WO2010011070A2 - 광각 렌즈계와 이를 구비한 전자기기 - Google Patents

광각 렌즈계와 이를 구비한 전자기기 Download PDF

Info

Publication number
WO2010011070A2
WO2010011070A2 PCT/KR2009/004017 KR2009004017W WO2010011070A2 WO 2010011070 A2 WO2010011070 A2 WO 2010011070A2 KR 2009004017 W KR2009004017 W KR 2009004017W WO 2010011070 A2 WO2010011070 A2 WO 2010011070A2
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical axis
curvature
radius
wide
Prior art date
Application number
PCT/KR2009/004017
Other languages
English (en)
French (fr)
Other versions
WO2010011070A3 (ko
Inventor
조성구
Original Assignee
㈜ 미래광기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜ 미래광기술 filed Critical ㈜ 미래광기술
Publication of WO2010011070A2 publication Critical patent/WO2010011070A2/ko
Publication of WO2010011070A3 publication Critical patent/WO2010011070A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • G02B9/14Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only arranged + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to a wide-angle lens system and an electronic device having the same, and more particularly, to a wide-angle lens system and an electronic device having the same, which can be mounted and used in portable electronic devices such as mobile phones, personal digital assistants (PDAs), and digital cameras. will be.
  • portable electronic devices such as mobile phones, personal digital assistants (PDAs), and digital cameras.
  • the camera lens has an angle of view of about 65 to 70 degrees, and when the location is narrow, the imaging area is limited and the shooting of the camera is limited.
  • the present invention has been made to solve the above-mentioned conventional problems, and even if the angle of view of the camera is increased to 70 degrees or more, the distortion of the image can be reduced within about 2% as with a general camera lens, using a small amount of lenses It is an object of the present invention to provide a wide-angle lens system capable of reducing distortion of a wide-angle image and an electronic device having the same.
  • is a constant satisfying 0 ⁇ 1
  • the first lens, the second lens and the third lens of the present invention are characterized in that the radius of curvature of at least five or more places is larger than one, and the total length L of the wide-angle lens system is smaller than 6 mm:
  • the first lens of the present invention has a positive refractive power
  • the second lens has a negative refractive power
  • the third lens has a positive refractive power.
  • the magnitude of the radius of curvature of the object-side lens surface of the second lens of the present invention is smaller than that of the image-side lens surface curvature radius.
  • Another invention is an electronic device such as a camera, a mobile phone, etc. having the wide-angle lens system described above.
  • the present invention not only solves the distortion problem of the conventional wide-angle lens system having an angle of view of about 70 degrees or more using three lenses, but also a compact and distortion-free configuration. It can be attached to electronic devices such as and used for digital zoom.
  • FIG. 1 is a block diagram showing a wide-angle lens system according to an embodiment of the present invention.
  • FIG. 2 is an optical aberration diagram of a wide-angle lens system according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing a wide-angle lens system according to an embodiment of the present invention
  • Figure 2 is an optical aberration diagram of a wide-angle lens system according to an embodiment of the present invention.
  • the wide-angle lens system of the present embodiment includes a first lens L1, a second lens L2, and a third lens L3, which are sequentially provided at the rear of the diaphragm J, and the rear thereof.
  • the filter F and the image sensor IS are installed at the side.
  • the diaphragm J is sequentially installed from the object side, three lenses are arranged at a predetermined interval behind the filter, and a filter for blocking unnecessary light rays is additionally installed. It is satisfactory wide-angle lens system.
  • is a constant satisfying 0 ⁇ ⁇ ⁇ 1.
  • d 0 represents the distance on the optical axis Z between the aperture surface S0 and the object-side first surface S1 of the first lens L1.
  • d 1 represents a distance on the optical axis Z between the second surface S2 of the first surface S1 of the first lens L1.
  • d 2 represents a distance on the optical axis Z between the second surface S2 of the first lens L1 and the first surface S3 of the second lens L2.
  • d 3 represents a distance on the optical axis Z between the first surface S3 and the second surface S4 of the second lens L2.
  • d 4 represents a distance on the optical axis Z between the second surface S4 of the second lens L2 and the first surface S5 of the third lens L3.
  • d 5 represents a distance on the optical axis between the first surface S5 and the second surface S6 of the third lens L3.
  • S 6 ′ represents a distance on the optical axis Z between the second surface S6 of the third lens L3 and the surface S9 on which the image sensor IS is placed.
  • r 1 represents the radius of curvature of the first surface S1 at the point where it meets the optical axis Z of the first lens L1.
  • r 2 represents the radius of curvature of the second surface S2 at the point where it meets the optical axis Z of the first lens L1.
  • r 3 represents the radius of curvature of the first surface S3 at the point where it meets the optical axis Z of the second lens L2.
  • r 4 represents the radius of curvature of the second surface S4 at the point where it meets the optical axis Z of the second lens L2.
  • r 5 represents the radius of curvature of the first surface S5 at the point where it meets the optical axis Z of the third lens L3.
