WO2010012188A1 - 可变压缩比发动机 - Google Patents

可变压缩比发动机 Download PDF

Info

Publication number
WO2010012188A1
WO2010012188A1 PCT/CN2009/072661 CN2009072661W WO2010012188A1 WO 2010012188 A1 WO2010012188 A1 WO 2010012188A1 CN 2009072661 W CN2009072661 W CN 2009072661W WO 2010012188 A1 WO2010012188 A1 WO 2010012188A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
gear
power output
shaft
compression ratio
Prior art date
Application number
PCT/CN2009/072661
Other languages
English (en)
French (fr)
Inventor
熊志江
卢能才
Original Assignee
奇瑞汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇瑞汽车股份有限公司 filed Critical 奇瑞汽车股份有限公司
Priority to US13/003,444 priority Critical patent/US20110107998A1/en
Publication of WO2010012188A1 publication Critical patent/WO2010012188A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/047Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of variable crankshaft position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an automobile engine, and more particularly to an engine having a variable compression ratio and controllability, and belongs to the technical field of mechanical manufacturing. Background technique
  • variable link ratio variable compression ratio device for an internal combustion engine, which can change the compression ratio of the internal combustion engine, but changes the length of the connecting rod by the deformation of the spring due to the change.
  • the compression ratio of the internal combustion engine is varied, which is reflected between several strokes of the internal combustion engine and is uncontrollable, and it is not possible to provide a flexible fuel engine with a compression ratio adapted to different fuels.
  • the technical problem to be solved by the present invention is to provide a variable compression ratio engine for the deficiencies of the prior art, the compression ratio of which can be changed by controlling the change of its structure.
  • a variable compression ratio engine includes a cylinder head, a cylinder block, a power output shaft and a crankcase; the cylinder head is fixed on an upper surface of the cylinder block; the crankcase is integrally formed with the cylinder block; The inner piston is coupled to the crankshaft through a connecting rod; the power output shaft is mounted on the crankcase, the power output shaft has a power output gear, the crankshaft has an input gear on the crankshaft, and the power output gear and the input gear mesh; a support arm is further disposed in the crankcase, the crankshaft is hinged on the support arm; one end of the support arm is hinged to the crankcase, the hinge shaft is a power output shaft; and the other end of the support arm is a control end The control end coupling can cause the support arm to rotate the control mechanism around the power output shaft.
  • the variable compression ratio engine provided by the present invention has two parts, the upper part being a cylinder head and the lower part being a cylinder block and a crankcase.
  • the upper part remains unchanged, and the lower part is adjusted by a support arm by means of the lever principle.
  • the position of the center of the shaft is controlled by the control mechanism to rotate the support arm around the hinge of the cylinder to achieve a slight movement of the center position of the crankshaft relative to the cylinder, thereby changing the position of the top dead center of the engine, thereby achieving a compression ratio with Change.
  • the compression ratio of the variable compression ratio engine is controllable, and the compression ratio which is most suitable for the working condition can be realized by the control mechanism under different working conditions.
  • the control mechanism includes a control motor, a control motor gear, an eccentric shaft, a slider, and an eccentric shaft gear.
  • the control motor gear is mounted on the slider, and the eccentric shaft gear is mounted on the positive central axis of one end of the eccentric shaft, and the gear of the control motor is always guaranteed to mesh.
  • the other end of the eccentric shaft is coupled to the slider on the positive central axis; the off-center shaft of the eccentric shaft is hinged to the control end of the support arm.
  • the control mechanism adopts the principle of eccentricity, and the motor drives the eccentric shaft to rotate, so that the control end of the support arm can move up and down, thereby realizing a slight movement of the crankshaft center position relative to the cylinder body to achieve a compression ratio change of the engine.
  • the eccentric shaft is rotated by the motor, and the distance between the center of the crankshaft and the cylinder is changed. Therefore, the engine can achieve optimal fuel economy and dynamic performance with optimal compression ratio under different working conditions.
  • Figure 1 is a schematic view showing the overall structure of the present invention
  • Figure 2 is a partial view of the A direction in Figure 1;
  • 3 and 4 are respectively schematic structural views of the present invention.
  • FIG. 1 is a schematic view of the entire structure of the present invention
  • FIG. 2 is a partial view taken along line A of FIG.
  • the present invention provides a variable compression ratio engine including a cylinder head and cylinder 1, a crankcase and a power take-off shaft 12.
  • the cylinder head is fixed to the upper surface of the cylinder block 1, and the crankcase is integrally formed with the cylinder block 1.
  • the piston 2 is connected to the crankshaft 9 via a connecting rod 3.
  • the power output shaft 12 is mounted on the crankcase, and the power output shaft 12 and the crankshaft neck of the crankshaft 9 have a power output gear 11 and an input gear 10, respectively.
