WO2010013425A1 - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
WO2010013425A1
WO2010013425A1 PCT/JP2009/003491 JP2009003491W WO2010013425A1 WO 2010013425 A1 WO2010013425 A1 WO 2010013425A1 JP 2009003491 W JP2009003491 W JP 2009003491W WO 2010013425 A1 WO2010013425 A1 WO 2010013425A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
electrode
fuel cell
anode
cathode
Prior art date
Application number
PCT/JP2009/003491
Other languages
French (fr)
Japanese (ja)
Inventor
矢嶋亨
大道元太
佐藤麻子
古市満
青木里紗
吉田勇一
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2010013425A1 publication Critical patent/WO2010013425A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell using liquid fuel.
  • a fuel cell has a feature that it can generate electric power simply by supplying fuel and air, and can generate electric power continuously for a long time if fuel is replenished. Therefore, if the fuel cell can be reduced in size, it can be said that the system is extremely advantageous as a power source for portable electronic devices.
  • a direct methanol fuel cell (Direct Methanol Fuel Cell: DMFC) is expected to be a power source for portable electronic devices because it can be miniaturized and the fuel can be easily handled.
  • a fuel supply method in the DMFC an active method such as a gas supply type or a liquid supply type, or a passive method such as an internal vaporization type in which the liquid fuel in the fuel storage portion is vaporized inside the cell and supplied is known.
  • the amount of fuel supplied is limited compared to the active method.
  • the liquid supply pressure that is generated does not occur. Therefore, from the viewpoint of promoting the reaction, carbon dioxide generated by the anode reaction is quickly removed from the reaction system. It is important to escape.
  • the supply of air (oxygen) to the cathode also depends on natural convection, so that it cannot be forced to supply air, so there is a risk that the reactivity may decrease due to the retention of air or heat on the cathode side. .
  • the present invention has been made in view of the above-described problems, and provides a high-power fuel cell by increasing the amount of fuel and air that are reactants supplied to the membrane electrode assembly (MEA).
  • the purpose is to do.
  • FIG. 1 is a cross-sectional view showing the configuration of the fuel cell according to the first embodiment.
  • the fuel cell of 1st Embodiment has the membrane electrode assembly (MEA) 1 as shown in FIG.
  • the MEA 1 is sandwiched between the anode 4 having the anode catalyst layer 2 and the anode gas diffusion layer 3, the cathode 7 having the cathode catalyst layer 5 and the cathode gas diffusion layer 6, and the anode catalyst layer 2 and the cathode catalyst layer 5.
  • Proton conductive electrolyte membrane 8 is provided.
  • the anode catalyst layer 2 and the cathode catalyst layer 5 can contain an electrolyte having proton conductivity together with the catalyst component.
  • the proton-conductive electrolyte improves the mobility of protons that move from the anode catalyst layer to the electrolyte membrane and from the electrolyte membrane to the cathode catalyst layer as power generation proceeds.
  • the proton conductive electrolyte contained in the catalyst layer the same type as the polymer electrolyte constituting the electrolyte membrane 8 described later can be used.
  • the anode gas diffusion layer 3 and the cathode gas diffusion layer 6 diffuse the gas supplied to the MEA 1 (a methanol-containing gas which is a fuel gas at the anode 4 and an oxygen-containing gas such as air at the cathode 7) to the catalyst layer. And has the function of supplying. That is, the anode gas diffusion layer 3 has a function of uniformly supplying the fuel gas to the anode catalyst layer 2.
  • the anode catalyst layer 2 also has a function as a current collector.
  • the cathode gas diffusion layer 6 has a function of uniformly supplying air as an oxidant to the cathode catalyst layer 5, and also has a function as a current collector of the cathode catalyst layer 5.
  • the anode gas diffusion layer 3 and the cathode gas diffusion layer 6 are each made of a conductive material.
  • a known material can be used as the conductive material.
  • Specific forms of the anode gas diffusion layer 3 and the cathode gas diffusion layer 6 include carbon paper, carbon cloth, carbon non-woven fabric, carbon woven fabric, paper-like paper body, felt and the like.
  • the proton conductive electrolyte membrane 8 is disposed between the anode catalyst layer 2 and the cathode catalyst layer 5.
  • the proton conductive electrolyte membrane 8 include a fluorine-based resin having a sulfonic acid group such as a perfluorosulfonic acid polymer (trade name Nafion (manufactured by DuPont), trade name Flemion (manufactured by Asahi Glass Co., Ltd.)), Examples thereof include, but are not limited to, hydrocarbon resins having a sulfonic acid group.
  • the anode conductive layer 9 is laminated on the anode gas diffusion layer 3 of the MEA 1 configured as described above, and the cathode conductive layer 10 is laminated on the cathode gas diffusion layer 6.
  • the anode conductive layer 9 and the cathode conductive layer 10 have through holes through which fuel, oxidant (air), and the like circulate.
  • the constituent material of the anode conductive layer 9 and the cathode conductive layer 10 include a porous film (for example, a mesh) or a foil body made of a conductive metal such as gold or nickel, or a conductive metal such as stainless steel (SUS).
  • a composite material coated with a highly conductive metal such as gold can be used. Carbon materials such as graphite (graphite) can also be used.
  • the cross section is O-shaped and the planar shape is rectangular.
  • a frame-shaped sealing material (O-ring) 11 is provided. Further, a sealing material (O-ring) having the same shape is disposed between the proton conductive electrolyte membrane 8 and the cathode conductive layer 10 and around the cathode catalyst layer 5 and the cathode gas diffusion layer 6 constituting the cathode 7. 11 is provided.
  • These sealing materials 11 are for preventing fuel leakage and oxidant leakage from the MEA 1, and are made of an elastic body such as rubber.
  • the sealing material 11 and the peripheral end of the electrode (the anode 4 or the cathode 7)
  • the area of the electrode or the electrolyte membrane 8 indicates the area of the main surface, and the bottom area of the space S indicates the cross-sectional area in the plane direction parallel to the main surface of the electrode.
  • the space portion S may be provided only on one side.
  • a fuel-resistant (for example, methanol-resistant) organic film (not shown) can be provided so as to separate the anode 4 side and the cathode 7 side of the space S.
  • the space S on the anode 4 side is a space surrounded on three sides by the organic film, the sealing material 11 and the end face of the anode 4.
  • the space S on the cathode 7 side is a space surrounded on three sides by the organic film, the sealing material 11 and the end face of the cathode 7.
  • the area of the proton conductive electrolyte membrane 8 is increased, and the peripheral end portion of the electrolyte membrane 8 reaches the seal material 11.
  • the catalyst layer is not laminated in the portion where the area of the electrolyte membrane 8 is increased, this region can participate in water retention. Therefore, the amount of water returning (diffusing) from the cathode 7 side to the anode 4 side can be increased, and a higher output can be obtained.
  • a surface cover (cover plate) 13 having a plurality of air inlets 13a for taking in air as an oxidant is disposed.
  • the front cover 13 also plays a role of increasing the adhesion by pressurizing the MEA 1 and the moisture retaining layer 12 and is made of a metal such as SUS304.
  • Liquid fuel F is stored in the fuel storage unit 15.
  • a methanol aqueous solution or pure methanol is preferable.
  • a methanol concentration of 50 mol% or more is preferably used, but is not necessarily limited.
  • the liquid fuel F may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel. .
  • the fuel distribution layer 17 is sandwiched between the anode conductive layer 9 and the fuel supply unit 16.
  • the fuel distribution layer 17 is made of a material that does not allow the liquid fuel F and its vaporized components to permeate, such as polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, and polyimide resin, and has a plurality of openings. (Fuel discharge port 17a).
  • the fuel distribution layer 17 may be formed of a gas-liquid separation membrane having a function of separating the liquid fuel F and its vaporized component and allowing only the vaporized component of the liquid fuel F to permeate to the MEA 1 side.
  • an opening for degassing is provided at a position corresponding to the degassing hole 20 of the electrolyte membrane 8.
  • the hole 13b can be formed.
  • the heat sink 21 made from aluminum can be arrange
  • the saturated water vapor pressure at the position of the gas vent hole 20 is greatly reduced, and as a result, the ratio of the saturated water vapor pressure at the position where the saturated water vapor pressure is highest on the cathode 7 side can be adjusted to 0.8 or less. The same can be said for the saturated fuel vapor pressure.
  • the fuel cells of the fourth to seventh embodiments include elements such as an anode conductive layer and a cathode conductive layer, a moisture retention layer, a surface cover, a fuel supply unit, and a fuel storage unit. It has.
  • the specific configuration of each element is the same as that of the fuel cell of the first embodiment described above.
  • the peripheral end portion of the electrode (the anode 4 or the cathode 7) and the sealing material 11 are provided on the surface of at least one of the anode 4 side and the cathode 7 side of the electrolyte membrane 8, the peripheral end portion of the electrode (the anode 4 or the cathode 7) and the sealing material 11 are provided.
  • a spacer 22 made of an insulating resin having high fuel resistance is disposed so as to fill the space S therebetween. In particular, as illustrated, it is preferable to dispose the spacer 22 on the anode 4 side.
  • a fluorine-based resin such as Teflon (registered trademark) can be given.
  • the spacer 22 inserted and arranged in the space portion S does not need to fill the space portion S without any gap, and has a clearance of about 0.5 to 2.0 mm with respect to the space portion S in the planar shape, thickness, etc. There may be.
  • gas components such as carbon dioxide and water vapor generated on the anode 4 side of the MEA 1 are guided to the groove 22a formed in the spacer 22 and are vented. 20 and further discharged through the vent hole 20 to the cathode 7 side. Accordingly, since the gas is rapidly released from the anode 4 side to the cathode 7 side, the electrode reaction is promoted and the output is improved.
  • the fuel cell of each embodiment described above is effective when various liquid fuels are used, and the type and concentration of the liquid fuel are not limited. Furthermore, although each embodiment mentioned above gave and demonstrated the passive type fuel cell as an example as a structure of a fuel cell main body, it is also applied to the semi-passive type fuel cell which used a pump etc. for some parts, such as fuel supply. The present invention can be applied.
  • the semi-passive type fuel cell the fuel supplied from the fuel storage unit to the MEA is used for a power generation reaction and is not circulated thereafter and returned to the fuel storage unit. Since the semi-passive type fuel cell does not circulate the fuel, it is different from the conventional active method and does not impair the downsizing of the apparatus. In addition, since a pump is used for supplying fuel and it is different from a pure passive method such as a conventional internal vaporization type, it is called a semi-passive fuel cell.
  • a Nafion membrane which is a proton conductive electrolyte membrane 8 (manufactured by DuPont, 44 mm ⁇ 34 mm rectangular shape with a thickness of 30 ⁇ m, water content)
  • a membrane electrode assembly (MEA) 1 was produced by hot pressing with 10 to 20% by weight).
  • Example 2 As shown in FIG. 4, heat resistance and fuel resistance are provided on the surface of the proton conductive electrolyte membrane 8 extending outward from the peripheral ends of the electrodes (cathode 7 and anode 4) of the MEA 1 on the anode 4 side.
  • a Kapton (registered trademark; polyimide resin) tape (thickness: 0.5 mm, width: 7 mm) was attached as the organic film 19 having the above. Otherwise, the MEA 1 was produced in the same manner as in Example 1, and a fuel cell was assembled.
  • Example 4 As shown in FIG. 6, in the electrolyte membrane 8 of the MEA 1, the distance from the peripheral end portion of the closest electrode (for example, the cathode 7) is 3 mm, and at the central portion of the short side of the O-ring (seal material 11). Gas vent holes 20 each having a diameter of 0.5 mm were provided at two positions facing each other. Otherwise, a fuel cell was produced in the same manner as in Example 3.
  • Example 8 As shown in FIG. 8, Teflon (registered trademark) having the same thickness as the anode 4 as a spacer 22 in the space S between the O-ring (sealing material 11) on the anode 4 side of the MEA 1 and the electrode (anode 4). A plate was placed to block most of the space S. Otherwise, a fuel cell was produced in the same manner as in Example 3.
  • Example 11 After hot pressing the anode 4 and the cathode 7 to the electrolyte membrane 8 by hot pressing, using a copper frame having a width of 5 mm and the same outer shape as the anode 4 and the cathode 7, the MEA was re-applied at 180 ° C. for 2 minutes. Pressed. Other than that was carried out similarly to Example 8, and produced the fuel cell.
  • Example 12 As the cathode gas diffusion layer 6 and the anode gas diffusion layer 3, porous carbon paper of 23.1 mm ⁇ 34.6 mm was used, and the area of the cathode 7 and the anode 4 was 8 cm 2 . And between the O-ring (seal material 11) on the cathode 7 side and the anode 4 side and the electrodes (cathode 7 and anode 4), the bottom area of 0.5 times the area (8 cm 2 ) of the cathode 7 and anode 4 A space S having (4 cm 2 ) was provided.
  • the current density was controlled to be 150 mA / cm 2 after 15 minutes from the start of current flow.
  • the area of the power generation unit is the area of the portion where the anode catalyst layer and the cathode catalyst layer face each other.
  • the areas of the anode catalyst layer and the cathode catalyst layer were equal and opposed over the entire area. Equal to the area. Then, the output voltage of the fuel cell was measured, and when the measured value reached 0.2 V, the increase in current was terminated. Further, the output after 1000 hours was measured, and the ratio when the initial output was 100 was calculated. This value was used as the output maintenance rate.

Abstract

The fuel cell is equipped with an MEA (1), which comprises an anode (4), a cathode (7), an electrolyte membrane (8), and a seal member (11) disposed on the outside of the anode (4) and the cathode (7), and a fuel supply mechanism (14), which supplies liquid fuel (F) to the MEA (1). A space (S), the bottom surface area of which is 0.2 to 1.3 times the electrode surface area, is then provided between the seal member (11) and the electrode on at least one or the other of the anode (4) side or cathode (7) side of the MEA (1). The output of the fuel cell is increased by increasing the supply rate of fuel or air supplied to the MEA. The efficiency and stability over time of the power generating reaction of the fuel cell are thus improved.

