長尺状電磁鋼板を渦巻き状に複数回巻回して形成された渦巻き鋼板2と、短尺状電磁鋼板から形成された略同一形状をなす複数の鉄心鋼板3とを備える。   Specifically, as shown in FIG. 1 and FIG. 2, this is substantially the same shape formed from a spiral steel sheet 2 formed by winding a long electromagnetic steel sheet in a spiral shape and a short electromagnetic steel sheet. And a plurality of iron core steel plates 3.

渦巻き鋼板2は、特に図2に示すように、平面視において所定内径を有する円形部21を有し、当該円形部21から外側に向かって広がる渦巻き状をなすものである。円形部21の内径は、環状鉄心100の内径に対応し、所望の環状鉄心100の内径に合わせて適宜設定可能である。また、渦巻き鋼板2は、後述する鉄心鋼板3との関係において、組み立て後、環状鉄心100の外側周面で切断除去されることにより構成される。   As shown in FIG. 2 in particular, the spiral steel plate 2 has a circular portion 21 having a predetermined inner diameter in plan view, and forms a spiral shape that spreads outward from the circular portion 21. The inner diameter of the circular portion 21 corresponds to the inner diameter of the annular core 100 and can be appropriately set according to the desired inner diameter of the annular core 100. Further, the spiral steel plate 2 is configured by being cut and removed on the outer peripheral surface of the annular core 100 after assembly in the relationship with the iron core steel plate 3 to be described later.

鉄心鋼板3は、特に図3に示すように、内径側端部3Aが渦巻き鋼板2に接触配置されるとともに、渦巻き鋼板2の巻回方向に沿って所定幅ずらして積層されている。具体的に鉄心鋼板3の内径側端部3Aは、渦巻き鋼板2の外径側側面2xに接触する。また、鉄心鋼板3の外径側端部3Bは、その外径側に渦巻き鋼板2が存在する場合には、渦巻き鋼板2の内径側側面2yに接触する。なお、図3においては、鉄心鋼板3の外径側端部3Bのさらに外径側に渦巻き鋼板2が存在しない場合の部分拡大図を示しており、外径側端部3Bは渦巻き鋼板2に接触せず外部に露出した状態である。   In particular, as shown in FIG. 3, the iron core steel plate 3 is disposed so that the inner diameter side end 3 </ b> A is in contact with the spiral steel plate 2 and is shifted by a predetermined width along the winding direction of the spiral steel plate 2. Specifically, the inner diameter side end portion 3 </ b> A of the iron core steel plate 3 contacts the outer diameter side surface 2 x of the spiral steel plate 2. Further, the outer diameter side end portion 3B of the iron core steel plate 3 is in contact with the inner diameter side surface 2y of the spiral steel plate 2 when the spiral steel plate 2 is present on the outer diameter side. FIG. 3 shows a partially enlarged view when the spiral steel plate 2 does not exist on the outer diameter side end portion 3B of the iron core steel plate 3, and the outer diameter side end portion 3B is formed on the spiral steel plate 2. It is in a state exposed to the outside without contact.

次に本実施形態の環状鉄心100の製造方法について図4及び図5を参照して説明するが、本実施形態の環状鉄心100は、長尺状電磁鋼板(以下、ガイド板200という。)上に、略同一形状をなす複数の短尺状電磁鋼板(以下、鉄心鋼板3という。)を、ガイド板200の延伸方向に沿って略等間隔にずらして重ねて並べ、ガイド板200の一方の端部200Aから鉄心鋼板3を巻き込むように、ガイド板200を複数回巻き取ることにより形成されている。   Next, a manufacturing method of the annular core 100 of the present embodiment will be described with reference to FIGS. 4 and 5. The annular core 100 of the present embodiment is on a long electromagnetic steel plate (hereinafter referred to as a guide plate 200). In addition, a plurality of short electromagnetic steel plates (hereinafter referred to as iron core steel plates 3) having substantially the same shape are overlapped and arranged at substantially equal intervals along the extending direction of the guide plate 200, and one end of the guide plate 200 is arranged. It is formed by winding the guide plate 200 a plurality of times so as to wind the iron core steel plate 3 from the portion 200A.