  • the power output gear 11 and the input The input gear 10 meshes.
  • the crankshaft 9 is mounted on the support arm 4.
  • One end of the support arm 4 is hinged to the cylinder block 1.
  • the hinged hinge shaft is the power output shaft 12, and the other end is For the control end, the support arm 4 is rotated about the power take-off shaft 12 by a control mechanism.
  • the control mechanism described in this embodiment includes a control motor (not shown), a control motor gear 7, an eccentric shaft 5, a slider 6, and an eccentric shaft gear 8.
  • the control motor is mounted outside the crankcase, and the control motor gear 7 is mounted on the slider via the motor shaft 13.
  • the eccentric shaft gear 8 is mounted on the positive center shaft of the eccentric shaft 5 - end and is always meshed with the control motor gear 7 .
  • the other end of the eccentric shaft 5 is coupled to the slider 6 on the positive central axis; the off-center axis of the eccentric shaft 5 is hinged to the control end of the support arm 4.
  • the control motor is mounted outside the cylinder. It is a permanent magnet stepper motor.
  • the eccentricity of the eccentric shaft 5 is 2 mm, that is, the eccentricity of the positive central axis and the off-center axis of the eccentric shaft is 2 mm.
  • the center of the crankshaft 9 can be moved up and down by 1 mm to change the compression ratio between 8:1 and -20:1, that is, when the eccentric shaft gear 8 is rotated to the off-center axis to the lower maximum stroke
  • the center of the crankshaft 9 is moved downward by 1 mm, the distance between the center of the crankshaft 9 and the center of the cylinder 1 is increased by 1 mm.
  • the volume of the combustion chamber above the cylinder 1 is increased by 1 mm X cylinder area, and the compression ratio is the smallest, in this embodiment. For 8: 1.
  • the power output shaft 12 is also required to be disposed in the crankcase.
  • the output shaft is mounted on the crankcase, and one end extends out of the crankcase.
  • the power take-off shaft 12 is also the hinge point of the support arm 4.
  • FIG. 3 and 4 are respectively schematic structural views of the present invention.
  • the working process of the present invention is as follows:
  • the outer cylindrical surface of the piston 2 is sleeved in the cylinder of the cylinder 1, so that the piston 2 can only be along the axis thereof in the cylinder.
  • the end face of the combustion chamber is indicated by reference numeral 100 in the figure.
  • Radial bore in piston 2 By connecting the pin 3 to the connecting rod 3 by means of a pin, the connecting rod 3 can only swing back and forth in a plane with respect to the piston 2, as it swings back and forth in the plane shown in FIG.
  • the crank of the crankshaft 9 is hingedly connected to the connecting rod 3 so that the swinging amplitude of the connecting rod 3 can only be the length of the crank arm of the crankshaft 9, and the crankshaft 9 is hinged to the supporting arm 4 and can be rotated on the supporting arm 4.
  • One end of the support arm 4 is a fulcrum that is hinged to the crankcase through a fixed shaft (in this embodiment, the fixed shaft is the power output shaft 12), and the other end is a control end, and the control end is coupled to the slider 6 through the eccentric shaft 5.
  • the eccentric shaft gear 8 is fixed to the positive central shaft of the eccentric shaft 5 and meshes with the motor gear 7.
  • the motor gear 7 is on the slider 6 and moves synchronously with the slider 6.
  • the input gear 10 is fixed to the crankshaft 9 with its center coincident with the center of rotation of the crankshaft 9 while meshing with the output gear 11.
  • the center of the output gear 11 coincides with the center of the output shaft 12, and the output shaft 12 is coupled to the cylinder for power output.
  • the engine piston is at the top dead center position, and the off center axis of the eccentric shaft 5 is biased directly downward.
  • the top dead center position of the piston 2 is the lowest, and the combustion chamber volume of the engine is the largest, that is, the engine works at the moment.
  • the compression ratio is minimal.
  • the control motor rotates counterclockwise, and the eccentric center of the eccentric shaft is gradually increased, thereby driving the support arm 4 to move upward, and then the crankshaft 9 is also synchronously moved upward to drive the control end of the support arm 4 to power output.
  • the shaft 12 is rotated counterclockwise from the center, and the center of the crankshaft 9 is also synchronously rotated upward, so that the crankshaft 9, the link 3 and the piston 2 move upward relative to the cylinder block 1 as a whole.
  • the eccentric shaft 5 is rotated until the off-center axis position of the eccentric shaft 9 is moved directly upward, the crankshaft 9, the link 3 and the piston 2 are moved to the highest point with respect to the cylinder 1, and thus the top dead center of the piston 2 At the highest point, the combustion chamber volume is the smallest at this time, so the compression ratio of the engine is the largest at this moment.
  • the rotation of the eccentric shaft drives the support arm to move up and down, the distance from the center of the crankshaft of the engine to the cylinder is changed, thereby changing the volume of the combustion chamber of the engine, and the task of changing the compression ratio of the engine is completed, but
  • the structure of the control mechanism for the up-and-down movement of the support arm in this embodiment is not limited to such a case that a cam rotates under the action of an external force, and the outer edge of the cam can also drive the support arm to move up and down.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Transmission Devices (AREA)