Description

燃料電池Fuel cell
 本発明は、液体燃料を用いた燃料電池に関する。 The present invention relates to a fuel cell using liquid fuel.
 近年、ノートパソコンや携帯電話などの電子機器を長時間充電することなく使用するため、これらの携帯用電子機器の電源に燃料電池を用いる試みがなされている。燃料電池は燃料と空気とを供給するだけで発電することができ、燃料を補給すれば連続して長時間発電することができるという特徴を有している。したがって、燃料電池を小型化することができれば、携帯用電子機器の電源として極めて有利なシステムといえる。 In recent years, attempts have been made to use fuel cells as the power source of portable electronic devices in order to use electronic devices such as notebook computers and mobile phones without charging them for a long time. A fuel cell has a feature that it can generate electric power simply by supplying fuel and air, and can generate electric power continuously for a long time if fuel is replenished. Therefore, if the fuel cell can be reduced in size, it can be said that the system is extremely advantageous as a power source for portable electronic devices.
 直接メタノール型燃料電池(Direct Methanol Fuel Cell:DMFC)は小型化が可能であり、さらに燃料の取り扱いも容易であるため、携帯用電子機器の電源として期待されている。DMFCにおける燃料の供給方式としては、気体供給型や液体供給型などのアクティブ方式や、燃料収容部内の液体燃料を電池内部で気化させて供給する内部気化型などのパッシブ方式が知られている。 A direct methanol fuel cell (Direct Methanol Fuel Cell: DMFC) is expected to be a power source for portable electronic devices because it can be miniaturized and the fuel can be easily handled. As a fuel supply method in the DMFC, an active method such as a gas supply type or a liquid supply type, or a passive method such as an internal vaporization type in which the liquid fuel in the fuel storage portion is vaporized inside the cell and supplied is known.
 これらのうちで内部気化型などのパッシブ方式は、DMFCの小型化に対して特に有利である。パッシブ型DMFCにおいては、燃料極(アノード)、電解質膜および空気極(カソード)を有する膜電極接合体(Membrane Electrode Assembly:MEA)を、樹脂製の箱状容器からなる燃料収容部上に配置した構造が提案されている(例えば、特許文献1参照)。 Among these, passive methods such as the internal vaporization type are particularly advantageous for downsizing the DMFC. In a passive type DMFC, a membrane electrode assembly (Mebrane Electrode Assembly: MEA) having a fuel electrode (anode), an electrolyte membrane, and an air electrode (cathode) is disposed on a fuel storage portion formed of a resin box-like container. A structure has been proposed (see, for example, Patent Document 1).
 このようなパッシブ方式では、燃料の供給量を確保するため、アクティブ方式に比べて濃度の高いメタノールが使用される。アノードでの反応に必要な水(HO)としては、カソードで生成される水がアノードに逆拡散されて供給される。 In such a passive method, methanol having a higher concentration than that of the active method is used in order to secure the amount of fuel supplied. As water (H 2 O) necessary for the reaction at the anode, water produced at the cathode is supplied after being reverse-diffused to the anode.
 しかし、液体の状態で導入された燃料は一旦気化してからMEAに供給されるため、燃料の供給量がアクティブ方式に比べて制限される。また、パッシブ型の燃料電池では、アクティブ方式で燃料が供給される場合には発生する送液圧力が生じないため、反応促進の観点から、アノード反応で生じた二酸化炭素を速やかに反応系外に逃がすことが重要となる。さらに、カソードへの空気(酸素)の供給も自然の対流に依っており、強制的に給気を行うことができないため、カソード側で空気や熱の滞留により反応性が低下するおそれがあった。 However, since the fuel introduced in the liquid state is once vaporized and then supplied to the MEA, the amount of fuel supplied is limited compared to the active method. In addition, in a passive type fuel cell, when fuel is supplied by an active method, the liquid supply pressure that is generated does not occur. Therefore, from the viewpoint of promoting the reaction, carbon dioxide generated by the anode reaction is quickly removed from the reaction system. It is important to escape. Furthermore, the supply of air (oxygen) to the cathode also depends on natural convection, so that it cannot be forced to supply air, so there is a risk that the reactivity may decrease due to the retention of air or heat on the cathode side. .
 また、パッシブ型の燃料電池では、アノード側の電極反応で発生した二酸化炭素を外気へ放出する必要があるため、従来から、アノード側の容器側面にガス抜き孔を設け、ガス成分を系外に放出することが検討されていた。さらに別の構成として、電解質膜にガス抜き孔を設け、アノード側で生じた二酸化炭素をカソード側に逃がすことも検討されている。 In addition, in a passive fuel cell, it is necessary to release carbon dioxide generated by the electrode reaction on the anode side to the outside air. Therefore, conventionally, a gas vent is provided on the side surface of the container on the anode side so that the gas component is removed from the system. It was being considered for release. As another configuration, it has been studied to provide a gas vent hole in the electrolyte membrane so that carbon dioxide generated on the anode side is released to the cathode side.
 しかし、このような構成では、アノードに供給された燃料ガスの一部や、カソード触媒層からアノード触媒層へ拡散してきた水(HO)の一部が、二酸化炭素とともにガス抜き孔を通って排出されるため、アノード側の反応が十分に行なわれなくなり、出力が低下するという問題があった。MEAの温度が高く、アノード側に存在する燃料(メタノール)や水の飽和蒸気圧が高くなるほど、メタノールや水が蒸気としてガス抜き孔から排出されやすくなるため、前記問題が顕著に生じていた。さらに、アノード側から排出される水の量が多くなり、MEAが含有する水の量が減少すると、電解質膜におけるプロトン(H)の伝導度が低下し、燃料電池の出力が低下するという問題もあった。 However, in such a configuration, a part of the fuel gas supplied to the anode and a part of the water (H 2 O) diffused from the cathode catalyst layer to the anode catalyst layer pass through the gas vent hole together with carbon dioxide. As a result, the reaction on the anode side is not sufficiently performed and the output is reduced. The higher the temperature of the MEA and the higher the saturated vapor pressure of the fuel (methanol) and water present on the anode side, the more easily the methanol and water are discharged as vapor from the vent hole. Further, when the amount of water discharged from the anode side increases and the amount of water contained in the MEA decreases, the conductivity of protons (H + ) in the electrolyte membrane decreases, and the output of the fuel cell decreases. There was also.
国際公開第2005/112172号パンフレットInternational Publication No. 2005/112172 Pamphlet
 本発明は、上記の問題点に鑑みてなされたものであって、膜電極接合体(MEA)に供給される反応物質である燃料や空気の供給量を増大し、高出力の燃料電池を提供することを目的とする。また、発電反応に伴ってMEAのアノード側で発生するガス成分の除去性を高め、発電反応の効率や経時的な安定性が向上した燃料電池を提供することを目的とする。 The present invention has been made in view of the above-described problems, and provides a high-power fuel cell by increasing the amount of fuel and air that are reactants supplied to the membrane electrode assembly (MEA). The purpose is to do. It is another object of the present invention to provide a fuel cell in which the removability of gas components generated on the anode side of the MEA accompanying the power generation reaction is enhanced, and the efficiency of the power generation reaction and the stability over time are improved.
 本発明の第1の態様である燃料電池は、燃料極(アノード)および空気極(カソード)と、前記燃料極と前記空気極に挟持されたプロトン伝導性の電解質膜と、前記燃料極および前記空気極の側面の外側にそれぞれ周設されたシール部を有する膜電極接合体(MEA)と、液体燃料を収容する燃料収容部と、前記燃料収容部に収容された前記液体燃料を前記膜電極接合体の前記燃料極に供給する燃料供給機構とを具備する燃料電池において、前記膜電極接合体の前記燃料極側と前記空気極側の少なくとも一方において、前記シール部と前記燃料極または前記空気極との間に、該燃料極または空気極の主面の面積の0.2~1.3倍の底面積を有する空間部が設けられていることを特徴とする。 The fuel cell according to the first aspect of the present invention includes a fuel electrode (anode) and an air electrode (cathode), a proton conductive electrolyte membrane sandwiched between the fuel electrode and the air electrode, the fuel electrode and the fuel electrode. A membrane electrode assembly (MEA) having a seal portion provided around each of the outer sides of the air electrode, a fuel storage portion for storing liquid fuel, and the liquid fuel stored in the fuel storage portion as the membrane electrode In the fuel cell comprising a fuel supply mechanism for supplying the fuel electrode of the assembly to the fuel electrode side and at least one of the air electrode side and the air electrode side of the membrane electrode assembly, the seal portion and the fuel electrode or the air A space portion having a bottom area of 0.2 to 1.3 times the area of the main surface of the fuel electrode or air electrode is provided between the electrode and the electrode.
 本発明の態様に係る燃料電池によれば、膜電極接合体(MEA)に供給される反応物質である燃料や空気の供給量が増大され、安定的に高い出力が得られる。 According to the fuel cell according to the aspect of the present invention, the supply amount of fuel and air, which are reactants supplied to the membrane electrode assembly (MEA), is increased, and a stable high output can be obtained.
本発明の第1の実施形態に係る燃料電池の構成を示す断面図である。It is sectional drawing which shows the structure of the fuel cell which concerns on the 1st Embodiment of this invention. 第1の実施形態の燃料電池のMEAの構成を示す断面図である。It is sectional drawing which shows the structure of MEA of the fuel cell of 1st Embodiment. 第1の実施形態の燃料電池のMEAを示すカソード側平面図である。It is a cathode side top view which shows MEA of the fuel cell of 1st Embodiment. 第1の実施形態の燃料電池のMEAを示すアノード側平面図である。It is an anode side top view showing MEA of a fuel cell of a 1st embodiment. 第2の実施形態の燃料電池におけるMEAの構成を示す断面図である。It is sectional drawing which shows the structure of MEA in the fuel cell of 2nd Embodiment. 第3の実施形態の燃料電池におけるMEAの構成を示す断面図である。It is sectional drawing which shows the structure of MEA in the fuel cell of 3rd Embodiment. 第3の実施形態の燃料電池におけるMEAのカソード側平面図である。It is a cathode side top view of MEA in the fuel cell of a 3rd embodiment. 第3の実施形態の燃料電池において、放熱板を配置した構成を示す平面図である。In the fuel cell of 3rd Embodiment, it is a top view which shows the structure which has arrange | positioned the heat sink. 第4の実施形態の燃料電池におけるMEAの構成を示す断面図である。It is sectional drawing which shows the structure of MEA in the fuel cell of 4th Embodiment. 第5の実施形態の燃料電池におけるMEAの構成を示す平面図である。It is a top view which shows the structure of MEA in the fuel cell of 5th Embodiment. 第6の実施形態の燃料電池における電極の一形状を示す平面図である。It is a top view which shows one shape of the electrode in the fuel cell of 6th Embodiment. 第6の実施形態の燃料電池における電極の別の形状を示す平面図である。It is a top view which shows another shape of the electrode in the fuel cell of 6th Embodiment. 実施例3におけるMEAの構成を示す平面図である。6 is a plan view showing a configuration of an MEA in Example 3. FIG. 実施例5におけるMEAの構成を示す平面図である。FIG. 10 is a plan view showing a configuration of an MEA in Example 5.
 以下、本発明の実施形態に係る燃料電池について、図面を参照して説明する。図1は、第1の実施形態に係る燃料電池の構成を示す断面図である。第1の実施形態の燃料電池は、図1に示すように、膜電極接合体(MEA)1を有している。 Hereinafter, a fuel cell according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing the configuration of the fuel cell according to the first embodiment. The fuel cell of 1st Embodiment has the membrane electrode assembly (MEA) 1 as shown in FIG.
 MEA1は、アノード触媒層2とアノードガス拡散層3を有するアノード4と、カソード触媒層5とカソードガス拡散層6を有するカソード7、およびアノード触媒層2とカソード触媒層5との間に挟持されたプロトン伝導性の電解質膜8をそれぞれ備えている。 The MEA 1 is sandwiched between the anode 4 having the anode catalyst layer 2 and the anode gas diffusion layer 3, the cathode 7 having the cathode catalyst layer 5 and the cathode gas diffusion layer 6, and the anode catalyst layer 2 and the cathode catalyst layer 5. Proton conductive electrolyte membrane 8 is provided.
 アノード触媒層2とカソード触媒層5は、電極反応を媒介する触媒が配置される部位であり、触媒成分を含有する。触媒成分としては、例えば、白金族元素であるPt、Ru、Rh、Ir、Os、Pdなどの単体金属、これらの白金族元素を含有する合金などが挙げられる。アノード触媒層2とカソード触媒層5とに含まれる触媒成分は同一であっても異なっていてもよく、組成は特に限定されない。アノード触媒層2は、触媒活性の観点からは、白金、白金合金、パラジウム合金などを多く含有することが好ましく、製造コストの観点からは、パラジウム合金(例えばパラジウム-コバルト合金)を多く含有することが好ましい。カソード触媒層5は、触媒活性の観点から、白金または白金合金(例えば、白金-イリジウム合金や白金-ロジウム合金)を多く含むことが好ましい。これらの触媒の微粒子を導電性担体に担持した担持触媒を使用してもよい。導電性担体としては、活性炭や黒鉛などの粒子状のカーボン、または繊維状のカーボンが使用される。 The anode catalyst layer 2 and the cathode catalyst layer 5 are portions where a catalyst that mediates an electrode reaction is disposed, and contain a catalyst component. Examples of the catalyst component include single metals such as platinum group elements such as Pt, Ru, Rh, Ir, Os, and Pd, and alloys containing these platinum group elements. The catalyst components contained in the anode catalyst layer 2 and the cathode catalyst layer 5 may be the same or different, and the composition is not particularly limited. The anode catalyst layer 2 preferably contains a large amount of platinum, a platinum alloy, a palladium alloy, etc. from the viewpoint of catalytic activity, and contains a large amount of a palladium alloy (for example, a palladium-cobalt alloy) from the viewpoint of manufacturing cost. Is preferred. The cathode catalyst layer 5 preferably contains a large amount of platinum or a platinum alloy (for example, a platinum-iridium alloy or a platinum-rhodium alloy) from the viewpoint of catalytic activity. A supported catalyst in which fine particles of these catalysts are supported on a conductive carrier may be used. As the conductive carrier, particulate carbon such as activated carbon or graphite, or fibrous carbon is used.
 アノード触媒層2およびカソード触媒層5には、前記触媒成分とともに、プロトン伝導性を有する電解質を含有することができる。プロトン伝導性の電解質は、発電の進行に伴って、アノード触媒層から電解質膜へ、電解質膜からカソード触媒層へと移動するプロトンの移動度を向上させる。触媒層に含有されるプロトン伝導性の電解質としては、後述する電解質膜8を構成する高分子電解質と同種のものを使用することができる。 The anode catalyst layer 2 and the cathode catalyst layer 5 can contain an electrolyte having proton conductivity together with the catalyst component. The proton-conductive electrolyte improves the mobility of protons that move from the anode catalyst layer to the electrolyte membrane and from the electrolyte membrane to the cathode catalyst layer as power generation proceeds. As the proton conductive electrolyte contained in the catalyst layer, the same type as the polymer electrolyte constituting the electrolyte membrane 8 described later can be used.
 アノード触媒層2およびカソード触媒層5における前記触媒成分、導電性担体であるカーボン材料、およびプロトン伝導性の電解質の各配合割合については、特に限定されない。また、アノード触媒層2とカソード触媒層5は必ずしも1層である必要はなく、2層以上が積層された多層構造であってもよい。このとき、各層の間で、例えば触媒含有量やカーボン材料の種類を変化させてもよい。 There are no particular limitations on the blending ratios of the catalyst component in the anode catalyst layer 2 and the cathode catalyst layer 5, the carbon material that is the conductive carrier, and the proton conductive electrolyte. The anode catalyst layer 2 and the cathode catalyst layer 5 do not necessarily have to be one layer, and may have a multilayer structure in which two or more layers are laminated. At this time, for example, the catalyst content or the type of the carbon material may be changed between the layers.
 アノードガス拡散層3とカソードガス拡散層6は、MEA1に供給されたガス(アノード4では燃料ガスであるメタノール含有ガス、カソード7では酸素剤含有ガス、例えば空気)を拡散させて、触媒層へと供給する機能を有する。すなわち、アノードガス拡散層3は、アノード触媒層2に燃料ガスを均一に供給する機能を有する。また、アノード触媒層2の集電体としての機能も備えている。カソードガス拡散層6は、カソード触媒層5に酸化剤である空気を均一に供給する機能を有し、カソード触媒層5の集電体としての機能も備えている。 The anode gas diffusion layer 3 and the cathode gas diffusion layer 6 diffuse the gas supplied to the MEA 1 (a methanol-containing gas which is a fuel gas at the anode 4 and an oxygen-containing gas such as air at the cathode 7) to the catalyst layer. And has the function of supplying. That is, the anode gas diffusion layer 3 has a function of uniformly supplying the fuel gas to the anode catalyst layer 2. The anode catalyst layer 2 also has a function as a current collector. The cathode gas diffusion layer 6 has a function of uniformly supplying air as an oxidant to the cathode catalyst layer 5, and also has a function as a current collector of the cathode catalyst layer 5.