具体的には、帯状をなすガイド板200を載置台5上に載置して、当該ガイド板200上に略同一形状をなし、表面に絶縁被膜が形成された複数の鉄心鋼板3をガイド板200の延伸方向に沿って所定幅L1ずつずらして重ねて連続的に並べる。ここで、鉄心鋼板3の長さLは得ようとする環状鉄心100の内径及び外径に関係なく適宜設定可能である。   Specifically, a strip-shaped guide plate 200 is mounted on the mounting table 5, and a plurality of iron core steel plates 3 having substantially the same shape on the guide plate 200 and having an insulating film formed on the surface are guided. Along the 200 stretching direction, the layers are continuously arranged while being shifted by a predetermined width L1. Here, the length L of the iron core steel plate 3 can be appropriately set regardless of the inner diameter and outer diameter of the annular core 100 to be obtained.

また、各鉄心鋼板3は、方向性電磁鋼板(珪素鋼板)から形成された略矩形状をなすものであり、ガイド板200の延伸方向に直交する方向(製品組み立て後における磁束通過方向)に当該方向性を向くようにガイド板200上に載置される。なお、図4においては、長手方向に沿って方向性を向く鉄心鋼板3を示している。さらに、ガイド板200も珪素鋼板からなるものであるが、延伸方向に方向性を有する珪素鋼板を用意することは製造上難があり、ガイド板200においては方向性を無視してガイド板200における磁気特性を若干犠牲にするか、ガイド板200として無方向性を珪素鋼板を用いることが考えられる。   Each iron core steel plate 3 has a substantially rectangular shape formed of a directional electromagnetic steel plate (silicon steel plate), and is in the direction perpendicular to the extending direction of the guide plate 200 (the magnetic flux passing direction after product assembly). It is placed on the guide plate 200 so as to face the direction. In addition, in FIG. 4, the iron core steel plate 3 which faces directionality along the longitudinal direction is shown. Furthermore, although the guide plate 200 is also made of a silicon steel plate, it is difficult to manufacture a silicon steel plate having directionality in the extending direction. In the guide plate 200, the directionality is ignored and the guide plate 200 It is conceivable that the magnetic properties are sacrificed to some extent, or a non-directional silicon steel plate is used as the guide plate 200.

そして、複数の鉄心鋼板3が載置されたガイド板200の一方の端部2Aから、断面略円形状をなす巻芯4を用いて、ガイド板200の延伸方向に沿って巻き取る。なお、本実施形態の巻芯4は円筒形状をなすものであり、外部に設けられた回転装置の回転駆動軸に連結されている。そして、この回転装置により巻芯4が回転されてガイド板200及び鉄心鋼板3が巻き取られる。   And it winds up along the extending | stretching direction of the guide plate 200 from the one end part 2A of the guide plate 200 in which the some iron core steel plate 3 was mounted using the core 4 which makes a cross-sectional substantially circular shape. Note that the core 4 of the present embodiment has a cylindrical shape and is connected to a rotation drive shaft of a rotation device provided outside. And the winding core 4 is rotated by this rotating device, and the guide plate 200 and the iron core steel plate 3 are wound up.

このとき、巻芯4には、ガイド板200の一方の端部200Aを固定するための固定部4xが設けられている。固定部4xは具体的にはガイド部200の一方の端部200Aが挿入される引っ掛け溝である。この引っ掛け溝4xにより固定されたガイド板200は鉄心鋼板3を巻き込むことなく数回(例えば1、2回程度)巻回される(図5上図参照)。これにより渦巻き鋼板2の円形部21が形成される。なお、ガイド板200の他方の端部200Bは、ガイド板200の他方の端部200Bを上下方向から挟み込んで固定する例えば油圧シリンダ等を用いた固定機構6により固定され、巻芯4による巻き取りに応じてガイド板200を供給する。   At this time, the winding core 4 is provided with a fixing portion 4x for fixing one end portion 200A of the guide plate 200. Specifically, the fixing portion 4x is a hooking groove into which one end portion 200A of the guide portion 200 is inserted. The guide plate 200 fixed by the hook groove 4x is wound several times (for example, about 1 or 2 times) without winding the iron core steel plate 3 (see the upper drawing of FIG. 5). Thereby, the circular part 21 of the spiral steel plate 2 is formed. The other end portion 200B of the guide plate 200 is fixed by a fixing mechanism 6 that uses, for example, a hydraulic cylinder, which sandwiches and fixes the other end portion 200B of the guide plate 200 from above and below. The guide plate 200 is supplied accordingly.