Description

可变压缩比发动机
技术领域
本发明涉及一种汽车发动机, 尤其是一种压縮比是可变和可控的发动机, 属于机 械制造技术领域。 背景技术
目前, 大多数发动机压縮比是不可变动的, 然而在不同工况下要同时达到降低燃 油消耗、 提高发动机性能和降低排放的目的, 则要根据不同的工况灵活地改变其压縮 比。 同时, 当前的灵活燃料发动机其压縮比为定值, 无法同时适应不同燃料的燃烧特 性。 燃料更换后热效率降低, 且易发生爆震等异常燃烧现象; 在行驶过程中更换燃料 还易导致发动机运行不稳定等异常现象。 因此可变压縮比发动机成为当前研究的新方 向。 申请号为 88101975.5的专利文献公开了一种内燃机变连杆长度可变压縮比装置, 该装置能使内燃机的压縮比变化, 但由于其变化是通过弹簧受力形变而改变连杆长度 进而使内燃机的压縮比变化, 该变化反映在内燃机几个冲程之间, 且不可控, 不能为 灵活燃料发动机提供适应不同燃料的压縮比。 发明内容
本发明所要解决的技术问题在于, 针对现有技术的不足提供一种可变压縮比的发 动机, 该发动机的压縮比可通过对其结构的变化进行控制而改变。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种可变压縮比发动机, 包括缸盖、 缸体、 动力输出轴和曲轴箱; 所述缸盖固定 在缸体的上面; 所述曲轴箱与所述缸体一体成型; 在所述缸体内活塞通过连杆与曲轴 联接; 所述动力输出轴安装在曲轴箱上, 动力输出轴上有动力输出齿轮, 曲轴的曲轴 颈上有输入齿轮, 所述的动力输出齿轮和输入齿轮啮合; 在所述的曲轴箱内还设置支 承臂, 所述曲轴铰接在该支承臂上; 所述支承臂的一端与曲轴箱铰接, 铰接轴为动力 输出轴; 所述支承臂的另一端为控制端, 所述的控制端联接可使支承臂绕动力输出轴 旋转控制机构。
本发明提供的可变压縮比发动机, 由于发动机分成两部分, 上部分为缸盖, 下部 分为缸体和曲轴箱。 上部分保持不变, 下部分内借助杠杆原理利用一个支承臂调整曲 轴中心的位置, 通过控制机构控制支承臂绕其与缸体铰接处旋转而实现曲轴中心位置 相对于缸体发生微小的移动, 从而使发动机的上止点位置发生改变, 因而实现压縮比 随之变化。 该可变压縮比发动机的压縮比是可控的, 在不同工况下可以通过控制机构 实现最能适合该工况的压縮比。
作为本发明的进一步改进, 所述的控制机构包括控制电机、 控制电机齿轮、 偏心 轴、 滑块、 偏心轴齿轮。 所述的控制电机齿轮安装在滑块上, 偏心轴齿轮安装在偏心 轴一端正中心轴上, 并与控制电机齿轮始终保证啮合。 偏心轴另一端正中心轴上联接 滑块; 偏心轴的偏中心轴与所述支承臂的控制端铰接。
所述的控制机构是采用偏心原理, 通过电机带动偏心轴旋转, 使支承臂的控制端 可上下运动, 从而实现曲轴中心位置相对于缸体发生微小的移动实现发动机的压縮比 变化。 采取上述技术方案后, 当需要改变压縮比时, 通过操控电机带动偏心轴转动, 改变曲轴中心与缸体的距离。 从而在不同的工况下都能以最优的压縮比使发动机达到 最优燃油经济性及动力性能。
以下将结合附图, 对本发明的各较佳实施例进行较为详细的说明。 附图说明
图 1为本发明整体结构示意图;
图 2为图 1中 A向局部视图;
图 3和图 4分别为本发明构造原理图。
附图标记说明:
1 缸体、 2 活塞、 3 连杆、 4一支承臂、 5—偏心轴、 6 滑块、 7—电机齿轮、 8 偏心轴齿轮、 9 曲轴、 10—输入齿轮、 11一输出齿轮、 12 动力输出轴、 13—电 机轴、 100 燃烧室端面。 具体实施方式
图 1为本发明整体结构示意图, 图 2为图 1中 A向局部视图。 如图 1、 2所示, 本发明提供一种可变压縮比发动机, 包括缸盖和缸体 1、 曲轴箱和动力输出轴 12。 所 述缸盖固定在缸体 1的上面, 所述曲轴箱与所述缸体 1一体成型。 在所述缸体 1 内活 塞 2通过连杆 3与曲轴 9连接。 动力输出轴 12安装在曲轴箱上, 动力输出轴 12和曲 轴 9的曲轴颈上分别有动力输出齿轮 11和输入齿轮 10。 所述的动力输出齿轮 11和输 入齿轮 10啮合。在所述的曲轴箱内还有一支承臂 4,所述曲轴 9安装在该支承臂 4上, 所述支承臂 4的一端与缸体 1铰接, 铰接的铰轴为动力输出轴 12, 另一端为控制端, 通过一个控制机构可使支承臂 4绕动力输出轴 12旋转。
如图 1和图 2所示, 本实施例中所述的控制机构包括控制电机 (图中未画出)、 控制电机齿轮 7、 偏心轴 5、 滑块 6、 偏心轴齿轮 8。 控制电机安装在曲轴箱外, 通过 电机轴 13将所述的控制电机齿轮 7安装在滑块上。偏心轴齿轮 8安装在偏心轴 5—端 正中心轴上, 并与控制电机齿轮 7始终保证啮合。 偏心轴 5另一端正中心轴上联接滑 块 6 ; 偏心轴 5的偏中心轴与所述支承臂 4的控制端铰接。 所述的控制电机安装在缸 体外面。 为永磁步进电机。 当电机带动偏心轴 5旋转到一定角度时, 偏心轴 5的偏中 心轴带动支承臂 4围绕支承臂 4与发动机曲轴箱的铰接点移动一定距离, 通过杠杆原 理, 在支承臂 4中心处的曲轴 9的中心也移动一定距离。 本实施例中, 偏心轴 5的偏 心量为 2mm, 即偏心轴的正中心轴与偏中心轴偏心量为 2mm。 通过杠杆支承机构, 可 以使曲轴 9中心上下移动 l mm, 使压縮比在 8 : 1 -20: 1之间变化, 就是说, 当偏心 轴齿轮 8旋转到偏心轴偏中心轴到下面最大行程时, 曲轴 9中心向下移动了 lmm, 曲 轴 9中心与汽缸 1中心的距离增加了 1mm,此时汽缸 1上面燃烧室的容积增加了 1mm X汽缸面积, 压縮比为最小, 本实施例中为 8 : 1。 当偏心轴齿轮 8旋转到偏心轴输出 轴到上面最大行程时, 曲轴 9中心向上移动了 1mm (相对上面例子中当偏心轴齿轮在 下面最大行程时移动了 2 mm) , 曲轴 9中心与汽缸 1中心的距离增加了 1mm (相对上 面例子中当偏心轴齿轮在下面最大行程时增加了 2 mm) , 此时汽缸 1上面燃烧室的容 积减小了 Imm X汽缸面积 (相对上面例子中当偏心轴齿轮在下面最大行程时减小了 2mm X汽缸面积), 压縮比为最大, 即 20 : 1。
现有技术中由于曲轴 9是固定在曲轴箱内, 因此曲轴通过主轴颈伸出曲轴箱的曲 轴前端就是发动机的输出轴。 本实施例由于曲轴 9中心要移动, 其前端不能伸出曲轴 箱直接作为输出轴, 因此在曲轴箱内还需要设置动力输出轴 12, 输出轴安装在曲轴箱 上, 一端伸出曲轴箱, 其上有一输出齿轮 11, 在曲轴 9的曲轴颈上安装一动力输入齿 轮 10, 动力输出齿轮 11与输入齿轮 10啮合。 在实施例中, 动力输出轴 12还是支承 臂 4的铰接点。
图 3和图 4分别为本发明构造原理图。 如图 1、 图 2并结合图 3、 图 4所示, 本 发明的工作过程是这样的: 活塞 2外圆柱面被套在缸体 1的汽缸内, 使活塞 2只能在 汽缸内沿其轴线上下运动, 图中以附图标记 100表示燃烧室端面。 活塞 2中的径向孔 通过活塞销以销钉的方式与连杆 3连接, 使连杆 3只能相对活塞 2在一个平面上来回 摆动, 如在图 1所示的平面上来回摆动。 曲轴 9的曲柄与连杆 3以销钉方式铰接, 使 连杆 3的摆动幅度只能是曲轴 9的曲柄臂的长度, 曲轴 9与支承臂 4铰接, 可以在支 承臂 4上旋转。 支承臂 4的一端为支点通过固定轴 (在本实施例中固定轴为动力输出 轴 12) 与曲轴箱铰接, 另一端为控制端, 控制端通过偏心轴 5与滑块 6联接。 偏心轴 齿轮 8固定在偏心轴 5正中心轴上, 与电机齿轮 7相啮合。 电机齿轮 7在滑块 6上, 随滑块 6同步移动。 输入齿轮 10固定在曲轴 9上, 其中心与曲轴 9的旋转中心重合, 同时与输出齿轮 11相啮合。 输出齿轮 11 的中心与输出轴 12的中心重合, 输出轴 12 联接在缸体上, 用于动力输出。
如图 3所示, 此时发动机活塞正处于上止点位置, 偏心轴 5的偏中心轴偏向正下 方, 此时活塞 2的上止点位置最低, 发动机的燃烧室体积最大, 即此刻发动机工作的 压縮比最小。 当需要调整压縮比时, 控制电机逆时针旋转, 其偏心轴的偏心中心逐步 升高, 从而带动支承臂 4向上运动, 于是曲轴 9也同步向上运动, 带动支承臂 4的控 制端以动力输出轴 12为中心逆时针旋转, 曲轴 9的中心也同步旋转向上运动, 于是曲 轴 9、 连杆 3及活塞 2相对于缸体 1整体向上移动。 当偏心轴 5转动到使其偏心轴 9 的偏中心轴位置移到正上方时, 此时曲轴 9、 连杆 3及活塞 2相对于缸体 1移动到最 高点, 因而活塞 2的上止点也到了最高点, 此时的燃烧室体积最小, 故此刻发动机的 压縮比最大。 如图 4所示, 当需要降低压縮比时, 则将电机反转, 偏心轴 5的偏心中 心向下运动, 即活塞 2的上止点也同步向下移动, 压縮比也就随之下降。 当偏心轴 5 转动时, 偏心轴 5与动力输出轴 12中心距离的变化, 滑块 6会同步左右滑动以补偿其 距离的变动。 另因压縮比在调节时曲轴 9中心会变动, 故增加了一对齿轮 (输入齿轮 10及输出齿轮 11 )转换输出。将轴心位置可变的曲轴中心输出转到中心位置不变输出 轴 12中心输出。
本实施例虽然是利用一个偏心轴的旋转带动支承臂上下移动, 使发动机的曲轴中 心到汽缸的距离发生变化, 进而改变发动机燃烧室的容积, 完成改变发动机的压縮比 的任务, 但是能够使本实施例中的支承臂上下运动的控制机构的结构不限如此, 比如 一个凸轮, 在外力的作用下旋转, 利用凸轮的外沿也可带动支承臂上下运动。
最后说明的是: 以上实施例仅用以说明本发明而非限制, 尽管参照较佳实施例对 本发明进行了详细说明, 本领域的普通技术人员应当理解, 对本发明进行修改或者等 同替换, 而不脱离本发明的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1、 一种可变压縮比发动机, 包括缸盖、 缸体 (1)、 动力输出轴 (12) 和曲轴箱, 所述缸盖固定在缸体 (1) 的上面, 所述曲轴箱与所述缸体 (1) 一体成型, 在所述缸 体 (1) 内活塞 (2) 通过连杆 (3) 与曲轴 (9) 联接, 所述动力输出轴 (12) 安装在 曲轴箱上, 动力输出轴 (12) 上有动力输出齿轮 (11), 曲轴 (9) 的曲轴颈上有输入 齿轮 (10), 所述的动力输出齿轮 (11) 和输入齿轮 (10) 啮合; 其特征在于: 在所述 的曲轴箱内还设置支承臂 (4), 所述曲轴 (9) 铰接在该支承臂 (4) 上; 所述支承臂 (4) 的一端与曲轴箱铰接, 铰接轴为动力输出轴 (12); 所述支承臂 (4) 的另一端为 控制端, 所述的控制端联接可使支承臂 (4) 绕动力输出轴 (12) 旋转控制机构。
2、 根据权利要求 1 所述的可变压縮比发动机, 其特征在于: 所述的控制机构包 括控制电机、 控制电机齿轮 (7)、 偏心轴 (5)、 滑块 (6)、 偏心轴齿轮 (8); 所述的 控制电机齿轮 (7) 安装在滑块 (6) 上; 偏心轴齿轮 (8) 安装在偏心轴 (5) —端正 中心轴上, 并与控制电机齿轮 (7) 始终保证啮合; 偏心轴 (5) 另一端正中心轴上联 接滑块 (6); 偏心轴 (5) 的偏中心轴与所述支承臂 (4) 的控制端铰接。
3、 根据权利要求 2 所述的可变压縮比发动机, 其特征在于: 所述的控制电机安 装在缸体外面。
4、 根据权利要求 3 所述的可变压縮比发动机, 其特征在于: 所述的控制电机为 永磁步进电机。
5、 根据权利要求 2所述的可变压縮比发动机, 其特征在于: 所述的偏心轴 (5) 的偏心量为 2mm。
PCT/CN2009/072661 2008-07-29 2009-07-07 可变压缩比发动机 WO2010012188A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/003,444 US20110107998A1 (en) 2008-07-29 2009-07-07 Engine With Variable Compression Ratio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810142704.7A CN101333970A (zh) 2008-07-29 2008-07-29 一种可变压缩比发动机
CN200810142704.7 2008-07-29