 アノードガス拡散層3とカソードガス拡散層6は、それぞれ導電性材料から構成されている。導電性材料としては公知の材料を用いることができる。燃料ガスおよび空気を触媒へ効率的に輸送するために、多孔質のカーボン織布またはカーボンペーパを用いることが好ましい。アノードガス拡散層3とカソードガス拡散層6の具体的な形態としては、カーボンペーパ、カーボンクロス、カーボン不織布、炭素製の織物、紙状抄紙体、フェルトなどが挙げられる。 The anode gas diffusion layer 3 and the cathode gas diffusion layer 6 are each made of a conductive material. A known material can be used as the conductive material. In order to efficiently transport the fuel gas and air to the catalyst, it is preferable to use a porous carbon woven fabric or carbon paper. Specific forms of the anode gas diffusion layer 3 and the cathode gas diffusion layer 6 include carbon paper, carbon cloth, carbon non-woven fabric, carbon woven fabric, paper-like paper body, felt and the like.
 プロトン伝導性の電解質膜8は、アノード触媒層2とカソード触媒層5との間に配置される。プロトン伝導性の電解質膜8としては、例えば、パーフルオロスルホン酸重合体のようなスルホン酸基を有するフッ素系樹脂(商品名ナフィオン(デュポン社製)、商品名フレミオン(旭硝子社製)など)、スルホン酸基を有する炭化水素系樹脂などが挙げられるが、これらに限定されるものではない。 The proton conductive electrolyte membrane 8 is disposed between the anode catalyst layer 2 and the cathode catalyst layer 5. Examples of the proton conductive electrolyte membrane 8 include a fluorine-based resin having a sulfonic acid group such as a perfluorosulfonic acid polymer (trade name Nafion (manufactured by DuPont), trade name Flemion (manufactured by Asahi Glass Co., Ltd.)), Examples thereof include, but are not limited to, hydrocarbon resins having a sulfonic acid group.
 このように構成されるMEA1のアノードガス拡散層3には、アノード導電層9が積層され、カソードガス拡散層6にはカソード導電層10が積層されている。アノード導電層9とカソード導電層10は、燃料や酸化剤(空気)などを流通させる貫通孔を有している。アノード導電層9とカソード導電層10の構成材料としては、例えば、金、ニッケルなどの導電性金属からなる多孔質膜(例えばメッシュ)または箔体、あるいはステンレス鋼(SUS)などの導電性金属に金などの良導電性金属を被覆した複合材などをそれぞれ使用することができる。また、グラファイト(黒鉛)等の炭素材料も使用することができる。 The anode conductive layer 9 is laminated on the anode gas diffusion layer 3 of the MEA 1 configured as described above, and the cathode conductive layer 10 is laminated on the cathode gas diffusion layer 6. The anode conductive layer 9 and the cathode conductive layer 10 have through holes through which fuel, oxidant (air), and the like circulate. Examples of the constituent material of the anode conductive layer 9 and the cathode conductive layer 10 include a porous film (for example, a mesh) or a foil body made of a conductive metal such as gold or nickel, or a conductive metal such as stainless steel (SUS). A composite material coated with a highly conductive metal such as gold can be used. Carbon materials such as graphite (graphite) can also be used.
 プロトン伝導性の電解質膜8とアノード導電層9との間であって、アノード4を構成するアノード触媒層2とアノードガス拡散層3の周囲には、例えば断面がO字状で平面形状が矩形枠状のシール材(Oリング)11が設けられている。また、プロトン伝導性の電解質膜8とカソード導電層10との間であって、カソード7を構成するカソード触媒層5とカソードガス拡散層6の周囲にも、同じ形状のシール材(Oリング)11が設けられている。これらのシール材11は、MEA1からの燃料漏れや酸化剤漏れを防止するためのものであり、例えばゴムなどの弾性体で構成されている。 Between the proton conductive electrolyte membrane 8 and the anode conductive layer 9 and around the anode catalyst layer 2 and the anode gas diffusion layer 3 constituting the anode 4, for example, the cross section is O-shaped and the planar shape is rectangular. A frame-shaped sealing material (O-ring) 11 is provided. Further, a sealing material (O-ring) having the same shape is disposed between the proton conductive electrolyte membrane 8 and the cathode conductive layer 10 and around the cathode catalyst layer 5 and the cathode gas diffusion layer 6 constituting the cathode 7. 11 is provided. These sealing materials 11 are for preventing fuel leakage and oxidant leakage from the MEA 1, and are made of an elastic body such as rubber.
 第1の実施形態においては、図2および図3A,図3Bにそれぞれ示すように、MEA1のアノード4側およびカソード7側において、シール材11と電極(アノード4またはカソード7)の周端部との間に、電極(アノード4またはカソード7)の主面の面積の0.2~1.3倍の底面積を有する空間部Sが設けられている。なお、電極あるいは電解質膜8の面積は、主面の面積を示すものとし、空間部Sの底面積は、前記電極の主面に平行な面方向の断面積を示すものとする。また、第1の実施形態では、アノード4側とカソード7側の両方に空間部Sが設けられた構造を示したが、どちらか一方の側だけに空間部Sを設けてもよい。 In the first embodiment, as shown in FIGS. 2, 3A, and 3B, on the anode 4 side and the cathode 7 side of the MEA 1, the sealing material 11 and the peripheral end of the electrode (the anode 4 or the cathode 7) A space S having a bottom area of 0.2 to 1.3 times the area of the main surface of the electrode (anode 4 or cathode 7) is provided between them. The area of the electrode or the electrolyte membrane 8 indicates the area of the main surface, and the bottom area of the space S indicates the cross-sectional area in the plane direction parallel to the main surface of the electrode. Further, in the first embodiment, the structure in which the space portion S is provided on both the anode 4 side and the cathode 7 side is shown, but the space portion S may be provided only on one side.
 そして、空間部Sのアノード4側とカソード7側を分けるように、耐燃料性(例えば、耐メタノール性)の有機フィルム(図示を省略する。)を設けることができる。このような構造では、アノード4側の空間部Sは、前記有機フィルムとシール材11およびアノード4の端面に三方を囲まれる空間となる。また、カソード7側の空間部Sは、前記有機フィルムとシール材11およびカソード7の端面に三方を囲まれる空間となる。 Further, a fuel-resistant (for example, methanol-resistant) organic film (not shown) can be provided so as to separate the anode 4 side and the cathode 7 side of the space S. In such a structure, the space S on the anode 4 side is a space surrounded on three sides by the organic film, the sealing material 11 and the end face of the anode 4. The space S on the cathode 7 side is a space surrounded on three sides by the organic film, the sealing material 11 and the end face of the cathode 7.
 第1の実施形態では、プロトン伝導性の電解質膜8の面積を大きくし、電解質膜8の周端部がシール材11に達するように構成されている。この構成では、アノード4側とカソード7側を分ける前記有機フィルムを配置する必要がない。また、電解質膜8の面積を大きくした部分には触媒層が積層されていないので、この領域は保水に関与することが可能になる。そのため、カソード7側からアノード4側に戻る(拡散する)水の量を増やすことができ、より高い出力を得ることができる。 In the first embodiment, the area of the proton conductive electrolyte membrane 8 is increased, and the peripheral end portion of the electrolyte membrane 8 reaches the seal material 11. In this configuration, it is not necessary to arrange the organic film that separates the anode 4 side and the cathode 7 side. Moreover, since the catalyst layer is not laminated in the portion where the area of the electrolyte membrane 8 is increased, this region can participate in water retention. Therefore, the amount of water returning (diffusing) from the cathode 7 side to the anode 4 side can be increased, and a higher output can be obtained.
 このように、MEA1のアノード4側とカソード7側の少なくとも一方に空間部Sを設けることで、燃料のアノード4への取り入れ口、あるいは酸化剤である空気のカソード7への取り入れ口を広げることができ、反応物質のMEA1への供給量を増大させることができる。その結果、単位触媒量当りの出力を上げることができる。空間部Sの底面積が電極(アノード4またはカソード7)の面積の0.2倍未満である場合には、反応物質の供給量を十分に増大させることができない。また、空間部Sの底面積11が電極面積の1.3倍を超える場合には、燃料電池の体積全体に対する発電部である電極の占める体積が小さくなりすぎるため、燃料供給や発熱のバランスがとりにくい。いずれの場合も高出力を得ることが難しい。 Thus, by providing the space S on at least one of the anode 4 side and the cathode 7 side of the MEA 1, the intake port of the fuel to the anode 4 or the intake port of air as an oxidizer to the cathode 7 is expanded. And the supply amount of the reactant to the MEA 1 can be increased. As a result, the output per unit catalyst amount can be increased. When the bottom area of the space S is less than 0.2 times the area of the electrode (anode 4 or cathode 7), the amount of reactant supplied cannot be increased sufficiently. In addition, when the bottom area 11 of the space S exceeds 1.3 times the electrode area, the volume occupied by the electrode serving as the power generation unit with respect to the entire volume of the fuel cell becomes too small, so that the balance between fuel supply and heat generation is reduced. It is hard to take. In either case, it is difficult to obtain a high output.
 このように構成されるMEA1のカソード導電層10の上には、保湿層12が積層されて配置されている。保湿層12は、アノード4での反応に必要な水を供給するために、カソード触媒層5で生成した水の蒸散を抑制し、生成した水の一部をアノード4側へ拡散させる機能を有する。また、カソードガス拡散層6に酸化剤である空気を均一に導入し、カソード触媒層5への空気の均一な拡散を促進する補助拡散層としての機能も有している。保湿層12としては、例えば多孔質ポリエチレン膜などを使用することができる。 A moisturizing layer 12 is laminated and disposed on the cathode conductive layer 10 of the MEA 1 configured as described above. The moisturizing layer 12 has a function of suppressing transpiration of water generated in the cathode catalyst layer 5 and diffusing part of the generated water to the anode 4 side in order to supply water necessary for the reaction at the anode 4. . The cathode gas diffusion layer 6 also functions as an auxiliary diffusion layer that uniformly introduces air as an oxidant and promotes uniform diffusion of air into the cathode catalyst layer 5. As the moisture retaining layer 12, for example, a porous polyethylene film can be used.
 保湿層12の上には、酸化剤である空気を取り入れるための空気導入口13aが複数個形成された表面カバー(カバープレート)13が配置されている。表面カバー13は、MEA1や保湿層12を加圧し密着性を高める役割も果たしており、例えばSUS304のような金属から構成されている。 On the moisturizing layer 12, a surface cover (cover plate) 13 having a plurality of air inlets 13a for taking in air as an oxidant is disposed. The front cover 13 also plays a role of increasing the adhesion by pressurizing the MEA 1 and the moisture retaining layer 12 and is made of a metal such as SUS304.
 表面カバー13の表面や側面あるいはその近傍には、表面カバー13から外気への放熱を促進するために放熱体(図示を省略する。)を設けても良い。放熱体の構成材料としては、ステンレス、銅、アルミニウム、タングステン、モリブデン等の金属またはこれら金属の合金や、アルミナ、窒化アルミニウム、陶磁器、ガラス等のセラミック類を使用することができる。また、樹脂に炭素や金属等の粉末を混合した熱伝導性樹脂も使用することができる。 A heat radiator (not shown) may be provided on the surface, side surface, or the vicinity of the surface cover 13 in order to promote heat radiation from the surface cover 13 to the outside air. As a constituent material of the radiator, metals such as stainless steel, copper, aluminum, tungsten, and molybdenum, alloys of these metals, and ceramics such as alumina, aluminum nitride, ceramics, and glass can be used. A heat conductive resin in which a powder of carbon, metal, or the like is mixed with a resin can also be used.
 放熱体の構成材料としては、熱伝導率が高いうえに薄くても強度が高いという点から、金属が最も望ましい。熱伝導率の高さの点で、銅(20℃における熱伝導率が370W/mK)、アルミニウム(20℃における熱伝導率が204W/mK)、タングステン(20℃における熱伝導率198W/mK)が特に好ましい。さらに、表面にアルマイト処理(陽極酸化処理)が施されたアルミニウムの使用が好ましく、特に、外気への熱放射率を上げるために、表面に黒色アルマイト処理がなされたアルミニウムを使用することが好ましい。 As a constituent material of the heat dissipation body, metal is most desirable because it has high thermal conductivity and is thin but has high strength. In terms of high thermal conductivity, copper (thermal conductivity at 20 ° C. is 370 W / mK), aluminum (thermal conductivity at 20 ° C. is 204 W / mK), tungsten (thermal conductivity at 20 ° C. is 198 W / mK) Is particularly preferred. Furthermore, it is preferable to use aluminum whose surface is anodized (anodized), and in particular, it is preferable to use aluminum whose surface is black anodized in order to increase the heat emissivity to the outside air.
 放熱体は、表面カバー13と一体に製造してもよく、また別に製造された放熱部材を、溶接やボルト、リベット、カシメ、はんだ付け、ろう付け、接着、嵌合などの手段で表面カバー13に固定してもよい。さらに、表面カバー13と放熱体とは必ずしも固定されていなくてもよく、熱伝導が十分に行なわれるならば単に接触しているだけでもよい。表面カバー13と放熱体との間に、熱伝導性グリースを塗布したり、あるいは熱伝導性接着剤で固定したりすることもできる。 The heat radiating body may be manufactured integrally with the surface cover 13, or a separately manufactured heat radiating member may be manufactured by means such as welding, bolts, rivets, caulking, soldering, brazing, bonding, and fitting. It may be fixed to. Furthermore, the surface cover 13 and the heat radiating body do not necessarily have to be fixed, and may be simply in contact if heat conduction is sufficiently performed. A heat conductive grease can be applied between the surface cover 13 and the heat radiating body, or can be fixed with a heat conductive adhesive.
 MEA1のアノード4側には、燃料供給機構14が配置されている。燃料供給機構14は、燃料収容部15と燃料供給部16と燃料分配層17、および配管などの流路18を備えている。 A fuel supply mechanism 14 is disposed on the anode 4 side of the MEA 1. The fuel supply mechanism 14 includes a fuel storage unit 15, a fuel supply unit 16, a fuel distribution layer 17, and a flow path 18 such as a pipe.
 燃料収容部15には液体燃料Fが収容されている。液体燃料Fとしては、メタノール水溶液または純メタノールが好適なものとして挙げられる。メタノール濃度が50mol%以上のものが好適に用いられるが、必ずしも限定されない。液体燃料Fは、例えば、エタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、その他の液体燃料であってもよい。 Liquid fuel F is stored in the fuel storage unit 15. As the liquid fuel F, a methanol aqueous solution or pure methanol is preferable. A methanol concentration of 50 mol% or more is preferably used, but is not necessarily limited. The liquid fuel F may be, for example, an ethanol fuel such as an ethanol aqueous solution or pure ethanol, a propanol fuel such as a propanol aqueous solution or pure propanol, a glycol fuel such as a glycol aqueous solution or pure glycol, dimethyl ether, formic acid, or other liquid fuel. .
 燃料供給部16は、配管などで構成される流路18を介して燃料収容部15と接続されており、燃料収容部15から流路18を介して燃料供給部16に液体燃料Fが導入される。流路18は、燃料供給部16や燃料収容部15から独立した配管に限られるものではない。例えば、燃料供給部16と燃料収容部15とを積層して一体化した構成において、それらを繋ぐ液体燃料Fの流路であってもよい。 The fuel supply unit 16 is connected to the fuel storage unit 15 via a flow path 18 composed of piping or the like, and the liquid fuel F is introduced from the fuel storage unit 15 to the fuel supply unit 16 via the flow path 18. The The flow path 18 is not limited to piping independent from the fuel supply unit 16 and the fuel storage unit 15. For example, in the configuration in which the fuel supply unit 16 and the fuel storage unit 15 are stacked and integrated, the flow path of the liquid fuel F that connects them may be used.
 燃料供給部16は、液体燃料Fが流入する燃料注入口16aを有している。燃料供給部16のアノード導電層9に接する側に、複数の燃料排出口17aを有する燃料分配層17が配置されている。 The fuel supply unit 16 has a fuel inlet 16a into which the liquid fuel F flows. A fuel distribution layer 17 having a plurality of fuel discharge ports 17 a is disposed on the side of the fuel supply unit 16 that contacts the anode conductive layer 9.
 燃料収容部15に収容された液体燃料Fは、重力を利用し流路18を介して燃料供給部16まで落下させて送液することができる。また、流路18に多孔体等を充填して、毛細管現象により燃料供給部16まで送液してもよい。さらに、流路18の一部にポンプを介挿し、燃料収容部15に収容された液体燃料Fを燃料供給部16まで強制的に送液してもよい。 The liquid fuel F stored in the fuel storage unit 15 can be dropped and sent to the fuel supply unit 16 via the flow path 18 using gravity. Alternatively, the flow path 18 may be filled with a porous body or the like and fed to the fuel supply unit 16 by capillary action. Furthermore, a pump may be inserted into a part of the flow path 18 to forcibly send the liquid fuel F stored in the fuel storage unit 15 to the fuel supply unit 16.
