WO2010011081A1 - 압축기 및 이를 구비한 공기조화기 - Google Patents

압축기 및 이를 구비한 공기조화기 Download PDF

Info

Publication number
WO2010011081A1
WO2010011081A1 PCT/KR2009/004059 KR2009004059W WO2010011081A1 WO 2010011081 A1 WO2010011081 A1 WO 2010011081A1 KR 2009004059 W KR2009004059 W KR 2009004059W WO 2010011081 A1 WO2010011081 A1 WO 2010011081A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
temperature
mode
compression
saving mode
Prior art date
Application number
PCT/KR2009/004059
Other languages
English (en)
French (fr)
Inventor
변상명
김상모
최호림
김정훈
노태영
김종원
Original Assignee
(주)엘지전자
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080071199A external-priority patent/KR101540661B1/ko
Priority claimed from KR1020080071197A external-priority patent/KR101504202B1/ko
Application filed by (주)엘지전자 filed Critical (주)엘지전자
Priority to US13/055,189 priority Critical patent/US9429158B2/en
Priority to CN2009801311109A priority patent/CN102119277A/zh
Priority to EP09800562.2A priority patent/EP2317147B1/en
Publication of WO2010011081A1 publication Critical patent/WO2010011081A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/23Working cycle timing control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/86Detection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/024Compressor control by controlling the electric parameters, e.g. current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0262Compressor control by controlling unloaders internal to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements

Definitions

  • the present invention relates to a compressor and an air conditioner having the same, and more particularly, to a compressor and an air conditioner having the same, which can increase the operating efficiency of the compressor and the air conditioner in an abnormal operation environment.
  • the compressor is mainly applied to an air conditioner such as an air conditioner.
  • an air conditioner such as an air conditioner.
  • the functions of the air conditioner are diversified, a product that can change the capacity of the compressor is required.
  • a technique for varying the capacity of the compressor techniques for controlling the rotational speed of the compressor by employing an inverter motor and techniques for controlling the vane mechanically and idling are widely known.
  • the technology employing the inverter motor has a problem that it is difficult to increase the refrigeration capacity in the cooling conditions, compared to the increase in the refrigeration capacity in the heating conditions because the cost of the inverter motor is expensive.
  • the first method is to vary the pressure of the refrigerant supplied to the compression space of the cylinder so that the vanes are locked / released.
  • the second method is to allow the vane to be locked / released while varying the pressure applied to the backside of the vane.
  • the present invention is to operate the air conditioner in the preset operating mode based on the detected voltage to detect the compressor applied voltage, or to operate in the preset operating mode in a predetermined time region It is an object of the present invention to provide a compressor and an air conditioner having the same to improve the reliability and operation efficiency of the compressor and the air conditioner and to reduce the noise by allowing the compressor to be continuously operated.
  • Another object of the present invention is to improve the reliability and operating efficiency of the compressor and the air conditioner and reduce the noise by detecting the compressor temperature or the ambient temperature so that the air conditioner is operated in a preset operating mode, and the air having the same. In providing a harmonic.
  • Still another object of the present invention is to operate the air conditioner in a preset operation mode by detecting the compressor temperature or the ambient temperature, or to operate the compressor in a predetermined operation mode in a predetermined time region so that the compressor is continuously operated by the compressor and the air conditioner It is to provide a compressor and an air conditioner having the same to improve the reliability and operation efficiency of the, and to reduce the noise.
  • the compressor according to the first embodiment of the present invention includes a casing having a sealed inner space, a driving motor installed in the inner space of the casing to generate a driving force, and installed in the inner space of the casing together with the driving motor.
  • At least one compression space having at least two compression spaces, and the power unit or at least one compression space includes a compression unit controlled to operate in a saving mode of idling.
  • the compression unit controls the compressor to operate in the saving mode when the applied voltage is less than the reference voltage, and controls the compressor to operate in the power mode when the applied voltage is higher than the reference voltage.
  • Compressor is a casing having a closed inner space, a drive motor installed in the inner space of the casing to generate a driving force, and is installed in the inner space of the casing together with the drive motor at least two
  • the power mode or the at least one compression space may include a compression unit controlled to operate in a saving mode in which idling has more than one compression space and according to a difference in measured temperatures of refrigerant discharged from the compression space.
  • the compression unit is changed to the saving mode when the measured temperature is less than the first reference temperature, and is changed to the power mode when the measured temperature is greater than or equal to the first reference temperature and less than the second reference temperature. When is greater than or equal to the second reference temperature is changed to the saving mode.
  • the compression unit may be changed to one of driving modes, for example, to the saving mode, in a specific time region among preset time domains.
  • the time domain is set based on the average temperature as an example.
  • the compression unit selectively idling using the refrigerant sucked into the suction port of the compression unit and the refrigerant filled in the inner space of the casing.
  • An air conditioner is a compressor having a power mode for operating at a maximum compression capacity, a saving mode for operating at a smaller compression capacity than the power mode, and for determining an operation mode of the compressor. And a control unit for detecting the compressor applied voltage, and a control unit for changing the operation mode of the compressor by comparing the applied voltage detected by the detection unit with a preset reference voltage.
  • the control unit controls the compressor to operate in a saving mode when the applied voltage is lower than the reference voltage.
  • control unit compares the applied voltage detected by the detection unit with the reference voltage according to the applied voltage detection period to control the operation mode of the compressor.
  • the control unit may control the compressor to operate in the power mode when the applied voltage is equal to or greater than a first reference voltage, and the compressor may operate when the applied voltage is less than the first reference voltage to more than a second reference voltage.
  • the controller is controlled to operate in a saving mode, and the compressor is stopped when the applied voltage is less than the second reference voltage.
  • the air conditioner is a power mode for operating at the maximum compression capacity, a compressor having a saving mode for operating at a smaller compression capacity than the power mode, and one or more time zones are set, the operation of the compressor for each time zone And a control unit for controlling the mode to be changed, wherein the control unit controls the compressor to be operated in a saving mode in a specific time region of the time domain.
  • the time domain is set based on the average temperature as an example.
  • An air conditioner is a compressor having a power mode for operating at a maximum compression capacity, a saving mode for operating at a smaller compression capacity than the power mode, and for determining an operation mode of the compressor.
  • a detection unit for detecting the compressor applied voltage a control unit for changing the operation mode of the compressor by comparing the applied voltage detected by the detection unit with a preset reference voltage, and an actual temperature for determining the operation mode of the compressor.
  • a temperature detecting unit for detecting.
  • the control unit compares the measured temperature detected by the temperature detection unit with a preset reference temperature according to the measured temperature detection period to control the operation mode of the compressor.
  • An air conditioner is a compressor having a power mode for operating at a maximum compression capacity, a saving mode for operating at a smaller compression capacity than the power mode, and an actual measurement for determining an operation mode of the compressor. And a control unit for changing the operating mode of the compressor by comparing the temperature detecting unit for detecting the temperature with the measured temperature detected by the temperature detecting unit with a preset reference temperature.
  • the control unit controls the compressor to operate in the saving mode when the measured temperature is higher than the upper limit of the temperature range corresponding to the power mode region.
  • control unit compares the measured temperature detected by the temperature detecting unit with a preset reference temperature according to the measured temperature detecting period to control the operation mode of the compressor.
  • the control unit may control the compressor to operate in the saving mode when the measured temperature is less than a first reference temperature, and when the measured temperature is greater than or equal to a second reference temperature from a first reference temperature or more, the compressor
  • the controller is operated to operate in a mode, and if the measured temperature is greater than or equal to a second reference temperature, the compressor is controlled to operate in the saving mode.
  • the air conditioner according to the fourth embodiment of the present invention is a compressor having a power mode for operating at a maximum compression capacity, a saving mode for operating at a compression capacity smaller than the power mode, and one or more time zones are set. And a control unit for controlling the operation mode of the compressor to be changed for each time domain, wherein the control unit controls the compressor to operate in a saving mode in a specific time domain of the time domain.
  • the time domain is set based on the average temperature as an example.
  • the air conditioner according to the fourth embodiment of the present invention further includes a temperature detecting unit for detecting an actual temperature for determining an operation mode of the compressor, wherein the control unit is configured to measure the actual temperature detected by the temperature detecting unit.
  • the compressor is controlled to operate in a saving mode when the measured temperature is higher than an upper limit of a temperature range corresponding to a power mode region compared to a preset reference temperature.
  • the control unit may control the compressor to operate in a saving mode when the measured temperature is less than a first reference temperature, and when the measured temperature is greater than or equal to a second reference temperature from a first reference temperature or more, the compressor may enter a power mode. When the measured temperature is greater than or equal to the second reference temperature, the compressor is controlled to operate in a saving mode.
  • the temperature detection unit is installed on the discharge side of the compressor to detect the temperature of the refrigerant discharged from the compressor, or installed in an air-conditioned room to detect the room temperature.
  • the compressor and the air conditioner having the same according to the present invention have an effect of reducing power consumption and providing comfortable cooling by preventing the compressor from being stopped due to low voltage.
  • the compressor and the air conditioner having the same according to the present invention have an effect of reducing power consumption and improving reliability by preventing the compressor power from being repeatedly on / off.
  • the compressor and the air conditioner having the same according to the present invention have an effect of reducing power consumption and improving reliability by preventing the compressor power from repeatedly turning on and off.
  • the compressor and the air conditioner having the same allows the compressor to be operated in a specific operation mode at a certain time regardless of the ambient temperature, thereby preventing the excessive cooling, especially at night, resulting in comfortable cooling and reducing noise. There is.
  • FIG. 1 is a block diagram schematically showing a system configuration for explaining an air conditioner according to a first embodiment of the present invention
  • FIG. 2 is a block diagram schematically showing a system configuration for explaining an air conditioner according to a second embodiment of the present invention
  • FIG. 3 shows a change in compressor operation mode in FIG. 1 or FIG. 2;
  • FIG. 4 is a block diagram schematically showing a system configuration for explaining an air conditioner according to a third or fourth embodiment of the present invention.
  • FIG. 5 is a view showing a change in the compressor operation mode in FIG.
  • FIG. 6 is a perspective view schematically showing a configuration for explaining a compressor according to the first to sixth embodiments of the present invention.
  • FIG. 7 is a longitudinal sectional view schematically showing an example of the configuration of a compressor according to the present invention.
  • an air conditioner includes a compressor 10 having a power mode for operating at a maximum compression capacity and a saving mode for operating at a smaller compression capacity than the power mode.
  • the detection unit 30 for detecting the compressor applied voltage for determining the operation mode of the compressor 10 and the operation mode of the compressor 10 by comparing the applied voltage detected by the detection unit with a preset reference voltage. It includes a control unit 20 for changing the.
  • the outdoor unit 40 for controlling the distribution and circulation of the refrigerant and the indoor unit 50 is shared with the outdoor unit 40 to discharge the air in each chamber.
  • the control unit 20 controls the compressor to operate in a saving mode when the applied voltage is lower than the reference voltage.
  • the reference voltage is a voltage value that is set in advance, and the compressor does not stop when a low voltage occurs outside the range of the compressor driveable voltage or when a low voltage occurs so as to prevent the compressor from driving even if the voltage falls outside the range of the compressor driveable voltage.
  • This is the voltage value to avoid.
  • the reference voltage is set to 200V.
  • the reference voltage can be set to 180 V by extending the compressor drive voltage range, In case of low voltage, operate in saving mode.
  • the power mode is a compressor operation mode for operating at a maximum compression capacity
  • the saving mode is a compressor operation mode for operating with a compression capacity within a range of 0 to 100% of the compression capacity of the power mode. to be.
  • the compressor operates by setting 20, 40, 60, 80% of the maximum compression capacity, etc. in the saving mode, but often sets the compression capacity at 50% before operation. This is sometimes referred to as two-stage.
  • the present invention is based on two-stage of power mode and saving mode.
  • any electrical or mechanical means of dividing into two modes may be used.
  • control unit 20 compares the applied voltage detected by the detection unit 30 with the reference voltage according to the applied voltage detection period to the compressor ( Control the operation mode of 10).
  • the measured temperature detection period means that the measured temperature is compared with a preset reference temperature in real time every time the measured temperature is detected.
  • the control unit 20 controls the compressor 10 to operate in the power mode when the applied voltage is equal to or greater than the first reference voltage, and applies the When the voltage is less than the first reference voltage to more than the second reference voltage, the compressor 10 is controlled to operate in the saving mode, and when the applied voltage is less than the second reference voltage, the compressor 10 is stopped.
  • the first reference voltage and the second reference voltage are voltage values set by measuring a voltage capable of driving the compressor 10 in advance according to an operation mode of the compressor 10.
  • control unit 20 controls one or more time zones are set, the operation mode of the compressor is changed for each time zone, and the control unit 20 ) Controls the compressor to operate in a saving mode in a specific time domain.
  • the air conditioner according to the second embodiment of the present invention includes a compressor 10 having a power mode for operating at a maximum compression capacity and a saving mode for operating at a smaller compression capacity than the power mode.
  • the detection unit 30 for detecting the compressor applied voltage for determining the operation mode of the compressor 10 and the operation mode of the compressor 10 by comparing the applied voltage detected by the detection unit with a preset reference voltage. It includes a control unit 20 for changing the temperature detection unit 60 for detecting the measured temperature for determining the operation mode of the compressor (10).
  • the outdoor unit 40 for controlling the distribution and circulation of the refrigerant and the indoor unit 50 is shared with the outdoor unit 40 to discharge the air in each chamber.
  • the control unit 20 controls the compressor to operate in a saving mode when the applied voltage is lower than the reference voltage.
  • the same content as the description of FIG. 1 is replaced with the description of FIG. 1.
  • the actual temperature is detected through the temperature detection unit 60 to detect the compressor based on the actual temperature.
  • the operation mode of (10) is determined.
  • the control unit 20 compares the measured temperature detected by the temperature detection unit 60 with a preset reference temperature according to the measured temperature detection period to control the operation mode of the compressor 10.
  • the measured temperature detection period means that the measured temperature is compared with a preset reference temperature in real time every time the measured temperature is detected.
  • the reference temperature is a value which is set lower than a limit temperature of the overload protection device when an overload protection device or the like is installed, and prevents the compressor from being stopped by the overload protection device.
  • the temperature detection unit 60 may include a function of the overload protection device, and may be installed separately from the overload protection device.
  • the control unit 20 controls the compressor to operate in the saving mode when the measured temperature is less than the first reference temperature, and the measured temperature is set to 1st.
  • the compressor is controlled to operate in the power mode.
  • the compressor is controlled to operate in the saving mode.
  • the first reference temperature is a reference temperature value that distinguishes the saving mode and the power mode
  • the first reference temperature to the second reference temperature is a temperature range corresponding to a power mode region
  • the second The reference temperature is the upper limit temperature value of the temperature range corresponding to the power mode region which is set lower than the limit temperature of the overload protection device so that the compressor does not stop.
  • the temperature detection unit 60 is installed on the discharge side of the compressor to detect the temperature of the refrigerant discharged from the compressor, or installed in the air-conditioned room to detect the room temperature.
  • FIG. 3 is a view showing a change in the compressor operation mode in the air conditioner according to the first or second embodiment of the present invention, as shown here, divided into the morning, day, evening time zone, power mode and saving mode of It is divided into two operation modes.
  • the air conditioner when the power of the compressor is set, the user sets the desired temperature and then drives the air conditioner, the compressor is operated in the power mode to drive the room temperature to the temperature desired by the user.
  • a predetermined temperature is set in advance, and when the temperature is lower than the set temperature, the driving mode is operated in the saving mode, and when the temperature is higher than the predetermined temperature, the driving mode is operated.
  • the air conditioner according to the present invention for example, as shown in the morning time zone of FIG. 3, when detecting the compressor applied voltage is lower than the reference voltage is determined to be a low voltage, the saving mode that can be operated at low voltage so that the compressor does not stop The compressor is driven by switching the operation mode.
  • the ambient temperature exceeds the limit temperature of the overload protection device, thereby stopping the operation of the compressor.
  • the ambient temperature again exceeds the limit temperature of the overload protection device to stop the operation of the compressor.
  • the compressor is repeatedly turned on and off, which does not result in comfortable cooling and causes a rapid increase in power consumption.
  • the reference temperature for the upper limit of the temperature range of the power mode region is set so that the measured temperature is above the reference temperature compressor
  • the air conditioner according to the present invention sets a specific time zone to operate the compressor in a saving mode in a specific operation mode, for example, evening time, and prevents excessive cooling by preventing continuous operation in the power mode, and noise It has the effect of reducing.
  • the air conditioner according to the third embodiment of the present invention has a power mode of operating at a maximum compression capacity and a saving mode of operating at a smaller compression capacity than the power mode.
  • Compressor 10 having a compressor, a temperature detection unit 60 for detecting an actual temperature for determining an operation mode of the compressor, and an actual temperature detected by the temperature detection unit is compared with a preset reference temperature to operate the compressor.
  • a control unit 20 for changing the mode.
  • the outdoor unit 40 for controlling the distribution and circulation of the refrigerant and the indoor unit 50 is shared with the outdoor unit 40 to discharge the air in each chamber.
  • the control unit 20 is characterized in that the control to operate the compressor in the saving mode when the measured temperature is higher than the upper limit of the temperature range corresponding to the power mode region.
  • the temperature range is a preset value, wherein a reference temperature for distinguishing the power mode and the saving mode becomes a lower limit of a temperature range corresponding to the power mode region, and the temperature of one of values higher than the lower limit. Set the value to the upper limit of the temperature range. At this time, when the measured temperature is higher than the upper limit of the temperature range, a forced switching to the saving mode.
  • the power mode is a compressor operation mode for operating at a maximum compression capacity
  • the saving mode is a compressor operation mode for operating with a compression capacity within a range of 0 to 100% of the compression capacity of the power mode. to be.
  • the compressor operates by setting 20, 40, 60, 80% of the maximum compression capacity, etc. in the saving mode, but often sets the compression capacity at 50% before operation. This is sometimes referred to as two-stage.
  • the present invention is based on two-stage of power mode and saving mode.
  • any electrical or mechanical means of dividing into two modes may be used.
  • an overload protection device OHP is often installed to protect the compressor provided in the air conditioner.
  • OHP overload protection device
  • the object of the present invention can be achieved by not exceeding the limit temperature of the overload protection device.
  • the air conditioner according to the first embodiment of the present invention includes the above configuration, and the control unit compares the measured temperature detected by the temperature detecting unit with a preset reference temperature according to the measured temperature detecting period. Control the operation mode of the compressor.
  • the measured temperature detection period means that the measured temperature is compared with a preset reference temperature in real time every time the measured temperature is detected.
  • the reference temperature is a value which is set lower than a limit temperature of the overload protection device when an overload protection device or the like is installed, and prevents the compressor from being stopped by the overload protection device.
  • the temperature detection unit may include a function of the overload protection device, and may be installed separately from the overload protection device.
  • the control unit controls the compressor to operate in the saving mode when the measured temperature is less than the first reference temperature, and the measured temperature is the first reference temperature.
  • the compressor is controlled to operate in the power mode.
  • the measured temperature is greater than or equal to the second reference temperature
  • the compressor is controlled to operate in the saving mode.
  • the first reference temperature is a reference temperature value for distinguishing the saving mode and the power mode, as described in a general method of operating an air conditioner
  • the first reference temperature to the second reference temperature is a power mode.
  • the second reference temperature is the upper limit temperature value of the temperature range corresponding to the power mode region which is set lower than the limit temperature of the overload protection device so that the compressor does not stop.
  • the temperature detection unit 60 is installed on the discharge side of the compressor to detect the temperature of the refrigerant discharged from the compressor, or installed in an air-conditioned room to adjust the room temperature. Detect.
  • the air conditioner according to the fourth embodiment of the present invention is a compressor 10 having a power mode for operating at a maximum compression capacity, a saving mode for operating at a smaller compression capacity than the power mode, and one or more time domains are set. And a control unit 20 for controlling the operation mode of the compressor to be changed for each time domain, and the control unit 20 controls the compressor to operate in a saving mode in a specific time domain among the time domains. It is done.
  • the air conditioner according to the fourth embodiment of the present invention further includes a temperature detection unit 60 for detecting an actual temperature for determining an operation mode of the compressor 10, wherein the control unit 20 is The compressor is controlled to operate in the saving mode when the measured temperature is higher than the upper limit of the temperature range corresponding to the power mode region by comparing the measured temperature detected by the temperature detecting unit with a preset reference temperature.
  • the temperature range is a preset value, wherein a reference temperature for distinguishing the power mode and the saving mode becomes a lower limit of a temperature range corresponding to the power mode region, and the temperature of one of values higher than the lower limit. Set the value to the upper limit of the temperature range. At this time, when the measured temperature is higher than the upper limit of the temperature range, a forced switching to the saving mode.
  • the air conditioner according to the fourth embodiment of the present invention includes the above configuration, and the control unit compares the measured temperature detected by the temperature detecting unit with a preset reference temperature according to the measured temperature detecting period. Control the operation mode of the compressor.
  • the measured temperature detection period means that the measured temperature is compared with a preset reference temperature in real time every time the measured temperature is detected.
  • the reference temperature is a value which is set lower than a limit temperature of the overload protection device when an overload protection device or the like is installed, and prevents the compressor from being stopped by the overload protection device.
  • the control unit controls the compressor to operate in the saving mode when the measured temperature is less than the first reference temperature, and the measured temperature is the first reference temperature.
  • the compressor is controlled to operate in the power mode.
  • the measured temperature is greater than or equal to the second reference temperature, the compressor is controlled to operate in the saving mode.
  • the first reference temperature is a reference temperature value for distinguishing the saving mode and the power mode, as described in a general method of operating an air conditioner, and the first reference temperature to the second reference temperature is a power mode.
  • the second reference temperature is the upper limit temperature value of the temperature range corresponding to the power mode region which is set lower than the limit temperature of the overload protection device so that the compressor does not stop.
  • the time zone may be set by other criteria such as 24 hours a day, but is set according to the average temperature.
  • the temperature detection unit 60 is installed on the discharge side of the compressor to detect the temperature of the refrigerant discharged from the compressor, or is installed in an air-conditioned room to adjust the room temperature. Detect.
  • FIG. 5 is a view showing a change in the operation mode of the compressor according to the present invention, as shown in the morning, day, evening time is divided into two operation modes, power mode and saving mode.
  • the compressor is operated in the power mode to drive the room temperature to the temperature desired by the user.
  • a predetermined temperature is set in advance, and when the temperature is lower than the set temperature, the driving mode is operated in the saving mode, and when the temperature is higher than the predetermined temperature, the driving mode is operated.
