WO2010012214A1 - 起爆装置及其主控流程 - Google Patents

起爆装置及其主控流程 Download PDF

Info

Publication number
WO2010012214A1
WO2010012214A1 PCT/CN2009/072926 CN2009072926W WO2010012214A1 WO 2010012214 A1 WO2010012214 A1 WO 2010012214A1 CN 2009072926 W CN2009072926 W CN 2009072926W WO 2010012214 A1 WO2010012214 A1 WO 2010012214A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
control module
data
voltage
Prior art date
Application number
PCT/CN2009/072926
Other languages
English (en)
French (fr)
Inventor
颜景龙
张宪玉
刘星
李风国
赖华平
Original Assignee
北京铱钵隆芯科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京铱钵隆芯科技有限责任公司 filed Critical 北京铱钵隆芯科技有限责任公司
Priority to AU2009276160A priority Critical patent/AU2009276160B2/en
Publication of WO2010012214A1 publication Critical patent/WO2010012214A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/045Arrangements for electric ignition
    • F42D1/05Electric circuits for blasting
    • F42D1/055Electric circuits for blasting specially adapted for firing multiple charges with a time delay

Definitions

  • the present invention relates to the field of detonation control technology for pyrotechnic articles, and particularly relates to a detonating device and a main control process thereof which can be used with an electronic detonator, can realize two-way communication with an electronic detonator, and detonate an electronic detonator.
  • Existing electric detonator detonators generally use an electric detonator network that is connected in series or in series and parallel. In order to ensure that all electric detonators in the network can be detonated in the same way, the electric detonator should be able to instantaneously generate one to several amps of current, which must be greater than the series quasi-explosive current of each detonator. Otherwise, there will be a phenomenon of refusal, half explosion, and the like.
  • the resistance of a single-powered detonator is generally about one to several ohms, so the above-mentioned electric detonator has a boost circuit and can provide an output voltage of the order of kilovolts. Therefore, the above-mentioned electric detonator detonator has a certain risk in use.
  • the object of the present invention is to solve the above drawbacks of the prior art, and provide a detonating device that can be used with an electronic detonator, and realizes basic functions such as two-way communication with an electronic detonator and detonating an electronic detonator.
  • An electronic detonator detonating device comprising a control module, a human-machine interaction module, a power management module, a signal modulation transmitting module, a signal demodulation receiving module, a signal bus, and a power supply.
  • the control module is connected to the remaining modules except the power supply and the signal bus, and is in signal communication with these modules.
  • the power supply is connected to the power management module and the human-machine interaction module.
  • the working voltage output end of the power management module is connected to the human-machine interaction module, the control module, the signal modulation transmitting module, and the signal demodulation receiving module, and supplies power to the above modules;
  • the control end of the power management module is connected to the control module, and the control
  • the module performs two-way communication; a pair of communication voltages of the power management module are respectively connected to the signal bus; the signal modulation transmitting module and the signal demodulation receiving module are connected in series between the communication voltage output end of the power management module and one of the signal buses .
  • the human-computer interaction module is connected to the other end of the signal modulation transmitting module, and the power supply supplies power to the signal modulation transmitting module through the human-machine interaction module.
  • the other of the signal buses is connected to the remaining end of the signal modulation transceiver module.
  • the power management module includes an analog-to-digital converter, a digital-to-analog converter, and a voltage conversion module.
  • One end of the voltage conversion module is connected to the power source; one end leads to the outside of the power management module, and constitutes a communication voltage output end of the power management module; the voltage conversion module has one end connected to the digital-to-analog converter; the other end of the voltage conversion module is inside the power management module.
  • the peers are respectively connected to the analog-to-digital converter and the digital-to-analog converter, and the terminal is also connected to the signal demodulation receiving module, the human-computer interaction module, the signal modulation transmitting module and the control module in the same manner outside the power management module to form a power supply.
  • the operating voltage output of the management module One end of the analog/digital converter is connected to the voltage conversion module, and is powered by the voltage conversion module; one end is connected to the control module; the other two ends are respectively connected to two of the signal bus, which constitute the communication voltage of the power management module.
  • One end of the digital-to-analog converter is connected to the voltage conversion module and is powered by the voltage conversion module; one end is connected to the other end of the voltage conversion module, and the communication voltage adjustment signal is sent to the voltage conversion module; the other end of the digital-to-analog converter is connected to the control module.
  • Controlling the voltage value of the communication voltage below the safe voltage value of the electronic detonator ensures that the detonating device does not have sufficient detonating electrons inside the preparation stage before the detonation
  • the voltage of the detonator ensures the safety of the electronic detonator before detonation.
  • the communication voltage is much lower than the voltage required to detonate the electronic detonator, thereby further ensuring the safety of the communication process between the detonating device and the electronic detonator.
  • the signal modulation transmitting module includes a signal modulation module and a boost module.
  • One end of the boosting module is connected to the human interaction module, and the power supply is supplied to the boosting module through the human-machine interaction module; the other end of the boosting module is connected to the signal modulation module.
  • the port of the signal modulation module is connected to the working voltage output end of the power management module; the port 2 is connected to the boosting module; the port 3 is connected to the control module, and receives the control signal sent by the control module; the port of the signal modulation module is connected to the signal bus. root.
  • Port 5 of the signal modulation module is connected to the communication voltage output end of the power management module, and port 6 is connected to the signal demodulation receiving module; or, the port 5 of the signal modulation module is connected to the signal demodulation receiving module, and the port 6 is connected to the signal bus. Another root.
  • the boosting module in the signal modulation transmitting module is configured to generate a detonating voltage required for charging the energy storage device in the electronic detonator, and the signal modulation module is configured to complete the switching of the voltage outputted by the detonating device to the signal bus. That is, the transition between the communication voltage and the detonation voltage causes the voltage on the signal bus to meet the requirements of the communication port and the voltage required to charge the electronic detonator, respectively.
  • the voltage on the signal bus is controlled to the above communication voltage, thereby ensuring the safety of the communication process with the electronic detonator;
  • the voltage on the signal bus is switched to the high voltage output through the boost module, that is, the above-mentioned detonation voltage, thereby ensuring that the electronic detonator obtains sufficient detonating energy.
  • the signal modulation module also performs modulation of the data transmitted by the detonating device to the electronic detonator, thereby implementing DC carrier communication between the detonating device and the electronic detonator.
  • the signal demodulation receiving module includes a signal sampling module, and a signal conditioning circuit.
  • One end of the signal conditioning circuit is connected to the working voltage output end of the power management module; the other end of the signal conditioning circuit is connected to the control module to send data to the control module; the other end is connected to port 7 of the signal sampling module.
  • Signal Port 8 of the sampling module is connected to the signal modulation module in the signal modulation transmitting module, and the port 9 is connected to the signal bus; or, the port 8 of the signal sampling module is connected to the communication voltage output end of the power management module, and the port 9 is connected to the signal modulation transmitting module.
  • Signal modulation module is connected to the working voltage output end of the power management module.
  • the signal sampling module may be a resistor, and the two ends of the resistor are respectively connected between the signal modulation transmitting module and one of the signal buses; or the two ends of the resistor are respectively connected to the signal modulation transmitting module and the power management module Between the communication voltage outputs. Both ends of the resistor are also connected to the signal conditioning circuit, respectively.
  • the implementation of the sampling module using resistors is simple and easy.
  • the resistor is a passive device that does not generate additional noise after sampling.
  • ⁇ on the signal bus a certain voltage drop will form across the resistor. As the current on the bus changes, its voltage drop changes linearly, so that the change in voltage drop input to the signal conditioning circuit represents the change in current on the signal bus, which in turn expresses the information from the direction of the electronic detonator.
  • the signal sampling module may also be taken as an electromagnetic coupler, and the two ends of the primary line are respectively connected between the signal modulation transmitting module and one of the signal buses; or, the primary ends of the electromagnetic coupler are respectively Connected between the signal modulation transmitter module and the communication voltage output of the power management module.
  • the secondary winding of the electromagnetic coupler is connected to the signal conditioning circuit.
  • An electromagnetic coupler essentially an inductor that is connected to the signal bus, extracts the change in information on the bus.
  • the inductor is an energy storage device. Therefore, when the current signal on the bus changes, a certain voltage drop will occur across the electromagnetic coupler. When the bus current is stable, the inductor impedance is zero, and the sampling module is not like a resistor. There is a static pressure drop so there is no drift in the baseline.
  • the above signal conditioning circuit may include a filter circuit, an amplification circuit, and a comparator.
  • One end of the filter circuit is connected to the signal sampling module, and the data sent by the signal sampling module is received; the other end of the filter circuit is connected to the amplifying circuit.
  • One end of the amplifying circuit is connected to the filter circuit, and the other end is connected to the working voltage output end of the power management module, and the other end of the amplifying circuit is connected to the comparator.
  • One end of the comparator is connected to the control module, the other end is connected to the working voltage output end of the power management module, and the other end of the comparator is connected to the amplifying circuit.
  • the access sequence of the filter circuit and the amplifying circuit in the above signal conditioning circuit can be interchanged, and the two are equivalent.
  • the comparator described above is preferably a hysteresis comparator.
  • the above signal conditioning circuit completes the conversion of the analog signal to the digital signal, and the corresponding characteristics of the conversion are better, which is a simple and easy to implement analog/digital signal conversion method.
  • the hysteresis comparator has better resistance to noise interference.
  • the human-computer interaction module includes setting and display devices, authorization devices, locking devices, and anti-misoperation Switch.
  • One end of the setting and display device is connected to the working voltage output end of the power management module, and is powered by the power management module, and the other end is connected to the control module.
  • One end of the authorized device is connected to the working voltage output end of the power management module, and is powered by the power management module, and the other end is connected to the control module.
  • the locking device is connected to the power supply at one end and to the boost module at the other end, and the power supply supplies power to the boost module through the locking device.
  • One end of the anti-misoperation switch is connected to the working voltage output end of the power management module, and is powered by the power management module, and the other end is connected to the control module.
  • the human-computer interaction module may only include setting and display devices, and the setting and display device further includes an input module and a display module.
  • One end of the input module is connected to one end of the display module, and is connected to the working voltage output end of the power management module, and is powered by the power management module.
  • the other end of the input module is connected to the control module to send data to the control module.
  • the other end of the display module is connected to the control module and receives the data sent by the control module.
  • the human-computer interaction module may include an authorization device and a setting and display device.
  • One end of the authorized device is connected to one end of the setting and display device, and is connected to the working voltage output terminal of the power management module, and is powered by the power management module.
  • the other end of the authorized device is connected to the control module.
  • the other end of the setting and display device is connected to the control module.
  • the human-computer interaction module may include a locking device and a setting and display device.
  • One end of the locking device is connected to the power supply, and the other end is connected to the boosting module, and the power supply supplies power to the boosting module through the locking device.
  • Setting and Display One end of the device is connected to the working voltage output terminal of the power management module, and is powered by the power management module. The other end of the setting and display device is connected to the control module.
  • the human-computer interaction module may include an anti-misoperation switch and a setting and display device.
  • One end of the anti-misoperation switch is connected to one end of the setting and display device, and is connected to the working voltage output end of the power management module, and is powered by the power management module.
  • the other end of the anti-misoperation switch is connected to the control module.
  • the other end of the setting and display device is connected to the control module.
  • the setting and display device is an integral part of the human-computer interaction module to realize its basic functions.
  • the introduction of the authorized device can effectively avoid the illegal use of the detonating device, and fundamentally eliminate the illegal use of the electronic detonator.
  • the introduction of the locking device can further prevent the illegal detonation of the electronic detonator, that is, even if the user obtains the authorization information and enters the normal use state after using the detonating device, if there is no device that can make the locking device open, the device cannot be used. From Explosive electronic detonator.
  • the control of the energy storage process of the energy storage device in the electronic detonator can be achieved, thereby further avoiding the illegal use of the electronic detonator.
  • the introduction of the anti-misoperation switch can avoid the accidental detonation of the electronic detonator caused by the erroneous operation of the detonating device, thereby further improving the safety of the detonating device of the present invention during use.
  • the above authorization means is preferably a logical encryption chip or an encryption system.
  • the locking means comprises a mechanical lock and a key associated therewith.
  • the above-mentioned anti-misoperation switch is preferably a two-button non-self-locking switch.
  • the present invention also provides a main control flow for a detonating device that does not include an authorized device, comprising the following steps: [26] In the first step, the detonating device is turned on.
  • the initiation device is initialized, including initializing the control module and initializing the human-computer interaction module.
  • the third step is to start the communication voltage management process, and the control module starts management of the power management module.
  • the control module detects the output of the human-computer interaction module and performs system scheduling: if the signal for performing the data transmission task is detected, the fifth step is continued; if it is detected that the blasting network needs to be executed The signal of the charging task continues to perform the tenth step; if the signal for performing the detonating task is detected, the step 12 is continued; if the signal for turning off the detonating device is detected, the fifteenth step is continued; otherwise, The control module continues to detect the output of the human interaction module.
  • control module controls the signal modulation module to switch the bus voltage on the signal bus to the communication voltage.
  • the signal sending process is started, and the control module sends data to the electronic detonator through the signal bus.
  • the control module determines whether to perform the data receiving task according to the type of the instruction in the sent data: if the instruction is a single instruction, the data receiving task is performed, and the eighth step is continued; If the instruction is a global instruction, the above data receiving task is not executed, and the fourth step is returned.
  • the signal receiving process is started, and the control module receives the data from the direction of the electronic detonator through the signal bus.
  • the control module controls the signal modulation module to switch the bus voltage on the signal bus back to the bus voltage on the signal bus before the fifth step. Then return to the fourth step.
  • the charging process is started, and the energy storage device in the electronic detonator is charged through the signal bus.
  • control module detects whether the charging process is completed: If the charging is completed, proceed to the first Thirteen steps; if the charging is not completed, return to the fourth step.
  • the detonation process is initiated, and the control module sends a detonation command to the electronic detonator to control the detonation of the electronic detonator through the signal bus.
  • the detonating device is turned off, and the main control flow of the detonating device is ended.
  • the present invention also provides a main control flow of a detonating device including an authorized device, comprising the following steps: [42] Step one, the detonating device is turned on.
  • Step 2 the initiation device initializes, including initializing the control module and initializing the human-computer interaction module.
  • Step 3 the control module reads the authorization information in the authorized device.
  • the authorization information can include a username and password.
  • Step 4 The control module prompts the user to input authorization information through the setting and display device in the human-computer interaction module.
  • Step 5 The control module compares the authorization information read from the authorization device with the authorization information input through the setting and display device: if the comparison result matches, proceed to step 6; if the comparison result If it does not match, return to step four.
