WO2010012191A1 - 一种上行信道测量参考信号的传输方法 - Google Patents

一种上行信道测量参考信号的传输方法 Download PDF

Info

Publication number
WO2010012191A1
WO2010012191A1 PCT/CN2009/072720 CN2009072720W WO2010012191A1 WO 2010012191 A1 WO2010012191 A1 WO 2010012191A1 CN 2009072720 W CN2009072720 W CN 2009072720W WO 2010012191 A1 WO2010012191 A1 WO 2010012191A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
node
frequency domain
signal
layer
Prior art date
Application number
PCT/CN2009/072720
Other languages
English (en)
French (fr)
Inventor
梁春丽
郝鹏
夏树强
戴博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40205951&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010012191(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to BRPI0915620-8A priority Critical patent/BRPI0915620B1/pt
Priority to JP2011500035A priority patent/JP5280514B2/ja
Priority to KR1020107020180A priority patent/KR101406967B1/ko
Priority to US12/999,199 priority patent/US8509172B2/en
Priority to EP09802384.9A priority patent/EP2242295B1/en
Publication of WO2010012191A1 publication Critical patent/WO2010012191A1/zh
Priority to HK11103891.1A priority patent/HK1149995A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a transmission technique for an uplink channel measurement reference signal, and more particularly to a method for transmitting an uplink channel measurement reference signal. Background technique
  • the uplink channel measurement reference signal is a user equipment (UE, User Equipment) end, that is, a signal sent by the terminal to the base station, which is mainly used for measuring the uplink of the base station.
  • UE User Equipment
  • the quality of the channel, the base station completes the scheduling of the uplink data according to the measurement result, the frequency resource occupied by the uplink transmission, or the modulation coding mode used.
  • the bandwidth of the SRS is configured in a tree structure.
  • Each SRS bandwidth configuration corresponds to a tree structure, and the highest SRS bandwidth (SRS-Bandwidth) corresponds to the maximum bandwidth of the SRS bandwidth configuration.
  • the total number of resource blocks (RBs) corresponding to the uplink bandwidth configuration is N.
  • Table 1 to Table 4 show the SRS bandwidth configuration table in different uplink bandwidth configurations. Table 1 corresponds to 6 ⁇ N ⁇ 40. Table 2 corresponds to 40 ⁇ ⁇ 60, Table 3 corresponds to 60 ⁇ N ⁇ 80, and Table 4 corresponds to 80 ⁇ N ⁇ 110.
  • m is the number of RBs in the frequency domain of each node of the 6th layer of the tree structure.
  • indicates the branch node of the 6th - 1st node of the tree structure at the 6th layer.
  • the frequency domain start position of the SRS signal is determined by a cell-specific SRS bandwidth configuration configured by a higher layer, a UE-specific (S-specific) SRS bandwidth, and a frequency domain location parameter, where :
  • Cell-specific SRS bandwidth configuration parameters The UE determines according to the uplink bandwidth and the parameter.
  • UE-specific SRS bandwidth parameter 3 ⁇ 4 ⁇ corresponds to one of the values of the four bs in the above table Kind, used to determine which layer of the tree structure the SRS signal is located in.
  • the frequency domain starting position of the SRS signal is determined by the following method: among them:
  • denotes the frequency domain start position of the uplink channel measurement reference signal, that is, the subcarrier index number.
  • N S guarantees that the bandwidth allowed in the system to transmit SRS is located at the center of the system bandwidth, and L*" means rounding down.
  • w s represents the number of subcarriers that an RB contains in the frequency domain.
  • SC is a shorthand for subcarrier, which is a subcarrier.
  • k TC G ⁇ 0,1 ⁇ is the offset of the SRS signal "Transmission Comb".
  • the SRS signal is transmitted every other subcarrier in the frequency domain, so it is like a comb in the frequency domain.
  • M b j2 , which represents the length of the SRS signal sequence of the branch located at the 6th layer in the tree structure.
  • 3 ⁇ 4 indicates the index of the branch node contained in the 6th layer node at layer 6, so there is " 3 ⁇ 4e ⁇ 0, 1, 2,..., N 3 ⁇ 4 -1 ⁇
  • « 3 ⁇ 4 is calculated from the frequency domain position parameters, and the relationship between the specific n b and 3 ⁇ 4 ⁇ is related to how the 3 ⁇ 4 ⁇ is determined.
  • the initial position of the frequency domain obtained by the existing scheme is incorrect. Therefore, the starting position of the frequency domain of the SRS signal cannot be correctly determined, which causes the UE not to be correct.
  • the initial frequency domain position transmits an SRS signal to the base station, and thus it is difficult for the base station to accurately perform uplink channel measurement.
  • the technical problem to be solved by the present invention is to provide a method for transmitting an uplink channel measurement reference signal, so that the base station can accurately perform measurement of the uplink channel.
  • the present invention provides a method for transmitting an uplink channel measurement reference signal, including:
  • the base station allocates resources for the uplink channel measurement reference signal of the UE, that is, the SRS signal, and sends the resource to the UE.