  • a region where the average temperature is high such as a tropical region, it is difficult to set the constant temperature, and the temperature is maintained above the set predetermined temperature to continuously operate in the power mode. As shown in the morning time zone of FIG.
  • the air conditioner according to the present invention sets a new reference temperature within a temperature range higher than the set constant temperature and lower than the limit temperature of the overload protection device, and newly set.
  • the temperature is higher than the standard temperature, the user is forced to switch to the saving mode. In this way, by not continuously operating in the power mode, there is an effect of saving power consumption and reducing noise.
  • the ambient temperature exceeds the limit temperature of the overload protection device, thereby stopping the operation of the compressor.
  • the ambient temperature again exceeds the limit temperature of the overload protection device to stop the operation of the compressor.
  • the compressor is repeatedly turned on and off, which does not result in comfortable cooling and causes a rapid increase in power consumption.
  • the reference temperature for the upper limit of the temperature range of the power mode region is set so that the measured temperature is above the reference temperature compressor
  • the air conditioner according to the present invention sets a specific time zone to operate the compressor in a saving mode in a specific operation mode, for example, evening time, and prevents excessive cooling by preventing continuous operation in the power mode, and noise It has the effect of reducing.
  • the compressor according to the first embodiment of the present invention includes a casing 100 having a sealed inner space, a driving motor (not shown) installed in the inner space of the casing to generate a driving force, and the casing together with the driving motor.
  • the power mode or at least one compression space is configured to include a compression unit (not shown) controlled to operate in a saving mode of idling,
  • the compression unit controls the compressor to operate in the saving mode when the applied voltage is less than the reference voltage, and controls the compressor to operate in the power mode when the applied voltage is higher than the reference voltage.
  • the reference voltage is a preset value, and is set so that the compressor is not stopped by the low voltage.
  • the compression unit when the applied voltage is higher than the reference voltage, that is, the normal voltage, the compression unit is changed to the saving mode when the measured temperature is less than the first reference temperature.
  • the power mode is changed to the power mode, and when the measured temperature is greater than or equal to the second reference temperature, the power saving mode is changed.
  • the first reference temperature is a reference temperature value that distinguishes the saving mode and the power mode
  • the first reference temperature to the second reference temperature is a temperature range corresponding to a power mode region
  • the second The reference temperature is the upper limit temperature value of the temperature range corresponding to the power mode region which is set lower than the limit temperature of the overload protection device so that the compressor does not stop.
  • the compressor 10 includes an accumulator 110 and a connection unit for allowing the refrigerant to move, and connected to the outdoor unit 40 and the indoor unit 50, wherein the connection unit includes a low pressure side connection pipe 120 and The common side connector 140 connected to the high pressure side connecting tube 130 connected to the inner space of the casing 100 and the low pressure side connecting tube 120 and the high pressure side connecting tube 130 to communicate with each other. Is done.
  • the compression unit is changed to the saving mode in a specific time region among preset time domains.
  • the time zone may be set by other criteria such as 24 hours a day, but is set according to the average temperature.
  • the detailed description is replaced with the description related to FIG. 2 described above.
  • the compression unit selectively idles using the refrigerant sucked into the suction port of the compression unit and the refrigerant filled in the inner space of the casing 100.
  • the compressor according to the second embodiment of the present invention includes a casing 100 having a sealed inner space, a driving motor (not shown) installed in the inner space of the casing to generate a driving force, and the casing together with the driving motor.
  • Compression unit installed in the inner space of the at least two compression space and controlled to operate in the power mode or at least one compression space in the saving mode of idling according to the compressor applied voltage, and each compression space is separated from each other
  • a plurality of cylinders installed in the inner space of the casing, a suction pipe for distributing and supplying refrigerant to the compression space of the plurality of cylinders, and a plurality of rolling pistons for compressing the refrigerant while pivoting in the compression space of the cylinders.
  • Constraining at least a vane on either side of the cylinder of the plurality of vanes and the vanes on or off by the vane is configured to include a restriction unit for varying the operation mode of the compressor.
  • the compression unit controls the compressor to operate in the saving mode when the applied voltage is less than the reference voltage, and controls the compressor to operate in the power mode when the applied voltage is higher than the reference voltage.
  • the reference voltage is a preset value, and is set so that the compressor is not stopped by the low voltage.
  • the compressor has at least one of the vanes is formed with a sealing surface (sealing surface) in contact with the rolling piston on one side, the opposite side of the sealing surface is pressurized surface such that the vane is biased toward the rolling piston by pressure (pressure surface) is formed.
  • a chamber in which the vane pressurization surface of one of the cylinders is separated from the inner space of the casing is filled with a refrigerant of suction pressure or discharge pressure.
  • the compressor further includes a mode switching unit outside the casing for selectively supplying a refrigerant of suction pressure or discharge pressure to the pressurized surface of the vane.
  • the mode switching unit includes a mode switching valve capable of selecting a refrigerant of suction pressure or discharge pressure on the pressure surface of the vane, and the first inlet of the mode switching valve. And a low pressure side connecting pipe connecting the suction pipe, a high pressure connecting pipe connecting the second inlet of the mode switching valve and the inner space of the casing, and an outlet connecting the outlet of the mode switching valve and the pressure surface of the vane. Consists of side connectors.
  • the compression unit when the applied voltage is greater than or equal to the reference voltage, that is, the normal voltage, the compression unit is changed to the saving mode when the measured temperature is less than the first reference temperature.
  • the power mode is changed to the power mode, and when the measured temperature is greater than or equal to the second reference temperature, the power saving mode is changed.
  • the first reference temperature is a reference temperature value that distinguishes the saving mode and the power mode
  • the first reference temperature to the second reference temperature is a temperature range corresponding to a power mode region
  • the second The reference temperature is the upper limit temperature value of the temperature range corresponding to the power mode region which is set lower than the limit temperature of the overload protection device so that the compressor does not stop.
  • the compressor according to the third embodiment of the present invention includes a casing 100 having a sealed inner space, a driving motor (not shown) installed in the inner space of the casing to generate a driving force, and the casing together with the driving motor.
  • Compression unit installed in the inner space of the at least two compression space and controlled to operate in the power mode or at least one compression space in the saving mode of idling according to the compressor applied voltage, and each compression space is separated from each other
  • a plurality of cylinders installed in the inner space of the casing, a suction pipe for distributing and supplying refrigerant to the compression space of the plurality of cylinders, and a plurality of rolling pistons for compressing the refrigerant while pivoting in the compression space of the cylinders.
  • a vane confinement unit configured to change an operation mode of the compressor by restraining or releasing the vane of at least one of the vanes among the vanes, wherein at least one of the vanes is disposed in the casing. It is constrained by the pressure in the interior space.
  • the compression unit controls the compressor to operate in the saving mode when the applied voltage is less than the reference voltage, and controls the compressor to operate in the power mode when the applied voltage is higher than the reference voltage.
  • the reference voltage is a preset value, and is set so that the compressor is not stopped by the low voltage.
  • At least one of the cylinders is in communication with a vane slot for allowing the vanes to move in a radial direction, and approximately in the direction of movement of the vanes moving in the vane slot.
  • At least one first restriction hole penetrates in a direction perpendicular to and communicates with the inner space of the casing.
  • the cylinder is provided with a second restriction hole so as to communicate with the suction port on the opposite side of the first restriction hole about the vane slot.
  • the compression unit when the applied voltage is higher than the reference voltage, that is, the normal voltage, the compression unit is changed to the saving mode when the measured temperature is less than the first reference temperature.
  • the power mode is changed to the power mode, and when the measured temperature is greater than or equal to the second reference temperature, the power saving mode is changed.
  • the first reference temperature is a reference temperature value that distinguishes the saving mode and the power mode
  • the first reference temperature to the second reference temperature is a temperature range corresponding to a power mode region
  • the second The reference temperature is the upper limit temperature value of the temperature range corresponding to the power mode region which is set lower than the limit temperature of the overload protection device so that the compressor does not stop.
  • the compressor according to the fourth embodiment of the present invention includes a casing 100 having a sealed inner space, a driving motor (not shown) installed in the inner space of the casing 100 to generate a driving force, and the driving motor. And at least two compression spaces installed in the inner space of the casing and controlled to operate in a power saving mode or at least one compression space in a saving mode according to an actual temperature difference of the refrigerant discharged from the compression space. And a compression unit (not shown), wherein the compression unit is changed to the saving mode when the measured temperature is lower than the first reference temperature, and the power when the measured temperature is higher than the first reference temperature and lower than the second reference temperature.
  • the mode is changed, and when the measured temperature is greater than or equal to the second reference temperature, the mode is changed to the saving mode.
  • the first reference temperature is a reference temperature value that distinguishes the saving mode and the power mode
  • the first reference temperature to the second reference temperature is a temperature range corresponding to a power mode region
  • the second The reference temperature is the upper limit temperature value of the temperature range corresponding to the power mode region which is set lower than the limit temperature of the overload protection device so that the compressor does not stop.
  • the compressor includes an accumulator 110 and a connection unit for allowing the refrigerant to move, and connected to the outdoor unit 40 and the indoor unit 50, wherein the connection unit includes a low pressure side connection pipe 120 and the casing.
  • the high pressure side connecting pipe 130 is connected to the inner space of the 100, and the low pressure side connecting pipe 120 and the common side connecting pipe 140 is connected to cross-communication.
  • the compression unit is changed to the saving mode in a specific time region among preset time domains.
  • the time zone may be set by other criteria such as 24 hours a day, but is set according to the average temperature.
  • the detailed description is replaced with the description related to FIG. 2.
  • the compression unit selectively idles the refrigerant sucked into the suction port of the compression unit and the refrigerant filled in the inner space of the casing.
  • the compressor according to the fifth embodiment of the present invention includes a casing having an enclosed inner space, a driving motor installed in the inner space of the casing to generate a driving force, and installed in the inner space of the casing together with the driving motor.
  • Compression unit having two or more compression spaces and controlled to operate in a power mode or at least one compression space in a saving mode of idling according to the measured temperature difference of the refrigerant discharged from the compression space, and each compression space is separated from each other.
  • a plurality of cylinders installed in the inner space of the casing, a suction pipe for distributing and supplying refrigerant to the compression space of the plurality of cylinders, and a plurality of rolling pistons for compressing the refrigerant while pivoting in the compression space of the cylinders.
  • the compression spaces of the cylinders together with the rolling pistons, respectively,
  • a plurality of vanes separated into a discharge space, and a vane confinement unit configured to change an operation mode of the compressor by restraining or releasing vanes of at least one of the vanes.
  • the compression unit is changed to the saving mode when the measured temperature is less than the first reference temperature, and is changed to the power mode when the measured temperature is greater than or equal to the first reference temperature and less than the second reference temperature.
  • the second reference temperature is changed to the saving mode.
  • the compressor has at least one of the vanes is formed with a sealing surface (sealing surface) in contact with the rolling piston on one side, the opposite side of the sealing surface is pressurized surface such that the vane is biased toward the rolling piston by pressure (pressure surface) is formed.
  • a chamber in which the vane pressurization surface of one of the cylinders is separated from the inner space of the casing is filled with a refrigerant of suction pressure or discharge pressure.
  • the compressor further includes a mode switching unit outside the casing for selectively supplying a refrigerant of suction pressure or discharge pressure to the pressurized surface of the vane.
  • the mode switching unit includes a mode switching valve capable of selecting a refrigerant of suction pressure or discharge pressure on the pressure surface of the vane, and the first inlet of the mode switching valve. And a low pressure side connecting pipe connecting the suction pipe, a high pressure connecting pipe connecting the second inlet of the mode switching valve and the inner space of the casing, and an outlet connecting the outlet of the mode switching valve and the pressure surface of the vane. Consists of side connectors.
  • the compressor according to the sixth embodiment of the present invention includes a casing having an enclosed inner space, a driving motor installed in the inner space of the casing to generate a driving force, and installed in the inner space of the casing together with the driving motor.
  • Compression unit having two or more compression spaces and controlled to operate in a power mode or at least one compression space in a saving mode of idling according to the measured temperature difference of the refrigerant discharged from the compression space, and each compression space is separated from each other.
  • a plurality of cylinders installed in the inner space of the casing, a suction pipe for distributing and supplying refrigerant to the compression space of the plurality of cylinders, and a plurality of rolling pistons for compressing the refrigerant while pivoting in the compression space of the cylinders.
  • the compression spaces of the cylinders together with the rolling pistons, respectively,
  • a plurality of vanes for separating the discharge space, and a vane confinement unit for restraining or releasing the vanes of at least one of the vanes to change the operation mode of the compressor, wherein at least one of the vanes
  • the dog is constrained by the pressure in the inner space of the casing.
  • the compression unit is changed to the saving mode when the measured temperature is less than the first reference temperature, and is changed to the power mode when the measured temperature is greater than or equal to the first reference temperature and less than the second reference temperature.
  • the second reference temperature is changed to the saving mode.
  • At least one of the cylinders is in communication with a vane slot for allowing the vanes to move in a radial direction, and about a direction of movement of the vanes moving in the vane slot.
  • At least one first restriction hole penetrates in a direction perpendicular to and communicates with the inner space of the casing.
  • the cylinder is provided with a second restriction hole so as to communicate with the suction port on the opposite side of the first restriction hole about the vane slot.
  • the compressor according to the present invention is provided with a casing (100) in which a plurality of gas suction pipes (SP1) (SP2) and one gas discharge pipe (DP) are installed in communication with each other, and is installed above the casing (100) to generate rotational force.
  • SP1 gas suction pipes
  • DP gas discharge pipe
  • a first compression mechanism unit 300 and a second compression mechanism unit 400 installed at a lower side of the motor 200 and the casing 100 to compress the refrigerant by the rotational force generated by the driving motor 200, and the second compression mechanism unit 400.
  • the valve unit 500 is composed of a connection unit 600 connected to the casing 100 and the second compression mechanism 400 so that the second compression mechanism 400 is controlled by 500.
  • the first compression mechanism 300 and the second compression mechanism 400 constitutes a compression unit.
  • the drive motor 200 is a motor for driving at constant speed or driving the inverter.
  • the drive motor 200 is fixed to the inside of the casing 100 and the power is applied from the outside, and the stator 210 is disposed with a predetermined gap inside the stator 210 is mutually
  • the rotor 220 rotates while acting, and the rotation shaft 230 coupled to the rotor 220 transmits the rotational force to the first compression mechanism 300 and the second compression mechanism 400.
  • the first compression mechanism part 300 forms a part of the first cylinder assembly and is formed in an annular shape to be installed inside the casing 100 and the first cylinder 310 together with the first cylinder 310.
  • the first compression mechanism 300 is rotatably coupled to an upper eccentric portion of the rotation shaft 230 to compress the refrigerant while turning in the first compression space V1 of the first cylinder 310.
  • a first compression space V1 of the first cylinder 310 is coupled to the rolling piston 340 and the first cylinder 310 so as to be squeezed to the outer circumferential surface of the first rolling piston 340.
  • the first vane 350 is further divided into a first suction chamber and a first compression chamber, respectively.
  • the first compression mechanism 300 includes a vane spring 360 made of a compression spring so that the rear side of the first vane 350 is elastically supported, and a first provided near the center of the upper bearing 320.
  • the first discharge valve 370 and the first discharge valve 370 which are coupled to the front end of the first discharge port 321 so as to be opened and closed to control the discharge of the refrigerant gas discharged from the compression chamber of the first compression space V1. Is further provided with an internal volume to accommodate the first muffler 380 is coupled to the upper bearing 320 is further included.
  • the second compression mechanism 400 is part of the assembly of the second cylinder is formed in an annular and the second cylinder 410 which is installed below the first cylinder 310 in the casing 100 and the An intermediate bearing 330 and a lower bearing 420 are coupled to upper and lower sides of the second cylinder 410 to form a second cylinder assembly having a second compression space V2 together with the second cylinder 410. .
  • the second compression mechanism 400 is rotatably coupled to the lower eccentric portion of the rotation shaft 230 to compress the refrigerant while turning in the second compression space V2 of the second cylinder 410.
  • the second compression space of the second cylinder 410 is coupled to the rolling piston 430 and the second cylinder 410 so as to be movably coupled to the second cylinder 410 so as to be pressed or spaced apart from the outer circumferential surface of the second rolling piston 430.
  • the second vane 440 is further included so that V2 is partitioned or communicated with the second suction chamber and the second compression chamber, respectively.
  • the second compression mechanism 400 is coupled to the front end of the second discharge port 421 provided near the center of the lower bearing 420 so as to control the discharge of the refrigerant gas discharged from the second compression chamber.
  • the second discharge valve 450 and a second muffler 460 is provided with a predetermined internal volume to accommodate the second discharge valve 450 is coupled to the lower bearing 420.
  • the second cylinder 410 has a second vane slot 411 is formed on one side of the inner peripheral surface constituting the second compression space (V2) to reciprocate in the radial direction, the second vane slot (411)
  • One side of the vane slot 411 has a second suction port 412 is formed in a radial direction to guide the refrigerant to the second compression space (V2), the other side of the second vane slot 411 the refrigerant is the casing (
  • a second discharge guide groove (not shown) for discharging to the inside of the 100 is formed to be inclined in the axial direction.
  • the radially rear side of the second vane slot 411 communicates with the common side connecting pipe 630 of the connecting unit 600 to be described later and is sealed, and the suction pressure Ps is provided at the rear side of the second vane 440.
  • the vane chamber 413 communicates with the common side connecting pipe 630 so that the second vane 440 is completely retracted to be stored inside the second vane slot 411.
  • the rear surface is formed to have a predetermined internal volume to form a pressure surface with respect to the pressure supplied through the common side connecting pipe 630 to be described later.
  • the second cylinder 410 communicates with the inside of the casing 100 and the second vane slot 411 in a direction orthogonal to the direction of movement of the second vane 440 or having a predetermined offset angle.
  • the first flow path 414 is formed to constrain the second vane 440 by the discharge pressure Pd of the inner space 101 of the casing 100, and is opposite to the first flow path 414.
  • the second vane slot 411 and the second suction port 412 communicate with each other to cause the pressure difference with the first flow path 414, the second flow path 415 to quickly restrain the second vane 440 Is formed.
  • the first flow path 414 and the second flow path 415 may be formed on the same straight line, and may be formed in the same cross-sectional area.
  • the valve unit 500 is connected to the main valve part 510 connected to the vane chamber 412 of the second cylinder 410, and is connected to the main valve part 510 to open and close the main valve part 510. It consists of a sub-valve unit 520 for controlling the operation.
  • the connecting unit 600 is branched from the second gas suction pipe SP2 and connected to the low pressure side connecting pipe 120 connected to the main valve part 510 and the inner space 101 of the casing 100. And the high pressure side connecting pipe 130 connected to the main valve part 510 and the vane chamber 412 of the second cylinder 410 to connect the low pressure side connecting pipe 120 and the high pressure side connecting pipe ( It consists of a common side connecting pipe 140 which is connected to the main valve unit 510 so as to cross-communicate with 130.
  • the high-pressure side connecting pipe 130 is located at one side connected to the casing 100 between the lower end of the power mechanism 200 and the upper end of the first compression mechanism 300 to be connected higher than the oil level of the oil. It is preferable to prevent the oil from flowing into the vane chamber 412.
  • an oil blocking network made of a mesh or an oil blocking plate opened to the lower side at the inlet of the high-pressure connection pipe 130 may be further installed to effectively block the inflow of oil, the high-pressure connection pipe As the 130 is farther away from the connection point, the oil may flow higher into the casing 100 so that the oil flowing into the high-pressure connection pipe 130 may be blocked more effectively.
  • the rotation shaft 230 rotates together with the rotor 220 to first rotate the rotational force of the driving motor 200. It is transmitted to the compression mechanism 300 and the second compression mechanism 400, and according to the capacity required in the air conditioner, both the first compression mechanism 300 and the second compression mechanism 400 is powered by a large capacity
  • the cooling force is generated or only the first compression mechanism 300 is operated for power, and the second compression mechanism 400 performs a saving operation to generate a small capacity of cooling power.
  • the first compression mechanism 300 and the second compression mechanism 400 constitutes a compression unit.
  • the high-pressure refrigerant inside the casing 100 by the main valve unit 510 and the sub-valve unit 520 is the vane chamber (high pressure side connection pipe 130) 413
  • the high pressure refrigerant introduced into the vane chamber 413 supports the second vane 440 to operate the first compression mechanism 300 as well as the second compression mechanism 400.
  • the refrigerant is compressed.
  • the low pressure refrigerant sucked into the second cylinder 410 by the main valve part 510 and the sub valve part 520 through the gas suction pipe SP2 is low pressure.
  • the low pressure refrigerant introduced into the vane chamber 413 through the side connection pipe 120 supports the rear surface of the second vane 440 and is provided on the front surface of the second vane 440.
  • the compressive force of the second compression space V2 is applied to the second vane 440 to be spaced apart from the second rolling piston 430.
  • the pressure difference added to both sides of the second vane 440 by the first flow passage 414 and the second flow passage 415 provided in the second cylinder 410 is increased, so that the second vane 440 is increased.
  • the high pressure oil or the refrigerant flows into the first flow path 414 and the refrigerant or the oil having the partial discharge pressure Pd remaining in the vane chamber 413 may be in the second vane 440 and the vane slot 411.
  • the second vane 440 is more quickly and stably restrained when the operation mode of the compressor is changed while rapidly leaking into the second suction port 412 through the gap between the second flow path 415. Accordingly, the compressor is normally compressed only in the first compression mechanism 300, but the compression is not generated in the second compression mechanism 400.
  • the compressor and the air conditioner having the same detect the voltage applied to the compressor, detect the voltage applied to the compressor, detect the temperature or ambient temperature of the refrigerant discharged from the compressor to By operating the conditioner in a preset operation mode or by operating the preset operation mode in a predetermined time region to allow the compressor to operate continuously improves the reliability and operating efficiency of the compressor and the air conditioner, and reduces the noise.
  • the compressor and the air conditioner having the same detects the temperature or ambient temperature of the refrigerant discharged from the compressor to operate the air conditioner in the preset operation mode, or to operate in the preset operation mode in a predetermined time region. Therefore, the compressor is continuously operated, thereby improving the reliability and operating efficiency of the compressor and the air conditioner, and reducing the noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