鉄心鋼板3を巻き込むことなく数回巻回した後に、さらにガイド板200を巻き取ると、当該ガイド板200上に載置されている複数の鉄心鋼板3が徐々に巻き込まれていく(図5下図参照)。このとき、所望の外径に合わせて鉄心鋼板3の枚数及び各鉄心鋼板3のずれ幅L1が設定されており、複数の鉄心鋼板3全てを巻き込むまで巻芯4を複数回回転させてガイド板200を巻き取る。   When the guide plate 200 is further wound after the core plate 3 is wound several times without being wound, the plurality of core plates 3 placed on the guide plate 200 are gradually wound (the lower diagram in FIG. 5). reference). At this time, the number of the iron core steel plates 3 and the deviation width L1 of each iron core steel plate 3 are set in accordance with a desired outer diameter, and the guide core plate is rotated by rotating the core 4 a plurality of times until all of the plurality of iron core steel plates 3 are wound. 200 is wound up.

上記のとおり複数の鉄心鋼板3を巻き込むまでガイド板200を巻き取った後に、さらにガイド板200を数回(例えば1、2回程度)巻回して、例えばスポット溶接等によりガイド板200の他方の端部200Bを仮止めする。その後、焼き鈍し処理を施し、環状鉄心100の外側周面に露出しているガイド板200を切断して除去する。このとき、環状鉄心100に含まれるガイド板200が渦巻き鋼板2を構成する。なお、各鉄心鋼板はスポット溶接により一体化しても良いし、接着剤を含浸させることにより一体化しても良い。また環状鉄心100の組み立て後において巻芯4は環状鉄心100から抜き取られる。   After winding the guide plate 200 until the plurality of iron core steel plates 3 are wound as described above, the guide plate 200 is further wound several times (for example, about 1 or 2 times), and the other side of the guide plate 200 is, for example, spot-welded. The end 200B is temporarily fixed. Thereafter, annealing is performed, and the guide plate 200 exposed on the outer peripheral surface of the annular core 100 is cut and removed. At this time, the guide plate 200 included in the annular core 100 constitutes the spiral steel plate 2. Each iron core steel plate may be integrated by spot welding or may be integrated by impregnating with an adhesive. Further, after the annular core 100 is assembled, the core 4 is extracted from the annular core 100.

このようにして製造された環状鉄心100によれば、図3に示すように、鉄心鋼板3の一方の端部3A(径方向内側の端部)と他方の端部3B(径方向外側の端部)とは、径方向に沿って積層された鉄心鋼板3の厚み分離れて位置することになる。そして、鉄心鋼板3の両端部3A、3Bの間には他の複数の鉄心鋼板3が介在することになり、各鉄心鋼板3はその表面に絶縁被膜が形成されているので、この絶縁被膜が両端部3A、3B間を電気的に絶縁する作用を呈し、各鉄心鋼板3は閉回路を形成しない。このため、環状鉄心100の外側周面にコイルを巻回し、そのコイルを交流電源により励磁したことによって各鉄心鋼板3に短絡電流が流れようとしても、上記のように各鉄心鋼板3が閉回路を形成しないことによって、短絡電流が流れることが無い。すなわち従来のように短絡電流防止用のスリットを設ける必要が無い。   According to the annular core 100 manufactured in this way, as shown in FIG. 3, one end 3A (radially inner end) and the other end 3B (radially outer end) of the iron core steel plate 3 are provided. Part) is positioned with the thickness separated from the steel sheet 3 laminated along the radial direction. Then, a plurality of other iron core steel plates 3 are interposed between both end portions 3A and 3B of the iron core steel plate 3, and each iron core steel plate 3 has an insulating film formed on the surface thereof. The both ends 3A and 3B are electrically insulated from each other, and each iron core steel sheet 3 does not form a closed circuit. Therefore, even when a coil is wound around the outer peripheral surface of the annular core 100 and the coil is excited by an AC power source, a short-circuit current flows through each core steel sheet 3, so that each core steel sheet 3 is closed circuit as described above. By not forming, short circuit current does not flow. That is, it is not necessary to provide a slit for preventing a short circuit current as in the prior art.