  • the SRS configuration parameters include SRS bandwidth parameters 3 ⁇ 4 ⁇ and SRS frequency domain location parameters"
  • the UE After receiving the SRS configuration parameter, the UE calculates a frequency domain start position of the SRS signal used for sending the SRS signal according to the SRS configuration parameter, and then sends the SRS signal to the base station by using the resource;
  • the frequency domain resource allocated by the base station to the SRS signal corresponds to a node in a tree structure configured by the SRS bandwidth, and the configured interface corresponds to the layer where the node is located, and the configured ⁇ corresponds to the node in the tree type.
  • the ⁇ ⁇ corresponds to an index of any branch node of the node at the bottom of the tree structure, and the index of the lowest branch node of the tree structure starts from 0, and presses 0, 1, 2 , 3... . Numbered sequentially.
  • the method further includes: the base station receiving, according to the SRS configuration parameter of the UE, the corresponding time-frequency position.
  • the SRS signal sent by the UE also provides a method for transmitting an uplink channel measurement reference signal, the method includes: the base station allocates resources for an uplink channel measurement reference signal of the UE, that is, an SRS signal, and sends an SRS configuration parameter to the UE, where the SRS configuration parameter includes an SRS bandwidth.
  • the SRS configuration parameter includes an SRS bandwidth.
  • the UE After receiving the SRS configuration parameter, the UE calculates a frequency domain start position of the SRS signal used for sending the SRS signal, and then sends the SRS signal to the base station by using the resource;
  • the frequency domain resource allocated by the base station to the SRS signal corresponds to a node in a tree structure configured by the SRS bandwidth, and the configured interface corresponds to the layer where the node is located, and the configured ⁇ corresponds to the node in the tree type.
  • the index of each layer of the tree structure is from 0. Start, press 0, 1, 2, 3..
  • the method further includes: the base station receiving, according to the SRS configuration parameter of the UE, the SRS signal sent by the UE at a corresponding time-frequency location.
  • the method of the present invention can correctly determine the relationship between n and " 3 ⁇ 4 , solve the problem that the initial frequency position of the current SRS signal cannot be determined, and it is difficult to accurately measure the uplink channel.
  • 1 is a flow chart of a method for a base station to transmit SRS configuration information and a method for a UE to transmit an SRS signal according to configuration information.
  • Figure 2 is a diagram showing the value of the first embodiment of the present invention in Table 2 configuration.
  • Figure 3 is a diagram showing the value of the second embodiment of the present invention in Table 2 configuration 0.
  • Figure 4 is a schematic diagram of the calculation of the frequency domain start position of the SRS signal in Table 2 configuration 0.
  • FIG. 1 shows a method for a base station to send SRS configuration information and a method for a UE to send an SRS signal according to configuration information, the method comprising the following steps:
  • Step 110 When the base station needs to receive an SRS signal from the UE to perform uplink channel measurement, allocate resources to the SRS signal, and send an SRS configuration parameter to the UE.
  • the SRS configuration parameters are divided into three categories, one is the parameter related to the time domain position of the SRS signal; the other is the parameter related to the sequence used by the SRS signal; and the other is the parameter related to the frequency domain position of the SRS signal.
  • the first two types of parameters are outside the scope of the present invention. Some of the cell-specific parameters are broadcast in the cell, and the UE-specific parameters are configured through higher layer signaling.
  • the frequency domain position related parameters of the SRS signal include an SRS bandwidth parameter and a SRS frequency domain position parameter.
  • the frequency domain resource allocated by the base station for the SRS signal corresponds to a node in a tree structure of the SRS bandwidth configuration, and the SRS bandwidth parameter configured by the base station. 3 ⁇ 4 ⁇ corresponding to the layer where the node is located, the configured SRS frequency domain location parameter ⁇ corresponds to the index of the node at the bottom of the tree structure or corresponds to the node in the tree structure by 3 ⁇ 4 ⁇ The index in the determined layer.
  • Step 120 The UE determines, according to the received SRS configuration parameter, a time domain, a frequency domain, and a sequence-related parameter of a resource used for transmitting the SRS signal, and uses the resource to send an SRS signal to the base station.
  • the UE determines the period of the SRS signal transmission and the subframe number of the SRS signal according to the received time domain location related parameters, and determines the frequency domain location (including the frequency) in which the SRS signal is transmitted according to the received frequency domain location related parameters.