압축기 및 이를 구비한 공기조화기가 개시된다. 본 발명은 압축기 인가 전압을 검출하여 검출된 결과에 따라 공기조화기를 미리 설정된 운전 모드로 운전하도록 하거나, 일정 시간 영역에서 미리 설정된 운전 모드로 운전하도록 하여 압축기(10)가 연속 운전되도록 하거나, 또는 압축기 온도 또는 주위 온도를 검출하여 공기조화기를 미리 설정된 운전 모드로 운전하도록 하거나, 일정 시간 영역에서 미리 설정된 운전 모드로 운전하도록 하여 압축기(10)가 연속 운전되도록 한다. 따라서, 주변 온도에 상관없이 일정 시간대에서 특정 운전모드로 운전하도록 함으로써 특히 야간에 과도 냉방이 이루어지지 않도록 하여 쾌적 냉방이 되고 소음을 줄일 수 있다. 저전압으로 인해 압축기(10)가 정지되는 것을 방지하며, 압축기(10) 전원이 반복적으로 온/오프 되지 않도록 함으로써 소비 전력을 줄이고, 신뢰성을 향상시킬 수 있다.

Description

압축기 및 이를 구비한 공기조화기
본 발명은 압축기 및 이를 구비한 공기조화기에 관한 것으로서, 더욱 상세하게는 운전 환경이 비정상적인 지역에서 압축기 및 공기조화기의 운전 효율을 높일 수 있는 압축기 및 이를 구비한 공기조화기에 관한 것이다.
일반적으로 압축기는 주로 에어콘과 같은 공기조화기에 적용하는 것이다. 최근 들어 에어콘 등의 기능이 다양해지면서 압축기의 용량을 가변할 수 있는 제품이 요구되고 있다. 압축기에서 용량을 가변하는 기술로는 인버터 모터를 채용하여 압축기의 회전수를 제어하는 기술과, 베인을 기구적으로 제어하여 공회전시키는 기술이 널리 알려져 있다.
먼저, 상기 인버터 모터를 채용한 기술은 상기 인버터 모터가 고가여서 원가 부담이 크고, 난방조건에서의 냉동능력을 높이는 것에 비해 냉방조건에서의 냉동능력을 높이는 것이 어렵다는 문제점이 있다.
반면, 베인을 기구적으로 제어하여 공회전시키는 기술은 두가지의 방식이 알려지고 있다. 첫번째 방식은 실린더의 압축공간으로 공급되는 냉매의 압력을 가변시켜 상기 베인이 구속/해제되도록 하는 것이다. 두번째 방식은 상기 베인의 후면에 가세되는 압력을 가변하면서 상기 베인이 구속/해제되도록 하는 것이다.
이러한 압축기의 경우에 있어서 전압 사정이 좋지 않은 지역에서는 흔히 저전압이 발생하는 경우가 있고, 저전압이 발생하는 경우 압축기의 기동력이 부족하여 압축기를 정지해야 하는 문제점이 있다. 즉, 압축기 전원이 오프되는 일정 시간 동안은 냉매의 압축이 이루어지지 않아서 냉방효과가 없어 지게 되므로 쾌적 냉방 실현이 어렵게 되는 문제점이 있다. 주위 온도가 높으면 압축기가 정지함으로써 압축기 전원이 오프되는 일정 시간 동안은 냉매의 압축이 이루어지지 않아서 냉방효과가 없어 지게 되므로 쾌적 냉방 실현이 어렵게 되는 문제점이 있다. 압축기 전원이 온/오프를 반복하게 됨으로써 소비전력이 상승하는 문제점이 있고, 압축기 전원이 온/오프를 반복하게 됨으로써 신뢰성이 떨어지는 문제점이 있다.
또한, 이러한 압축기의 경우에 압축기 냉매의 토출 온도가 높으면 전기적 과부하 보호장치(OLP) 또는 온도 센서에 의해 압축기의 전원을 차단함으로써 압축기를 보호한다. 또한, 주위 온도가 높은 경우에도 동일한 동작을 하게 된다. 특히 열대 지역 등 주위 온도가 현저히 높은 지역에서는 이러한 동작이 자주 발생하게 되는 문제점이 있다. 즉, 상기 동작이 자주 발생하게 되면 일정 시간 동안은 냉매의 압축이 이루어지지 않아서 냉방효과가 없어 지게 되므로 쾌적 냉방 실현이 어렵게 되는 문제점이 있다. 압축기 전원이 온/오프를 반복하게 됨으로써 소비전력이 상승하고, 신뢰성이 떨어지는 문제점이 있다.
아울러, 주위 온도가 과도하게 높아서 압축기가 파워모드로 연속 운전됨으로써 야간에는 과도 냉방이 이루어져 쾌적 냉방이 되지 않고, 큰 소음이 유발되는 문제점이 있다.
상기 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명은 압축기 인가 전압을 검출하여 검출된 전압을 근거로 공기조화기를 미리 설정된 운전 모드로 운전하도록 하거나, 일정 시간 영역에서 미리 설정된 운전 모드로 운전하도록 하여 압축기가 연속 운전되도록 함으로써 압축기 및 공기조화기의 신뢰성 및 운전 효율을 향상시키고, 소음을 감소하도록 한 압축기 및 이를 구비한 공기조화기를 제공함에 그 목적이 있다.
본 발명의 다른 목적은 압축기 온도 또는 주위 온도를 검출하여 공기조화기를 미리 설정된 운전 모드로 운전되도록 함으로써 압축기 및 공기조화기의 신뢰성 및 운전 효율을 향상시키고, 소음을 감소하도록 한 압축기 및 이를 구비한 공기조화기를 제공함에 있다.
본 발명의 또 다른 목적은 압축기 온도 또는 주위 온도를 검출하여 공기조화기를 미리 설정된 운전 모드로 운전하도록 하거나, 일정 시간 영역에서 미리 설정된 운전 모드로 운전하도록 하여 압축기가 연속 운전되도록 함으로써 압축기 및 공기조화기의 신뢰성 및 운전 효율을 향상시키고, 소음을 감소하도록 한 압축기 및 이를 구비한 공기조화기를 제공함에 있다.
본 발명의 제1 실시예에 따른 압축기는 밀폐된 내부공간을 갖는 케이싱과, 상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터와, 상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 압축기 인가전압에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛을 포함한다. 여기서, 상기 압축유닛은 상기 인가전압이 기준전압 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 인가전압이 기준전압 이상이면 상기 압축기가 상기 파워모드로 운전되도록 제어한다.
본 발명의 제4 실시예에 따른 압축기는 밀폐된 내부공간을 갖는 케이싱, 상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터, 및 상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 그 압축공간에서 토출되는 냉매의 실측온도 차이에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛을 포함한다. 여기서, 상기 압축유닛은 실측온도가 제1 기준온도 미만일 경우에는 상기 세이빙모드로 가변되고, 상기 실측온도가 제1 기준온도 이상이고 제2 기준온도 미만일 경우에는 상기 파워모드로 가변되며, 상기 실측온도가 제2 기준온도 이상일 경우에는 상기 세이빙모드로 가변된다.
또한, 상기 압축유닛은 미리 설정된 시간영역 중 특정 시간영역에서는 운전 모드 중 하나로, 예를 들어 상기 세이빙모드로 가변될 수 있다. 여기서 상기 시간영역은 일 예로 평균온도를 기준으로 설정된다.
또한, 상기 압축유닛은 그 압축유닛의 흡입구로 흡입되는 냉매와 상기 케이싱의 내부공간에 채워진 냉매를 이용하여 선택적으로 공회전시킨다.
본 발명의 제1 실시예에 따른 공기조화기는 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 갖는 압축기와, 상기 압축기의 운전모드를 결정하기 위한 상기 압축기 인가전압을 검출하는 검출유닛과, 상기 검출유닛에서 검출된 인가전압을 미리 설정된 기준전압과 비교하여 압축기의 운전모드를 변경하는 제어유닛을 포함한다. 여기서, 상기 제어유닛은 상기 인가전압이 상기 기준전압보다 낮은 전압일 때 상기 압축기가 세이빙모드로 운전되도록 제어한다.
또한, 상기 제어유닛은 상기 검출유닛에서 검출된 인가전압과 상기 기준전압을 인가전압 검출주기에 따라 비교하여 상기 압축기의 운전모드를 제어한다. 또한, 상기 제어유닛은 상기 인가전압이 제1 기준전압 이상이면 상기 압축기가 상기 파워모드로 운전되도록 제어하고, 상기 인가전압이 상기 제1 기준전압 미만부터 제2 기준전압 이상까지이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하며, 상기 인가전압이 상기 제2 기준전압 미만이면 상기 압축기가 정지하도록 제어한다.
또한, 상기 공기조화기는 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 가지는 압축기, 및 하나 이상의 시간영역이 설정되고, 그 시간영역별로 압축기의 운전모드가 변경되도록 제어하는 제어유닛을 포함하고, 상기 제어유닛은 상기 시간영역 중 특정 시간영역에서는 압축기가 세이빙모드로 운전되도록 제어한다. 여기서 상기 시간영역은 일 예로 평균온도를 기준으로 설정된다.
본 발명의 제2 실시예에 따른 공기조화기는 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 갖는 압축기와, 상기 압축기의 운전모드를 결정하기 위한 상기 압축기 인가전압을 검출하는 검출유닛과, 상기 검출유닛에서 검출된 인가전압을 미리 설정된 기준전압과 비교하여 압축기의 운전모드를 변경하는 제어유닛과, 상기 압축기의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛을 포함하여 구성된다. 여기서, 상기 제어유닛은 상기 인가전압이 상기 제1 기준전압 이상이면 상기 온도검출유닛에서 검출된 실측온도와 미리 설정된 기준온도를 실측온도 검출주기에 따라 비교하여 상기 압축기의 운전모드를 제어한다.
본 발명의 제3 실시예에 따른 공기조화기는 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 갖는 압축기, 상기 압축기의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛, 및 상기 온도검출유닛에서 검출된 실측온도를 미리 설정된 기준온도와 비교하여 압축기의 운전모드를 변경하는 제어유닛을 포함하여 구성된다. 여기서, 상기 제어유닛은 상기 실측온도가 파워모드 영역에 해당하는 온도범위의 상한보다 높은 온도일 때 상기 압축기가 세이빙모드로 운전하도록 제어한다.
여기서, 상기 제어유닛은 상기 온도검출유닛에서 검출된 실측온도와 미리 설정된 기준온도를 실측온도 검출주기에 따라 비교하여 상기 압축기의 운전모드를 제어하도록 한다. 또한, 상기 제어유닛은 상기 실측온도가 제1 기준온도 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 실측온도가 제1 기준온도 이상에서 제2 기준온도 미만까지이면 상기 압축기가 상기 파워모드로 운전되도록 제어하며, 상기 실측온도가 제2 기준온도 이상이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어한다.
본 발명의 제4 실시예에 따른 공기조화기는 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 가지는 압축기, 및 하나 이상의 시간영역이 설정되고, 그 시간영역별로 압축기의 운전모드가 변경되도록 제어하는 제어유닛을 포함하고, 상기 제어유닛은 상기 시간영역 중 특정 시간영역에서는 압축기가 세이빙모드로 운전하도록 제어한다. 여기서 상기 시간영역은 일 예로 평균온도를 기준으로 설정된다.
또한, 본 발명의 제4 실시예에 따른 공기조화기는 상기 압축기의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛을 더 포함하고, 상기 제어유닛은 상기 온도검출유닛에서 검출된 실측온도를 미리 설정된 기준온도와 비교하여 상기 실측온도가 파워모드 영역에 해당하는 온도범위의 상한보다 높은 온도일 때 상기 압축기가 세이빙모드로 운전하도록 제어한다. 또한, 상기 제어유닛은 상기 실측온도가 제1 기준온도 미만이면 상기 압축기가 세이빙모드로 운전하도록 제어하고, 상기 실측온도가 제1 기준온도 이상에서 제2 기준온도 미만까지이면 상기 압축기가 파워모드로 운전하도록 제어하며, 상기 실측온도가 제2 기준온도 이상이면 상기 압축기가 세이빙모드로 운전하도록 제어한다.
여기서 상기 온도검출유닛은 압축기의 토출측에 설치되어 그 압축기에서 토출되는 냉매의 온도를 검출하는 것이거나, 공기 조화되는 실내에 설치되어 실내온도를 검출하는 것이다.
본 발명에 따른 압축기 및 이를 구비한 공기조화기는 저전압으로 인해 압축기가 정지되는 것을 방지함으로써 소비 전력을 줄이고, 쾌적 냉방이 되도록 하는 효과가 있다.
본 발명에 따른 압축기 및 이를 구비한 공기조화기는 압축기 전원이 반복적으로 온/오프 되지 않도록 함으로써 소비 전력을 줄이고, 신뢰성을 향상시키는 효과가 있다.
본 발명에 따른 압축기 및 이를 구비한 공기조화기는 압축기 전원이 반복적으로 ON/OFF되지 않도록 함으로써 소비 전력을 줄이고, 신뢰성을 향상시키는 효과가 있다.
또한, 본 발명에 따른 압축기 및 이를 구비한 공기조화기는 주위 온도에 관계없이 일정 시간대에서 특정 운전모드로 압축기가 운전되도록 함으로써 특히 야간에 과도 냉방이 이루어지지 않도록 하여 쾌적 냉방이 되고, 소음을 줄이는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 공기조화기를 설명하기 위한 시스템 구성을 개략적으로 보인 블록도;
도 2는 본 발명의 제2 실시예에 따른 공기조화기를 설명하기 위한 시스템 구성을 개략적으로 보인 블록도;
도 3은 도 1 또는 도 2에서의 압축기 운전 모드 변화를 보인 도;
도 4는 본 발명의 제3 또는 제4 실시예에 따른 공기조화기를 설명하기 위한 시스템 구성을 개략적으로 보인 블록도;
도 5는 도 4에서의 압축기 운전 모드 변화를 보인 도;
도 6는 본 발명의 제1 내지 제6 실시예에 따른 압축기를 설명하기 위한 구성을 개략적으로 보인 사시도; 및
도 7는 본 발명에 따른 압축기의 구성의 일 예를 개략적으로 보인 종단면도이다.
이하 첨부한 도면을 참조하여 본 발명에 따른 압축기 및 이를 구비한 공기조화기를 상세히 설명한다.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 공기조화기는, 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 갖는 압축기(10)와, 상기 압축기(10)의 운전모드를 결정하기 위한 상기 압축기 인가전압을 검출하는 검출유닛(30)과, 상기 검출유닛에서 검출된 인가전압을 미리 설정된 기준전압과 비교하여 압축기(10)의 운전모드를 변경하는 제어유닛(20)을 포함한다. 또한, 냉매의 배분 및 순환을 제어하는 실외기(40) 및 상기 실외기(40)와 공유되어 각 실에 공기를 토출하는 실내기(50)를 포함하여 구성된다. 상기 제어유닛(20)은 상기 인가전압이 상기 기준전압보다 낮은 전압일 때 상기 압축기가 세이빙모드로 운전되도록 제어한다. 여기서, 상기 기준전압은 미리 설정되는 전압 값으로서, 압축기 구동 가능 전압 범위를 벗어나 저전압이 발생하는 경우 또는 압축기 구동 가능 전압 범위를 벗어나지 않더라도 압축기 구동에 장애가 될 정도로 저전압이 발생하는 경우에 압축기가 정지하지 않도록 하는 전압 값이다. 예를 들어, 상용 전원의 전압이 220V이고, 압축기 구동 가능 전압 범위가 187~253V인 경우에 기준전압을 200V로 설정한 다음, 압축기 인가전압이 200V보다 작은 전압이 인가되면 압축기를 세이빙모드로 운전하도록 한다. 또 다른 예로, 압축기를 세이빙모드로 운전하는 경우에 파워모드로 운전하는 경우보다 작은 전압이 필요하므로, 이를 이용하면 압축기 구동 가능 전압 범위를 확장하여 기준전압을 180V로 설정할 수 있고, 상기 기준전압보다 저전압이 발생한 경우에 세이빙모드로 운전하도록 한다.
상기 파워모드(Power Mode)는 최대 압축용량으로 운전하는 압축기 운전모드이고, 상기 세이빙모드(Saving Mode)는 상기 파워모드의 압축용량 중 0 이상 100 % 미만의 범위 내의 압축용량으로 운전하는 압축기 운전모드이다. 운전 조건에 따라, 세이빙모드에 최대 압축용량의 20, 40, 60, 80% 등으로 설정하여 압축기를 운전하나, 흔히 50%로 압축용량을 설정한 다음 운전하도록 한다. 이를 투 스테이지(two-stage)로 표현하기도 한다.
따라서, 본 발명은 파워모드 및 세이빙모드의 투 스테이지(two-stage)를 기초로 한다. 다만, 두 가지의 모드로 나누는 모든 전기적 또는 기계적 수단은 사용할 수 있다.
또한, 본 발명의 제1 실시예에 따른 공기조화기에 있어서, 상기 제어유닛(20)은 상기 검출유닛(30)에서 검출된 인가전압과 상기 기준전압을 인가전압 검출주기에 따라 비교하여 상기 압축기(10)의 운전모드를 제어한다. 여기서, 실측온도 검출주기는 실측온도를 검출할 때마다 실시간으로 미리 설정된 기준온도와 비교하는 것을 의미한다.
또한, 본 발명의 제1 실시예에 따른 공기조화기에 있어서, 상기 제어유닛(20)은 상기 인가전압이 제1 기준전압 이상이면 상기 압축기(10)가 상기 파워모드로 운전되도록 제어하고, 상기 인가전압이 상기 제1 기준전압 미만부터 제2 기준전압 이상까지이면 상기 압축기(10)가 상기 세이빙모드로 운전되도록 제어하며, 상기 인가전압이 상기 제2 기준전압 미만이면 상기 압축기(10)가 정지하도록 제어한다. 여기서, 상기 제1 기준전압 및 제2 기준전압은 압축기(10)의 운전 모드에 따라 상기 압축기(10)를 구동 가능한 전압을 미리 측정하여 설정된 전압 값이다.
또한, 본 발명의 제1 실시예에 따른 공기조화기에 있어서, 상기 제어유닛(20)은 하나 이상의 시간영역이 설정되고, 그 시간영역별로 압축기의 운전모드가 변경되도록 제어하고, 상기 제어유닛(20)은 상기 시간영역 중 특정 시간영역에서는 압축기가 세이빙모드로 운전하도록 제어한다.
도 2를 참조하면, 본 발명의 제2 실시예에 따른 공기조화기는, 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 갖는 압축기(10)와, 상기 압축기(10)의 운전모드를 결정하기 위한 상기 압축기 인가전압을 검출하는 검출유닛(30)과, 상기 검출유닛에서 검출된 인가전압을 미리 설정된 기준전압과 비교하여 압축기(10)의 운전모드를 변경하는 제어유닛(20)과, 상기 압축기(10)의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛(60)을 포함한다. 또한, 냉매의 배분 및 순환을 제어하는 실외기(40) 및 상기 실외기(40)와 공유되어 각 실에 공기를 토출하는 실내기(50)를 포함하여 구성된다. 여기서, 상기 제어유닛(20)은 상기 인가전압이 상기 기준전압보다 낮은 전압일 때 상기 압축기가 세이빙모드로 운전되도록 제어한다. 하기에서 도 1에 대한 설명과 동일한 내용은 상기 도 1에 대한 설명에 갈음한다.
본 발명의 제2 실시예에 따른 공기조화기에 있어서, 상기 인가전압이 상기 기준전압 이상인 경우, 즉 정상 전압인 때에는 상기 온도검출유닛(60)을 통해 실측온도를 검출하여 실측온도를 근거로 상기 압축기(10)의 운전모드를 결정한다. 상기 제어유닛(20)은 상기 온도검출유닛(60)에서 검출된 실측온도와 미리 설정된 기준온도를 실측온도 검출주기에 따라 비교하여 상기 압축기(10)의 운전모드를 제어하도록 한다. 여기서, 실측온도 검출주기는 실측온도를 검출할 때마다 실시간으로 미리 설정된 기준온도와 비교하는 것을 의미한다. 또한, 상기 기준온도는 과부하 보호장치 등이 설치되는 경우에 상기 과부하 보호장치의 한계 온도보다 낮게 설정되는 값으로서, 과부하 보호장치에 의해 상기 압축기가 정지되는 것을 방지한다. 상기 온도검출유닛(60)은 상기 과부하 보호장치의 기능을 포함할 수 있고, 과부하 보호장치와 별개로 설치될 수 있다.
또한, 본 발명의 제2 실시예에 따른 공기조화기에서, 상기 제어유닛(20)은 상기 실측온도가 제1 기준온도 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 실측온도가 제1 기준온도 이상에서 제2 기준온도 미만까지이면 상기 압축기가 상기 파워모드로 운전되도록 제어하며, 상기 실측온도가 제2 기준온도 이상이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어한다. 여기서, 상기 제1 기준온도는 상기 세이빙모드와 상기 파워모드를 구분하는 기준 온도값이고, 상기 제1 기준온도부터 상기 제2 기준온도까지가 파워모드 영역에 해당하는 온도범위가 되며, 상기 제2 기준온도는 상기 압축기가 정지하지 않도록 하기 위해 과부하 보호장치의 한계 온도보다 낮게 설정되는 파워모드 영역에 해당하는 온도범위의 상한 온도 값이다.