<本実施形態の効果>
このように構成した本実施形態に係る環状鉄心100によれば、環状鉄心100の内径は巻芯4の径を変更することによって自在に設定可能であり、環状鉄心100の外径は鉄心鋼板3の枚数を変更することによって自在に設定可能である。ここで、鉄心鋼板3の枚数により環状鉄心100の外径が自在に設定可能になるのは、複数の鉄心鋼板3全てを巻き込むまで巻芯4により複数回巻回する結果、環状鉄心100の外径がその巻回数により定まるためである。これにより、用途に応じて種々の径寸法の環状鉄心100を得ることができる。
<Effect of this embodiment>
According to the annular core 100 according to the present embodiment configured as described above, the inner diameter of the annular core 100 can be freely set by changing the diameter of the core 4, and the outer diameter of the annular core 100 is the iron core steel plate 3. It is possible to set freely by changing the number of sheets. Here, the outer diameter of the annular core 100 can be freely set by the number of the iron core steel plates 3 as a result of winding the core core steel plates 3 a plurality of times until all of the plurality of iron core steel plates 3 are wound. This is because the diameter is determined by the number of turns. Thereby, the cyclic | annular iron core 100 of various diameter dimensions can be obtained according to a use.

また、ガイド板2を巻き取る際に複数の鉄心鋼板3が巻き込まれて環状鉄心100が形成されるので、環状鉄心100の製造作業を簡単にすることができる。このとき、巻芯4に複数回巻回することによって環状鉄心100を製造することから、一回巻回する工程で巻き込まれる鉄心鋼板3の枚数を少なくすることが可能であり、鉄心鋼板3の曲げ加工を容易にすることができ、巻回作業を簡単化することができる。   Further, when the guide plate 2 is wound, the plurality of iron core steel plates 3 are wound to form the annular core 100, so that the manufacturing operation of the annular core 100 can be simplified. At this time, since the annular core 100 is manufactured by winding the core 4 a plurality of times, it is possible to reduce the number of the core steel plates 3 to be wound in a single winding step. Bending can be facilitated, and the winding operation can be simplified.

さらに、所定の長さに予め切断した鉄心鋼板3を使用するので、方向性電磁鋼板を用いた場合には、その方向性が環状鉄心100の中心軸方向(磁束通過方向)に沿うように積層することができ、磁気特性に優れた環状鉄心100を得ることができる。したがって、環状鉄心100の断面積を小さくすることができ、当該環状鉄心100を小型化できるだけでなく、コイルに使用する電線量も低減することができる。   Furthermore, since the iron core steel sheet 3 cut in advance to a predetermined length is used, when a directional electromagnetic steel sheet is used, the directionality is laminated so as to be along the central axis direction (magnetic flux passing direction) of the annular core 100. It is possible to obtain the annular core 100 having excellent magnetic properties. Therefore, the cross-sectional area of the annular core 100 can be reduced, and not only can the annular core 100 be downsized, but also the amount of electric wire used for the coil can be reduced.

<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。
<Other modified embodiments>
The present invention is not limited to the above embodiment.

例えば、前記実施形態の環状鉄心100を用いて図6〜図11に示すような静止誘導機器用鉄心Zを構成しても良い。   For example, you may comprise the iron core Z for static induction apparatuses as shown in FIGS. 6-11 using the annular core 100 of the said embodiment.

具体的にこの静止誘導機器用鉄心Zは、前記実施形態の環状鉄心100と、環状鉄心100の外側周面を囲む円筒状鉄心Z1とを備えている。そして、円筒状鉄心Z1が、幅方向断面が湾曲形状をなす湾曲部を有する複数の鉄心鋼板Z11を、幅方向にずらして積み重ねることにより形成された1又は複数の円筒状鉄心要素を環状鉄心100に同心円上に積層して形成されたものである。なお、図6等においては、1つの円筒状鉄心要素により円筒状鉄心Z1が形成されている。   Specifically, this iron core Z for stationary induction equipment includes the annular core 100 of the above-described embodiment and a cylindrical iron core Z1 that surrounds the outer peripheral surface of the annular core 100. The cylindrical iron core Z1 is formed by stacking one or more cylindrical iron core elements formed by stacking a plurality of iron core steel plates Z11 having a curved portion whose cross section in the width direction is curved in the width direction. Are formed on the concentric circles. In FIG. 6 and the like, a cylindrical iron core Z1 is formed by one cylindrical iron core element.