  • the initial position of the domain and the length of the sequence determine the sequence used by the SRS signal based on the parameters associated with the sequence.
  • Step 130 The base station receives the SRS signal sent by the UE at the corresponding time-frequency position according to the SRS parameter configured for the UE.
  • the base station allocates resources for the SRS signal, and corresponds to a node in the tree structure in the frequency domain, and configures the SRS bandwidth parameter according to the layer where the node is located according to the index configuration of the node at the bottom of the tree structure.
  • the SRS frequency domain location parameter nRRC is:
  • the value of ⁇ of the non-underlying branch node is any one of all node indexes of the lowest level branch included in the branch node.
  • 3 ⁇ 4 6-1 indicates the index of the first layer is included in a branch node the node in the first layer 6:
  • the UE can calculate the correct frequency domain starting position according to formula (1) and send the SRS signal on the corresponding resource, so that the base station can correctly receive the SRS signal.
  • Other parameters required for the calculation of the formula (1) can be obtained in the existing manner, and will not be described herein.
  • Figure 2 shows a schematic diagram of the SRS bandwidth configuration is configuration 0 in Table II, Table II can be obtained from the v 0 , wherein the UE-specific SRS bandwidth parameter is configured by the base station, so in the schematic diagram, there are:
  • this layer has two nodes.
  • the number of nodes of the tree structure in which the SRS signal is located is determined according to the tree structure.
  • the base station configures the time-frequency code parameter when the UE sends the SRS according to the actual situation, such as the coverage requirement, whether the UE collides with other UEs, and the UE moves speed.
  • the base station allocates resources for the SRS signal, and corresponds to a node in the tree structure in the frequency domain, and configures the SRS bandwidth parameter according to the layer where the node is located, and configures the SRS according to the index of the node in the layer determined by the node.
  • Frequency domain position parameters (the index of the nodes in each layer starts from 0, and is numbered sequentially by 0, 1, 2, 3.7), so the value range is:
  • the UE calculates the meaning of n b according to formula (1) and formula (1).
  • the UE can calculate the correct frequency domain starting position according to formula (1) and send the SRS signal on the corresponding resource, so that the base station can correctly receive the SRS signal.
  • nN* — 1 ⁇ 0,1,...,N,N 2 -1 ⁇ ⁇ 0,1,2,3 ⁇ ;
  • the base station uses the method of the first embodiment
  • the UE After receiving the above parameters, the UE obtains according to the configuration 0 of Table 2:
  • the range of values in different embodiments is different, but according to the relationship between the corresponding ⁇ and " 3 ⁇ 4 ", the value of " 3 ⁇ 4 is the same, thus the obtained SRS signal
  • the starting position of the frequency domain is also the same.
  • the UE + 3 ⁇ 42 ⁇ 3 ⁇ 4 calculated, the SRS frequency domain starting position, i.e. the frequency
  • the index of the domain subcarrier is:
  • the frequency domain start position of the corresponding SRS signal is 3 ( S , that is, the frequency domain start position calculated by the UE is consistent with the frequency domain start position of the frequency domain resource allocated by the base station, so the base station can correctly receive the SRS sent by the UE. The signal, and then the measurement of the uplink channel is correctly performed.
  • the UE receives the relevant parameters according to the configuration 0 of Table 2, there are:
  • the UE is based on:
  • N B J mod N b is calculated:
  • the UE + J] 2AO 3 ⁇ 4 calculated, the SRS frequency domain starting position, i.e.
  • the index of the frequency domain subcarrier is:
  • the frequency domain start position of the SRS signal corresponding to the ⁇ region is 18N S , that is, the frequency domain start position calculated by the UE.
  • the frequency domain start position of the frequency domain resource allocated by the base station is consistent, so the base station can correctly receive the SRS signal sent by the UE, and correctly perform the measurement of the uplink channel.
  • the UE + 3 ⁇ 42 ⁇ 3 ⁇ 4 calculated, the SRS frequency domain starting position, i.e. the frequency
  • the index of the domain subcarrier is: , .
  • the frequency domain start position of the SRS signal corresponding to ⁇ is 42N S , that is, the frequency domain start position calculated by the UE and
  • the frequency domain start position of the frequency domain resource allocated by the base station is consistent, so the base station can correctly receive the SRS signal sent by the UE, and correctly perform the measurement of the uplink channel.
  • n 2
  • _28/l2"mod2 0
  • _28/4"moc 1 It can be seen that when the nodes allocated in the frequency domain are in the lowest layer of the tree structure, the values obtained by the methods of the first embodiment and the second embodiment are also the same.