여기서, 상기 온도검출유닛(60)은 압축기의 토출측에 설치되어 그 압축기에서 토출되는 냉매의 온도를 검출하거나, 공기 조화되는 실내에 설치되어 실내온도를 검출한다.
도 3은 본 발명의 제1 또는 제2 실시예에 따른 공기조화기에 있어서 압축기 운전 모드 변화를 보인 도로서, 이에 도시한 바와 같이, 아침, 낮, 저녁 시간대로 구분되고, 파워모드 및 세이빙모드의 두 가지 운전모드로 구분된다.
먼저, 압축기의 전원을 켜고 사용자가 원하는 온도를 설정한 다음 공기조화기를 구동하면, 상기 압축기는 파워모드로 운전되어 실내온도를 상기 사용자가 원하는 온도에 이르도록 구동된다. 또한, 미리 일정온도를 설정하고, 상기 설정된 일정온도보다 낮으면 세이빙모드로 운전하고, 상기 설정된 일정온도 이상이면 파워모드로 운전하도록 한다. 여기에 본 발명에 따른 공기조화기는, 예를 들어 도 3의 오전 시간대에서 보인 바와 같이, 압축기 인가전압을 검출하여 기준전압보다 낮아서 저전압으로 판단되면, 상기 압축기가 정지하지 않도록 저전압에서도 운전 가능한 세이빙모드로 운전 모드를 전환하여 상기 압축기를 구동한다.
평균 온도가 더욱 높은 낮 시간대에서, 종래의 공기조화기의 운전방법에 따르면 주위 온도가 과부하 보호장치의 한계 온도를 넘게 되어 압축기의 운전을 정지하게 된다. 이에 다시 압축기에 전원을 인가하여 구동하면, 다시 주위 온도가 과부하 보호장치의 한계 온도를 넘게 되어 압축기의 운전을 정지하게 된다. 열대 지역 중에서도 특히 평균 온도가 높은 낮 시간대에서는 압축기의 전원이 온/오프를 반복하게 됨으로써 쾌적 냉방이 되지 아니하고, 소비 전력이 급증하는 원인이 된다.
반면, 본 발명에 따른 공기조화기의 운전방법에 따르면, 과부하 보호장치의 한계 보다 낮은 온도이고, 파워모드 영역의 온도범위의 상한에 대한 기준온도를 설정하여 실측온도가 상기 기준온도 이상이 되면 압축기를 강제로 세이빙모드로 전환하여 운전함으로써 소비 전력을 줄이고, 압축기 기동 소음 등 압축기 운전에 따른 소음을 줄이는 효과가 있다.
또한, 주위 온도가 높은 지역에서는 저녁(또는 밤) 시간대에서도 높은 온도가 유지되어 압축기가 파워모드로 운전되는 경향이 있다. 그러나, 본 발명에 따른 공기조화기는 특정 시간 영역을 설정하여 특정 운전 모드, 예를 들어 저녁 시간대에서는 세이빙모드로 압축기를 운전하도록 하고, 파워모드로 연속운전하지 않도록 함으로써 과도 냉방을 방지하고, 소음을 줄이는 효과가 있다.
도 4를 참조하면, 본 발명의 제3 실시예에 따른 공기조화기는 최대 압축용량으로 운전을 하는 파워모드(Power Mode)와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드(Saving Mode)를 갖는 압축기(10)와, 상기 압축기의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛(60)과, 상기 온도검출유닛에서 검출된 실측온도를 미리 설정된 기준온도와 비교하여 압축기의 운전모드를 변경하는 제어유닛(20)을 포함한다. 또한, 냉매의 배분 및 순환을 제어하는 실외기(40) 및 상기 실외기(40)와 공유되어 각 실에 공기를 토출하는 실내기(50)를 포함하여 구성된다. 여기서, 상기 제어유닛(20)은 상기 실측온도가 파워모드 영역에 해당하는 온도범위의 상한보다 높은 온도일 때 상기 압축기가 세이빙모드로 운전하도록 제어하는 것을 특징으로 한다. 여기서, 상기 온도범위는 미리 설정되는 값으로서, 상기 파워모드와 상기 세이빙모드를 구분하는 기준온도가 상기 파워모드 영역에 해당하는 온도범위의 하한이 되고, 상기 하한보다 높은 온도의 값 중 하나의 온도 값을 설정하여 온도범위의 상한으로 한다. 이 때 상기 온도범위의 상한보다 상기 실측온도가 높은 온도가 되면 강제로 세이빙모드로 전환한다.
상기 파워모드(Power Mode)는 최대 압축용량으로 운전하는 압축기 운전모드이고, 상기 세이빙모드(Saving Mode)는 상기 파워모드의 압축용량 중 0 이상 100 % 미만의 범위 내의 압축용량으로 운전하는 압축기 운전모드이다. 운전 조건에 따라, 세이빙모드에 최대 압축용량의 20, 40, 60, 80% 등으로 설정하여 압축기를 운전하나, 흔히 50%로 압축용량을 설정한 다음 운전하도록 한다. 이를 투 스테이지(two-stage)로 표현하기도 한다.
따라서, 본 발명은 파워모드 및 세이빙모드의 투 스테이지(two-stage)를 기초로 한다. 다만, 두 가지의 모드로 나누는 모든 전기적 또는 기계적 수단은 사용할 수 있다.
일반적인 공기조화기의 운전방법에 있어서, 미리 설정된 기준온도를 근거로 세이빙모드 운전과 파워모드 운전을 구분하고, 미리 설정된 기준온도보다 작으면 압축기를 세이빙모드로 운전하고, 미리 설정된 기준온도 이상이면 압축기를 파워모드로 운전한다. 이러한 운전방법에 있어서 공기조화기 내에 구비된 압축기의 보호를 위해 과부하 보호장치(OLP)를 설치하는 경우가 많은데, 상기 압축기 냉매 토출 온도가 상기 과부하 보호장치의 한계 온도를 넘게 되면 상기 압축기를 보호하기 위해 상기 압축기를 정지하게 된다.
따라서, 본 발명의 목적은 상기 과부하 보호장치의 한계 온도를 넘지 않도록 함으로써 달성할 수 있다. 즉, 본 발명의 제1 실시예에 따른 공기조화기는 상기와 같은 구성을 포함하고, 상기 제어유닛은 상기 온도검출유닛에서 검출된 실측온도와 미리 설정된 기준온도를 실측온도 검출주기에 따라 비교하여 상기 압축기의 운전모드를 제어하도록 한다. 여기서, 실측온도 검출주기는 실측온도를 검출할 때마다 실시간으로 미리 설정된 기준온도와 비교하는 것을 의미한다. 또한, 상기 기준온도는 과부하 보호장치 등이 설치되는 경우에 상기 과부하 보호장치의 한계 온도보다 낮게 설정되는 값으로서, 과부하 보호장치에 의해 상기 압축기가 정지되는 것을 방지한다. 상기 온도검출유닛은 상기 과부하 보호장치의 기능을 포함할 수 있고, 과부하 보호장치와 별개로 설치될 수 있다.
또한, 본 발명의 제3 실시예에 따른 공기조화기에서, 상기 제어유닛은 상기 실측온도가 제1 기준온도 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 실측온도가 제1 기준온도 이상에서 제2 기준온도 미만까지이면 상기 압축기가 상기 파워모드로 운전되도록 제어하며, 상기 실측온도가 제2 기준온도 이상이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어한다. 여기서, 상기 제1 기준온도는 일반적인 공기조화기의 운전방법에서도 설명한 바와 같이, 상기 세이빙모드와 상기 파워모드를 구분하는 기준 온도값이고, 상기 제1 기준온도부터 상기 제2 기준온도까지가 파워모드 영역에 해당하는 온도범위가 되며, 상기 제2 기준온도는 상기 압축기가 정지하지 않도록 하기 위해 과부하 보호장치의 한계 온도보다 낮게 설정되는 파워모드 영역에 해당하는 온도범위의 상한 온도 값이다.
본 발명의 제3 실시예에 따른 공기조화기에서, 상기 온도검출유닛(60)은 압축기의 토출측에 설치되어 그 압축기에서 토출되는 냉매의 온도를 검출하거나, 공기 조화되는 실내에 설치되어 실내온도를 검출한다.
다시 도 4를 참조하여 본 발명의 제4 실시예에 따른 공기조화기를 설명한다. 본 발명의 제4 실시예에 따른 공기조화기는 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 가지는 압축기(10)와, 하나 이상의 시간영역이 설정되고, 그 시간영역별로 압축기의 운전모드가 변경되도록 제어하는 제어유닛(20)을 포함하고, 상기 제어유닛(20)은 상기 시간영역 중 특정 시간영역에서는 압축기가 세이빙모드로 운전하도록 제어하는 것을 특징으로 한다.
또한, 본 발명의 제4 실시예에 따른 공기조화기는 상기 압축기(10)의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛(60)이 더 포함하고, 상기 제어유닛(20)은 상기 온도검출유닛에서 검출된 실측온도를 미리 설정된 기준온도와 비교하여 상기 실측온도가 파워모드 영역에 해당하는 온도범위의 상한보다 높은 온도일 때 상기 압축기가 세이빙모드로 운전하도록 제어한다. 여기서, 상기 온도범위는 미리 설정되는 값으로서, 상기 파워모드와 상기 세이빙모드를 구분하는 기준온도가 상기 파워모드 영역에 해당하는 온도범위의 하한이 되고, 상기 하한보다 높은 온도의 값 중 하나의 온도 값을 설정하여 온도범위의 상한으로 한다. 이 때 상기 온도범위의 상한보다 상기 실측온도가 높은 온도가 되면 강제로 세이빙모드로 전환한다.
또한, 본 발명의 제4 실시예에 따른 공기조화기는 상기와 같은 구성을 포함하고, 상기 제어유닛은 상기 온도검출유닛에서 검출된 실측온도와 미리 설정된 기준온도를 실측온도 검출주기에 따라 비교하여 상기 압축기의 운전모드를 제어하도록 한다. 여기서, 실측온도 검출주기는 실측온도를 검출할 때마다 실시간으로 미리 설정된 기준온도와 비교하는 것을 의미한다. 또한, 상기 기준온도는 과부하 보호장치 등이 설치되는 경우에 상기 과부하 보호장치의 한계 온도보다 낮게 설정되는 값으로서, 과부하 보호장치에 의해 상기 압축기가 정지되는 것을 방지한다.
또한, 본 발명의 제4 실시예에 따른 공기조화기에서, 상기 제어유닛은 상기 실측온도가 제1 기준온도 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 실측온도가 제1 기준온도 이상에서 제2 기준온도 미만까지이면 상기 압축기가 상기 파워모드로 운전되도록 제어하며, 상기 실측온도가 제2 기준온도 이상이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어한다. 여기서, 상기 제1 기준온도는 일반적인 공기조화기의 운전방법에서도 설명한 바와 같이, 상기 세이빙모드와 상기 파워모드를 구분하는 기준 온도값이고, 상기 제1 기준온도부터 상기 제2 기준온도까지가 파워모드 영역에 해당하는 온도범위가 되며, 상기 제2 기준온도는 상기 압축기가 정지하지 않도록 하기 위해 과부하 보호장치의 한계 온도보다 낮게 설정되는 파워모드 영역에 해당하는 온도범위의 상한 온도 값이다.
여기서, 상기 시간영역은 하루 24시간 등 다른 기준에 의해 설정될 수 있으나, 평균 온도에 따라 설정된다.
본 발명의 제4 실시예에 따른 공기조화기에서, 상기 온도검출유닛(60)은 압축기의 토출측에 설치되어 그 압축기에서 토출되는 냉매의 온도를 검출하거나, 공기 조화되는 실내에 설치되어 실내온도를 검출한다.
도 5는 본 발명에 따른 압축기 운전 모드 변화를 보인 도로서, 이에 도시한 바와 같이, 아침, 낮, 저녁 시간대로 구분되고, 파워모드 및 세이빙모드의 두 가지 운전모드로 구분된다.
먼저, 압축기의 전원을 켜고 사용자가 원하는 온도를 설정한 다음 공기조화기를 구동하면, 상기 압축기는 파워모드로 운전되어 실내온도를 상기 사용자가 원하는 온도에 이르도록 구동된다. 또한, 미리 일정온도를 설정하고, 상기 설정된 일정온도보다 낮으면 세이빙모드로 운전하고, 상기 설정된 일정온도 이상이면 파워모드로 운전하도록 한다. 이때, 열대 지역 등 평균 온도가 높은 지역에서는 상기 일정온도 설정이 어렵고, 상기 설정된 일정온도 이상으로 온도가 유지되어 파워모드로 연속 운전하게 된다. 본 발명에 따른 공기조화기는, 예를 들어 도 2의 오전 시간영역대에서 보인 바와 같이, 상기 설정된 일정온도보다 높고 과부하 보호장치의 한계 온도보다 낮은 온도 범위 내에서 새로운 기준온도를 설정하고, 새롭게 설정된 기준온도 이상이 되면 강제로 세이빙모드로 전환하도록 한다. 이렇게 하여 파워모드로 연속운전하지 않음으로써, 소비전력을 절약하고, 소음을 줄이는 효과가 있다.
평균 온도가 더욱 높은 낮 시간대에서, 종래의 공기조화기의 운전방법에 따르면 주위 온도가 과부하 보호장치의 한계 온도를 넘게 되어 압축기의 운전을 정지하게 된다. 이에 다시 압축기에 전원을 인가하여 구동하면, 다시 주위 온도가 과부하 보호장치의 한계 온도를 넘게 되어 압축기의 운전을 정지하게 된다. 열대 지역 중에서도 특히 평균 온도가 높은 낮 시간대에서는 압축기의 전원이 ON/OFF를 반복하게 됨으로써 쾌적 냉방이 되지 아니하고, 소비 전력이 급증하는 원인이 된다.
반면, 본 발명에 따른 공기조화기의 운전방법에 따르면, 과부하 보호장치의 한계 보다 낮은 온도이고, 파워모드 영역의 온도범위의 상한에 대한 기준온도를 설정하여 실측온도가 상기 기준온도 이상이 되면 압축기를 강제로 세이빙모드로 전환하여 운전함으로써 소비 전력을 줄이고, 압축기 기동 소음 등 압축기 운전에 따른 소음을 줄이는 효과가 있다.
또한, 저녁 시간대, 특히 밤 시간대에 있어서 열대 지역 등 평균 온도가 높은 지역에서는 이 시간대에서도 높은 온도가 유지되어 압축기가 파워모드로 운전되는 경향이 있다. 그러나, 본 발명에 따른 공기조화기는 특정 시간 영역을 설정하여 특정 운전 모드, 예를 들어 저녁 시간대에서는 세이빙모드로 압축기를 운전하도록 하고, 파워모드로 연속운전하지 않도록 함으로써 과도 냉방을 방지하고, 소음을 줄이는 효과가 있다.
이하에서는 도 6을 참조하여 본 발명의 실시예들에 따른 압축기를 설명한다.
본 발명의 제1 실시예에 따른 압축기는 밀폐된 내부공간을 갖는 케이싱(100)과, 상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터(미도시)와, 상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 압축기 인가전압에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛(미도시)을 포함하여 구성되고, 상기 압축유닛은 상기 인가전압이 기준전압 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 인가전압이 기준전압 이상이면 상기 압축기가 상기 파워모드로 운전되도록 제어한다. 여기서, 상기 기준전압은 미리 설정된 값으로서, 저전압에 의해 상기 압축기가 정지하지 않도록 설정된다.
또한, 본 발명의 제1 실시예에 따른 압축기에 있어서, 상기 인가전압이 상기 기준전압 이상인 경우, 즉 정상 전압인 경우, 상기 압축유닛은 실측온도가 제1 기준온도 미만일 경우에는 상기 세이빙모드로 가변되고, 상기 실측온도가 제1 기준온도 이상이고 제2 기준온도 미만일 경우에는 상기 파워모드로 가변되며, 상기 실측온도가 제2 기준온도 이상일 경우에는 상기 세이빙모드로 가변된다. 여기서, 상기 제1 기준온도는 상기 세이빙모드와 상기 파워모드를 구분하는 기준 온도값이고, 상기 제1 기준온도부터 상기 제2 기준온도까지가 파워모드 영역에 해당하는 온도범위가 되며, 상기 제2 기준온도는 상기 압축기가 정지하지 않도록 하기 위해 과부하 보호장치의 한계 온도보다 낮게 설정되는 파워모드 영역에 해당하는 온도범위의 상한 온도 값이다.
또한, 상기 압축기(10)는 어큐뮬레이터(110)와, 냉매가 이동하도록 하고, 실외기(40) 및 실내기(50)에 연결되는 연결유닛을 구비하는데, 상기 연결유닛은 저압측 연결관(120)과, 상기 케이싱(100)의 내부공간에 연결되는 고압측 연결관(130)과, 상기 저압측 연결관(120)과 고압측 연결관(130)에 교차 연통되도록 연결되는 공용측 연결관(140)으로 이루어진다.
또한, 본 발명의 제1 실시예에 따른 압축기에서, 상기 압축유닛은 미리 설정된 시간영역 중 특정 시간영역에서는 상기 세이빙모드로 가변된다. 여기서, 상기 시간영역은 하루 24시간 등 다른 기준에 의해 설정될 수 있으나, 평균 온도에 따라 설정된다. 상세한 설명은 상기한 도 2에 관련된 설명으로 갈음한다.
본 발명의 제1 실시예에 따른 압축기에서, 상기 압축유닛은 그 압축유닛의 흡입구로 흡입되는 냉매와 상기 케이싱(100)의 내부공간에 채워진 냉매를 이용하여 선택적으로 공회전시킨다.
본 발명의 제2 실시예에 따른 압축기는 밀폐된 내부공간을 갖는 케이싱(100)과, 상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터(미도시)와, 상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 압축기 인가전압에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛과, 각각의 압축공간이 서로 분리되어 상기 케이싱의 내부공간에 설치되는 복수 개의 실린더들과, 상기 복수 개의 실린더들의 압축공간으로 냉매가 분배 공급되도록 하는 흡입관과, 상기 실린더들의 압축공간에서 선회운동을 하면서 냉매를 압축하는 복수 개의 롤링피스톤들과, 상기 롤링피스톤들과 함께 각 실린더들의 압축공간들을 각각 흡입공간과 토출공간으로 분리하는 복수 개의 베인들과, 상기 베인들중에서 적어도 어느 한 쪽 실린더의 베인을 구속하거나 해제하여 압축기의 운전모드를 가변하는 베인구속유닛을 포함하여 구성된다. 상기 압축유닛은 상기 인가전압이 기준전압 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 인가전압이 기준전압 이상이면 상기 압축기가 상기 파워모드로 운전되도록 제어한다. 여기서, 상기 기준전압은 미리 설정된 값으로서, 저전압에 의해 상기 압축기가 정지하지 않도록 설정된다.
여기서, 상기 압축기는 상기 베인들 중에서 적어도 한 개는 그 일측에 상기 롤링피스톤과 접하는 실링면(sealing surface)이 형성되고, 상기 실링면의 반대쪽은 압력에 의해 상기 베인이 롤링피스톤쪽으로 가세되도록 가압면(pressure surface)이 형성된다.
또한, 상기 실린더들 중 한쪽 실린더의 베인 가압면측에는 상기 케이싱의 내부공간과 분리되어 흡입압 또는 토출압의 냉매가 채워지는 챔버가 더 형성된다.
또한, 상기 압축기는 상기 베인의 가압면에 흡입압 또는 토출압의 냉매를 선택적으로 공급하기 위한 모드전환유닛이 상기 케이싱의 외부에는 더 구비된다.
또한, 본 발명의 제2 실시예에 따른 압축기에 있어서, 상기 모드전환유닛은 상기 베인의 가압면에 흡입압 또는 토출압의 냉매를 선택할 수 있는 모드전환밸브와, 상기 모드전환밸브의 제1 입구와 흡입관을 연결하는 저압측 연결관과, 상기 모드전환밸브의 제2 입구와 상기 케이싱의 내부공간을 연결하는 고압측 연결관과, 상기 모드전환밸브의 출구와 상기 베인의 가압면쪽에 연결하는 공용측 연결관으로 이루어진다.
또한, 본 발명의 제2 실시예에 따른 압축기에 있어서, 상기 인가전압이 상기 기준전압 이상인 경우, 즉 정상 전압인 경우, 상기 압축유닛은 실측온도가 제1 기준온도 미만일 경우에는 상기 세이빙모드로 가변되고, 상기 실측온도가 제1 기준온도 이상이고 제2 기준온도 미만일 경우에는 상기 파워모드로 가변되며, 상기 실측온도가 제2 기준온도 이상일 경우에는 상기 세이빙모드로 가변된다. 여기서, 상기 제1 기준온도는 상기 세이빙모드와 상기 파워모드를 구분하는 기준 온도값이고, 상기 제1 기준온도부터 상기 제2 기준온도까지가 파워모드 영역에 해당하는 온도범위가 되며, 상기 제2 기준온도는 상기 압축기가 정지하지 않도록 하기 위해 과부하 보호장치의 한계 온도보다 낮게 설정되는 파워모드 영역에 해당하는 온도범위의 상한 온도 값이다.
본 발명의 제3 실시예에 따른 압축기는 밀폐된 내부공간을 갖는 케이싱(100)과, 상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터(미도시)와, 상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 압축기 인가전압에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛과, 각각의 압축공간이 서로 분리되어 상기 케이싱의 내부공간에 설치되는 복수 개의 실린더들과, 상기 복수 개의 실린더들의 압축공간으로 냉매가 분배 공급되도록 하는 흡입관과, 상기 실린더들의 압축공간에서 선회운동을 하면서 냉매를 압축하는 복수 개의 롤링피스톤들과, 상기 롤링피스톤들과 함께 각 실린더들의 압축공간들을 각각 흡입공간과 토출공간으로 분리하는 복수 개의 베인들과, 상기 베인들중에서 적어도 어느 한 쪽 실린더의 베인을 구속하거나 해제하여 압축기의 운전모드를 가변하는 베인구속유닛을 포함하여 구성되고, 상기 베인들 중에서 적어도 한 개는 상기 케이싱의 내부공간의 압력에 의해 구속된다. 상기 압축유닛은 상기 인가전압이 기준전압 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 인가전압이 기준전압 이상이면 상기 압축기가 상기 파워모드로 운전되도록 제어한다. 여기서, 상기 기준전압은 미리 설정된 값으로서, 저전압에 의해 상기 압축기가 정지하지 않도록 설정된다.