 燃料分配層17は、アノード導電層9と燃料供給部16との間に挟持されている。燃料分配層17は、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート(PEN)樹脂、ポリイミド系樹脂のような、液体燃料Fやその気化成分を透過させない材料で構成されており、複数の開口(燃料排出口17a)を有する。また、この燃料分配層17は、液体燃料Fとその気化成分とを分離し、液体燃料Fの気化成分のみをMEA1側へ透過させる機能を有する気液分離膜で構成されてもよい。気液分離膜としては、例えば、シリコーンゴム薄膜、低密度ポリエチレン(LDPE)薄膜、ポリ塩化ビニル(PVC)薄膜、ポリエチレンテレフタレート(PET)薄膜、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素系樹脂の微多孔膜などが用いられる。 The fuel distribution layer 17 is sandwiched between the anode conductive layer 9 and the fuel supply unit 16. The fuel distribution layer 17 is made of a material that does not allow the liquid fuel F and its vaporized components to permeate, such as polyethylene terephthalate (PET) resin, polyethylene naphthalate (PEN) resin, and polyimide resin, and has a plurality of openings. (Fuel discharge port 17a). Further, the fuel distribution layer 17 may be formed of a gas-liquid separation membrane having a function of separating the liquid fuel F and its vaporized component and allowing only the vaporized component of the liquid fuel F to permeate to the MEA 1 side. Examples of gas-liquid separation membranes include silicone rubber thin films, low density polyethylene (LDPE) thin films, polyvinyl chloride (PVC) thin films, polyethylene terephthalate (PET) thin films, polytetrafluoroethylene (PTFE), tetrafluoroethylene perfluoro. A microporous film of a fluororesin such as an alkyl vinyl ether copolymer (PFA) is used.
 このように構成される第1の実施形態の燃料電池においては、MEA1のアノード4側とカソード7側の少なくとも一方において、シール材11と電極であるアノード4またはカソード7の周端部との間に、電極であるアノード4またはカソード7の面積の0.2~1.3倍の底面積を有する空間部Sが設けられている。そして、この空間部Sの形成により、酸化剤である空気のカソード7への取り入れ口、あるいは燃料のアノード4への取り入れ口が広げられているので、反応物質である空気や燃料のMEA1への供給量が増大される。したがって、燃料電池の出力を向上させることができ、また長期に亘って高出力を維持することができる。 In the fuel cell of the first embodiment configured as described above, between at least one of the anode 4 side and the cathode 7 side of the MEA 1 and between the sealing material 11 and the peripheral end of the anode 4 or the cathode 7 as an electrode. Further, a space S having a bottom area 0.2 to 1.3 times the area of the anode 4 or the cathode 7 which is an electrode is provided. The formation of the space S widens the intake of air, which is an oxidizer, into the cathode 7 or the intake of fuel, into the anode 4, so that the air and fuel as reactants into the MEA 1 are expanded. The supply amount is increased. Therefore, the output of the fuel cell can be improved and a high output can be maintained over a long period of time.
 次に、本発明の燃料電池の第2および第3の実施形態について説明する。図4は、第2の実施形態の燃料電池におけるMEA1の構成を示す断面図である。また、図5は、第3の実施形態の燃料電池におけるMEA1の構成を示す断面図であり、図6はMEA1のカソード側平面図を示している。なお、第2および第3の実施形態の燃料電池は、これらの図に示すMEA1の他に、アノード導電層とカソード導電層、保湿層、表面カバー、燃料供給部、燃料収容部などの要素を具備している。各要素の具体的な構成は、前述した第1の実施形態の燃料電池と同様である。 Next, the second and third embodiments of the fuel cell of the present invention will be described. FIG. 4 is a cross-sectional view showing the configuration of the MEA 1 in the fuel cell according to the second embodiment. FIG. 5 is a cross-sectional view showing the configuration of the MEA 1 in the fuel cell according to the third embodiment, and FIG. 6 is a plan view of the cathode side of the MEA 1. In addition to the MEA 1 shown in these drawings, the fuel cells of the second and third embodiments include elements such as an anode conductive layer and a cathode conductive layer, a moisture retention layer, a surface cover, a fuel supply unit, and a fuel storage unit. It has. The specific configuration of each element is the same as that of the fuel cell of the first embodiment described above.
 第2の実施形態においては、図4に示すように、プロトン伝導性の電解質膜8のアノード4側とカソード7側の少なくとも一方の側の面で、電極(アノード4またはカソード7)が積層されていない領域、すなわち電極の周端部とシール材11との間の空間部Sに対応する領域に、燃料透過性のない有機フィルム19が貼付されている。なお、図4では、電解質膜8のアノード4側の面だけに有機フィルム19が貼付された構成を示したが、カソード7側の面に貼付してもよく、また両面に貼付してもよい。燃料透過性のない有機フィルム19としては、100℃までの耐熱性と耐燃料性を有する有機フィルムが挙げられ、具体的には、粘着層を有するポリイミド樹脂テープやテフロン(登録商標)テープ等が例示される。このような有機フィルム19は、電解質膜8に熱圧着されていてもよい。 In the second embodiment, as shown in FIG. 4, an electrode (anode 4 or cathode 7) is laminated on at least one of the anode 4 side and the cathode 7 side of the proton conductive electrolyte membrane 8. A non-fuel permeable organic film 19 is affixed to a region not corresponding to the space portion S between the peripheral edge of the electrode and the sealing material 11. 4 shows a configuration in which the organic film 19 is attached only to the surface of the electrolyte membrane 8 on the anode 4 side, it may be attached to the surface on the cathode 7 side, or may be attached to both surfaces. . Examples of the organic film 19 having no fuel permeability include an organic film having heat resistance up to 100 ° C. and fuel resistance, and specifically, a polyimide resin tape or a Teflon (registered trademark) tape having an adhesive layer. Illustrated. Such an organic film 19 may be thermocompression bonded to the electrolyte membrane 8.
 このように構成される第2の実施形態の燃料電池においては、アノード4側からカソード7側への燃料のクロスオーバーが抑制されるので、出力電圧が向上する。有機フィルム19の大きさは、電解質膜8におけるシール材11の配設位置までの露出された領域全体を覆う大きさとすることが好ましい。電解質膜8に積層される有機フィルム19が小さすぎると、有機フィルム19の周縁部とシール材11との間に挟まれた領域の電解質膜8が、膨張・収縮による応力で裂けるおそれがある。また、特にアノード4側に積層して燃料のクロスオーバーを抑制するためには、有機フィルム19を貼付するのではなく、電極の周端部とシール材11との間の電解質膜8上に、触媒層そのものを塗布してもよい。 In the fuel cell of the second embodiment configured as described above, the fuel crossover from the anode 4 side to the cathode 7 side is suppressed, so that the output voltage is improved. The size of the organic film 19 is preferably set to a size that covers the entire exposed region of the electrolyte membrane 8 up to the position where the sealing material 11 is disposed. If the organic film 19 laminated on the electrolyte membrane 8 is too small, the electrolyte membrane 8 in a region sandwiched between the peripheral portion of the organic film 19 and the sealing material 11 may be torn due to stress due to expansion / contraction. Further, in order to suppress the fuel crossover by laminating particularly on the anode 4 side, the organic film 19 is not attached, but on the electrolyte membrane 8 between the peripheral edge of the electrode and the sealing material 11, The catalyst layer itself may be applied.
 第3の実施形態においては、図5および図6に示すように、プロトン伝導性の電解質膜8が貫通されたガス抜き孔20を有している。このガス抜き孔20は、発電反応に伴ってアノード4側に発生するガス成分をカソード7側に逃がすためのものであり、電解質膜8のアノード4またはカソード7が積層された領域の周端部と、シール部材11が配設された部位との間、すなわち電極の周端部とシール材11との間の空間部Sに対応する領域に、1個あるいは複数個設けられている。そして、このガス抜き孔20の位置における飽和水蒸気圧と、電解質膜8のカソード7側で飽和水蒸気圧が最も高い(すなわち温度が最も高い)位置における飽和水蒸気圧との比が、0.8以下となっている。また、ガス抜き孔20の位置における飽和燃料蒸気圧(例えば飽和メタノール蒸気圧)と、電解質膜8のカソード7側で飽和燃料蒸気圧が最も高い位置における飽和燃料蒸気圧との比も、0.8以下となっている。なお、電解質膜8がシール材11に達する面積を持たず、耐燃料性の有機フィルムを電解質膜8の周端部から外側に延出するように配置した構成では、この耐燃料性の有機フィルムに貫通孔であるガス抜き孔を設けてもよい。 In the third embodiment, as shown in FIGS. 5 and 6, a gas vent hole 20 through which the proton conductive electrolyte membrane 8 is penetrated is provided. The gas vent hole 20 is for releasing a gas component generated on the anode 4 side to the cathode 7 side in response to the power generation reaction, and is a peripheral end portion of a region where the anode 4 or the cathode 7 of the electrolyte membrane 8 is laminated. And a portion corresponding to the space portion S between the peripheral end portion of the electrode and the sealing material 11 are provided in one or a plurality. The ratio of the saturated water vapor pressure at the position of the vent hole 20 to the saturated water vapor pressure at the position where the saturated water vapor pressure is highest (that is, the temperature is highest) on the cathode 7 side of the electrolyte membrane 8 is 0.8 or less. It has become. The ratio of the saturated fuel vapor pressure at the position of the vent hole 20 (for example, saturated methanol vapor pressure) to the saturated fuel vapor pressure at the position where the saturated fuel vapor pressure is highest on the cathode 7 side of the electrolyte membrane 8 is also 0. It is 8 or less. In the configuration in which the electrolyte membrane 8 does not have an area reaching the sealing material 11 and the fuel-resistant organic film is arranged so as to extend outward from the peripheral end portion of the electrolyte membrane 8, this fuel-resistant organic film. A gas vent hole which is a through hole may be provided in the base plate.
 このように構成される第3の実施形態においては、電解質膜8に形成されたガス抜き孔20を通って、発電反応でアノード4側に発生した二酸化炭素や水蒸気等のガス成分がカソード7側へ放出され、さらに系外に効率よく放出される。したがって、電極反応を促進して出力を向上させることができ、さらに発電の効率や経時的な安定性を向上させることができる。また、アノード4側で発生する二酸化炭素等のガス成分が、アノード4側でシール材11との間の空間部Sに溜まることがないので、アノード4側の圧力増大によって電極周りの電解質膜8に応力がかかり断裂が生じる、などの問題の発生を防止することができる。 In the third embodiment configured as described above, gas components such as carbon dioxide and water vapor generated on the anode 4 side by the power generation reaction through the gas vent hole 20 formed in the electrolyte membrane 8 are on the cathode 7 side. And then efficiently released out of the system. Accordingly, the electrode reaction can be promoted to improve the output, and the power generation efficiency and the stability over time can be improved. Further, since gas components such as carbon dioxide generated on the anode 4 side do not accumulate in the space S between the anode 4 and the sealing material 11, the electrolyte membrane 8 around the electrode is increased by increasing the pressure on the anode 4 side. It is possible to prevent the occurrence of problems such as tearing due to stress.
 電解質膜8のガス抜き孔20は、最も近接した電極(アノード4またはカソード7)の周端部との距離が3mm以上となるような位置に形成することが望ましい。このように、ガス抜き孔20を電極から所定の長さ以上離して配置することにより、アノード4側のシール材11との間の空間部Sでガス成分の流れを作ることができる。そのため、電極反応に供される物質や生成する物質の拡散が容易になるという利点がある。 The vent hole 20 of the electrolyte membrane 8 is preferably formed at a position where the distance from the peripheral end of the closest electrode (the anode 4 or the cathode 7) is 3 mm or more. As described above, by arranging the gas vent hole 20 apart from the electrode by a predetermined length or more, a gas component flow can be created in the space S between the anode 4 and the sealing material 11. Therefore, there is an advantage that diffusion of a substance used for an electrode reaction or a substance to be generated becomes easy.
 さらに、アノード4側のガス成分の電池外への放出を阻害しないように、図7に示すように、表面カバー13において、電解質膜8のガス抜き孔20に相当する位置にガス抜き用の開孔13bを形成することができる。そして、このようなガス抜き用開孔13bに近接するように、表面カバー13の上にアルミニウム製の放熱板21を配置することができる。このような構成では、電解質膜8のガス抜き孔20から外部へと熱放出性の大きい経路が形成されるので、ガス抜き孔20からの熱放出が効果的になされる。したがって、ガス抜き孔20の位置における飽和水蒸気圧が大幅に減少する結果、カソード7側で飽和水蒸気圧が最も高い位置における飽和水蒸気圧との比を0.8以下に調整することができる。また、飽和燃料蒸気圧についても、飽和水蒸気圧と同様なことがいえる。 Further, as shown in FIG. 7, in order to prevent the gas component on the anode 4 side from being released outside the battery, as shown in FIG. 7, in the surface cover 13, an opening for degassing is provided at a position corresponding to the degassing hole 20 of the electrolyte membrane 8. The hole 13b can be formed. And the heat sink 21 made from aluminum can be arrange | positioned on the surface cover 13 so that it may adjoin to such an opening 13b for venting. In such a configuration, since a path with a large heat release property is formed from the gas vent hole 20 of the electrolyte membrane 8 to the outside, the heat release from the gas vent hole 20 is effectively performed. Therefore, the saturated water vapor pressure at the position of the gas vent hole 20 is greatly reduced, and as a result, the ratio of the saturated water vapor pressure at the position where the saturated water vapor pressure is highest on the cathode 7 side can be adjusted to 0.8 or less. The same can be said for the saturated fuel vapor pressure.
 次に、本発明の第4~第7の実施形態について図面を参照して説明する。図8~図11は、本発明の第4~第7の実施形態におけるMEA1の構成を示している。なお、第4~第7の実施形態の燃料電池は、これらの図に示すMEA1の他に、アノード導電層とカソード導電層、保湿層、表面カバー、燃料供給部、燃料収容部などの要素を具備している。各要素の具体的な構成は、前述した第1の実施形態の燃料電池と同様である。 Next, fourth to seventh embodiments of the present invention will be described with reference to the drawings. 8 to 11 show the configuration of the MEA 1 in the fourth to seventh embodiments of the present invention. In addition to the MEA 1 shown in these drawings, the fuel cells of the fourth to seventh embodiments include elements such as an anode conductive layer and a cathode conductive layer, a moisture retention layer, a surface cover, a fuel supply unit, and a fuel storage unit. It has. The specific configuration of each element is the same as that of the fuel cell of the first embodiment described above.
 図8に示す第4の実施形態においては、電解質膜8のアノード4側とカソード7側の少なくとも一方の側の面に、電極(アノード4またはカソード7)の周端部とシール材11との間の空間部Sを埋めるように、耐燃料性の高い絶縁性樹脂から成るスペーサ22が配置されている。特に、図示したように、アノード4側にスペーサ22を配置することが好ましい。耐燃料性の高い絶縁性樹脂としては、テフロン(登録商標)のようなフッ素系樹脂が挙げられる。空間部Sに挿入・配置されるスペーサ22は、空間部Sを隙間なく埋めている必要はなく、平面形状、厚さ等において、空間部Sに対して0.5~2.0mm程度のクリアランスがあってもよい。 In the fourth embodiment shown in FIG. 8, on the surface of at least one of the anode 4 side and the cathode 7 side of the electrolyte membrane 8, the peripheral end portion of the electrode (the anode 4 or the cathode 7) and the sealing material 11 are provided. A spacer 22 made of an insulating resin having high fuel resistance is disposed so as to fill the space S therebetween. In particular, as illustrated, it is preferable to dispose the spacer 22 on the anode 4 side. As an insulating resin having high fuel resistance, a fluorine-based resin such as Teflon (registered trademark) can be given. The spacer 22 inserted and arranged in the space portion S does not need to fill the space portion S without any gap, and has a clearance of about 0.5 to 2.0 mm with respect to the space portion S in the planar shape, thickness, etc. There may be.
 触媒層が塗布されていない電解質膜8が、液体、気体を問わず高濃度の燃料と接触した場合には、電解質膜8が膨潤してMEA1の構造が破壊されるおそれがある。第4の実施形態においては、空間部Sにスペーサ22が挿入・配置されているので、空間部Sの内圧の変化などにより電解質膜8が変形して燃料供給部に接触する、などの事態が生じることがなくなる。したがって、電池の出力特性を安定化させることができる。 When the electrolyte membrane 8 to which the catalyst layer is not applied comes into contact with a high concentration fuel regardless of liquid or gas, the electrolyte membrane 8 may swell and the structure of the MEA 1 may be destroyed. In the fourth embodiment, since the spacer 22 is inserted and arranged in the space portion S, the electrolyte membrane 8 is deformed due to a change in the internal pressure of the space portion S, etc., and contacts the fuel supply portion. No longer occurs. Therefore, the output characteristics of the battery can be stabilized.
 第5の実施形態においては、図9に示すように、電解質膜8の電極(アノード4またはカソード7)が積層された領域とシール部材11が配設された部位との間に、ガス抜き孔20が形成されている。また、第4の実施形態と同様に、電解質膜8のアノード4側の面にスペーサ22が配置されている。そしてこのスペーサ22に、アノード4の周端部とガス抜き孔20とを連通させるように溝22aが形成されている。 In the fifth embodiment, as shown in FIG. 9, a gas vent hole is provided between a region where the electrode (anode 4 or cathode 7) of the electrolyte membrane 8 is laminated and a portion where the seal member 11 is disposed. 20 is formed. Similarly to the fourth embodiment, the spacer 22 is disposed on the surface of the electrolyte membrane 8 on the anode 4 side. A groove 22 a is formed in the spacer 22 so as to communicate the peripheral end portion of the anode 4 and the gas vent hole 20.