  • the frequency domain start position of the SRS signal corresponding to ⁇ is 34N S , that is, the frequency domain start position calculated by the UE and the base station allocation
  • the frequency domain start position of the frequency domain resource is consistent, so the base station can correctly receive the SRS signal sent by the UE, and correctly perform the measurement of the uplink channel.
  • the present invention can correctly determine the relationship with " 3 ⁇ 4 , solve the problem that the initial frequency position of the current SRS signal cannot be determined, and it is difficult to accurately perform the uplink channel measurement, and thus has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种上行信道测量参考信号的传输方法
技术领域
本发明涉及上行信道测量参考信号的传输技术, 尤其是指一种上行信道 测量参考信号的传输方法。 背景技术
长期演进(LTE, Long Term Evolution ) 系统中, 上行信道测量参考信号 ( SRS , Sounding Reference Signal )是用户设备 ( UE, User Equipment )端 , 即终端发送给基站的一个信号, 主要用于基站测量上行信道的质量, 基站根 据测量结果完成对上行数据的调度, 如上行传输时占用的频率资源, 或者是 使用的调制编码方式等。
当前 LTE系统中, 支持多种 SRS带宽。 SRS的带宽釆用树型结构进行配 置, 每一种 SRS带宽配置( SRS bandwidth configuration )对应一个树型结构, 最高层的 SRS带宽( SRS-Bandwidth )对应了这种 SRS带宽配置的最大带宽。 定义上行带宽配置对应的总共的资源块(RB , Resource Block )数为 N , 表 一〜表四给出了不同上行带宽配置下, SRS 带宽配置表, 表一对应的是 6≤N ≤40 , 表二对应的是40 < ≤60 , 表三对应的是 60 < N ≤80 , 表四对 应的是 80 < N ≤110。
其中, m 表示的是树型结构第 6层每个节点在频域包含的 RB数,当 6 > 0 时, ^表示树型结构第 6 -1层节点在第 6层所包含的分支节点的数目, 而 6 = 0 对应着树型结构的最高层, 此时固定有 N¾ =i ; mSRS,。也就是该配置下的最大
SRS带宽。
Figure imgf000003_0001
0 36 1 12 3 4 3 4 1
1 32 1 16 2 8 2 4 2
2 24 1 4 6 4 1 4 1
3 20 1 4 5 4 1 4 1
4 16 1 4 4 4 1 4 1
5 12 1 4 3 4 1 4 1
6 8 1 4 2 4 1 4 1
7 4 1 4 1 4 1 4 1 表一
Figure imgf000004_0001
表二
SRS-带宽 SRS-带宽 SRS-带宽 SRS-带宽
SRS b = = 0 b = = 1 b = = 2 b = = 3 带宽配置 N0 N2 N3 0 72 1 24 3 12 2 4 3
1 64 1 32 2 16 2 4 4
2 60 1 20 3 4 5 4 1
3 48 1 24 2 12 2 4 3
4 48 1 16 3 8 2 4 2
5 40 1 20 2 4 5 4 1
6 36 1 12 3 4 3 4 1
7 32 1 16 2 8 2 4 2 表三
Figure imgf000005_0001
表四
SRS信号的频域起始位置, 由高层配置的小区专有的( cell-specific ) SRS 带宽配置、 UE专有的( UE-specific ) SRS带宽 ¾^以及频域位置参数 ¾^来确 定, 其中:
Cell-specific的 SRS带宽配置参数: UE根据上行带宽以及该参数, 确定
SRS带宽的树型结构以及与该树型结构对应的各个分支上的 mSRs;^oN¾。该参 数在小区内广播。
UE-specific的 SRS带宽参数 ¾^: 对应于上述表中四种 b的取值中的一 种, 用于确定 SRS信号位于树型结构的哪一层。
UE-specific的 SRS频域位置参数 "
根据 SRS带宽的树型结构以及以上三个参数, SRS信号频域起始位置釆 用如下方法确定:
Figure imgf000006_0001
其中:
^表示上行信道测量参考信号的频域起始位置, 也就是子载波索引号。 kO ,
Figure imgf000006_0002
其中, (Li /2」- /2) NS 保证了系统 中允许发送 SRS的带宽位于系统带宽的中心位置, L*」表示向下取整。 ws 表 示一个 RB在频域上包含的子载波个数。 SC是 subcarrier的简写, 也就是子 载波。 kTC G {0,1}是 SRS信号" Transmission Comb"的偏置, SRS信号在频域是每 隔一个子载波发送的, 因此在频域上就像是一个梳状的东西。
M = b j2 ,表示树型结构中位于第 6层的分支的 SRS信号序列的 长度。
«¾表示的是第 6 -1 层节点在第 6层所包含的分支节点的索引, 因此有 "¾ e {0, 1, 2,..., N¾ -1}
«¾是根据频域位置参数 计算得到的, 而具体的 nb与 ¾ ^之间的相互关 系又与 ¾ ^如何确定相关联。
目前,对于 ¾ ^如何确定还没有明确的方案, 已有的方案得到的频域初始 位置是不正确的, 因此, SRS信号的频域起始位置还无法正确确定, 这导致 UE不能在正确的频域初始位置向基站发送 SRS信号, 进而基站难以准确地 进行上行信道测量。
发明内容 本发明要解决的技术问题是提供一种上行信道测量参考信号的传输方 法, 使得基站可以准确地进行上行信道的测量。 为了解决上述技术问题, 本发明提供了一种上行信道测量参考信号的传 输方法, 包括:
基站为 UE的上行信道测量参考信号即 SRS信号分配资源, 向 UE发送
SRS配置参数,所述 SRS配置参数包括 SRS带宽参数 ¾^和 SRS频域位置参 数"
所述 UE收到所述 SRS配置参数后,根据所述 SRS配置参数计算发送 SRS 信号所用资源的 SRS信号的频域起始位置, 然后使用所述资源向基站发送 SRS信号;
其中,所述基站为 SRS信号分配的频域资源对应于 SRS带宽配置的树型 结构中的节点, 配置的 ¾^对应于所述节点所在的层, 配置的 ^对应于所述 节点在树型结构最底层的一个分支节点的索引。
Figure imgf000007_0001
进一步地, 根据所述 SRS配置参数计算发送 SRS信号所用资源的 SRS 信号的频域起始位置具体为:按下式计算第 6 -1层节点在第 6层所包含的分支 节点的索引《¾ , 根据计算得出的《¾计算 SRS 信号的频域起始位置: nb = [4nRRC/mSRS b \ modNb ;其中, L*」表示向下取整, ^为所述树型结构第 6层 每一个节点在频域包含的资源块数, 6 = 0, 1,...,¾^。 较佳地,所述 ^ ^对应于所述节点在树型结构最底层的任一分支节点的索 引, 所述树型结构的最底层的分支节点的索引从 0开始, 按 0,1,2,3... .依次编 号。 较佳地, 使用所述资源向基站发送 SRS信号后, 该方法还包括: 所述基站根据所述 UE的 SRS配置参数, 在相应的时频位置上接收所述
UE发送的 SRS信号。 本发明还提供了一种上行信道测量参考信号的传输方法, 该方法包括: 基站为 UE的上行信道测量参考信号即 SRS信号分配资源, 向 UE发送 SRS配置参数,所述 SRS配置参数包括 SRS带宽参数 ¾^和 SRS频域位置参 数"
所述 UE收到所述 SRS配置参数后, 计算发送 SRS信号所用资源的 SRS 信号的频域起始位置, 然后使用所述资源向基站发送 SRS信号;
其中,所述基站为 SRS信号分配的频域资源对应于 SRS带宽配置的树型 结构中的节点, 配置的 ¾^对应于所述节点所在的层, 配置的 ^对应于所述 节点在树型结构中由 决定的层中的索引。 进一步地, 所述 为: " C = 0,1,..., f N — 1 其中, ^表示树型 结构第 "层节点在第 6层所包含的 支节 ¾数目, 6 =。时, N, :1 , 进一步地, 根据所述 SRS配置参数计算发送 SRS信号所用资源的 SRS 信号的频域起始位置具体为:按下式计算第 6 -1层节点在第 6层所包含的分支 节点的索引《¾ , 根据计算得出的《¾计算 SRS 信号的频域起始位置: mSRS,BSRS "RRC I mSRS,b modN¾ ,其中, L*」表示向下取整, ^为所述树型结构 第 6层每一个节点在频域包含的资源块数, b = 0, l,,B 较佳地, 所述树型结构的每一层的节点的索引均从 0开始, 按 0,1,2,3.... 依次编号。 进一步地, 使用所述资源向基站发送 SRS信号后, 该方法还包括: 所述 基站根据所述 UE的 SRS配置参数, 在相应的时频位置上接收所述 UE发送 的 SRS信号。
釆用本发明方法可以正确地确定 n匿与《¾之间的相互关系,解决当前 SRS 信号的频域初始位置无法确定, 难以准确地进行上行信道测量的问题。 附图概述
图 1是基站发送 SRS配置信息以及 UE根据配置信息发送 SRS信号的方 法流程图。
图 2是表二配置 0中, 根据本发明第一实施例的 取值示意图。
图 3是表二配置 0中, 根据本发明第二实施例的 取值示意图。
图 4是表二配置 0中, SRS信号的频域起始位置计算的示意图。
本发明的较佳实施方式
以下将结合附图来详细说明本发明的具体实施, 借此对本发明如何应用 技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实 施。
第一实施例
图 1给出了基站发送 SRS配置信息以及 UE根据配置信息发送 SRS信号 的方法, 该方法包括以下步骤:
步骤 110, 当基站需要从 UE接收 SRS信号以进行上行信道测量时, 为 SRS信号分配资源, 向 UE发送 SRS配置参数;
SRS配置参数分为三大类, 一类是与 SRS信号的时域位置相关的参数; 一类是与 SRS信号使用的序列相关的参数;还有一类是与 SRS信号频域位置 相关的参数。 前两类参数不在本发明的研究范围之内。 其中一些小区相关的 ( Cell-specific )参数在小区内广播, 而 UE专有的( UE-specific )参数则通过 高层信令来配置。
SRS信号频域位置相关的参数包括 SRS带宽参数 ¾^和 SRS频域位置参 数 所述基站为 SRS信号分配的频域资源对应于 SRS带宽配置的树型结 构中的节点, 基站配置的 SRS带宽参数 ¾^对应于所述节点所在的层, 配置 的 SRS频域位置参数 ^ ^对应于所述节点在树型结构最底层的一个分支节点 的索引或者对应于所述节点在树型结构中由 ¾^决定的层中的索引。 步骤 120, UE根据接收到的 SRS配置参数, 确定发送 SRS信号所用资 源的时域、频域以及使用序列相关的参数,使用该资源向基站发送 SRS信号;
UE根据收到的时域位置相关的参数, 确定 SRS信号发送的周期和 SRS 信号所在的子帧号, 根据收到的频域位置相关的参数, 确定 SRS信号发送所 在的频域位置 (包括频域初始位置)及序列长度, 根据序列相关的参数确定 SRS信号使用的序列。