Publications (1)

Publication Number Publication Date
WO2010012188A1 true WO2010012188A1 (zh) 2010-02-04

Family

ID=40196789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072661 WO2010012188A1 (zh) 2008-07-29 2009-07-07 可变压缩比发动机

Country Status (3)

Country Link
US (1) US20110107998A1 (zh)
CN (1) CN101333970A (zh)
WO (1) WO2010012188A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640387A (zh) * 2016-12-06 2017-05-10 江苏大学 一种可实现转子发动机不同压缩比的执行机构
CN114352430A (zh) * 2022-01-10 2022-04-15 重庆佳瑞斯科技有限公司 可变压缩比活塞组件

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333970A (zh) * 2008-07-29 2008-12-31 奇瑞汽车股份有限公司 一种可变压缩比发动机
FI121283B (fi) * 2009-08-17 2010-09-15 Aulis Pohjalainen Moottorin sylinteripaineen säädin
CN102562353B (zh) * 2012-03-08 2015-10-28 重庆三华工业有限公司 集成铝合金箱体
CN102733945B (zh) * 2012-06-27 2014-08-13 苏成胜 一种四冲程往复活塞式内燃机
CN103114908B (zh) * 2013-03-11 2014-12-17 范伟俊 可变压缩比发动机
EP2992200B1 (en) 2013-05-03 2019-07-03 Blackstock, Scott Variable compression ratio engine
US10851877B2 (en) 2013-06-03 2020-12-01 Enfield Engine Company, Llc Power delivery devices for reciprocating engines, pumps, and compressors, and related systems and methods
US9958041B2 (en) 2013-06-03 2018-05-01 Enfield Engine Company, Llc Power delivery devices for reciprocating engines and related systems and methods
US9410477B2 (en) * 2013-06-03 2016-08-09 Enfield Engine Company, Llc Power delivery devices for reciprocating engines and related systems and methods
CN103470382B (zh) * 2013-08-28 2016-03-02 长城汽车股份有限公司 一种发动机压缩比调节机构
CN104533637A (zh) * 2014-11-26 2015-04-22 上海交通大学 发动机排量旋转机构调节系统
CN104595041A (zh) * 2014-11-26 2015-05-06 上海交通大学 带有旋转机构的压缩比可变系统
RU2638241C1 (ru) * 2016-07-18 2017-12-12 Александр Сергеевич Гурьянов Четырехцилиндровый оппозитный двигатель с переменной степенью сжатия
CN105971739B (zh) * 2016-07-27 2019-02-22 重庆交通大学 可调斜盘式无曲轴变排量发动机
FR3081525B1 (fr) * 2018-05-25 2020-05-08 MCE 5 Development Vilebrequin pour un moteur a rapport volumetrique variable pilote
KR20200015304A (ko) * 2018-08-03 2020-02-12 현대자동차주식회사 가변 압축비 장치
CN110594017A (zh) * 2019-09-05 2019-12-20 辽宁工程技术大学 一种汽车发动机可变压缩比机构
US11703048B2 (en) 2020-03-04 2023-07-18 Enfield Engine Company, Inc. Systems and methods for a tangent drive high pressure pump
CN112610340B (zh) * 2020-12-08 2022-03-18 东风汽车集团有限公司 一种可变压缩比的发动机运动结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165368A (en) * 1992-03-23 1992-11-24 Ford Motor Company Internal combustion engine with variable compression ratio
US6450136B1 (en) * 2001-05-14 2002-09-17 General Motors Corporation Variable compression ratio control system for an internal combustion engine
CN1924324A (zh) * 2005-08-29 2007-03-07 本田技研工业株式会社 可变冲程发动机
CN101333970A (zh) * 2008-07-29 2008-12-31 奇瑞汽车股份有限公司 一种可变压缩比发动机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007640B2 (en) * 2003-07-25 2006-03-07 Masami Sakita Engine with a variable compression ratio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165368A (en) * 1992-03-23 1992-11-24 Ford Motor Company Internal combustion engine with variable compression ratio
US6450136B1 (en) * 2001-05-14 2002-09-17 General Motors Corporation Variable compression ratio control system for an internal combustion engine
CN1924324A (zh) * 2005-08-29 2007-03-07 本田技研工业株式会社 可变冲程发动机
CN101333970A (zh) * 2008-07-29 2008-12-31 奇瑞汽车股份有限公司 一种可变压缩比发动机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640387A (zh) * 2016-12-06 2017-05-10 江苏大学 一种可实现转子发动机不同压缩比的执行机构
CN114352430A (zh) * 2022-01-10 2022-04-15 重庆佳瑞斯科技有限公司 可变压缩比活塞组件
CN114352430B (zh) * 2022-01-10 2022-12-13 诸暨市博惠汽车配件有限公司 可变压缩比活塞组件

Also Published As

Publication number Publication date
US20110107998A1 (en) 2011-05-12
CN101333970A (zh) 2008-12-31

Similar Documents

Publication Publication Date Title
WO2010012188A1 (zh) 可变压缩比发动机
CN101429882B (zh) 连续可变气门升程装置
CN107023386B (zh) 可变压缩比装置及可变压缩比发动机
CN101858233B (zh) 包含变速摆机构的全可变气门正时方法和机构
CN101403326A (zh) 一种内燃机可变气门升程机构
CN100564829C (zh) 一种压比可调发动机
US6990938B2 (en) Valve mechanism for internal combustion engines
JP4771874B2 (ja) 可変動弁機構
CN201318217Y (zh) 连杆直线往复活塞式节能内燃机
CN101705862B (zh) 弧形缸内燃机
KR101028181B1 (ko) 가변 압축비 엔진
JP5313644B2 (ja) 可変動弁機構
CN102966391B (zh) 双凸轮控制的摇臂机构
CN103912334A (zh) 可变气门升程驱动装置
CN103925029B (zh) 可变气门升程驱动装置
WO2020088532A1 (zh) 冲程可变的可变压缩比机构及其控制方法
CN201546812U (zh) 弧形缸内燃机
CN107762587A (zh) 执行机构、可变气门升程装置、发动机及汽车
CN102297029A (zh) 内燃机中活塞可变压缩比装置
JP2014234707A (ja) 内燃機関
CN204691904U (zh) 一种发动机
CN103437848B (zh) 发动机气门弹簧张力调节装置
CN103925031B (zh) 一种可变气门升程驱动装置
CN103925030B (zh) 一种可变气门升程驱动装置
CN103216291B (zh) 用于发动机的气门升程装置和具有其的发动机、车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13003444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802381

Country of ref document: EP

Kind code of ref document: A1