 このように構成される第5の実施形態の燃料電池においては、MEA1のアノード4側に発生した二酸化炭素や水蒸気等のガス成分が、スペーサ22に形成された溝22aに導かれてガス抜き孔20に達し、さらにこのガス抜き孔20を通ってカソード7側に放出される。したがって、アノード4側からカソード7側へのガスの放出が速やかになされるので、電極反応が促進され出力が向上する。 In the fuel cell of the fifth embodiment configured as described above, gas components such as carbon dioxide and water vapor generated on the anode 4 side of the MEA 1 are guided to the groove 22a formed in the spacer 22 and are vented. 20 and further discharged through the vent hole 20 to the cathode 7 side. Accordingly, since the gas is rapidly released from the anode 4 side to the cathode 7 side, the electrode reaction is promoted and the output is improved.
 第6の実施形態においては、図10A,図10Bにそれぞれ示すように、電極(アノード4およびカソード7)の平面形状が凹部を有する多角形となっており、同じ面積の正方形の1.2~5倍の周囲長を有するように構成されている。なお、図10A,図10Bにおいて、( )内の数値は、電極(アノード4およびカソード7)の各部分の長さ(cm)を例示したものである。 In the sixth embodiment, as shown in FIGS. 10A and 10B, the planar shape of the electrodes (anode 4 and cathode 7) is a polygon having a recess, It is configured to have a perimeter of 5 times. In FIGS. 10A and 10B, the numerical values in parentheses indicate the length (cm) of each part of the electrodes (anode 4 and cathode 7).
 このように構成される第6の実施形態の燃料電池においては、電極(アノード4およびカソード7)が凹部を持つ多角形の平面形状を有しているので、凹部のない矩形の電極を有する燃料電池に比べて、反応物質である空気や燃料のMEA1の供給量をさらに増大させることができ、出力をよりいっそう向上させることができる。特に、電極を同じ面積の正方形の1.2~5倍の周囲長を有する平面形状とした場合には、電極構造がダメージを受けるおそれがないうえに、反応物質や反応生成物の拡散が高められ、出力を向上させることができる。すなわち、第1の実施形態の燃料電池では、電極(アノード4またはカソード7)の周りに空間部Sがあることによって、反応物質の供給量が増大するが、電極が凹部を持たない矩形の平面形状を有し、その周囲長が同じ面積の正方形の1.2倍以下の場合には、電極周囲の空間部Sに拡散した燃料が一時的に電極のエッジ部分に集中し、濃度が高くなりすぎることがある。そのため、燃料を有効に消費することができず、電極構造がダメージを受けるおそれがある。また、電極が凹部を持つ多角形の平面形状を有していても、凹部の数が多すぎたり幅が狭すぎたりして、電極の周囲長が同じ面積の正方形の5倍以上になると、電極幅が極端に細い部分や幅の狭い空間部Sが存在することになり、反応物質や反応生成物の拡散が妨げられる。 In the fuel cell of the sixth embodiment configured as described above, since the electrodes (anode 4 and cathode 7) have a polygonal planar shape having a recess, the fuel having a rectangular electrode without a recess. Compared with the battery, the supply amount of the reactant MEA1 or air can be further increased, and the output can be further improved. In particular, when the electrode has a planar shape having a perimeter that is 1.2 to 5 times the square of the same area, the electrode structure is not likely to be damaged and the diffusion of reactants and reaction products is enhanced. Output can be improved. In other words, in the fuel cell according to the first embodiment, the space S around the electrode (anode 4 or cathode 7) increases the amount of reactant supplied, but the electrode has a rectangular flat surface with no recess. If it has a shape and its perimeter is less than 1.2 times the square of the same area, the fuel diffused in the space S around the electrode will temporarily concentrate on the edge of the electrode and the concentration will increase It may be too much. Therefore, fuel cannot be consumed effectively, and the electrode structure may be damaged. In addition, even if the electrode has a polygonal planar shape with recesses, if the number of recesses is too large or the width is too narrow, the perimeter of the electrode is more than 5 times the square of the same area, A portion having an extremely narrow electrode width or a space portion S having a narrow width is present, and diffusion of reactants and reaction products is hindered.
 第7の実施形態の燃料電池においては、アノード4および/またはカソード7の外周端面(側周面)が、150~200℃の温度で加熱処理されている。 In the fuel cell of the seventh embodiment, the outer peripheral end surface (side peripheral surface) of the anode 4 and / or the cathode 7 is heat-treated at a temperature of 150 to 200 ° C.
 この第7の実施形態の燃料電池においては、反応物質である空気や燃料のMEA1への供給量をさらに増大させることができ、出力をよりいっそう向上させることができる。すなわち、電極(アノード4またはカソード7)周りの空間部Sに拡散された反応物質は、電極の外周から燃料として供給されるため、電極のエッジ部分でのメタノール等の燃料濃度が高くなる。そのため、電極中にプロトンパスとして含まれている有機高分子電解質を溶解し、あるいは電極構造を破壊するおそれがある。アノード4および/またはカソード7の外周端面に150~200℃の温度で加熱処理を施すことにより、前記した電極のエッジ部分を強化し、濃度の高い燃料による有機高分子電解質の溶解、あるいは電極構造の破壊を防止することができる。温度が150℃より低いと、有機高分子電解質の強化が不十分であり、200℃以上の温度で処理すると、処理により構造変化が起こりプロトンパスとしての機能が低下するおそれがある。 In the fuel cell of the seventh embodiment, the supply amount of the reactant air or fuel to the MEA 1 can be further increased, and the output can be further improved. That is, since the reactant diffused in the space S around the electrode (the anode 4 or the cathode 7) is supplied as fuel from the outer periphery of the electrode, the concentration of fuel such as methanol at the edge portion of the electrode increases. Therefore, there is a possibility that the organic polymer electrolyte contained as a proton path in the electrode is dissolved or the electrode structure is destroyed. By heating the outer peripheral end face of the anode 4 and / or the cathode 7 at a temperature of 150 to 200 ° C., the edge portion of the electrode is strengthened, and the organic polymer electrolyte is dissolved by the high-concentration fuel, or the electrode structure Can be prevented. When the temperature is lower than 150 ° C., the organic polymer electrolyte is not sufficiently strengthened. When the treatment is performed at a temperature of 200 ° C. or more, the structure may change due to the treatment and the function as a proton path may be reduced.
 上述した各実施形態の燃料電池は、各種の液体燃料を使用した場合に効果を発揮し、液体燃料の種類や濃度は限定されるものではない。さらに、上述した各実施形態は、燃料電池本体の構成としてパッシブ型の燃料電池を例に挙げて説明したが、燃料供給など一部にポンプなどを用いたセミパッシブ型の燃料電池に対しても本発明を適用することができる。セミパッシブ型の燃料電池は、燃料収容部からMEAに供給された燃料は発電反応に使用され、その後に循環して燃料収容部に戻されることはない。セミパッシブ型の燃料電池は、燃料を循環しないことから、従来のアクティブ方式とは異なるものであり、装置の小型化などを損なうものではない。また、燃料の供給にポンプを使用しており、従来の内部気化型のような純パッシブ方式とも異なるため、セミパッシブ方式の燃料電池と呼称される。 The fuel cell of each embodiment described above is effective when various liquid fuels are used, and the type and concentration of the liquid fuel are not limited. Furthermore, although each embodiment mentioned above gave and demonstrated the passive type fuel cell as an example as a structure of a fuel cell main body, it is also applied to the semi-passive type fuel cell which used a pump etc. for some parts, such as fuel supply. The present invention can be applied. In the semi-passive type fuel cell, the fuel supplied from the fuel storage unit to the MEA is used for a power generation reaction and is not circulated thereafter and returned to the fuel storage unit. Since the semi-passive type fuel cell does not circulate the fuel, it is different from the conventional active method and does not impair the downsizing of the apparatus. In addition, since a pump is used for supplying fuel and it is different from a pure passive method such as a conventional internal vaporization type, it is called a semi-passive fuel cell.
 次に、本発明の燃料電池の具体例およびその評価結果について記載する。なお、本発明の技術的範囲は以下の実施例に限定されない。 Next, specific examples of the fuel cell of the present invention and evaluation results thereof will be described. The technical scope of the present invention is not limited to the following examples.
 実施例1
図1に構成を示す燃料電池を、以下に示すように作製した。まず、アノード触媒粒子(Pt:Ru=1:1)を担持したカーボンブラックに、プロトン伝導性の電解質であるパーフルオロカーボンスルホン酸の溶液と、分散媒である水およびメトキシプロパノールをそれぞれ加え、アノード触媒(Pt-Ru)担持カーボンを分散させた。こうして、アノード触媒スラリーを調製した。
Example 1
A fuel cell having the configuration shown in FIG. 1 was produced as follows. First, a carbon black carrying anode catalyst particles (Pt: Ru = 1: 1) was added with a solution of perfluorocarbon sulfonic acid, which is a proton conductive electrolyte, and water and methoxypropanol, which are dispersion media, respectively. (Pt—Ru) -supported carbon was dispersed. Thus, an anode catalyst slurry was prepared.
 次いで、このアノード触媒スラリーを、アノードガス拡散層3である多孔質カーボンペーパ(30mm×20mmの長方形状)の上に均一に塗布した後乾燥させ、厚さ100μmのアノード触媒層2を形成した。 Next, this anode catalyst slurry was uniformly applied onto porous carbon paper (30 mm × 20 mm rectangular shape) as the anode gas diffusion layer 3 and then dried to form an anode catalyst layer 2 having a thickness of 100 μm.
 また、カソード触媒粒子(Pt)を担持したカーボンブラックに、パーフルオロカーボンスルホン酸の溶液と分散媒である水およびメトキシプロパノールをそれぞれ加え、カソード触媒(Pt)担持カーボンを分散させた。こうして、カソード触媒スラリーを調製した。 Further, a solution of perfluorocarbon sulfonic acid and water and methoxypropanol as dispersion media were added to carbon black carrying cathode catalyst particles (Pt) to disperse the cathode catalyst (Pt) carrying carbon. Thus, a cathode catalyst slurry was prepared.
 次いで、このカソード触媒スラリーを、カソードガス拡散層6である多孔質カーボンペーパ(30mm×20mmの長方形状)の上に均一に塗布した後乾燥させ、厚さ100μmのカソード触媒層5を形成した。なお、アノードガス拡散層3としての多孔質カーボンペーパと、カソードガス拡散層6としての多孔質カーボンペーパとは、同形同大で厚さが等しい。また、これらのガス拡散層の上に形成されたアノード触媒層2とカソード触媒層5も、同形同大で厚さが等しくなっている。 Next, the cathode catalyst slurry was uniformly applied onto porous carbon paper (30 mm × 20 mm rectangular shape) as the cathode gas diffusion layer 6 and then dried to form a cathode catalyst layer 5 having a thickness of 100 μm. The porous carbon paper as the anode gas diffusion layer 3 and the porous carbon paper as the cathode gas diffusion layer 6 have the same shape and the same size and the same thickness. Also, the anode catalyst layer 2 and the cathode catalyst layer 5 formed on these gas diffusion layers have the same shape and the same size and the same thickness.
 次に、こうして形成されたアノード触媒層2とカソード触媒層5との間に、プロトン伝導性の電解質膜8であるナフィオン膜(デュポン社製、44mm×34mmの長方形状で厚さ30μm、含水率10~20重量%)を挟み込んでホットプレスを行い、膜電極接合体(MEA)1を作製した。 Next, between the anode catalyst layer 2 and the cathode catalyst layer 5 thus formed, a Nafion membrane, which is a proton conductive electrolyte membrane 8 (manufactured by DuPont, 44 mm × 34 mm rectangular shape with a thickness of 30 μm, water content) A membrane electrode assembly (MEA) 1 was produced by hot pressing with 10 to 20% by weight).
 こうして得られたMEA1を、アノード導電層9およびカソード導電層10である複数の開孔を有する金箔(44mm×34mmの長方形状)で両面側からそれぞれ挟み込んだ後、電解質膜8とアノード導電層9との間、および電解質膜8とカソード導電層10との間に、シール材11である長方形枠状のゴム製Oリング(幅2mmで外形が44mm×34mm)を、それぞれ以下に示すように挿入し、シールを施した。 The MEA 1 thus obtained was sandwiched from both sides with gold foil (44 mm × 34 mm rectangular shape) having a plurality of apertures which are the anode conductive layer 9 and the cathode conductive layer 10, and then the electrolyte membrane 8 and the anode conductive layer 9. A rectangular frame-shaped rubber O-ring (2 mm wide and 44 mm × 34 mm in outer diameter) as a sealing material 11 is inserted between the electrolyte membrane 8 and the cathode conductive layer 10 as shown below. And sealed.
 すなわち、図2および図3A、図3Bに示すように、長方形枠状のOリング(シール材11)の長辺部と短辺部が、アノードガス拡散層3とアノード触媒層2から成るアノード4およびカソードガス拡散層6とカソード触媒層5から成るカソード7の長辺および短辺とそれぞれ平行になり、かつアノード4およびカソード7の長辺および短辺の各周端部からの距離がいずれも5mmで均等となるようにして、Oリング(シール材11)を配置した。このMEA1において、カソード7およびアノード4の面積はそれぞれ6cmであり、カソード7側およびアノード4側のOリング(シール材11)と電極(カソード7およびアノード4)との間の空間部Sの底面積は6cmとなっている。すなわち、カソード7側およびアノード4側のOリング(シール材11)と電極(カソード7およびアノード4)との間には、電極の面積(6cm)の1.0倍の底面積を有する空間部Sが設けられている。 That is, as shown in FIGS. 2, 3 </ b> A, and 3 </ b> B, the long side and the short side of the rectangular frame-shaped O-ring (sealing material 11) are the anode 4 including the anode gas diffusion layer 3 and the anode catalyst layer 2. In addition, the long side and the short side of the cathode 7 composed of the cathode gas diffusion layer 6 and the cathode catalyst layer 5 are parallel to each other, and the distances from the peripheral ends of the long side and the short side of the anode 4 and the cathode 7 are both An O-ring (seal material 11) was arranged so as to be uniform at 5 mm. In this MEA 1, the areas of the cathode 7 and the anode 4 are each 6 cm 2 , and the space S between the O-ring (seal material 11) and the electrodes (cathode 7 and anode 4) on the cathode 7 side and the anode 4 side is formed. The bottom area is 6 cm 2 . That is, a space having a bottom area 1.0 times as large as the electrode area (6 cm 2 ) between the O-ring (seal material 11) on the cathode 7 side and the anode 4 side and the electrode (cathode 7 and anode 4). Part S is provided.
 次に、カソード導電層10の上に保湿層12として、厚さ1.0mmで透気度(JIS P-8117に規定の測定方法による)が2.0秒/100cm、透湿度(JIS L-1099A-1に規定の測定方法による)が2000g/m・24hrの多孔質ポリエチレンフィルム(44mm×34mmの長方形状)を積層した後、その上に表面カバー13として、直径3mmの円形の空気導入口13aが面内均等に48個設けられたステンレス(SUS304)板(厚さ1mm、44mm×34mmの長方形状)を積層し、ボルトで固定した。 Next, as the moisture retention layer 12 on the cathode conductive layer 10, the thickness is 1.0 mm, the air permeability (according to the measurement method specified in JIS P-8117) is 2.0 seconds / 100 cm 3 , and the moisture permeability (JIS L -A porous polyethylene film (44 mm x 34 mm rectangular shape) of 2000 g / m 2 · 24 hr (according to the measurement method specified in 1099A-1) is laminated, and then a circular air with a diameter of 3 mm is used as the surface cover 13 thereon. A stainless steel (SUS304) plate (rectangular shape with a thickness of 1 mm, 44 mm × 34 mm) provided with 48 introduction ports 13a evenly in the plane was laminated and fixed with bolts.
 また、アノード導電層9の下に、燃料分配層17と燃料供給部16と燃料収容部15および流路18を備える燃料供給機構14を設け、図1に示すパッシブ型の燃料電池を作製した。 Further, a fuel supply mechanism 14 including a fuel distribution layer 17, a fuel supply unit 16, a fuel storage unit 15, and a flow path 18 was provided under the anode conductive layer 9, and the passive fuel cell shown in FIG. 1 was produced.
 実施例2
図4に示すように、MEA1の電極(カソード7およびアノード4)の周端部から外側に延出されているプロトン伝導性の電解質膜8のアノード4側の面に、耐熱性と耐燃料性を有する有機フィルム19として、カプトン(登録商標;ポリイミド樹脂)テープ(厚さ0.5mm、幅7mm)を貼り着けた。それ以外は実施例1と同様にしてMEA1を作製し、燃料電池を組み立てた。
Example 2
As shown in FIG. 4, heat resistance and fuel resistance are provided on the surface of the proton conductive electrolyte membrane 8 extending outward from the peripheral ends of the electrodes (cathode 7 and anode 4) of the MEA 1 on the anode 4 side. A Kapton (registered trademark; polyimide resin) tape (thickness: 0.5 mm, width: 7 mm) was attached as the organic film 19 having the above. Otherwise, the MEA 1 was produced in the same manner as in Example 1, and a fuel cell was assembled.
 実施例3
図11に示すように、MEA1の電解質膜8の以下に示す位置に、直径0.5mmのガス抜き孔20を2個設けた。2個のガス抜き孔20は、最も近接する電極(例えばカソード7)の周端部からの距離が5mmであり、Oリング(シール材11)の短辺の中央部に向き合い接する位置にそれぞれ形成した。また、カソード導電層10において、電解質膜8のガス抜き孔20に相当する位置に直径0.5mmの孔を形成するとともに、保湿層12および表面カバー13においても、ガス抜き孔20に相当する位置に直径1mmの孔を設け、排出されるガスの流出を阻害しないようにした。それ以外は実施例2と同様にして燃料電池を作製した。
Example 3
As shown in FIG. 11, two gas vent holes 20 having a diameter of 0.5 mm were provided in the following positions of the electrolyte membrane 8 of the MEA 1. The two gas vent holes 20 are 5 mm away from the peripheral end of the closest electrode (for example, the cathode 7), and are formed at positions facing the central portion of the short side of the O-ring (sealing material 11). did. Further, in the cathode conductive layer 10, a hole having a diameter of 0.5 mm is formed at a position corresponding to the gas vent hole 20 of the electrolyte membrane 8, and a position corresponding to the gas vent hole 20 also in the moisturizing layer 12 and the surface cover 13. A hole with a diameter of 1 mm was provided to prevent the outflow of the exhausted gas. Otherwise, a fuel cell was produced in the same manner as in Example 2.