步骤 130, 基站根据给 UE配置的 SRS参数, 在相应的时频位置上接收 UE端发送的 SRS信号。
本实施例中, 基站为 SRS信号分配资源, 在频域上对应于树型结构中的 一个节点, 根据该节点所在层配置 SRS带宽参数 根据该节点在树型结 构最底层的分支节点的索引配置 SRS频域位置参数 nRRC为:
Figure imgf000010_0001
本实施例中,非底层分支节点的 ^的取值为该分支节点包含的最底层分 支所有节点索引中的任一个。
UE根据上述 iiRRc计算得到《¾, 其中, 《¾表示的是第 6-1层节点在第 6层 所包含的分支节点的索引:
Figure imgf000010_0002
UE根据计算得到的参数《¾, 按公式( 1 )可以计算出正确的频域起始位 置并在相应的资源上发送 SRS信号, 这样基站就可以正确接收 SRS信号。公 式(1 )计算所需的其它参数可以按照现有的方式获取, 在此不再赘述。
图 2给出了表二配置 0的一个 SRS信号带宽配置示意图, 由表二可以得 到 Ν0
Figure imgf000010_0003
, 其中 UE-specific的 SRS带宽参数 是由基站配 置的, 因此在该示意图中, 有:
当 =0时, 该层只有一个节点, ¾^ ={0,1,2,...,11};
当¾^=1时, 该层有两个节点, 对于节点 #0, 有 ¾^ ={0,1,..., 5} , 对于节 点 #1, 有" ={6,7,,11};
当¾^=2时, 该层有四个节点, 对于节点 #0, 有 ¾^={0,1,2}, 对于节点 #1,有 ¾«c ={3, 4,5} ,对于节点 #2,有 ={6, 7,8},对于节点 #3,有 ={9,10,11}; 当¾^=3时, 为该树型结构配置的最底层, 各个节点的取值分别为 {0,1, 2,..., 11}。
这里, SRS信号所位于的树型结构的层所具有的节点数是根据树型结构 来确定的。 基站在为 UE配置 SRS参数时, 将根据实际情况, 如覆盖要求, 与其他 UE是否发生冲突, UE移动速度等来配置 UE发送 SRS时的时频码参 数。
第二实施例
该实施例方法的流程与第一实施例相同, 以下只介绍频域初始位置的确 定方法。
本实施例中, 基站为 SRS信号分配资源, 在频域上对应于树型结构中的 一个节点,根据该节点所在层配置 SRS带宽参数 根据该节点在由 ¾^决 定的层中的索引配置 SRS频域位置参数 (每一层中节点的索引从 0开始, 按 0,1,2,3....依次编号) , 因此 的取值范围为:
Figure imgf000011_0001
UE根据公式( 1 )及公式( 1 )中 nb的含义计算得
是第^ 1层节点在第 6层所包含的分支节点的索引:
Figure imgf000011_0002
UE根据计算得到的参数《¾, 按公式( 1 )可以计算出正确的频域起始位 置并在相应的资源上发送 SRS信号, 这样基站就可以正确接收 SRS信号。
图 3给出了表二配置" 0"的一个 SRS信号带宽配置示意图,由表二配置" 0 可以得到 。=1, 1 =2, 2=2, 3 =3 , 因此在该示意图中, 有: 当
当 = {0,1};
Figure imgf000012_0001
ί ^ BSRS
0,1,..·, nN* — 1 {0,1,...,N,N2-1} = {0,1,2,3};
— 1 {0,1,..., ΝλΝ2Ν3 _ 1} = {0, 1, 2, ..., 11}
Figure imgf000012_0002
下面再结合图 4,给出根据 SRS带宽配置参数, SRS带宽 ¾^和频域位置 参数 η 确定上行信道测量参考信号的频域起始位置的应用实例。
实例 1
如图 4 所示, 对于表二中的配置 0, 基站如釆用第一实施例的方法,
UE-specific的参数配置为 ^ = 1,¾^=6, 对应的频域资源是图 4 ¾^ = 1对应 的层中^^ ^表示的区域, 这里 可以是 {6,7,8,9,10,11}中的任一个。
UE收到上述参数后, 根据表二的配置 0得到:
Ν0 =\,Νλ =2,N2 =2,N3 =3
WSRS,O = 48, wSRS J =24, SRS,2 = 12, wSRS3 =4 mSRS,BSRS ~ mSRS,\ ~ 24
W nb = [4nRRC/mSRS J mod Nb , 6 = 0,1,..., ¾^计算得到:
"o = L4" / ο」 mod No = L24/48J mod 1 = 0
"l = L4"R c/ sRs,i」 mod N = L24/24」 mod 2 = 1 基站如釆用第二实施例的方法, 则参数配置为, B =1," =1, 于是根 N B =
Figure imgf000013_0001
J mod Nb计算得到:
"。 = L24" mod N0 = [24/48J mod 1 = 0
Figure imgf000013_0002
对于相同的分支节点, 不同实施例中的 ¾^取值范围不同, 但是根据相 应的 ^ ^与《¾之间的相互关系得到的《¾的取值是相同的, 因而, 得到的 SRS 信号的频域起始位置也是相同的。
假设 N =60, Ns^=12, 则 =(^ /2」— SRS,。/2)N^+ =6N^
UE根据 = + ¾2Λθ¾计算得到, 该 SRS的频域初始位置, 也就是频
5=0 '
域子载波的索引为:
¾=ο
+ SRS¾N ¾
¾=0
=K + OSRS 0 +∞SRSJ«1 )
=6N™+N™ (0+0+24)
=30
=360 从图 4 SRS信号的频域起始位置计算的示意图中可以得到,与
对应的 SRS信号的频域起始位置为 3( S ,即 UE计算的频域起始位置与基站 分配的频域资源的频域起始位置是一致的, 因此基站可以正确接收 UE发送 的 SRS信号, 进而正确进行上行信道的测量。
实例 2
如图 4 所示, 对于表二中的配置 0, 如基站釆用第一实施例方法, UE-specific的参数配置有 =2,Wrrc=3, 也就是对应图 4中, Β^=2对应的 UE收到相关参数后, 根据表二的配置 0有:
Ν0 =\,Νλ =2,N2 =2,N3 =3
WSRS,O = 48, wSRS J =24, SRS,2 = 12, wSRS3 =4 _ 12
W nb = [4nRRC/mSRS J mod Nb , 6 = 0,1,..., ¾^计算得到: n0 = L4"RRC/ SRS,。」 mod No = L12/48J MOD 1 = 0
"l = L4"R C/ SRS,I」腸 d Ni = Ll2/24mod 2 = 0'
"2 = L4"R C/ SRS,2」 mod N2 = 12/12」 mod 2 = 1 如基站釆用第二实施例的方法, 则配置的参数 s =2,Wrrc=1:
此时, UE根据:
N B =
Figure imgf000014_0001
J mod Nb计算得到:
"o = L12"R c/ sRs,o」modN0 = Ll 2/48」 modi = 0
Figure imgf000014_0002
=Ll2/24」mod2 = 0
n2 = 12"置// ^2」110(1 2 = |_12/l2」mod2 = 1 可见两种方法计算出的结果是一致的。
假设 N =60 , Ns^=12, 则 =(^ /2」— sRS,。/2)N^+tTC=6N;
UE根据 = + J]2AO¾计算得到, 该 SRS的频域初始位置, 也就是
5=0
频域子载波的索引为:
5=0
Figure imgf000014_0003
6Ns^+Ns^(0+0+12)
養^
=216 从图 4 SRS信号的频域起始位置计算的示意图中,也可以得到,与■■■■■ 区域对应的 SRS信号的频域起始位置为 18NS ,即 UE计算的频域起始位置与 基站分配的频域资源的频域起始位置是一致的, 因此基站可以正确接收 UE 发送的 SRS信号, 进而正确进行上行信道的测量。
实例 3
如图 4 所示, 对于表二中的配置 0, 如基站釆用第一实施例方法, UE-specific的参数配置有 =2,Wrrc=9, 也就是对应图 4中, Β^=2对应的 层中 区域。
UE收到相关参数后, 根据表二的配置 0有:
Ν0 =\,Νλ =2,N2 =2,N3 =3
WSRS,O = 48, wSRS J =24, SRS,2 = 12, wSRS3 =4 _ 12
根据 =L4 RCA%^」mod , 01,...,¾^计算得到:
Figure imgf000015_0001
n2 = 4" mod V2 =L36/l2 mod2 = l 如基站釆用第二实施例的方法, 则配置的参数¾^=2 ¾^=3 , 根据
Figure imgf000015_0002
n0 = 12" 110(1 0 = [36/48 modi = 0
Figure imgf000015_0003
n2 = Ll2w / 7¾RS 2 mod V2 = L36/l2 mod2 = 1 假设
Figure imgf000015_0004
UE根据 = + ¾2Λθ¾计算得到, 该 SRS的频域初始位置, 也就是频
5=0 域子载波的索引为: , .
A'。= 十 2Msc ¾ b=0
RS,1«1 + raSRS,2¾ )
Figure imgf000016_0001
=42
=504 从图 4 SRS信号的频域起始位置计算的示意图中,也可以得到,与^^ ^ 对应的 SRS信号的频域起始位置为 42NS ,即 UE计算的频域起始位置与基站 分配的频域资源的频域起始位置是一致的, 因此基站可以正确接收 UE发送 的 SRS信号, 进而正确进行上行信道的测量。
实例 4
如图 4 所示, 对于表二中的配置 0, 如基站采用第一实施例的方法, UE-specific的参数配置有 Β = 3, ¾^ = 7, 也就是对应图 4中, Β^=2对应的 层中的^^区域。
UE收到相关参数后 , 根据表二的配置 0有:
Figure imgf000016_0002
WSRS,0 = 48^SRS,1 = 24^s
= 12^SRS,3 = 4
UE根据
Figure imgf000016_0003
」modN6 , 0 = 0,1,...,¾«计算得到
" = L4"RRC/ SRS,」 MOD N0 = [28/48 J mod 1 = 0
"l = |_4" Rc/msRs,i」 mod N, = |_28/24」 mod 2 = 1
"2
Figure imgf000016_0004
mC)dN2 =|_28/l2」mod2 = 0
"3 / WSRS 3」 mod N; = |_28/4」 mod 3 = 1 如基站采用第二实施例的方法, 则配置参数^^^^^^二?, 于是根据 nt = msRS,Bs siCimLbmod Nb计算得到:
" = L4" /rasRS,」 mod No = [28/48 J mod 1 = 0
"l = |_28/24」 mod 2 = 1
n2
Figure imgf000016_0005
=|_28/l2」mod2 = 0
n = 4" /mSRS,3」modN = |_28/4」moc = 1 可以看出, 频域上分配的节点在树型结构的最底层中时, 釆用第一实施 例和第二实施例方法得到的 的取值也是相同的。 假设 N = 60 , Ns^=12, 则 = (^ /2」— SRS,。/2)N^ + = 6N^ 基站根据 = + ¾ 2Λθ¾计算得到, 该 SRS的频域初始位置, 也就是
5=0 ' 频域子载波的索引为:
¾=ο
Figure imgf000017_0001
—k。 + Nsc (WSRS,0W0 + SRS,1 "1 + WSRS,2W2 + WSRS,2W2 )
=6N™ (0+24+0+4)
=3
=408 从图 4 SRS信号的频域起始位置计算的示意图中, 也可以得到, ^ ίτττη 对应的 SRS信号的频域起始位置为 34NS ,即 UE计算的频域起始位置与基站 分配的频域资源的频域起始位置是一致的, 因此基站可以正确接收 UE发送 的 SRS信号, 进而正确地进行上行信道的测量。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。 如本发明所应用的系统不局限于 LTE系统。
工业实用性 本发明可以正确地确定 与《¾之间的相互关系, 解决当前 SRS信号的 频域初始位置无法确定, 难以准确地进行上行信道测量的问题, 因此具有很 强的工业实用性。