円筒状鉄心(円筒状鉄心要素)Z1の内側周面は、環状鉄心100の外側周面に接触して設けられている。鉄心鋼板Z11は、長尺形状をなすものであり、図12に示すように等断面形状をなすものであり、幅方向断面が湾曲形状をなす湾曲部Z11aと、当該湾曲部Z11aの幅方向における内径側端部に連続して形成された内径側屈曲部Z11bとを有する。この鉄心鋼板Z11は、例えば表面に絶縁皮膜が形成された方向性電磁鋼板(珪素鋼板)により形成されており、その板厚は、例えば約0.3mmである。また、鉄心鋼板Z11は、長手方向(つまり、製品組み立て後における磁束通過方向)に磁束方向性が向くように形成されている。湾曲部Z11aは、全体に亘って一定の曲率で湾曲しているもの、又は、連続して曲率が変化しながら湾曲するものが考えられ、例えばインボリュート曲線の一部を用いたインボリュート形状、部分円弧形状又は部分楕円形状などが考えられる。内径側屈曲部Z11bは、湾曲部Z11aの湾曲方向と同方向に屈曲して形成されている。   The inner peripheral surface of the cylindrical iron core (cylindrical core element) Z <b> 1 is provided in contact with the outer peripheral surface of the annular core 100. The iron core steel plate Z11 has a long shape, and has an equal cross-sectional shape as shown in FIG. 12, and has a curved portion Z11a having a curved cross section in the width direction and a width direction of the curved portion Z11a. And an inner diameter side bent portion Z11b formed continuously at the inner diameter side end. The iron core steel sheet Z11 is formed of, for example, a grain-oriented electrical steel sheet (silicon steel sheet) having an insulating film formed on its surface, and the thickness thereof is, for example, about 0.3 mm. Further, the iron core steel sheet Z11 is formed so that the magnetic flux directionality is directed in the longitudinal direction (that is, the magnetic flux passage direction after product assembly). The curved portion Z11a is considered to be curved with a constant curvature over the whole, or one that curves while the curvature continuously changes. For example, an involute shape using a part of an involute curve, a partial arc A shape or a partial ellipse shape is conceivable. The inner diameter side bent portion Z11b is formed by bending in the same direction as the bending direction of the bending portion Z11a.

そして、鉄心鋼板Z11の湾曲部Z11a及び内径側屈曲部Z11bにより形成された凹部に、他の鉄心鋼板Z11の湾曲部Z11a及び内径側屈曲部Z11bにより形成された凸部を嵌め込むように、尚かつ各鉄心鋼板Z11が幅方向にずれるようにして、同一形状をなす多数枚の鉄心鋼板Z11を重ね合わせる。このようにして円筒形状をなす円筒状鉄心要素Z1が形成される。   The convex portions formed by the curved portion Z11a and the inner diameter side bent portion Z11b of the other iron core steel plate Z11 are fitted into the concave portions formed by the curved portion Z11a and the inner diameter side bent portion Z11b of the iron core steel plate Z11. And many iron core steel plates Z11 which make the same shape are piled up so that each iron core steel plate Z11 may shift | deviate in the width direction. In this way, the cylindrical core element Z1 having a cylindrical shape is formed.

上記の円筒状鉄心要素Z1を構成する鉄心鋼板Z11は、上記の他に図13に示すように、湾曲部Z11a及び内径側屈曲部Z11bに加えて、湾曲部Z11aの幅方向における外径側端部に連続して、当該湾曲部の湾曲方向とは反対側に屈曲して形成された外径側屈曲部Z11cを有するものであっても良い。この外径側屈曲部Z11cは、湾曲部Z11aの湾曲方向とは反対側に屈曲して形成された概略平板状をなすものであり、環状鉄心100を組み立てた際に当該円筒状鉄心要素Z1の外周(つまり、円筒状鉄心要素Z1に外接する仮想円)の接線Lに対して略垂直となるように設定されている。   As shown in FIG. 13, in addition to the above, the iron core steel sheet Z11 constituting the cylindrical iron core element Z1 has an outer diameter side end in the width direction of the bending portion Z11a in addition to the bending portion Z11a and the inner diameter side bending portion Z11b. It may have an outer-diameter-side bent portion Z11c formed by being bent to the side opposite to the bending direction of the bending portion. The outer-diameter side bent portion Z11c is formed in a substantially flat plate shape formed by bending in the direction opposite to the bending direction of the bending portion Z11a, and when the annular core 100 is assembled, the cylindrical core element Z1 is formed. It is set to be substantially perpendicular to the tangent L of the outer periphery (that is, a virtual circle circumscribing the cylindrical core element Z1).