  • r 6 represents the radius of curvature of the second surface S6 at the point where it meets the optical axis Z of the third lens L3.
  • n 0 represents the refractive index of air at 1
  • n 1 represents the refractive index of the first lens L1 for one wavelength of visible light
  • n 3 represents the refractive index of the second lens L2 for the one wavelength of visible light.
  • Indices of the refractive index and n 5 represents the refractive index of the third lens L3 for the one wavelength of visible light.
  • the refractive indices n 1 , n 3 , n 5 use the refractive index for one wavelength helium d-line (587.56 nm), , , , The refractive index was taken for the wavelength g-line (435.8 nm) different from the reference wavelength (587.56 nm).
  • ⁇ m represents the half angle of view
  • Hm represents the optical axis Z of the point where the light incident at the half angle of view ⁇ m reaches the surface S9 on which the image sensor IS is placed.
  • the height from. since the angle of view is 86 degrees, the half angle of view ⁇ m is 43 degrees.
  • the curvature radius of at least five or more of six surfaces of the three lenses is greater than 1, and the total length L of the wide-angle lens system satisfies Equation 4 below.
  • the first lens L1 of the present embodiment has a positive refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a positive refractive power. desirable.
  • the size of the radius of curvature of the first surface S3 of the second lens is preferably smaller than the size of the radius of curvature of the second surface.
  • z represents the depth from the tangent plane that meets the vertex of the lens plane
  • c 0 is the curvature of the plane near the optical axis
  • h is the inverse of the radius of curvature.
  • K represents the Conic Constant.
  • A is a fourth order aspheric constant
  • B is a sixth order aspheric constant
  • C is an eighth order aspheric constant
  • D is a tenth order aspheric constant
  • E is a 12th order aspheric constant
  • F is a 14th order aspheric constant
  • G is a 16th order Aspheric constant
  • H is an 18th order aspheric constant
  • J represents a 20th order aspheric constant.
  • the wavelength range of a light ray is 435.8-656.3 nm.
  • the units of length used in the tables below are all mm unless otherwise noted.
  • "E + 01" and “E-01” mean “10 +1 " and “10 -1 ", respectively.
  • the aperture J, the first lens L1, the second lens L2, and the third lens L3, which are provided on the aperture surface S0 from the object side, are sequentially arranged, and the filter F ) Is usually placed between the third lens L3 and the surface S9 on which the image sensor IS is located.
  • d 6 is the distance on the optical axis Z from the third lens second surface S6 to the first surface S7 of the filter F
  • d 7 is the thickness of the filter F
  • d 8 is the filter It is the distance on the optical axis Z between the second surface S8 of (F) and the surface S9 on which the image sensor is placed.
  • Equation 1 is a condition for the total refractive power of the wide-angle lens system of the present invention to correct the optical aberration to some extent and to form an image on the image surface (S9).
  • Equation 1 the constant ⁇ is a variable representing the magnitude of the total refractive power, and when the value is larger than 1, the focal point of the light incident from the object is formed in front of the image plane S9, and thus the optical aberration excluding distortion is large. Occurs and it becomes difficult to obtain a good phase. In addition, if it is smaller than the lower limit of 0, paraxial rays are too divergent, resulting in poor image quality.
  • Equation 2 also represents an equation for correcting not only aberrations such as spherical aberration and astigmatism, but especially distortion. Again, outside the range of error ( ⁇ 0.1), it becomes difficult to obtain distortion within 2% of the desired.
  • Equation 3 also represents an equation for reducing chromatic aberration. Deviation from the error ⁇ 0.1 makes chromatic aberration too large, making it difficult to obtain a good image.
  • only the first surface S3 of the second lens has a radius of curvature smaller than one.
  • the curvature radius of at least five or more of six surfaces in the three lenses is preferably greater than one.
  • the radius of curvature of two or more sides is smaller than 1, there is a disadvantage that the production yield falls.
  • the total length L of the wide-angle lens system is smaller than 6 mm, thereby miniaturizing. If it is larger than this upper limit, it is difficult to miniaturize it to be mounted in a portable electronic device such as a mobile phone.
  • the first lens L1 has a positive refractive power
  • the second lens L2 has a negative refractive power
  • the third lens L3 has a positive refractive power.
  • n 1 , n 3 , n 5 are the refractive indices of the wavelength d-line (587.56 nm), , , The wavelength g-line (435.8 nm) was used.
  • the calculation results agree with the predictions as follows.
  • the wide-angle lens system of the present invention can be mounted on a small portable electronic device such as a mobile phone with a total length of 5.4392 mm.
  • Fig. 2 shows spherical aberration, astigmatism, and distortion aberration which are optical aberrations of this embodiment.
  • Spherical aberration is shown according to the wavelength C-line (656.3 nm), d-line (587.6 nm), e-line (546.1 nm), F-line (486.1 nm) and g-line (435.8 nm).
  • the spherical aberration is in the range of about 0.03 in size.
  • S stands for Sagittal and “T” stands for Tangential. It can be seen that the astigmatism is also within the size range of about 0.1.
  • the distortion aberration has a maximum magnitude of about 0.2%.
  • the present invention is recognized in the optical electronics industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