Claims

权 利 要 求 书
1、 一种上行信道测量参考信号的传输方法, 包括:
基站为 UE的上行信道测量参考信号即 SRS信号分配资源, 向 UE发送 SRS配置参数,所述 SRS配置参数包括 SRS带宽参数 ¾^和 SRS频域位置参 数"
所述 UE收到所述 SRS配置参数后,根据所述 SRS配置参数计算发送 SRS 信号所用资源的 SRS信号的频域起始位置, 然后使用所述资源向基站发送 SRS信号;
其中,所述基站为 SRS信号分配的频域资源对应于 SRS带宽配置的树型 结构中的节点, 配置的 ¾^对应于所述节点所在的层, 配置的 ^对应于所述 节点在树型结构最底层的一个分支节点的索引。
2、 如权利要求 1所述的传输方法, 其中, 所述 ^ ^为:
Figure imgf000018_0001
其中, ^表示树型结构第 6 -1层节点在第 6层所包含的分支节点的数目, 6 = 0时, Nb =\。
3、 如权利要求 2所述的传输方法, 其中:
根据所述 SRS配置参数计算发送 SRS信号所用资源的 SRS信号的频域 起始位置具体为:按下式计算第 6 -1层节点在第 6层所包含的分支节点的索引 nb , 根据计算得出的《¾计算 SRS信号的频域起始位置: nb = [4nRRC/mSRS b」 mod Nb; 其中, L*」表示向下取整, 为所述树型结构第 层每一个节点在频域 包含的资源块数,
Figure imgf000018_0002
4、 如权利要求 1所述的传输方法, 其中:
所述 ^ ^对应于所述节点在树型结构最底层的任一分支节点的索引,所述 树型结构的最底层的分支节点的索引从 0开始, 按 0, 1 ,2,3....依次编号。
5、 如权利要求 1-4中任一项所述的传输方法, 其中, 使用所述资源向基 站发送 SRS信号后, 该方法还包括:
所述基站根据所述 UE的 SRS配置参数, 在相应的时频位置上接收所述 UE发送的 SRS信号。
6、 一种上行信道测量参考信号的传输方法, 该方法包括:
基站为 UE的上行信道测量参考信号即 SRS信号分配资源, 向 UE发送 SRS配置参数,所述 SRS配置参数包括 SRS带宽参数 ¾^和 SRS频域位置参 数"
所述 UE收到所述 SRS配置参数后, 计算发送 SRS信号所用资源的 SRS 信号的频域起始位置, 然后使用所述资源向基站发送 SRS信号;
其中,所述基站为 SRS信号分配的频域资源对应于 SRS带宽配置的树型 结构中的节点, 配置的 ¾^对应于所述节点所在的层, 配置的 ^对应于所述 节点在树型结构中由 ¾^决定的层中的索引。
7、 如权利要求 6所述的传输方法, 其中, 所述《fff ^为:
Figure imgf000019_0001
其中, ^表示树型结构第 6 -1层节点在第 6层所包含的分支节点的数目, 6 = 0时, Nb =\。
8、 如权利要求 7所述的传输方法, 其中:
根据所述 SRS配置参数计算发送 SRS信号所用资源的 SRS信号的频域 起始位置具体为:按下式计算第 6 -1层节点在第 6层所包含的分支节点的索引 nb , 根据计算得出的《¾计算 SRS信号的频域起始位置: nb = \ mSRS,BSRS "RRC I mSRS,b modN, 其中, L*」表示向下取整, 为所述树型结构第 层每一个节点在频域 包含的资源块数, b = u 。
9、 如权利要求 1所述的传输方法, 其中:
所述树型结构的每一层的节点的索引均从 0开始,按 0, 1 ,2,3....依次编号。
10、 如权利要求 6-9 中任一项所述的传输方法, 其中, 使用所述资源向 基站发送 SRS信号后, 该方法还包括:
所述基站根据所述 UE的 SRS配置参数, 在相应的时频位置上接收所述 UE发送的 SRS信号。
PCT/CN2009/072720 2008-07-29 2009-07-10 一种上行信道测量参考信号的传输方法 WO2010012191A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0915620-8A BRPI0915620B1 (pt) 2008-07-29 2009-07-10 Método para transmitir sinal de referência de sondagem de canal de uplink
JP2011500035A JP5280514B2 (ja) 2008-07-29 2009-07-10 サウンディング参照信号の転送方法
KR1020107020180A KR101406967B1 (ko) 2008-07-29 2009-07-10 일종 상향링크 채널 사운딩 기준 신호의 전송 방법
US12/999,199 US8509172B2 (en) 2008-07-29 2009-07-10 Method for transmitting an uplink channel sounding reference signal
EP09802384.9A EP2242295B1 (en) 2008-07-29 2009-07-10 Method for Transmitting an Uplink Channel Sounding Refrence Signal
HK11103891.1A HK1149995A1 (en) 2008-07-29 2011-04-18 Method for transmitting an uplink channel sounding reference signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810144407A CN101330325B (zh) 2008-07-29 2008-07-29 一种上行信道测量参考信号的传输方法
CN200810144407.6 2008-07-29

Publications (1)

Publication Number Publication Date
WO2010012191A1 true WO2010012191A1 (zh) 2010-02-04

Family

ID=40205951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072720 WO2010012191A1 (zh) 2008-07-29 2009-07-10 一种上行信道测量参考信号的传输方法

Country Status (9)

Country Link
US (1) US8509172B2 (zh)
EP (2) EP2242295B1 (zh)
JP (1) JP5280514B2 (zh)
KR (1) KR101406967B1 (zh)
CN (1) CN101330325B (zh)
BR (1) BRPI0915620B1 (zh)
HK (1) HK1149995A1 (zh)
RU (1) RU2440695C1 (zh)
WO (1) WO2010012191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130265962A1 (en) * 2010-11-05 2013-10-10 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, method and integrated circuit