  • Step 6. Start the communication voltage management process, and the control module starts management of the power management module.
  • Step VII the control module detects the output of the human-computer interaction module, and performs system scheduling: if the signal for performing the data transmission task is detected, proceeding to step 8; if it is detected that the blasting network charging task needs to be performed If the signal is detected, the step 15 is continued; if the signal of the detonating device needs to be turned off, the step 18 is continued; otherwise, the control module continues to detect The output of the human-computer interaction module.
  • Step 8 The control module controls the signal modulation module to switch the bus voltage on the signal bus to the communication voltage.
  • Step IX the signal sending process is started, and the control module sends data to the electronic detonator through the signal bus.
  • Step 10 After the signal sending process ends, the control module determines whether to perform the data receiving task according to the type of the instruction in the sent data: If the instruction is a single instruction, perform a data receiving task, and proceed to step XI; For the global command, the data receiving task is not executed, and the process returns to step 7.
  • Step 11 Start the signal receiving process, and the control module receives the direction of the electronic detonator through the signal bus. The data.
  • Step 12 After the signal receiving process ends, the control module controls the signal modulation module to switch the bus voltage on the signal bus back to the bus voltage before the execution of step eight; then returns to step 7.
  • Step 13 Start the charging process and charge the energy storage device in the electronic detonator via the signal bus.
  • Step 14 After the charging process is over, return to step 7.
  • Step 15 The control module detects whether the charging process is completed: If the charging is completed, proceed to step 16; if the charging is not completed, return to step 7.
  • Step 16 Start the detonation process, and the control module sends a detonation command to the electronic detonator to control the detonation of the electronic detonator via the signal bus.
  • Step 18 Close the detonation device and end the main control flow of the detonation device.
  • Step A1 the communication voltage management process is initialized, that is, the control module has the following variables in the built-in program.
  • the initial value is stored in its buffer for use, and the buffer receives the initial value of the voltage assignment variable DATA.
  • Step ⁇ 2 Perform the communication voltage regulation process.
  • Step A3 after the communication voltage adjustment process ends, it is detected whether the communication voltage management process end signal is received: If the signal is received, the communication voltage management process is terminated; if not, the process proceeds to step ⁇ 4.
  • Step ⁇ 4 Detect whether the communication time of the communication voltage management process reaches the preset communication voltage adjustment period
  • the initial value DATA of the above voltage assignment variable DATA is determined as the value of the voltage assignment variable DATA that causes the digital-to-analog converter to output its maximum voltage value or minimum voltage value. This ensures that the initial voltage output from the communication voltage output of the power management module is the lowest, thereby reliably ensuring the safety of the communication process between the detonating device and the electronic detonator.
  • Step B1 reading the data expression value of the voltage value on the two signal buses to which the analog/digital converter is sampled, respectively, as ⁇ 2 .
  • step B3 V is calculated.
  • AV V Q - V'.
  • step B4 the adjustment value f(AV) of the communication voltage is calculated by using the difference AV as an input parameter.
  • step B6 the adjusted value DATA is sent to the digital/analog converter.
  • step B7 the communication voltage adjustment process is ended.
  • Step Cl the number of bits of the data to be sent in the data packet is recorded as N.
  • Step C2 Read a piece of data to be sent from the data packet, and use the data to be sent as a starting point of data transmission data.
  • Step C3 after detecting, if the current to-be-sent data is 1, the signal modulation transmitting module sends the modulation signal of the expression data 1; after detecting, if the current to-be-sent data is 0, the signal modulation transmitting module sends the modulation signal of the expression data 0. .
  • Step C5 detecting whether the number of bits N of the data to be sent in the data packet is zero: if the number of bits N of the data to be transmitted in the data packet is zero, the signal sending process ends; if not, the predetermined selection is performed.
  • the signal receiving process in the eighth step and the eleventh step is performed according to the following steps: Step D1: The preset signal is received from the control module to receive the super-inter-turn value T'.
  • Step D2 The detection control module receives the data from the direction of the electronic detonator, and whether the signal reception exceeds the inter-turn value ⁇ ': if it arrives, the signal receiving process ends; if not, proceeds to step D3. .
  • Step D3 detecting whether the control module receives the serial signal sent by the signal conditioning circuit: if the serial signal is received, the serial signal is sampled, and the information of the electronic detonator is obtained, and then returns to step D2; if not received Go to the serial signal and return directly to step D2.
  • the control module controls the signal modulation module to switch the voltage on the signal bus to the detonation voltage required to charge the energy storage device in the electronic detonator.
  • control module detects whether charging is complete: If charging is completed, the charging process ends; if charging is not completed, charging continues.
  • the detonation process in the thirteenth step and the sixteenth step is carried out according to the following steps:
  • the control module detects whether the anti-misoperation switch in the human-computer interaction module is closed and continues for a preset number of seconds: If the anti-misoperation switch is closed and continues for a preset number of seconds, the control module controls the signal modulation module to The bus voltage on the signal bus switches to the communication voltage; if the anti-misoperation switch is not closed, or does not last for a preset number of seconds, the detonation process is terminated.
  • control module controls the signal modulation module to switch the bus voltage on the signal bus to the detonation voltage; this process begins.
  • Figure 1-1 is a general block diagram of the detonating device of the present invention.
  • Figure 1-2 is another general block diagram of the detonating device of the present invention.
  • FIG. 2 is a schematic diagram of the composition of a power management module according to the present invention.
  • FIG. 3-1 is a schematic diagram of a composition of a signal modulation transmitting module connected to a signal modulation transmitting module and a signal modulation transmitting module according to the present invention
  • FIG. 3-2 is a schematic diagram showing the composition of a signal modulation transmission module connected to a signal demodulation receiving module and a signal modulation transmission module according to the present invention
  • FIG. 4 is a schematic diagram of the composition of a signal demodulation receiving module in the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a signal sampling module using resistors in the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of a signal sampling module using an electromagnetic coupler according to the present invention.
  • Figure 7 is a schematic diagram of an embodiment of a signal conditioning circuit of the present invention.
  • FIG. 8-1 is a schematic diagram of an implementation manner of a human-machine interaction module according to the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a human-machine interaction module configured by a setting and display device according to the present invention.
  • FIG. 8-3 is an embodiment of a human-machine interaction module including an authorization device according to the present invention; Schematic diagram
  • FIG. 8-4 is a schematic diagram of an embodiment of a human-machine interaction module including a locking device according to the present invention
  • FIG. 8-5 is a schematic diagram of an embodiment of a human-machine interaction module including an anti-misoperation switch according to the present invention
  • Figure 9-1 is a main control flow of the detonating device of the present invention.
  • FIG. 9-2 is a main control flow of the detonating device with the authorization device of the present invention.
  • FIG. 10 is a flow chart of a communication voltage management process in the present invention.
  • FIG. 11 is a flowchart of a communication voltage adjustment process according to the present invention.
  • FIG. 13 is a flowchart of a signal receiving process in the present invention.
  • Figure 14 is a flow chart of the charging process in the present invention.
  • Figure 15 is a flow chart of the initiation process in the present invention.
  • an electronic detonator detonating device is used in conjunction with the electronic detonator of the patent ZL03156912.9, and the patent document 200820111269.7 or 200820111270.X, including the control module 101, the person The machine interaction module 102, the power management module 104, the signal modulation transmitting module 103, the signal demodulation receiving module 105, the signal bus 106, and the power source 107.
  • the detailed connection relationship is described as follows:
  • the control module 101 is connected to the remaining modules except the power source 107 and the signal bus 106, and is in signal communication with the remaining modules. Control module 101 coordinates and controls their operational status based on the information received from these modules.
  • a power source 107 is coupled to the power management module 104 to provide operational energy to the detonating device and to output the desired operating energy to the electronic detonator via the signal bus 106.
  • the power source 107 is also connected to the human-machine interaction module 102, and supplies power to the signal modulation transmitting module 103 through the control of the human-machine interaction module 102, thereby providing a detonation voltage required for the blasting network to detonate the electronic detonator.
  • the signal bus 106 is refined into two undivided wires for connecting the detonating device to the electronic detonator to provide power to the electronic detonator and communication with the electronic detonator.
  • the power management module 104 is used to generate the operating power voltage required for the normal operation of the detonating device itself, and the communication voltage required for communication with the electronic detonator.
  • Working voltage output terminal 802 is connected to the power management module 104 to interactive module 102, a control module 101, module 103 transmits signal modulation, demodulation and signal receiving module 105, the power supply to each of the modules.
  • the signal modulation transmitting module 103 and the signal demodulation receiving module 105 are connected in series between the communication voltage output terminal 801 of the power management module 104 and one of the signal buses 106. Electricity
  • the pair of communication voltage samples 804 of the source management module 104 are respectively connected to the two signal buses 106.
  • the power management module 104 samples the voltages on the two signal buses 106, and according to the result, the control module 101 The voltage output from the communication voltage output terminal 801 is adjusted under control.
  • the control terminal 803 of the power management module 104 is connected to the control module 101 to perform bidirectional communication with the control module 101. That is, the power management module 104 provides the control module 101 with the result of sampling the voltage on the signal bus 106, and receives the control module 101.
  • the control information completes the adjustment of the communication voltage outputted by the communication voltage output terminal 801.
  • the human-computer interaction module 102 is connected to the other end of the signal modulation transmitting module 103, and the power source 107 supplies power to the signal modulation transmitting module 103 through the human-machine interaction module 102.
  • the other of the signal buses 106 is connected to the remaining one of the signal modulation transmitting module 103.
  • FIG. 1-1 corresponds to the case where the communication voltage output terminal 801 of the power management module 104 is directly connected to the signal modulation transmitting module 103
  • FIG. 1-2 corresponds to FIG.
  • the communication voltage output 801 of the power management module 104 is directly connected to the signal demodulation receiving module 105.
  • the two connection modes correspond to different specific implementations of the internal configuration of the signal modulation transmitting module and the signal demodulation receiving module, and the two connection modes in the overall block diagram can realize the two-way communication between the detonating device and the electronic detonator.
  • the power management module 104 includes an analog/digital converter 111, a digital/analog converter 112, and a voltage conversion module 113.
  • the specific connection relationship is described as follows:
  • One end of the voltage conversion module 113 is connected to the power source 107 to receive the working energy provided by the power source 107.
  • the other end of the voltage conversion module 113 serves as the communication voltage output terminal 801 of the power management module 104 and leads to the outside of the power management module 104.
  • the voltage conversion module 113 is also connected at one end to a digital-to-analog converter 112 for receiving a signal output from the digital-to-analog converter 112, thereby adjusting the voltage output of the communication voltage output terminal 801.
  • the remaining ends of the voltage conversion module 113 are respectively connected to the analog-to-digital converter 111 and the digital-to-analog converter 112, and supply the power required for operation to the analog-to-digital converter 111 and the digital-to-analog converter 112, including the mode/ The digital converter 111 and the digital-to-analog converter 112 implement a reference power supply required for the conversion function; likewise, the end of the voltage conversion module 113, as the operating voltage output 802 of the power management module 104, and the power management module 104
  • the external signal demodulation receiving module 105, the human-machine interaction module 102, the signal modulation transmitting module 103, and the control module 101 are connected to provide power to the above-mentioned modules for their operation.
  • These modules may require one or more operating power supplies of different voltage values, such as control modules 101 of DSP, FPGA, and/or ARM, requiring core operating voltages and input/output interface voltages.
  • control modules 101 of DSP, FPGA, and/or ARM requiring core operating voltages and input/output interface voltages.
  • One end of the analog-to-digital converter 111 is connected to the working voltage output terminal 802, and the other end is connected to the control module 10 1, and the other two ends are connected as a pair of communication voltage samples 804 of the power management module 104, respectively.
  • Two signal buses 106 Two signal buses 106.
  • the analog/digital converter 111 is configured to convert the analog voltage signals on the two signal buses 106 into digital voltage signals that can be recognized by the control module 101 under the control of the control module 101, and provide them to the control module 101 for processing.
  • One end of the digital-to-analog converter 112 is connected to the working voltage output terminal 802, and the other end is connected to the voltage conversion module 113, and sends a communication voltage adjustment signal to the voltage conversion module 113, and the rest of the digital-to-analog converter 112 One end is connected to the control module 101.
  • the digital-to-analog converter 112 is configured to receive a processing result of the voltage signal sample information on the signal bus 106 by the control module 101, and the processing result is converted into an analog voltage signal, that is, the communication voltage adjustment signal, by the digital-to-analog converter 112.
  • the voltage conversion module 113 is provided to adjust the communication voltage output.
  • the communication voltage output terminal 801 of the power management module 104 described above can be connected to the signal modulation transmitting module 103 or the signal demodulation receiving module 105 outside the power management module 104.
  • the embodiment shown in FIG. 2 is the case of being connected to the signal modulation transmitting module 103, and corresponds to the overall block diagram in FIG.
  • the signal modulation transmitting module 103 includes a signal modulation module 131 and a boosting module 132.
  • the boosting module 132 is connected to the human-machine interaction module 102, and the power supply 107 supplies power to the boosting module 132 through the human-machine interaction module 102 to generate a voltage required for detonating the electronic detonator, that is, a detonation voltage.
  • the other end of the boosting module 132 is connected to the signal modulation module 131, and the signal modulation module 131, under the control of the control module 101, switches the voltage on the signal bus 106 to liter after charging to the energy storage device in the electronic detonator.
  • the detonation voltage output by the voltage module 132 is connected to the human-machine interaction module 102, and the power supply 107 supplies power to the boosting module 132 through the human-machine interaction module 102 to generate a voltage required for detonating the electronic detonator, that is, a detonation voltage.
  • the other end of the boosting module 132 is connected to the signal modulation module 131, and the signal modulation module 131
  • the port 1 of the signal modulation module 131 is connected to the working voltage output terminal 802 of the power management module 104, the port 2 is connected to the boosting module 132, and the port 3 is connected to the control module 101, and receives the control signal sent by the control module 101.
  • Port 4 of signal modulation module 131 leads to one of signal buses 106.
  • the signal modulation module 131 also has a port 5 and a port 6. In the embodiment shown in FIG. 3-1, the port 5 of the signal modulation module 13 1 is connected to the communication voltage output terminal 801 of the power management module 104, and the port 6 is connected to the signal solution.
  • the receiving module 105 corresponds to the overall block diagram in FIG. 1-1.
  • the port 5 of the signal modulation module 13 1 can be connected to the signal demodulation receiving module 105, and the port 6 leads to the other of the signal bus 106, as shown in FIG. 3-2, and FIG.
  • the overall block diagram in 2 corresponds.
  • the signal modulation module 131 is configured to switch the voltage outputted to the signal bus 106 according to the control signal of the control module 101, gP, in need of detonating electrons
  • the detonator, the signal bus 106 is the detonation voltage output by the boost module 132, and after communication with the electronic detonator, the signal bus 106 is the communication voltage output by the power management module 104.
  • the signal demodulation receiving module 105 includes a signal sampling module 152 and a signal conditioning circuit 153.
  • One end of the signal conditioning circuit 153 is connected to the working voltage output 802 of the power management module 104, the other end is connected to the control module 101, and the data is sent to the control module 101, and the other end is connected to the port 7 of the signal sampling module 152.
  • the signal sampling module 152 also leaves port 8 and port 9: In the embodiment shown in FIG. 4, port 8 of signal sampling module 152 is coupled to signal modulation transmitting module 103, which leads to signal bus 106, as in Figure 1-1.