본 발명은 광각 렌즈계와 이를 구비한 전자기기에 관한 것으로서, 조리개의 후방에 순차적으로 설치된 제 1 렌즈, 제 2 렌즈 및 제 3 렌즈를 포함한다. 따라서 본 발명은 3매의 렌즈를 이용하여 약 70도 이상의 화각을 갖는 종래의 광각 렌즈계에서 발생하는 왜곡문제를 상당히 해소할 수 있을 뿐 아니라, 소형이면서 왜곡을 해소한 구성이므로 휴대폰 등의 전자기기에 장착하여 사용할 수 있고 디지털 줌에도 이용할 수 있는 효과를 제공한다.

Description

광각 렌즈계와 이를 구비한 전자기기
본 발명은 광각 렌즈계와 이를 구비한 전자기기에 관한 것으로서, 보다 상세하게는 휴대폰, PDA(personal digital assistants), 디지털 카메라 등 휴대용 전자기기에 장착하여 사용할 수 있는 광각 렌즈계와 이를 구비한 전자기기에 관한 것이다.
종래의 카메라의 경우에는 카메라 렌즈의 화각이 약 65∼70도 정도로서, 장소가 협소한 경우에는 촬상영역이 한정되어 카메라의 촬영이 제한적이라는 문제가 있다.
이러한 문제를 극복하기 위해 광각 렌즈 시스템을 구비한 카메라가 개발되고 있으나, 이런 카메라의 광각 렌즈 시스템의 화각이 70도 이상을 벗어나면, 광각 화면에 왜곡이 크게 발생하는 문제가 있다.
즉, 이러한 광각 렌즈 시스템으로는 광각 화상에 왜곡이 발생하여 화각이 60∼70 사이에서만 촬영이 가능하므로, 좁은 공간에서 넓은 영역을 왜곡없이 촬영하는 것이 여전히 어렵게 되는 문제가 있었다.
특히, 휴대폰 등의 전자기기에 광각 렌즈를 장착하기 위해서는 렌즈의 매수가 많으면 두께가 두꺼워져 장착이 어렵고, 소량의 렌즈를 사용하여 약 2% 이내로 광각 화상의 왜곡을 줄여야 한다는 문제점이 있다.
더욱이 최근에는 휴대폰에 카메라의 장착이 대중화되고 있어, 약 65∼70도 보다 더 큰 화각에서 렌즈의 매수를 3매 이내로 사용하는 광각 렌즈계의 필요성이 대두되고 있다.
본 발명은 상기와 같은 종래의 문제점을 해소하기 위해 안출한 것으로서, 카메라의 화각이 70도 이상으로 증가하더라도 일반적인 카메라 렌즈와 마찬가지로 약 2% 이내로 화상의 왜곡을 줄일 수 있으며, 소량의 렌즈를 사용하여 광각 화상의 왜곡을 줄일 수 있는 광각 렌즈계와 이를 구비한 전자기기를 제공하는 것을 그 목적으로 한다.
상기와 같은 목적을 달성하기 위한 본 발명은, 조리개의 후방에 순차적으로 설치된 제 1 렌즈, 제 2 렌즈 및 제 3 렌즈를 포함하고, 상기 제 1 렌즈, 상기 제 2 렌즈 및 상기 제 3 렌즈는 하기 3개의 수학식을 만족하는 것을 특징으로 한다:
Figure PCTKR2009004017-appb-I000001
단, 여기서 β는 0≤β≤1 을 만족하는 상수
Figure PCTKR2009004017-appb-I000002
Figure PCTKR2009004017-appb-I000003
본 발명의 상기 제 1 렌즈, 상기 제 2 렌즈 및 상기 제 3 렌즈는 적어도 5곳 이상의 곡률반경의 크기가 1보다 크고, 상기 광각 렌즈계의 전체길이(L)가 6㎜ 보다 작은 것을 특징으로 한다:
Figure PCTKR2009004017-appb-I000004
본 발명의 제 1 렌즈는 양의 굴절능을 갖고, 상기 제 2 렌즈는 음의 굴절능을 갖고, 상기 제 3 렌즈는 양의 굴절능을 갖는다. 본 발명의 제 2 렌즈의 물체측 렌즈면의 곡률반경의 크기는 이미지측 렌즈면 곡률반경의 크기 보다 더 작다.
다른 본 발명은 상기 기재된 광각 렌즈계를 구비하는 카메라, 휴대폰 등의 전자기기이다.
이상에서 살펴본 바와 같이, 본 발명은 3매의 렌즈를 이용하여 약 70도 이상의 화각을 갖는 종래의 광각 렌즈계에서 발생하는 왜곡문제를 상당히 해소할 수 있을 뿐 아니라, 소형이면서 왜곡을 해소한 구성이므로 휴대폰 등의 전자기기에 장착하여 사용할 수 있고 디지털 줌에도 이용할 수 있는 효과를 제공한다.
도 1은 본 발명의 일 실시예에 의한 광각 렌즈계를 나타내는 구성도.
도 2는 본 발명의 일 실시예에 의한 광각 렌즈계의 광학수차도.
이하, 첨부도면을 참조하여 본 발명의 바람직한 일실시예를 더욱 상세히 설명한다.
도 1은 본 발명의 일 실시예에 의한 광각 렌즈계를 나타내는 구성도이고, 도 2는 본 발명의 일 실시예에 의한 광각 렌즈계의 광학수차도이다.
도 1에 나타낸 바와 같이, 본 실시예의 광각 렌즈계는 조리개(J)후방에 순차적으로 설치된 제 1 렌즈(L1), 제 2 렌즈(L2) 및 제 3 렌즈(L3)를 포함하여 이루어지고, 그 후방에 필터(F) 및 이미지센서(IS)가 설치되어 있다.
즉, 광각 렌즈계는, 물체측으로부터 순차적으로 조리개(J)가 설치되고, 그 후방에 일정 간격을 가지고 렌즈 3매가 배열되며, 또한 불필요한 광선을 차단하기 위한 필터가 추가로 설치되어 아래의 수학식들을 만족하는 광각 렌즈계이다.
수학식 1
Figure PCTKR2009004017-appb-M000001
단, 여기서 β는 0≤β≤1 을 만족하는 상수이다.
수학식 2
Figure PCTKR2009004017-appb-M000002
수학식 3
Figure PCTKR2009004017-appb-M000003
여기서 상기 기호들의 의미는 다음과 같다.
어떤 실수 ei (단, i=1, 2, …, k)들에 대한 각괄호 <e1,e2, … ,ek> 는 가우시안 브라켓(Gaussian Bracket)을 나타낸다[참고 : M. Herzberger, Modern Geomtrical Optics, Interscience Publishers, Inc., New York (1958)].
즉, < > = 1, <e1> = e1, <e1,e2> = 1 + e1e2 로 정의되며, <e1,…,ek> = <e1,…,ek-1>ek + <e1,…,ek-2>의 순환식을 만족하는 기호이다.
상기에서 다른 수학식 기호들의 의미를 도 1을 참조하여 설명하면 다음과 같다.
d0는 조리개면(S0)과 제 1 렌즈(L1)의 물체측 제1면(S1)사이의 광축(Z)상에서 거리를 나타낸다. d1은 제 1렌즈(L1)의 상기 제1면(S1)면 제 2면(S2) 사이의 광축(Z) 상에서 거리를 나타낸다. d2는 제 1렌즈(L1)의 상기 제2면(S2)과 제 2렌즈(L2)의 제 1면(S3) 사이의 광축(Z) 상에서 거리를 나타낸다.
d3는 제 2렌즈(L2)의 상기 제1면(S3)과 제 2면(S4) 사이의 광축(Z) 상에서 거리를 나타낸다. d4는 제 2렌즈(L2)의 상기 제2면(S4)과 제 3렌즈(L3)의 제 1면(S5) 사이의 광축(Z) 상에서 거리를 나타낸다. d5는 제 3렌즈(L3)의 상기 제1면(S5)과 제 2면(S6) 사이의 광축상에서 거리를 나타낸다. S6′는 제 3렌즈(L3)의 상기 제2면(S6)과 이미지센서(IS)가 놓이는 면(S9) 사이의 광축(Z) 상에서 거리를 나타낸다.
또한, r1은 상기 제 1렌즈(L1)의 광축(Z)과 만나는 점에서의 제1면(S1)의 곡률반경을 나타낸다. r2는 상기 제 1렌즈(L1)의 광축(Z)과 만나는 점에서의 제2면(S2)의 곡률반경을 나타낸다. r3는 상기 제 2렌즈(L2)의 광축(Z)과 만나는 점에서의 제1면(S3)의 곡률반경을 나타낸다.
r4는 상기 제 2렌즈(L2)의 광축(Z)과 만나는 점에서의 제2면(S4)의 곡률반경을 나타낸다. r5는 상기 제 3렌즈(L3)의 광축(Z)과 만나는 점에서의 제1면(S5)의 곡률반경을 나타낸다. r6은 상기 제 3렌즈(L3)의 광축(Z)과 만나는 점에서의 제2면(S6)의 곡률반경을 나타낸다.
또한, n0는 1로 공기의 굴절률을 나타내고, n1은 가시광선의 일 파장에 대한 제 1렌즈(L1)의 굴절률을 나타내고, n3은 가시광선의 상기 일 파장에 대한 제 2렌즈(L2)의 굴절률을 나타내고, n5는 가시광선의 상기 일 파장에 대한 제 3렌즈(L3)의 굴절률을 나타낸다.
또한, 상기 일 파장과 상이한 다른 파장에 대하여,
Figure PCTKR2009004017-appb-I000005
은 제 1렌즈(L1)의 굴절률을 나타내고,
Figure PCTKR2009004017-appb-I000006
은 제 2렌즈(L2)의 굴절률을 나타내고,
Figure PCTKR2009004017-appb-I000007
는 제 3렌즈(L3)의 굴절률을 나타낸다.
여기서 굴절률 n1, n3, n5는 일 파장 헬륨 d-line(587.56 nm)에 대한 굴절률을 이용하고, 굴절률
Figure PCTKR2009004017-appb-I000008
,
Figure PCTKR2009004017-appb-I000009
,
Figure PCTKR2009004017-appb-I000010
은 상기 기준되는 파장(587.56 nm)과 다른 파장 g-line(435.8 nm)에 대한 굴절률을 택하였다.
또한, 반화각을 양수로 택하였을 경우 θm은 반화각을 나타내고, Hm은 상기 반화각(θm)으로 입사하는 광선이 이미지센서(IS)가 놓인 면(S9)에 도달하는 점의 광축(Z)으로 부터의 높이를 나타낸다. 본 발명의 실시예에서 화각이 86도 이므로 반화각 θm는 43도 이다.
나아가 또 다른 특징은 상기 3매의 렌즈에서 6면 중 적어도 5면 이상의 곡률반경의 크기가 1 보다 크고, 광각 렌즈계의 총길이(L)는 아래의 수학식 4를 만족하도록 하였다.
수학식 4
Figure PCTKR2009004017-appb-M000004
나아가 또 다른 특징으로서 본 실시예의 제 1 렌즈(L1)는 양의 굴절능을 갖고, 제 2 렌즈(L2)는 음의 굴절능을 갖고, 제 3 렌즈(L3)는 양의 굴절능을 갖는 것이 바람직하다.
특히, 제 2 렌즈의 제 1 면(S3)의 곡률반경의 크기는, 제 2 면의 곡률반경의 크기 보다 작은 것이 바람직하다.
그밖에 본 발명에 따른 또 다른 특징들은 아래 실시예들을 보면 더욱 명확해 질 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이에 앞서, 본 발명의 실시예에서 비구면은 다음과 같은 조건식으로 주어진다.
수학식 5
Figure PCTKR2009004017-appb-M000005
여기서, z는 렌즈 면의 정점(Vertex)과 만나는 접면(Tangent Plane)으로 부터의 깊이를 나타내며, c0는 광축 근방에서 면의 곡률(Curvature)으로 곡률반경의 역수이며, h는 광축으로 부터의 높이를 나타내며, K는 코닉상수(Conic Constant)를 나타낸다.
A는 4차 비구면 상수(Aspheric Constant), B는 6차 비구면 상수, C는 8차 비구면 상수, D는 10차 비구면 상수, E는 12차 비구면 상수, F는 14차 비구면 상수, G는 16차 비구면 상수, H는 18차 비구면 상수, J는 20차 비구면 상수를 나타낸다.
또한, 광선의 파장 영역은 435.8∼656.3 nm이다. 아래 표들에서 사용하는 길이의 단위는 특별히 언급하지 않는 한 모두 mm이다. 아래의 실시예들에 대한 수치값을 나타내는 표에서 "E+01", "E-01"은 각각 "10+1", "10-1"을 의미한다.
도 1은 본 발명의 광각 광학계 실시예에 대한 렌즈 구성도를 나타낸다. 본 실시예의 구체적인 수치값은 표 1 내지 표 7와 같이 주어진다.
본 발명의 실시예에서는 물체측으로부터 조리개면(S0)에 설치된 조리개(J), 제 1 렌즈(L1), 제 2 렌즈(L2), 제 3 렌즈(L3)가 순차적 배열되어 있고, 필터(F)가 보통 제 3 렌즈(L3)와 이미지센서(IS)가 위치하는 면(S9) 사이에 놓이게 된다.
면과 면 사이 거리 d0∼d5는 이미 설명 하였으므로 생략한다. d6는 제 3렌즈 제 2면(S6)로부터 필터(F)의 제 1면(S7) 까지의 광축(Z) 상에서의 거리이고, d7은 필터(F)의 두께, d8은 상기 필터(F)의 제 2면(S8)과 이미지 센서가 놓이는 면(S9) 사이의 광축(Z) 상에서의 거리이다.
여기서 각 렌즈 면들의 곡률반경은 이미 설명하였으므로 생략한다. 따라서 상기 수학식 1 내지 수학식 3의 s6'은 s6' = d6 + d7 + d8 가 된다.
여기서 상기 수학식 1은 본 발명의 광각 렌즈계의 총 굴절능이 어느 정도 광학적 수차를 보정하며 이미지면(S9) 위에 결상되기 위한 조건을 나타낸다.
상기 수학식 1에서 상수, β는 총 굴절능의 크기를 나타내기 위한 변수로 상한값인 1 보다 크면, 물체로부터 입사하는 광선의 초점이 이미지면(S9) 보다 앞에 맺히게 되어 왜곡을 제외한 광학 수차가 많이 발생하여 양호한 상을 얻기가 어려워진다. 또한 하한값인 0 보다 작게되면 근축 광선이 너무 발산하게 되어 이미지의 질이 떨어진다.
또한, 수학식 2도 구면수차, 비점수차 등의 수차는 물론 특히, 왜곡수차를 보정하는 식을 나타낸다. 역시 오차(±0.1)의 범위를 벗어나면 원하는 2% 이내의 왜곡을 얻기 어렵게 된다.
또한, 수학식 3은 색수차를 줄이기 위한 식을 나타낸다. 오차 ±0.1을 벗어나게 되면 색수차가 너무 커져 역시 양호한 상을 얻기가 어려워진다.
나아가 본 발명의 실시예에서 제 2 렌즈의 제 1면(S3)만 곡률반경 크기가 1 보다 작다. 일반적으로 상기 3매의 렌즈에서 6면 중 적어도 5개 이상의 면의 곡률반경의 크기가 1 보다 큰 것이 바람직하다.
만약 2면 이상의 곡률반경이 1 보다 작게 되면, 제작 수율이 떨어지는 단점이 있다. 또한 광각 렌즈계의 총길이(L)를 6mm 보다 작게 함으로써 소형화 하였다. 이 상한값 보다 크게 되면 휴대폰 등 휴대용 전자기기에 장착하기 위해 소형화하는데 어려움이 있다.
나아가 본 실시예에서는 제 1 렌즈(L1)가 양의 굴절능을 갖고, 제 2 렌즈(L2)는 음의 굴절능을 갖고, 제 3 렌즈(L3)는 양의 굴절능을 갖고 있다. 각 렌즈의 굴절능 관계가 양, 음, 양의 순서로 되면, 광각 렌즈계의 기본 변수들(예: ri, di 등)이 수학식 3을 쉽게 만족하는 장점이 있다.
따라서 본 실시예에서 색수차가 양호하게 보정된다. 특히, 제 2 렌즈(L2)의 제 1면(S3)의 곡률반경의 크기를 제 2면(S4)의 곡률반경의 크기 보다 작게 함으로써, 상기 수학식 1 내지 수학식 3을 쉽게 만족하게 하여 촬상 이미지의 왜곡을 크게 축소하는데 기여하고 있다.
표 1
면번호 곡률반경(ri) 거리(Thickness) 굴절률 아베값
물체(Object)
S0 (조리개면) 0.3999
S1 (제 1렌즈 제1면) 44.7285 0.8385 1.720 50.4
S2 (제 1렌즈 제2면) -1.3 0.2848
S3 (제 2렌즈 제1면) -0.9945 0.3608 1.7552 27.5
S4 (제 2렌즈 제2면) 3.9372 0.1881
S5 (제 3렌즈 제1면) 1.7069 1.5344 1.6204 60.3
S6 (제 3렌즈 제2면) -1.4547 1.2327
S7 (필터 제1면) 0.3 1.5168 64.1
S8 (필터 제2면) 0.3
S9 (이미지면) 0.0
표 1: 도 1의 수치값 (조리개치 F/# = 4.0 이고, 초점거리 f = 2.2984이고, 화각은 2θm = 86도)
표 2
K A B C D
0 -6.7713E-2 -5.0812E-2 -7.7015E-1 4.8492E-1
E F G H J
-5.8322E-1 0 0 0 0
표 2: 제 1렌즈 제 1면(S1)의 비구면 상수
표 3
K A B C D
2.2688E-1 -2.6967E-2 -5.4265E-2 -1.4117E-1 -1.5940E-2
E F G H J
3.9958E-2 1.6809E-3 0 0 0
표 3: 제 1렌즈 제 2면(S2)의 비구면 상수
표 4
K A B C D
0 -2.1907E-2 -3.0877E-1 1.8169E-1 2.2468E-1
E F G H J
1.2753E-1 3.3054E-2 0 0 0
표 4: 제 2렌즈 제 1면(S3)의 비구면 상수
표 5
K A B C D
0 -2.5706E-1 8.4890E-2 -4.2446E-3 -1.1700E-2
E F G H J
6.5237E-3 -5.1337E-4 0 0 0
표 5: 제 2렌즈 제 2면(S4)의 비구면 상수
표 6
K A B C D
-9.6109 -4.1000E-2 1.0655E-2 -3.1257E-3 -1.0013E-3
E F G H J
7.2171E-4 0 0 0 0
표 6: 제 3렌즈 제 1면(S5)의 비구면 상수
표 7
K A B C D
-5.4033E-1 3.2916E-2 4.0518E-3 3.9592E-3 -2.6739E-3
E F G H J
5.5931E-4 0 0 0 0
표 7: 제 3렌즈 제 2면(S6)의 비구면 상수
본 실시예의 표 1 내지 표 7로 주어지는 구체적인 데이터에 의하여 상기 조건 수학식 1 내지 수학식 3이 만족함을 살펴보면, 본 실시예에서 반화각(θm)은 43 도이고, 이 각도로 입사하는 광선의 이미지면(S9)에 도달하는 높이를 Hm=2.14 로 설정하였다.
한편, 제 1 렌즈(L1)로는 쇼트(SCHOTT)사의 LAK10을 사용하고, 제 2 렌즈(L2)는 SF4를 사용하고, 제 3 렌즈(L3)는 NSK16을 사용하였다. 특히 기준되는 굴절률 n1, n3, n5는 파장 d-line(587.56 nm)의 굴절률이고,
Figure PCTKR2009004017-appb-I000011
,
Figure PCTKR2009004017-appb-I000012
,
Figure PCTKR2009004017-appb-I000013
는 파장 g-line(435.8 nm)을 사용하였다. 계산결과는 다음과 같이 예측한 것과 맞는다.
즉, 상기 수학식 1의 β는 β=0.0353905 로서 수학식 1을 만족함을 알 수 있다.
또한,
Figure PCTKR2009004017-appb-I000014
= 2.31547 이며,
Figure PCTKR2009004017-appb-I000015
로서 역시 수학식 2를 만족함을 알 수 있다.
나아가 수학식 3의 값은,
Figure PCTKR2009004017-appb-I000016
= 0.013935 로서 수학식 3을 만족한다.
한편, 본 발명의 광각렌즈계는 총길이가 5.4392 mm 로 휴대폰 등 소형 휴대용 전자기기에 장착하기가 가능하다.
본 실시예의 성능은 도 2에서 살펴보면 다음과 같다.
도 2는 본 실시예의 광학적 수차인 구면수차, 비점수차, 왜곡수차를 나타낸다. 구면수차는 광선의 파장 C-line(656.3 nm), d-line(587.6 nm), e-line(546.1 nm), F-line(486.1 nm), g-line(435.8 nm)에 따라 각각 보여준다.
여기서, 구면수차는 크기가 약 0.03 범위 내에 있다. 비점수차에서 "S" 는 새지털(Sagittal), "T"는 탄젠셜(Tangential)을 나타낸다. 비점수차 역시 크기가 약 0.1 범위 내에 있음을 알 수 있다. 왜곡수차는 최대 크기가 약 0.2 %이다.
따라서 도 2는 전체적으로 수차가 양호하게 보정되고 있음을 나타낸다. 특히, 본 실시예에 의하면, 화각이 70도가 넘는 광각 렌즈계로서 일반적인 카메라 렌즈와 마찬가지로 약 2% 이내로 화상의 왜곡을 줄일 수 있음을 알 수 있다.
이상 설명한 본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러 가지 형태로 실시될 수 있다. 따라서 상기 실시예는 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안 된다.
본 발명은 광학 전자기기 산업분야에서의 산업상이용가능성이 인정된다.

Claims (5)

  1. 조리개의 후방에 순차적으로 설치된 제 1 렌즈, 제 2 렌즈 및 제 3 렌즈를 포함하고,
    상기 제 1 렌즈, 상기 제 2 렌즈 및 상기 제 3 렌즈는 하기 3개의 수학식을 만족하는 것을 특징으로 하는 광각 렌즈계:
    Figure PCTKR2009004017-appb-I000017
    단, 여기서 β는 0≤β≤1 을 만족하는 상수,
    Figure PCTKR2009004017-appb-I000018
    Figure PCTKR2009004017-appb-I000019
    여기서, < > = 1, <e1> = e1, <e1,e2> = 1 + e1e2 로 정의되며, <e1,…,ek> = <e1,…,ek-1>ek + <e1,…,ek-2>의 순환식을 만족하는 기호이고,
    d0는 조리개면(S0)과 제 1 렌즈(L1)의 물체측 제1면(S1)사이의 광축(Z)상에서 거리를 나타내고,
    d1은 제 1렌즈(L1)의 상기 제1면(S1)면 제 2면(S2) 사이의 광축(Z) 상에서 거리를 나타내고,
    d2는 제 1렌즈(L1)의 상기 제2면(S2)과 제 2렌즈(L2)의 제 1면(S3) 사이의 광축(Z) 상에서 거리를 나타내고,
    d3는 제 2렌즈(L2)의 상기 제1면(S3)과 제 2면(S4) 사이의 광축(Z) 상에서 거리를 나타내고,
    d4는 제 2렌즈(L2)의 상기 제2면(S4)과 제 3렌즈(L3)의 제 1면(S5) 사이의 광축(Z) 상에서 거리를 나타내고,
    d5는 제 3렌즈(L3)의 상기 제1면(S5)과 제 2면(S6) 사이의 광축상에서 거리를 나타내고,
    S6′는 제 3렌즈(L3)의 상기 제2면(S6)과 이미지센서(IS)가 놓이는 면(S9) 사이의 광축(Z) 상에서 거리를 나타내고,
    r1은 상기 제 1렌즈(L1)의 광축(Z)과 만나는 점에서의 제1면(S1)의 곡률반경을 나타내고,
    r2는 상기 제 1렌즈(L1)의 광축(Z)과 만나는 점에서의 제2면(S2)의 곡률반경을 나타내고,
    r3는 상기 제 2렌즈(L2)의 광축(Z)과 만나는 점에서의 제1면(S3)의 곡률반경을 나타내고,
    r4는 상기 제 2렌즈(L2)의 광축(Z)과 만나는 점에서의 제2면(S4)의 곡률반경을 나타내고,
    r5는 상기 제 3렌즈(L3)의 광축(Z)과 만나는 점에서의 제1면(S5)의 곡률반경을 나타내고,
    r6은 상기 제 3렌즈(L3)의 광축(Z)과 만나는 점에서의 제2면(S6)의 곡률반경을 나타내고,
    n0는 1로 공기의 굴절률을 나타내고,
    n1은 가시광선의 일 파장에 대한 제 1렌즈(L1)의 굴절률을 나타내고,
    n3은 가시광선의 상기 일 파장에 대한 제 2렌즈(L2)의 굴절률을 나타내고,
    n5는 가시광선의 상기 일 파장에 대한 제 3렌즈(L3)의 굴절률을 나타낸다.
    Figure PCTKR2009004017-appb-I000020
    은 상기 일 파장과 상이한 다른 파장에 대한 제 1렌즈(L1)의 굴절률을 나타내고,
    Figure PCTKR2009004017-appb-I000021
    은 상기 일 파장과 상이한 다른 파장에 대한 제 2렌즈(L2)의 굴절률을 나타내고,
    Figure PCTKR2009004017-appb-I000022
    는 상기 일 파장과 상이한 다른 파장에 대한 제 3렌즈(L3)의 굴절률을 나타낸다.
  2. 제 1 항에 있어서,
    상기 제 1 렌즈, 상기 제 2 렌즈 및 상기 제 3 렌즈는 적어도 5곳 이상의 곡률반경의 크기가 1 보다 크고, 상기 광각 렌즈계의 전체길이(L)가 6㎜ 보다 작은 것을 특징으로 하는 광각 렌즈계:
    Figure PCTKR2009004017-appb-I000023
    .
  3. 제 1 항에 있어서,
    상기 제 1 렌즈는 양의 굴절능을 갖고, 상기 제 2 렌즈는 음의 굴절능을 갖고, 상기 제 3 렌즈는 양의 굴절능을 갖는 것을 특징으로 하는 광각 렌즈계.
  4. 제 3 항에 있어서,
    상기 제 2 렌즈의 물체측 렌즈면의 곡률반경의 크기는 이미지측 렌즈면 곡률반경의 크기 보다 더 작은 것을 특징으로 하는 광각 렌즈계.
  5. 상기 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 광각 렌즈계를 구비한 것을 특징으로 하는 전자기기.
PCT/KR2009/004017 2008-07-21 2009-07-21 광각 렌즈계와 이를 구비한 전자기기 WO2010011070A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080070872A KR101049883B1 (ko) 2008-07-21 2008-07-21 광각 렌즈계와 이를 구비한 전자기기
KR10-2008-0070872 2008-07-21