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2647067T3 (es) 2007-08-08 2017-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Sondeo usando diferentes configuraciones de sondeo
CN101330325B (zh) * 2008-07-29 2012-09-05 中兴通讯股份有限公司 一种上行信道测量参考信号的传输方法
CN101651469B (zh) * 2008-08-15 2013-07-24 三星电子株式会社 用于lte系统中发送上行监测参考符号的跳频方法
CN101771463B (zh) * 2009-01-05 2012-12-12 电信科学技术研究院 一种发送上行探测参考信号的方法、装置和系统
CN101772031B (zh) * 2009-01-06 2013-06-12 电信科学技术研究院 一种分配探测参考信号传输资源的方法和装置
CN103037521B (zh) * 2009-01-19 2015-05-20 鼎桥通信技术有限公司 Td-scdma系统中的上行参考符号实现方法
CN101848541B (zh) 2009-03-27 2013-03-13 电信科学技术研究院 一种探测参考信号发送的方法及设备
CN101541029B (zh) * 2009-04-27 2015-01-28 中兴通讯股份有限公司 载波聚合情况下测量参考信号的发送方法和装置
CN101882942B (zh) * 2009-05-07 2012-12-05 中国移动通信集团公司 上行导频信号的发送/接收方法、移动通信终端及基站
KR101294815B1 (ko) 2009-05-15 2013-08-08 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
CN101594633B (zh) * 2009-06-19 2015-06-10 中兴通讯股份有限公司 使用多天线传输测量参考信号的基站、终端、系统和方法
CN101594683B (zh) * 2009-06-19 2014-03-19 中兴通讯股份有限公司南京分公司 一种载波聚合时的信号传输方法及系统
CN101959205B (zh) * 2009-07-14 2015-04-01 中兴通讯股份有限公司 一种中继网络中的上行测量方法及系统
JP5868322B2 (ja) 2009-09-21 2016-02-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてサウンディング参照信号の転送方法及びそのための装置
WO2011034399A2 (ko) * 2009-09-21 2011-03-24 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
CN102035592B (zh) * 2009-09-27 2014-09-10 中兴通讯股份有限公司 基于中继站的上行数据传输方法及装置
US9531514B2 (en) 2009-12-03 2016-12-27 Qualcomm Incorporated Sounding reference signal enhancements for wireless communication
CN102246579A (zh) * 2010-01-08 2011-11-16 联发科技股份有限公司 长期演进声探的资源分配与信令方法
WO2011090259A2 (ko) 2010-01-19 2011-07-28 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호 송신 방법 및 이를 위한 장치
CN101795145B (zh) * 2010-02-08 2014-11-05 中兴通讯股份有限公司 测量参考信号的发送方法及系统
CN102223167B (zh) * 2010-04-16 2015-11-25 华为技术有限公司 多天线系统中的探测参考信号发送方法及装置
WO2011153699A1 (zh) * 2010-06-10 2011-12-15 富士通株式会社 用于在载波聚合系统中的上行次分量载波上传输探测参考信号的方法和设备
CN102014506B (zh) * 2010-07-13 2012-08-29 华为技术有限公司 一种触发终端发送测量参考信号的方法和基站
CN101931456B (zh) 2010-08-09 2016-05-25 中兴通讯股份有限公司 一种移动通信系统中测量参考信号的发送方法
CN102378383B (zh) * 2010-08-09 2014-04-02 华为技术有限公司 发送与接收探测参考信号的方法、基站和用户设备
WO2012060641A2 (ko) * 2010-11-05 2012-05-10 (주)팬택 비주기적 참조신호를 송수신하는 방법 및 장치
JP2012129962A (ja) * 2010-12-17 2012-07-05 Kyocera Corp 無線基地局、無線端末及び通信制御方法
CN102098086B (zh) * 2010-12-30 2016-03-02 中兴通讯股份有限公司 数据发送方法及装置
CN102761968B (zh) * 2011-04-27 2017-03-01 艾利森电话股份有限公司 多用户设备的探测参考信号上行资源分配方法及基站
CN102223726A (zh) * 2011-06-10 2011-10-19 中兴通讯股份有限公司 一种srs的发送方法和系统
CN102932929B (zh) * 2011-08-08 2017-09-19 南京中兴软件有限责任公司 监测参考信号配置方法及装置
US9060343B2 (en) 2011-10-03 2015-06-16 Mediatek, Inc. Support of network based positioning by sounding reference signal
US20150065153A1 (en) * 2012-04-13 2015-03-05 Nokia Corporation Arrangement for Enhanced Multi-Transmit Antenna Sounding
KR101525048B1 (ko) 2012-06-11 2015-06-08 주식회사 케이티 단말의 상향링크 사운딩 참조신호 전송방법 및 그 단말
KR101647868B1 (ko) 2012-06-11 2016-08-11 주식회사 케이티 상향링크 채널과, 상향링크 채널에 연계된 상향링크 사운딩 참조신호 전송방법 및 그 단말
CN107135058B (zh) 2012-09-06 2021-01-29 华为技术有限公司 设备间d2d通信中传输参考信号的方法和装置
CN103840930A (zh) * 2012-11-21 2014-06-04 华为技术有限公司 一种测量参考信号的配置方法、发送方法及装置
CN104283582B (zh) * 2013-07-01 2018-07-06 中兴通讯股份有限公司 一种确定探测参考信号跳频图案方法及终端
US11522743B2 (en) * 2016-04-27 2022-12-06 Futurewei Technologies, Inc. Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems
CN109743150B (zh) 2016-08-29 2021-09-24 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
WO2018063943A1 (en) * 2016-09-29 2018-04-05 Intel IP Corporation Uplink (ul) measurement configuration
CN106411492B (zh) * 2016-11-28 2019-07-02 京信通信系统(中国)有限公司 一种srs资源配置方法及装置
CN108347766B (zh) * 2017-01-25 2022-05-17 中兴通讯股份有限公司 一种上行移动性下的寻呼传输方法、通信站点及通信节点
CN108809587B (zh) * 2017-05-05 2021-06-08 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
WO2018210260A1 (en) * 2017-05-17 2018-11-22 Mediatek Singapore Pte. Ltd. Method and apparatus for handling cell-specific reference signal muting in mobile communications
CN109150439B (zh) * 2017-06-16 2021-02-05 电信科学技术研究院 一种数据传输方法、装置、网络侧设备和用户设备
WO2019066625A1 (en) 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING A REFERENCE SIGNAL IN A WIRELESS COMMUNICATION SYSTEM
CN108260219B (zh) 2018-01-12 2021-11-12 中兴通讯股份有限公司 一种参考信号的接收和发送方法、设备及计算机可读存储介质
EP3893580A4 (en) * 2018-12-07 2022-07-20 Ntt Docomo, Inc. TERMINAL AND COMMUNICATION METHOD
JP7478196B2 (ja) 2022-07-28 2024-05-02 アンリツ株式会社 移動端末試験装置とそのsrsのevm測定結果表示方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1509579A (zh) * 2001-05-14 2004-06-30 ��������λ�Ƽ���˾ 适应性调制及编码技术的共享控制信道上行链路功率控制
CN1997200A (zh) * 2005-12-31 2007-07-11 华为技术有限公司 长期演进移动通信网络中的跨演进节点b的小区切换方法
US20080039098A1 (en) * 2006-08-14 2008-02-14 Texas Instruments Incorporated Methods and apparatus to schedule uplink transmissions in wireless communication systems
CN101330325A (zh) * 2008-07-29 2008-12-24 中兴通讯股份有限公司 一种上行信道测量参考信号的传输方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY123040A (en) 1994-12-19 2006-05-31 Salbu Res And Dev Proprietary Ltd Multi-hop packet radio networks
US6842430B1 (en) * 1996-10-16 2005-01-11 Koninklijke Philips Electronics N.V. Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same
FI20010937A0 (fi) * 2001-05-04 2001-05-04 Nokia Corp Hajotuskoodin valitseminen hajaspektrijärjestelmässä
EP1596610B1 (en) * 2004-05-11 2006-10-18 Alcatel Network element and method of mapping address information
JP2006065660A (ja) * 2004-08-27 2006-03-09 Sony Corp 端末機器、情報配信サーバ、および情報配信方法
US7636328B2 (en) * 2004-10-20 2009-12-22 Qualcomm Incorporated Efficient transmission of signaling using channel constraints
JP4564855B2 (ja) * 2005-01-31 2010-10-20 株式会社リコー データ転送システム及び電子機器
KR20070004370A (ko) * 2005-07-04 2007-01-09 삼성전자주식회사 무선통신시스템을 위한 협동중계전송방법
JP4442578B2 (ja) * 2006-03-14 2010-03-31 ソニー株式会社 Ad変換装置、物理量分布検出装置および撮像装置
US8218565B2 (en) * 2006-12-06 2012-07-10 Alcatel Lucent Alternating scheduling method for use in a mesh network
JP5166287B2 (ja) 2007-01-09 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ 基地局装置及び通信制御方法
JP4954720B2 (ja) 2007-01-09 2012-06-20 株式会社エヌ・ティ・ティ・ドコモ 基地局及びユーザ端末並びに受信チャネル品質測定用信号の送信制御方法
EP2103017B1 (en) * 2007-03-29 2014-01-08 LG Electronics Inc. Method of transmitting sounding reference signal in wireless communication system
US9137821B2 (en) * 2007-05-02 2015-09-15 Qualcomm Incorporated Flexible signaling of resources on a control channel
US8599819B2 (en) * 2007-06-19 2013-12-03 Lg Electronics Inc. Method of transmitting sounding reference signal
US8086272B2 (en) * 2007-08-06 2011-12-27 Mitsubishi Electric Research Laboratories, Inc. Wireless networks incorporating antenna selection based on received sounding reference signals
ES2647067T3 (es) * 2007-08-08 2017-12-19 Telefonaktiebolaget Lm Ericsson (Publ) Sondeo usando diferentes configuraciones de sondeo
ATE503325T1 (de) * 2007-08-08 2011-04-15 Ericsson Telefon Ab L M Verfahren und vorrichtung zum konfigurieren von ertönenden signalen in einem drahtlosen kommunikationsnetz
US8180009B2 (en) * 2007-11-05 2012-05-15 Apple Inc. Techniques for signaling reference signal parameters in a wireless communication system
DK2294771T3 (da) * 2008-03-20 2013-10-07 Nokia Siemens Networks Oy Frekvensspringsmønster og anordning til sounding-referencesignal
US8160008B2 (en) * 2008-03-28 2012-04-17 Apple Inc. Techniques for channel sounding in a wireless communication system
JP4990412B2 (ja) * 2008-06-24 2012-08-01 ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド 周波数ホッピングされたサウンディング基準信号を用いたアンテナ選択