  • the overall block diagram corresponds.
  • the port 8 of the signal sampling module 152 can be connected to the communication voltage output terminal 80 of the power management module 104, and the port 9 is connected to the signal modulation module 131 in the signal modulation transmitting module 103, as shown in FIG. 1-2.
  • the overall block diagram corresponds.
  • the signal sampling module 152 is configured to extract digital information loaded on the signal bus 106 by the electronic detonator blasting network, thereby obtaining a signal transmitted from the electronic detonator; and the signal conditioning circuit 153 is configured to process the analog signal output by the signal sampling module 152. And convert it to a digital signal that the control module 101 can recognize.
  • the above signal sampling module 152 is taken as a resistor 158.
  • both ends of the resistor 15 8 are respectively connected to one of the signal modulation transmitting module 103 and the signal bus 106, corresponding to the overall block diagram in Fig. 1-1.
  • the two ends of the resistor 158 may be connected to the signal modulation transmitting module 103 and the communication voltage output terminal 801 of the power management module 104, respectively, corresponding to the overall block diagram in Figs. 1-2. Both ends of the resistor 158 are also connected to the signal conditioning circuit 153, respectively.
  • the signal sampling module 152 is taken as an electromagnetic coupler 155.
  • the primary windings of the electromagnetic coupler 155 are respectively connected to one of the signal modulation transmitting module 103 and the signal bus 106, corresponding to the overall block diagram in Fig. 1-1.
  • the primary windings of the electromagnetic coupler 155 can also be connected between the signal modulation transmitting module 103 and the communication voltage output terminal 81 of the power management module 104, respectively, and the overall block diagram in FIG. 1-2.
  • the secondary winding of the electromagnetic coupler 155 is connected to the signal conditioning circuit 153.
  • the above electromagnetic coupler 155 may be an air core transformer or a magnetic core transformer, and a magnetic core transformer is preferred.
  • the signal conditioning circuit 153 includes a filter circuit 161, an amplification circuit 162, and a comparator 163.
  • One end of the filter circuit 161 is connected to the signal sampling module 152, and the analog signal extracted from the direction of the electronic detonator on the signal bus 106 sent by the signal sampling module 152 is received; the other end of the filter circuit 161 is connected to the amplified power.
  • the path 162 is for supplying an analog signal representing the useful information that is filtered out to the amplifying circuit 162.
  • the amplifying circuit 162 is connected to the filter circuit 161, the other end is connected to the working voltage output terminal 802 of the power management module 104, and the other end of the amplifying circuit 162 is connected to the comparator 163.
  • the comparator 163 is connected to the control module 101, the other end is connected to the working voltage output terminal 802 of the power management module 104, and the other end of the comparator 163 is connected to the amplifying circuit 162.
  • the comparator 163 converts the analog signal output from the amplifying circuit 162 into a digital signal.
  • the signal is provided to the control module 101.
  • the comparator 163 described above is preferably a hysteresis comparator to improve the anti-interference performance of the signal conversion chirp.
  • the processing of the analog signal output from the signal sampling module 152 can be performed by first filtering and then amplifying, as shown in the embodiment of FIG. It is also possible to use a method of first amplifying and then filtering, and the two are equivalent.
  • the human-machine interaction module 102 includes a setting and display device 123, an authorization device 121, a locking device 122, and an anti-misoperation switch 124.
  • the setting and display device 123 can further include an input module 141 and a display module 142.
  • One end of the input module 141 is connected to the operating voltage output terminal 802 of the power management module 104 in common with one end of the display module 142.
  • the other end of the input module 141 is connected to the control module 101 to transmit data to the control module 101.
  • the other end of the display module 142 is connected to the control module 101, and receives data transmitted by the control module 101.
  • the power source 107 supplies power to the boost module 131 through a direct connection inside the human-machine interaction module 102.
  • the input module 141 can be taken as a keyboard input device, and the display module 142 can be used as a display device such as an LED or an LCD for realizing information interaction between the operator and the detonating device, as shown in FIG. 8-2.
  • the setting and display device 123 is an indispensable component for realizing the basic functions of human-computer interaction.
  • 8-3, 8-4, and 8-5 respectively correspond to an embodiment of a human-machine interaction module 102 that further includes an authorizing device 1 21, a locking device 122, or an anti-misoperation switch 124.
  • the authorization device 121 is composed of a memory card that stores authorization information and a data interface that is solidified on the detonating device and is associated with the memory card.
  • the memory card is configured to store authorization information related to legal use of the detonating device, the authorization information may include a username and a password, and may further include biometric information related to a legitimate operator of the detonating device, such as a fingerprint, an iris Wait.
  • the above memory card can be embodied For a digital encryption card such as an IC card, the authorization information stored therein is read by the control module 101 and compared and processed.
  • the locking device 122 is connected to the power source 107, and the other end is connected to the boosting module 131.
  • the power source 107 supplies power to the boosting module 131 through the locking device 122.
  • the control of the locking or unlocking of the locking device 122 by an external mechanical device controls the generation or elimination of the voltage required to detonate the electronic detonator.
  • one end of the anti-misoperation switch 124 is connected to the power management module 104, and the other end is connected to the control module 101.
  • the anti-misoperation switch 124 can generally use two independent buttons. In order to detonate the electronic detonator, the same length must be pressed and the inter-turn length must be preset to generate the detonating signal of the detonating electronic detonator to avoid operating the detonating device. Accidental explosions caused by misuse during the process.
  • the authorization device 121 described above is preferably a logical encryption chip or an encryption system.
  • the locking device 122 preferably includes a mechanical lock and a key associated therewith.
  • the above-described anti-misoperation switch 124 is preferably a two-button non-self-locking switch.
  • the present invention also provides a main control flow of the detonating device, which includes the following steps:
  • the first step is to turn on the detonating device.
  • the initiation device is initialized; wherein the initialization includes an initialization control module 101 and an initialization human-machine interaction module 102.
  • the communication voltage management process is started, and the control module 101 starts management of the power management module 104.
  • the control module 101 detects the output of the human-machine interaction module 102 and performs system scheduling: if the control module 101 detects a signal to perform a data transmission task, the fifth step is continued; if the control module 101 detects the signal that needs to perform the blasting network charging task, and then proceeds to the tenth step; if the control module 101 detects the signal that needs to perform the detonating task, then proceeds to the twelfth step; if the control module 101 detects that the detonation needs to be turned off The signal of the device continues to perform the fifteenth step; otherwise, the control module 101 continues to detect the output of the human interaction module 102.
  • control module 101 controls the signal modulation module 131 to switch the voltage on the signal bus 106 to the pass. Letter voltage.
  • the signal transmission process is initiated, and the control module 101 transmits data to the electronic detonator via the signal bus 106.
  • the control module 101 determines whether to perform the data receiving task according to the type of the instruction in the sent data: if the instruction is a single instruction, the data receiving task is performed, and the eighth step is continued; If the instruction is a global instruction, the data reception task is not executed, and the fourth step is returned.
  • the signal receiving process is initiated, and the control module 101 receives data from the direction of the electronic detonator via the signal bus 106.
  • the control module 101 controls the signal modulation module 131 to switch the bus voltage on the signal bus 106 back to the bus voltage on the signal bus 106 before the fifth step, and then returns to the fourth step.
  • the charging process is initiated, and the energy storage device in the electronic detonator is charged through the signal bus 106.
  • control module 101 detects whether the charging process is completed: If the charging is completed, proceed to the thirteenth step; if the charging is not completed, return to the fourth step.
  • the detonation process is initiated, and the control module 101 sends a detonation command to the electronic detonator via the signal bus 106 to control the detonation of the electronic detonator.
  • the detonating device is turned off, and the main control flow of the detonating device is ended.
  • the electronic detonator detonator performs the above-mentioned main control flow as shown in Figure 9-1, enabling communication with the electronic detonator and controlling the reliable detonation of the electronic detonator.
  • the communication voltage management process is first started, and the voltage outputted to the signal bus 106 is adjusted to the communication voltage to ensure communication with the electronic detonator.
  • the detonating device performs a data transmission task, a blasting network charging task, a detonating task, or a shutdown task according to an instruction given by the operator through the human-machine interaction module 102 to complete the control of the pre-detonation preparation and the detonation process.
  • the present invention also provides a main control flow of a detonating device including an authorization device 121, which includes the following steps:
  • Step one turn on the detonating device.
  • Step 2 The initiation device performs initialization; wherein the initialization includes an initialization control module 101 and an initialization human-machine interaction module 102.
  • Step 3 the control module 101 reads the authorization information in the authorization device 121, and the authorization information includes a username and a password.
  • Step 4 the control module 101 prompts the user to input authorization information through the setting and display device 123 in the human-machine interaction module 102.
  • Step 5 The control module 101 compares the authorization information read from the authorization device 121 with the authorization information input through the setting and display device 123: if the comparison result matches, proceed to step 6; If the comparison result does not match, return to step four.
  • Step 6 the communication voltage management process is started, and the control module 101 starts management of the power management module 104.
  • Step VII the control module 101 detects the output of the human-machine interaction module 102, and performs system scheduling: if the control module 101 detects a signal that needs to perform a data transmission task, proceed to step 8; if the control module 101 detects If the signal to perform the blasting network charging task is to be executed, proceed to step 13; if the control module 101 detects the signal that needs to perform the detonating task, proceed to step 15; if the control module 101 detects that the signal of the detonating device needs to be turned off Then, proceed to step 18; otherwise, the control module 101 continues to detect the output of the human interaction module 102.
  • Step VIII Control Module 101 Control Signal Modulation Module 131 switches the bus voltage on signal bus 106 to the communication voltage.
  • Step IX the signal transmission process is initiated, and the control module 101 transmits data to the electronic detonator via the signal bus 106.
  • Step 10 after the signal sending process ends, the control module 101 determines whether to perform the data receiving task according to the type of the instruction in the sent data: If the instruction is a single instruction, perform a data receiving task, and proceed to step XI; If the instruction is a global instruction, the data reception task is not performed, and step 7 is returned.
  • Step XI the signal receiving process is initiated, and the control module 101 receives data from the direction of the electronic detonator via the signal bus 106.
  • Step 12 After the signal receiving process ends, the control module 101 controls the signal modulation module 131 to switch the voltage on the signal bus 106 back to the bus voltage on the signal bus 106 before the execution of step eight, and then returns to step 7.
  • Step 4 initiates the charging process, charging the energy storage device in the electronic detonator via signal bus 106.
  • Step 4 After the charging process is over, return to step 7.
  • Step 4 5 Control module 101 detects whether the charging process is completed: If the charging is completed, proceed to step -f six; if the charging is not completed, return to step 7.
  • Step 4-6 the detonation process is started, and the control module 101 sends a detonation command for detonating the electronic detonator to the electronic detonator via the signal bus 106.
  • Step 17 After the detonation process is over, return to step 7.
  • Step 18 Close the detonating device and end the main control flow of the detonating device.
  • the main control flow shown in Figure 9-2 adds the authorization information comparison step after initialization to the main control flow shown in Figure 9-1.
  • the authorization information is compared after the power is turned on, and the comparison result is matched, and the operator can perform normal operation on the detonating device to control the detonation process. This ensures the legitimacy of the operation of the detonator and thus ensures the legitimacy of the operation of the electronic detonator.
  • Step A1 the communication voltage management process is initialized, that is, the control module 101 is built into the program.
  • the initial value of the following variable is stored in its buffer for use, and the buffer also receives the initial value of the voltage assignment variable DATA.
  • Step ⁇ 2 the communication voltage adjustment process is executed, and the voltage on the signal bus 106 is adjusted to be the communication voltage.
  • Step A3 after the communication voltage adjustment process ends, detecting whether the communication voltage management process end signal is received: If the communication voltage management process end signal is received, the communication voltage management process is ended; if not, proceeding to the step ⁇ 4.
  • Step ⁇ 4 Detect whether the communication voltage management process runs during the day to reach the preset communication voltage adjustment period
  • the initial value DATA Q of the above-described voltage assignment variable DATA is taken as a value of the voltage assignment variable DATA that causes the digital-to-analog converter 112 to output its maximum voltage value or minimum voltage value. This ensures that the voltage outputted by the communication voltage output terminal 801 of the power management module 104 is the lowest, thereby reliably ensuring the safety of the communication process between the detonating device and the electronic detonator.
  • step A2 the communication voltage adjustment process in step A2 above is performed as follows:
  • Step B1 reading the data expression values of the voltage values on the two signal buses 106, which are analogous to the analog/digital converter 111, are respectively recorded as ⁇ 2 .
  • Step ⁇ 2 calculate the absolute value of the difference between 1 ⁇ 4 and 1 ⁇ 4, denoted as V'.
  • Step B3 calculate the difference AV between 1 ⁇ 4 and '.
  • Step ⁇ 4 using the difference AV as the input parameter, calculate the adjustment value f(AV) of the communication voltage.
  • Step B6 the adjusted value DATA is sent to the digital-to-analog converter 112, and the communication voltage adjustment signal is transmitted from the digital-to-analog converter 112 to the voltage conversion module 113.
  • Step B7 End this communication voltage regulation process.
  • the function f(AV) for calculating the communication voltage adjustment value using the difference AV as a variable can be established based on the empirical value of multiple experiments, and the calibration value is supplied for the voltage assignment variable DATA to obtain the adjusted DATA value.
  • Step Cl the number of bits of the data to be transmitted in the data packet is recorded as N.
  • Step C2 reading a piece of data to be sent from the data packet, and using the data to be sent as a starting point of the data transmission data packet.
  • Step C3 after detecting, if the current data to be transmitted is 1, the control module 101 sends a control signal expressing the data 1 to the signal modulation transmitting module 103, so that the signal modulation transmitting module 103 outputs the modulated signal expressing the data 1; If the current data to be transmitted is 0, the control module 101 sends a control signal expressing the data 0 to the signal modulation transmitting module 103, so that the signal modulation transmitting module 103 outputs the modulated signal expressing the data 0.
  • Step C5 detecting whether the number of bits N of the data to be transmitted in the data packet is zero: if the number of bits N of the data to be transmitted in the data packet is zero, the signal transmission process is ended; if not, the predetermined Select the next rule of data to be sent, select and read the next data to be sent in the packet, and then return to step C3.
  • the signal receiving process in the eighth step and the eleventh step is performed according to the following steps:
  • Step D1 the preset signal is received from the control module 101 to receive the inter-turn value T'.
  • Step D2 the detection control module 101 receives the data from the direction of the electronic detonator, and whether the signal reception exceeds the inter-turn value ⁇ ': if it arrives, the signal receiving process ends; if not, continues Go to step D3.
  • Step D3 detecting whether the control module 101 receives the serial signal sent by the signal conditioning circuit 153: If the serial signal is received, the serial signal is sampled, and the information of the electronic detonator is acquired, and then the steps are returned. D2; If the serial signal is not received, return directly to step D2.
  • control module 101 controls the signal modulation module 131 to switch the voltage on the signal bus 106 to the detonation voltage required to charge the energy storage device in the electronic detonator.
  • control module 101 detects whether the charging is completed: if the charging is completed, the charging process is ended; if the charging is not completed, the charging is continued.
  • the detonation process in the thirteenth step and the sixteenth step is performed according to the following steps: [204] First, the control module 101 detects whether the anti-error operation switch 124 in the human-machine interaction module 102 is closed. And continuing the preset value seconds: If the anti-misoperation switch 124 is closed and continues for a preset number of seconds, the control module 101 controls the signal modulation module 131 to switch the voltage on the signal bus 106 to the communication voltage;
  • control module 101 controls the signal modulation module 131 to switch the voltage on the signal bus 106 to the detonation voltage, ending the detonation process.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Bags (AREA)
  • Power Sources (AREA)