Publications (2)

Publication Number Publication Date
WO2010011070A2 true WO2010011070A2 (ko) 2010-01-28
WO2010011070A3 WO2010011070A3 (ko) 2010-05-14

Family

ID=41570720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004017 WO2010011070A2 (ko) 2008-07-21 2009-07-21 광각 렌즈계와 이를 구비한 전자기기

Country Status (2)

Country Link
KR (1) KR101049883B1 (ko)
WO (1) WO2010011070A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101520A1 (ko) * 2016-12-02 2018-06-07 (주)토핀스 영상왜곡이 최소화된 원적외선 광시야각 광학계

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231822A1 (en) * 2004-03-30 2005-10-20 Fujinon Corporation Single focus wide-angle lens
US20050270665A1 (en) * 2004-06-02 2005-12-08 Milestone Co., Ltd. Imaging lens
US20070091471A1 (en) * 2005-05-05 2007-04-26 Largan Precision Co., Ltd. Image lens array
US20070223111A1 (en) * 2005-01-21 2007-09-27 Milestone Co., Ltd. Imaging Lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231822A1 (en) * 2004-03-30 2005-10-20 Fujinon Corporation Single focus wide-angle lens
US20050270665A1 (en) * 2004-06-02 2005-12-08 Milestone Co., Ltd. Imaging lens
US20070223111A1 (en) * 2005-01-21 2007-09-27 Milestone Co., Ltd. Imaging Lens
US20070091471A1 (en) * 2005-05-05 2007-04-26 Largan Precision Co., Ltd. Image lens array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101520A1 (ko) * 2016-12-02 2018-06-07 (주)토핀스 영상왜곡이 최소화된 원적외선 광시야각 광학계

Also Published As

Publication number Publication date
KR101049883B1 (ko) 2011-07-15
WO2010011070A3 (ko) 2010-05-14
KR20100009999A (ko) 2010-01-29

Similar Documents

Publication Publication Date Title
US6975461B2 (en) Zoom lens system
TWI687737B (zh) 廣角鏡頭
US7099092B2 (en) Single focus wide-angle lens
JP5556815B2 (ja) 変倍レンズ系
US9405095B2 (en) Imaging lens and imaging apparatus
US20040130647A1 (en) Path-bending zoom optical system
US7180687B2 (en) Single focus wide-angle lens
US20050168831A1 (en) Zoom Lens System
JP4374222B2 (ja) 変倍光学系
JP2008065051A (ja) ズームレンズ
JP2005181774A (ja) ズームレンズ
US6762890B2 (en) Single focus lens
US7940471B2 (en) Zoom lens, imaging apparatus and mobile phone
EP3327480B1 (en) Zoom lens system, imaging optical device, and digital apparatus
JP2007322839A (ja) 結像レンズおよび携帯情報端末装置
US20050200969A1 (en) Image-taking apparatus
JP2006058363A (ja) ズームレンズおよびそれを用いたカメラモジュール
US7933072B2 (en) Zoom lens and imaging apparatus
JP2005077770A (ja) 変倍光学系
US7088528B2 (en) Single focus lens including a front stop
CN112255765B (zh) 摄像镜头
JP3810061B2 (ja) ズームレンズ
WO2016182408A2 (ko) 촬영 렌즈계
WO2010011070A2 (ko) 광각 렌즈계와 이를 구비한 전자기기
JP2005189711A (ja) 変倍レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09800551

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09800551

Country of ref document: EP

Kind code of ref document: A2