 実施例4
図6に示すように、MEA1の電解質膜8において、最も近接する電極(例えばカソード7)の周端部からの距離が3mmであり、かつOリング(シール材11)の短辺の中央部に向き合う位置2ヶ所に、それぞれ直径0.5mmのガス抜き孔20を設けた。それ以外は実施例3と同様にして燃料電池を作製した。
Example 4
As shown in FIG. 6, in the electrolyte membrane 8 of the MEA 1, the distance from the peripheral end portion of the closest electrode (for example, the cathode 7) is 3 mm, and at the central portion of the short side of the O-ring (seal material 11). Gas vent holes 20 each having a diameter of 0.5 mm were provided at two positions facing each other. Otherwise, a fuel cell was produced in the same manner as in Example 3.
 実施例5
図12に示すように、MEA1の電極(カソード7およびアノード4)の短辺と、電解質膜8を含むそれ以外の各層およびOリング(シール材11)の長辺が平行になり、電極(カソード7およびアノード4)の長辺と、電解質膜8等の各層およびOリング(シール材11)の短辺が平行になるように各層を配置した。そして、電解質膜8において、最も近接する電極(例えばカソード7)の周端部からの距離が10mmであり、かつOリング(シール材11)の短辺の中央部に向き合い接する位置2ヶ所に、それぞれ直径0.5mmのガス抜き孔20を設けた。それ以外は実施例2と同様として燃料電池を作製した。
Example 5
As shown in FIG. 12, the short sides of the electrodes (cathode 7 and anode 4) of MEA 1 are parallel to the other layers including the electrolyte membrane 8 and the long sides of the O-ring (sealing material 11). 7 and the anode 4) were arranged so that the long sides of the electrolyte membrane 8 and the like and the short side of the O-ring (sealing material 11) were parallel to each other. And in the electrolyte membrane 8, the distance from the peripheral edge part of the nearest electrode (for example, the cathode 7) is 10 mm, and at two positions facing the central part of the short side of the O-ring (seal material 11), Gas vent holes 20 each having a diameter of 0.5 mm were provided. Otherwise, the fuel cell was fabricated in the same manner as in Example 2.
 実施例6
MEA1の電解質膜8において、Oリング(シール材11)の短辺の中央部に向き合う位置で、最も近接する電極(例えばカソード7)の周端部からの距離が1mmである位置2ヶ所に、それぞれ直径0.5mmのガス抜き孔20を設けた。それ以外は実施例2と同様にして燃料電池を作製した。
Example 6
In the electrolyte membrane 8 of the MEA 1, at a position facing the center of the short side of the O-ring (sealing material 11), at two positions where the distance from the peripheral end of the nearest electrode (for example, the cathode 7) is 1 mm, Gas vent holes 20 each having a diameter of 0.5 mm were provided. Otherwise, a fuel cell was produced in the same manner as in Example 2.
 実施例7
MEA1の電解質膜8において、Oリング(シール材11)の短辺の中央部に向き合う位置で最も近接するカソードの周端部からの距離が5mmである位置2ヶ所に、それぞれ直径0.5mmのガス抜き孔20を設けるとともに、図7に示すように、表面カバー13の上に、放熱板21としてアルミニウム板(厚さ1mm、10×10mmの正方形状)を、表面カバー13のガス抜き用開孔13bに近接するように配置し、ボルトで固定した。それ以外は実施例2と同様にして燃料電池を作製した。
Example 7
In the electrolyte membrane 8 of the MEA 1, at a position facing the central portion of the short side of the O-ring (sealing material 11), the distance from the nearest peripheral edge of the cathode is 5 mm, each having a diameter of 0.5 mm. As shown in FIG. 7, an aluminum plate (a square shape having a thickness of 1 mm and 10 × 10 mm) is provided on the surface cover 13 as a heat sink 21 as shown in FIG. It arrange | positioned so that it might adjoin to the hole 13b, and was fixed with the volt | bolt. Otherwise, a fuel cell was produced in the same manner as in Example 2.
 実施例8
図8に示すように、MEA1のアノード4側のOリング(シール材11)と電極(アノード4)との間の空間部Sに、スペーサ22としてアノード4と同じ厚さのテフロン(登録商標)板を配置し、空間部Sの大部分を閉塞した。それ以外は実施例3と同様にして燃料電池を作製した。
Example 8
As shown in FIG. 8, Teflon (registered trademark) having the same thickness as the anode 4 as a spacer 22 in the space S between the O-ring (sealing material 11) on the anode 4 side of the MEA 1 and the electrode (anode 4). A plate was placed to block most of the space S. Otherwise, a fuel cell was produced in the same manner as in Example 3.
 実施例9
図9に示すように、MEA1のアノード4側の空間部Sに配置されたスペーサ22であるテフロン(登録商標)板に、アノード4の周端部と電解質膜8のガス抜き孔20とを連通させる溝22a(幅1mm)を形成した。なお、この溝22aの深さは、アノード4の厚さと一致するようにした。それ以外は実施例8と同様にして燃料電池を作製した。
Example 9
As shown in FIG. 9, the peripheral end portion of the anode 4 and the gas vent hole 20 of the electrolyte membrane 8 are communicated with a Teflon (registered trademark) plate which is a spacer 22 disposed in the space portion S on the anode 4 side of the MEA 1. A groove 22a (width 1 mm) was formed. The depth of the groove 22a was made to coincide with the thickness of the anode 4. Otherwise, a fuel cell was fabricated in the same manner as in Example 8.
 実施例10
図10Bに示すように、凹部を持つ多角形の平面形状を有する電極(アノード4およびカソード7)を用いた。この電極は、周囲長が15cmであり、同面積の正方形の周囲長(9.8cm)の約1.53倍の外周を有している。また、MEA1の電解質膜8において、Oリング(シール材11)の短辺部の中央に向き合う位置で最も近接するカソード7の周端部からの距離が7mmである位置2ヶ所に、それぞれ直径0.5mmのガス抜き孔20を設けた。それ以外は、実施例3と同様にして燃料電池を作製した。
Example 10
As shown in FIG. 10B, the electrodes (anode 4 and cathode 7) having a polygonal planar shape with concave portions were used. This electrode has a circumference of 15 cm, and has an outer circumference that is approximately 1.53 times the square circumference (9.8 cm) of the same area. In the electrolyte membrane 8 of the MEA 1, the diameter 0 is provided at two positions where the distance from the peripheral end portion of the cathode 7 closest to the center of the short side portion of the O-ring (sealing material 11) is 7 mm. A 5 mm vent hole 20 was provided. Otherwise, a fuel cell was produced in the same manner as in Example 3.
 実施例11
ホットプレスによりアノード4およびカソード7を電解質膜8に熱圧着した後、幅が5mmでアノード4およびカソード7の外形と同一の外形を有する銅製の枠体を用い、180℃で2分間MEAを再プレスした。それ以外は、実施例8と同様にして燃料電池を作製した。
Example 11
After hot pressing the anode 4 and the cathode 7 to the electrolyte membrane 8 by hot pressing, using a copper frame having a width of 5 mm and the same outer shape as the anode 4 and the cathode 7, the MEA was re-applied at 180 ° C. for 2 minutes. Pressed. Other than that was carried out similarly to Example 8, and produced the fuel cell.
 実施例12
カソードガス拡散層6およびアノードガス拡散層3として、23.1mm×34.6mmの多孔質カーボンペーパを使用し、カソード7およびアノード4の面積を8cmとした。そして、カソード7側およびアノード4側のOリング(シール材11)と電極(カソード7およびアノード4)との間に、カソード7およびアノード4の面積(8cm)の0.5倍の底面積(4cm)を有する空間部Sが設けられるようにした。また、MEA1の電解質膜8において、Oリング(シール材11)の短辺の中央部に向き合う位置で最も近接するカソード7の周端部からの距離が2.5mmである位置2ヶ所に、それぞれ直径0.5mmのガス抜き孔20を設けた。それ以外は実施例2と同様にして燃料電池を作製した。
Example 12
As the cathode gas diffusion layer 6 and the anode gas diffusion layer 3, porous carbon paper of 23.1 mm × 34.6 mm was used, and the area of the cathode 7 and the anode 4 was 8 cm 2 . And between the O-ring (seal material 11) on the cathode 7 side and the anode 4 side and the electrodes (cathode 7 and anode 4), the bottom area of 0.5 times the area (8 cm 2 ) of the cathode 7 and anode 4 A space S having (4 cm 2 ) was provided. Further, in the electrolyte membrane 8 of the MEA 1, at two positions where the distance from the peripheral end portion of the cathode 7 closest to the central portion of the short side of the O-ring (seal material 11) is 2.5 mm, respectively. A vent hole 20 having a diameter of 0.5 mm was provided. Otherwise, a fuel cell was produced in the same manner as in Example 2.
 比較例1
カソードガス拡散層6およびアノードガス拡散層3として、26.4mm×39.7mmの多孔質カーボンペーパを使用し、カソード7およびアノード4の面積を10.5cmとした。そして、カソード7側およびアノード4側のOリング(シール材11)と電極(カソード7およびアノード4)との間に、カソード7およびアノード4の面積(10.5cm)の0.12倍の断面積(1.26cm)を有する空間部Sが設けられるようにした。それ以外は実施例2と同様にして燃料電池を作製した。
Comparative Example 1
As the cathode gas diffusion layer 6 and the anode gas diffusion layer 3, porous carbon paper of 26.4 mm × 39.7 mm was used, and the area of the cathode 7 and the anode 4 was set to 10.5 cm 2 . Between the O-ring (seal material 11) on the cathode 7 side and the anode 4 side and the electrode (cathode 7 and anode 4), 0.12 times the area (10.5 cm 2 ) of the cathode 7 and anode 4 A space S having a cross-sectional area (1.26 cm 2 ) was provided. Otherwise, a fuel cell was produced in the same manner as in Example 2.
 比較例2
カソードガス拡散層6およびアノードガス拡散層3として、14.1mm×21.2mmの多孔質カーボンペーパを使用し、カソード7およびアノード4の面積を3cmとした。そして、カソード7側およびアノード4側のOリング(シール材11)と電極(カソード7およびアノード4)との間に、カソード7およびアノード4の面積(3cm)の3.0倍の断面積(9.0cm)を有する空間部Sが設けられているようにした。それ以外は実施例2と同様にして燃料電池を作製した。
Comparative Example 2
As the cathode gas diffusion layer 6 and the anode gas diffusion layer 3, 14.1 mm × 21.2 mm porous carbon paper was used, and the area of the cathode 7 and the anode 4 was 3 cm 2 . And, between the cathode 7 side and anode 4 side O-ring (sealing material 11) and the electrodes (cathode 7 and anode 4), the cross-sectional area of 3.0 times the area (3 cm 2 ) of the cathode 7 and anode 4 A space S having (9.0 cm 2 ) was provided. Otherwise, a fuel cell was produced in the same manner as in Example 2.
 次に、実施例1~12および比較例1,2で得られた燃料電池において、温度25℃、湿度50%RHの環境下で、燃料収容部に純度99.99%のメタノールを供給した。また、外部負荷として可変電流電源を接続し、燃料電池に流れる電流がゼロから次第に大きくなるように制御した。電流の制御は、電流密度(発電部の面積1cm当りに流れる電流値(mA/cm))が、1分間につき10mA/cmずつ増加するように行なった。 Next, in the fuel cells obtained in Examples 1 to 12 and Comparative Examples 1 and 2, methanol having a purity of 99.99% was supplied to the fuel container in an environment of a temperature of 25 ° C. and a humidity of 50% RH. In addition, a variable current power source was connected as an external load, and the current flowing through the fuel cell was controlled so as to gradually increase from zero. The current was controlled so that the current density (current value (mA / cm 2 ) flowing per 1 cm 2 area of the power generation unit) increased by 10 mA / cm 2 per minute.
 すなわち、電流を流し始めてから15分後には、150mA/cmの電流密度となるように制御した。なお、発電部の面積とは、アノード触媒層とカソード触媒層とが対向している部分の面積である。実施例1~12および比較例1,2の燃料電池では、アノード触媒層とカソード触媒層の面積が等しく、かつ面積全体に亘って対向しているので、発電部の面積はこれらの触媒層の面積に等しくなる。そして、燃料電池の出力電圧を測定し、その測定値が0.2Vに達したところで、電流の増加を終了させるようにした。また、1000時間後の出力を測定し、初期出力を100としたときの比率を算出した。そして、この値を出力維持率とした。 That is, the current density was controlled to be 150 mA / cm 2 after 15 minutes from the start of current flow. The area of the power generation unit is the area of the portion where the anode catalyst layer and the cathode catalyst layer face each other. In the fuel cells of Examples 1 to 12 and Comparative Examples 1 and 2, the areas of the anode catalyst layer and the cathode catalyst layer were equal and opposed over the entire area. Equal to the area. Then, the output voltage of the fuel cell was measured, and when the measured value reached 0.2 V, the increase in current was terminated. Further, the output after 1000 hours was measured, and the ratio when the initial output was 100 was calculated. This value was used as the output maintenance rate.
 次に、可変電流電源の代わりに定電圧電源を接続し、燃料電池の出力電圧が0.3Vで一定になるように電流を制御しながら発電を行なわせ、そのときの出力密度を測定した。ここで、燃料電池の出力密度(mW/cm)とは、電流密度に出力電圧を乗じたものである。そして、この定電圧発電を24時間継続して行い、24時間の出力密度の平均値を燃料電池の出力密度の値とした。測定結果を、前記した出力維持率の値とともに表1に示す。なお、燃料電池の出力密度は、比較例1の値を100とした相対値で示してある。 Next, a constant voltage power supply was connected instead of the variable current power supply, and power generation was performed while controlling the current so that the output voltage of the fuel cell was constant at 0.3 V, and the output density at that time was measured. Here, the output density (mW / cm 2 ) of the fuel cell is obtained by multiplying the current density by the output voltage. This constant voltage power generation was continued for 24 hours, and the average value of the output density for 24 hours was taken as the value of the output density of the fuel cell. The measurement results are shown in Table 1 together with the value of the output retention rate described above. The output density of the fuel cell is shown as a relative value with the value of Comparative Example 1 being 100.
 さらに、実施例3~7の燃料電池において、上記の条件で定電圧発電を行っている間、カソードガス拡散層の中央(長方形の対角線の交点)の位置と、電解質膜に設けたガス抜き孔の位置にそれぞれ熱電対を挿入し、温度を測定した。そして、測定した温度から、水およびメタノールの飽和蒸気圧曲線のグラフを用いて、ガス抜き孔の位置における飽和水蒸気圧P1とカソードガス拡散層の中央部における飽和水蒸気圧P2との比、およびガス抜き孔の位置における飽和メタノール蒸気圧P3とカソードガス拡散層の中央部における飽和メタノール蒸気圧P4との比をそれぞれ求めた。これらの結果も表1に示す。 Furthermore, in the fuel cells of Examples 3 to 7, during constant voltage power generation under the above conditions, the position of the center of the cathode gas diffusion layer (intersection of rectangular diagonal lines) and the gas vent holes provided in the electrolyte membrane A thermocouple was inserted at each position, and the temperature was measured. Then, from the measured temperature, using the graph of the saturated vapor pressure curve of water and methanol, the ratio of the saturated water vapor pressure P1 at the position of the gas vent hole to the saturated water vapor pressure P2 at the center of the cathode gas diffusion layer, and the gas The ratio between the saturated methanol vapor pressure P3 at the hole position and the saturated methanol vapor pressure P4 at the center of the cathode gas diffusion layer was determined. These results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1~12で得られた燃料電池は、比較例1,2の燃料電池に比べて出力密度が高くなっているうえに、出力の維持率も大幅に向上していることがわかる。 From Table 1, the fuel cells obtained in Examples 1 to 12 have a higher output density than the fuel cells of Comparative Examples 1 and 2, and the output maintenance rate is greatly improved. I understand.
 なお、本発明は液体燃料を使用した各種の燃料電池に適用することができる。また、燃料電池の具体的な構成や燃料の供給状態等も特に限定されるものではなく、MEAに供給される燃料の全てが液体燃料の蒸気、全てが液体燃料、または一部が液体状態で供給される液体燃料の蒸気等、種々形態に本発明を適用することができる。実施段階では本発明の技術的思想を逸脱しない範囲で構成要素を変形して具体化することができる。さらに、上記実施形態に示される複数の構成要素を適宜に組合せたり、また実施形態に示される全構成要素から幾つかの構成要素を削除する等、種々の変形が可能である。本発明の実施形態は本発明の技術的思想の範囲内で拡張もしくは変更することができ、この拡張、変更した実施形態も本発明の技術的範囲に含まれるものである。 Note that the present invention can be applied to various fuel cells using liquid fuel. In addition, the specific configuration of the fuel cell, the supply state of the fuel, and the like are not particularly limited, and all of the fuel supplied to the MEA is liquid fuel vapor, all is liquid fuel, or part is liquid state. The present invention can be applied to various forms such as a vapor of supplied liquid fuel. In the implementation stage, the constituent elements can be modified and embodied without departing from the technical idea of the present invention. Furthermore, various modifications are possible, such as appropriately combining a plurality of constituent elements shown in the above embodiments, or deleting some constituent elements from all the constituent elements shown in the embodiments. Embodiments of the present invention can be expanded or modified within the scope of the technical idea of the present invention, and these expanded and modified embodiments are also included in the technical scope of the present invention.

Claims (18)

  1.  燃料極(アノード)および空気極(カソード)と、前記燃料極と前記空気極に挟持されたプロトン伝導性の電解質膜と、前記燃料極および前記空気極の側面の外側にそれぞれ周設されたシール部を有する膜電極接合体(MEA)と、
     液体燃料を収容する燃料収容部と、
     前記燃料収容部に収容された前記液体燃料を前記膜電極接合体の前記燃料極に供給する燃料供給機構
    とを具備する燃料電池において、
     前記膜電極接合体の前記燃料極側と前記空気極側の少なくとも一方において、前記シール部と前記燃料極または前記空気極との間に、該燃料極または空気極の主面の面積の0.2~1.3倍の底面積を有する空間部が設けられていることを特徴とする燃料電池。
    A fuel electrode (anode) and an air electrode (cathode), a proton-conducting electrolyte membrane sandwiched between the fuel electrode and the air electrode, and seals provided around the sides of the fuel electrode and the air electrode, respectively. Membrane electrode assembly (MEA) having a portion;
    A fuel storage section for storing liquid fuel;
    A fuel cell comprising a fuel supply mechanism that supplies the liquid fuel stored in the fuel storage portion to the fuel electrode of the membrane electrode assembly,
    In at least one of the fuel electrode side and the air electrode side of the membrane electrode assembly, the area of the main surface of the fuel electrode or air electrode is 0. 0 mm between the seal portion and the fuel electrode or air electrode. A fuel cell comprising a space portion having a bottom area of 2 to 1.3 times.
  2.  前記空間部に耐燃料性の有機フィルムが配設され、該有機フィルムにより前記空間部が前記燃料極側と前記空気極側とに分けられていることを特徴とする請求項1記載の燃料電池。 2. The fuel cell according to claim 1, wherein a fuel-resistant organic film is disposed in the space, and the space is divided into the fuel electrode side and the air electrode side by the organic film. .
  3.  前記電解質膜は、周端部が前記シール部に達する面積を有することを特徴とする請求項1記載の燃料電池。 2. The fuel cell according to claim 1, wherein the electrolyte membrane has an area where a peripheral end reaches the seal portion.
  4.  前記膜電極接合体の前記燃料極側と前記空気極側の少なくとも一方において、前記電解質膜の前記燃料極または前記空気極によって挟持されていない領域に、燃料透過性を持たない層が配設されていることを特徴とする請求項3記載の燃料電池。 On at least one of the fuel electrode side and the air electrode side of the membrane electrode assembly, a layer having no fuel permeability is disposed in a region not sandwiched by the fuel electrode or the air electrode of the electrolyte membrane. The fuel cell according to claim 3, wherein
  5.  前記燃料透過性を持たない層は、前記電解質膜の前記燃料極または前記空気極によって挟持されていない領域全体を覆うことを特徴とする請求項4記載の燃料電池。 5. The fuel cell according to claim 4, wherein the non-fuel permeable layer covers the entire region of the electrolyte membrane that is not sandwiched between the fuel electrode or the air electrode.
  6.  前記膜電極接合体の前記燃料極側において、前記シール部と前記燃料極との間の前記電解質膜上に、触媒層が形成されていることを特徴とする請求項3記載の燃料電池。 4. The fuel cell according to claim 3, wherein a catalyst layer is formed on the electrolyte membrane between the seal portion and the fuel electrode on the fuel electrode side of the membrane electrode assembly.
  7.  前記電解質膜は、前記燃料極または前記空気極によって挟持されていない領域に、前記燃料極側に生じたガス成分を前記空気極側に逃がすガス抜き孔を有することを特徴とする請求項3または4記載の燃料電池。 4. The electrolyte membrane according to claim 3, wherein the electrolyte membrane has a vent hole for escaping a gas component generated on the fuel electrode side to the air electrode side in a region not sandwiched by the fuel electrode or the air electrode. 4. The fuel cell according to 4.
  8.  前記電解質膜の前記ガス抜き孔の位置における飽和水蒸気圧と、前記空気極側で飽和水蒸気圧が最も高い位置における飽和水蒸気圧との比が、0.8以下であることを特徴とする請求項7記載の燃料電池。 The ratio of the saturated water vapor pressure at the position of the vent hole of the electrolyte membrane to the saturated water vapor pressure at the position where the saturated water vapor pressure is highest on the air electrode side is 0.8 or less. 7. The fuel cell according to 7.
  9.  前記電解質膜の前記ガス抜き孔の位置における飽和燃料蒸気圧と、前記空気極側で飽和燃料蒸気圧が最も高い位置における飽和燃料蒸気圧との比が、0.8以下であることを特徴とする請求項7または8記載の燃料電池。 The ratio between the saturated fuel vapor pressure at the position of the gas vent hole of the electrolyte membrane and the saturated fuel vapor pressure at the position where the saturated fuel vapor pressure is highest on the air electrode side is 0.8 or less, The fuel cell according to claim 7 or 8.
  10.  前記ガス抜き孔と該ガス抜き孔に最も近接した前記燃料極または空気極の周端部との距離は、3mm以上であることを特徴とする請求項7乃至9のいずれか1項記載の燃料電池。 The fuel according to any one of claims 7 to 9, wherein a distance between the gas vent hole and a peripheral end portion of the fuel electrode or air electrode closest to the gas vent hole is 3 mm or more. battery.
  11.  前記ガス抜き孔には外部への熱放出路が接続されていることを特徴とする請求項7乃至10記載のいずれか1項記載の燃料電池。 11. The fuel cell according to claim 7, wherein a heat release path to the outside is connected to the gas vent hole.
  12.  前記熱放出路の外部側端部に近接して、放熱板が配置されていることを特徴とする請求項11記載の燃料電池。 The fuel cell according to claim 11, wherein a heat radiating plate is disposed in the vicinity of the outer end of the heat release path.
  13.  前記耐燃料性の有機フィルムは、前記燃料極側に生じたガス成分を前記空気極側に逃がすガス抜き孔を有することを特徴とする請求項2記載の燃料電池。 3. The fuel cell according to claim 2, wherein the fuel-resistant organic film has a gas vent for allowing a gas component generated on the fuel electrode side to escape to the air electrode side.
  14.  前記膜電極接合体の前記燃料極側の前記空間部に、耐燃料性の高い絶縁性樹脂から成るスペーサ部材が配置されていることを特徴とする請求項3記載の燃料電池。 4. The fuel cell according to claim 3, wherein a spacer member made of an insulating resin having high fuel resistance is disposed in the space on the fuel electrode side of the membrane electrode assembly.
  15.  前記電解質膜の前記燃料極または前記空気極によって挟持されていない領域に前記ガス抜き孔を有し、かつ前記スペーサ部材は、前記燃料極の周端部と前記ガス抜き孔を連通させる溝を有することを特徴とする請求項14記載の燃料電池。 The gas release hole is provided in a region of the electrolyte membrane that is not sandwiched between the fuel electrode or the air electrode, and the spacer member has a groove that allows the peripheral end of the fuel electrode to communicate with the gas release hole. The fuel cell according to claim 14.
  16.  前記燃料極および/または前記空気極の平面形状は、同面積の正方形の1.2~5倍の周囲長を有する形状であることを特徴とする請求項1乃至15のいずれか1項記載の燃料電池。 16. The planar shape of the fuel electrode and / or the air electrode is a shape having a perimeter that is 1.2 to 5 times the square of the same area. Fuel cell.
  17.  前記燃料極および/または前記空気極の平面形状は、凹部を有する多角形であることを特徴とする請求項16記載の燃料電池。 The fuel cell according to claim 16, wherein the planar shape of the fuel electrode and / or the air electrode is a polygon having a recess.
  18.  前記燃料極および前記空気極の少なくとも一方の外周端面が、150~200℃の温度で加熱処理されていることを特徴とする請求項1乃至17のいずれか1項記載の燃料電池。 The fuel cell according to any one of claims 1 to 17, wherein an outer peripheral end face of at least one of the fuel electrode and the air electrode is heat-treated at a temperature of 150 to 200 ° C.
PCT/JP2009/003491 2008-07-28 2009-07-24 Fuel cell WO2010013425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-193890 2008-07-28
JP2008193890A JP2010033839A (en) 2008-07-28 2008-07-28 Fuel cell

Publications (1)

Publication Number Publication Date
WO2010013425A1 true WO2010013425A1 (en) 2010-02-04

Family

ID=41610140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003491 WO2010013425A1 (en) 2008-07-28 2009-07-24 Fuel cell

Country Status (2)

Country Link
JP (1) JP2010033839A (en)
WO (1) WO2010013425A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136399A1 (en) * 2013-03-05 2014-09-12 パナソニック株式会社 Injection-locked oscillator
CN109888343A (en) * 2019-01-21 2019-06-14 西安交通大学 A kind of thermal balance feed separation direct methanol fuel cell and its working method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148285A (en) 2009-12-25 2011-08-04 Fujifilm Corp Method of forming image using heat-sensitive transfer image-receiving sheet having lenticular lens

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048834A (en) * 1998-07-29 2000-02-18 Aisin Seiki Co Ltd Solid polymer electrolyte fuel cell and its manufacture
JP2000223136A (en) * 1999-01-27 2000-08-11 Aisin Seiki Co Ltd Solid polymer electrolyte film for fuel cell, its manufacture and fuel cell
JP2006100267A (en) * 2004-08-30 2006-04-13 Asahi Glass Co Ltd Solid polymer electrolyte membrane electrode junction body and solid polymer fuel cell
JP2007048586A (en) * 2005-08-10 2007-02-22 Hitachi Ltd Holding structure and electronic apparatus
JP2007080523A (en) * 2005-09-09 2007-03-29 Nissan Motor Co Ltd Membrane/electrode assembly
JP2007179859A (en) * 2005-12-27 2007-07-12 Toshiba Corp Fuel cell
JP2008016390A (en) * 2006-07-07 2008-01-24 Toshiba Corp Fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048834A (en) * 1998-07-29 2000-02-18 Aisin Seiki Co Ltd Solid polymer electrolyte fuel cell and its manufacture
JP2000223136A (en) * 1999-01-27 2000-08-11 Aisin Seiki Co Ltd Solid polymer electrolyte film for fuel cell, its manufacture and fuel cell
JP2006100267A (en) * 2004-08-30 2006-04-13 Asahi Glass Co Ltd Solid polymer electrolyte membrane electrode junction body and solid polymer fuel cell
JP2007048586A (en) * 2005-08-10 2007-02-22 Hitachi Ltd Holding structure and electronic apparatus
JP2007080523A (en) * 2005-09-09 2007-03-29 Nissan Motor Co Ltd Membrane/electrode assembly
JP2007179859A (en) * 2005-12-27 2007-07-12 Toshiba Corp Fuel cell
JP2008016390A (en) * 2006-07-07 2008-01-24 Toshiba Corp Fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136399A1 (en) * 2013-03-05 2014-09-12 パナソニック株式会社 Injection-locked oscillator
CN109888343A (en) * 2019-01-21 2019-06-14 西安交通大学 A kind of thermal balance feed separation direct methanol fuel cell and its working method
CN109888343B (en) * 2019-01-21 2020-10-27 西安交通大学 Direct methanol fuel cell for separating heat balance materials and working method thereof

Also Published As

Publication number Publication date
JP2010033839A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JPWO2006101071A1 (en) Fuel cell
TWI332726B (en)
US20100233572A1 (en) Fuel cell
US20110117465A1 (en) Fuel cell
WO2010013425A1 (en) Fuel cell
JP2009158407A (en) Fuel cell
JP5360452B2 (en) Fuel cells and electronics
JP5112233B2 (en) Fuel cell
JP2006049115A (en) Fuel cell
JP2011008959A (en) Fuel cell
JP2007026873A (en) Fuel cell
WO2011052650A1 (en) Fuel cell
JP2011096468A (en) Fuel cell
JP2009134928A (en) Fuel cell
JPWO2007116692A1 (en) Fuel cell storage container, fuel cell mounted electronic device storage container, and fuel cell with container
JP2009187797A (en) Fuel cell
WO2009084380A1 (en) Fuel cell
JP2009140830A (en) Fuel cell
JP2009146824A (en) Fuel cell
JP2009123619A (en) Fuel cell
JP2009129830A (en) Fuel cell
JP2010049930A (en) Fuel cell
JP2009094062A (en) Fuel battery
JP2010211959A (en) Fuel cell
WO2010005002A1 (en) Fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802674

Country of ref document: EP

Kind code of ref document: A1