Description

说明书 起爆装置及其主控流程
技术领域
[1] 本发明涉及火工品起爆控制技术领域, 尤其涉及一种可与电子雷管配套使用、 能实现与电子雷管双向通信、 起爆电子雷管等基本功能的起爆装置及其主控流 程。
背景技术
[2] 现有的电雷管起爆器一般釆用串联或串并联结合的电雷管网路。 串联上千发电 雷管吋, 为保证网络中所有电雷管均能同吋起爆, 电雷管起爆器应能瞬间产生 一到几个安培的电流, 该电流一定要大于每发电雷管的串联准爆电流, 否则会 产生拒爆、 半爆等现象。 单发电雷管的电阻一般在一到几个欧姆左右, 因此需 要上述电雷管起爆器具有升压电路, 并能提供千伏量级的输出电压。 因此, 上 述电雷管起爆器在使用吋具有一定的危险性。
[3] 若上千发电雷管并联起爆, 则上述电雷管起爆器需要的输出电压比较低, 但其 瞬间输出电流在大型网络中将非常巨大, 一般的电雷管起爆器难以达到相应需 求的千安培量级的输出能力。 另外, 并联网络也不易检测网络状态, 容易出现 丢炮的情况。 因此, 一般釆用串并结合的方式构建雷管起爆网路, 但即使如此 , 亦存在上述诸多危险性。
[4] 由于电雷管及其起爆器的上述缺陷, 电子雷管应运而生。 自上世纪八十年代起
, 电子雷管概念一提出, 世界上多个国家便在电子雷管及其起爆装置领域展开 了竞争。 电子雷管, 通过逻辑控制和双向通信实现对起爆过程的控制, 防止非 法起爆。 电子雷管必须通过专用的起爆装置才能将其起爆, 因此, 在电子雷管 研制的同吋, 本发明提供了与专利 ZL03156912.9、 和专利文件 200820111269.7或 者 200820111270.X中所述电子雷管配套使用的电子雷管起爆装置及其主控流程 对发明的公开
发明内容 [5] 本发明的目的在于解决上述现有技术的缺陷, 提供一种可与电子雷管配套使用 的起爆装置, 实现了与电子雷管双向通信、 起爆电子雷管等基本功能。
[6] 本发明的技术目的是通过下述技术方案实现的:
[7] 一种电子雷管起爆装置, 包括控制模块、 人机交互模块、 电源管理模块、 信号 调制发送模块、 信号解调接收模块、 信号总线、 和电源。 控制模块连接到除电 源和信号总线外的上述其余模块, 分别同这些模块进行信号联系。 电源连接到 电源管理模块和人机交互模块。 电源管理模块的工作电压输出端连接到人机交 互模块、 控制模块、 信号调制发送模块、 和信号解调接收模块, 并向上述各模 块供电; 电源管理模块的控制端连接到控制模块, 与控制模块进行双向通讯; 电源管理模块的一对通信电压釆样端分别与信号总线连接; 信号调制发送模块 和信号解调接收模块串联在电源管理模块的通信电压输出端与信号总线的一根 之间。 人机交互模块连接到信号调制发送模块的再一端, 电源通过人机交互模 块向信号调制发送模块供电。 信号总线的另一根连接到信号调制发送模块其余 的一端。
[8] 上述技术方案构建了本发明电子雷管起爆装置的基本框架, 实现了起爆装置对 起爆能量的控制、 对起爆过程的管理和控制、 以及与电子雷管的双向通信等起 爆电子雷管所需的基本功能。
[9] 对上述技术方案中的诸模块逐一详述:
[10] 其一, 电源管理模块包括模 /数转换器、 数 /模转换器和电压转换模块。 电压转 换模块一端与电源连接; 一端通向电源管理模块外部, 构成电源管理模块的通 信电压输出端; 电压转换模块还有一端连接到数 /模转换器; 电压转换模块其余 一端在电源管理模块内部同吋分别连接到模 /数转换器和数 /模转换器, 该端还在 电源管理模块外部同吋连接到信号解调接收模块、 人机交互模块、 信号调制发 送模块和控制模块, 构成电源管理模块的工作电压输出端。 模 /数转换器一端连 接电压转换模块, 由电压转换模块供电; 一端连接控制模块; 其余两端分别连 接到信号总线的两根, 构成电源管理模块的通信电压釆样端。 数 /模转换器一端 连接电压转换模块, 由电压转换模块供电; 一端连接到电压转换模块的另一端 , 向电压转换模块发送通信电压调节信号; 数 /模转换器其余一端连接控制模块 [11] 电源管理模块的这种实施方案, 实现了对其输出的通信电压值的预设与监控。 将通信电压的电压值控制得低于电子雷管的安全电压值, 亦即低于起爆电子雷 管所需的最低电压值, 就可保证在起爆前的准备阶段, 上述起爆装置内部不具 备足够起爆电子雷管的电压, 从而保障了起爆前操作电子雷管的安全性。 该通 信电压与起爆电子雷管所需电压相比要低得多, 从而更进一步保证了起爆装置 与电子雷管通信过程的安全。
[12] 其二, 信号调制发送模块包括信号调制模块和升压模块。 升压模块一端连接人 机交互模块, 由电源通过人机交互模块向升压模块供电; 升压模块的另一端连 接到信号调制模块。 信号调制模块的端口一连接到电源管理模块的工作电压输 出端; 端口二连接升压模块; 端口三连接控制模块, 接收控制模块发送的控制 信号; 信号调制模块的端口四通向信号总线的一根。 信号调制模块的端口五连 接到电源管理模块的通信电压输出端, 端口六连接到信号解调接收模块; 或者 , 信号调制模块的端口五连接到信号解调接收模块, 端口六通向信号总线的另 一根。
[13] 信号调制发送模块中的升压模块用于产生向电子雷管中的储能装置充电所需的 起爆电压, 信号调制模块用于完成对起爆装置向信号总线上输出的电压的切换 , 亦即, 在通信电压和起爆电压之间的转换, 使得信号总线上的电压分别满足 通信吋、 和向电子雷管充电吋所需电压的要求。 这样就实现了起爆装置对电子 雷管所需能量的管理和控制: 一方面, 在通信阶段, 将信号总线上的电压控制 为上述通信电压, 保证了与电子雷管通信过程的安全性; 另一方面, 在起爆阶 段, 将信号总线上的电压切换到通过上述升压模块输出的高电压, 即上述起爆 电压, 从而保证电子雷管获得足够可靠起爆的能量。 信号调制模块还完成本起 爆装置向电子雷管发送数据吋数据的调制, 从而实现了起爆装置与电子雷管之 间的直流载波通信。
[14] 其三, 信号解调接收模块包括信号取样模块、 和信号调理电路。 信号调理电路 的一端连接电源管理模块的工作电压输出端; 信号调理电路的另一端连接到控 制模块, 向控制模块发送数据; 其余的一端连接信号取样模块的端口七。 信号 取样模块的端口八连接信号调制发送模块中的信号调制模块, 端口九通向信号 总线; 或者, 信号取样模块的端口八连接电源管理模块的通信电压输出端, 端 口九连接信号调制发送模块中的信号调制模块。
[15] 上述信号取样模块可取为一电阻, 该电阻的两端分别连接到信号调制发送模块 和信号总线的一根之间; 或者, 该电阻两端分别连接到信号调制发送模块和电 源管理模块的通信电压输出端之间。 电阻的两端还分别连接到信号调理电路。 釆用电阻构成取样模块的实施方案简单易行。 并且, 电阻为一无源器件, 不会 在取样吋产生附加噪声。 当信号总线上有电流吋, 电阻两端会形成一定的压降 。 随总线上电流的变化, 其压降线性变化, 从而输入到信号调理电路的压降的 变化即表示了信号总线上电流的变化, 进而表达了电子雷管方向传来的信息。
[16] 上述信号取样模块还可取为一电磁耦合器, 其初级线圏两端分别连接到信号调 制发送模块和信号总线的一根之间; 或者, 该电磁耦合器的初级线圏两端分别 连接到信号调制发送模块和电源管理模块的通信电压输出端之间。 电磁耦合器 的次级线圏连接到信号调理电路。 电磁耦合器, 本质上为在信号总线上接入的 电感, 其提取的为总线上信息的变化。 电感为一储能器件, 因此, 当总线上的 电流信号变化吋, 会在电磁耦合器两端产生一定压降, 而当总线电流稳定吋, 电感阻抗为零, 不会像电阻构成的取样模块那样存在静态压降, 因此不会产生 基线的漂移。
[17] 上述信号调理电路可包含滤波电路、 放大电路、 和比较器。 滤波电路的一端连 接信号取样模块, 接收信号取样模块发送来的数据; 滤波电路的另一端连接到 放大电路。 放大电路一端连接滤波电路, 另一端连接电源管理模块的工作电压 输出端, 放大电路的其余端连接到比较器。 比较器一端连接到控制模块, 另一 端连接电源管理模块的工作电压输出端, 比较器的其余端连接放大电路。 上述 信号调理电路中滤波电路和放大电路的接入顺序可以互换, 且二者等效。 上述 比较器优选为滞回比较器。 上述信号调理电路完成了模拟信号向数字信号的转 换, 且转换的相应特性较好, 是一种简单易实现的模 /数信号转换方式。 另外, 滞回比较器具有较好的抗噪声干扰的能力。
[18] 其四, 人机交互模块包含设定及显示装置、 授权装置、 锁定装置、 和防误操作 开关。 其中, 设定及显示装置的一端连接电源管理模块的工作电压输出端, 由 电源管理模块供电, 另一端连接控制模块。 授权装置的一端连接电源管理模块 的工作电压输出端, 由电源管理模块供电, 另一端连接控制模块。 锁定装置一 端连接电源, 另一端连接到升压模块, 电源通过锁定装置向升压模块供电。 防 误操作开关的一端连接电源管理模块的工作电压输出端, 由电源管理模块供电 , 另一端连接控制模块。
[19] 或者, 人机交互模块可仅包含设定及显示装置, 设定及显示装置进一步包含输 入模块和显示模块。 输入模块的一端与显示模块的一端连接, 并共同连接电源 管理模块的工作电压输出端, 由电源管理模块供电。 输入模块的另一端连接到 控制模块, 向控制模块发送数据。 显示模块的另一端连接控制模块, 接收控制 模块发送来的数据。
[20] 或者, 人机交互模块可包含授权装置和设定及显示装置。 授权装置的一端与设 定及显示装置的一端连接, 并共同连接到电源管理模块的工作电压输出端, 由 电源管理模块供电。 授权装置的另一端连接控制模块。 设定及显示装置的另一 端连接控制模块。
[21] 或者, 人机交互模块可包含锁定装置和设定及显示装置。 锁定装置一端连接电 源, 另一端连接到升压模块, 电源通过锁定装置向升压模块供电。 设定及显示 装置的一端连接电源管理模块的工作电压输出端, 由电源管理模块供电, 设定 及显示装置的另一端连接控制模块。
[22] 或者, 人机交互模块可包含防误操作开关和设定及显示装置。 防误操作开关的 一端与设定及显示装置的一端连接, 并共同连接到电源管理模块的工作电压输 出端, 由电源管理模块供电。 防误操作开关的另一端连接控制模块。 设定及显 示装置的另一端连接控制模块。
[23] 在上述人机交互模块的诸实施方式中, 设定及显示装置为人机交互模块实现其 基本功能必不可少的组成部分。 授权装置的引入能有效避免起爆装置的非法使 用, 从根本上杜绝电子雷管的非法使用。 锁定装置的引入能进一步避免电子雷 管的非法起爆, 亦即, 在使用起爆装置吋, 即使用户获得了上述授权信息, 进 入正常使用状态, 但若没有能使得锁定装置开启的装置配套使用, 仍然无法起 爆电子雷管。 通过控制升压模块是否通电, 达到对电子雷管内储能装置的储能 过程的控制, 从而能进一步避免电子雷管的非法使用。 防误操作开关的引入能 避免因对起爆装置的误操作而导致的电子雷管的意外起爆, 从而进一步提高本 发明的起爆装置在使用过程的安全性。
[24] 上述授权装置优选为逻辑加密芯片或加密系统。 上述锁定装置优选包含机械锁 头及与之相配的钥匙。 上述防误操作开关优选为二个按钮式非自锁开关。
[25] 本发明还提供了不包含授权装置的起爆装置的主控流程, 包含以下步骤: [26] 第一步, 开启起爆装置。
[27] 第二步, 起爆装置进行初始化, 包括初始化控制模块和初始化人机交互模块。
[28] 第三步, 启动通信电压管理进程, 控制模块对电源管理模块开始管理。
[29] 第四步, 控制模块对人机交互模块的输出进行检测, 并进行系统调度: 若检测 到需执行数据发送任务的信号, 则继续执行第五步; 若检测到需执行爆破网路 充电任务的信号, 则继续执行第十步; 若检测到需执行起爆任务的信号, 则继 续执行第十二步; 若检测到需关闭起爆装置的信号, 则继续执行第十五步; 否 则, 控制模块继续检测人机交互模块的输出。
[30] 第五步, 控制模块控制信号调制模块将信号总线上的总线电压切换到通信电压
[31] 第六步, 启动信号发送进程, 控制模块通过信号总线向电子雷管发送数据。
[32] 第七步, 信号发送进程结束后, 控制模块依据所发送数据中的指令的类型判断 是否执行数据接收任务: 若指令为单个指令, 则执行数据接收任务, 继续进行 第八步; 若指令为全局指令, 则不执行上述数据接收任务, 返回上述第四步。
[33] 第八步, 启动信号接收进程, 控制模块通过信号总线接收电子雷管方向传来的 数据。
[34] 第九步, 信号接收进程结束后, 控制模块控制信号调制模块将信号总线上的总 线电压切换回执行第五步之前信号总线上的总线电压。 然后返回第四步。
[35] 第十步, 启动充电进程, 通过信号总线向电子雷管中的储能装置充电。
[36] 第十一步, 充电进程结束后, 返回第四步。
[37] 第十二步, 控制模块检测充电进程是否充电完毕: 若充电完毕, 则继续进行第 十三步; 若充电未完毕, 则返回第四步。
[38] 第十三步, 启动起爆进程, 控制模块通过信号总线向电子雷管发送控制电子雷 管起爆的起爆指令。
[39] 第十四步, 起爆进程结束后, 返回第四步。
[40] 第十五步, 关闭起爆装置, 结束起爆装置的主控流程。
[41] 本发明还提供了一种包含授权装置的起爆装置的主控流程, 包含以下步骤: [42] 步骤一, 开启起爆装置。
[43] 步骤二, 起爆装置进行初始化, 包括初始化控制模块和初始化人机交互模块。
[44] 步骤三, 控制模块读取授权装置中的授权信息。 其中, 授权信息可包含用户名 和密码。
[45] 步骤四, 控制模块通过人机交互模块中的设定及显示装置提示用户输入授权信 息。
[46] 步骤五, 控制模块对从授权装置中读取到的授权信息和经由设定及显示装置输 入的授权信息进行比对: 若比对结果相符, 则继续进行步骤六; 若比对结果不 相符, 则返回步骤四。
[47] 步骤六, 启动通信电压管理进程, 控制模块对电源管理模块开始管理。
[48] 步骤七, 控制模块对人机交互模块的输出进行检测, 并进行系统调度: 若检测 到需执行数据发送任务的信号, 则继续执行步骤八; 若检测到需执行爆破网路 充电任务的信号, 则继续执行步骤十三; 若检测到需执行起爆任务的信号, 则 继续执行步骤十五; 若检测到需关闭起爆装置的信号, 则继续执行步骤十八; 否则, 控制模块继续检测人机交互模块的输出。
[49] 步骤八, 控制模块控制信号调制模块将信号总线上的总线电压切换到通信电压
[50] 步骤九, 启动信号发送进程, 控制模块通过信号总线向电子雷管发送数据。
[51] 步骤十, 信号发送进程结束后, 控制模块依据所发送数据中的指令的类型判断 是否执行数据接收任务: 若指令为单个指令, 则执行数据接收任务, 继续进行 步骤十一; 若指令为全局指令, 则不执行数据接收任务, 返回步骤七。
[52] 步骤十一, 启动信号接收进程, 控制模块通过信号总线接收电子雷管方向传来 的数据。
[53] 步骤十二, 信号接收进程结束后, 控制模块控制信号调制模块将信号总线上的 总线电压切换回执行步骤八之前的总线电压; 然后返回步骤七。
[54] 步骤十三, 启动充电进程, 通过信号总线向电子雷管中的储能装置充电。
[55] 步骤十四, 充电进程结束后, 返回步骤七。
[56] 步骤十五, 控制模块检测充电进程是否充电完毕: 若充电完毕, 则继续进行步 骤十六; 若充电未完毕, 则返回步骤七。
[57] 步骤十六, 启动起爆进程, 控制模块通过信号总线向电子雷管发送控制电子雷 管起爆的起爆指令。
[58] 步骤十七, 起爆进程结束后, 返回步骤七。
[59] 步骤十八, 关闭起爆装置, 结束起爆装置的主控流程。