또한, 본 발명의 제3 실시예에 따른 압축기에서, 상기 실린더들 중에서 적어도 한 개의 실린더에는 베인이 반경방향으로 움직일 수 있도록 하는 베인슬롯이 연통되고, 그 베인슬롯에서 움직이는 베인의 이동방향에 대해 대략 직각의 방향으로 관통되며, 상기 케이싱의 내부공간과 연통되도록 하는 적어도 한 개의 제1 구속구멍이 형성된다.
또한, 상기 압축기에서, 상기 실린더에는 그 베인슬롯을 중심으로 상기 제1 구속구멍의 반대쪽에서 상기 흡입구에 연통되도록 제2 구속구멍이 형성된다.
또한, 본 발명의 제3 실시예에 따른 압축기에 있어서, 상기 인가전압이 상기 기준전압 이상인 경우, 즉 정상 전압인 경우, 상기 압축유닛은 실측온도가 제1 기준온도 미만일 경우에는 상기 세이빙모드로 가변되고, 상기 실측온도가 제1 기준온도 이상이고 제2 기준온도 미만일 경우에는 상기 파워모드로 가변되며, 상기 실측온도가 제2 기준온도 이상일 경우에는 상기 세이빙모드로 가변된다. 여기서, 상기 제1 기준온도는 상기 세이빙모드와 상기 파워모드를 구분하는 기준 온도값이고, 상기 제1 기준온도부터 상기 제2 기준온도까지가 파워모드 영역에 해당하는 온도범위가 되며, 상기 제2 기준온도는 상기 압축기가 정지하지 않도록 하기 위해 과부하 보호장치의 한계 온도보다 낮게 설정되는 파워모드 영역에 해당하는 온도범위의 상한 온도 값이다.
본 발명의 제4 실시예에 따른 압축기는, 밀폐된 내부공간을 갖는 케이싱(100)과, 상기 케이싱(100)의 내부공간에 설치되어 구동력을 발생하는 구동모터(미도시)와, 상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 그 압축공간에서 토출되는 냉매의 실측온도 차이에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛(미도시)을 포함하고, 상기 압축유닛은 실측온도가 제1 기준온도 미만일 경우에는 상기 세이빙모드로 가변되고, 상기 실측온도가 제1 기준온도 이상이고 제2 기준온도 미만일 경우에는 상기 파워모드로 가변되며, 상기 실측온도가 제2 기준온도 이상일 경우에는 상기 세이빙모드로 가변된다. 여기서, 상기 제1 기준온도는 상기 세이빙모드와 상기 파워모드를 구분하는 기준 온도값이고, 상기 제1 기준온도부터 상기 제2 기준온도까지가 파워모드 영역에 해당하는 온도범위가 되며, 상기 제2 기준온도는 상기 압축기가 정지하지 않도록 하기 위해 과부하 보호장치의 한계 온도보다 낮게 설정되는 파워모드 영역에 해당하는 온도범위의 상한 온도 값이다.
또한, 상기 압축기는 어큐뮬레이터(110)와, 냉매가 이동하도록 하고, 실외기(40) 및 실내기(50)에 연결되는 연결유닛을 구비하는데, 상기 연결유닛은 저압측 연결관(120)과, 상기 케이싱(100)의 내부공간에 연결되는 고압측 연결관(130)과, 상기 저압측 연결관(120)과 고압측 연결관(130)에 교차 연통되도록 연결되는 공용측 연결관(140)으로 이루어진다.
또한, 본 발명의 제4 실시예에 따른 압축기에서, 상기 압축유닛은 미리 설정된 시간영역 중 특정 시간영역에서는 상기 세이빙모드로 가변된다. 여기서, 상기 시간영역은 하루 24시간 등 다른 기준에 의해 설정될 수 있으나, 평균 온도에 따라 설정된다. 상세한 설명은 상기 도 2에 관련된 설명으로 갈음한다.
본 발명의 제4 실시예에 따른 압축기에서, 상기 압축유닛은 그 압축유닛의 흡입구로 흡입되는 냉매와 상기 케이싱의 내부공간에 채워진 냉매를 이용하여 선택적으로 공회전시킨다.
본 발명의 제5 실시예에 따른 압축기는 밀폐된 내부공간을 갖는 케이싱과, 상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터와, 상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 그 압축공간에서 토출되는 냉매의 실측온도 차이에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛과, 각각의 압축공간이 서로 분리되어 상기 케이싱의 내부공간에 설치되는 복수 개의 실린더들과, 상기 복수 개의 실린더들의 압축공간으로 냉매가 분배 공급되도록 하는 흡입관과, 상기 실린더들의 압축공간에서 선회운동을 하면서 냉매를 압축하는 복수 개의 롤링피스톤들과, 상기 롤링피스톤들과 함께 각 실린더들의 압축공간들을 각각 흡입공간과 토출공간으로 분리하는 복수 개의 베인들과, 상기 베인들중에서 적어도 어느 한 쪽 실린더의 베인을 구속하거나 해제하여 압축기의 운전모드를 가변하는 베인구속유닛을 포함하여 구성된다. 여기서, 상기 압축유닛은 실측온도가 제1 기준온도 미만일 경우에는 상기 세이빙모드로 가변되고, 상기 실측온도가 제1 기준온도 이상이고 제2 기준온도 미만일 경우에는 상기 파워모드로 가변되며, 상기 실측온도가 제2 기준온도 이상일 경우에는 상기 세이빙모드로 가변된다.
여기서, 상기 압축기는 상기 베인들 중에서 적어도 한 개는 그 일측에 상기 롤링피스톤과 접하는 실링면(sealing surface)이 형성되고, 상기 실링면의 반대쪽은 압력에 의해 상기 베인이 롤링피스톤쪽으로 가세되도록 가압면(pressure surface)이 형성된다.
또한, 상기 실린더들 중 한쪽 실린더의 베인 가압면측에는 상기 케이싱의 내부공간과 분리되어 흡입압 또는 토출압의 냉매가 채워지는 챔버가 더 형성된다.
또한, 상기 압축기는 상기 베인의 가압면에 흡입압 또는 토출압의 냉매를 선택적으로 공급하기 위한 모드전환유닛이 상기 케이싱의 외부에는 더 구비된다.
또한, 본 발명의 제5 실시예에 따른 압축기에 있어서, 상기 모드전환유닛은 상기 베인의 가압면에 흡입압 또는 토출압의 냉매를 선택할 수 있는 모드전환밸브와, 상기 모드전환밸브의 제1 입구와 흡입관을 연결하는 저압측 연결관과, 상기 모드전환밸브의 제2 입구와 상기 케이싱의 내부공간을 연결하는 고압측 연결관과, 상기 모드전환밸브의 출구와 상기 베인의 가압면쪽에 연결하는 공용측 연결관으로 이루어진다.
본 발명의 제6 실시예에 따른 압축기는 밀폐된 내부공간을 갖는 케이싱과, 상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터와, 상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 그 압축공간에서 토출되는 냉매의 실측온도 차이에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛과, 각각의 압축공간이 서로 분리되어 상기 케이싱의 내부공간에 설치되는 복수 개의 실린더들과, 상기 복수 개의 실린더들의 압축공간으로 냉매가 분배 공급되도록 하는 흡입관과, 상기 실린더들의 압축공간에서 선회운동을 하면서 냉매를 압축하는 복수 개의 롤링피스톤들과, 상기 롤링피스톤들과 함께 각 실린더들의 압축공간들을 각각 흡입공간과 토출공간으로 분리하는 복수 개의 베인들과, 상기 베인들중에서 적어도 어느 한 쪽 실린더의 베인을 구속하거나 해제하여 압축기의 운전모드를 가변하는 베인구속유닛을 포함하여 구성되고, 상기 베인들 중에서 적어도 한 개는 상기 케이싱의 내부공간의 압력에 의해 구속된다. 여기서, 상기 압축유닛은 실측온도가 제1 기준온도 미만일 경우에는 상기 세이빙모드로 가변되고, 상기 실측온도가 제1 기준온도 이상이고 제2 기준온도 미만일 경우에는 상기 파워모드로 가변되며, 상기 실측온도가 제2 기준온도 이상일 경우에는 상기 세이빙모드로 가변된다.
또한, 본 발명의 제6 실시예에 따른 압축기에서, 상기 실린더들 중에서 적어도 한 개의 실린더에는 베인이 반경방향으로 움직일 수 있도록 하는 베인슬롯이 연통되고, 그 베인슬롯에서 움직이는 베인의 이동방향에 대해 대략 직각의 방향으로 관통되며, 상기 케이싱의 내부공간과 연통되도록 하는 적어도 한 개의 제1 구속구멍이 형성된다.
또한, 상기 압축기에서, 상기 실린더에는 그 베인슬롯을 중심으로 상기 제1 구속구멍의 반대쪽에서 상기 흡입구에 연통되도록 제2 구속구멍이 형성된다.
이하에서는 도 6 및 도 7을 참조하여 본 발명의 실시예들에 따른 압축기의 구조를 설명한다.
본 발명에 따른 압축기는 복수 개의 가스흡입관(SP1)(SP2)과 한 개의 가스토출관(DP)이 연통 설치되는 케이싱(100)과, 상기 케이싱(100)의 상측에 설치하여 회전력을 발생하는 구동모터(200)와, 상기 케이싱(100)의 하측에 설치되어 상기 구동모터(200)에서 발생한 회전력으로 냉매를 압축하는 제1 압축기구부(300) 및 제2 압축기구부(400)와, 상기 제2 압축기구부의 제2 베인(440)의 배면을 고압분위기 또는 저압분위기로 전환하면서 상기 제2 압축기구부(400)가 파워모드 또는 세이빙모드로 운전을 하도록 하는 밸브유닛(500)과, 상기 밸브유닛(500)에 의해 상기 제2 압축기구부(400)가 제어되도록 상기 밸브유닛(500)이 상기 케이싱(100)과 상기 제2 압축기구부(400)에 연결되는 연결유닛(600)으로 구성된다. 여기서, 상기 제1 압축기구부(300)와 제2 압축기구부(400)는 압축유닛을 구성한다.
상기 구동모터(200)는 정속 구동을 하거나 또는 인버터 구동을 하는 모터이다. 상기 구동모터(200)는 상기 케이싱(100)의 내부에 고정되어 외부에서 전원이 인가되는 고정자(210)와, 상기 고정자(210)의 내부에 일정 공극을 두고 배치되어 상기 고정자(210)와 상호 작용하면서 회전하는 회전자(220)와, 상기 회전자(220)에 결합되어 회전력을 상기 제1 압축기구부(300)와 제2 압축기구부(400)로 전달하는 회전축(230)으로 이루어진다.
상기 제1 압축기구부(300)는 제1 실린더조립체의 일부를 이루고 환형으로 형성되어 상기 케이싱(100)의 내부에 설치되는 제1 실린더(310)와, 상기 제1 실린더(310)와 함께 제1 압축공간(V1)을 갖는 제1 실린더조립체를 이루도록 상기 제1 실린더(310)의 상하 양측에 결합되는 상부베어링플레이트(이하,상부베어링)(320) 및 중간베어링플레이트(이하,중간베어링)(330)가 포함된다.
그리고, 상기 제1 압축기구부(300)는 상기 회전축(230)의 상측 편심부에 회전 가능하게 결합되어 상기 제1 실린더(310)의 제1 압축공간(V1)에서 선회하면서 냉매를 압축하는 제1 롤링피스톤(340)과, 상기 제1 롤링피스톤(340)의 외주면에 압접되도록 상기 제1 실린더(310)에 반경방향으로 이동 가능하게 결합되어 상기 제1 실린더(310)의 제1 압축공간(V1)이 제1 흡입실과 제1 압축실로 각각 구획되는 제1 베인(350)이 더 포함된다.
그리고, 상기 제1 압축기구부(300)는 상기 제1 베인(350)의 후방측이 탄력 지지되도록 압축스프링으로 된 베인지지스프링(360)과, 상기 상부베어링(320)의 중앙부근에 구비된 제1 토출구(321) 선단에 개폐 가능하게 결합되어 상기 제1 압축공간(V1)의 압축실에서 토출되는 냉매가스의 토출을 조절하는 제1 토출밸브(370)와, 상기 제1 토출밸브(370)가 수용되도록 내부체적이 구비되어 상기 상부베어링(320)에 결합되는 제1 머플러(380)가 더 포함된다.
상기 제2 압축기구부(400)는 제2 실린더의 조립체의 일부를 이루고 환형으로 형성되어 상기 케이싱(100)의 내부에서 상기 제1 실린더(310) 하측에 설치되는 제2 실린더(410)와, 상기 제2 실린더(410)와 함께 제2 압축공간(V2)을 갖는 제2 실린더조립체를 이루도록 상기 제2 실린더(410)의 상하 양측에 결합되는 중간베어링(330) 및 하부베어링(420)이 포함된다.
그리고, 상기 제2 압축기구부(400)는 상기 회전축(230)의 하측 편심부에 회전 가능하게 결합되어 상기 제2 실린더(410)의 제2 압축공간(V2)에서 선회하면서 냉매를 압축하는 제2 롤링피스톤(430)과, 상기 제2 롤링피스톤(430)의 외주면에 압접하거나 이격되도록 상기 제2 실린더(410)에 반경방향으로 이동 가능하게 결합하여 상기 제2 실린더(410)의 제2 압축공간(V2)이 제2 흡입실과 제2 압축실로 각각 구획 또는 연통되도록 하는 제2 베인(440)이 더 포함된다.
그리고, 상기 제2 압축기구부(400)는 상기 하부베어링(420)의 중앙부근에 구비한 제2 토출구(421) 선단에 개폐 가능하게 결합되어 상기 제2 압축실에서 토출되는 냉매가스의 토출을 조절하는 제2 토출밸브(450)와, 상기 제2 토출밸브(450)가 수용되도록 소정의 내부체적이 구비되어 상기 하부베어링(420)에 결합하는 제2 머플러(460)가 더 포함된다.
상기 제2 실린더(410)는 제2 압축공간(V2)을 이루는 내주면의 일측에 상기 제2 베인(440)이 반경방향으로 왕복운동을 하도록 제2 베인슬롯(411)이 형성되고, 상기 제2 베인슬롯(411)의 일측에는 냉매가 제2 압축공간(V2)으로 유도되도록 하는 제2 흡입구(412)가 반경방향으로 형성되며, 상기 제2 베인슬롯(411)의 타측에는 냉매가 상기 케이싱(100)의 내부로 토출되도록 하는 제2 토출안내홈(미도시)이 축방향으로 경사지게 형성된다.
그리고, 상기 제2 베인슬롯(411)의 방사상 후방측에는 후술할 연결유닛(600)의 공용측 연결관(630)에 연통되어 밀폐되고, 상기 제2 베인(440)의 후방측에 흡입압(Ps) 또는 토출압(Pd)을 제공하도록 상기 케이싱(100)의 내부와 분리되는 베인챔버(413)가 형성된다. 상기 베인챔버(413)는 상기 공용측 연결관(630)과 연통되어 상기 제2 베인(440)이 완전히 후진하여 상기 제2 베인슬롯(411)의 안쪽에 수납되더라도 그 제2 베인(440)의 후면이 후술할 공용측 연결관(630)을 통해 공급되는 압력에 대해 압력면을 이루도록 소정의 내부체적을 갖게 형성된다.
그리고, 상기 제2 실린더(410)에는 상기 제2 베인(440)의 운동방향에 대해 직교하거나 또는 소정의 엇갈림각을 갖는 방향으로 상기 케이싱(100)의 내부와 제2 베인슬롯(411)이 연통되도록 하여 그 케이싱(100) 내부공간(101)의 토출압(Pd)으로 상기 제2 베인(440)이 구속되도록 하는 제1 유로(414)가 형성되고, 상기 제1 유로(414)의 맞은편에는 상기 제2 베인슬롯(411)과 제2 흡입구(412)가 연통되어 상기 제1 유로(414)와 압력차가 유발되면서 상기 제2 베인(440)이 신속하게 구속되도록 하는 제2 유로(415)가 형성된다. 상기 제1 유로(414)와 제2 유로(415)는 동일 직선 상에 형성될 수 있고, 서로 동일한 단면적으로 형성될 수 있다.
상기 밸브유닛(500)은 상기 제2 실린더(410)의 베인챔버(412)에 연결되는 메인밸브부(510)와, 상기 메인밸브부(510)에 연결되어 그 메인밸브부(510)의 개폐동작을 제어하는 서브밸브부(520)로 이루어진다.
상기 연결유닛(600)은 상기 제2 가스흡입관(SP2)에서 분관되어 상기 메인밸브부(510)에 연결되는 저압측 연결관(120)과, 상기 케이싱(100)의 내부공간(101)에 연결되어 상기 메인밸브부(510)에 연결되는 고압측 연결관(130)과, 상기 제2 실린더(410)의 베인챔버(412)에 연결되어 상기 저압측 연결관(120)과 고압측 연결관(130)에 교차 연통되도록 상기 메인밸브부(510)에 연결되는 공용측 연결관(140)으로 이루어진다.
여기서, 상기 고압측 연결관(130)은 케이싱(100)과 연결되는 일측이 상기 전동기구부(200)의 하단과 제1 압축기구부(300)의 상단 사이에 위치하여 오일의 유면보다 높게 연결되도록 하는 것이 상기 베인챔버(412)로 오일이 유입되는 것을 막을 수 있어 바람직하다.
한편, 도면으로 제시하지는 않았으나, 상기 고압측 연결관(130)의 입구에 망체로 된 오일차단망 또는 하측으로 개구된 오일차단판이 더 설치되어 오일의 유입을 효과적으로 차단할 수도 있고, 상기 고압측 연결관(130)이 연결지점에서 멀어질수록 높게 배치되어 그 고압측 연결관(130)으로 유입되는 오일이 케이싱(100)으로 흘러내려 오일의 유입을 더욱 효과적으로 차단할 수도 있다.
이하에서는 상기 본 발명의 실시예들에 따른 압축기의 동작을 설명한다.
구동모터(200)의 고정자(210)에 전원을 인가하여 회전자(220)가 회전하면, 회전축(230)이 상기 회전자(220)와 함께 회전하면서 상기 구동모터(200)의 회전력을 제1 압축기구부(300)와 제2 압축기구부(400)에 전달하고, 공기조화기에서의 필요 용량에 따라 상기 제1 압축기구부(300)와 제2 압축기구부(400)가 모두 파워운전을 하여 대용량의 냉력을 발생하거나 상기 제1 압축기구부(300)만 파워운전을 하고 상기 제2 압축기구부(400)는 세이빙운전을 실시하여 소용량의 냉력을 발생한다. 여기서, 상기 제1 압축기구부(300)와 제2 압축기구부(400)는 압축유닛을 구성한다.
여기서, 상기 압축기가 파워운전을 하는 경우에는, 메인밸브부(510)와 서브밸브부(520)에 의해 상기 케이싱(100) 내부의 고압의 냉매가 고압측 연결관(130)을 통해 베인챔버(413)로 유입되고, 상기 베인챔버(413)로 유입된 고압의 냉매가 제2 베인(440)을 지지하여 상기 제1 압축기구부(300)는 물론 상기 제2 압축기구부(400)도 정상적으로 작동하여 냉매를 압축하게 된다.
반면, 상기 압축기가 세이빙운전을 하는 경우에는, 상기 메인밸브부(510)와 서브밸브부(520)에 의해 상기 가스흡입관(SP2)을 거쳐 제2 실린더(410)로 흡입되던 저압의 냉매가 저압측 연결관(120)을 통해 베인챔버(413)로 유입되고, 베인챔버(413)로 유입된 저압의 냉매가 제2 베인(440)의 후면을 지지하는 한편 제2 베인(440)의 전면에는 제2 압축공간(V2)의 압축력이 가해지게 되어 상기 제2 베인(440)이 제2 롤링피스톤(430)에서 이격된 상태로 남게 된다. 그리고, 제2 실린더(410)에 구비되는 제1 유로(414)와 제2 유로(415)에 의해 상기 제2 베인(440)의 양측면에 가세되는 압력차가 증가하게 되어 상기 제2 베인(440)이 신속하면서도 효과적으로 구속된다. 예컨대, 제1 유로(414)로 고압의 오일 또는 냉매가 유입되는 동시에 상기 베인챔버(413)에 잔류하는 일부 토출압(Pd)의 냉매 또는 오일이 상기 제2 베인(440)과 베인슬롯(411) 사이의 틈새와 제2 유로(415)를 통해 제2 흡입구(412)로 빠르게 누설되면서 압축기의 운전모드 전환시 상기 제2 베인(440)이 보다 신속하면서도 안정적으로 구속된다. 이에 따라 압축기는 상기 제1 압축기구부(300)에서만 정상적으로 압축이 일어나는 반면 상기 제2 압축기구부(400)에서는 압축이 일어나지 않게 된다.
이상에서 설명한 바와 같이, 본 발명에 따른 압축기 및 이를 구비한 공기조화기는 압축기에 인가되는 전압을 검출하거나, 압축기에 인가되는 전압을 검출하고, 압축기로부터 토출되는 냉매의 온도 또는 주위 온도를 검출하여 공기조화기를 미리 설정된 운전 모드로 운전하도록 하거나, 일정 시간 영역에서 미리 설정된 운전 모드로 운전하도록 하여 압축기가 연속 운전되도록 함으로써 압축기 및 공기조화기의 신뢰성 및 운전 효율을 향상시키고, 소음을 감소시킨다.
또한, 본 발명에 따른 압축기 및 이를 구비한 공기조화기는 압축기로부터 토출되는 냉매의 온도 또는 주위 온도를 검출하여 공기조화기를 미리 설정된 운전 모드로 운전하도록 하거나, 일정 시간 영역에서 미리 설정된 운전 모드로 운전하도록 하여 압축기가 연속 운전되도록 함으로써 압축기 및 공기조화기의 신뢰성 및 운전 효율을 향상시키고, 소음을 감소시킨다.
상기에서 명세서 전체로 압축기 인가 전압을 검출하여 검출된 인가 전압을 근거로 압축기를 운전하는 방법에 대하여 설명하였으나, 압축기 인가 전류를 검출하여 검출된 인가 전류를 근거로 압축기를 운전하는 방법에도 동일하게 적용할 수 있다.