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1509579A (zh) * 2001-05-14 2004-06-30 ��������λ�Ƽ���˾ 适应性调制及编码技术的共享控制信道上行链路功率控制
CN1997200A (zh) * 2005-12-31 2007-07-11 华为技术有限公司 长期演进移动通信网络中的跨演进节点b的小区切换方法
US20080039098A1 (en) * 2006-08-14 2008-02-14 Texas Instruments Incorporated Methods and apparatus to schedule uplink transmissions in wireless communication systems
CN101330325A (zh) * 2008-07-29 2008-12-24 中兴通讯股份有限公司 一种上行信道测量参考信号的传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2242295A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130265962A1 (en) * 2010-11-05 2013-10-10 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, method and integrated circuit
US9173208B2 (en) * 2010-11-05 2015-10-27 Sharp Kabushiki Kaisha Mobile station apparatus, base station apparatus, method and integrated circuit

Also Published As

Publication number Publication date
JP5280514B2 (ja) 2013-09-04
JP2011517520A (ja) 2011-06-09
EP2242295A4 (en) 2012-02-29
EP2615877B1 (en) 2017-11-22
RU2440695C1 (ru) 2012-01-20
EP2615877A1 (en) 2013-07-17
KR20100117662A (ko) 2010-11-03
KR101406967B1 (ko) 2014-06-13
CN101330325B (zh) 2012-09-05
BRPI0915620A2 (pt) 2016-11-08
US8509172B2 (en) 2013-08-13
CN101330325A (zh) 2008-12-24
HK1149995A1 (en) 2011-10-21
BRPI0915620B1 (pt) 2020-09-24
EP2242295B1 (en) 2013-04-10
EP2242295A1 (en) 2010-10-20
US20110090862A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
WO2010012191A1 (zh) 一种上行信道测量参考信号的传输方法
CN105979597B (zh) 通信资源的分配方法、分配装置、基站和终端
KR101767797B1 (ko) 다운링크 제어 정보 송신 및 검출 방법, 송신단 및 수신단
WO2010124597A1 (zh) 载波聚合情况下测量参考信号的发送方法和装置
JP5346015B2 (ja) Sc−fdma通信システムにおける制御信号及びデータ信号の送信のための周波数リソースの分割
US20170332390A1 (en) Method and device for transmitting data
JP2023145631A5 (zh)
EP3142401B1 (en) Sequence generating method and terminal and base station for sequence generation
US20120257584A1 (en) Methods and Arrangements in a Telecommunication System
JP2020526963A5 (zh)
WO2010145180A1 (zh) 定位参考信号发送、数据发送、数据接收方法及装置
EP2088709A3 (en) Methods and apparatus to allocate acknowledgement channels
JP2014075816A (ja) 多重アンテナ及びサウンディングレファレンス信号ホッピングを使用する上向きリンク無線通信システムにおけるサウンディングレファレンス信号伝送方法及び装置
WO2014201614A1 (zh) 上行控制信息传输方法、用户设备和基站
WO2013023461A1 (zh) 控制信道资源的分配方法及装置
WO2019196888A1 (zh) 物理上行信道的时隙确定方法及装置
CN112242892A (zh) 一种物理上行控制信道的资源配置方法及装置
US20240089061A1 (en) Systems and methods for linking pdcch candidates
WO2016183842A1 (zh) 一种数据传输方法、装置、系统及接入点
WO2015103763A1 (zh) 一种信令资源的配置方法、设备及系统
WO2013029419A1 (zh) 一种配置分片载波后rbg大小和编号的确定方法和装置
EP3148271B1 (en) Signal transmission method and apparatus
WO2016169062A1 (zh) 上行随机接入的方法及相关设备
CN110351059A (zh) 用户设备及其对下行信号的处理方法及装置
CN105472701B (zh) 一种lte网络中的d2d发现信号发送方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802384

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009802384

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107020180

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010137299

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2011500035

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3825/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 12999199

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0915620

Country of ref document: BR

Free format text: APRESENTAR, EM ATE 60 (SESSENTA) DIAS, PROCURACAO REGULAR, UMA VEZ QUE A PROCURACAO APRESENTADA NA PETICAO NO 020110002513 DE 10/01/2011 NAO POSSUI ASSINATURA, DATA E LOCAL ONDE FOI ASSINADA E A APRESENTADA NA PETICAO NO 020110086417 DE 18/08/2011 NAO POSSUI RATIFICACAO DE ATOS ANTERIORES, NAO CONTEMPLA O PROCURADOR RESPONSAVEL PELA PETICAO INICIAL (ANDRE LUIZ SOUZA ALVAREZ), NAO FOI APRESENTADO SUBSTABELECIMENTO VALIDO CONTEMPLANDO O MESMO E TAMBEM ENCONTRA-SE SEM ASSINATURA, APENAS COM O NOME DA EMPRESA PREENCHIDO NO CAMPO E NOME POR EXTENSO DA PESSOA QUE DEVERIA ASSINAR A PROCURACAO APRESENTADA.

ENP Entry into the national phase

Ref document number: PI0915620

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110110