[60] 其中, 上述第三步和步骤六中的通信电压管理进程是按照以下步骤进行的: [61] 步骤 Al, 对本通信电压管理进程进行初始化, 即控制模块将其内置程序中如下 变量的初值存入其缓存中待用, 该缓存也就收到电压赋值变量 DATA的初始值 D
ATAQ、 通信电压预设值的数据表达值 VQ、 和预设通信电压调整周期 T。
[62] 步骤 Α2, 执行通信电压调节流程。
[63] 步骤 A3, 通信电压调节流程结束后, 检测是否接收到通信电压管理进程结束信 号: 若接收到该信号, 则结束本通信电压管理进程; 若未接收到, 则继续进行 步骤 Α4。
[64] 步骤 Α4, 检测本通信电压管理进程运行的吋间是否到达预设通信电压调整周期
Τ: 若到达 Τ, 则返回步骤 Α2; 若未到达 Τ, 则继续检测。
[65] 上述电压赋值变量 DATA的初始值 DATA。, 取定为使得数 /模转换器输出其最大 电压值或者最小电压值的电压赋值变量 DATA的值。 这样就能保证电源管理模块 的通信电压输出端输出的初始电压最低, 从而可靠地保证了起爆装置与电子雷 管通信过程的安全。
[66] 上述步骤 A2中的通信电压调节流程是按照以下步骤进行的:
[67] 步骤 Bl, 读取模 /数转换器釆样到的、 两根信号总线上电压值的数据表达值, 分别记为 ν^πν2。 步骤 B2, 计算 ¼与¼的差值的绝对值, 记为 V, 即 V'=I¼-V2I。
步骤 B3, 计算 V。与 V'之间的差值 AV, 即 AV=VQ-V'。
步骤 B4, 以差值 AV为输入参数, 计算通信电压的调节值 f(AV)。
步骤 B5, 把电压赋值变量 DATA和通信电压的调节值 f(AV)相加, 得出电压赋 值变量的经调节后的值 DATA, 即 DATA=DATA+f(AV)。
步骤 B6, 将经调节后的值 DATA发送给数 /模转换器。
步骤 B7, 结束通信电压调节流程。
其中, 上述第六步和步骤九中的信号发送进程是按照以下步骤进行的: 步骤 Cl, 将数据包中待发送数据的位数记为 N。
步骤 C2, 从数据包中读取一位待发送数据, 将该待发送数据作为数据包发送数 据的起点。
步骤 C3, 经检测, 若当前待发送数据为 1, 则信号调制发送模块发送表达数据 1 的调制信号; 经检测, 若当前待发送数据为 0, 则信号调制发送模块发送表达数 据 0的调制信号。
步骤 C4, 将数据包中待发送数据的位数 N减 1, 作为新的待发送数据的位数, 即' N=N-1。
步骤 C5, 检测数据包中待发送数据的位数 N是否为零: 若数据包中待发送数据 的位数 N为零, 则结束本信号发送进程; 若不为零, 则按照预定的选择下一位待 发送数据的规则, 选择并读取数据包中下一位待发送数据, 然后返回步骤 C3。 其中, 第八步和步骤十一中的信号接收进程是按照以下步骤进行的: 步骤 D1, 从控制模块中调用预设的信号接收超吋吋间值 T'。
步骤 D2, 检测控制模块接收来自电子雷管方向传来的数据的吋间, 是否到达信 号接收超吋吋间值 Τ' : 若到达, 则结束本信号接收进程; 若未到达, 则继续进行 步骤 D3。
步骤 D3, 检测控制模块是否接收到信号调理电路发送来的串行信号: 若接收到 串行信号, 则对串行信号进行釆样, 并获取电子雷管的信息, 然后返回步骤 D2 ; 若未接收到串行信号, 则直接返回步骤 D2。 [85] 首先, 控制模块控制信号调制模块将信号总线上的电压切换到向电子雷管中的 储能装置充电所需的起爆电压。
[86] 然后, 控制模块检测是否充电完毕: 若充电完毕, 则结束充电进程; 若充电未 完毕, 则继续充电。
[87] 其中, 第十三步和步骤十六中的起爆进程是按照以下步骤进行的:
[88] 首先, 控制模块检测人机交互模块中的防误操作开关是否闭合并持续预设值秒 数: 若防误操作开关闭合并持续预设值秒数, 则控制模块控制信号调制模块将 信号总线上的总线电压切换到通信电压; 若防误操作开关未闭合、 或未持续预 设值秒数, 则结束本起爆进程。
[89] 然后, 启动信号发送进程, 通过信号总线向电子雷管发送起爆指令。
[90] 最后, 控制模块控制信号调制模块将信号总线上的总线电压切换到起爆电压; 结束本起爆进程。
附图说明
[91] 图 1-1为本发明起爆装置的一种总体框图;
[92] 图 1-2为本发明起爆装置的另一种总体框图;
[93] 图 2为本发明中电源管理模块的组成示意图;
[94] 图 3-1为本发明中通信电压输出端连接到信号调制发送模块吋信号调制发送模 块的组成示意图;
[95] 图 3-2为本发明中通信电压输出端连接到信号解调接收模块吋信号调制发送模 块的组成示意图;
[96] 图 4为本发明中信号解调接收模块的组成示意图;
[97] 图 5为本发明中信号取样模块釆用电阻的实施方式的示意图;
[98] 图 6为本发明中信号取样模块釆用电磁耦合器的实施方式的示意图;
[99] 图 7为本发明中信号调理电路的实施方式的示意图;
[100] 图 8-1为本发明中人机交互模块的一种实施方式的示意图;
[101] 图 8-2为本发明中人机交互模块由设定及显示装置构成的实施方式的示意图; [102] 图 8-3为本发明中人机交互模块包含授权装置的实施方式的示意图;
[103] 图 8-4为本发明中人机交互模块包含锁定装置的实施方式的示意图; [104] 图 8-5为本发明中人机交互模块包含防误操作开关的实施方式的示意图;
[105] 图 9-1为本发明起爆装置的一种主控流程;
[106] 图 9-2为本发明含授权装置的起爆装置的一种主控流程;
[107] 图 10为本发明中通信电压管理进程的流程图;
[108] 图 11为本发明通信电压调节流程的流程图;
[109] 图 12为本发明中信号发送进程的流程图;
[110] 图 13为本发明中信号接收进程的流程图;
[111] 图 14为本发明中充电进程的流程图;
[112] 图 15为本发明中起爆进程的流程图。
具体实施方式
[113] 下面结合附图和具体实施方式对本发明的技术方案做进一步详细说明。
[114] 如图 1-1和图 1-2所示, 一种与专利 ZL03156912.9、 和专利文件 200820111269.7 或者 200820111270.X中的电子雷管配套使用的电子雷管起爆装置, 包括控制模 块 101、 人机交互模块 102、 电源管理模块 104、 信号调制发送模块 103、 信号解 调接收模块 105、 信号总线 106、 和电源 107。 详细连接关系描述如下:
[115] 1 . 控制模块 101连接到除电源 107和信号总线 106外的上述其余模块, 分别同该 其余模块进行信号联系。 控制模块 101根据从这些模块接收到的信息, 协调和控 制它们的工作状态。 电源 107连接到电源管理模块 104, 为起爆装置提供工作能 源, 并通过信号总线 106向电子雷管输出其所需的工作能源。 电源 107还连接到 人机交互模块 102, 通过人机交互模块 102的控制向信号调制发送模块 103供电, 进而提供爆破网路起爆电子雷管所需的起爆电压。 信号总线 106细化为两根无区 分的导线, 用以连接起爆装置与电子雷管, 实现起爆装置向电子雷管的供电和 与电子雷管之间的通信。
[116] 2. 电源管理模块 104用于产生起爆装置自身正常工作所需的工作电源电压、 以 及同电子雷管通信吋所需的通信电压。 电源管理模块 104的工作电压输出端 802 连接到人机交互模块 102、 控制模块 101、 信号调制发送模块 103、 和信号解调接 收模块 105, 向上述各模块供电。 信号调制发送模块 103和信号解调接收模块 105 串联在电源管理模块 104的通信电压输出端 801与信号总线 106中的一根之间。 电 源管理模块 104的一对通信电压釆样端 804分别连接到两根信号总线 106, 电源管 理模块 104对两根信号总线 106上的电压进行釆样, 并依据釆样结果, 在控制模 块 101的控制下调节通信电压输出端 801输出的电压。 电源管理模块 104的控制端 803连接到控制模块 101, 与控制模块 101进行双向通讯, 即电源管理模块 104向 控制模块 101提供对信号总线 106上的电压进行釆样的结果, 并接收控制模块 101 的控制信息完成对通信电压输出端 801输出的通信电压的调节。
[117] 3. 人机交互模块 102连接到信号调制发送模块 103的再一端, 电源 107通过人机 交互模块 102向信号调制发送模块 103供电。 信号总线 106的另一根连接到信号调 制发送模块 103其余的一端。
[118] 在图 1-1和图 1-2所示实施方式中, 图 1-1对应电源管理模块 104的通信电压输出 端 801直接连接到信号调制发送模块 103的情况, 图 1-2对应电源管理模块 104的通 信电压输出端 801直接连接到信号解调接收模块 105的情况。 这两种连接方式对 应信号调制发送模块和信号解调接收模块的内部构成的不同具体实施方式, 总 框图中的这两种连接方式均能实现本起爆装置与电子雷管之间的双向通信。
[119] 如图 2, 电源管理模块 104包括模 /数转换器 111、 数 /模转换器 112和电压转换模 块 113。 具体连接关系描述如下:
[120] 1 . 电压转换模块 113的一端与电源 107连接, 接收电源 107提供的工作能源。 电 压转换模块 113的另一端作为电源管理模块 104的通信电压输出端 801, 通向电源 管理模块 104外部。 电压转换模块 113还有一端连接到数 /模转换器 112, 用于接收 数 /模转换器 112输出的信号, 从而调节通信电压输出端 801的电压输出。 电压转 换模块 113的其余一端分别与模 /数转换器 111和数 /模转换器 112连接, 向模 /数转 换器 111和数 /模转换器 112提供工作所需的电源, 该电源包括模 /数转换器 111和 数 /模转换器 112实现转换功能所需的参考基准电源; 同吋, 电压转换模块 113的 该端, 作为电源管理模块 104的工作电压输出端 802, 还与电源管理模块 104外部 的信号解调接收模块 105、 人机交互模块 102、 信号调制发送模块 103和控制模块 101相连接, 向上述诸模块提供其工作所需电源。 这些模块可能需要一个或多个 不同电压值的工作电源, 如 DSP、 FPGA和 /或 ARM等构成的控制模块 101, 需要 内核工作电压和输入 /输出接口电压等。 [121] 2. 模 /数转换器 111的一端连接到工作电压输出端 802, 另一端连接控制模块 10 1, 其余两端作为电源管理模块 104的一对通信电压釆样端 804, 分别连接到两根 信号总线 106。 模 /数转换器 111用于在控制模块 101的控制下, 将两根信号总线 10 6上的模拟电压信号, 转换为控制模块 101可以识别的数字电压信号, 提供给控 制模块 101进行处理。
[122] 3. 数 /模转换器 112的一端连接到工作电压输出端 802, 另一端与电压转换模块 113相连接, 向电压转换模块 113发送通信电压调节信号, 数 /模转换器 112的其余 一端连接控制模块 101。 数 /模转换器 112用于接收控制模块 101对信号总线 106上 电压信号釆样信息的处理结果, 该处理结果被数 /模转换器 112转换为一模拟电压 信号, 即上述通信电压调节信号, 提供给电压转换模块 113对通信电压输出进行 调节。
[123] 上述电源管理模块 104的通信电压输出端 801可连接到电源管理模块 104外部的 信号调制发送模块 103或者信号解调接收模块 105。 其中, 图 2所示实施方式为连 接到信号调制发送模块 103的情况, 与图 1-1中的总体框图相对应。
[124] 如图 3-1和图 3-2, 信号调制发送模块 103包括信号调制模块 131和升压模块 132。
升压模块 132—端连接人机交互模块 102, 由电源 107通过人机交互模块 102向升 压模块 132供电, 产生起爆电子雷管所需电压, 即起爆电压。 升压模块 132的另 一端连接到信号调制模块 131, 供信号调制模块 131在控制模块 101的控制下, 在 需要向电子雷管中的储能装置充电吋, 将信号总线 106上的电压切换为升压模块 132输出的起爆电压。 信号调制模块 131的端口 1连接电源管理模块 104的工作电 压输出端 802, 端口 2连接升压模块 132, 端口 3连接控制模块 101, 接收控制模块 101发送的控制信号。 信号调制模块 131的端口 4通向信号总线 106中的一根。 信 号调制模块 131还余下端口 5和端口 6, 在图 3-1所示实施方式中, 信号调制模块 13 1的端口 5连接到电源管理模块 104的通信电压输出端 801, 端口 6连接到信号解调 接收模块 105, 与图 1-1中的总体框图相对应。 除此之外, 也可将信号调制模块 13 1的端口 5连接到信号解调接收模块 105, 端口 6通向信号总线 106中的另一根, 如 图 3-2所示, 与图 1-2中的总体框图相对应。 信号调制模块 131用于根据控制模块 1 01的控制信号, 实现对输出到信号总线 106上的电压的切换, gP, 在需起爆电子 雷管吋, 信号总线 106上为升压模块 132输出的起爆电压, 而在需与电子雷管进 行通信吋, 信号总线 106上为电源管理模块 104输出的通信电压。
[125] 如图 4, 信号解调接收模块 105包括信号取样模块 152和信号调理电路 153。 信号 调理电路 153的一端连接电源管理模块 104的工作电压输出端 802, 另一端连接到 控制模块 101, 向控制模块 101发送数据, 其余的一端连接信号取样模块 152的端 口 7。 信号取样模块 152还余下端口 8和端口 9: 在图 4所示实施方式中, 信号取样 模块 152的端口 8连接信号调制发送模块 103, 端口 9通向信号总线 106, 与图 1-1中 的总体框图相对应。 除此之外, 也可将信号取样模块 152的端口 8连接电源管理 模块 104的通信电压输出端 801, 端口 9连接信号调制发送模块 103中的信号调制 模块 131, 与图 1-2中的总体框图相对应。 上述信号取样模块 152用于提取电子雷 管爆破网路加载在信号总线 106上的数字信息, 从而得到电子雷管方向传来的信 号; 信号调理电路 153用于对信号取样模块 152输出的模拟信号进行处理, 将其 转换为控制模块 101可以识别的数字信号。
[126] 如图 5, 将上述信号取样模块 152取为电阻 158。 在图 5所示实施方式中, 电阻 15 8的两端分别连接到信号调制发送模块 103和信号总线 106中的一根, 与图 1-1中的 总体框图相对应。 除此之外, 也可将电阻 158的两端分别连接到信号调制发送模 块 103和电源管理模块 104的通信电压输出端 801, 与图 1-2中的总体框图相对应。 电阻 158的两端还分别连接到信号调理电路 153。
[127] 如图 6, 将信号取样模块 152取为电磁耦合器 155。 在图 6所示实施方式中, 电磁 耦合器 155的初级线圏两端分别连接到信号调制发送模块 103和信号总线 106中的 一根, 与图 1-1中的总体框图相对应。 除此之外, 也可将电磁耦合器 155的初级线 圏两端分别连接到信号调制发送模块 103和电源管理模块 104的通信电压输出端 8 01之间, 与图 1-2中的总体框图相对应。 电磁耦合器 155的次级线圏连接到信号调 理电路 153。 上述电磁耦合器 155可选用空气芯变压器或者磁芯变压器, 以磁芯 变压器为优选。
[128] 如图 7, 信号调理电路 153包含滤波电路 161、 放大电路 162和比较器 163。 滤波 电路 161的一端连接信号取样模块 152, 接收信号取样模块 152发送来的、 从信号 总线 106上电子雷管方向提取的模拟信号; 滤波电路 161的另一端连接到放大电 路 162, 用于将滤除了噪声的、 代表有用信息的模拟信号提供给放大电路 162。 放大电路 162—端连接滤波电路 161, 另一端连接电源管理模块 104的工作电压输 出端 802, 放大电路 162的其余端连接到比较器 163。 比较器 163—端连接控制模 块 101, 另一端连接电源管理模块 104的工作电压输出端 802, 比较器 163的其余 端连接放大电路 162, 该比较器 163将放大电路 162输出的模拟信号转换为数字信 号提供给控制模块 101。 上述比较器 163优选为滞回比较器, 从而提高信号转换 吋的抗干扰性能。
[129] 信号调理电路 153中, 对信号取样模块 152输出的模拟信号的处理, 可以釆用先 进行滤波再进行放大的方式, 如图 7所示实施方式。 也可釆用先进行放大再进行 滤波的方式, 且二者等效。
[130] 如图 8-1, 人机交互模块 102包含设定及显示装置 123、 授权装置 121、 锁定装置 122、 和防误操作开关 124。
[131] 图 8-2中, 设定及显示装置 123的一端连接电源管理模块 104, 另一端连接控制 模块 101。 设定及显示装置 123进一步可包含输入模块 141和显示模块 142。 输入 模块 141的一端与显示模块 142的一端共同连接电源管理模块 104的工作电压输出 端 802。 输入模块 141的另一端连接到控制模块 101, 向控制模块 101发送数据。 显示模块 142的另一端连接控制模块 101, 接收控制模块 101发送来的数据。 此吋 , 电源 107通过人机交互模块 102内部的一根直连线向升压模块 131供电。 上述输 入模块 141可取为键盘输入装置, 显示模块 142可取为 LED、 LCD等显示设备, 用 于实现操作人员与本起爆装置之间的信息交互, 参见图 8-2。
[132] 在图 8-1人机交互模块 102的诸模块中, 设定及显示装置 123为实现人机交互的 基本功能必不可少的组成部分。 图 8-3、 图 8-4、 图 8-5分别对应还包括授权装置 1 21、 锁定装置 122或防误操作开关 124的人机交互模块 102的实施方式。
[133] 如图 8-3所示, 授权装置 121的一端连接电源管理模块 104, 另一端连接控制模 块 101。 授权装置 121由存储授权信息的存储卡和固化于本起爆装置上与该存储 卡配套的数据接口构成。 上述存储卡用于存储与本起爆装置的合法使用有关的 授权信息, 该授权信息可包含用户名和密码, 也可进一步包含与本起爆装置的 合法的操作人员有关的生物识别信息, 例如指纹、 虹膜等。 上述存储卡可体现 为例如 IC卡之类的数字加密卡中, 其内存储的授权信息供控制模块 101读取, 并 进行比对和处理。
[134] 如图 8-4所示, 锁定装置 122—端连接电源 107, 另一端连接升压模块 131, 电源 107通过锁定装置 122向升压模块 131供电。 通过外部机械装置对锁定装置 122的 闭锁或解锁的控制, 实现对起爆电子雷管所需电压的产生或消灭进行控制。 对 于同吋具备授权装置 121和锁定装置 122的起爆装置而言, 必须同吋具备上述授 权装置 121中的存储卡和本锁定装置 122中的外部机械装置方能实现对本起爆装 置的正常使用和对电子雷管的正常爆破。 因此, 将上述存储卡和外部机械装置 分别保管, 即可进一步实现对电子雷管爆破的安全管理。
[135] 如图 8-5所示, 防误操作开关 124的一端连接电源管理模块 104, 另一端连接控 制模块 101。 防误操作开关 124—般可釆用两个独立的按键, 在需起爆电子雷管 吋, 必须同吋按下并持续预设吋间长度, 才能产生起爆电子雷管的起爆信号, 避免操作起爆设备的过程中因误操作而引起的意外爆炸事件。
[136] 上述授权装置 121优选为逻辑加密芯片或加密系统。 上述锁定装置 122优选包含 机械锁头及与之相配的钥匙。 上述防误操作开关 124优选为二个按钮式非自锁开 关。
[137] 如图 9-1, 本发明还提供了起爆装置的主控流程, 包含以下步骤:
[138] 第一步, 开启起爆装置。
[139] 第二步, 起爆装置进行初始化; 其中, 初始化包括初始化控制模块 101和初始 化人机交互模块 102。
[140] 第三步, 启动通信电压管理进程, 控制模块 101对电源管理模块 104开始管理。
[141] 第四步, 控制模块 101对人机交互模块 102的输出进行检测, 并进行系统调度: 若控制模块 101检测到需执行数据发送任务的信号, 则继续执行第五步; 若控制 模块 101检测到需执行爆破网路充电任务的信号, 则继续执行第十步; 若控制模 块 101检测到需执行起爆任务的信号, 则继续执行第十二步; 若控制模块 101检 测到需关闭起爆装置的信号, 则继续执行第十五步; 否则, 控制模块 101继续检 测人机交互模块 102的输出。
[142] 第五步, 控制模块 101控制信号调制模块 131将信号总线 106上的电压切换到通 信电压。
[143] 第六步, 启动信号发送进程, 控制模块 101通过信号总线 106向电子雷管发送数 据。
[144] 第七步, 信号发送进程结束后, 控制模块 101依据所发送数据中的指令的类型 判断是否执行数据接收任务: 若指令为单个指令, 则执行数据接收任务, 继续 进行第八步; 若指令为全局指令, 则不执行数据接收任务, 返回第四步。
[145] 第八步, 启动信号接收进程, 控制模块 101通过信号总线 106接收来自电子雷管 方向传来的数据。
[146] 第九步, 信号接收进程结束后, 控制模块 101控制信号调制模块 131将信号总线 106上的总线电压切换回执行第五步之前信号总线 106上的总线电压, 然后返回 第四步。
[147] 第十步, 启动充电进程, 通过信号总线 106向电子雷管中的储能装置充电。
[148] 第十一步, 充电进程结束后, 返回第四步。
[149] 第十二步, 控制模块 101检测充电进程是否充电完毕: 若充电完毕, 则继续进 行第十三步; 若充电未完毕, 则返回第四步。
[150] 第十三步, 启动起爆进程, 控制模块 101通过信号总线 106向电子雷管发送控制 电子雷管起爆的起爆指令。
[151] 第十四步, 起爆进程结束后, 返回第四步。
[152] 第十五步, 关闭起爆装置, 结束起爆装置的主控流程。
[153] 电子雷管起爆装置执行图 9-1所示的上述主控流程, 就可以实现与电子雷管的 通信, 并控制电子雷管的可靠起爆。 起爆装置初始化完成后, 首先启动通信电 压管理进程, 将输出到信号总线 106上的电压调节为通信电压, 以确保与电子雷 管进行通信吋的安全。 然后, 起爆装置依据操作人员通过人机交互模块 102给出 的指示, 执行数据发送任务、 爆破网路充电任务、 起爆任务或者关机任务等, 以完成起爆前准备及起爆过程的控制。
[154] 如图 9-2, 本发明还提供了一种包含授权装置 121的起爆装置的主控流程, 包含 以下步骤:
[155] 步骤一, 开启起爆装置。 [156] 步骤二, 起爆装置进行初始化; 其中, 初始化包括初始化控制模块 101和初始 化人机交互模块 102。
[157] 步骤三, 控制模块 101读取授权装置 121中的授权信息, 授权信息包含用户名和 密码。
[158] 步骤四, 控制模块 101通过人机交互模块 102中的设定及显示装置 123提示用户 输入授权信息。
[159] 步骤五, 控制模块 101对从授权装置 121中读取到的授权信息和经由设定及显示 装置 123输入的授权信息进行比对: 若比对结果相符, 则继续进行步骤六; 若比 对结果不相符, 则返回步骤四。
[160] 步骤六, 启动通信电压管理进程, 控制模块 101对电源管理模块 104开始管理。
[161] 步骤七, 控制模块 101对人机交互模块 102的输出进行检测, 并进行系统调度: 若控制模块 101检测到需执行数据发送任务的信号, 则继续执行步骤八; 若控制 模块 101检测到需执行爆破网路充电任务的信号, 则继续执行步骤十三; 若控制 模块 101检测到需执行起爆任务的信号, 则继续执行步骤十五; 若控制模块 101 检测到需关闭起爆装置的信号, 则继续执行步骤十八; 否则, 控制模块 101继续 检测人机交互模块 102的输出。
[162] 步骤八, 控制模块 101控制信号调制模块 131将信号总线 106上的总线电压切换 到通信电压。
[163] 步骤九, 启动信号发送进程, 控制模块 101通过信号总线 106向电子雷管发送数 据。
[164] 步骤十, 信号发送进程结束后, 控制模块 101依据所发送数据中的指令的类型 判断是否执行数据接收任务: 若指令为单个指令, 则执行数据接收任务, 继续 进行步骤十一; 若指令为全局指令, 则不执行数据接收任务, 返回步骤七。
[165] 步骤十一, 启动信号接收进程, 控制模块 101通过信号总线 106接收来自电子雷 管方向传来的数据。
[166] 步骤十二, 信号接收进程结束后, 控制模块 101控制信号调制模块 131将信号总 线 106上的电压切换回执行步骤八之前信号总线 106上的总线电压, 然后返回步 骤七。 [167] 步骤 4 启动充电进程, 通过信号总线 106向电子雷管中的储能装置充电。
[168] 步骤 4四, 充电进程结束后, 返回步骤七。
[169] 步骤 4五' 控制模块 101检测充电进程是否充电完毕: 若充电完毕, 则继续进 行步骤- f六; 若充电未完毕, 则返回步骤七。
[170] 步骤 4六, 启动起爆进程, 控制模块 101通过信号总线 106向电子雷管发送控 电子雷管起爆的起爆指令。
[171] 步骤十七, 起爆进程结束后, 返回步骤七。
[172] 步骤十八, 关闭起爆装置, 结束起爆装置的主控流程。
[173] 图 9-2所示主控流程, 在图 9-1所示主控流程的基础上添加了初始化完成后的授 权信息比对步骤。 对于包含授权装置 121的起爆装置而言, 开机后需进行授权信 息的比对, 比对结果相符, 操作人员方能对起爆装置进行正常操作, 进而控制 起爆过程。 这就能确保对起爆装置操作的合法性, 进而确保对电子雷管操作的 合法性。
[174] 如图 10, 上述第三步和步骤六中的通信电压管理进程是按照以下步骤进行的: [175] 步骤 Al, 对通信电压管理进程进行初始化, 即控制模块 101把其内置程序中如 下变量的初值存入其缓存中待用, 该缓存也就收到电压赋值变量 DATA的初始值
DATAQ、 通信电压预设值的数据表达值¥。和预设通信电压调整周期 T。
[176] 步骤 Α2, 执行通信电压调节流程, 调节信号总线 106上的电压为通信电压。
[177] 步骤 A3, 通信电压调节流程结束后, 检测是否接收到通信电压管理进程结束信 号: 若接收到通信电压管理进程结束信号, 则结束通信电压管理进程; 若未接 收到, 则继续进行步骤 Α4。
[178] 步骤 Α4, 检测本通信电压管理进程运行的吋间是否到达预设通信电压调整周期
Τ: 若到达 Τ, 则返回步骤 Α2; 若未到达 Τ, 则继续检测。
[179] 上述电压赋值变量 DATA的初始值 DATAQ, 取定为使得数 /模转换器 112输出其 最大电压值或者最小电压值的电压赋值变量 DATA的值。 这样就能保证电源管理 模块 104的通信电压输出端 801输出的电压最低, 从而可靠地保证了起爆装置与 电子雷管通信过程的安全。
[180] 设定预设通信电压调整周期 T, 每隔预设吋间间隔即对信号总线 106上的输出电 压进行调整, 进一步确保起爆装置与电子雷管通信的安全性。
[181] 如图 11, 上述步骤 A2中的通信电压调节流程按照以下步骤进行:
[182] 步骤 Bl, 读取模 /数转换器 111釆样到的、 两根信号总线 106上电压值的数据表 达值, 分别记为 ν^πν2
[183] 步骤 Β2, 计算 ¼与¼的差值的绝对值, 记为 V'。
[184] 步骤 B3, 计算 ¼与 '之间的差值 AV。
[185] 步骤 Β4, 以差值 AV为输入参数, 计算通信电压的调节值 f(AV)。
[186] 步骤 B5, 把电压赋值变量 DATA和通信电压的调节值 f(AV)相加, 得出电压赋 值变量的经调节后的值 DATA, 即 DATA=DATA+f(AV)。
[187] 步骤 B6, 将经调节后的值 DATA发送给数 /模转换器 112, 由数 /模转换器 112向 电压转换模块 113发送前述通信电压调节信号。
[188] 步骤 B7, 结束本通信电压调节流程。
[189] 以差值 AV为变量计算通信电压调节值的函数 f(AV), 可根据多次实验的经验值 建立, 为电压赋值变量 DATA提供校准量, 获得经调节后的 DATA值。
[190] 如图 12, 上述第六步和步骤九中的信号发送进程是按照以下步骤进行的: [191] 步骤 Cl, 将数据包中待发送数据的位数记为 N。
[192] 步骤 C2, 从数据包中读取一位待发送数据, 将该待发送数据作为数据包发送数 据的起点。
[193] 步骤 C3, 经检测, 若当前待发送数据为 1, 则控制模块 101向信号调制发送模块 103发送表达数据 1的控制信号, 使得信号调制发送模块 103输出表达数据 1的调 制信号; 经检测, 若当前待发送数据为 0, 则控制模块 101向信号调制发送模块 1 03发送表达数据 0的控制信号, 使得信号调制发送模块 103输出表达数据 0的调制 信号。
[194] 步骤 C4, 将数据包中待发送数据的位数 N减 1, 作为新的待发送数据的位数, 即' N=N-1。
[195] 步骤 C5, 检测数据包中待发送数据的位数 N是否为零: 若数据包中待发送数据 的位数 N为零, 则结束信号发送进程; 若不为零, 则按照预定的选择下一位待发 送数据的规则, 选择并读取数据包中下一位待发送数据, 然后返回步骤 C3。 [196] 如图 13, 其中第八步和步骤十一中的信号接收进程是按照以下步骤进行的:
[197] 步骤 Dl, 从控制模块 101中调用预设的信号接收超吋吋间值 T'。
[198] 步骤 D2, 检测控制模块 101接收来自电子雷管方向传来的数据的吋间, 是否到 达信号接收超吋吋间值 Τ' : 若到达, 则结束信号接收进程; 若未到达, 则继续进 行步骤 D3。
[199] 步骤 D3, 检测控制模块 101是否接收到信号调理电路 153发送来的串行信号: 若 接收到串行信号, 则对串行信号进行釆样, 并获取电子雷管的信息, 然后返回 步骤 D2; 若未接收到串行信号, 则直接返回步骤 D2。
[200] 如图 14, 其中第十步和步骤十三中的充电进程按照以下步骤进行:
[201] 首先, 控制模块 101控制信号调制模块 131将信号总线 106上的电压切换到向电 子雷管中的储能装置充电所需的起爆电压。
[202] 然后, 控制模块 101检测是否充电完毕: 若充电完毕, 则结束充电进程; 若充 电未完毕, 则继续充电。
[203] 如图 15, 其中第十三步和步骤十六中的起爆进程是按照以下步骤进行的: [204] 首先, 控制模块 101检测人机交互模块 102中的防误操作开关 124是否闭合并持 续预设值秒数: 若防误操作开关 124闭合并持续预设值秒数, 则控制模块 101控 制信号调制模块 131将信号总线 106上的电压切换到通信电压; 若防误操作开关 1
24未闭合、 或未持续预设值秒数, 则结束起爆进程。
[205] 然后, 启动上述信号发送进程, 通过信号总线 106向电子雷管发送起爆指令。
[206] 最后, 控制模块 101控制信号调制模块 131将信号总线 106上的电压切换到起爆 电压, 结束起爆进程。