Claims (22)

  1. 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 갖는 압축기;
    상기 압축기의 운전모드를 결정하기 위한 상기 압축기 인가전압을 검출하는 검출유닛; 및
    상기 검출유닛에서 검출된 인가전압을 미리 설정된 기준전압과 비교하여 압축기의 운전모드를 변경하는 제어유닛;을 포함하고,
    상기 제어유닛은 상기 인가전압이 상기 기준전압보다 낮은 전압일 때 상기 압축기가 세이빙모드로 운전되도록 제어하는 것을 특징으로 하는 공기조화기.
  2. 제1 항에 있어서, 상기 제어유닛은,
    상기 검출유닛에서 검출된 인가전압과 상기 기준전압을 인가전압 검출주기에 따라 비교하고,
    상기 제어유닛은 상기 인가전압이 제1 기준전압 이상이면 상기 압축기가 상기 파워모드로 운전되도록 제어하고, 상기 인가전압이 상기 제1 기준전압 미만부터 제2 기준전압 이상까지이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하며, 상기 인가전압이 상기 제2 기준전압 미만이면 상기 압축기가 정지하도록 제어하는 것을 특징으로 하는 공기조화기.
  3. 제2 항에 있어서,
    상기 압축기의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛을 더 포함하는 공기조화기.
  4. 제3 항에 있어서, 상기 제어유닛은,
    상기 인가전압이 상기 제1 기준전압 이상이면 상기 온도검출유닛에서 검출된 실측온도와 미리 설정된 기준온도를 실측온도 검출주기에 따라 비교하고,
    상기 실측온도가 제1 기준온도 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 실측온도가 상기 제1 기준온도 이상에서 제2 기준온도 미만까지이면 상기 압축기가 상기 파워모드로 운전되도록 제어하며, 상기 실측온도가 상기 제2 기준온도 이상이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하는 것을 특징으로 하는 공기조화기.
  5. 제1 항에 있어서, 상기 제어유닛은,
    하나 이상의 시간영역이 설정되고, 상기 시간영역 중 특정 시간영역에서는 압축기가 상기 세이빙모드로 운전되도록 제어하는 것을 특징으로 하는 공기조화기.
  6. 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 갖는 압축기;
    상기 압축기의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛; 및
    상기 온도검출유닛에서 검출된 실측온도를 미리 설정된 기준온도와 비교하여 압축기의 운전모드를 변경하는 제어유닛;을 포함하고,
    상기 제어유닛은 상기 실측온도가 파워모드 영역에 해당하는 온도범위의 상한보다 높은 온도일 때 상기 압축기가 세이빙모드로 운전하도록 제어하는 것을 특징으로 하는 공기조화기.
  7. 제6 항에 있어서, 상기 제어유닛은,
    상기 온도검출유닛에서 검출된 실측온도와 미리 설정된 기준온도를 실측온도 검출주기에 따라 비교하고,
    상기 실측온도가 제1 기준온도 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 실측온도가 제1 기준온도 이상에서 제2 기준온도 미만까지이면 상기 압축기가 상기 파워모드로 운전되도록 제어하며, 상기 실측온도가 제2 기준온도 이상이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하는 것을 특징으로 하는 공기조화기.
  8. 최대 압축용량으로 운전을 하는 파워모드와, 상기 파워모드 보다 작은 압축용량으로 운전을 하는 세이빙모드를 가지는 압축기; 및
    하나 이상의 시간영역이 설정되고, 그 시간영역별로 압축기의 운전모드가 변경되도록 제어하는 제어유닛;을 포함하고,
    상기 제어유닛은 상기 시간영역 중 특정 시간영역에서는 압축기가 세이빙모드로 운전하도록 제어하는 것을 특징으로 하는 공기조화기.
  9. 제8 항에 있어서,
    상기 압축기의 운전모드를 결정하기 위한 실측온도를 검출하는 온도검출유닛을 더 포함하고,
    상기 제어유닛은 상기 온도검출유닛에서 검출된 실측온도를 미리 설정된 기준온도와 비교하여 상기 실측온도가 파워모드 영역에 해당하는 온도범위의 상한보다 높은 온도일 때 상기 압축기가 세이빙모드로 운전하도록 제어하는 것을 특징으로 하는 공기조화기.
  10. 제9 항에 있어서, 상기 제어유닛은,
    상기 온도검출유닛에서 검출하는 실측온도와 미리 설정된 기준온도를 실측온도 검출주기에 따라 비교하고,
    상기 실측온도가 제1 기준온도 미만이면 상기 압축기가 세이빙모드로 운전하도록 제어하고, 상기 실측온도가 제1 기준온도 이상에서 제2 기준온도 미만까지이면 상기 압축기가 파워모드로 운전하도록 제어하며, 상기 실측온도가 제2 기준온도 이상이면 상기 압축기가 세이빙모드로 운전하도록 제어하는 것을 특징으로 하는 공기조화기.
  11. 밀폐된 내부공간을 갖는 케이싱;
    상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터; 및
    상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 압축기 인가전압에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛;을 포함하고,
    상기 압축유닛은 상기 인가전압이 기준전압 미만이면 상기 압축기가 상기 세이빙모드로 운전되도록 제어하고, 상기 인가전압이 기준전압 이상이면 상기 압축기가 상기 파워모드로 운전되도록 제어하는 것을 특징으로 하는 압축기.
  12. 밀폐된 내부공간을 갖는 케이싱;
    상기 케이싱의 내부공간에 설치되어 구동력을 발생하는 구동모터; 및
    상기 구동모터와 함께 상기 케이싱의 내부공간에 설치되고 적어도 두 개 이상의 압축공간을 가지며 그 압축공간에서 토출되는 냉매의 실측온도 차이에 따라 파워모드 또는 적어도 한 개의 압축공간은 공회전을 하는 세이빙모드로 운전하도록 제어되는 압축유닛;을 포함하고,
    상기 압축유닛은 실측온도가 제1 기준온도 미만일 경우에는 상기 세이빙모드로 가변되고, 상기 실측온도가 제1 기준온도 이상이고 제2 기준온도 미만일 경우에는 상기 파워모드로 가변되며, 상기 실측온도가 제2 기준온도 이상일 경우에는 상기 세이빙모드로 가변되는 것을 특징으로 하는 압축기.
  13. 제11 항 또는 제12 항에 있어서,
    상기 압축유닛은 특정 시간영역에서는 상기 세이빙모드로 가변되는 것을 특징으로 하는 압축기.
  14. 제13 항에 있어서,
    상기 시간영역은 평균온도를 기준으로 설정되는 것을 특징으로 하는 압축기.
  15. 제11 항 또는 제12 항에 있어서,
    상기 압축유닛은 그 압축유닛의 흡입구로 흡입되는 냉매와 상기 케이싱의 내부공간에 채워진 냉매를 이용하여 선택적으로 공회전시키는 것을 특징으로 하는 압축기.
  16. 제11 항 또는 제12 항에 있어서,
    각각의 압축공간이 서로 분리되어 상기 케이싱의 내부공간에 설치되는 복수 개의 실린더들;
    상기 복수 개의 실린더들의 압축공간으로 냉매가 분배 공급되도록 하는 흡입관;
    상기 실린더들의 압축공간에서 선회운동을 하면서 냉매를 압축하는 복수 개의 롤링피스톤들;
    상기 롤링피스톤들과 함께 각 실린더들의 압축공간들을 각각 흡입공간과 토출공간으로 분리하는 복수 개의 베인들; 및
    상기 베인들중에서 적어도 어느 한 쪽 실린더의 베인을 구속하거나 해제하여 압축기의 운전모드를 가변하는 베인구속유닛;을 포함하는 압축기.
  17. 제16 항에 있어서,
    상기 베인들 중에서 적어도 한 개는 그 일측에 상기 롤링피스톤과 접하는 실링면(sealing surface)이 형성되고, 상기 실링면의 반대쪽은 압력에 의해 상기 베인이 롤링피스톤쪽으로 가세되도록 가압면(pressure surface)이 형성되는 압축기.
  18. 제17 항에 있어서,
    상기 실린더들 중 한쪽 실린더의 베인 가압면측에는 상기 케이싱의 내부공간과 분리되어 흡입압 또는 토출압의 냉매가 채워지는 챔버가 더 형성되는 압축기.
  19. 제17 항에 있어서,
    상기 케이싱의 외부에는 상기 베인의 가압면에 흡입압 또는 토출압의 냉매를 선택적으로 공급하기 위한 모드전환유닛이 더 구비되는 압축기.
  20. 제19 항에 있어서,
    상기 모드전환유닛은 상기 베인의 가압면에 흡입압 또는 토출압의 냉매를 선택할 수 있는 모드전환밸브와, 상기 모드전환밸브의 제1 입구와 흡입관을 연결하는 저압측 연결관과, 상기 모드전환밸브의 제2 입구와 상기 케이싱의 내부공간을 연결하는 고압측 연결관과, 상기 모드전환밸브의 출구와 상기 베인의 가압면쪽에 연결하는 공용측 연결관으로 이루어지는 압축기.
  21. 제16 항에 있어서,
    상기 베인들 중에서 적어도 한 개는 상기 케이싱의 내부공간의 압력에 의해 구속되는 압축기.
  22. 제21 항에 있어서,
    상기 실린더들 중에서 적어도 한 개의 실린더에는 베인이 반경방향으로 움직일 수 있도록 하는 베인슬롯이 연통되고, 그 베인슬롯에서 움직이는 베인의 이동방향에 대해 직각의 방향으로 관통되며, 상기 케이싱의 내부공간과 연통되도록 하는 적어도 한 개의 제1 구속구멍이 형성되는 압축기.
PCT/KR2009/004059 2008-07-22 2009-07-22 압축기 및 이를 구비한 공기조화기 WO2010011081A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/055,189 US9429158B2 (en) 2008-07-22 2009-07-22 Air conditioner and compressor having power and saving modes of operation
CN2009801311109A CN102119277A (zh) 2008-07-22 2009-07-22 压缩机及具有该压缩机的空气调节器
EP09800562.2A EP2317147B1 (en) 2008-07-22 2009-07-22 Compressor and air-conditioner having the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020080071199A KR101540661B1 (ko) 2008-07-22 2008-07-22 압축기 및 이를 구비한 공기조화기
KR10-2008-0071199 2008-07-22
KR1020080071197A KR101504202B1 (ko) 2008-07-22 2008-07-22 압축기 및 이를 구비한 공기조화기
KR10-2008-0071197 2008-07-22