このように構成した静止誘導機器用鉄心Zによれば、簡単な構成により剛性の大きい円柱状の鉄心を構成することができる。また、環状鉄心100の内径及び外径を自由に設定できると共に、円筒状鉄心要素Z1を必要に応じて径方向に積層することができ、種々の径を有する静止誘導機器用鉄心Zを構成することができる。さらに円筒状鉄心要素Z1を構成する鉄心要素Z11が等価的に放射状に並べられたものとなり、漏洩磁束が鉄心要素Z11をその厚さ方向に貫通する割合を小さくすることができ渦電流を可及的に小さくすることができる。さらに鉄心要素Z11が外径側屈曲部Z11cを有するものであれば、誘導コイルにより生じる漏洩磁束は、実質的に外径側屈曲部Z11cの外端面のみを通過するようになり、渦電流の発生を可及的に減少させることができる。その上、環状鉄心100及び円筒状鉄心要素Z1のいずれにも方向性電磁鋼板を用いることができるので、磁気特性に優れた静止誘導機器用鉄心Zを得ることができる。したがって、静止誘導機器用鉄心Zの断面積を小さくすることができ、当該静止誘導機器用鉄心Zを小型化できるだけでなく、コイルに使用する電線量も低減することができる。   According to the iron core Z for stationary induction equipment configured as described above, a cylindrical iron core having high rigidity can be configured with a simple configuration. In addition, the inner and outer diameters of the annular core 100 can be freely set, and the cylindrical core element Z1 can be laminated in the radial direction as needed, thereby forming a stationary induction device core Z having various diameters. be able to. Further, the core elements Z11 constituting the cylindrical core element Z1 are equivalently arranged radially, and the ratio of leakage magnetic flux penetrating the core element Z11 in the thickness direction can be reduced, so that the eddy current is made possible. Can be made smaller. Further, if the iron core element Z11 has the outer diameter side bent portion Z11c, the leakage magnetic flux generated by the induction coil substantially passes only through the outer end surface of the outer diameter side bent portion Z11c, and eddy current is generated. Can be reduced as much as possible. In addition, since the grain-oriented electrical steel sheet can be used for both the annular core 100 and the cylindrical core element Z1, the core Z for stationary induction equipment having excellent magnetic properties can be obtained. Therefore, the cross-sectional area of the static induction device core Z can be reduced, and the static induction device core Z can be reduced in size, and the amount of electric wire used for the coil can also be reduced.

加えて、上記では、1つの円筒状鉄心要素により円筒状鉄心Z1が形成されているが、図14〜図19に示すように、2つ以上の円筒状鉄心要素により円筒状鉄心Z1が構成されるものであっても良い。なお、図14等においては2つの円筒状鉄心要素により構成した場合を示している。   In addition, in the above, the cylindrical core Z1 is formed by one cylindrical core element. However, as shown in FIGS. 14 to 19, the cylindrical core Z1 is configured by two or more cylindrical core elements. It may be a thing. In FIG. 14 and the like, a case in which two cylindrical core elements are used is shown.

その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。   In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

100・・・環状鉄心
2 ・・・渦巻き鋼板
3 ・・・鉄心鋼板
4 ・・・巻芯
Z ・・・静止誘導機器用鉄心
Z1・・・円筒状鉄心
Z11・・・鉄心鋼板
DESCRIPTION OF SYMBOLS 100 ... Ring core 2 ... Spiral steel plate 3 ... Iron core steel plate 4 ... Core Z ... Iron core Z1 for static induction equipment ... Cylindrical iron core Z11 ... Iron core steel plate

Claims (6)

長尺状電磁鋼板を渦巻き状に複数回巻回して形成され、所定内径を有する渦巻き鋼板と、
短尺状電磁鋼板から形成され、内径側端部が前記渦巻き鋼板に接触配置されるとともに、前記渦巻き鋼板の巻回方向に沿って所定幅ずらして積層された略同一形状をなす複数の鉄心鋼板とを備える環状鉄心。
A spiral steel sheet having a predetermined inner diameter formed by winding a long electromagnetic steel sheet in a spiral shape a plurality of times,
A plurality of iron core steel plates having substantially the same shape, which are formed from short electromagnetic steel plates, and whose inner diameter side ends are arranged in contact with the spiral steel plates and are shifted by a predetermined width along the winding direction of the spiral steel plates; An annular iron core with
長尺状電磁鋼板上に、略同一形状をなす複数の短尺状電磁鋼板を、前記長尺状電磁鋼板の延伸方向に沿って略等間隔にずらして重ねて並べ、前記長尺状電磁鋼板の一方の端部から前記短尺状電磁鋼板を巻き込むように、前記長尺状電磁鋼板を複数回巻き取ることにより形成された環状鉄心。   A plurality of short electromagnetic steel sheets having substantially the same shape are arranged on the long electromagnetic steel sheets while being shifted at substantially equal intervals along the extending direction of the long electromagnetic steel sheets. An annular iron core formed by winding the long electromagnetic steel sheet a plurality of times so as to wind the short electromagnetic steel sheet from one end. 長尺状電磁鋼板上に、略同一形状をなす複数の短尺状電磁鋼板を、前記長尺状電磁鋼板の延伸方向に沿って略等間隔にずらして重ねて並べ、巻芯を用いて、前記長尺状電磁鋼板の一方の端部から前記短尺状電磁鋼板を巻き込むように、前記長尺状電磁鋼板を複数回巻き取り、所望の外径に合わせて前記短尺状電磁鋼板の枚数を調整する環状鉄心製造方法。   On the long electromagnetic steel sheet, a plurality of short electromagnetic steel sheets having substantially the same shape are arranged while being shifted at substantially equal intervals along the extending direction of the long electromagnetic steel sheet, using a winding core, The long electromagnetic steel sheet is wound a plurality of times so that the short electromagnetic steel sheet is wound from one end of the long electromagnetic steel sheet, and the number of the short electromagnetic steel sheets is adjusted to a desired outer diameter. An annular core manufacturing method. 請求項1又は2記載の環状鉄心と、
前記環状鉄心の外側周面を囲む円筒状鉄心とを備え、
前記円筒状鉄心が、幅方向断面が湾曲形状をなす湾曲部を有する複数の鉄心鋼板を、幅方向にずらして積み重ねることにより形成された1又は複数の円筒状鉄心要素を前記環状鉄心に同心円上に積層して形成されたものである静止誘導機器用鉄心。
The annular iron core according to claim 1 or 2,
A cylindrical iron core surrounding the outer peripheral surface of the annular core;
The cylindrical core is formed by concentrating one or a plurality of cylindrical core elements formed by stacking a plurality of core steel sheets having a curved portion having a curved cross section in the width direction on the annular core. An iron core for stationary induction equipment, which is formed by laminating the core.
前記鉄心鋼板が、前記湾曲部の幅方向における外径側端部に連続して、当該湾曲部の湾曲方向とは反対側に屈曲して形成された外径側屈曲部を有し、当該外径側屈曲部が、円筒状鉄心要素の外周の接線に対して略直角となる請求項4記載の静止誘導機器用鉄心。   The iron core steel plate has an outer-diameter-side bent portion formed by being bent to the opposite side of the bending direction of the bending portion continuously from the outer-diameter-side end portion in the width direction of the bending portion. The iron core for stationary induction equipment according to claim 4, wherein the radial side bent portion is substantially perpendicular to a tangent line on the outer periphery of the cylindrical core element. 前記鉄心鋼板が、前記湾曲部の幅方向における内径側端部に連続して、当該湾曲部の湾曲方向と同方向に屈曲して形成された内径側屈曲部を有する請求項4又は5記載の静止誘導機器用鉄心。   The said iron core steel plate has an inner diameter side bending part formed by being bent in the same direction as the bending direction of the said bending part continuously from the inner diameter side edge part in the width direction of the said bending part. Iron core for stationary induction equipment.
JP2010014689A 2010-01-26 2010-01-26 Annular iron core and iron core for stationary induction equipment Active JP5391096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010014689A JP5391096B2 (en) 2010-01-26 2010-01-26 Annular iron core and iron core for stationary induction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010014689A JP5391096B2 (en) 2010-01-26 2010-01-26 Annular iron core and iron core for stationary induction equipment

Publications (2)

Publication Number Publication Date
JP2011155079A JP2011155079A (en) 2011-08-11
JP5391096B2 true JP5391096B2 (en) 2014-01-15

Family

ID=44540848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010014689A Active JP5391096B2 (en) 2010-01-26 2010-01-26 Annular iron core and iron core for stationary induction equipment

Country Status (1)

Country Link
JP (1) JP5391096B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865131B2 (en) * 2012-03-09 2016-02-17 トクデン株式会社 Cylindrical iron core and iron core steel sheet
JP6031239B2 (en) * 2012-03-09 2016-11-24 トクデン株式会社 Iron core for induction heating roller device and induction heating roller device
KR102195785B1 (en) 2013-12-20 2020-12-28 토쿠덴 가부시기가이샤 Power circuit, iron core for scott connected transformer, scott connected transformer and superheated steam generator
JP6282220B2 (en) * 2013-12-20 2018-02-21 トクデン株式会社 Superheated steam generator
JP7299464B2 (en) * 2018-10-03 2023-06-28 日本製鉄株式会社 Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet for wound core transformer, method for manufacturing wound core, and method for manufacturing wound core transformer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE324404B (en) * 1969-03-05 1970-06-01 Asea Ab
JPS5910731Y2 (en) * 1978-01-27 1984-04-04 株式会社高岳製作所 reactor core
JPS55181322U (en) * 1979-06-14 1980-12-26
JP2532986Y2 (en) * 1991-12-02 1997-04-16 トクデン株式会社 Iron core for induction heating roller device
JP2586826Y2 (en) * 1992-07-09 1998-12-14 トクデン株式会社 Annular core
JPH10172826A (en) * 1996-12-05 1998-06-26 Denso Corp Solenoid stator and its manufacture
JP3482793B2 (en) * 1996-12-09 2004-01-06 トヨタ自動車株式会社 Stator core for solenoid
US6374480B1 (en) * 1998-05-13 2002-04-23 Abb Inc. Method and apparatus for making a transformer core from amorphous metal ribbons
JP5152839B2 (en) * 2007-10-24 2013-02-27 トクデン株式会社 Circular iron core for stationary electromagnetic equipment

Also Published As

Publication number Publication date
JP2011155079A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP6079225B2 (en) Trance
US20060055274A1 (en) Stator of motor and method of manufacturing the same
JP5391096B2 (en) Annular iron core and iron core for stationary induction equipment
JP5877035B2 (en) Flat wire winding structure
JP5742805B2 (en) Rotating electric machine stator
JP6092862B2 (en) Coiled member and coil device
JP5152839B2 (en) Circular iron core for stationary electromagnetic equipment
JP5621626B2 (en) Manufacturing method of spiral core for rotating electrical machine and manufacturing apparatus of spiral core for rotating electrical machine
CN102113070B (en) Cylindrical iron core, stationary induction apparatus and induction heat-generating roller device
KR101506698B1 (en) iron core winding assembly for transformer
JP2018023232A (en) Rotary electric machine and manufacturing method therefor
JP5276298B2 (en) Continuous segment core material used for rotor laminated core and rotor laminated core using the same
JP2010016932A (en) Stator structure of rotating electrical machine
JP5603602B2 (en) Annular iron core and iron core steel plate for induction heating roller device
CN208674979U (en) Disc type electric machine and its core structure
JP6031239B2 (en) Iron core for induction heating roller device and induction heating roller device
JP5865131B2 (en) Cylindrical iron core and iron core steel sheet
JP2007005055A (en) Induction heating roller device
JP2014057462A (en) Stator of rotary electric machine
TWI500054B (en) Static induction machine coil
JP5213571B2 (en) Cylindrical iron core, induction heating roller device and stationary induction device
JPH0611306U (en) Annular core
JP5213574B2 (en) Iron core for static induction equipment
JP5819113B2 (en) Core plate manufacturing method
WO2017203612A1 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131011

R150 Certificate of patent or registration of utility model

Ref document number: 5391096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250