Claims

权利要求书
[1] 1 . 一种电子雷管起爆装置, 其特征在于:
包括: 控制模块、 人机交互模块、 电源管理模块、 信号调制发送模块、 信 号解调接收模块、 信号总线、 和电源;
所述控制模块连接到除所述电源和所述信号总线外的上述其余模块, 分别 同该其余模块进行信号联系;
所述电源连接到所述电源管理模块和所述人机交互模块;
所述电源管理模块的工作电压输出端连接到所述人机交互模块、 所述控制 模块、 所述信号调制发送模块、 和所述信号解调接收模块, 并向上述各模 块供电; 所述电源管理模块的控制端连接到所述控制模块, 与所述控制模 块进行双向通讯; 所述电源管理模块的一对通信电压釆样端分别与所述信 号总线连接; 所述信号调制发送模块和所述信号解调接收模块串联在所述 电源管理模块的通信电压输出端与所述信号总线的一根之间; 所述人机交互模块连接到所述信号调制发送模块的再一端, 所述电源通过 所述人机交互模块向所述信号调制发送模块供电;
所述信号总线的另一根连接到所述信号调制发送模块其余的一端。
[2] 2. 按照权利要求 1所述的起爆装置, 其特征在于:
所述电源管理模块包括模 /数转换器、 数 /模转换器和电压转换模块; 所述电压转换模块一端与所述电源连接; 一端通向所述电源管理模块外部 , 构成所述通信电压输出端; 所述电压转换模块还有一端连接到所述数 /模 转换器; 其余一端在所述电源管理模块内部同吋分别连接到所述模 /数转换 器和所述数 /模转换器, 该端还在所述电源管理模块外部同吋连接到所述信 号解调接收模块、 所述人机交互模块、 所述信号调制发送模块和所述控制 模块, 构成所述工作电压输出端;
所述模 /数转换器一端连接所述电压转换模块, 由所述电压转换模块供电; 一端连接所述控制模块; 其余两端分别连接到所述信号总线的两根, 构成 所述通信电压釆样端;
所述数 /模转换器一端连接所述电压转换模块, 由所述电压转换模块供电; 一端连接到所述电压转换模块的另一端, 向所述电压转换模块发送通信电 压调节信号; 所述数 /模转换器其余一端连接所述控制模块。
[3] 3 . 按照权利要求 1所述的起爆装置, 其特征在于:
所述信号调制发送模块包括信号调制模块和升压模块;
所述升压模块一端连接所述人机交互模块, 由所述电源通过所述人机交互 模块向所述升压模块供电; 所述升压模块的另一端连接到所述信号调制模 块;
所述信号调制模块的端口一连接到所述工作电压输出端, 端口二连接所述 升压模块, 端口三连接所述控制模块, 接收所述控制模块发送的控制信号 , 所述信号调制模块的端口四通向所述信号总线的一根; 所述信号调制模块的端口五连接到所述通信电压输出端, 端口六连接到所 述信号解调接收模块; 或者, 所述信号调制模块的端口五连接到所述信号 解调接收模块, 端口六通向所述信号总线的另一根。
[4] 4. 按照权利要求 1所述的起爆装置, 其特征在于:
所述信号解调接收模块包括信号取样模块、 和信号调理电路; 所述信号调理电路的一端连接所述工作电压输出端; 所述信号调理电路的 另一端连接到所述控制模块, 向所述控制模块发送数据; 其余一端连接所 述信号取样模块的端口七;
所述信号取样模块的端口八连接所述信号调制发送模块中的所述信号调制 模块, 端口九通向所述信号总线; 或者, 所述信号取样模块的端口八连接 所述通信电压输出端, 端口九连接到所述信号调制发送模块中的所述信号 调制模块。
[5] 5 . 按照权利要求 4所述的起爆装置, 其特征在于:
所述信号取样模块为一电阻, 该电阻的两端分别连接到所述信号调制发送 模块和所述信号总线的一根之间; 或者, 该电阻的两端分别连接到所述信 号调制发送模块和所述通信电压输出端之间;
所述电阻的两端还分别连接到所述信号调理电路。
[6] 6. 按照权利要求 4所述的起爆装置, 其特征在于: 所述信号取样模块为一电磁耦合器, 其初级线圏两端分别连接到所述信号 调制发送模块和所述信号总线的一根之间; 或者, 该电磁耦合器的初级线 圏两端分别连接到所述信号调制发送模块和所述通信电压输出端之间; 所述电磁耦合器的次级线圏连接到所述信号调理电路。
[7] 7 . 按照权利要求 4所述的起爆装置, 其特征在于:
所述信号调理电路包含滤波电路、 放大电路、 和比较器;
所述滤波电路的一端连接所述信号取样模块, 接收所述信号取样模块发送 来的数据; 所述滤波电路的另一端连接到所述放大电路;
所述放大电路一端连接所述滤波电路, 另一端连接所述工作电压输出端, 所述放大电路的其余端连接到所述比较器;
所述比较器一端连接到所述控制模块, 另一端连接所述工作电压输出端, 所述比较器的其余端连接所述放大电路。
[8] 8 . 按照权利要求 4所述的起爆装置, 其特征在于:
所述信号调理电路包含滤波电路、 放大电路、 和比较器;
所述放大电路一端连接所述工作电压输出端, 一端连接所述滤波电路, 其 余一端连接所述信号取样模块, 接收所述信号取样模块发送来的数据; 所述滤波电路一端连接所述放大电路, 另一端连接所述比较器; 所述比较器一端连接所述工作电压输出端, 一端连接所述滤波电路, 其余 一端连接到所述控制模块。
[9] 9. 按照权利要求 7或 8所述的起爆装置, 其特征在于:
所述比较器为滞回比较器。
[10] 10. 按照权利要求 1所述的起爆装置, 其特征在于:
所述人机交互模块包含设定及显示装置、 授权装置、 锁定装置、 和防误操 作开关;
其中,
所述设定及显示装置的一端连接所述工作电压输出端, 另一端连接所述控 制模块;
所述授权装置的一端连接所述工作电压输出端, 另一端连接所述控制模块 所述锁定装置一端连接所述电源, 另一端连接到所述升压模块, 所述电源 通过所述锁定装置向所述升压模块供电;
所述防误操作开关的一端连接所述工作电压输出端, 另一端连接所述控制 模块。
[11] 11 . 按照权利要求 1所述的起爆装置, 其特征在于:
所述人机交互模块包含所述设定及显示装置, 所述设定及显示装置进一步 包含输入模块和显示模块;
所述输入模块的一端与所述显示模块的一端连接, 并共同连接到所述工作 电压输出端;
所述输入模块的另一端连接到所述控制模块, 向所述控制模块发送数据; 所述显示模块的另一端连接所述控制模块, 接收所述控制模块发送来的数 据。
[12] 12. 按照权利要求 1所述的起爆装置, 其特征在于:
所述人机交互模块包含所述授权装置和所述设定及显示装置; 所述授权装置与所述设定及显示装置共同连接到所述工作电压输出端; 所述授权装置的另一端连接所述控制模块;
所述设定及显示装置的另一端连接所述控制模块。
[13] 13. 按照权利要求 1所述的起爆装置, 其特征在于:
所述人机交互模块包含所述锁定装置和所述设定及显示装置; 所述锁定装置一端连接所述电源, 另一端连接到所述升压模块, 所述电源 通过所述锁定装置向所述升压模块供电;
所述设定及显示装置的一端连接所述工作电压输出端, 另一端连接所述控 制模块。
[14] 14. 按照权利要求 1所述的起爆装置, 其特征在于:
所述人机交互模块包含所述防误操作开关和所述设定及显示装置; 所述防误操作开关与所述设定及显示装置共同连接到所述工作电压输出端 所述防误操作开关的另一端连接所述控制模块;
所述设定及显示装置的另一端连接所述控制模块。
[15] 15. 按照权利要求 10或 12所述的起爆装置, 其特征在于:
所述授权装置为逻辑加密芯片或加密系统。
[16] 16. 按照权利要求 10或 13所述的起爆装置, 其特征在于:
所述锁定装置包含机械锁头及与之相配的钥匙。
[17] 17. 按照权利要求 10或 14所述的起爆装置, 其特征在于:
所述防误操作开关为二个按钮式非自锁开关。
[18] 18. 一种如权利要求 1、 2、 3、 4、 5、 6、 7、 8、 9、 11、 13、 14、 16或者 17 中所述起爆装置的主控流程, 其特征在于:
第一步, 开启所述起爆装置;
第二步, 所述起爆装置进行初始化, 包括初始化所述控制模块和初始化所 述人机交互模块;
第三步, 启动通信电压管理进程, 对所述电源管理模块开始管理; 第四步, 所述控制模块对所述人机交互模块的输出进行检测, 并进行系统 调度:
若检测到需执行数据发送任务的信号, 则继续执行第五步; 若检测到需执行爆破网路充电任务的信号, 则继续执行第十步; 若检测到需执行起爆任务的信号, 则继续执行第十二步;
若检测到需关闭所述起爆装置的信号, 则继续执行第十五步; 否则, 所述控制模块继续检测所述人机交互模块的输出;
第五步, 控制所述信号调制模块将所述信号总线上的总线电压切换到所述 通信电压;
第六步, 启动信号发送进程, 所述控制模块通过所述信号总线向所述电子 雷管发送数据;
第七步, 所述信号发送进程结束后, 所述控制模块依据所发送数据中的指 令的类型判断是否执行数据接收任务:
若指令为单个指令, 则执行所述数据接收任务, 继续进行第八步; 若指令为全局指令, 则不执行所述数据接收任务, 返回所述第四步; 第八步, 启动信号接收进程, 所述控制模块通过所述信号总线接收来自所 述电子雷管方向的数据;
第九步, 所述信号接收进程结束后, 所述控制模块控制所述信号调制模块 将所述信号总线上的总线电压切换回执行所述第五步之前的总线电压; 然 后返回所述第四步;
第十步, 启动充电进程, 通过所述信号总线向所述电子雷管中的储能装置 充电;
第十一步, 所述充电进程结束后, 返回所述第四步;
第十二步, 所述控制模块检测所述充电进程是否充电完毕: 若充电完毕, 则继续进行第十三步; 若充电未完毕, 则返回所述第四步;
第十三步, 启动起爆进程, 所述控制模块通过所述信号总线向所述电子雷 管发送控制所述电子雷管起爆的起爆指令;
第十四步, 所述起爆进程结束后, 返回所述第四步;
第十五步, 关闭所述起爆装置, 结束本起爆装置的所述主控流程。
19. 一种如权利要求 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 12或者 15中所述起 爆装置的主控流程, 其特征在于:
步骤一, 开启所述起爆装置;
步骤二, 所述起爆装置进行初始化, 包括初始化所述控制模块和初始化所 述人机交互模块;
步骤三, 所述控制模块读取所述授权装置中的授权信息, 所述授权信息包 含用户名和密码;
步骤四, 所述控制模块通过所述人机交互模块中的所述设定及显示装置提 示用户输入授权信息;
步骤五, 所述控制模块对从所述授权装置中读取到的授权信息和经由所述 设定及显示装置输入的授权信息进行比对: 若比对结果相符, 则继续进行 步骤六; 若比对结果不相符, 则返回所述步骤四;
步骤六, 启动所述通信电压管理进程, 所述控制模块对所述电源管理模块 开始管理;
步骤七, 所述控制模块对所述人机交互模块的输出进行检测, 并进行系统 调度:
若检测到需执行所述数据发送任务的信号, 则继续执行步骤八; 若检测到需执行所述爆破网路充电任务的信号, 则继续执行步骤十三; 若检测到需执行所述起爆任务的信号, 则继续执行步骤十五;
若检测到需关闭所述起爆装置的信号, 则继续执行步骤十八;
否则, 所述控制模块继续检测所述人机交互模块的输出;
步骤八, 控制所述信号调制模块将所述信号总线上的总线电压切换到所述 通信电压;
步骤九, 启动所述信号发送进程, 所述控制模块通过所述信号总线向所述 电子雷管发送数据;
步骤十, 所述信号发送进程结束后, 所述控制模块依据所发送数据中的指 令的类型判断是否执行数据接收任务:
若指令为单个指令, 则执行所述数据接收任务, 继续进行步骤十一; 若指令为全局指令, 则不执行所述数据接收任务, 返回所述步骤七; 步骤十一, 启动所述信号接收进程, 所述控制模块通过所述信号总线接收 来自所述电子雷管方向的数据;
步骤十二, 所述信号接收进程结束后, 所述控制模块控制所述信号调制模 块将所述信号总线上的总线电压切换回执行所述步骤八之前的总线电压; 然后返回所述步骤七;
步骤十三, 启动所述充电进程, 通过所述信号总线向所述电子雷管中的储 能装置充电;
步骤十四, 所述充电进程结束后, 返回所述步骤七;
步骤十五, 所述控制模块检测所述充电进程是否充电完毕: 若充电完毕, 则继续进行步骤十六; 若充电未完毕, 则返回所述步骤七;
步骤十六, 启动所述起爆进程, 所述控制模块通过所述信号总线向所述电 子雷管发送控制所述电子雷管起爆的起爆指令; 步骤十七, 所述起爆进程结束后, 返回所述步骤七;
步骤十八, 关闭所述起爆装置, 结束本起爆装置的所述主控流程。
[20] 20. 按照权利要求 18或 19所述的主控流程, 其特征在于:
所述第三步或者所述步骤六中的所述通信电压管理进程是按照以下步骤进 行的:
步骤 Al, 对本进程进行初始化, 即所述控制模块将其内置程序中如下变量 的初值存入其缓存中待用, 该缓存也就收到电压赋值变量 DATA的初始值 D ATAQ、 通信电压预设值的数据表达值 ¼、 和预设通信电压调整周期 T; 步骤 A2, 执行通信电压调节流程;
步骤 A3, 所述通信电压调节流程结束后, 检测是否接收到通信电压管理进 程结束信号: 若接收到该信号, 则结束本通信电压管理进程; 若未接收到 , 则继续进行步骤 A4;
步骤 A4, 检测本进程运行的吋间是否到达所述预设通信电压调整周期 T: 若到达所述 T, 则返回所述步骤 Α2; 若未到达所述 Τ, 则继续检测。
[21] 21 . 按照权利要求 20所述的主控流程, 其特征在于:
所述电压赋值变量 DATA的初始值 DATA。, 取定为使得所述数 /模转换器输 出其最大电压值或者最小电压值的电压赋值变量 DATA的值。
[22] 22. 按照权利要求 20所述的主控流程, 其特征在于:
所述步骤 A2中的所述通信电压调节流程是按照以下步骤进行的: 步骤 Bl, 读取所述模 /数转换器釆样到的、 两根所述信号总线上电压值的数 据表达值, 分别记为 ν πν2;
步骤 Β2, 计算所述¼与所述 V2的差值的绝对值, 记为 V' ;
步骤 B3, 计算所述 V。与所述 V'之间的差值 AV;
步骤 Β4, 以所述差值 AV为输入参数, 计算所述通信电压的调节值 f(AV) ; 步骤 B5, 把所述电压赋值变量 DATA和所述通信电压的所述调节值 f(AV)相 力口, 得出所述电压赋值变量的经调节后的值 DATA, 即 DATA=DATA+f(A V);
步骤 B6, 将所述经调节后的值 DATA发送给所述数 /模转换器; 步骤 B7, 结束所述通信电压调节流程。
[23] 23. 按照权利要求 18或 19所述的主控流程, 其特征在于:
所述第六步或者所述步骤九中的所述信号发送进程是按照以下步骤进行的 步骤 Cl, 将数据包中待发送数据的位数记为 N;
步骤 C2, 从所述数据包中读取一位待发送数据, 将该待发送数据作为所述 数据包发送数据的起点;
步骤 C3, 经检测, 若当前待发送数据为 1, 则控制所述信号调制发送模块 发送表达数据 1的调制信号; 经检测, 若当前待发送数据为 0, 则控制所述 信号调制发送模块发送表达数据 0的调制信号;
步骤 C4, 将所述数据包中待发送数据的位数 N减 1, 作为新的待发送数据的 位数, 即, N=N-1 ;
步骤 C5, 检测所述数据包中待发送数据的位数 N是否为零; 若所述位数 N为零, 则结束本信号发送进程;
若不为零, 则按照预定的选择下一位待发送数据的规则, 选择并读取所述 数据包中下一位待发送数据, 然后返回所述步骤 C3。
[24] 24. 按照权利要求 18或 19所述的主控流程, 其特征在于:
所述第八步或者所述步骤十一中的所述信号接收进程是按照以下步骤进行 的:
步骤 D1, 从所述控制模块中调用预设的信号接收超吋吋间值 T'; 步骤 D2, 检测所述控制模块接收来自所述电子雷管方向的数据的吋间, 是 否到达所述信号接收超吋吋间值 Τ' : 若到达, 则结束本信号接收进程; 若 未到达, 则继续进行步骤 D3;
步骤 D3, 检测所述控制模块是否接收到所述信号调理电路发送来的串行信 号:
若接收到所述串行信号, 则对所述串行信号进行釆样, 并获取所述电子雷 管的信息, 然后返回所述步骤 D2;
若未接收到所述串行信号, 则直接返回所述步骤 D2。
[25] 25 . 按照权利要求 18或 19所述的主控流程, 其特征在于:
所述第十步或者所述步骤十三中的所述充电进程是按照以下步骤进行的: 首先, 所述控制模块控制所述信号调制模块将所述信号总线上的电压切换 到向所述电子雷管中的所述储能装置充电所需的起爆电压; 然后, 所述控制模块检测是否充电完毕; 若充电完毕, 则结束所述充电进 程; 若充电未完毕, 则继续充电。
[26] 26. 按照权利要求 18或 19所述的主控流程, 其特征在于:
所述第十三步或者所述步骤十六中的所述起爆进程是按照以下步骤进行的 首先, 所述控制模块检测所述人机交互模块中的所述防误操作开关是否闭 合并持续预设值秒数:
若所述防误操作开关闭合并持续预设值秒数, 则所述控制模块控制所述信 号调制模块将所述信号总线上的总线电压切换到所述通信电压; 若所述防误操作开关未闭合、 或未持续预设值秒数, 则结束本起爆进程; 然后, 启动所述信号发送进程, 通过所述信号总线向所述电子雷管发送所 述起爆指令;
最后, 所述控制模块控制所述信号调制模块将所述信号总线上的总线电压 切换到所述起爆电压; 结束本起爆进程。
PCT/CN2009/072926 2008-07-28 2009-07-27 起爆装置及其主控流程 WO2010012214A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2009276160A AU2009276160B2 (en) 2008-07-28 2009-07-27 Initiating device and its main control flow

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101350280A CN101324413B (zh) 2008-07-28 2008-07-28 起爆装置及其主控流程
CN200810135028.0 2008-07-28

Publications (1)

Publication Number Publication Date
WO2010012214A1 true WO2010012214A1 (zh) 2010-02-04

Family

ID=40188046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072926 WO2010012214A1 (zh) 2008-07-28 2009-07-27 起爆装置及其主控流程

Country Status (3)

Country Link
CN (1) CN101324413B (zh)
AU (1) AU2009276160B2 (zh)
WO (1) WO2010012214A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147219B (zh) * 2010-02-09 2013-10-30 北京北方邦杰科技发展有限公司 电子雷管监管系统及其起爆授权监控管理方法
CN105759695A (zh) * 2016-04-25 2016-07-13 广东振声科技股份有限公司 爆破现场末端采集控制装置和方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101324413B (zh) * 2008-07-28 2011-08-10 颜景龙 起爆装置及其主控流程
CN101586933B (zh) * 2009-01-06 2013-05-29 北京铱钵隆芯科技有限责任公司 电子雷管监控管理系统
CN102278924B (zh) * 2010-06-11 2013-08-07 南京理工大学 智能起爆控制系统及其方法
CN102121810B (zh) * 2010-12-30 2014-02-12 四川久安芯电子科技有限公司 电子雷管起爆装置及其控制流程
CN102121809B (zh) * 2010-12-30 2013-06-05 四川久安芯电子科技有限公司 电子雷管起爆网络控制装置及控制流程
CN102840800B (zh) * 2011-06-22 2017-09-22 北京铱钵隆芯科技有限责任公司 电子雷管编码器
CN102393777A (zh) * 2011-11-22 2012-03-28 江苏迈拓智能仪表有限公司 一种基于仪表总线协议数据通讯装置及方法
CN103292644B (zh) * 2012-02-23 2015-04-15 无锡力芯微电子股份有限公司 电子雷管控制设备和电子雷管的通讯电路及电子起爆系统
CN107843161B (zh) * 2017-11-03 2019-07-19 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种定时起爆装置及方法
CN114646242B (zh) * 2022-03-28 2023-06-30 上海芯飏科技有限公司 用于电子雷管芯片的高可靠存储系统、方法、介质及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536693A (en) * 1982-09-02 1985-08-20 Ltv Aerospace And Defense Company High-speed capacitor discharge circuit suitable for the protection of detonation devices
US6173651B1 (en) * 1996-05-24 2001-01-16 Davey Bickford Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation
DE10110219A1 (de) * 2001-03-02 2002-10-02 Markus Voelkel Multidigitales Zündsystem für Brennmomentenzünder
CN101038144A (zh) * 2007-02-13 2007-09-19 朱俊英 自动识别受控雷管起爆器
CN101324413A (zh) * 2008-07-28 2008-12-17 颜景龙 起爆装置及其主控流程

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009967A1 (en) * 1998-08-13 2000-02-24 Expert Explosives (Proprietary) Limited Blasting arrangement
CN101114161A (zh) * 2007-08-28 2008-01-30 朱俊英 安全型智能电子雷管控制系统及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4536693A (en) * 1982-09-02 1985-08-20 Ltv Aerospace And Defense Company High-speed capacitor discharge circuit suitable for the protection of detonation devices
US6173651B1 (en) * 1996-05-24 2001-01-16 Davey Bickford Method of detonator control with electronic ignition module, coded blast controlling unit and ignition module for its implementation
DE10110219A1 (de) * 2001-03-02 2002-10-02 Markus Voelkel Multidigitales Zündsystem für Brennmomentenzünder
CN101038144A (zh) * 2007-02-13 2007-09-19 朱俊英 自动识别受控雷管起爆器
CN101324413A (zh) * 2008-07-28 2008-12-17 颜景龙 起爆装置及其主控流程

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147219B (zh) * 2010-02-09 2013-10-30 北京北方邦杰科技发展有限公司 电子雷管监管系统及其起爆授权监控管理方法
CN105759695A (zh) * 2016-04-25 2016-07-13 广东振声科技股份有限公司 爆破现场末端采集控制装置和方法

Also Published As

Publication number Publication date
AU2009276160A8 (en) 2011-05-26
AU2009276160A1 (en) 2010-02-04
CN101324413B (zh) 2011-08-10
AU2009276160B2 (en) 2013-11-21
CN101324413A (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
WO2010012214A1 (zh) 起爆装置及其主控流程
CN106780912B (zh) 一种智能门锁及其控制方法
JP5447450B2 (ja) 通信装置
JP2017034938A5 (zh)
CN109764779A (zh) 基于双线总线的数码电子雷管起爆系统及方法
EP3013629A2 (en) Vehicle and power receiving device
CN102840800B (zh) 电子雷管编码器
CN105071553A (zh) Nfc和无线充电共用线圈
CN109302068A (zh) 提供不同输出电压的开关式电源供应器、相关电源控制器
CN102121810A (zh) 电子雷管起爆装置及其控制流程
CN102072817B (zh) 一种恒流式时序控制点火装置及控制方法
CN106104961B (zh) 车辆用电力授受控制装置
CN110696666A (zh) 电动车辆的充电控制系统及方法
CN106211498B (zh) 一种照明装置的光色控制方法
CN105003931B (zh) 汽车电子点烟器
EP3798644B1 (en) Voltage sampling circuit and method for sampling voltage
CN208794462U (zh) 灶具
CN204012845U (zh) 兼有指纹控制的移动电源
CN106855700B (zh) 一种用于配网线路柱上开关的智能控制终端
CN114576042A (zh) 一种适用于固体火箭发动机远程点火装置及点火方法
CN106712308B (zh) 一种便携式分合闸装置及方法
CN115598409A (zh) 电火灶功率检测电路及电火灶
CN206628894U (zh) 一种便携式分合闸装置
CN105128820A (zh) 电动车启动控制系统
CN112576412A (zh) 一种面向小型肩抗多级推进飞行器的二级点火控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009276160

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009276160

Country of ref document: AU

Date of ref document: 20090727

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 18.04.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09802407

Country of ref document: EP

Kind code of ref document: A1