Publications (1)

Publication Number Publication Date
WO2010011081A1 true WO2010011081A1 (ko) 2010-01-28

Family

ID=41570463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004059 WO2010011081A1 (ko) 2008-07-22 2009-07-22 압축기 및 이를 구비한 공기조화기

Country Status (4)

Country Link
US (1) US9429158B2 (ko)
EP (1) EP2317147B1 (ko)
CN (1) CN102119277A (ko)
WO (1) WO2010011081A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250100B1 (ko) * 2011-01-24 2013-04-09 엘지전자 주식회사 냉매시스템 및 그 제어방법
JP6036604B2 (ja) * 2013-08-22 2016-11-30 株式会社デンソー 電動圧縮機
CN105980794B (zh) * 2014-03-17 2019-06-25 三菱电机株式会社 冷冻装置以及冷冻装置的控制方法
KR101570689B1 (ko) * 2014-06-12 2015-11-20 엘지전자 주식회사 공기조화기 및 그 제어방법
KR101571721B1 (ko) * 2014-06-12 2015-11-25 엘지전자 주식회사 공기조화기 및 그 제어방법
CN105606506A (zh) * 2016-03-17 2016-05-25 武汉四方光电科技有限公司 一种低噪音激光粉尘传感器及控制方法
KR101780223B1 (ko) * 2016-05-31 2017-10-10 엘지전자 주식회사 의류처리장치의 제어방법
CN106288226B (zh) * 2016-08-31 2022-04-22 陈学文 一种温调设备的节能控制器
US11614262B2 (en) * 2020-05-27 2023-03-28 Research Products Corporation System and method for current limiting and defrost enhancement
CN114738276B (zh) * 2022-05-07 2023-11-21 浙江巨能压缩机有限公司 一种双转子压缩机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014081A1 (en) * 2004-08-06 2006-02-09 Lg Electronics Inc. Capacity variable device for rotary compressor and driving method of air conditioner having the same
US20070137233A1 (en) * 2005-12-15 2007-06-21 Matsushita Electric Industrial Co., Ltd. Air conditioner
WO2008023962A1 (en) * 2006-08-25 2008-02-28 Lg Electronics Inc. Variable capacity type rotary compressor
US20080120985A1 (en) * 2006-11-27 2008-05-29 Samsung Electronics Co. Rotary compressor, control method thereof, and air conditioner using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114124A (ja) * 1997-06-20 1999-01-22 Sharp Corp 空気調和機
KR20000034043A (ko) 1998-11-27 2000-06-15 윤종용 공기조화기의 운전제어방법
JP4782941B2 (ja) * 2001-05-16 2011-09-28 サンデン株式会社 車両用空気調和装置
JP2005127654A (ja) 2003-10-27 2005-05-19 Matsushita Electric Ind Co Ltd 冷凍冷蔵庫
US8156751B2 (en) * 2005-05-24 2012-04-17 Emerson Climate Technologies, Inc. Control and protection system for a variable capacity compressor
KR20080018735A (ko) 2006-08-25 2008-02-28 엘지전자 주식회사 용량 가변형 로터리 압축기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014081A1 (en) * 2004-08-06 2006-02-09 Lg Electronics Inc. Capacity variable device for rotary compressor and driving method of air conditioner having the same
US20070137233A1 (en) * 2005-12-15 2007-06-21 Matsushita Electric Industrial Co., Ltd. Air conditioner
WO2008023962A1 (en) * 2006-08-25 2008-02-28 Lg Electronics Inc. Variable capacity type rotary compressor
US20080120985A1 (en) * 2006-11-27 2008-05-29 Samsung Electronics Co. Rotary compressor, control method thereof, and air conditioner using the same

Also Published As

Publication number Publication date
US20110120165A1 (en) 2011-05-26
EP2317147B1 (en) 2017-05-03
EP2317147A1 (en) 2011-05-04
US9429158B2 (en) 2016-08-30
CN102119277A (zh) 2011-07-06
EP2317147A4 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
WO2010011081A1 (ko) 압축기 및 이를 구비한 공기조화기
WO2010056002A1 (ko) 주파수 가변 압축기 및 그 제어 방법
WO2015002375A1 (ko) 스크롤 압축기
WO2018194294A1 (ko) 로터리 압축기
WO2015076509A1 (en) Air conditioner and method of controlling the same
WO2010021491A1 (en) Variable capacity type rotary compressor, cooling apparatus having the same, and method for driving the same
WO2020116781A1 (ko) 고압식 스크롤 압축기
WO2016093499A1 (en) Compressor
WO2014196774A1 (en) Scroll compressor
EP3374704A1 (en) Air conditioner and control method thereof
WO2021045361A1 (ko) 로터리 압축기 및 이를 포함하는 가전기기
WO2016143951A1 (ko) 전동압축기
WO2010011082A2 (ko) 용량 가변형 로터리 압축기
WO2009108006A9 (ko) 인버터형 스크롤 압축기
KR101504202B1 (ko) 압축기 및 이를 구비한 공기조화기
WO2017142176A1 (en) Air conditioner and control method thereof
WO2021172866A1 (en) Heat pump and operation method thereof
WO2022245162A1 (ko) 압축기 및 압축기의 제어 방법
WO2019146965A1 (ko) 압축기의 제어장치, 그에 사용되는 전자식 제어밸브 및 그를 포함한 전동 압축기
WO2023286942A1 (ko) 로터리 압축기 및 이를 포함하는 가전기기
JP2018031267A (ja) パッケージ形圧縮機
KR20100010284A (ko) 압축기 및 이를 구비한 공기조화기
WO2020153705A1 (ko) 사판식 압축기
WO2018221902A1 (ko) 컨트롤 밸브 및 가변 용량식 압축기
WO2021241911A1 (ko) 사판식 압축기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131110.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112/KOLNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2009800562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009800562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13055189

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE